WO2009033410A1 - Matériau photochrome thermosensible et son procédé et dispositif optique le comprenant - Google Patents

Matériau photochrome thermosensible et son procédé et dispositif optique le comprenant Download PDF

Info

Publication number
WO2009033410A1
WO2009033410A1 PCT/CN2008/072271 CN2008072271W WO2009033410A1 WO 2009033410 A1 WO2009033410 A1 WO 2009033410A1 CN 2008072271 W CN2008072271 W CN 2008072271W WO 2009033410 A1 WO2009033410 A1 WO 2009033410A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
polymer
thermosensitive
light
carbon
Prior art date
Application number
PCT/CN2008/072271
Other languages
English (en)
French (fr)
Inventor
Yuechuan Wang
Gang Feng
Original Assignee
Chengdu Bysun Hi-Tech Materials Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Bysun Hi-Tech Materials Co., Ltd filed Critical Chengdu Bysun Hi-Tech Materials Co., Ltd
Priority to EP08800783.6A priority Critical patent/EP2186857B1/en
Priority to JP2010523260A priority patent/JP5458014B2/ja
Priority to US12/676,477 priority patent/US8518548B2/en
Publication of WO2009033410A1 publication Critical patent/WO2009033410A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31598Next to silicon-containing [silicone, cement, etc.] layer
    • Y10T428/31601Quartz or glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31605Next to free metal

