WO2009032122A1 - Contact lens packaging solutions - Google Patents

Contact lens packaging solutions Download PDF

Info

Publication number
WO2009032122A1
WO2009032122A1 PCT/US2008/010146 US2008010146W WO2009032122A1 WO 2009032122 A1 WO2009032122 A1 WO 2009032122A1 US 2008010146 W US2008010146 W US 2008010146W WO 2009032122 A1 WO2009032122 A1 WO 2009032122A1
Authority
WO
WIPO (PCT)
Prior art keywords
packaging solution
contact lens
acid
copolymer
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2008/010146
Other languages
English (en)
French (fr)
Inventor
Kasey Jon Minick
Fiona Patricia Carney
Karen Belinda Sentell
George Edward Minno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Novartis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis AG filed Critical Novartis AG
Priority to KR1020107006936A priority Critical patent/KR101535692B1/ko
Priority to JP2010522932A priority patent/JP5643092B2/ja
Priority to CA2692831A priority patent/CA2692831C/en
Priority to AT08795627T priority patent/ATE540327T1/de
Priority to EP08795627A priority patent/EP2188655B1/en
Publication of WO2009032122A1 publication Critical patent/WO2009032122A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • B65B25/008Packaging other articles presenting special problems packaging of contact lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L12/00Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor
    • A61L12/08Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor using chemical substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L12/00Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor
    • A61L12/02Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor using physical phenomena, e.g. electricity, ultrasonics or ultrafiltration
    • A61L12/04Heat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the present invention relates to improved contact lens products which not only have initial insertion comfort, in particular, to a packaging solution for autoclaving and storing contact lenses.
  • One long felt need in the contact lens industry is to provide contact lenses which are comfortable for users to wear.
  • One of the problems that contact lens users complain of most is initial discomfort (i.e., immediately after lens insertion).
  • One of the approaches is to use soft contact lenses to alleviate to some extent the initial discomfort because of their relatively soft surfaces, but also to their pliability, which permits them to modify their shape somewhat with different eyes.
  • Such approach requires a great effort in developing new materials and lens designs and may not be cost effective.
  • Another approach is to apply directly eye drops of an ocular lubricant into the wearer's eye while the lens is being worn, in order to provide some relief to some extent, e.g., the initial discomfort of wearers, discomfort suffering from dry-eye effects, or end-of-day discomfort.
  • the present invention in one aspect, provides an ophthalmic product comprising a sealed and sterilized package which include a packaging solution and a soft hydrogel contact lens immersed in the packaging solution, wherein the packaging solution includes: a homopolymer or copolymer of vinylpyrrolidone, wherein the homopolymer or copolymer of vinylpyrrolidone is present in an amount sufficient to provide the packaging solution a viscosity of up to about 5.0 centipoises, preferably up to about 4.0 centipoises, even more preferably up to about 3.0 centipoises, most preferably from about 1.2 centipoises to about 2.5 centipoises at 25°C; glycerin or a polyethylene glycol having an average molecular weight of about 600 daltons or less; an ⁇ -oxo-multi-acid or salt thereof in an amount sufficient to have a reduced susceptibility to oxidation degradation of the polyethylene glycol in the packaging solution; and one
  • the present invention in another aspect, provides a process for making a soft contact lens capable of easing wearer's initial discomfort.
  • the method of the invention comprises the steps of: a) packaging a hydrogel contact lens in a container containing a packaging solution, wherein the packaging solution comprises a homopolymer or copolymer of vinylpyrrolidone, wherein the homopolymer or copolymer of vinylpyrrolidone is present in an amount sufficient to provide the packaging solution a viscosity of up to about 5.0 centipoises, preferably up to about 4.0 centipoises, even more preferably up to about 3.0 centipoises, most preferably from about 1.2 centipoises to about 2.5 centipoises at 25°C; glycerin or a polyethylene glycol having an average molecular weight of about 600 or less; an ⁇ -oxo-multi-acid or salt thereof in an amount sufficient to have a reduced susceptibility to oxidation degradation of the packaging solution
  • Figure 1 shows effects of a packaging solution upon in vitro lipid fouling of commercially available silicone hydrogel lenses.
  • Figure 2 shows effects of hydrating and storing silicone hydrogel lenses
  • Contact Lens refers to a structure that can be placed on or within a wearer's eye.
  • a contact lens can correct, improve, or alter a user's eyesight, but that need not be the case.
  • a contact lens can be of any appropriate material known in the art or later developed, and can be a soft lens, a hard lens, or a hybrid lens.
  • a "silicone hydrogel contact lens” refers to a contact lens comprising a silicone hydrogel material.
  • a “hydrogel” refers to a polymeric material which can absorb at least 10 percent by weight of water when it is fully hydrated.
  • a hydrogel material can be obtained by polymerization or copolymerization of at least one hydrophilic monomer in the presence of or in the absence of additional monomers and/or macromers or by crosslinking of a prepolymer.
  • a "silicone hydrogel” refers to a hydrogel obtained by copolymerization of a polymerizable composition comprising at least one silicone-containing vinylic monomer or at least one silicone-containing macromer or a silicone-containing prepolymer.
  • a "monomer” means a low molecular weight compound that can be polymerized actinically or thermally. Low molecular weight typically means average molecular weights less than 700 Daltons.
  • a monomer can be a vinylic monomer or a compound comprising two thiol groups.
  • a compound with two thiol groups can participate in thiol-ene step-growth radical polymerization with a monomer with vinyl group to form a polymer.
  • Step-growth radical polymerization can be used in making contact lenses, as described in a commonly-owned copending US patent application No. 60/869,812 filed Dec. 13, 2006 (entitled “Production of Ophthalmic Devices Based on Photo-Induced Step Growth Polymerization", herein incorporated in reference in its entirety.
  • a "vinylic monomer”, as used herein, refers to a low molecular weight compound that has an ethylenically unsaturated group and can be polymerized actinically or thermally. Low molecular weight typically means average molecular weights less than 700 Daltons.
  • actinically in reference to curing or polymerizing of a polymerizable composition or material means that the curing (e.g., crosslinked and/or polymerized) is performed by actinic irradiation, such as, for example, UV irradiation, ionized radiation (e.g. gamma ray or X-ray irradiation), microwave irradiation, and the like.
  • actinic irradiation such as, for example, UV irradiation, ionized radiation (e.g. gamma ray or X-ray irradiation), microwave irradiation, and the like.
  • thermal curing or actinic curing methods are well-known to a person skilled in the art.
  • fluid indicates that a material is capable of flowing like a liquid.
  • a "hydrophilic monomer” refers to a monomer which can be polymerized actinically or thermally to form a polymer that is water-soluble or can absorb at least 10 percent by weight water.
  • hydrophobic monomer refers to a monomer which is polymerized actinically or thermally to form a polymer that is insoluble in water and can absorb less than 10 percent by weight water.
  • a "macromer” refers to a medium and high molecular weight compound which can be polymerized and/or crosslinked actinically or thermally.
  • Medium and high molecular weight typically means average molecular weights greater than 700 Daltons.
  • a macromer comprises one or more ethylenically unsaturated groups and/or one or more thiol groups, which can participate in free radical chain growth polymerization or thiol-ene step-growth radical polymerization.
  • a macromer contains ethylenically unsaturated groups and can be polymerized actinically or thermally.
  • a "prepolymer” refers to a starting polymer which contains crosslinkable groups and can be cured (e.g., crosslinked and/or polymerized) actinically or thermally to obtain a crosslinked and/or polymerized polymer having a molecular weight much higher than the starting polymer.
