WO2009046673A1 - Procédé de gestion de couple pour moteur électrique hybride - Google Patents

Procédé de gestion de couple pour moteur électrique hybride Download PDF

Info

Publication number
WO2009046673A1
WO2009046673A1 PCT/CN2008/072572 CN2008072572W WO2009046673A1 WO 2009046673 A1 WO2009046673 A1 WO 2009046673A1 CN 2008072572 W CN2008072572 W CN 2008072572W WO 2009046673 A1 WO2009046673 A1 WO 2009046673A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
motor
request
value
power generation
Prior art date
Application number
PCT/CN2008/072572
Other languages
English (en)
French (fr)
Inventor
Shangdong Yang
Zhaozhou Jiang
Jing Huang
Original Assignee
Chery Automobile Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chery Automobile Co., Ltd. filed Critical Chery Automobile Co., Ltd.
Priority to US12/680,778 priority Critical patent/US8515606B2/en
Priority to EP08837147A priority patent/EP2200173A4/en
Publication of WO2009046673A1 publication Critical patent/WO2009046673A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/10Temporary overload
    • B60L2260/16Temporary overload of electrical drive trains
    • B60L2260/167Temporary overload of electrical drive trains of motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0006Digital architecture hierarchy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/009Priority selection
    • B60W2050/0091Priority selection of control inputs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention belongs to the field of hybrid vehicle control, and in particular relates to a hybrid motor torque management method.
  • Hybrid vehicles take into account the advantages of internal combustion engines and pure electric vehicles. They have the advantages of low fuel consumption, low emissions, and long mileage. They are a practical solution to the energy crisis and environmental pollution.
  • the hybrid vehicle controller needs to determine the working mode according to the current vehicle operating state, and then send power and mode requests to the engine and the motor respectively.
  • the motor control unit separately controls the respective power sources according to the commands of the hybrid vehicle controller to meet the requirements of the entire vehicle.
  • the vehicle control unit When the hybrid vehicle issues an auxiliary drive, power generation or regenerative braking torque request, the vehicle control unit needs to limit these torque requests based on the state of the motor and battery. When there are more than two torque requests at the same time, the vehicle control unit needs to arbitrate the torque request before issuing a torque request to the motor. Therefore, how to limit the torque request and determine whether the torque arbitration mechanism is reasonable will directly affect the overall vehicle performance of the hybrid vehicle.
  • the invention provides a priority-based motor torque management method, which is particularly suitable for a coaxial parallel medium-duty hybrid hybrid vehicle, and realizes management of multiple torque request sources.
  • the invention includes: electric mode torque synthesis and limitation, power generation mode torque synthesis and limitation, torque arbitration management and the like.
  • the electric mode torque request is a torque request that requires the electric machine to operate in an electric mode.
  • a torque request includes an auxiliary drive torque request and a battery warm-up torque (Bw MotTq) request.
  • the auxiliary drive torque request includes a drive torque request (Mp) for the purpose of satisfying the overall vehicle performance And a drive torque request (Me) for the purpose of improving vehicle efficiency.
  • the purpose of the battery warm-up torque request and the efficiency-driven drive torque request is to improve the overall vehicle efficiency, so the large value of the two is taken as the efficiency electric torque request (Me Merge).
  • the hybrid vehicle controller When there is one or more of the above torque requests, in order to avoid damage to the motor caused by excessive or too small request torque, the hybrid vehicle controller will be powered according to the peak torque allowed by the motor and the maximum allowable continuous running torque.
  • the torque request is limited to a reasonable range, resulting in an efficient electric torque limit (Me-Little) and a performance electric torque limit (Mp-Lmit).
  • Power Generation Mode Torque request refers to a torque request that requires the motor to operate in a power generation mode.
  • a torque request includes a power generation request (Gen) due to a low battery state of charge SOC, and a regenerative braking torque request ( Regen), battery warm-up torque request (Bw-GenTq) and engine warm-up torque request (Ew_GenTq).
  • Gen power generation request
  • Regen regenerative braking torque request
  • Bw-GenTq battery warm-up torque request
  • Ew_GenTq engine warm-up torque request
  • the engine may be required to provide all or part of the power generation torque. Therefore, the smallest value of Gen, Bw-Gent and the Ew-GenTq is taken as the combined power generation torque Gen-Sync.
  • the hybrid vehicle controller HCU will be based on the minimum continuous allowable motor.
  • the torque limits the power generation torque to obtain a regenerative braking torque limit value (Regen-Lmit) and a power generation torque limit value (Gen-Lmit).
  • Torque arbitration management when there are multiple torque requests at the same time, the hybrid vehicle controller HCU will arbitrate according to the priority of each torque request, and use the highest priority torque as the current torque request.
  • the priority of the torque from large to small is: Mp - Limit, Regen - Lmit, Gen - Lmit and Me - Lmit.
  • the auxiliary drive for the purpose of satisfying the vehicle's power performance has the highest priority, the regenerative braking torque request is second, then the power generation torque request, and finally the auxiliary drive for efficiency.
  • the hybrid vehicle controller HCU determines the highest priority torque request based on the above priority, and then issues a torque request to the engine and motor control module, respectively.
  • Figure 1 is a mechanical connection diagram of the present invention
  • Figure 2 is a structural diagram of the control principle of the present invention
  • Figure 3A is a flow chart of the electric mode torque integration and limitation A
  • Figure 3B is a motor mode torque integration and limitation flow chart B
  • Figure 4 is a flow chart of power generation torque integration and limitation
  • Figure 5 is a torque arbitration flow chart.
  • the hybrid vehicle is a single-shaft parallel hybrid vehicle, and the engine 1 is arranged on the same axis as the motor 2.
  • the motor 2 is an ISG motor integrated with power generation and electric functions.
  • the hybrid vehicle powertrain uses three control units, a hybrid controller (HCU) 3, an engine management system (EMS) 4, and a motor controller (MCU) 5.
  • the three control units are responsible for controlling the entire vehicle, the engine and the motor.
  • the ISG motor operates in torque mode, speed mode and zero torque mode.