Definitions

  • the present invention relates to the field of thermal dimming materials, preparation methods, and optical devices, and particularly to a thermal dimming material, a preparation method thereof, and a method for preparing the same
  • the optical device that it constitutes The technical background is different from the traditional shading methods such as curtains and blinds.
  • the thermal response smart window prepared with the heat-responsive material can instantly adjust the incident light intensity and the irradiation heat without the need of 3 ⁇ 4 Ge, which will greatly facilitate people's lives. And work.
  • Thermally responsive materials are classified into thermal scattering, thermochromism, and three types that have both functions.
  • the thermally scattering material refers to a material that spontaneously changes the light transmittance as a function of temperature, for example, from a transparent state to a milky white light scattering state (transparent-turbid transition).
  • Thermochromic materials are materials that change the absorption characteristics of the visible light band as a function of temperature, producing a color change that is visible to the naked eye.
  • the material with these two functions combines the above two functions, that is, the change of temperature, which produces both a transparent-turbid transition and a color transition.
  • the dimming principle of the thermally scatterable polymer material is that above the transition temperature (ie, the cloud point), some microphase, microcrystal or refractive index mismatched microdomains are formed due to phase separation and aggregation state structure transformation, so that the incident light is The material scatters internally and becomes cloudy. After the temperature drops below the cloud point, these microphases, crystallites or zones gradually disappear, and the system returns to a homogeneous phase, which in turn presents a transparent state.
  • the thermally scattering polymer system needs to meet the following requirements: Reversible transparency-turbidity transition; transparent transmittance ⁇ 75%, turbidity transmission ⁇ 15%; turbidity of the system is uniform, Does not cause eye discomfort; the material has certain mechanical and mechanical properties, good stability; has a high cycle life of transparent-turbidity transition.
  • Existing thermal scattering polymer materials are classified into the following categories: 1) Hydrogels having a critical solution temperature (LCST). Above the LCST of the hydrogel, the hydrogel is reversibly phase-separated from water to give the system a light-scattering state.
  • LCST critical solution temperature
  • thermally responsive smart glass Seeboth A , Schneider J, Patzak A. Materials for intelligent sun Protecting glazing. Sol Energy Mater Sol Cells, 2000, 60: 263; Nitz P, Hartwig H. Solar control with thermotropic layers. Solar Energy, 2005, 79: 573).
  • the thermal response smart gel glass device made of hydrogel is bulky and thick, and the use is very limited. .
  • the hydrogel has poor mechanical properties and cannot be used as a film material, and is also prone to mildew. 2
  • Patent 5,196,972 (1999) which is composed of a mixture of two or more polymers.
  • the compatibility between the polymers is temperature dependent. When the temperature is lower than the minimum critical compatibility temperature (LCST), the polymer components are compatible, and the single phase is transparent.
  • the polymer is blended at a temperature above the LCST temperature. The materials are incompatible, phase separation occurs between the components, and the material is opaque.
  • the thermal scattering polymer film does not contain water, it requires the use of organic solvents that are highly harmful to the body during the preparation process, such as benzenes, halogenated hydrocarbons, etc., and these organic solvents cannot be completely removed, and thus remain in the process. In the finished polymer film, its use is affected.
  • a primary object of the present invention is to provide a new thermal light modulating material in view of the problems of the prior art.
  • a secondary object of the present invention is to provide a method of preparing the above novel thermal light modulating material.
  • a novel thermal light modulating material provided by the primary object of the present invention is characterized in that the thermal light-transmitting material having a thickness of 0.6 mm has an optical transmittance of >70% in a transparent state, and is in a turbid state.
  • the optical transmittance is ⁇ 10%, and the transition temperature difference between the two states is greater than 20 °C.
  • the thermosensitive light-adjusting material is a polymer polyol formed by weighting 18 to 84% by weight and/or a hydroxyl group polymer formed by reacting a polymer polyol with a diisocyanate, and 15 to 80% of a hydroxyl group-containing polymer.
  • the carbon-carbon unsaturated monomer is obtained by photopolymerization or thermal polymerization.
  • a method for preparing the above novel heat-sensitive light-adjusting material provided to achieve the secondary object of the present invention characterized in that the method is to firstly polymerize 18 to 84% by weight of the polymer polyol and/or from the polymer polyol
  • the hydroxyl terminated polymer formed by the reaction with diisocyanate, 15 ⁇ 80% of the hydroxyl group-containing carbon-carbon unsaturated monomer, 0.3 ⁇ 7% of the photoinitiator is uniformly mixed, and then the mixture is poured into a mold or coated to support
  • a high-pressure mercury lamp with a power of >80 w/cm is irradiated for 10 to 120 seconds to form a sheet or film, or 18 to 84% by weight of the polymer polyol and/or polymer
  • the hydroxyl terminated polymer formed by the reaction of the polyol with the diisocyanate, 15 to 80% of the hydroxyl group-containing carbon-carbon unsaturated monomer, 0.1 to 2% of the thermal initiator is uniformly mixed
  • the sheet or film can be prepared by raising the temperature to 50 to 130 ° C for 6 to 10 hours.
  • the polymer polyol used in the method is at least one of a polyether polyol, an aliphatic polyester polyol, and a terminal hydroxyl polymer formed by reacting a polymer polyol with a diisocyanate, a polymer polyol.
  • the molecular weight is 600 to 4000 g/mol
  • the molecular weight of the terminal hydroxyl polymer is 6000 to 20000 g/mol.
  • the polyether polyol may be selected from the group consisting of a polyoxyethylene polyol, a polyoxypropylene polyol, a polytetrahydrofuran polyol, and a polyoxystyrene polyol; the aliphatic polyester polyol may be a dibasic acid having 4 to 8 carbon atoms and A glycol, and a polyester polyol produced from a hydroxy fatty acid having 4 to 8 carbon atoms.
  • the diisocyanate is an aliphatic diisocyanate or an aromatic diisocyanate such as hexamethylene diisocyanate, isophorone diisocyanate, toluene diisocyanate, diphenylnonane diisocyanate or the like.
  • an aromatic diisocyanate such as hexamethylene diisocyanate, isophorone diisocyanate, toluene diisocyanate, diphenylnonane diisocyanate or the like.
  • the hydroxyl group-containing carbon-carbon unsaturated monomer used in the method is any one of a compound having 6 to 30 carbon atoms, 2 to 6 oxygen atoms, and having an ester group, a hydroxyl group or an aromatic ring, and the molecular weight thereof. It is 130-500 g/mol and the refractive index is > 1.48.
  • Such monomers can be prepared by reacting a ketone-containing styrene with ethylene oxide, propylene oxide, styrene oxide, or the like, or by (fluorenyl)acrylic acid and epoxidation. The compound is reacted to prepare.
  • the photoinitiator used in the method is a radical type, specifically 2-hydroxy-2-indolyl-1-phenyl-1-propanone, 1-hydroxycyclohexyl phenyl ketone, diphenyl fluorenone, 2, 4,6-trimercaptobenzoyl-diphenylphosphine oxide, bis(2,4,6-trimercaptophenyl)phenylphosphine oxide, bis(2,4,6-trimercaptobenzene Any one of (4,4 dinonyloctyl-2) phosphine oxide;
  • the thermal initiator used is also a free radical type, specifically benzoyl peroxide, cyclohexanone peroxide, Any one of dodecyl peroxide, azobisisobutyronitrile or azobishesin.
  • the thickness of the sheet or film of the present invention can be designed to be 0.1 mm 3 mm depending on the application.
  • the optical transmittances of the transparent state and the turbid state become small, especially the optical transmittance of the turbid state can be very small; when the film is made thin, although the material is transparent in the transparent state
  • the overshoot rate is high, but the optical transmittance in the high temperature turbid state is also high, and the degree of change in transmittance is small.