  • a prepolymer comprises one or more ethylenically unsaturated groups and/or one or more thiol groups, which can participate in free radical chain growth polymerization or thiol-ene step-growth radical polymerization.
  • a "silicone-containing prepolymer” refers to a prepolymer which contains silicone and can be crosslinked upon actinic radiation or thermally to obtain a crosslinked polymer having a molecular weight much higher than the starting polymer.
  • Polymer means a material formed by polymerizing one or more monomers or macromers or by crosslinking one or more prepolymers.
  • Molecular weight of a polymeric material (including monomeric or macromeric materials), as used herein, refers to the number-average molecular weight unless otherwise specifically noted or unless testing conditions indicate otherwise.
  • “Visibility tinting” in reference to a lens means dying (or coloring) of a lens to enable the user to easily locate a lens in a clear solution within a lens storage, disinfecting or cleaning container. It is well known in the art that a dye and/or a pigment can be used in visibility tinting of a lens.
  • a "photoinitiator” refers to a chemical that initiates radical crosslinking/polymerizing reaction by the use of light.
  • Suitable photoinitiators include, without limitation, benzoin methyl ether, diethoxyacetophenone, a benzoylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone, Darocure® types, and Irgacure® types, preferably Darocure® 1173, and Irgacure® 2959.
  • thermal initiator refers to a chemical that initiates radical crosslinking/polymerizing reaction by the use of heat energy.
  • suitable thermal initiators include, but are not limited to, 2,2'-azobis (2,4-dimethylpentanenitrile), 2,2'-azobis (2-methylpropanenitrile), 2,2'-azobis (2-methylbutanenitrile), peroxides such as benzoyl peroxide, and the like.
  • the thermal initiator is 2,2'-azobis(isobutyronitrile) (AIBN).
  • a packaging solution is ophthalmic safe.
  • ophthalmically safe with respect to a packaging solution is meant that a contact lens immersed in the solution is safe for direct placement on the eye without rinsing, that is, the solution is safe and sufficiently comfortable for daily contact with the eye via a contact lens.
  • An ophthalmically safe solution has a tonicity and pH that is compatible with the eye and comprises materials, and amounts thereof, that are non-cytotoxic according to international ISO standards and U.S. FDA regulations.
  • compatible with the eye means a solution that may be in intimate contact with the eye for an extended period of time without significantly damaging the eye and without significant user discomfort.
  • a "reduced susceptibility to oxidation degradation of the polyethylene glycol” means that the susceptibility to oxidative degradation of a polyethylene glycol in a solution containing an ⁇ -oxo-multi-acid or salt thereof after subject to a sterilization treatment is reduced (characterized by the amount of detectable formic acid and optionally other degradation by-products in a stabilized poly(oxyalkylene)-containing polymeric material being 80% or less, preferably 65% or less, more preferably 50% or less, of that detected in a solution without any ⁇ -oxo-multi-acid or salt thereof).
  • a "leachable polymeric lubricant" as used herein refer to a non-ionic hydrophilic polymer which is not covalently bound to but instead is associated with or entrapped in the polymer matrix of a contact lens and which can enhance surface wettability of a contact lens and/or the eye or reduce the frictional character of the contact lens surface.
  • the present invention is generally directed to a hydrogel contact lens capable of easing lens-wearer's initial discomfort.
  • the present invention is partly based on the discovery that a lens packaging solution including a homopolymer or copolymer of vinylpyrrolidone and a low molecular weight polyethylene glycol (PEG) (or glycerin) can provide to a hydrogel contact lens, which is immersed and autoclaved in the packaging solution, with unexpected benefits of increased wettability, reduced friction, initial conditioning (by cushioning the lens), and/or reduced adherence of deposits onto the lens.
  • PEG polyethylene glycol
  • a low molecular weight PEG (or glycerin) and a homopolymer or copolymer of vinylpyrrolidone can have a synergetic effects on the initial comfort (at the time of inserting the lens).
  • the homopolymer or copolymer with sufficiently larger molecular weight can form a cushion layer between the lens and the epithelium of the cornea without increasing substantially the viscosity of the packaging solution (i.e., above 5 centipoises at 25°C).
  • Incorporation of a low molecular weight PEG or glycerin in the cushion layer can increase the lubricity, wettability (characterized by water contact angle) and/or reduced friction of the cushion layer. This added cushioning is believed to provide a temporary lubricious layer that would allow the lens to settle gently on the eye with slight lubrication and improve initial insert comfort.
  • the present invention in one aspect, provides an ophthalmic product comprising a sealed and sterilized package which include a packaging solution and a soft hydrogel contact lens immersed in the packaging solution, wherein the packaging solution includes: a homopolymer or copolymer of vinylpyrrolidone, wherein the homopolymer or copolymer is present in an amount sufficient to provide the packaging solution a viscosity of up to about 5.0 centipoise, preferably up to about 4.0 centipoises, even more preferably up to about 3.0 centipoises, most preferably from about 1.2 centipoises to about 2.5 centipoises at 25°C; glycerin or a polyethylene glycol having an average molecular weight of about 600 or less; and one or more buffering agents in an amount sufficient to provide the solution a pH of from about 6.0 to 8.0, wherein the packaging solution has an osmolality of from about 200 to about 450 m ⁇ sm/kg.
  • Lens packages are well known to a person skilled in the art for autoclaving and storing a soft contact lens. Any lens packages can be used in the invention.
  • a lens package is a blister package which comprises a base and a cover, wherein the cover is detachably sealed to the base, wherein the base includes a cavity for receiving a sterile packaging solution and the contact lens.
  • Lenses are packaged in individual packages, sealed, and sterilized (e.g., by autoclave at about 120 0 C or higher for at least 30 minutes) prior to dispensing to users.
  • autoclave at about 120 0 C or higher for at least 30 minutes
  • a person skilled in the art will understand well how to seal and sterilize lens packages.
  • a soft hydrogel contact lens can be a conventional hydrogel contact lens (i.e., a non-silicone hydrogel lens) or preferably a silicone hydrogel contact lens.
  • a packaging solution of the invention is ophthalmically compatible and may be any water-based solution that is used for the storage of contact lenses.
  • a packaging solution of the invention can be a saline solution, a buffered solution, and deionized water.
  • a preferred class of copolymers are the copolymers of vinyloyrrolidone and at least one amino-containing vinylic monomer.
  • amino- containing vinylic monomers include without limitation alkylaminoalkylmethacrylate having 8-15 carbon atoms, alkylaminoalkylacrylate having 7-15 carbon atoms, dialkylaminoalkylmethacrylate having 8-20 carbon atoms, dialkylaminoalkylacrylate having 7-20 carbon atoms, N-vinylalkylamide having 3-10 carbon atoms.
  • Examples of preferred N-vinyl alkylamide include without limitation N-vinyl formaide, N-vinyl acetamide, N-vinyl isopropylamide, and N-vinyl-N-methyl acetamide.
  • Examples of preferred copolymers includes without limitation copolymers of vinylpyrrolidone and dimethylaminoethylmethacrylate. Such preferred copolymers are commercially available, e.g., Copolymer 845 and Copolymer 937 from ISP.
  • a polyethylene glycol has a molecular weight of about 600 or less, most preferably from about 100 to about 500.
  • the packaging solution comprises an ⁇ -oxo-multi-acid or salt thereof in an amount sufficient to have a reduced susceptibility to oxidation degradation of the polyethylene glycol in the packaging solution.
  • a commonly- owned co-pending patent application discloses that oxo-multi-acid or salt thereof can reduce the susceptibility to oxidative degradation of a PEG-containing polymeric material.
  • Exemplary ⁇ -oxo-multi-acids or biocompatible salts thereof include without limitation citric acid, 2-ketoglutaric acid, or malic acid or biocompatible (preferably ophthalmically compatible) salts thereof. More preferably, an ⁇ -oxo- multi-acid is citric or malic acid or biocompatible (preferably ophthalmically compatible) salts thereof (e.g., sodium, potassium, or the like).
  • the solution of the present invention preferably contains a buffering agent.