  • the so-called torque mode is an operating mode in which the torque request of the hybrid controller is satisfied.
  • the motor when the motor is operated in the torque mode, the motor has the following functions: auxiliary drive (Mp, Me), power generation (Gen), and regenerative braking (Regen).
  • the hybrid controller determines the torque request of the system according to factors such as the state of the vehicle, the driver's demand, and the like, and then divides the requested torque. For the electric mode torque request and the generator mode torque request, the requested torque is combined and limited to ensure that each torque request is within a reasonable range, and then these torques are arbitrated according to the set priority, and the priority is given. The highest torque request is smoothed and sent to the motor control module to achieve the required torque.
  • the electric mode torque request is a torque request that requires the motor to operate in electric mode.
  • torque requests include an auxiliary drive torque request and a battery warm-up torque (Bw - MotTq) request.
  • the auxiliary drive torque request includes a drive torque request (Mp) for the purpose of satisfying the overall vehicle performance and a drive torque request (Me) for the purpose of improving the overall vehicle efficiency.
  • Battery warm-up torque and efficiency-driven drive torque request (Me) are aimed at improving overall vehicle efficiency. Therefore, the larger of the two is taken as the efficiency electric torque request (Me-Merge).
  • the hybrid controller will limit the electric torque request to a reasonable range according to the peak torque allowed by the motor and the allowable continuous running maximum torque, so as to obtain the efficiency electric torque limit value (Me-limit ⁇ and performance electric Torque limit value (Mp - Lmit).
  • step1 - step4 are the synthesis process of Me and Bw - MotTq torque.
  • the efficiency electric torque flag (me-flag) is set to 1, and use the larger one of the two as the combined efficiency electric twisting me- merge.
  • Step5-step7 is the effect of whether the Mp request has a synthetic twist on mp_syn and me- syn.
  • Step8-stepl6 is the limiting process for mp- syn, and finally the performance torque limit value mp_limit is obtained.
  • step 12 Determine whether mp_ syn is less than the peak torque of the motor (peak-torque). If it is established, set mp_limit to mp_init_limit(step 15). If not, the mp- syn is more than the motor can provide. The maximum torque sets the requested torque to the motor peak torque (stepl6). When steplO is established, it is further determined whether the mp_ syn exceeds the continuous maximum torque of the motor (stepl l).
  • the mp_limit is set to mp_syn(stepl4), if the motor is exceeded For continuous maximum torque, limit mp_limit to the maximum continuous motor torque (stepl3).
  • Step 16 and step 17 are the limiting processes for Me torque.
  • the process is to limit the Me request value to a set minimum value and the maximum torque of the motor continuous operation.
  • the power torsion mode torque request is a torque request that requires the motor to operate in the power generation mode.
  • torque requests include a power generation request (Gen) due to a low battery state of charge SOC, a regenerative braking torque request (Regen), a battery warm-up torque request (Bw-Gentq), and an engine warm-up torque. Request (Ew_GenTq).
  • the HCU When there is the above torque request, the motor needs to work in the state of generating electricity, and the requested torque value at this time.
  • the HCU will limit the power generation torque according to the minimum continuous torque allowed by the motor, and obtain the regenerative braking torque limit value (Regen-Lmit) and the power generation torque limit value (Gen). — Lmit ).
  • Stepl8 - step21 is the regenerative braking torque processing process.
  • the corresponding flag (regen_flag) is set to 1 (true), and the requested braking torque cannot be less than the minimum continuous running of the motor. Torque (step 21).
  • the process of generating torque is step22 - step35.
  • the specific process of S23 - S28 is: when one of the battery warm-up request, the engine warm-up request and the battery charging request is established, the synthesized power generation request flag is set to 1 (step 26), and the smallest one of the three
  • the torque is requested as a power generation torque (step 27).
  • Step29 indicates that the power generation torque cannot be less than the minimum torque for continuous operation of the motor.
  • Step30 is based on the current motor tachometer to find the engine's acceptable power generation torque.
  • Step31 indicates that the generator torque cannot exceed the range acceptable for the engine at the current speed.
  • the power generation request is the torque that the engine needs to provide for the total power request torque minus the torque provided by the regenerative brake.
  • Step33 - step35 indicates that the power generation torque is set to zero when the power generation request torque is greater than the set minimum value (note that the power generation torque is a negative value).
  • the hybrid controller When multiple torque requests are present at the same time, the hybrid controller will arbitrate according to the priority of each torque request, and the highest priority torque will be used as the current torque request.
  • the priority of the torque from large to small is: Mp— Limit, Regen—Lmit, Gen—Lmit and Me—Lmit.
  • the auxiliary drive for the purpose of satisfying the vehicle's power performance has the highest priority, the regenerative braking torque request is second, then the power generation torque request, and finally the auxiliary drive for efficiency.
  • the hybrid controller determines based on the above priority. Respond to the highest priority torque request and then issue a torque request to the engine and motor control module respectively.
  • Figure 5 shows the process of arbitrating the above synthesized and limited torque. First, judge the Mp request with the highest priority. If the Mp_flag is l (true), set the motor torque request value (ISG_reqTqSyn) to mp_limit (step41); if there is no Mp request, judge whether there is any regenerative system.
  • Dynamic torque request (regen-flag), if there is a request and the requested torque value is less than the power generation torque request value, the torque request to the motor is set to regen_limit (step 42); if there is no regenerative braking torque request, it is judged whether There is a power generation (gen_flag) request, if any, ISG_reqTqSyn is set to gen_limit(step43); if there is no power generation torque request, it is judged whether there is a Me request, if any, ISG_reqTqSyn is set to Me_limit(step44); If there is no Me request, set ISG_ reqTqSyn to zero.
  • the torque is also smoothed after calculating the requested torque to be sent to the ISG (S45).
  • the torque arbitrated and smoothed torque will eventually be sent to the ISG motor to meet the HCU torque requirements to complete the various torque modes of the hybrid vehicle of the present invention.