  • additives such as light stabilizers, anti-oxidation, anti-aging light stabilizers, heat stabilizers, pigments, fillers, etc.
  • an optical device comprising the thermosensitive light modulating material obtained by the above method.
  • the device includes a substrate, a cover layer, and a sheet or film of thermosensitive dimming material sandwiched therebetween.
  • the device comprises a substrate and a thin film of thermally sensitive material coated thereon.
  • Substrates useful in the present invention include, but are not limited to, plastic films, plastic sheets, FRP paper, steel strips, metal sheets, flat sheets, plexiglass, conductive glass; the cover layer may be a transparent coating, a plastic film or a sheet .
  • the invention has the following defects: 1. Since the thermosensitive light modulating material prepared by the invention does not contain water, the thermal response smart gel glass made of hydrogel is avoided due to excessive water content. A series of problems brought. 2. Since the preparation method provided by the invention does not use an organic solvent, it can not only reduce the cost, avoid the problem that the organic substance volatilizes and pollutes the environment, causes harm to the human body, and the prepared thermosensitive light-adjusting material does not contain the organic solvent. .
  • thermosensitive light-adjusting material provided by the present invention is formed by reacting a hydroxyl group-containing carbon-carbon unsaturated monomer contained therein with a polyether polyol and/or a polyether polyol and a diisocyanate at a normal temperature.
  • the hydroxyl terminated polymer has good compatibility and is transparent, and at a higher temperature, it is separated from the polyether polyol and/or the terminal hydroxyl polymer formed by the reaction of the polyether polyol with the diisocyanate.
  • FIG. 1 is a schematic cross-sectional view showing an optical device according to the present invention.
  • PUA1 polyether polyurethane, prepared from phthalic acid diphenyl phthalate, polyethylene oxide (molecular weight 800 g / mol), its molecular weight is 9000 g / mol;
  • PUA 2 polyether polyurethane, prepared from phthalic acid diphenyl phthalate, polyethylene oxide (molecular weight 800 g / mol), its molecular weight is 7000 g / mol.
  • TDiol 1000 and TDiol 2000 are copolymerized with ethylene oxide and propylene oxide.
  • 1173 2-hydroxy-2-indolyl-1-phenyl-1-propanone, photoinitiator, product of Ciba Company;
  • TPO 2,4,6-trimercaptobenzoyl-diphenylphosphine oxide, photoinitiator, commercial product of Ciba Corporation. Further, in the optical property test of the material obtained in the following examples, an ultraviolet-visible spectrophotometer was used to measure the transmittance.
  • EXAMPLE 1 This example is the preparation of a hydroxyl-containing carbon-carbon unsaturated monomer. 172 g of naphthoic acid, 145 g of glycidyl methacrylate, 4 g of tetrabutylammonium bromide, and 0.15 g of hydroquinone were stirred at 80 to 100 ° C until the acid value was constant, and the reaction was terminated.
  • the monomer 1 has a molecule of 18 carbon atoms, contains 5 oxygen atoms, and has a refractive index of 1.56.
  • Example 2 This example is the preparation of a hydroxyl group-containing carbon-carbon unsaturated monomer. 122 g of benzoic acid, 145 g of glycidyl acrylate, 4 g of tetrabutylammonium bromide, 0.15 g of p-benzoquinone, and stirred at 80 to 100 ° C until the acid value is constant, and the reaction is terminated. 2, the monomer 2 has 13 carbon atoms, contains 5 oxygen atoms, and has a refractive index of 1.52.
  • Example 3 This example is the preparation of a hydroxyl group-containing carbon-carbon unsaturated monomer. 148 g of p-vinylbenzoic acid, 92 g of epichlorohydrin, 4 g of tetrabutylammonium bromide, hydroquinone
  • Example 4 This example was a photocuring preparation of a thermosensitive light-adjusting film. 65 g of monomer 2, 16 g of TDiol 2000 polyether and 3 g of photoinitiator 1173 were uniformly mixed at room temperature, and then the mixture was poured into a stainless steel mold having a length of 20 mm, a width of 20 mm and a depth of 0.6 mm which had been treated with a silicone release agent.
  • Example 5 This example was a photocuring preparation of a thermosensitive light-adjusting film.
  • 16 g of monomer 1, 5 g of TDiol 2000, 60 g of TDiol 1000 and 5 g of photoinitiator 1173 were uniformly mixed at room temperature, and then the mixture was poured into a stainless steel mold having a length of 20 mm, a width of 20 mm and a depth of 0.6 mm which had been treated with a silicone release agent. The mixture was evenly flowed, and when there were no bubbles, the surface was covered with a transparent polyester film, and finally, the sample B was taken out after being irradiated with a high-pressure mercury lamp having a power of 120 W/cm for 15 to 30 seconds.
  • a high-pressure mercury lamp having a power of 120 W/cm for 15 to 30 seconds.
  • Example 6 This example is a photocuring preparation of a thermosensitive light-adjusting film. 20 g of monomer 1, 10 g of monomer 2, 30 g of TDiol 1000, 30 g of PUA 1 and 5 g of photoinitiator 1173 were uniformly mixed at room temperature, and then the mixture was poured into a length of 20 mm, a width of 20 mm, and a depth which had been treated with a silane release agent.
  • Example 7 This example is a photocuring preparation of a thermosensitive electroluminescent device.
  • the mold was irradiated with a high-pressure mercury lamp having a power of 60 to 80 w/cm for 1-2 minutes to make the uniform, bubble-free mixture in the mold transparent and solidified, and to form a desired device with the electrothermal glass.
  • the obtained cross-sectional structure of the device is shown in Fig. 1.
  • 1 is a conductive glass as a substrate
  • 2 is a conductive glass of a cover layer
  • 3 is an optical film material obtained in the present embodiment.
  • Example 8 This example was a thermal curing film prepared by thermal curing. 20 g of monomer 1, 5 g of monomer 3, 40 g of TDiol 1000, 0.2 g of azobis-heptyl eye were uniformly mixed at room temperature, and then the mixture was poured into a length of 20 mm, a width of 20 mm, and a depth of treatment with a silicone release agent.
  • Example 10 This example was a photocuring preparation of a thermosensitive light-adjusting film. 30 g of monomer 1, 40 g of polytetrahydrofuran diol (molecular weight 1000) and 2 g of photoinitiator 1173 were uniformly mixed at room temperature, and then the mixture was poured into a stainless steel mold having a length of 20 mm, a width of 20 mm and a depth of 0.6 mm. The mold was first used. The silane release agent was treated to make the mixture flow uniformly, without bubbles, and then covered with a transparent polyester film.
  • Example 11 This example was a photocuring preparation of a thermosensitive light-adjusting film.
  • thermosensitive light-adjusting film is prepared by photocuring.
  • 30 g of monomer 1, 10 g of PUA 2, 20 g of TDiol 1000 and 2 g of photoinitiator 1173 were uniformly mixed at room temperature, and then the mixture was poured into a stainless steel mold having a length of 20 mm, a width of 20 mm and a depth of 1 mm, and the mold was first treated with a silane release agent. Then, the surface was covered with a transparent polyester film, and then irradiated with a high-pressure mercury lamp having a power of 120 w/cm for 15 to 30 seconds, and then the sample I was taken out.
  • Example 13 This example is a photo-thermographic film prepared by photocuring by a coating method. 65 g of monomer 2, 16 g of TDiol 1000 polyether and 4 g of photoinitiator 1173 were uniformly mixed at room temperature, and then the mixture was applied to a polytetrafluoroethylene plate having a length of 100 mm and a width of 50 mm, and the coating thickness was 0.8 mm.
  • Fig. 2 The obtained cross-sectional structure of the device is shown in Fig. 2, in which 1 is a polytetrafluoroethylene sheet as a substrate, and 3 is an optical film material coated in the present embodiment.
  • the film material 3 on the device is at room temperature ⁇ 80 °C, its appearance is colorless and transparent, and the optical transmittance is more than 80%; at 110 °C, the appearance of the film material 3 on the device becomes white, and the optical transmittance is less than 5 %.
  • the thermo-optic effect exhibited by the film material 3 on the device can be repeated.
  • the above film samples have a high light transmittance at room temperature, but at a higher temperature, the film samples have a low light transmittance of 4 ⁇ , and these turbid film samples become transparent after being left at room temperature for a while. It exhibits controllable reversible thermo-induced turbidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