  • the buffering agents maintain the pH preferably in the desired range, for example, in a physiologically acceptable range of about 6 to about 8. Any known, physiologically compatible buffering agents can be used.
  • Suitable buffering agents as a constituent of the contact lens care composition according to the invention are known to the person skilled in the art.
  • Examples are boric acid, borates, e.g. sodium borate, citric acid, citrates, e.g. potassium citrate, bicarbonates, e.g.
  • TRIS (2-amino-2-hydroxymethyl- 1,3-propanediol), Bis-Tris (Bis-(2-hydroxyethyl)-imino-tris-(hydroxymethyl)-methane), bis- aminopolyols, triethanolamine, ACES (N-(2-hydroxyethyl)-2-aminoethanesulfonic acid), BES (N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid), HEPES (4-(2-hydroxyethyl)-1- piperazineethanesulfonic acid), MES (2-(N-morpholino)ethanesulfonic acid), MOPS (3-[N- morpholino]-propanesulfonic acid), PIPES (piperazine-N,N'-bis(2-ethanesulfonic acid), TES (N-[T ris(hydroxymethyl)methyl]-2-aminoethanesulfonic acid),
  • each buffer agent is that amount necessary to be effective in achieving a pH of the composition of from about 6.5 to about 7.5. Typically, it is present in an amount of from 0.001% to 2%, preferably from 0.01% to 1%; most preferably from about 0.05% to about 0.30% by weight.
  • solutions according to the invention are preferably formulated in such a way that they are isotonic with the lachrymal fluid.
  • a solution which is isotonic with the lachrymal fluid is generally understood to be a solution whose concentration corresponds to the concentration of a 0.9% sodium chloride solution (308 m ⁇ sm/kg). Deviations from this concentration are possible throughout.
  • the isotonicity with the lachrymal fluid, or even another desired tonicity may be adjusted by adding organic or inorganic substances which affect the tonicity.
  • Suitable occularly acceptable tonicity agents include, but are not limited to sodium chloride, potassium chloride, glycerol, propylene glycol, polyols, mannitols, sorbitol, xylitol and mixtures thereof.
  • the majority of the tonicity of the solution is provided by one or more compounds selected from the group consisting of non-halide containing electrolytes (e.g., sodium bicarbonate) and non-electrolytic compounds.
  • the tonicity of the solution is typically adjusted to be in the range from about 200 to about 450 milliosmol (mOsm), preferably from about 250 to 350 mOsm.
  • a packaging solution of the invention can optionally include a viscosity- enhancing polymers, which can be a water soluble cellulose-derived polymer, a water- soluble polyvinylalcohol (PVA), or combination thereof.
  • a viscosity- enhancing polymers include without limitation cellulose ethers.
  • Exemplary preferred cellulose ethers are methyl cellulose (MC), ethyl cellulose, hydroxymethylcellulose, hydroxyethyl cellulose (HEC), hydroxypropylcellulose (HPC), hydroxypropylmethyl cellulose (HPMC), or a mixture thereof. More preferably, a cellulose ether is hydroxyethyl cellulose (HEC), hydroxypropylmethyl cellulose (HPMC) 1 and mixtures thereof.
  • the cellulose ether is present in the composition in an amount of preferably from about 0.1% to about 1% by weight, based on the total amount of the packaging solution.
  • the solution can further comprises mucin-like materials, ophthalmically beneficial materials, and/or surfactants.
  • Exemplary mucin-like materials include without limitation polyglycolic acid and polylactides.
  • a mucin-like material can be used as guest materials which can be released continuously and slowly over extended period of time to the ocular surface of the eye for treating dry eye syndrome.
  • the mucin-like material preferably is present in effective amounts.
  • Exemplary ophthalmically beneficial materials include without limitation 2- pyrrolidone-5-carboxylic acid (PCA), amino acids (e.g., taurine, glycine, etc.), alpha hydroxyl acids (e.g., glycolic, lactic, malic, tartaric, mandelic and citric acids and salts thereof, etc.), linoleic and gamma linoleic acids, and vitamins (e.g., B5, A, B6, etc.).
  • PCA 2- pyrrolidone-5-carboxylic acid
  • amino acids e.g., taurine, glycine, etc.
  • alpha hydroxyl acids e.g., glycolic, lactic, malic, tartaric, mandelic and citric acids and salts thereof, etc.
  • linoleic and gamma linoleic acids e.g., B5, A, B6, etc.
  • Surfactants can be virtually any ocularly acceptable surfactant including non- ionic, anionic, and amphoteric surfactants.
  • preferred surfactants include without limitation poloxamers (e.g., Pluronic® F108, F88, F68, F68LF, F127, F87, F77, P85, P75, P104, and P84), poloamines (e.g., Tetronic® 707, 1107 and 1307, polyethylene glycol esters of fatty acids (e.g., Tween® 20, Tween® 80), polyoxyethylene or polyoxypropylene ethers of C 12 -C 18 alkanes (e.g., Brij® 35), polyoxyethyene stearate (Myrj® 52), polyoxyethylene propylene glycol stearate (Atlas® G 2612), and amphoteric surfactants under the trade names Mirataine® and Miranol®.
  • poloxamers e.g., Plur
  • a lens can be prepared according to any methods known to a person skilled in the art from a hydrogel lens-forming formulation.
  • a “hydrogel lens-forming formulation” or “hydrogel lens-forming material” refers to a polymerizable composition which can be cured (i.e., polymerized and/or crosslinked) thermally or actinically to obtain a crosslinked/polymerized polymeric material.
  • Lens-forming materials are well known to a person skilled in the art.
  • a lens forming material comprises polymerizable/crosslinkable components, for example, such as, monomers, macromers, prepolymers, or combinations thereof, as known to a person skilled in the art.
  • a lens- forming material can further include other components, such as non-crosslinkable hydrophilic polymers (i.e., leachable polymeric lubricants), an initiator (e.g., a photoinitiator or a thermal initiator), a visibility tinting agent, UV-blocking agent, photosensitizers, antimicrobial agents (e.g., Ag-nanoparticles), and the like.
  • non-crosslinkable hydrophilic polymers i.e., leachable polymeric lubricants
  • an initiator e.g., a photoinitiator or a thermal initiator
  • a visibility tinting agent e.g., UV-blocking agent
  • photosensitizers e.g., Ag-nanoparticles
  • antimicrobial agents e.g., Ag-nanoparticles
  • lens making examples include without limitation, cast-molding, spin-casting, and lathing.
  • a person skilled in the art will know well how to cast-mold lenses from a lens- forming formulation in molds based on thermal or actinic polymerization.
  • a hydrogel lens-forming formulation (or a polymerizable fluid composition) can be a solution or a solvent-free liquid or melt at a temperature below 60 0 C.
  • leachable lubricants are non-crosslinkable hydrophilic polymers (i.e. without anctinically-crosslinkable groups) having no charges. Any suitable non-charged hydrophilic polymers can be used so long as they are compatible with the lens-forming material (i.e., can produce optically clear contact lenses). Exemplary non- crosslinkable (i.e.
  • hydrophilic polymers include, but are not limited to, polyvinyl alcohols (PVAs), polyamides, polyimides, polylactone, a homopolymer of a vinyl lactam, a copolymer of at least one vinyl lactam in the presence or in the absence of one or more hydrophilic vinylic comonomers, alkylated polyvinylpyrrolidones, a homopolymer of acrylamide or methacrylamide, a copolymer of acrylamide or methacrylamide with one or more hydrophilic vinylic monomers, polyethylene oxide (PEO)), a polyoxyethylene derivative, poly-N-N-dimethylacrylamide, polyacrylic acid, poly 2 ethyl oxazoline, heparin polysaccharides, polysaccharides, and mixtures thereof.
  • PVAs polyvinyl alcohols
  • polyamides polyamides
  • polyimides polylactone
  • polylactone a homopolymer of a vinyl lact
  • the number-average molecular weight M n of the hydrophilic polymer is preferably from 10,000 to 500,000, more preferably from 20,000 to 200,000.
  • polyvinylpyrrolidone examples include without limitation those polymer characterized by molecular weight grades of K-15, K-30, K-60, K-90, K-120, and the likes.
  • Examples of copolymers of n-vinylpyrrolidone with one ore more vinylic monomers includes without limitation vinylpyrrolidone/vinylacetate copolymers, vinylpyrrolidone/dimethylaminoethylmethacrylate copolymers (e.g., Copolymer 845, Copolymer 937, Copolymer 958 from ISP Corporation), vinylpyrrolidone/vinylcaprolactam/dimethyl-aminoethylmethacrylate copolymer.
  • alkylated pyrrolidones includes without limitation the family of GAN EX® Alkylated pyrrolidone from ISP Corporation.
  • a suitable polyoxyethylene derivative is, for example, n-alkylphenyl polyoxyethylene ether, n-alkyl polyoxy-ethylene ether (e.g., TRITON®), polyglycol ether surfactant (TERGITOL®), polyoxyethylenesorbitan (e.g., TWEEN®), polyoxyethylated glycol monoether (e.g., BRIJ®, polyoxylethylene 9 lauryl ether, polyoxylethylene 10 ether, polyoxylethylene 10 tridecyl ether), or a block copolymer of ethylene oxide and propylene oxide.
  • n-alkylphenyl polyoxyethylene ether e.g., TRITON®
