WO2009019992A1 - 電気自動車の電源制御装置及び電源システム - Google Patents

電気自動車の電源制御装置及び電源システム Download PDF

Info

Publication number
WO2009019992A1
WO2009019992A1 PCT/JP2008/063341 JP2008063341W WO2009019992A1 WO 2009019992 A1 WO2009019992 A1 WO 2009019992A1 JP 2008063341 W JP2008063341 W JP 2008063341W WO 2009019992 A1 WO2009019992 A1 WO 2009019992A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
secondary battery
deterioration
electric vehicle
chargeable
Prior art date
Application number
PCT/JP2008/063341
Other languages
English (en)
French (fr)
Inventor
Hironori Harada
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2009019992A1 publication Critical patent/WO2009019992A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a configuration of a power supply control device and a power supply system for an electric vehicle.
  • each secondary battery is made to have the same remaining capacity (S0C).
  • S0C remaining capacity
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 3-2 0 9 9 6 9
  • Patent Document 2 Japanese Patent Laid-Open No. 2 00 2-1 0 5 0 2
  • the secondary battery used for driving a vehicle has a long internal charge / discharge time, the internal resistance increases due to deterioration, the battery temperature rises, and the deterioration further progresses due to this temperature rise. Yes.
  • a power supply system is configured by connecting secondary batteries in parallel, if one of the batteries deteriorates, the battery has a characteristic that the deterioration selectively proceeds. Since the power supply system requires each secondary battery connected in parallel to operate, the life of the power supply system as a whole is determined by the life of the secondary battery with the shortest life of each secondary battery. Will end up.
  • an object of the present invention is to improve the life of the entire power system of an electric vehicle in which a plurality of secondary batteries are connected in parallel.
  • An electric vehicle power supply control device is a power supply control device for an electric vehicle including a plurality of secondary batteries electrically connected in parallel to a load and a power source, and the power charged from the power source Or required charging / discharging power setting means for setting required charging / discharging power to each secondary battery based on the power discharged to the load, and deterioration degree detecting means for estimating or detecting the deterioration degree of each secondary battery, A deterioration degree comparison means for comparing the degree of deterioration of each secondary battery, a required charge / discharge power distribution changing means for changing the distribution of the required charge / discharge power to each secondary battery based on the result of the deterioration degree comparison means, Having Features.
  • the power control apparatus for an electric vehicle further comprises chargeable / dischargeable power setting means for setting chargeable / dischargeable power of each secondary battery from the temperature and remaining capacity of each secondary battery, and required charge / discharge power.
  • the distribution changing means is configured to change the charge / discharge power of each secondary battery set by the charge / discharge power setting means and the required charge / discharge power to each secondary battery set by the required charge / discharge power setting means. It is also suitable to change the distribution of required charge / discharge power to the secondary battery, and the required charge / discharge power distribution change means reduces the distribution of required charge / discharge power to the secondary battery having a high degree of deterioration.
  • the chargeable / dischargeable power setting means sets the chargeable / dischargeable power of each secondary battery according to the degree of deterioration of each secondary battery estimated or detected by the deterioration degree detecting means. And are also suitable.
  • An electric vehicle power supply system is a power supply system for an electric vehicle including a plurality of secondary batteries electrically connected in parallel to a load and a power source, and the power charged from the power source, or A required charge / discharge power setting means for setting a required charge / discharge power for each secondary battery based on the power discharged to the load; a deterioration degree detection means for estimating or detecting the deterioration degree of each secondary battery; A deterioration degree comparison means for comparing the deterioration degree of the secondary battery, and a required charge / discharge power distribution changing means for changing the distribution of the required charge / discharge power to each secondary battery based on the result of the deterioration degree comparison means.
  • a power controller, and a current regulator that is provided between each secondary battery and the load and power source, and changes the output current of each secondary battery according to the required charge / discharge power allocated to each secondary battery; Having, It is characterized by.
  • the power supply control device includes chargeable / dischargeable power setting means for setting chargeable / dischargeable power of each secondary battery from the temperature and remaining capacity of each secondary battery
  • the charge / discharge power distribution changing means includes: chargeable / dischargeable power of each secondary battery set by the chargeable / dischargeable power setting means and required charge / discharge power to each secondary battery set by the required charge / discharge power setting means. It is also preferable to change the distribution of required charge / discharge power to each secondary battery based on the above, and the required charge / discharge power distribution change means of the power supply control device It is also preferable to reduce the distribution of required charge / discharge power, and the charge / discharge possible power setting means is inferior. It is also preferable to set the chargeable / dischargeable power of each secondary battery according to the degree of deterioration of each secondary battery estimated or detected by the activation degree detecting means.
  • the present invention has an effect that it is possible to improve the life of the entire power system of an electric vehicle in which a plurality of secondary batteries are connected in parallel.
  • FIG. 1 is a system diagram showing a configuration of a power supply system for an electric vehicle according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the operation of the electric vehicle power supply system according to the embodiment of the present invention.
  • FIG. 3 is a flowchart showing the deterioration degree detecting means of the power supply control device according to the embodiment of the present invention.
  • Fig. 4 is a graph showing the relationship between the remaining capacity (SOC) of the secondary battery and the dischargeable power.
  • Figure 5 is a graph showing the relationship between the remaining capacity (SOC) of the secondary battery and the chargeable power.
  • FIG. 6 is an explanatory diagram showing distribution of required charge / discharge power of two secondary batteries.