热敏调光材料及其制备方法和由其构成的光学器件 技术领域 本发明属于热敏调光材料及制备方法和光学器件技术领域,具体涉及一 种热敏调光材料及其制备方法和由其构成的光学器件。 技术背景 与窗帘、 百叶窗等传统的遮阳方式不同, 用热响应材料制备的热响应智 能窗可在不需机¾戈力就能够即时调节入射光强及辐照热量, 这将大大方便人 们的生活和工作。 热响应材料分为热致散射、 热致变色以及同时具有这两种功能的三种类 型。 热致散射材料是指能随温度变化而自发改变光透过率, 例如从透明状态 转变至为乳白色的光散射状态 (透明 -浑浊转变) 的材料。 热致变色材料是 指随温度变化而改变可见光波段的吸收特性, 产生肉眼可辨的颜色转变的材 料。 而同时具有这两种功能的材料则是集上述两种功能于一身, 即随温度变 化, 既产生透明 -浑浊转变, 又产生颜色转变。 热致散射聚合物材料的调光原理是在转变温度(即浊点) 以上, 由于相 分离、 聚集态结构转变而形成一些微相、 微晶或折射率不匹配的微区, 使入 射光在材料内部散射而呈现浑浊态。 在温度降至浊点以下后, 这些微相、 微 晶或啟区逐渐消失, 体系又恢复成均一相, 故而又呈现透明态。 对于大多数 应用场合而言, 热致散射聚合物体系需要满足以下要求: 存在可逆的透明 - 浑浊转变; 透明态透过率≥75 % , 浑浊态透过率≤15 %; 体系浑浊态均匀, 不 会引起人眼不适; 材料有一定的机械和力学性能, 稳定性好; 具有较高的透 明 -浑浊转变的循环寿命。 已有的热致散射聚合物材料有以下几类: 1 )具有临界溶解温度 ( LCST ) 的水凝胶。 在水凝胶的 LCST 以上, 水凝胶因与水发生可逆相分离而使体系 呈现光散射状态, 将其放入双层玻璃或透明聚合物膜即组成具有热响应智能 凝股玻璃 ( Seeboth A, Schneider J, Patzak A. Materials for intelligent sun protecting glazing. Sol Energy Mater Sol Cells, 2000, 60: 263; Nitz P, Hartwig H. Solar control with thermotropic layers. Solar Energy, 2005, 79: 573 ) 。 在实际应 用时, 由于其含水量过高 ( ~ 90% ), 而器件又需要特殊的密封, 导致水凝胶 制成的热响应智能凝胶玻璃器件体积大而且厚, 使用受到非常大的限制。 此 外水凝胶的机械性能差, 不能作为薄膜材料使用, 同时也容易产生霉变。 2 ) 美国专利 5916972 ( 1999年)公布的热致散射聚合物薄膜材料, 该材料是由 两种或两种以上的聚合物的混合物组成。该聚合物间的相容程度和温度相关, 温度低于最低临界相容温度(LCST ) 时, 聚合物组分间相容, 为单一相态, 材料透明; 在 LCST温度以上,共混的聚合物不相容,组分间产生相分离, 材 料不透明。 这种热致散射聚合物薄膜虽不含水, 但在制备过程需要使用对身 体危害性很大的有机溶剂——如苯类、 卤代烃等, 加之这些有机溶剂不能完 全除去,因而将残留在成品聚合物薄膜中,影响其使用。 3 )美国专利 5,977201 ( BASF公司)公布的一种光致交联的热致散射聚合物薄膜。 该薄膜的调光 性也是基于共混聚合物的热致相分离特性而获得的。 该成品薄膜中虽不含有 机溶剂, 并提高了薄膜的机械性能, 但其也存在不足: 首先需要特殊设计和 仔细地制备特定结构的聚合物, 包括分子量及其分布等, 以实现和控制热致 相分离; 其次在制备时要先将两种聚合物用有机溶剂溶解、 配制成溶液、 浇 注到基材上, 使溶剂挥发制成薄膜后, 再经过紫外光进行交联, 因而这种制 备方法复杂, 制备周期长, 还因需要使用挥发性有机溶剂, 既增加成本, 又 不利于环保。 发明内容 本发明的首要目的是针对已有技术存在的问题, 提供一种新的热敏调光 材料。 本发明的次要目的是提供制备上述新的热敏调光材料的方法。 本发明的再一目的是提供一种包含该热敏调光材料的光学器件。 达到本发明首要目的而提供的一种新的热敏调光材料, 其特征在于厚度 为 0.6mm的热敏调光材料在呈透明态时的光学透过率 > 70%, 呈浑浊态时的 光学透过率 < 10%, 两个状态的转变温度差大于 20 °C。 且该热敏调光材料是由按重量百分比计为 18〜84%的聚合物多元醇和 / 或由聚合物多元醇与二异氰酸酯反应所生成的端羟基聚合物, 15〜80%的含羟 基的碳-碳不饱和单体经过光或热聚合反应制得。 达到本发明次要目的而提供的制备上述新的热敏调光材料的方法, 其特 征在于该方法是先将按重量百分比计为 18〜84%的聚合物多元醇和 /或由聚合 物多元醇与二异氰酸酯反应所生成的端羟基聚合物, 15〜80%的含羟基的碳- 碳不饱和单体, 0.3〜7%的光引发剂混合均匀, 然后将混合物倒入模具或涂布 到支持基材上, 用功率〉 80w/cm的高压汞灯照射 10- 120秒即可制成片材或 薄膜, 或先将按重量百分比计为 18〜84%的聚合物多元醇和 /或由聚合物多元 醇与二异氰酸酯反应所生成的端羟基聚合物, 15〜80%的含羟基的碳-碳不饱 和单体, 0.1〜2%的热引发剂混合均匀, 然后将混合物倒入模具或涂布到支 持基材上, 升温至 50〜130°C保持 6〜10小时即可制成片材或薄膜。 其中该方法所用的聚合物多元醇为聚醚多元醇、 脂肪族聚脂多元醇, 以 及由聚合物多元醇与二异氰酸酯反应所生成的端羟基聚合物中的至少一种, 聚合物多元醇的分子量为 600〜4000g/mol , 端羟基聚合物的分子量为 6000〜20000g/mol。聚醚多元醇可选用聚氧化乙烯多元醇、聚氧化丙烯多元醇、 聚四氢呋喃多元醇、 聚氧化苯乙烯多元醇; 脂肪族聚脂多元醇可选用由 4〜8 个碳原子的二元酸和二元醇, 以及由 4〜8个碳原子的羟基脂肪酸所生成的聚 脂多元醇。 二异氰酸酯为脂肪族二异氰酸酯或芳香族二异氰酸酯, 如六亚曱 基二异氰酸酯、 异佛尔酮二异氰酸酯、 曱苯二异氰酸酯、 二苯曱烷二异氰酸 酯等。 有关聚醚多元醇与二异氰酸酯的反应方法, 参见文献陈用烈, 曾兆华, 杨建文编著 "辐射固化材料及其应用", 63-69页, 化学工业出版社, 2003年。 其中该方法所用的含羟基的碳 -碳不饱和单体为含 6〜30 个碳原子、 2〜6 个氧原子, 且含有酯基、 羟基、 芳香环的化合物中的任一种, 其分子量为 130-500 g/mol, 折光指数> 1.48。 