  • polyglycol ether surfactant TERGITOL®
  • polyoxyethylenesorbitan e.g., TWEEN®
  • polyoxyethylated glycol monoether e.g., BRIJ®, polyoxylethylene 9 lauryl ether, polyoxylethylene
  • block copolymers of ethylene oxide and propylene oxide include without limitation poloxamers and poloxamines, which are available, for example, under the tradename PLURONIC®, PLURONIC-R®, TETRONIC®, TETRONIC-R® or PLURADOT®.
  • Poloxamers are triblock copolymers with the structure PEO-PPO-PEO (where "PEO" is poly(ethylene oxide) and "PPO" is poly(propylene oxide).
  • poloxamers A considerable number of poloxamers is known, differing merely in the molecular weight and in the PEO/PPO ratio;
  • Examples of poloxamers include 101 , 105, 108, 122, 123, 124, 181 , 182, 183, 184, 185, 188, 212, 215, 217, 231 , 234, 235, 237, 238, 282, 284, 288, 331 , 333, 334, 335, 338, 401 , 402, 403 and 407.
  • the order of polyoxyethylene and polyoxypropylene blocks can be reversed creating block copolymers with the structure PPO-PEO-PPO, which are known as PLURONIC-R® polymers.
  • Poloxamines are polymers with the structure (PEO-PPO) 2 -N-(CH 2 ) 2 -N-(PPO- PEO) 2 that are available with different molecular weights and PEO/PPO ratios. Again, the order of polyoxyethylene and polyoxypropylene blocks can be reversed creating block copolymers with the structure (PPO-PEO) 2 -N-(CH 2 ) 2 -N-(PEO-PPO) 2 , which are known as TETRONIC-R® polymers.
  • Polyoxypropylene-polyoxyethylene block copolymers can also be designed with hydrophilic blocks comprising a random mix of ethylene oxide and propylene oxide repeating units. To maintain the hydrophilic character of the block, ethylene oxide will predominate. Similarly, the hydrophobic block can be a mixture of ethylene oxide and propylene oxide repeating units. Such block copolymers are available under the tradename PLURADOT®.
  • Non-crosslinkable PVAs of all kinds for example those with low, medium or high polyvinyl acetate contents may be employed.
  • the PVAs used may also comprise small proportions, for example up to 20 %, preferably up to 5 %, of copolymer units as mentioned before.
  • non-crosslinkable polyvinyl alcohols employed in the present invention are known and are commercially available, for example under the brand name Mowiol ® from KSE (Kuraray Specialties Europe).
  • the present invention in another aspect, provides a process for making a soft contact lens capable of easing wearer's initial discomfort.
  • the method of the invention comprises the steps of: a) packaging a hydrogel contact lens in a container containing a packaging solution, wherein the packaging solution comprises a homopolymer or copolymer of vinylpyrrolidone, wherein the homopolymer or copolymer is present in an amount sufficient to provide the packaging solution a viscosity of up to about 5.0 centipoises, preferably up to about 4.0 centipoises, even more preferably up to about 3.0 centipoises, most preferably from about 1.2 centipoises to about 2.5 centipoises at 25°C; glycerin or a polyethylene glycol having an average molecular weight of about 600 or less; and one or more buffering agents in an amount sufficient to provide the solution a pH of from about 6.0 to 8.0, wherein the packaging solution has an osmolality of from about 200 to about 450 m ⁇ sm/kg; and b) sterilizing the hydrogel contact lens in the package to obtain the soft contact
  • Copolymer 845 is obtained from ISP and PEG 400 (Sentry Carbowax 400) is obtained from Dow. Solutions are prepared by dissolving various components in 1 L of water as shown in Table 1. Where HEC is used as one of the components, the solution is prepared at about 80 0 C to dissolve HEC.
  • Advanced Micro-osmometer Model 3300 is used to determine the osmolarity of each packaging solution (averaged over two independent experiment results for each packaging solution).
  • the viscosity of a packaging solution is obtained by averaging three measurements made at three different speeds (3 rpm, 6 rpm and 12 rpm) with the Brookfield Viscometer.
  • the pH value of each packaging solution is determined with Fisher Acumet 25 pH meter (averaged over two independent experiment results for each packaging solution). The results are reported in Table 2.
  • Example 1 Each packaging solution prepared in Example 1 are tested for cytotoxicity using L-929 (L929) murine fibroblastic cells following 24 hours exposure time points. Alamar Blue Assay (AB) and neutral red uptake and release assay (NRUR) are used to determine the solution cytotoxicity. Neat solutions of the test sample are diluted 1 :1 , 1 :3 and 1 :7 (50, 25 and 12.5% final concentration of the neat solution) across a 96 well plate format and exposed to the cell monolayer for a period of 24 hours. For this test, cells grown under controlled conditions are monitored for their viability to survive and grow following initial exposure and incubation with the test solutions, as compared to controls. BAK at 10 ppm is used as a positive control.
  • AB Alamar Blue Assay
  • NRUR neutral red uptake and release assay
  • the packaging solution I exhibits viability percentages of 83%, 87% and 93% for 50%, 25% and 12.5% test solutions respectively for the AB method at 24 hours exposure for L929 cells and also exhibits viability percentages of 92%, 98% and 97% for 50%, 25% and 12.5% test solutions respectively for the NRUR method at 24 hours exposure for L929 cells.
  • the packaging solution Il exhibits viability percentages of 86%, 92% and 94% for 50%, 25% and 12.5% test solutions respectively for the AB method at 24 hours exposure for L929 cells and also exhibits viability percentages of 99%, 101% and 101% for 50%, 25% and 12.5% test solutions respectively for the NRUR method at 24 hours exposure for L929 cells.
  • the packaging solution III exhibits viability percentages of 90%, 92% and 94% for 50%, 25% and 12.5% test solutions respectively for the AB method at 24 hours exposure for L929 cells and also exhibits viability percentages of 103%, 102% and 97% for 50%, 25% and 12.5% test solutions respectively for the NRUR method at 24 hours exposure for L929 cells.
  • the packaging solution IV exhibits viability percentages of 88%, 96% and 94% for 50%, 25% and 12.5% test solutions respectively for the AB method at 24 hours exposure for L929 cells and also exhibits viability percentages of 85%, 98% and 98% for 50%, 25% and 12.5% test solutions respectively for the NRUR method at 24 hours exposure for L929 cells.
  • O2OPTIXTM lenses are packaged in blister packages containing a packaging solution (one of Y1 , Y2, Y3, and Y4), sealed and autoclaved.
  • a standard curve is prepared using a 24-well plate with the curves respective lens type.
  • the standard curve ranged from 10 ⁇ g/ml- 0 ⁇ g/ml in PBS at pH 7.2.
  • Three lenses of each Night & Day, Acuvue Advance & O2Optix are soaked in 10 ug/ml FITC- phosphotidylethanolamine for 24 hours, incubating at 34.5 0 C and rocking in complete dark. Once complete lenses are buffer-exchanged 3 times in PBS and then placed in a fresh 24 well plate with 1 ml PBS and read on the Wallac in parallel with each lenses associated standard curve. From these absorbance counts the actual ⁇ g/lens counts are calculated.
  • a packaging solution (listed below) is used in an imbibed production process in which lenses are "imbibed” with the packaging solution by using the packaging solution as the hydrating solution for the dry lenses after plasma treatment as well as for lens wet inspection.
  • the packaging solution is are also used for the fill saline (i.e., in the lens package).
  • a standard curve is prepared using a 24-well plate. Each well containing the lens under investigation to negate any autofluorecense.
  • the standard curve ranged from 10 ⁇ g/ml-0.5 ⁇ g/ml in PBS at pH 7.2. Five lenses from each group are soaked in 10 ⁇ g/ml FITC-phosphotidylethanolamine for 24 hours, rocking at 34.5 0 C wrapped in aluminum foil. After incubation lenses are buffer exchanged 3 times in PBS and read on the Victor Il Wallac in parallel with each lenses associated standard curve. From these raw counts the actual ⁇ g/lens counts are calculated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Eyeglasses (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Medicinal Preparation (AREA)
  • Wrappers (AREA)
PCT/US2008/010146 2007-08-31 2008-08-27 Contact lens packaging solutions Ceased WO2009032122A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020107006936A KR101535692B1 (ko) 2007-08-31 2008-08-27 콘택트 렌즈 포장 용액
JP2010522932A JP5643092B2 (ja) 2007-08-31 2008-08-27 コンタクトレンズのパッケージング溶液
CA2692831A CA2692831C (en) 2007-08-31 2008-08-27 Contact lens packaging solutions
AT08795627T ATE540327T1 (de) 2007-08-31 2008-08-27 Kontaktlinsenverpackungslösungen
EP08795627A EP2188655B1 (en) 2007-08-31 2008-08-27 Contact lens packaging solutions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US96933707P 2007-08-31 2007-08-31
US60/969,337 2007-08-31