  • 1 0 Power supply system 1 1 Power supply control device, 1 3 and 14 Secondary battery, 1 5 and 1 6 System main relay, 1 7 and 1 8 DC converter, 1 9 Capacitor, 2 1 Inverter, 2 2 Motor Generator, 3 1 Vehicle control device, 32 key, 3 3 Shift lever, 34 Brake, 3 5 Accelerator, 3 6 Vehicle speed sensor, 4 1 Motor control device, 1 00 Electric vehicle, P chl *, P ch 2 * Request Charge / discharge power, Prefl *, Pref2 * Chargeable / dischargeable power, S1, S2 coefficient, Tbl, Tb2 secondary battery temperature, Zl, Z2 battery deterioration index, ⁇ P amount, ⁇ Predetermined time.
  • FIG. 1 the alternate long and short dash line indicates a signal line.
  • electric car 100 The installed power supply system 10 has two secondary batteries 1 3 and 1 4 that can be charged and discharged, and secondary batteries at the input / output terminals of the secondary batteries 1 3 and 1 4 respectively.
  • SMR system main relay
  • the DC comparators 17 and 18 not only boost and convert the voltage of the secondary batteries 1 3 and 14 but also as current regulators that adjust the output current from the DC converters 17 and 18 It is also possible to adjust the output current from each secondary battery 1 3 and 1 4.
  • the output lines of the DC converters 17 and 18 are connected so as to be electrically parallel.
  • the inverter 21 is connected to the load side of the capacitor 19, and the inverter 21 includes a plurality of switching elements. Invar for the conversion and converts the three-phase alternating current motor evening generator 2 2 for driving the motor evening Jienere evening by three-phase AC generator 2 2 to the charging DC power to the secondary battery 1 3, 1 4 Evening 2 1 is connected.
  • Inverter 2 1 is connected to a load generator 2 2 which is a load.
  • a capacitor 19 for smoothing the DC power input to the inverter 21 is connected to the secondary battery side of the inverter 21.
  • the motor generator 22 generates electricity by the driving force of the vehicle as in power regeneration, and when it is charged to the secondary batteries 1 3 and 1 4, it becomes a power source for the secondary batteries 1 3 and 1 4.
  • the power system 10 of the electric vehicle 100 is controlled by the secondary batteries 1 3 and 14, the system main relays 15 and 16, and the DC converters 17 and 18, respectively.
  • Power supply control device 1 1 is provided.
  • the power supply control device 11 is a computer that includes a CPU as a calculation unit and a memory as a storage unit therein, and each secondary battery 1 3, 14, each system main relay 15, 16.
  • the DC converters 17 and 18 are connected to each other by signal lines.
  • the power supply control device 11 is connected to a vehicle control device 31 that controls the entire electric vehicle 100 by a signal line, and obtains an output request signal based on the driving state of the vehicle from the vehicle control device 31. It is configured to be able to.
  • the vehicle control device 3 1 provided in the electric vehicle 1 0 0 includes the operation of the electric vehicle 1 0 0.
  • the position signal of the ignition key 3 2 attached to the electric vehicle 1 0 0 the position signal of the shift lever 3 3, the position signal of the brake 3 4, the accelerator 3 5
  • Position signal and speed signal from vehicle speed sensor 36 are connected by each signal line.
  • the electric vehicle 100 is connected to the vehicle control device 31 by a signal line, and a motor that outputs a control signal to the motor generator 22 and the chamber 21 depending on the driving state of the electric vehicle 100.
  • An evening controller 4 1 is provided.
  • the power supply controller 1 1 reads the battery deterioration indexes Z l and Z 2 from the internal memory, and shows the steps S 1 0 2 to S 1 0 9 of FIG.
  • the required charge / discharge power to the secondary batteries 13 and 14 is set and reset.
  • Fig. 3 Before explaining the operation of setting and resetting the required charge / discharge power to each secondary battery, refer to Fig. 3 as a means of detecting the degree of deterioration to estimate the degree of deterioration of each secondary battery 1 3, 14. An embodiment of obtaining the battery degradation indexes Z 1 and Z 2 will be described.
  • the degree of deterioration of the secondary battery can be estimated by multiplying the charge / discharge time by the battery temperature as an index.
  • the power supply control device 11 obtains the temperatures 1) 1 and T b 2 of the secondary batteries 1 3 and 14.
  • the power supply control device 11 acquires an electric output request signal from the vehicle control device 3 1.
  • the power supply control device 11 compares the acquired electrical output signal with a predetermined threshold value, and if the output request exceeds the predetermined threshold value, vehicle control is performed.
  • step S 2 0 4 of FIG. of the power supply control device 11 determines that the secondary batteries 1 3 and 14 are charged / discharged, as shown in step S 2 0 4 of FIG. of After performing time count only for time ⁇ T, as shown in step S 2 0 5 of Fig. 3, multiply the predetermined time ⁇ ⁇ by the temperature T b 1, T b 2 of each secondary battery to obtain the coefficient Calculate S 1 and S 2. Then, as shown in step S 2 06 of FIG. 3, the calculated coefficients S 1 and S 2 are added to the battery deterioration indexes Z 1 and Z 2 of the secondary batteries 13 and 14, respectively. As shown in step S2 07 in step 3, each battery deterioration index Zl, Z2 is stored in the memory. Then, as shown in step S 2 0 8 of FIG.
  • step S 2 0 1 in Fig. 3 it is confirmed whether or not the ignition key of the electric vehicle 1 0 0 is turned off. If the ignition key is not turned off, return to step S 2 0 1 in Fig. 3 to obtain the temperature of each secondary battery 1 3, 1 4 and calculate the coefficients S 1 and S 2. This is integrated into the battery degradation index Z 1 and Z 2. In this way, the battery degradation index Z of each secondary battery 1 3, 1 4 is accumulated by multiplying the temperature T b 1, T b 2 of each secondary battery 1 3, 14 by the retention time. Find l and Z 2 and store the result in memory. As a result, the deterioration degree detecting means is terminated.