这类单体可通过含歡基的苯乙烯与氧化乙 烯、 氧化丙烯、 氧化苯乙烯等反应来制备, 或者由 (曱基) 丙烯酸与环氧化 合物反应来制备。 其制备方法参见王德中主编 "环氧树脂生产与应用", 化学 工业出版社, 2001年。 其中该方法所用的光引发剂为自由基型, 具体可选用 2-羟基 -2-曱基 -1- 苯基 -1 丙酮、 1—羟基环己基苯基酮、 二苯基曱酮、 2,4,6-三曱基苯曱酰基-二 苯基氧化膦、 双 (2,4,6-三曱基苯曱酰)基苯基氧化膦、 双 (2,4,6-三曱基苯 曱酰) - ( 4,4 二曱基辛基 -2 ) 氧化膦中的任一种; 所用的热引发剂也为自由 基型, 具体可选用过氧化苯曱酰、 过氧化环己酮、 过氧化十二碳酰、 偶氮二 异丁睛或偶氮二异庚睛中的任一种。 本发明的片材或薄膜的厚度可以才艮据用途设计为 0.1 mm 3mm。 一般而 言, 厚度大时, 透明态和浑浊态的光学透过率都会变小, 特别是浑浊态的光 学透过率可以非常小; 当薄膜做得很薄时, 虽然材料在透明态光学透过率高, 但在高温浑浊态时的光学透过率也比较高, 透过率变化程度将变小。 为了提高材料的耐候性以及外观, 可在聚合的混合物中加入抗光、 抗氧、 抗老化的光稳定剂、 热稳定剂等助剂以及颜料、 填料等, 还可以在聚合的混 合物中加入调整加工工艺性能的流平剂、 消泡剂等。 这些助剂或填料等的加 入都是本技术领域的公知常识。 在本发明的另一发明, 提供一种光学器件, 其包含由上述方法获得的热 敏调光材料。 在一种具体实施方式中, 该器件包括基材、 覆盖层和夹持在二 者之间的由热敏调光材料制成的片材或薄膜。 在另一具体实施方式中, 该器 件包括基材和涂布其上的热敏调光材料薄膜。 可用于本发明的基材包括但不限于塑料薄膜、塑料板、玻璃钢纸、钢带、 金属板、 平板玻璃、 有机玻璃、 导电玻璃中; 覆盖层可以为透明的涂层、 塑 料薄膜或片材。 本发明与已有技术相比, 具有以下 ύ点: 1、 由于本发明制备的热敏调光材料不含水, 因而避免了水凝胶制成的热 响应智能凝胶玻璃因含水量过高所带来的一系列问题。 2、由于本发明提供的制备方法中不使用有机溶剂,因而不仅可降低成本, 避免有机物挥发污染环境, 对人体造成危害的问题, 而且所制备的热敏调光 材料中也不会含有机溶剂。
3、 由于本发明提供的热敏调光材料是利用其中所含的含羟基的碳 -碳不 饱和单体在常温下与聚醚多元醇和 /或由聚醚多元醇与二异氰酸酯反应所生 成的端羟基聚合物有较好的相容性, 呈透明状, 而在较高温度下, 则与聚醚 多元醇和 /或由聚醚多元醇与二异氰酸酯反应所生成的端羟基聚合物产生相 分离, 不溶于聚醚多元醇和 /或由聚醚多元醇与二异氰酸酯反应所生成的端羟 基聚合物而使整个材料变得浑浊、 不透明, 且降温后又变得透明的可重复再 现特性来呈现热 -光效应的, 因而其调光能力强, 调光范围大, 且还有较好的 机械力学性能。
4、 由于本发明是采取的是先配成含聚醚多元醇和 /或由聚醚多元醇与二 异氰酸酯反应所生成的端羟基聚合物、 引发剂、 OH基碳 -碳不饱和单体的可 聚合混合物溶液, 再将溶液涂布到基材或浇注到模具中后, 再采用光聚合固 化或热聚合固化的方式来制备光学热敏材料的, 因此, 制备方法简单、 周期 短、 效率高, 可以实现工业化规模性生产。 附图说明 图 1为本发明一种光学器件的剖面结构示意图; 图 2为本发明另一种光学器件的剖面结构示意图。 具体实施方式 下面通过实施例对本发明进行具体描述, 有必要在此指出的是以下实施 例只用于对本发明进一步说明, 不能理解为对本发明保护范围的限制, 该领 域的技术熟练人员根据上述本发明内容对本发明做出一些非本质的改进和调 整, 仍属于本发明保护范围。 因在实施例中使用了以下^ ^号, 特此说明: PUA1= 聚醚聚氨酯, 是由曱苯二异氰酸酯、 聚氧化乙烯 (分子量 800 g/mol ) 制备, 其分子量为 9000 g/mol ;
PUA 2= 聚醚聚氨酯, 是由曱苯二异氰酸酯、 聚氧化乙烯 (分子量 800 g/mol ) 制备, 其分子量为 7000 g/mol. TDiol 1000和 TDiol 2000是环氧乙烷和环氧丙烷共聚的聚醚二元醇,分 子量分别为 1000 g/mol和 2000 g/mol , 天津第二石化厂商品;
1173 = 2-羟基 -2-曱基 -1-苯基 -1-丙酮, 光引发剂, Ciba公司商品;
TPO = 2,4,6-三曱基苯曱酰基-二苯基氧化膦, 光引发剂, Ciba公司商品。 另外, 在以下实施例所获得的材料的光学性能测试中, 使用的是紫外-可 见光分光光度计测量透过率。 实施例 1 本实施例是含羟基的碳-碳不饱和单体的制备。 将萘曱酸 172g、 曱基丙烯酸缩水甘油酯 145g, 四丁基溴化铵 4g, 对苯 二酚 0.15g,于 80 〜100 °C下, 搅拌反应至酸值恒定不变后结束反应得单体 1 , 该单体 1的分子含 18个碳原子, 含 5个氧原子, 折光指数 1.56。 实施例 2 本实施例是含羟基的碳-碳不饱和单体的制备。 将苯曱酸 122g、 丙烯酸缩水甘油酯 145g, 四丁基溴化铵 4g , 对苯二酉分 0.15g,于 80 〜 100 °C下, 搅拌反应至酸值恒定不变后结束反应得单体 2 , 该 单体 2的分子含 13个碳原子, 含 5个氧原子, 折光指数 1.52。 实施例 3 本实施例是含羟基的碳-碳不饱和单体的制备。 将对乙烯基苯曱酸 148g、 环氧氯丙烷 92g, 四丁基溴化铵 4g , 对苯二酚
0.15g , 于 80〜 100 °C下, 搅拌反应至酸值恒定不变后结束反应得单体 3 , 该 单体 3的分子含 12个碳原子, 含 3个氧原子, 折光指数 1.52。 实施例 4 本实施例为光固化制备热敏调光薄膜。 将 65g单体 2、 16g TDiol 2000聚醚和 3g光引发剂 1173在室温下混合 均匀,然后将混合物倒入已用娃烷脱模剂处理的长 20mm,宽 20mm,深 0.6mm 不锈钢模具, 使混合物流淌均匀, 无气泡时, 再在表面覆盖透明聚酯薄膜, 最后用功率为 120w/cm的高压汞灯照射 15〜30秒后取出得样品 A。该样品 A 在室温〜 80 °C , 其外观无色透明, 光学透过率大于 80%; 在 110 °C时, 其外观 变为白色, 光学透过率小于 5%。 样品 A表现出的热 -光效应可以重复。 实施例 5 本实施例为光固化制备热敏调光薄膜。 将 16g单体 1、 5g TDiol 2000、 60g TDiol 1000和 5g光引发剂 1173 在室温下混合均匀, 然后将混合物倒入已用娃烷脱模剂处理的长 20mm, 宽 20mm, 深 0.6mm不锈钢模具, 使混合物流淌均匀, 无气泡时, 再在表面覆 盖透明聚酯薄膜,最后用功率为 120w/cm的高压汞灯照射 15〜30秒后取出得 样品 B。 