Publications (1)

Publication Number Publication Date
WO2009032122A1 true WO2009032122A1 (en) 2009-03-12

Family

ID=40260610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/010146 Ceased WO2009032122A1 (en) 2007-08-31 2008-08-27 Contact lens packaging solutions

Country Status (7)

Country Link
US (2) US8689971B2 (enExample)
EP (1) EP2188655B1 (enExample)
JP (2) JP5643092B2 (enExample)
KR (1) KR101535692B1 (enExample)
AT (1) ATE540327T1 (enExample)
CA (1) CA2692831C (enExample)
WO (1) WO2009032122A1 (enExample)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511337A (ja) * 2009-11-17 2013-04-04 ノバルティス アーゲー コンタクトレンズの消毒のための過酸化水素溶液及びキット
JP2013533518A (ja) * 2010-07-30 2013-08-22 ノバルティス アーゲー 架橋親水性コーティングを備えるシリコーンヒドロゲルレンズ
US9708087B2 (en) 2013-12-17 2017-07-18 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
WO2019111838A1 (ja) 2017-12-04 2019-06-13 日油株式会社 ソフトコンタクトレンズ用処理液
US10449740B2 (en) 2015-12-15 2019-10-22 Novartis Ag Method for applying stable coating on silicone hydrogel contact lenses
US10830923B2 (en) 2017-12-13 2020-11-10 Alcon Inc. Method for producing MPS-compatible water gradient contact lenses
US10842875B2 (en) 2015-11-30 2020-11-24 Rohto Pharmaceutical Co., Ltd. Ophthalmic composition
US11002884B2 (en) 2014-08-26 2021-05-11 Alcon Inc. Method for applying stable coating on silicone hydrogel contact lenses
WO2023234365A1 (ja) 2022-06-02 2023-12-07 日油株式会社 コーティング層を有するソフトコンタクトレンズ
WO2023234366A1 (ja) 2022-06-02 2023-12-07 日油株式会社 コーティング層を有するソフトコンタクトレンズ
KR20240089082A (ko) 2021-10-29 2024-06-20 니치유 가부시키가이샤 소프트 콘택트 렌즈용 처리액

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535692B1 (ko) * 2007-08-31 2015-07-09 노파르티스 아게 콘택트 렌즈 포장 용액
US20090173045A1 (en) * 2008-01-09 2009-07-09 Yu-Chin Lai Packaging Solutions
US8798332B2 (en) 2012-05-15 2014-08-05 Google Inc. Contact lenses
US8857981B2 (en) 2012-07-26 2014-10-14 Google Inc. Facilitation of contact lenses with capacitive sensors
US9298020B1 (en) 2012-07-26 2016-03-29 Verily Life Sciences Llc Input system
US9158133B1 (en) 2012-07-26 2015-10-13 Google Inc. Contact lens employing optical signals for power and/or communication
US9523865B2 (en) 2012-07-26 2016-12-20 Verily Life Sciences Llc Contact lenses with hybrid power sources
US8919953B1 (en) 2012-08-02 2014-12-30 Google Inc. Actuatable contact lenses
US9696564B1 (en) 2012-08-21 2017-07-04 Verily Life Sciences Llc Contact lens with metal portion and polymer layer having indentations
US8971978B2 (en) 2012-08-21 2015-03-03 Google Inc. Contact lens with integrated pulse oximeter
US9111473B1 (en) 2012-08-24 2015-08-18 Google Inc. Input system
US8820934B1 (en) 2012-09-05 2014-09-02 Google Inc. Passive surface acoustic wave communication
US20140192315A1 (en) 2012-09-07 2014-07-10 Google Inc. In-situ tear sample collection and testing using a contact lens
US9398868B1 (en) 2012-09-11 2016-07-26 Verily Life Sciences Llc Cancellation of a baseline current signal via current subtraction within a linear relaxation oscillator-based current-to-frequency converter circuit
US10010270B2 (en) 2012-09-17 2018-07-03 Verily Life Sciences Llc Sensing system
US9326710B1 (en) 2012-09-20 2016-05-03 Verily Life Sciences Llc Contact lenses having sensors with adjustable sensitivity
US8960898B1 (en) 2012-09-24 2015-02-24 Google Inc. Contact lens that restricts incoming light to the eye
US8870370B1 (en) 2012-09-24 2014-10-28 Google Inc. Contact lens that facilitates antenna communication via sensor impedance modulation
US8979271B2 (en) 2012-09-25 2015-03-17 Google Inc. Facilitation of temperature compensation for contact lens sensors and temperature sensing
US8989834B2 (en) 2012-09-25 2015-03-24 Google Inc. Wearable device
US20140088372A1 (en) 2012-09-25 2014-03-27 Google Inc. Information processing method
US8985763B1 (en) 2012-09-26 2015-03-24 Google Inc. Contact lens having an uneven embedded substrate and method of manufacture
US8821811B2 (en) 2012-09-26 2014-09-02 Google Inc. In-vitro contact lens testing
US8960899B2 (en) 2012-09-26 2015-02-24 Google Inc. Assembling thin silicon chips on a contact lens
US9884180B1 (en) 2012-09-26 2018-02-06 Verily Life Sciences Llc Power transducer for a retinal implant using a contact lens
US9063351B1 (en) 2012-09-28 2015-06-23 Google Inc. Input detection system
US8965478B2 (en) 2012-10-12 2015-02-24 Google Inc. Microelectrodes in an ophthalmic electrochemical sensor
US9176332B1 (en) 2012-10-24 2015-11-03 Google Inc. Contact lens and method of manufacture to improve sensor sensitivity
US9757056B1 (en) 2012-10-26 2017-09-12 Verily Life Sciences Llc Over-molding of sensor apparatus in eye-mountable device
HUE031702T2 (en) 2012-12-17 2017-07-28 Novartis Ag A method for producing improved UV absorbing ophthalmic lenses
US8874182B2 (en) 2013-01-15 2014-10-28 Google Inc. Encapsulated electronics
US9289954B2 (en) 2013-01-17 2016-03-22 Verily Life Sciences Llc Method of ring-shaped structure placement in an eye-mountable device
US20140209481A1 (en) 2013-01-25 2014-07-31 Google Inc. Standby Biasing Of Electrochemical Sensor To Reduce Sensor Stabilization Time During Measurement
US9636016B1 (en) 2013-01-25 2017-05-02 Verily Life Sciences Llc Eye-mountable devices and methods for accurately placing a flexible ring containing electronics in eye-mountable devices
US9161712B2 (en) 2013-03-26 2015-10-20 Google Inc. Systems and methods for encapsulating electronics in a mountable device
US9113829B2 (en) 2013-03-27 2015-08-25 Google Inc. Systems and methods for encapsulating electronics in a mountable device
WO2014167611A1 (ja) * 2013-04-12 2014-10-16 ロート製薬株式会社 コンタクトレンズ用組成物およびそれを用いたコンタクトレンズパッケージ
US20140371560A1 (en) 2013-06-14 2014-12-18 Google Inc. Body-Mountable Devices and Methods for Embedding a Structure in a Body-Mountable Device
US9084561B2 (en) 2013-06-17 2015-07-21 Google Inc. Symmetrically arranged sensor electrodes in an ophthalmic electrochemical sensor
US9948895B1 (en) 2013-06-18 2018-04-17 Verily Life Sciences Llc Fully integrated pinhole camera for eye-mountable imaging system
US9685689B1 (en) 2013-06-27 2017-06-20 Verily Life Sciences Llc Fabrication methods for bio-compatible devices
US9307901B1 (en) 2013-06-28 2016-04-12 Verily Life Sciences Llc Methods for leaving a channel in a polymer layer using a cross-linked polymer plug
US9492118B1 (en) 2013-06-28 2016-11-15 Life Sciences Llc Pre-treatment process for electrochemical amperometric sensor
US9814387B2 (en) 2013-06-28 2017-11-14 Verily Life Sciences, LLC Device identification
US9028772B2 (en) 2013-06-28 2015-05-12 Google Inc. Methods for forming a channel through a polymer layer using one or more photoresist layers
US9654674B1 (en) 2013-12-20 2017-05-16 Verily Life Sciences Llc Image sensor with a plurality of light channels
US9572522B2 (en) 2013-12-20 2017-02-21 Verily Life Sciences Llc Tear fluid conductivity sensor
US9366570B1 (en) 2014-03-10 2016-06-14 Verily Life Sciences Llc Photodiode operable in photoconductive mode and photovoltaic mode
US9184698B1 (en) 2014-03-11 2015-11-10 Google Inc. Reference frequency from ambient light signal
US9789655B1 (en) 2014-03-14 2017-10-17 Verily Life Sciences Llc Methods for mold release of body-mountable devices including microelectronics
US20150366311A1 (en) * 2014-06-19 2015-12-24 Coopervision International Holding Company, Lp Protection of Contact Lenses from Microbial Contamination Caused by Handling
PT3383631T (pt) * 2015-12-03 2019-10-29 Novartis Ag Soluções de embalamento de lentes de contacto
TWI798452B (zh) * 2019-06-17 2023-04-11 晶碩光學股份有限公司 隱形眼鏡產品
US20220151251A1 (en) * 2020-11-17 2022-05-19 Provisur Technologies, Inc. System for treating whole meat material and grinding whole meat material into ground meat product
WO2024246515A1 (en) * 2023-05-31 2024-12-05 Coopervision International Limited Contact lens and packaging solution