Description

一种混合动力电机扭矩管理方法
本申请要求于 2007 年 9 月 30 日提交中国专利局、 申请号为 200710164139.x, 发明名称为"一种混合动力电机扭矩管理方法"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明属于混合动力汽车控制领域,尤其涉及一种混合动力电机扭矩管理 方法。
背景技术
能源危机和环境污染已成为制约全球发展重要因素,研究节能、环保的汽 车是緩解能源压力、降低环境污染的有效手段之一。 混合动力汽车兼顾了内燃 机汽车和纯电动汽车的优点, 具有低油耗、 低排放、 长行驶里程等优点, 是当 前切实可行的一种解决能源危机和环境污染的方案。
由于并联式混合动力汽车具有两个动力源,发动机和电机, 混合动力整车 控制器(HCU )需要根据当前汽车运行状态, 进行工作模式判定, 然后分别向 发动机和电机发出动力和模式请求,发动机和电机控制单元根据混合动力整车 控制器的命令分别控制各自的动力源以满足整车的需求。
当混合动力车发出辅助驱动、发电或再生制动扭矩请求时, 整车控制单元 需要根据电机、 电池^动机的状态对这些扭矩请求进行限制。 当同时存在两 个以上扭矩请求时,整车控制单元需要对扭矩请求进行仲裁, 然后才向电机发 出扭矩请求。因此,如何对扭矩请求进行限制以及判断扭矩仲裁机制是否合理, 将直接影响到混合动力车的整车性能。
发明内容
本发明提出一种基于优先级的电机扭矩管理方法,特别适合同轴并联中度 混合式混合动力车, 实现对多个扭矩请求源的管理。
发明内容包括: 电动模式扭矩合成及限制、发电模式扭矩合成及限制, 扭 矩仲裁管理等部分。
1、 电动模式扭矩请求是要求电机在电动模式下工作的扭矩请求,在本申请 中 ,这类扭矩请求包括辅助驱动扭矩请求和电池暖机扭矩 ( Bw MotTq )请求。 其中辅助驱动扭矩请求包括以满足整车动力性能为目的的驱动扭矩请求(Mp ) 和以提高整车效率为目的的驱动扭矩请求( Me )。 电池暖机扭矩请求和以效率 为目的的驱动扭矩请求的目的都是为了提高整车效率,因此取两者中的大值作 为效率电动扭矩请求 ( Me Merge )。
当存在上述一个或多个扭矩请求时, 为了避免过大或过小的请求扭矩对 电机造成损害,混合动力整车控制器会根据电机许可的峰值扭矩和允许的连续 运行最大扭矩等条件将电动扭矩请求限制合理的范围内 ,从而得到效率电动扭 矩限制值(Me— Limit )及性能电动扭矩限制值(Mp— Lmit )。
2.发电模式扭矩请求就是指要求电机工作在发电模式下的扭矩请求, 在 本发明中,这类扭矩请求包括由于电池荷电状态 SOC过低发出发电请求 (Gen)、 再生制动扭矩请求(Regen ), 电池暖机扭矩请求( Bw— GenTq )及发动机暖机 扭矩请求(Ew_GenTq )。
在电池和发动机需要暖机, 或电池需要充电时, 均有可能要求发动机提 供全部或部分发电扭矩, 因此取 Gen, Bw— GenTq及 Ew— GenTq中最小的值作 为合成发电扭矩 Gen— Syn。
当存在上述扭矩请求时, 电机需要工作在发电状态, 此时请求的扭矩值 为负值,为了将电机发电扭矩限制在合理的范围内,混合动力整车控制器 HCU 会根据电机允许的最小连续扭矩对发电扭矩进行限制,从而得到再生制动扭矩 限制值(Regen— Lmit )和发电扭矩限制值(Gen— Lmit )。
3.扭矩仲裁管理, 当同时存在多个扭矩请求的时, 混合动力整车控制器 HCU会根据各个扭矩请求的优先级进行仲裁, 将优先级最高的扭矩作为当前 的扭矩请求。扭矩的优先级由大到小依次为: Mp— Limit, Regen— Lmit, Gen— Lmit 及 Me— Lmit。从优先级可以看出, 满足汽车动力性能为目的的辅助驱动具有最 高优先级, 再生制动扭矩请求次之, 然后是发电扭矩请求, 最后是以效率为目 的的辅助驱动。