该样品 B在室温〜 40 °C , 其外观无色透明, 光学透过率大于 75%; 在 60 °C时, 其外观变为白色, 光学透过率小于 10%。 样品 B表现出的热-光 效应可以重复。 实施例 6 本实施例为光固化制备热敏调光薄膜。 将 20g单体 1、 10g单体 2、 30g TDiol 1000、 30g PUA 1和 5g光引发 剂 1173 在室温下混合均匀, 然后将混合物倒入已用硅烷脱模剂处理的长 20mm, 宽 20mm, 深 0.6mm不锈钢模具, 使混合物流淌均匀, 无气泡时, 再在表面覆盖透明聚酯薄膜, 最后用功率为 120w/cm的高压汞灯照射 15〜30 秒后取出得样品 C。 该样品 C在室温〜 45 °C , 其外观无色透明, 光学透过率 大于 70%; 在 70 °C时, 其外观变为白色, 光学透过率小于 10%。 样品 C表 现出的热 -光效应可以重复。 实施例 7 本实施例为光固化制备热敏电致调光器件。 将 30g单体 1、 10g单体 2、 30g TDiol 1000、 10g聚己内脂多元醇(分子 量 1000g/mol ) 和 1.6g光引发剂 TPO在室温下混合均匀, 然后将混合物灌入 长 100mm,宽 50mm,厚度 0.3mm的玻璃模具中。模具的上下面为导电玻璃, 每一面导电玻璃的一个对边连接到 0-36V可变的直流电源,导电玻璃的表面 电阻率〜 50(Ω/口或 Ω) , 通电后玻璃表面温度可升高到 60〜80 °C。 用功率为 60~80w/cm的高压汞灯照射模具 1-2分钟, 使模具内均匀、 无气泡的混合物 变得透明、 固化, 与电热玻璃形成所需器件。 所获得的器件剖面结构见图 1 , 图中 1 为作为基材的导电玻璃, 2为覆盖层的导电玻璃, 3 为本实施例制得 的光学薄膜材料。 该器件中的光学薄膜材料在室温〜 50 °C下透明, 光学透过 率大于 70%, 通电加热到 70°C后, 器件变得浑浊, 透光率降低至 5%, 该器件 上的光学薄膜材料 3表现出的热 -光效应可以重复。 实施例 8 本实施例为热固化制备热敏调光薄膜。 将 20g单体 1、 5g单体 3、 40g TDiol 1000, 0.2g偶氮二异庚睛在室温下 混合均匀, 然后将混合物倒入已用娃烷脱模剂处理的长 20mm,宽 20mm,深 0.6mm的不锈钢模具, 模具先用硅烷脱模剂处理, 使混合物流淌均匀, 无气 泡时, 再在表面覆盖铝板, 最后放入 60〜70 °C的烘箱中, 保持 10小时后取出 得样品 E。 该样品 E在室温〜 60°C , 其外观无色透明, 光学透过率大于 75%; 在 90°C时, 其外观变为白色, 光学透过率小于 10%。 样品 E表现出的热-光 效应可以重复。 本实施例为热固化制备热敏调光薄膜。 将 30g单体 1、 35g TDiol 1000 , 0.6g过氧化苯曱酰在室温下混合均匀, 然后将混合物倒入已用娃烷脱模剂处理的长 20mm, 宽 20mm, 深 0.6mm的 不锈钢模具, 模具先用硅烷脱模剂处理, 使混合物流淌均匀, 无气泡时, 再 在表面覆盖铝板,最后放入 80〜100 °C的烘箱中,保持 8小时后取出得样品 F。 该样品 F在室温〜 60 °C , 其外观无色透明, 光学透过率大于 75%; 在 90 °C时, 其外观变为白色,光学透过率小于 10%。样品 F表现出的热 -光效应可以重复。 实施例 10 本实施例为光固化制备热敏调光薄膜。 将 30g单体 l、40g聚四氢呋喃二元醇(分子量 1000 )和 2g光引发剂 1173 在室温下混合均匀, 然后将混合物倒入长为 20mm, 宽 20mm, 深 0.6mm的 不锈钢模具, 模具先用硅烷脱模剂处理, 使混合物流淌均匀, 无气泡, 再在 表面覆盖透明聚酯薄膜, 最后用功率为 120w/cm的高压汞灯照射 15-30秒后 取出得样品 G。 该样品 G在室温〜 50 °C , 其外观无色透明, 光学透过率大于 75%; 在 80 °C时其外观变为白色, 光学透过率小于 6%。 样品 G表现出的热- 光效应可以重复。 实施例 11 本实施例为光固化制备热敏调光薄膜。 将 20g单体 1、 20g PUAl、 20g TDiol 1000和 0.3g光引发剂 1173在室 温下混合均匀, 然后将混合物倒入长为 20mm, 宽 20mm, 深 0.6mm的不 锈钢模具, 模具先用硅烷脱模剂处理, 再在表面覆盖透明聚酯薄膜, 最后 用功率为 120w/cm的高压汞灯照射 15〜30秒后取出得样品 H。 该样品 H在 室温〜 40 °C , 其外观无色透明, 光学透过率大于 75%; 在 70 °C时, 其外观变 为白色, 光学透过率小于 6%。 样品 H表现出的热 -光效应可以重复。
9 本实施例为光固化制备热敏调光薄膜。 将 30g单体 1、 10g PUA2、 20g TDiol 1000和 2g光引发剂 1173在室 温下混合均匀, 然后将混合物倒入长为 20mm, 宽 20mm, 深 lmm的不锈 钢模具, 模具先用硅烷脱模剂处理, 再在表面覆盖透明聚酯薄膜, 然后用 功率为 120w/cm的高压汞灯照射 15〜30秒后取出得样品 I。该样品 I在室温 〜65 °C , 其外观无色透明, 光学透过率大于 75%; 在 100 °C时, 其外观变为 白色, 光学透过率小于 6%。 样品 I表现出的热 -光效应可以重复。 实施例 13 本实施例为用涂布法光固化制备光-热敏薄膜。 将 65g单体 2、 16g TDiol 1000聚醚和 4g光引发剂 1173在室温下混合 均匀, 然后将混合物涂布到长 100mm、 宽 50mm的聚四氟乙烯板上, 涂层厚 度为 0.8mm, 最后用功率为 120w/cm的高压汞灯照射 30秒后即可。 所获得 的器件剖面结构见图 2 , 图中 1 为作为基材的聚四氟乙烯板, 3 为本实施例 涂布的光学薄膜材料。 该器件上薄膜材料 3在室温〜 80 °C , 其外观无色透明, 光学透过率大于 80%; 在 110 °C时该器件上薄膜材料 3的外观变为白色, 光 学透过率小于 5%。 该器件上薄膜材料 3表现出的热 -光效应可以重复。 上述薄膜样品在室温下都有艮高的透光率, 但在较高的温度下, 薄膜样 品的透光率 4艮低, 这些浑浊薄膜样品在室温放置一段时间后,将又变得透明, 表现出可控制的可逆热致浑浊特性。