  • the battery deterioration indexes Z l and Z 2 of the secondary batteries 13 and 14 are always stored in the memory of the power supply control device 11.
  • Each battery deterioration index Z 1, Z 2 becomes an index indicating that the deterioration is greater as it is larger.
  • the power control device 1 1 is connected to each of the secondary batteries 1 3 and 1 4 stored in the memory by the deterioration degree detecting means described with reference to FIG. Read battery degradation index Z l, Z 2.
  • the vehicle control device 3 1 is a position signal of the induction key 3 2 provided in the electric vehicle 100, a position signal of the shift lever 3 3, a position signal of the brake 3 4, a position signal of the accelerator 3 5;
  • the speed signal from the vehicle speed sensor 3 6 is acquired, the driving state of the electric vehicle 100 is grasped from these signals, and the necessary power is calculated.
  • the necessary electrical output is output as an output request signal.
  • the required electric output is distributed between the power from the engine and the power from the motor. It may be an electrical output necessary for outputting the allocated power by the motor.
  • the power supply controller 1 1 is shown in step S 1 in Figure 2. As shown in 02, the output request signal of the electrical output from the vehicle control device 31 is acquired. Then, the power supply control device 11 sets the required charge / discharge to set the power to be charged / discharged from each of the secondary batteries 1 3, 14 as the required charge / discharge power P ch 1 *, P ch 2 * according to this required output The power setting means is started.
  • the required output from the vehicle control device 3 1 is 1
  • the electrical output may be set to 2 or when the remaining capacity (SOC) of each of the secondary batteries 13 and 14 is different, it should be set to an amount proportional to the size of each remaining capacity (SOC). It may be.
  • the power supply controller 11 ends the required charge / discharge power setting means.
  • the power supply control device 11 sets chargeable / dischargeable powers P re f 1 *, P re f 2 * by the charge / dischargeable power setting means.
  • the power controller 1 1 stores in the internal memory a characteristic map of the rechargeable and chargeable power of the secondary battery with respect to the remaining capacity (SOC) at each secondary battery temperature as shown in Fig. 4 and Fig. 5. is doing.
  • Fig. 4 is a characteristic curve of dischargeable power.
  • a is a line showing the relationship between the remaining capacity (SOC) and the dischargeable power when the temperature of the secondary battery is high, and discharge is possible with increasing SOC. Electricity will increase.
  • SOC remaining capacity
  • Line b in Fig. 4 shows the dischargeable power when the temperature of the secondary battery is low. When the temperature of the secondary battery is low, the dischargeable power is less than when the temperature is high. Yes.
  • Fig. 5 is a characteristic curve of rechargeable power.
  • Line d in the figure shows the maximum chargeable power when the remaining capacity (SOC) is low, and line e in the figure shows the temperature of the secondary battery is high. This shows the chargeable power for the remaining capacity (SOC) of the secondary battery, and the chargeable power decreases as the remaining capacity (SOC) increases.
  • Line f in the figure shows the chargeable power with respect to the remaining capacity (SOC) of the secondary battery when the temperature of the secondary battery is low. Similar to the dischargeable power, the chargeable power when the secondary battery temperature is low is less than the chargeable power when the secondary battery temperature is high.
  • the secondary battery discharge and chargeable power curves shown in Fig. 4 and Fig. 5 may be set in consideration of deterioration of the secondary battery.
  • the power control device 1 1 includes the temperatures T b 1 and T b 2 of the secondary batteries 1 3 and 14 acquired from the secondary batteries 1 3 and 14 and the remaining capacity of the secondary batteries 1 3 and 14 ( SC) and the discharge and chargeability characteristics map of each secondary battery 1 3 and 14, determine the dischargeable and chargeable power of each secondary battery 1 3 and 14, and calculate the values for each secondary battery. Set as chargeable / dischargeable power P ref 1 *, P ref 2 *.
  • the power supply control device 11 starts the deterioration degree comparing means for comparing the deterioration degree of each secondary battery as shown in step S 1 0 5 in FIG.
  • the power supply controller 11 compares the battery deterioration indexes Z 1 and Z 2 of the secondary batteries 13 and 14 acquired in step S 1 0 1 in FIG.
  • the battery degradation index Z 1 of the first secondary battery 1 3 is smaller than Z 2 of the second secondary battery 14
  • the second secondary battery is greater than the first secondary battery 1 3.
  • 14 determines that the deterioration is progressing, ends the deterioration degree comparison means, and starts the required charge / discharge power distribution change means. As shown in step S1 06 of FIG.
  • a predetermined amount ⁇ P is reduced from the required charge / discharge power P ch 2 * to the second secondary battery 14 set in step S103 of FIG.
  • P ch 2 * — ⁇ ⁇ is set as the required charge / discharge power P ch 2 * for the second secondary battery
  • the first secondary battery 1 3 set in step S 1 0 3 of Fig. 2 is set.
  • Add a predetermined amount ⁇ P to the required charge / discharge power P ch 1 * and reset P ch 1 * + ⁇ P as the required charge / discharge power P ch 1 * for the first secondary battery 14 Change the distribution of required charge / discharge power to secondary batteries 1 3 and 14 and end the required charge / discharge power distribution change means. As a result, as shown in FIG.