当出现多个扭矩请求源时 , 混合动力整车控制器 HCU根据上述优先级判 断, 响应优先级最高的扭矩请求, 然后分别向发动机及电机控制模块发出扭矩 请求。
附图说明
图 1 是本发明的机械连接图; 图 2是本发明控制原理结构图;
图 3A是电动模式扭矩综合及限制流程图 A;
图 3B是电机模式扭矩综合及限制流程图 B;
图 4 是发电模式扭矩综合及限制流程图;
图 5 是扭矩仲裁流程图。
具体实施方式
如图 1所示, 混合动力汽车为单轴并联混合式汽车,发动机 1与电机 2同 轴布置, 电机 2是由发电及电动功能集成一体的 ISG电机。混合动力车动力系 统使用了三个控制单元, 混合动力控制器(HCU ) 3、发动机管理系统(EMS ) 4和电机控制器(MCU ) 5。 所述三个控制单元分别负责对整车、 发动机及电 机进行控制。
ISG电机可工作于扭矩模式、 速度模式及零扭矩模式。 所谓扭矩模式是以 满足混合动力控制器的扭矩请求而所处的工作模式。本发明中,在电机工作于 扭矩模式时, 电机具有的功能有: 辅助驱动 (Mp, Me)、 发电 (Gen)和再生制动 (Regen)。
图 2所示为本发明中混合动力控制器进行扭矩管理的结构图,其实施方式 是:混合动力控制器根据整车状态、驾驶员需求等因素判断出系统的扭矩请求, 然后将请求扭矩分为电动模式扭矩请求和发电模式扭矩请求,再把请求的扭矩 进行综合和限制, 以保证每个扭矩请求均在合理的范围内, 然后把这些扭矩按 照设定的优先级进行仲裁,将优先级最高的扭矩请求进行平滑处理后送往电机 控制模块, 以实现需求的扭矩。
1、 电动模式扭矩合成及限制
电动模式扭矩请求就是要求电机工作在电动模式下的扭矩请求。 在本发 明中, 这类扭矩请求包括辅助驱动扭矩请求和电池暖机扭矩(Bw— MotTq )请 求。 其中辅助驱动扭矩请求包括以满足整车动力性能为目的的驱动扭矩请求 ( Mp )和以提高整车效率为目的的驱动扭矩请求( Me )。 电池暖机扭矩和以 效率为目的的驱动扭矩请求(Me )都是以提高整车效率为目的的。 因此取两 者中的较大值作为效率电动扭矩请求( Me— Merge )。
当存在上述一个或多个扭矩请求时,为了避免过大或过小的请求扭矩对电 机造成损害,混合动力控制器会根据电机许可的峰值扭矩和允许的连续运行最 大扭矩等条件将电动扭矩请求限制在合理的范围内 ,从而得到效率电动扭矩限 制值(Me— Limit丄和性能电动扭矩限制值(Mp— Lmit )。
对电动模式扭矩进行合成及限制的过程如图 3A及图 3B所示, 步骤 stepl - step4为 Me和 Bw— MotTq扭矩的合成过程。 有 Me请求或者电池需要暖机 时, 将效率电动扭矩标志位(me— flag )置 1 , 将两者中扭矩更大的一个作为合 成效率电动扭巨 me— merge。 step5-step7为是否有 Mp请求对合成扭巨 mp_syn 及 me— syn的影响。 step8-stepl6为对 mp— syn的限制过程, 最终得到性能扭矩 限制值 mp— limit。 所述限制的具体过程为: 首先判断初始性能扭矩限制值 mp_init_limit(S 10)是否小于当前电机所能提供的连续最大扭矩 (cont— max) , 若 不小于电机连续最大扭矩则进入 stepl2, step 12判断 mp— syn是否小于电机的 峰值扭矩 (peak— torque) , 若成立就将 mp— limit设置为 mp— init— limit(step 15), 若 不成立, 也就是说 mp— syn超过了电机所能提供的最大扭矩则将请求扭矩设置 为电机峰值扭矩 (stepl6)。 当 steplO成立时,进一步判断 mp— syn是否超过了电 机的连续最大扭矩 (stepl l), 如果没超过电机的连续最大扭矩, 将 mp— limit设 置为 mp— syn(stepl4), 如果超过了电机的连续最大扭矩, 将 mp— limit限制为电 机连续最大扭矩 (stepl3)。 通过上述过程, 将性能电动扭矩合成值限制在电机 的连续扭矩和峰值扭矩范围之内。