Claims

权 利 要 求 书
1. 一种热敏调光材料, 其特征在于, 所述热敏调光材料是由按重量百分 比计为 18〜84%的聚合物多元醇和 /或由聚合物多元醇与二异氰酸酯反 应所生成的端羟基聚合物, 15〜80%的含羟基的碳 -碳不饱和单体经过 光或热聚合反应制得。
2. 根据权利要求 1 所述的热敏调光材料, 其特征在于, 所述聚合物多元 醇为聚醚多元醇、 脂肪族聚脂多元醇, 以及由聚合物多元醇与二异氰 酸酯反应所生成的端羟基聚合物中的至少一种, 所述聚合物多元醇的 分子量为 600〜4000g/mol , 所述端羟基聚合物的分子量为 6000〜20000g/mol。
3. 根据权利要求 2所述的热敏调光材料, 其特征在于, 所述聚醚多元醇 为聚氧化乙烯多元醇、 聚氧化丙烯多元醇、 聚四氢呋喃多元醇、 聚氧 化苯乙烯多元醇; 所述脂肪族聚脂多元醇为由 4〜8个碳原子的二元酸 和二元醇, 以及由 4〜8个碳原子的羟基脂肪酸所生成的聚脂多元醇。
4. 根据权利要求 1所述的热敏调光材料, 其特征在于, 所述含羟基的碳- 碳不饱和单体为含 6〜30个碳原子、 2〜6个氧原子, 且含有酯基、 羟基、 芳香环的化合物中的至少一种, 其分子量为 130〜500 g/mol, 折光指数 > 1.48。
5. 一种热敏调光材料的制备方法, 其特征在于, 所述方法是先将按重量 百分比计为 18〜84%的聚合物多元醇和 /或由聚合物多元醇与二异氰酸 酯反应所生成的端羟基聚合物, 15〜80%的含羟基的碳-碳不饱和单体, 0.3〜7%的光引发剂混合均匀, 然后将混合物倒入模具或涂布到支持基 材上, 用功率 > 80w/cm的高压汞灯照射 10-120秒即可, 或先将按重 量百分比计为 18〜84%的聚合物多元醇和 /或由聚合物多元醇与二异氰 酸酯反应所生成的端羟基聚合物, 15-80%的含羟基的碳 -碳不饱和单 体, 0.1〜2%的热引发剂混合均匀, 然后将混合物倒入模具或涂布到支 持基材上, 升温至 50〜130°C保持 6〜10小时即可。
6. 才艮据权利要求 5所述的方法, 其特征在于, 所述方法所用的聚合物多 元醇为聚醚多元醇、 脂肪族聚脂多元醇, 以及由聚合物多元醇与二异 氰酸酯反应所生成的端羟基聚合物中的至少一种, 聚合物多元醇的分 子量为 600〜4000g/mol, 端羟基聚合物的分子量为 6000〜20000g/mol。
7. 才艮据权利要求 6所述的制备方法, 其特征在于, 所述方法所用的聚醚 多元醇为聚氧化乙烯多元醇、 聚氧化丙烯多元醇、 聚四氢呋喃多元醇、 聚氧化苯乙烯多元醇; 脂肪族聚脂多元醇为由 4〜8个碳原子的二元酸 和二元醇, 以及由 4〜8个碳原子的羟基脂肪酸所生成的聚脂多元醇。
8. 根据权利要求 5至 7任一项所述的方法, 其特征在于, 所述方法所用 的含羟基的碳 -碳不饱和单体为含 6〜30个碳原子、 2-6个氧原子, 且含 有酯基、 羟基、 芳香环的化合物中的至少一种, 其分子量为 130〜500 g/mol, 折光指数> 1.48。
9. 根据权利要求 5至 7任一项所述的方法, 其特征在于, 所述方法所用 的光引发剂为自由基型的 2-羟基 -2-曱基- 1 -苯基- 1 -丙酮、 1 -羟基环己基 苯基酮、二苯基曱酮、 2,4,6-三曱基苯曱酰基-二苯基氧化膦、 双(2,4,6- 三曱基苯曱酰)基苯基氧化膦、 双(2,4,6-三曱基苯曱酰) - ( 4,4二曱 基辛基 -2 ) 氧化膦中的任一种; 所用的热引发剂为自由基型的过氧化 苯曱酰、 过氧化环己酮、 过氧化十二碳酰、 偶氮二异丁睛或偶氮二异 庚睛中的任一种。
10. 一种光学器件, 包含权利要求 1所述的热敏调光材料。
11. 根据权利要求 10 所述的光学器件, 其特征在于, 所述器件包括基材
( 1 )、覆盖层( 2 )和夹持其中的由热敏调光材料制成的片材或薄膜( 3 ), 或包括基材 ( 1 ) 和涂布其上的由热敏调光材料制成的薄膜 (3 )。
12. 根据权利要求 11 所述的光学器件, 其特征在于, 所述基材 ( 1 ) 为塑 料薄膜、 塑料板、 玻璃钢纸、 钢带、 金属板、 平板玻璃、 有机玻璃、 导电玻璃中的任一种; 所述覆盖层(2)为透明的涂层、 塑料薄膜或片 材。
PCT/CN2008/072271 2007-09-04 2008-09-04 Matériau photochrome thermosensible et son procédé et dispositif optique le comprenant WO2009033410A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08800783.6A EP2186857B1 (en) 2007-09-04 2008-09-04 A thermosensitive light-adjusting material and process thereof, and an optical device comprising thereof
JP2010523260A JP5458014B2 (ja) 2007-09-04 2008-09-04 感熱調光材料及びその製造方法、並びに、それを備えた光学部品
US12/676,477 US8518548B2 (en) 2007-09-04 2008-09-04 Thermosensitive light-adjusting material and process thereof, and an optical device comprising it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100499240A CN101382668B (zh) 2007-09-04 2007-09-04 热敏调光材料及其制备方法和由其构成的光学器件
CN200710049924.0 2007-09-04

Publications (1)

Publication Number Publication Date
WO2009033410A1 true WO2009033410A1 (fr) 2009-03-19

Family

ID=40451586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072271 WO2009033410A1 (fr) 2007-09-04 2008-09-04 Matériau photochrome thermosensible et son procédé et dispositif optique le comprenant

Country Status (5)