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4409205A (en) * 1979-03-05 1983-10-11 Cooper Laboratories, Inc. Ophthalmic solution
US4748189A (en) * 1985-04-19 1988-05-31 Ciba-Geigy Corporation Ophthalmic solutions and methods for improving the comfort and safety of contact lenses
WO1997020019A1 (en) 1995-11-30 1997-06-05 Award Plc Contact lens packaging
WO1998030248A2 (en) * 1997-01-10 1998-07-16 Allergan Sales, Inc. Compositions and methods for storing contact lenses
US5942558A (en) 1995-03-24 1999-08-24 Ocular Research Of Boston, Inc. Hydrogel lens pre-coated with lipid layer
US6348507B1 (en) 1998-05-05 2002-02-19 Bausch & Lomb Incorporated Surface treatment of silicone hydrogel contact lenses
US6440366B1 (en) 1997-06-06 2002-08-27 Bausch & Lomb Incorporated Contact lens packing solutions
US6531432B2 (en) 2000-12-07 2003-03-11 Johnson & Johnson Vision Care, Inc. Contact lens packaging solutions
WO2004054629A1 (en) 2002-12-13 2004-07-01 Novartis Ag Lens care composition and method
US20060073185A1 (en) 2002-12-13 2006-04-06 Bausch & Lomb Incorporated Method and composition for contact lenses
WO2006088758A2 (en) 2005-02-14 2006-08-24 Johnson & Johnson Vision Care, Inc. A comfortable ophthalmic device and methods of its production
WO2007098040A1 (en) 2006-02-17 2007-08-30 Novartis Ag Method for sterilization of hydrogel contact lenses