step 16和 step 17为对 Me扭矩的限制过程。 其过程是将 Me请求值限制在 了一个设定的最小值和电机连续运行最大扭矩之间。
2、 发电模式扭矩合成及限制
发电扭模式扭矩请求是指要求电机工作在发电模式下的扭矩请求。 在本 申请中, 这类扭矩请求包括由于电池荷电状态 SOC过低发出发电请求 (Gen), 再生制动扭矩请求(Regen ), 电池暖机发电扭矩请求(Bw— GenTq )及发动机 暖机扭矩请求(Ew_GenTq )。
电池和发动机需要暖机, 或电池需要充电时, 均有可能要求发动机提供 全部或部分发电扭矩。 因此取 Gen, Bw— GenTq及 Ew— GenTq中最小的值作为 合成发电扭矩 Gen— Syn。
当存在上述扭矩请求时, 电机需要工作在发电的状态,此时请求的扭矩值 为负值, 为了将电机发电扭矩限制在合理的范围内, HCU会根据电机允许的 最小连续扭矩对发电扭矩进行限制, 得到再生制动扭矩限制值(Regen— Lmit ) 及发电扭矩限制值( Gen— Lmit )。
图 4示出了发电模式扭矩的合成及限制过程。 stepl8 - step21为再生制动 扭矩处理过程, 当有再生制动扭矩请求时, 将相应的标志位 (regen— flag)置 l(true), 并且请求的制动扭矩不能小于电机连续运行的最小的扭矩 (step 21)。
对发电扭矩的处理过程为 step22 - step35。 S23 - S28的具体过程为, 当电 池暖机发电请求、发动机暖机请求和电池充电请求其中有一个条件成立时,将 合成的发电请求标识置 l(step26),且将三者中最小的一个扭矩作为发电扭矩请 求 (step27)。 step29表示发电扭矩不能小于电机连续运行的最小扭矩。 step30 是根据当前电机转速表查出发动机可接受的发电扭矩。 step31表示发电扭矩不 能超过当前转速下发动机可接受的范围。发电请求是发动机需要提供的扭矩为 总的发电请求扭矩减去再生制动提供的扭矩。 step33 - step35表示当发电请求 扭矩大于设定的最小值 (注意发电扭矩为负值)则将发电扭矩设为零。
3、 扭矩仲裁管理
当同时存在多个扭矩请求时, 混合动力控制器会根据各个扭矩请求的优 先级进行仲裁,将优先级最高的扭矩作为当前的扭矩请求。扭矩的优先级由大 到小依次为: Mp— Limit, Regen— Lmit, Gen— Lmit及 Me— Lmit。 从优先级排序看 出, 以满足汽车动力性能为目的的辅助驱动具有最高优先级,再生制动扭矩请 求次之, 然后是发电扭矩请求, 最后是以效率为目的的辅助驱动。
当出现多个扭矩请求源时, 混合动力控制器根据上述优先级判断。 响应 优先级最高的扭矩请求, 然后分别向发动机及电机控制模块发出扭矩请求。
图 5所示是对上述经过合成和限制的扭矩进行仲裁的过程。首先判断具有 最高优先级的 Mp 请求, 如 Mp— flag 为 l(true), 则将电机的扭矩请求值 (ISG_reqTqSyn )设为 mp— limit(step41); 如无 Mp请求时,判断是否有再生制动 扭矩请求 (regen— flag), 若有请求且请求扭矩值小于发电扭矩请求值, 则将发往 电机的扭矩请求设为 regen— limit(step42); 若无再生制动扭矩请求时, 判断是 否有发电 (gen— flag)请求, 若有则将 ISG— reqTqSyn设为 gen— limit(step43); 若 没有发电扭矩请求则判断是否有 Me 请求, 若有则将 ISG— reqTqSyn设为 me_limit(step44); 若没有 Me请求, 则将 ISG— reqTqSyn设为零。 当计算出应 该送往 ISG的请求扭矩大小后还需要对扭矩进行平滑化处理 (S45)。
经过扭矩仲裁和平滑化的扭矩最终将送往 ISG电机, 以满足 HCU的扭矩 需求, 完成本发明中混合动力车的各种扭矩工作模式。