Country Link
US (1) US8518548B2 (zh)
EP (1) EP2186857B1 (zh)
JP (1) JP5458014B2 (zh)
CN (1) CN101382668B (zh)
WO (1) WO2009033410A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087456A1 (en) 2012-12-05 2014-06-12 Empire Technology Development Llc Luminance adjustment film and illuminating device including photothermal conversion material
CN103293585B (zh) * 2013-05-30 2015-11-25 京东方科技集团股份有限公司 相位差板、显示装置和相位差板制作方法
CN103756228B (zh) * 2013-12-17 2016-01-20 华中科技大学 自驱动调光装置及其制备方法
CN107300820B (zh) * 2017-08-29 2023-05-16 四川大学 可披覆式的电致变色装置及披覆物
US11394296B2 (en) * 2017-10-11 2022-07-19 Verily Life Sciences Llc Voltage driver for electrowetting lens
TWI821653B (zh) * 2021-04-15 2023-11-11 財團法人紡織產業綜合研究所 感溫調濕纖維及其製備方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362303B1 (en) * 2000-05-19 2002-03-26 Pleotint, L.L.C. Thermoscattering materials and devices
CN1344286A (zh) * 1999-03-19 2002-04-10 日本化药株式会社 氨基甲酸酯低聚物、其树脂组合物及其固化制品
CN1390893A (zh) * 2002-07-25 2003-01-15 上海飞凯光电材料有限公司 一种辐射固化涂料
WO2006120887A1 (ja) * 2005-05-12 2006-11-16 Nippon Kayaku Kabushiki Kaisha 感光性樹脂組成物、その硬化物及びそれを含有するフィルム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146921A (ja) * 1989-11-01 1991-06-21 Sanyo Chem Ind Ltd 調光体
JP3181284B2 (ja) * 1990-01-12 2001-07-03 旭電化工業株式会社 エネルギー線反応性粘着剤組成物
GB9121655D0 (en) * 1991-10-11 1991-11-27 Ici Plc Optical fibre coating
DE4206317A1 (de) * 1992-02-29 1993-09-02 Fraunhofer Ges Forschung Material mit temperaturabhaengiger lichttransmission
JPH06206956A (ja) 1993-01-11 1994-07-26 Nippon Kayaku Co Ltd 放射線硬化性樹脂組成物及びその硬化物
DE4408156A1 (de) * 1994-03-11 1995-09-14 Basf Ag Vernetzte Polymersysteme
JPH083460A (ja) * 1994-06-24 1996-01-09 Minnesota Mining & Mfg Co <3M> 光制御材用組成物、光制御材および光制御体
JPH08183893A (ja) * 1994-12-29 1996-07-16 Kurabe Ind Co Ltd サーモクロミック樹脂組成物
JP2001215456A (ja) * 2000-02-01 2001-08-10 Toyota Central Res & Dev Lab Inc 感温性光透過制御材料
CN1791914A (zh) * 2003-03-18 2006-06-21 皇家飞利浦电子股份有限公司 包括热致变色或光致变色材料的光信息载体
US7232850B2 (en) * 2003-10-03 2007-06-19 Huntsman Advanced Materials Americas Inc. Photocurable compositions for articles having stable tensile properties

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1344286A (zh) * 1999-03-19 2002-04-10 日本化药株式会社 氨基甲酸酯低聚物、其树脂组合物及其固化制品
US6362303B1 (en) * 2000-05-19 2002-03-26 Pleotint, L.L.C. Thermoscattering materials and devices
CN1390893A (zh) * 2002-07-25 2003-01-15 上海飞凯光电材料有限公司 一种辐射固化涂料
WO2006120887A1 (ja) * 2005-05-12 2006-11-16 Nippon Kayaku Kabushiki Kaisha 感光性樹脂組成物、その硬化物及びそれを含有するフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2186857A4 *

Also Published As

Publication number Publication date
CN101382668B (zh) 2010-09-08
US20100209715A1 (en) 2010-08-19
EP2186857A1 (en) 2010-05-19
EP2186857A4 (en) 2010-11-03
CN101382668A (zh) 2009-03-11
JP2010538131A (ja) 2010-12-09
EP2186857B1 (en) 2018-04-11
JP5458014B2 (ja) 2014-04-02
US8518548B2 (en) 2013-08-27

Similar Documents

Publication Publication Date Title
WO2009033410A1 (fr) Matériau photochrome thermosensible et son procédé et dispositif optique le comprenant
US5585035A (en) Light modulating device having a silicon-containing matrix
US5867238A (en) Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same
US5587404A (en) Gels with thermotropic properties
US5641426A (en) Light modulating device having a vinyl ether-based matrix
US5593615A (en) Light modulating device having a matrix prepared from acid reactants
JP2550627B2 (ja) 液晶光学素子
CN104062776B (zh) 一种智能中空调光玻璃及其制备方法
CN106398554A (zh) 一种紫外光固化压敏胶及其制备方法
JPH06504387A (ja) 紫外線重合性マトリックス及び可変性の光透過率を有する高分子分散型液晶素子及びその調製方法
CN111421928A (zh) 力致变色材料及其制备方法和应用
CN101382727B (zh) 光学热敏材料及其制备方法和由其构成的光学器件
JP2008292571A (ja) 高分子/液晶複合材料
JP2569676B2 (ja) 液晶光学素子及びその製造方法並びにそれを用いた調光体、物体展示体及び表示装置
KR102002173B1 (ko) 실리콘계 아크릴레이트 광경화형 수지 및 우레탄계 아크릴레이트 광경화형 수지를 포함하는 고분자 분산형 액정 필름 및 이의 제조방법
CN101486649B (zh) 可聚合单体及其制备方法和由其制备的热敏调光材料
EP4306616A1 (en) Anthraquinone compound, liquid crystal composition containing said compound, and dimming element
JPH09512643A (ja) ビニルエーテルをベースとするマトリックスを有する光変調装置
CN113022062A (zh) 一种利用光掩模制备的聚合物分散液晶薄膜及其制备方法
CN116165819B (zh) 一种宽温域电控液晶调光膜及其制备方法
CN116515057B (zh) 自组装热可逆光散热材料的制备方法及具有其的调光板/薄膜和应用
KR20030007815A (ko) 단관능성 모노머, 이를 함유하는 라디칼 중합 조성물 및이로부터 얻어지는 수지 및 안과용 제품
JPH05173117A (ja) 液晶デバイスの製造方法
CN109422987B (zh) 平坦层用组合物、其制备方法、平坦层材料及显示装置
JPH08313937A (ja) 高分子液晶の駆動方法および液晶シャッター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010523260

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12676477

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008800783

Country of ref document: EP