  • the battery degradation index Z1 of the first secondary battery 1 3 is not smaller than the Z2 of the second secondary battery 1 4
  • the battery deterioration index Z 1 of the first secondary battery 1 3 is larger than Z 2 of the second secondary battery 1 4
  • the first secondary battery 1 4 than the second secondary battery 1 4 It is judged that the ponds 1 and 3 are more deteriorated, the deterioration degree comparison means is terminated, and the required charge / discharge power distribution change means is started. As shown in step S 1 0 8 of FIG.
  • a predetermined amount ⁇ P is reduced from the required charge / discharge power P ch 1 * to the first secondary battery 13 set in step S 1 0 3 of FIG.
  • P chl * — ⁇ ⁇ is reset as the required charge / discharge power P ch 1 * to the first secondary battery 1 3 and the second secondary battery set in step S 1 0 3 of FIG. 1
  • Add a specified amount of ⁇ P to the required charge / discharge power P ch 2 *, and reset P ch 2 * + AP as the required charge / discharge power P ch 2 * to the second secondary battery 14 Change the distribution of required charge / discharge power to each secondary battery 1 3, 14, and terminate the required charge / discharge power distribution change means.
  • the predetermined amount ⁇ ⁇ is the amount obtained by adding ⁇ P to the required charge / discharge power P ch 2 * to the second secondary battery 14 set in step S 1 0 3 of FIG. This is an amount that does not exceed the chargeable / dischargeable power P ref 2 * set in step S 1 0 4. Therefore, ⁇ P can be set to P ref 2 * _ P ch 2 * at the maximum.
  • the power supply control device 1 1 is connected to each secondary battery 1 3, 1 4 It is judged that there is no difference in the deterioration degree of the battery, the deterioration degree comparing means is terminated, and the required charge / discharge power distribution changing means is started. As shown in step S1 0 9 in Fig. 2, the required charge / discharge power P ch 1 * and P ch 2 * set in step S 1 0 3 in Fig. 2 is not changed, Make the settings and end the required charge / discharge power distribution change means.
  • the power supply controller 1 1 corresponds to the reset required charge / discharge power P ch 1 * and P ch 2 * after the reset of the required charge / discharge power to the secondary batteries 1 3 and 1 4 is completed. Outputs a command to flow current to DC converters 17 and 18.
  • the DC converters 17 and 18 adjust the amount of current output from the secondary batteries 1 3 and 14 based on this command.