Claims

权 利 要 求
1、 一种电机扭矩管理方法, 混合动力控制器根据整车状态和驾驶员需求 判定出系统的扭矩请求,将请求的扭矩进行综合和限制, 以保证每个扭矩请求 均在合理的范围内, 然后将这些扭矩按照设定的优先级进行仲裁,将优先级最 高的扭矩请求进行平滑处理后送往电机控制模块, 以实现需求的扭矩。
2、 根据权利要求 1所述的电机扭矩管理方法, 其特征在于, 所述扭矩请 求分为电动模式扭矩请求和发电模式扭矩请求, 所述管理方法包括: 电动模式 扭矩合成及限制, 发电模式扭矩合成及限制, 以及扭矩仲裁管理。
3、 根据权利要求 2所述的电机扭矩管理方法, 其特征在于: 电动模式扭 矩请求包括辅助驱动扭矩请求和电池暖机扭矩请求,其中辅助驱动扭矩请求包 括以满足整车动力性能为目的的性能电动扭矩请求和以提高整车效率为目的 的效率电动扭矩请求; 电动模式扭矩合成及限制分为性能电动扭矩的合成限 制, 最终得到性能电动扭矩限制值; 以及效率电动扭矩的合成限制, 最终得到 效率电动扭矩限制值。
4、 根据权利要求 3所述的电机扭矩管理方法, 其特征在于, 性能电动扭 矩合成限制过程为:判断性能电动扭矩限制初始值是否小于当前电机所能提供 的连续最大扭矩, 若小于,进一步判断性能电动扭矩综合值是否小于电机的连 续最大扭矩, 当判断为小于时,将性能电动扭矩限制值设置为性能电动扭矩综 合值, 当判断为不小于时, 将性能电动扭矩综合值限制为电机连续最大扭矩; 若不小于电机连续最大扭矩,则判断性能电动扭矩综合值是否小于电机的峰值 扭矩, 若小于就将最终性能电动扭矩限制值设置为性能电动扭矩限制初始值, 若不小于, 则将请求扭矩设置为电机峰值扭矩。
5、 根据权利要求 3所述的电机扭矩管理方法, 其特征在于, 效率电动扭 矩的合成限制过程为:取效率电动扭矩综合值和电机连续最小扭矩值中的较小 值作为效率电动扭矩限制初始值;取效率电动扭矩综合值和电机设定最小扭矩 值中的较大值作为效率电动扭矩限制值。
6、 根据权利要求 2所述的电机扭矩管理方法, 其特征在于: 发电模式下 的扭矩请求包括由于电池荷电状态过低发出发电请求、再生制动扭矩请求、 电 池暖机扭矩请求及发动机暖机扭矩请求; 当存在上述扭矩请求时,混合动力控制器 HCU根据电机允许的最小连续扭 矩对发电扭矩进行限制 , 得到再生制动扭矩限制值及发电扭矩限制值。
7、 根据权利要求 6所述的电机扭矩管理方法, 其特征在于:
所述发电模式扭矩合成及限制的过程主要有两个部分, 第一部分通过将再 生制动扭矩限制在电机连续最小扭矩之上得到所述再生制动扭矩限制值; 在第二部分中, 取发动机暖机、 电池暖机及电池充电扭矩中的最小值作为 合成的发电扭矩值 ,将该合成值限制在电机连续最小扭矩之上得到发电第一扭 矩值;然后通过将发电第一扭矩值与再生制动扭矩限制值的差值限制在发动机 可接收的最大发电扭矩之内,得到发电第二扭矩值; 将发电第二扭矩值与再生 制动扭矩限制值之和作为发电第三扭矩值, 将其限制在一最小扭矩之上,并将 发电第三扭矩值作为发电扭矩限制值。
8、 根据权利要求 2 - 7任一项所述的电机扭矩管理方法, 其特征在于: 扭 矩仲裁管理为: 当同时存在多个扭矩请求的时候, 混合动力控制器会依据各个 扭矩请求的优先级进行仲裁, 将优先级最高的扭矩作为当前的扭矩请求。
9、 根据权利要求 8所述的电机扭矩管理方法, 其特征在于: 扭矩的优先 级由大到小为: 性能电动扭矩限制值, 再生制动扭矩限制值, 发电扭矩限制值 及效率电动扭矩限制值。
10、 根据权利要求 1 - 9任一项所述的电机扭矩管理方法, 其特征在于所 述管理方法用于同轴并联中度混合式动力车。
PCT/CN2008/072572 2007-09-30 2008-09-27 Procédé de gestion de couple pour moteur électrique hybride WO2009046673A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/680,778 US8515606B2 (en) 2007-09-30 2008-09-27 Torque management method for hybrid electric motor
EP08837147A EP2200173A4 (en) 2007-09-30 2008-09-27 TORQUE MANAGEMENT METHOD FOR HYBRID ELECTRIC MOTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB200710164139XA CN100521501C (zh) 2007-09-30 2007-09-30 一种混合动力电机扭矩管理方法
CN200710164139.X 2007-09-30