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549747A (en) 1968-02-20 1970-12-22 Flow Pharma Inc Contact lens wetting solution and method of using same
USB724600I5 (enExample) 1968-04-26
US3639576A (en) 1968-06-19 1972-02-01 Barnes Hind Pharm Inc Resterilizing contact lens solution
GB1340517A (en) 1969-12-01 1973-12-12 Burton Parsons Chemicals Inc Ophthalmic solution
US4013576A (en) 1973-11-21 1977-03-22 Wesley-Jessen Inc. Contact lens treating composition
JPS5111853U (enExample) * 1974-07-12 1976-01-28
US4141665A (en) * 1977-09-14 1979-02-27 Snapp Jr Edward A Lockable joint for articulated members
US4287175A (en) 1978-06-22 1981-09-01 Merck & Co., Inc. Contact lens wetting agents
US4323467A (en) 1980-11-24 1982-04-06 Syntex (U.S.A.) Inc. Contact lens cleaning, storing and wetting solutions
JPS57186733A (en) 1981-05-13 1982-11-17 Toyo Contact Lens Co Ltd Agent for use in contact lenses
JPS5870208A (ja) 1981-10-22 1983-04-26 Toyo Contact Lens Co Ltd コンタクトレンズ用洗浄剤
US4529535A (en) 1982-06-01 1985-07-16 Sherman Laboratories, Inc. Soft contact lens wetting solution containing preservative system and method
US4626292A (en) 1982-06-01 1986-12-02 Sherman Laboratories, Inc. Soft contact lens wetting and preservation method
US4551461A (en) 1982-06-01 1985-11-05 Sherman Laboratories, Inc. Soft contact lens ambient temperature disinfectant and rinsing solution and method
GB8422950D0 (en) 1984-09-11 1984-10-17 Warne K J Hydrogel
US4808239A (en) 1984-12-28 1989-02-28 Alcon Laboratories, Inc. Method of cleaning contact lens using compositions containing polyether carboxylic acid surfactant
GB8601967D0 (en) 1986-01-28 1986-03-05 Coopervision Optics Manufacturing contact lenses
US4786436A (en) 1986-01-31 1988-11-22 Bausch & Lomb Incorporated Wetting solutions for contact lenses
US4783488A (en) 1987-01-31 1988-11-08 Bausch & Lomb Incorporated Contact lens wetting solution
US5322667A (en) 1987-03-31 1994-06-21 Sherman Pharmaceuticals, Inc. Preservative system for ophthalmic and contact lens solutions and method for cleaning disinfecting and storing contact lenses
US5141665A (en) 1987-03-31 1992-08-25 Sherman Laboratories, Inc. Cleaning, conditioning, storing and wetting system and method for rigid gas permeable contact lenses and other contact lenses
EP0315836A3 (en) 1987-10-30 1990-10-17 HÜLS AMERICA INC. (a Delaware corporation) Polyorganosiloxane based interpenetrating network polymers and methods of making
US5089053A (en) 1989-11-09 1992-02-18 Polymer Technology Corporation Contact lens cleaning material and method
US5157093A (en) 1990-05-10 1992-10-20 Ciba-Geigy Corporation Hydroxyethyl cellulose derivatives containing pendant (meth)acryloyl units bound through urethane groups and hydrogel contact lenses made therefrom
AU647880B2 (en) 1991-02-28 1994-03-31 Ciba-Geigy Ag Contact lenses made from thermoformable material
NZ242358A (en) 1991-05-10 1994-03-25 Allergan Inc Use of thiol compounds to inhibit deposits on a contact lens
US5260001A (en) 1992-08-03 1993-11-09 Bausch & Lomb Incorporated Spincasting process for producing a series of contact lenses having desired shapes
EP0667779A1 (en) 1992-10-28 1995-08-23 Cytrx Corporation Ophthalmic solution and method of use
US5364601A (en) 1992-12-30 1994-11-15 Bausch & Lomb Incorporated Treating of contact lenses with compositions comprising PVP-H202
JP3381172B2 (ja) 1993-01-26 2003-02-24 アラーガン、インコーポレイテッド コンタクトレンズ消毒用組成物および方法
US5401327A (en) 1993-06-18 1995-03-28 Wilmington Partners L.P. Method of treating contact lenses
WO1995000620A1 (en) 1993-06-18 1995-01-05 Polymer Technology Corporation Composition for cleaning and wetting contact lenses
WO1995000617A1 (en) 1993-06-18 1995-01-05 Polymer Technology Corporation Composition for cleaning and wetting contact lenses
WO1995000618A1 (en) 1993-06-18 1995-01-05 Polymer Technology Corporation Contact lens solution containing peo and cationic cellulose
US5405878A (en) 1993-06-18 1995-04-11 Wilmington Partners L.P. Contact lens solution containing cationic glycoside
US5382599A (en) 1993-10-13 1995-01-17 Allergan, Inc. Method of inhibiting protozoan growth in eye care products using a polyvalent cation chelating agent
US5712356A (en) 1993-11-26 1998-01-27 Ciba Vision Corporation Cross-linkable copolymers and hydrogels
WO1995017689A1 (en) 1993-12-21 1995-06-29 Bausch & Lomb Incorporated Method for increasing hydrophilicity of contact lenses
WO1995034327A1 (en) 1994-06-15 1995-12-21 Alcon Laboratories, Inc. Improved method for storing contact lenses
CN1157553A (zh) 1994-09-09 1997-08-20 诺沃挪第克公司 清洁、消毒和防护隐形眼镜的方法
US5700559A (en) 1994-12-16 1997-12-23 Advanced Surface Technology Durable hydrophilic surface coatings
US5731087A (en) 1995-06-07 1998-03-24 Union Carbide Chemicals & Plastics Technology Corporation Lubricious coatings containing polymers with vinyl and carboxylic acid moieties
US5605661A (en) * 1995-08-18 1997-02-25 Alcon Laboratories, Inc. Methods of using liquid enzyme compositions containing mixed polyols
US5800412A (en) 1996-10-10 1998-09-01 Sts Biopolymers, Inc. Hydrophilic coatings with hydrating agents
US5800807A (en) 1997-01-29 1998-09-01 Bausch & Lomb Incorporated Ophthalmic compositions including glycerin and propylene glycol
WO1998043683A1 (en) 1997-04-03 1998-10-08 Ophtecs Corporation One-pack preparation for disinfection, neutralization and cleaning of contact lenses and method of disinfection, neutralization and cleaning
FR2762849B1 (fr) 1997-05-05 1999-06-18 Essilor Int Solution aqueuse d'entretien des lentilles de contact
US7654728B2 (en) 1997-10-24 2010-02-02 Revalesio Corporation System and method for therapeutic application of dissolved oxygen
US20030129083A1 (en) 1997-11-26 2003-07-10 Advanced Medical Optics, Inc. Multi purpose contact lens care compositions including propylene glycol or glycerin
US6822016B2 (en) 2001-09-10 2004-11-23 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US7052131B2 (en) 2001-09-10 2006-05-30 J&J Vision Care, Inc. Biomedical devices containing internal wetting agents
US5998498A (en) 1998-03-02 1999-12-07 Johnson & Johnson Vision Products, Inc. Soft contact lenses
US6367929B1 (en) 1998-03-02 2002-04-09 Johnson & Johnson Vision Care, Inc. Hydrogel with internal wetting agent
CN1299387A (zh) 1998-05-05 2001-06-13 博士伦公司 硅氧烷水凝胶接触镜片的等离子体表面处理
JP3883739B2 (ja) 1998-05-22 2007-02-21 株式会社メニコン コンタクトレンズ用殺菌液
DE1095076T1 (de) 1998-07-08 2002-04-04 Sunsoft Corp., Albuquerque Ineinandergreifendes polymernetzwerk aus hydrophilen hydrogelen für kontaktlinsen
EP1050304A1 (en) 1998-11-16 2000-11-08 Rohto Pharmaceutical Co., Ltd. Liquid ophthalmic preparations
US6274133B1 (en) 1998-12-22 2001-08-14 Bausch & Lomb Incorporated Method for treating extended-wear contact lenses in the eyes
US6037328A (en) 1998-12-22 2000-03-14 Bausch & Lomb Incorporated Method and composition for rewetting and preventing deposits on contact lens
US6630243B2 (en) 1999-05-20 2003-10-07 Bausch & Lomb Incorporated Surface treatment of silicone hydrogel contact lenses comprising hydrophilic polymer chains attached to an intermediate carbon coating
US6482799B1 (en) 1999-05-25 2002-11-19 The Regents Of The University Of California Self-preserving multipurpose ophthalmic solutions incorporating a polypeptide antimicrobial
JP4295939B2 (ja) 1999-09-20 2009-07-15 株式会社メニコン コンタクトレンズ用液剤
KR100703583B1 (ko) 1999-10-07 2007-04-05 존슨 앤드 존슨 비젼 케어, 인코포레이티드 실리콘 하이드로겔, 이의 제조방법 및 이를 포함하는 콘택트 렌즈
WO2001034312A1 (en) 1999-11-05 2001-05-17 Bausch & Lomb Incorporated Surface treatment of non-plasma treated silicone hydrogel contact lenses
AU1954101A (en) 1999-12-08 2001-06-18 Procter & Gamble Company, The Compositions including ether-capped poly(oxyalkylated) alcohol wetting agents
US20020018732A1 (en) 2000-04-21 2002-02-14 Hung William M. Preserving compositions containing chitosan and processes for making water soluble O-acetylated chitosan and chitosan
US6428839B1 (en) 2000-06-02 2002-08-06 Bausch & Lomb Incorporated Surface treatment of medical device
US20020182315A1 (en) 2000-11-01 2002-12-05 Heiler David J. Surface treatment of non-plasma treated silicone hydrogel contact lenses
CA2428985C (en) 2000-11-08 2011-05-24 Bio-Concept Laboratories Improved ophthalmic and contact lens solutions containing simple saccharides as preservative enhancers
US6634748B1 (en) 2000-11-15 2003-10-21 Johnson & Johnson Vision Care, Inc. Methods of stabilizing silicone hydrogels against hydrolytic degradation
US6867172B2 (en) 2000-12-07 2005-03-15 Johnson & Johnson Vision Care, Inc. Methods of inhibiting the adherence of lenses to their packaging
US20020115578A1 (en) 2000-12-14 2002-08-22 Groemminger Suzanne F. Composition for cleaning and wetting contact lenses
US6805836B2 (en) 2000-12-15 2004-10-19 Bausch & Lomb Incorporated Prevention of preservative uptake into biomaterials
US6702983B2 (en) 2001-05-15 2004-03-09 Bausch & Lomb Incorporated Low ionic strength method and composition for reducing bacterial attachment to biomaterials
US6815074B2 (en) 2001-05-30 2004-11-09 Novartis Ag Polymeric materials for making contact lenses
US7879267B2 (en) 2001-08-02 2011-02-01 J&J Vision Care, Inc. Method for coating articles by mold transfer
US20030095230A1 (en) 2001-08-02 2003-05-22 Neely Frank L. Antimicrobial lenses and methods of their use related patent applications
JP2003057610A (ja) * 2001-08-09 2003-02-26 Ophtecs Corp コンタクトレンズ用液剤組成物
US6528464B1 (en) 2001-08-17 2003-03-04 Bausch & Lomb Incorporated Composition and method for inhibiting uptake of biguanide antimicrobials by hydrogels
US6617291B1 (en) 2001-11-08 2003-09-09 Francis X. Smith Ophthalmic and contact lens solutions
US20040028645A1 (en) 2001-12-13 2004-02-12 Masood Chowhan Artificial tear composition adapted to be used with contact lenses
CN1671400A (zh) 2002-07-03 2005-09-21 派瑞克科学公司 透明质酸组合物以及使用方法
US20080299179A1 (en) * 2002-09-06 2008-12-04 Osman Rathore Solutions for ophthalmic lenses containing at least one silicone containing component
US6926965B2 (en) 2002-09-11 2005-08-09 Novartis Ag LbL-coated medical device and method for making the same
CN1684722A (zh) * 2002-09-30 2005-10-19 博士伦公司 减少细菌在生物材料和生物医学装置上的粘附
US7037469B2 (en) 2003-03-19 2006-05-02 Bausch & Lomb, Inc. Method and composition for reducing contact lens swelling
US20040115270A1 (en) * 2002-12-13 2004-06-17 Dharmendra Jani Absorption and controlled release of polyethers from hydrogel biomaterials
US20040120982A1 (en) 2002-12-19 2004-06-24 Zanini Diana Biomedical devices with coatings attached via latent reactive components
US20040119176A1 (en) 2002-12-23 2004-06-24 Bausch & Lomb Incorporated Method for manufacturing lenses
EP2283876A1 (en) 2002-12-23 2011-02-16 Johnson and Johnson Vision Care, Inc. Contact lens packages containing additives
US20040120916A1 (en) 2002-12-23 2004-06-24 Advanced Medical Optics, Inc. Contact lens care compositions, methods of use and preparation which protect ocular tissue membrane integrity
US20040137079A1 (en) 2003-01-08 2004-07-15 Cook James N. Contact lens and eye drop rewetter compositions and methods
WO2004091438A2 (en) 2003-04-15 2004-10-28 Fxs Ventures, Llc Improved ophthalmic and contact lens solutions containing peptides as representative enhancers
WO2005011966A1 (en) 2003-07-24 2005-02-10 Provis Limited Methods and apparatus for use in contact lens manufacture and packaging
US7416737B2 (en) 2003-11-18 2008-08-26 Johnson & Johnson Vision Care, Inc. Antimicrobial lenses, processes to prepare them and methods of their use
US20050119141A1 (en) 2003-12-01 2005-06-02 Irene Quenville Stability enhancement of solutions containing antimicrobial agents
JP2005208628A (ja) * 2003-12-25 2005-08-04 Lion Corp コンタクトレンズ用プレケア剤及びコンタクトレンズのプレケア方法
US7786185B2 (en) 2004-03-05 2010-08-31 Johnson & Johnson Vision Care, Inc. Wettable hydrogels comprising acyclic polyamides
WO2006009101A1 (ja) 2004-07-21 2006-01-26 Senju Pharmaceutical Co, .Ltd. コンタクトレンズ用装着液
US7423082B2 (en) * 2004-08-20 2008-09-09 Lubrizol Advanced Materials, Inc. Associative thickeners for aqueous systems
EP1789821B1 (en) 2004-08-27 2019-04-10 CooperVision International Holding Company, LP Silicone hydrogel contact lenses
US7247692B2 (en) 2004-09-30 2007-07-24 Johnson & Johnson Vision Care, Inc. Biomedical devices containing amphiphilic block copolymers
DE602005018515D1 (de) 2004-10-01 2010-02-04 Menicon Co Ltd Verfahren zur sterilisation verpackter kontaktlinsen mit verpackungslösung
JP4642449B2 (ja) 2004-12-06 2011-03-02 株式会社メニコン コンタクトレンズ用液剤組成物
JP5116211B2 (ja) * 2005-03-03 2013-01-09 ロート製薬株式会社 粘膜適用組成物
US9804295B2 (en) 2005-05-05 2017-10-31 Novartis Ag Ophthalmic devices for sustained delivery of active compounds
KR101535692B1 (ko) * 2007-08-31 2015-07-09 노파르티스 아게 콘택트 렌즈 포장 용액