  • the power supply control device 11 of the present embodiment is a power supply system for an electric vehicle in which a plurality of secondary batteries are connected in parallel. Among the plurality of secondary batteries, a secondary battery with a low degree of deterioration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 電気自動車の電源システムにおいて、電源制御装置は、出力要求に基づいて各二次電池への要求充放電電力を設定し、各二次電池の温度と残存容量(SOC)との劣化度合いから各二次電池の充放電可能電力を設定した後、各二次電池の電池劣化指数Z1,Z2を比較し、電池劣化指数の小さい二次電池の充放電電力が大きく、電池劣化指数の大きい二次電池の充放電電力が少なくなるように、各二次電池への要求充放電電力を再設定する。これにより、複数の二次電池が並列に接続された電気自動車の電源システム全体の寿命の向上を図る。

Description

明 細 書 電気自動車の電源制御装置及び電源システム
[技術分野]
本発明は、 電気自動車の電源制御装置及び電源システムの構成に関する。 [背景技術]
近年、 エンジンとモー夕の 2種類の駆動源を組み合わせて車両の駆動源とする ハイブリッ ド車両や、 二次電池に蓄電した電力によってモ一夕を駆動し、 車両を 駆動する電気自動車等が多く用いられるようになってきている。 そして、 最近で は、 これらの電気自動車も次第に大型化し、 大きな駆動力を得る為に高出力の二 次電池を搭載するようになってきている。
しかし、 二次電池を負荷に合わせて大型化あるいは高電圧電池とすると、 大き な搭載スペースが必要になる上、 高ぃ耐電性が必要となることから電源システム 全体が大型化してしまうという問題がある。
そこで、 車両駆動用の二次電池の構成を複数の二次電池を並列に接続して構成 したものが提案されている(例えば、 特許文献 1参照)。 このように、 負荷に対し て複数の二次電池を並列に接続する電源構成とした場合には、 直流、 交流の変換 を行うスィツチング素子と出力を平滑化する平滑コンデンサに過大な電流が流れ てしまう場合がある。 このため、 平滑コンデンサ両端の電圧と二次電池両端の電 圧とが同一電圧となるようにスィツチング素子を動作させる方法が提案されてい る(例えば、 特許文献 2参照)。
また、 このように二次電池を並列に接続して構成した電源システムで、 各電池 の劣化特性を改善するために、 各電池の残存容量(S〇C )が同一となるように各 二次電池の充放電を制御する方法が提案されている(例えば、 特許文献 1参照)。
[特許文献 1 ] :特開 2 0 0 3— 2 0 9 9 6 9号公報
[特許文献 2 ] :特開 2 0 0 2— 1 0 5 0 2号公報
[発明の開示] [発明が解決しょうとする課題]
ところで、 車両駆動用に用いられる二次電池は充放電時間が長くなつて来ると 劣化によって内部抵抗が大きくなり、 電池温度が上昇し、 この温度上昇によって 更に劣化が進んでいくことが知られている。 そして、 二次電池を並列に接続して 電源システムを構成した場合に、 いずれかの電池の劣化が進行すると、 その電池 は選択的に劣化が進行する特性があることがしられている。 電源システムは並列 に接続された各二次電池が動作することが必要となるので、 電源システム全体と しての寿命は各二次電池のうち一番寿命の短い二次電池の寿命によって決まって しまうこととなる。
このような場合、 同一の二次電池を同時に使用開始し、 同様の充放電を行わせ れば各二次電池は均等に寿命を消費し、 二次電池の寿命短縮化は生じないように も思われる。 ところが、 実際には、 二次電池は使用開始当初から製造誤差によつ て温度、 電流などに微小な差異があり、 この微小な差異は、 同一の充放電を行つ た場合には、 ますます拡大する方向となり、 最終的には各二次電池の劣化度合い の差異のため、 一部の二次電池が選択的に劣化し、 電源システム全体としての寿 命の短縮化が発生してしまうという問題があった。
上記の問題は、 二次電池の製造誤差による微小な特性の差異が原因と考えられ ることから、 特許文献 1に記載された従来技術のように、 単に並列に接続された 二次電池の充放電電力を均等にすることでは抑制することができなかった。 そこで、 本発明は、 複数の二次電池が並列に接続された電気自動車の電源シス テム全体の寿命の向上を図ることを目的とする。
[課題を解決するための手段]
本発明の電気自動車の電源制御装置は、 負荷及び電力源に対して電気的に並列 に接続された複数の二次電池を備える電気自動車の電源制御装置であって、 電力 源から充電される電力、 または負荷に放電する電力に基づいて各二次電池への要 求充放電電力を設定する要求充放電電力設定手段と、 各二次電池の劣化度合いを 推定または検出する劣化度合い検出手段と、 各二次電池の劣化度合いを比較する 劣化度合い比較手段と、 劣化度合い比較手段の結果に基づいて各二次電池への要 求充放電電力の配分を変更する要求充放電電力配分変更手段と、 を有することを 特徴とする。
また、 本発明の電気自動車の電源制御装置において、 各二次電池の温度と残存 容量とから各二次電池の充放電可能電力を設定する充放電可能電力設定手段を備 え、 要求充放電電力配分変更手段は、 充放電可能電力設定手段によって設定され た各二次電池の充放電可能電力と要求充放電電力設定手段によって設定された各 二次電池への要求充放電電力とに基づいて各二次電池への要求充放電電力の配分 を変更すること、 としても好適であるし、 要求充放電電力配分変更手段は、 劣化 度合いが大きい二次電池への要求充放電電力の配分を小さくすること、 としても 好適であるし、 充放電可能電力設定手段は、 劣化度合い検出手段によって推定又 は検出された各二次電池の劣化度合いによって各二次電池の充放電可能電力を設 定すること、 としても好適である。
本発明の電気自動車の電源システムは、 負荷及び電力源に対して電気的に並列 に接続された複数の二次電池を備える電気自動車の電源システムであって、 電力 源から充電される電力、 または負荷に放電する電力に基づいて各二次電池への要 求充放電電力を設定する要求充放電電力設定手段と、 各二次電池の劣化度合いを 推定または検出する劣化度合い検出手段と、 各二次電池の劣化度合いを比較する 劣化度合い比較手段と、 劣化度合い比較手段の結果に基づいて各二次電池への要 求充放電電力の配分を変更する要求充放電電力配分変更手段と、 を含む電源制御 装置と、 各二次電池と負荷及び電力源との間に設けられ、 各二次電池に配分され た要求充放電電力に応じて各二次電池の出力電流を変更する電流調整器と、 を有 することを特徴とする。