Publications (1)

Publication Number Publication Date
WO2009046673A1 true WO2009046673A1 (fr) 2009-04-16

Family

ID=39423122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072572 WO2009046673A1 (fr) 2007-09-30 2008-09-27 Procédé de gestion de couple pour moteur électrique hybride

Country Status (4)

Country Link
US (1) US8515606B2 (zh)
EP (1) EP2200173A4 (zh)
CN (1) CN100521501C (zh)
WO (1) WO2009046673A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100521501C (zh) * 2007-09-30 2009-07-29 奇瑞汽车股份有限公司 一种混合动力电机扭矩管理方法
CN101259845A (zh) * 2007-12-05 2008-09-10 奇瑞汽车股份有限公司 一种混合动力电机扭矩平滑处理控制系统
CN101695912B (zh) * 2009-10-26 2012-09-12 纽贝耳汽车(杭州)有限公司 电动汽车整车控制方法
US8550054B2 (en) * 2009-12-08 2013-10-08 GM Global Technology Operations LLC Linear tranformation engine torque control systems and methods for increasing torque requests
US8577579B2 (en) * 2010-02-01 2013-11-05 Bendix Commercial Vehicle Systems Llc Engine control request from adaptive control with braking controller
CN101823444B (zh) * 2010-05-06 2012-06-27 奇瑞汽车股份有限公司 一种电动车起步扭矩控制方法
US8907774B2 (en) 2011-03-01 2014-12-09 Bendix Commercial Vehicle Systems Llc System and method for monitoring tire condition
KR101284293B1 (ko) * 2011-05-24 2013-07-08 기아자동차주식회사 모터로 구동되는 차량의 토크 제어방법 및 장치
US8798835B2 (en) * 2012-06-05 2014-08-05 GM Global Technology Operations LLC Hybrid diesel-electric powertrain smoke limit avoidance
CN103625306A (zh) * 2012-08-20 2014-03-12 北汽福田汽车股份有限公司 电动汽车的扭矩监控系统
US20130211638A1 (en) * 2012-08-31 2013-08-15 Mr. Sergei makaveev Method of regulation of tarque in hybrid transmission
KR20140079156A (ko) * 2012-12-18 2014-06-26 현대자동차주식회사 하이브리드 차량의 모터의 토크 결정 방법 및 시스템
CN105283366B (zh) 2013-03-15 2018-03-02 艾里逊变速箱公司 用于混合动力车辆的维修断电联锁系统和方法
CA2898507C (en) 2013-03-15 2021-03-16 Allison Transmission, Inc. System and method for balancing states of charge of energy storage modules in hybrid vehicles
CN104653317B (zh) * 2014-12-04 2017-05-17 中国航空工业集团公司第六三一研究所 一种基于仲裁表决的扭矩控制方法
CN106314194B (zh) * 2015-06-26 2018-05-18 上海汽车集团股份有限公司 电动汽车动力系统输出扭矩控制方法及装置
CN107139916B (zh) * 2017-05-17 2019-09-24 中国第一汽车股份有限公司 用于混合动力汽车的驾驶员扭矩需求解析方法
JP7003673B2 (ja) * 2018-01-15 2022-01-20 トヨタ自動車株式会社 自動車
CN112356821B (zh) * 2020-10-14 2022-07-22 长城汽车股份有限公司 整车扭矩最大限值计算方法、装置、电子设备及存储介质
CN112298157B (zh) * 2020-10-30 2022-02-22 一汽解放汽车有限公司 一种控制方法、装置、设备及存储介质
CN113716054B (zh) * 2021-09-14 2023-06-27 上海峰飞航空科技有限公司 动力系统控制方法及无人机控制方法
CN114393998B (zh) * 2022-01-25 2024-01-26 三一汽车起重机械有限公司 电机扭矩的控制方法及其控制器、控制系统及作业机械