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4409205A (en) * 1979-03-05 1983-10-11 Cooper Laboratories, Inc. Ophthalmic solution
US4748189A (en) * 1985-04-19 1988-05-31 Ciba-Geigy Corporation Ophthalmic solutions and methods for improving the comfort and safety of contact lenses
US5942558A (en) 1995-03-24 1999-08-24 Ocular Research Of Boston, Inc. Hydrogel lens pre-coated with lipid layer
WO1997020019A1 (en) 1995-11-30 1997-06-05 Award Plc Contact lens packaging
WO1998030248A2 (en) * 1997-01-10 1998-07-16 Allergan Sales, Inc. Compositions and methods for storing contact lenses
US5882687A (en) 1997-01-10 1999-03-16 Allergan Compositions and methods for storing contact lenses
US6699435B2 (en) 1997-06-06 2004-03-02 Bausch & Lomb Incorporated Contact lens packing solutions
US6440366B1 (en) 1997-06-06 2002-08-27 Bausch & Lomb Incorporated Contact lens packing solutions
US6348507B1 (en) 1998-05-05 2002-02-19 Bausch & Lomb Incorporated Surface treatment of silicone hydrogel contact lenses
US6531432B2 (en) 2000-12-07 2003-03-11 Johnson & Johnson Vision Care, Inc. Contact lens packaging solutions
WO2004054629A1 (en) 2002-12-13 2004-07-01 Novartis Ag Lens care composition and method
US20060073185A1 (en) 2002-12-13 2006-04-06 Bausch & Lomb Incorporated Method and composition for contact lenses
WO2006088758A2 (en) 2005-02-14 2006-08-24 Johnson & Johnson Vision Care, Inc. A comfortable ophthalmic device and methods of its production
WO2007098040A1 (en) 2006-02-17 2007-08-30 Novartis Ag Method for sterilization of hydrogel contact lenses

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511337A (ja) * 2009-11-17 2013-04-04 ノバルティス アーゲー コンタクトレンズの消毒のための過酸化水素溶液及びキット
JP2013533518A (ja) * 2010-07-30 2013-08-22 ノバルティス アーゲー 架橋親水性コーティングを備えるシリコーンヒドロゲルレンズ
US9239409B2 (en) 2010-07-30 2016-01-19 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9507173B2 (en) 2010-07-30 2016-11-29 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9738813B2 (en) 2010-07-30 2017-08-22 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9708087B2 (en) 2013-12-17 2017-07-18 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US11002884B2 (en) 2014-08-26 2021-05-11 Alcon Inc. Method for applying stable coating on silicone hydrogel contact lenses
US10842875B2 (en) 2015-11-30 2020-11-24 Rohto Pharmaceutical Co., Ltd. Ophthalmic composition
US10449740B2 (en) 2015-12-15 2019-10-22 Novartis Ag Method for applying stable coating on silicone hydrogel contact lenses
WO2019111838A1 (ja) 2017-12-04 2019-06-13 日油株式会社 ソフトコンタクトレンズ用処理液
US10830923B2 (en) 2017-12-13 2020-11-10 Alcon Inc. Method for producing MPS-compatible water gradient contact lenses
US11029447B2 (en) 2017-12-13 2021-06-08 Alcon Inc. Method for producing MPS-compatible water gradient contact lenses
US11029446B2 (en) 2017-12-13 2021-06-08 Alcon Inc. Method for producing MPS-compatible water gradient contact lenses
KR20240089082A (ko) 2021-10-29 2024-06-20 니치유 가부시키가이샤 소프트 콘택트 렌즈용 처리액
WO2023234365A1 (ja) 2022-06-02 2023-12-07 日油株式会社 コーティング層を有するソフトコンタクトレンズ
WO2023234366A1 (ja) 2022-06-02 2023-12-07 日油株式会社 コーティング層を有するソフトコンタクトレンズ
KR20250018504A (ko) 2022-06-02 2025-02-06 니치유 가부시키가이샤 코팅층을 갖는 소프트 콘택트 렌즈
KR20250018497A (ko) 2022-06-02 2025-02-06 니치유 가부시키가이샤 코팅층을 갖는 소프트 콘택트 렌즈

Also Published As

Publication number Publication date
CA2692831C (en) 2016-05-17
US9162784B2 (en) 2015-10-20
ATE540327T1 (de) 2012-01-15
JP5821140B2 (ja) 2015-11-24
CA2692831A1 (en) 2009-03-12
US8689971B2 (en) 2014-04-08
JP2010538321A (ja) 2010-12-09
JP2014222362A (ja) 2014-11-27
EP2188655B1 (en) 2012-01-04
US20090057164A1 (en) 2009-03-05
US20140237945A1 (en) 2014-08-28
KR101535692B1 (ko) 2015-07-09
KR20100049125A (ko) 2010-05-11
EP2188655A1 (en) 2010-05-26
JP5643092B2 (ja) 2014-12-17

Similar Documents

Publication Publication Date Title
US9162784B2 (en) Contact lens packaging solutions
CA2692778C (en) Contact lens products
AU2016364319B2 (en) Contact lens packaging solutions
AU2013224663B2 (en) Contact Lens Products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08795627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2692831

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2010522932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008795627

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107006936

Country of ref document: KR

Kind code of ref document: A