また、 本発明の電気自動車の電源システムにおいて、 電源制御装置は、 各二次 電池の温度と残存容量とから各二次電池の充放電可能電力を設定する充放電可能 電力設定手段を備え、 要求充放電電力配分変更手段は、 充放電可能電力設定手段 によって設定された各二次電池の充放電可能電力と要求充放電電力設定手段によ つて設定された各二次電池への要求充放電電力とに基づいて各二次電池への要求 充放電電力の配分を変更すること、 としても好適であるし、 電源制御装置の要求 充放電電力配分変更手段は、 劣化度合いが大きい二次電池への要求充放電電力の 配分を小さくすること、 としても好適であるし、 充放電可能電力設定手段は、 劣 化度合い検出手段によって推定又は検出された各二次電池の劣化度合いによって 各二次電池の充放電可能電力を設定すること、 としても好適である。
[発明の効果]
本発明は、 複数の二次電池が並列に接続された電気自動車の電源システム全体 の寿命の向上を図ることが出来るという効果を奏する。
[図面の簡単な説明]
図 1は、 本発明の実施形態における電気自動車の電源システムの構成を示す系 統図である。
図 2は、 本発明の実施形態における電気自動車の電源システムの動作を示すフ ローチャートである。
図 3は、 本発明の実施形態における電源制御装置の劣化度合い検出手段を示す フローチヤ一卜である。
図 4は、 二次電池の残存容量 (SOC) と放電可能電力との関係を示すグラフ である。
図 5は、 二次電池の残存容量 (SOC) と充電可能電力との関係を示すグラフ である。
図 6は、 2つの二次電池の要求充放電電力の分配を示す説明図である。
[符号の説明]
1 0 電源システム、 1 1 電源制御装置、 1 3, 14 二次電池、 1 5, 1 6 システムメインリレー、 1 7, 1 8 直流コンバータ、 1 9 コンデンサ、 2 1 インバ一夕、 2 2 モー夕ジェネレータ、 3 1 車両制御装置、 32 ィ ダニッシヨンキー、 3 3 シフトレバー、 34 ブレーキ、 3 5 アクセル、 3 6 車速センサ、 4 1 モー夕制御装置、 1 00 電気自動車、 P c h l *, P c h 2 * 要求充放電電力、 P r e f l *, P r e f 2 * 充放電可能電力、 S 1 , S 2 係数、 Tb l , T b 2 二次電池温度、 Z l , Z 2 電池劣化指数、 Δ P 量、 ΔΤ 所定時間。
[発明を実施するための最良の形態]
以下、 図面を参照しながら本発明の好適な実施形態について説明する。 なお、 図 1において 1点鎖線は信号線を示す。 図 1に示すように、 電気自動車 1 00に 搭載された電源システム 1 0は、 充電、 放電が行える第 1、 第 2の 2つの二次電 池 1 3 , 1 4と各二次電池 1 3, 1 4の入出力端にば各二次電池 1 3, 1 4への 入出力を遮断するシステムメインリレー (SMR) 1 5, 1 6と各二次電池 1 3 , 1 4の出力電圧をモー夕ジェネレータ 2 2の駆動電圧に昇圧する直流コンパ一 夕 1 7, 1 8が接続されている。 各直流コンパ一夕 1 7 , 1 8は各二次電池 1 3 , 1 4の電圧を昇圧、 変換するのみでなく、 各直流コンバータ 1 7, 1 8からの 出力電流を調整する電流調整器としての機能を持っており、 各二次電池 1 3, 1 4からの出力電流の調整を行うこともできる。 各直流コンバータ 1 7, 1 8の出 力線は電気的に並列となるように接続されている。 コンデンサ 1 9の負荷側には ィンバ一夕 2 1が接続され、 ィンバ一夕 2 1は複数のスィツチング素子を含み、 そのスィツチング動作によって直流コンバ一夕 1 7 , 1 8からの昇圧された直流 電力をモー夕ジェネレータ 2 2駆動用の三相交流電流に変換するとともにモー夕 ジエネレー夕 2 2で発電された三相交流を各二次電池 1 3, 1 4への充電用直流 電力に変換するインバー夕 2 1が接続されている。 インバー夕 2 1には、 負荷で あるモ一夕ジェネレータ 2 2が接続されている。 また、 インバー夕 2 1の二次電 池側にはィンバ一夕 2 1に入力される直流電力を平滑化するためのコンデンサ 1 9が接続されている。 モー夕ジェネレータ 2 2は電力回生のように車両の駆動力 によって発電し、 その電力を二次電池 1 3, 1 4に充電する場合には二次電池 1 3, 1 4に対する電力源となる。
図 1に示すように、 電気自動車 1 0 0の電源システム 1 0は、 各二次電池 1 3 , 1 4、 各システムメインリレー 1 5 , 1 6、 各直流コンバータ 1 7 , 1 8の制 御を行う電源制御装置 1 1を備えている。 電源制御装置 1 1は、 内部に演算部と しての C PUと記憶部としてのメモリとを備えるコンピュータであり、 各二次電 池 1 3 , 1 4、 各システムメインリレー 1 5 , 1 6、 各直流コンバータ 1 7 , 1 8と信号線によって接続されている。
また、 電源制御装置 1 1は電気自動車 1 0 0全体の制御を行う車両制御装置 3 1と信号線によって接続され、 車両制御装置 3 1から車両の運転状況に基づく出 力要求信号を取得することができるよう構成されている。
電気自動車 1 0 0に設けられた車両制御装置 3 1には、 電気自動車 1 0 0の運 転状況に基づく出力要求信号を出力するために、 電気自動車 1 0 0に取り付けら れたイグニッションキー 3 2の位置信号、 シフトレバー 3 3の位置信号、 ブレー キ 3 4の位置信号、 アクセル 3 5の位置信号、 車速センサ 3 6からの速度信号が 各信号線によって接続されている。
また、 電気自動車 1 0 0には、 車両制御装置 3 1に信号線で接続され、 電気自 動車 1 0 0の運転状況によってモー夕ジェネレータ 2 2とィンバ一夕 2 1に制御 信号を出力するモー夕制御装置 4 1が備えられている。
以上のように構成された電源制御装置 1 1、 電気自動車 1 0 0の電源システム 1 0の動作について、 図 2から図 6を参照しながら説明する。