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053622A1 (de) * 2004-11-20 2006-05-26 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur steuerung und/oder regelung einer elektrischen maschine eines kraftfahrzeugs
CN1980809A (zh) * 2004-07-12 2007-06-13 丰田自动车株式会社 动力输出装置、安装有该动力输出装置的车辆及其控制方法
CN101174806A (zh) * 2007-09-30 2008-05-07 奇瑞汽车有限公司 一种混合动力电机扭矩管理方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19617548B4 (de) * 1996-05-02 2008-06-12 Adam Opel Ag Elektromotorisch antreibbares Kraftfahrzeug
DE19840819C1 (de) * 1998-09-07 2000-08-03 Isad Electronic Sys Gmbh & Co Startersystem für einen Verbrennungsmotor sowie Verfahren zum Starten eines Verbrennungsmotors
US6321143B1 (en) 2000-06-26 2001-11-20 Ford Motor Company Control system and method for a hybrid electric vehicle
JP3807232B2 (ja) * 2001-02-02 2006-08-09 日産自動車株式会社 ハイブリッド式車両制御装置
JPWO2004010562A1 (ja) * 2002-07-22 2005-11-17 日本精工株式会社 モータ、モータの製造方法及びモータの駆動制御装置
JP3676336B2 (ja) 2002-10-02 2005-07-27 本田技研工業株式会社 ハイブリッド車両の出力制御装置
DE10349445A1 (de) 2002-10-26 2004-05-13 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren, Vorrichtung und deren Verwendung zum Betrieb eines Kraftfahrzeuges
US7021410B2 (en) 2002-11-27 2006-04-04 Eaton Corporation Method and system for determining the torque required to launch a vehicle having a hybrid drive-train
US7076356B2 (en) 2004-02-14 2006-07-11 General Motors Corporation Optimal selection of input torque with stability of power flow for a hybrid electric vehicle
JP4055758B2 (ja) * 2004-09-01 2008-03-05 トヨタ自動車株式会社 自動車およびその制御方法
DE102004062012A1 (de) 2004-12-23 2006-07-20 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridfahrzeugs
CN1311999C (zh) 2005-01-31 2007-04-25 上海汽车工业(集团)总公司汽车工程研究院 并联式混合动力驱动系统及其驱动方法
CN1897449A (zh) 2005-07-15 2007-01-17 中国第一汽车集团公司 混合动力汽车电机扭矩输出依soc变化的管理方法
JP4348557B2 (ja) 2006-02-22 2009-10-21 三菱ふそうトラック・バス株式会社 ハイブリッド電気自動車の制御装置
US8335623B2 (en) * 2007-10-25 2012-12-18 GM Global Technology Operations LLC Method and apparatus for remediation of and recovery from a clutch slip event in a hybrid powertrain system
US8731751B2 (en) * 2008-02-07 2014-05-20 GM Global Technology Operations LLC Method and system for controlling a hybrid vehicle
US8157035B2 (en) * 2008-08-15 2012-04-17 GM Global Technology Operations LLC Hybrid vehicle auto start systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980809A (zh) * 2004-07-12 2007-06-13 丰田自动车株式会社 动力输出装置、安装有该动力输出装置的车辆及其控制方法
WO2006053622A1 (de) * 2004-11-20 2006-05-26 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur steuerung und/oder regelung einer elektrischen maschine eines kraftfahrzeugs
CN101174806A (zh) * 2007-09-30 2008-05-07 奇瑞汽车有限公司 一种混合动力电机扭矩管理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GU, YANCHUN ET AL.: "Investigation to Coordinated Torque Control Strategy of Parallel Hybrid Electric Vehicles.", JOURNAL OF SYSTEM SIMULATION., vol. 19, no. 3, February 2007 (2007-02-01), pages 631, XP008123593 *
See also references of EP2200173A4 *

Also Published As

Publication number Publication date
US20100286855A1 (en) 2010-11-11
CN101174806A (zh) 2008-05-07
US8515606B2 (en) 2013-08-20
CN100521501C (zh) 2009-07-29
EP2200173A1 (en) 2010-06-23
EP2200173A4 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
WO2009046673A1 (fr) Procédé de gestion de couple pour moteur électrique hybride
KR101776723B1 (ko) 하이브리드 차량의 주행 모드 변환 제어 방법 및 그 제어 장치
CN105539155B (zh) 混合动力车辆
CN1298560C (zh) 混合动力汽车控制系统及其控制方法
CN102658817B (zh) 一种混合动力汽车实现纯电动功能的控制方法
CN109606348B (zh) 一种插电式行星混联汽车能量管理控制方法
US20050061563A1 (en) Method and system of requesting engine on/off state in hybrid electric vehicle
CN103832287A (zh) 用于控制混合动力车充电和放电的方法和系统
CN102774374B (zh) 混合动力汽车扭矩监控系统
CN103587523B (zh) 用于控制混合起动器发电机的输出的方法和系统
WO2005073004A1 (en) Method of compensating torque at cylinder switching on a dod engine with electric parallel hybrid
WO2011072564A1 (zh) 电动汽车里程增加器控制系统及其控制方法
KR20130064537A (ko) 친환경 자동차의 토크 제어방법 및 그 장치
CN102883933A (zh) 混合动力车辆的控制装置及具有该控制装置的混合动力车辆
CN105015549A (zh) 电驱动系统的扭矩控制方法及装置
JP2014080060A (ja) 車両
US8798835B2 (en) Hybrid diesel-electric powertrain smoke limit avoidance
JP7091948B2 (ja) ハイブリッド車両の制御装置
JP2007245753A (ja) ハイブリッド車両の制御装置
JPWO2012101796A1 (ja) 車両および車両用制御方法
JP5644868B2 (ja) 車両および車両の制御方法
CN202782642U (zh) 一种混合动力系统及汽车
JP2006254553A (ja) 車両の制御装置
WO2013121544A1 (ja) 制御装置、制御システム
CN106627098B (zh) 一种混联式混合动力汽车动力系统控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08837147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12680778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008837147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008837147

Country of ref document: EP