図 2のステップ S 1 0 1に示すように、 電源制御装置 1 1は内部のメモリから 電池劣化指数 Z l, Z 2を読み出し、 図 2のステップ S 1 0 2から S 1 0 9に示 すように、 車両制御装置 3 1からの出力要求に基づいて各二次電池 1 3, 1 4へ の要求充放電電力の設定、 再設定を行う。 この各二次電池への要求充放電電力の 設定、 再設定の動作について説明する前に、 図 3を参照しながら各二次電池 1 3 , 1 4の劣化度合いを推定する劣化度合い検出手段としての電池劣化指数 Z 1 , Z 2の取得の実施形態について説明する。
二次電池の劣化度合いは充放電時間と電池の温度を掛け合わせたものを指数と して推定することができる。 まず、 図 3のステップ S 2 0 1に示すように、 電源 制御装置 1 1は各二次電池 1 3 , 1 4の各温度丁 1) 1, T b 2を取得する。 次に 、 図 3のステップ S 2 0 2に示すように、 電源制御装置 1 1は車両制御装置 3 1 から電気出力の要求信号を取得する。 そして、 図 3のステップ S 2 0 3に示すよ うに、 電源制御装置 1 1は取得した電気出力信号を所定の閾値と比較し、 出力要 求が所定の閾値を超えている場合には車両制御装置からの出力要求があり、 各二 次電池 1 3, 1 4の充放電が行われていると判断する。 また、 出力要求が所定の 閾値を超えていない場合には、 各二次電池 1 3 , 1 4は充放電していないものと 判断して、 図 3のステップ S 2 0 1に戻って再度各二次電池 1 3, 1 4の温度を 取得する。
電源制御装置 1 1は、 各二次電池 1 3 , 1 4の充放電が行われていると判断し た場合には、 図 3のステップ S 2 0 4に示すように、 内部夕イマによって所定の 時間△ Tだけのタイムカウン卜を行った後、 図 3のステップ S 2 0 5に示すよう に所定の時間 Δ Τに各二次電池の温度 T b 1 , T b 2を掛け合わせて、 係数 S 1 , S 2を計算する。 そして、 図 3のステップ S 2 0 6に示すように、 計算した各 係数 S l, S 2を各二次電池 1 3, 1 4の各電池劣化指数 Z 1 , Z 2に加えた後 、 図 3のステップ S 2 0 7に示すように、 各電池劣化指数 Z l, Z 2をメモリに 格納する。 そして、 図 3のステップ S 2 0 8に示すように、 電気自動車 1 0 0の イダ二ッションキーがオフになっているかどうかを確認する。 イダ二ッションキ 一がオフとなっていない場合には、 図 3のステップ S 2 0 1にもどって各二次電 池 1 3 , 1 4の温度を取得し、 係数 S l, S 2を計算して、 それを電池劣化指数 Z 1 , Z 2に積算していく。 このようにして、 各二次電池 1 3 , 1 4の温度 T b 1 , T b 2とその保持時間を掛け合わせたものを積算して各二次電池 1 3 , 1 4 の電池劣化指数 Z l , Z 2を求め、 その結果をメモリに格納しておく。 これによ つて劣化度合い検出手段を終了する。
このようにして、 電源制御装置 1 1のメモリには各二次電池 1 3, 1 4の各電 池劣化指数 Z l, Z 2が常に格納された状態となっている。 各電池劣化指数 Z 1 , Z 2は大きくなるほど劣化が大きいことを示す指標となる。
次に、 図 2を参照しながら各二次電池 1 3, 1 4への要求充放電電力の設定、 再設定の動作について説明する。
電源制御装置 1 1は、 図 2のステップ S 1 0 1に示すように、 図 3を参照して 説明した劣化度合い検出手段によってメモリの中の格納した各二次電池 1 3 , 1 4の各電池劣化指数 Z l , Z 2を読み出す。 一方、 車両制御装置 3 1は電気自動 車 1 0 0に備えられているイダ二ッションキー 3 2の位置信号、 シフトレバー 3 3の位置信号、 ブレーキ 3 4の位置信号、 アクセル 3 5の位置信号、 車速センサ 3 6からの速度信号を取得し、 これらの信号から電気自動車 1 0 0の走行状態を 把握し、 必要な動力を計算する。 そして必要な電気出力を出力要求信号として出 力する。 電気自動車 1 0 0がエンジンとモー夕を駆動源とするハイプリッ ド車両 である場合には、 必要な電気出力は、 必要な車両駆動力をエンジンからの動力と モー夕からの動力とに配分し、 その配分された動力をモー夕によって出力するた めに必要な電気出力であってもよい。 電源制御装置 1 1は、 図 2のステップ S 1 02に示すように、 車両制御装置 3 1からの電気出力の出力要求信号を取得する 。 そして、 電源制御装置 1 1は、 この要求出力に応じて各二次電池 1 3 , 14か ら充放電させる電力を要求充放電電力 P c h 1 *, P c h 2 *として設定する要 求充放電電力設定手段を開始する。 この設定は、 各二次電池 1 3, 14の残存容 量 (SOC) が同一で、 各二次電池 1 3, 14の温度が同一ならば、 車両制御装 置 3 1からの要求出力を 1ノ 2にした電気出力としてもよいし、 各二次電池 1 3 , 14の残存容量 (SOC) の大きさが異なる場合には各残存容量 (SOC) の 大きさに比例した量に設定するようにしてもよい。 各二次電池への要求充放電電 力 P c h l *, P c h 2 *を設定すると、 電源制御装置 1 1は、 要求充放電電力 設定手段を終了する。
次に、 電源制御装置 1 1は、 図 2のステップ S 1 04に示すように、 充放電可 能電力設定手段によって充放電可能電力 P r e f 1 *, P r e f 2 *の設定を行 う。 電源制御装置 1 1は内部のメモリに、 図 4、 図 5に示すような各二次電池温 度における残存容量 (SOC) に対する二次電池の放電可能電力と充電可能電力 との特性マツプを格納している。
図 4は放電可能電力の特性カーブで、 図中の aは二次電池の温度が高い場合の 残存容量 (SOC) と放電可能電力との関係を示すラインで、 SOCの増加と共 に放電可能電力が大きくなつていく。 そして、 ライン cで示されている最大放電 可能電力に達すると放電可能電力は二次電池の残存容量 (SOC) にかかわらず 一定となる。 また、 図 4のライン bは二次電池の温度が低い場合の放電可能電力 を示すラインで、 二次電池の温度が低い場合には放電可能電力は温度が高い場合 に比較して少なくなつている。
図 5は、 充電可能電力の特性カーブで、 図中のライン dは残存容量 (SOC) が低い場合の最大充電可能電力を示すラインで、 図中のライン eは二次電池の温 度が高い場合の二次電池の残存容量 (SOC) に対する充電可能電力を示し、 残 存容量 (SOC) が増加するにつれて充電可能電力が少なくなつてくる。 図中の ライン f は二次電池の温度が低い場合の二次電池の残存容量 (SOC) に対する 充電可能電力を示している。 放電可能電力と同様、 二次電池の温度が低い場合の 充電可能電力は二次電池の温度が高い場合の充電可能電力よりも少なくなつてい る。
図 4、 図 5に示した二次電池の放電、 充電可能電力のカーブは、 二次電池の劣 化を考慮して設定されていてもよい。
電源制御装置 1 1は、 各二次電池 1 3, 14から取得した各二次電池 1 3, 1 4の温度 T b 1, T b 2と、 各二次電池 1 3, 14の残存容量 (S〇 C) と、 各 二次電池 1 3, 14の放電、 充電可能特性マップとから各二次電池 1 3, 14の 放電可能電力、 充電可能電力とを求め、 その値を各二次電池の充放電可能電力 P r e f 1 *, P r e f 2 *として設定する。 この場合、 車両制御装置からの出力 要求がプラスで各二次電池 1 3, 14の放電要求となる際には充放電可能電力 P r e f 1 *, P r e f 2 *は放電可能電力となり、 車両制御装置からの出力要求 がマイナスで、 各二次電池 1 3, 1 4の充電要求となる際には充放電可能電力 P r e f 1 *, P r e f 2 *は充電可能電力となる。 また、 各二次電池 1 3, 1 4 に商用電源などの外部電源から充電する場合も同様である。 各二次電池の充放電 可能電力 P r e f 1 *, P r e f 2 *の設定が終了したら充放電可能電力設定手 段を終了する。
電源制御装置 1 1は、 図 2のステップ S 1 0 5に示すように、 各二次電池の劣 化度合いを比較する劣化度合い比較手段を開始する。 電源制御装置 1 1は、 図 2 のステップ S 1 0 1で取得した各二次電池 1 3, 14の電池劣化指数 Z 1と Z 2 の大小を比較する。 そして、 第 1の二次電池 1 3の電池劣化指数 Z 1が第 2の二 次電池 14の Z 2よりも小さい場合には、 第 1の二次電池 1 3より第 2の二次電 池 14のほうが劣化が進んでいると判断し、 劣化度合い比較手段を終了し、 要求 充放電電力分配変更手段を開始する。 図 2のステップ S 1 06に示すように、 図 2のステップ S 1 03で設定した第 2の二次電池 14への要求充放電電力 P c h 2 *から所定の量 Δ Pを低減して、 P c h 2 *— Δ Ρを第 2の二次電池への要求 充放電電力 P c h 2 *として再設定し、 図 2のステップ S 1 0 3で設定した第 1 の二次電池 1 3への要求充放電電力 P c h 1 *に所定の量 Δ Pを加え、 P c h 1 * + Δ Pを第 1の二次電池 1 4への要求充放電電力 P c h 1 *として再設定し、 各二次電池 1 3, 14への要求充放電電力の配分を変更し、 要求充放電電力分配 変更手段を終了する。 この結果、 図 6に示すように、 劣化の進んでいる第 2の二次電池の充放電要求 電力 P c h 2 *を低減し、 その分だけ第 1の二次電池の充放電要求電力 P c h 1 *を増加させ、 2つの二次電池全体としての出力を同一としてその出力配分を変 更することができる。
この場合、 所定の量 Δ Ρは、 図 2のステップ S 1 0 3で設定した第 1の二次電 池 1 3への要求充放電電力 P c h 1 *に Δ Pを加えた量が図 2のステップ S 1 0 4で設定した充放電可能電力 P r e f 1 *を超えないような量である。 従って、 △ Pは最大、 P r e f 1 *_ P c h 1 *とすることができ、 その場合、 再設定さ れる P c h l *は、 P c h l * + A P = P r e f l *、 すなわち、 第 1の二次電池 の充放電可能電力 P r e f 1 *となる。
電源制御装置 1 1は第 1の二次電池 1 3の電池劣化指数 Z 1が第 2の二次電池 1 4の Z 2よりも小さくない場合は、 図 2のステップ S 1 0 7に示すように、 第 1の二次電池 1 3の電池劣化指数 Z 1が第 2の二次電池 1 4の Z 2よりも大きい かどうか判断する。 そして、 第 1の二次電池 1 3の電池劣化指数 Z 1が第 2の二 次電池 1 4の Z 2よりも大きい場合には、 第 2の二次電池 1 4より第 1の二次電 池 1 3のほうが劣化が進んでいると判断し、 劣化度合い比較手段を終了し、 要求 充放電電力分配変更手段を開始する。 図 2のステップ S 1 0 8に示すように、 図 2のステップ S 1 0 3で設定した第 1の二次電池 1 3への要求充放電電力 P c h 1 *から所定の量 Δ Pを低減して、 P c h l *— Δ Ρを第 1の二次電池 1 3への 要求充放電電力 P c h 1 *として再設定し、 図 2のステップ S 1 0 3で設定した 第 2の二次電池 1 4への要求充放電電力 P c h 2 *に所定の量 Δ Pを加え、 P c h 2 * + A Pを第 2の二次電池 1 4への要求充放電電力 P c h 2 *として再設定 し、 各二次電池 1 3, 1 4への要求充放電電力の配分を変更し、 要求充放電電力 分配変更手段を終了する。
この場合、 所定の量 Δ Ρは、 図 2のステップ S 1 0 3で設定した第 2の二次電 池 1 4への要求充放電電力 P c h 2 *に Δ Pを加えた量が図 2のステップ S 1 0 4で設定した充放電可能電力 P r e f 2 *を超えないような量である。 従って、 Δ Pは最大、 P r e f 2 *_ P c h 2 *とすることができ、 その場合、 再設定さ れる P c h 2 *は、 P c h 2 * + A P = P r e f 2 *、 すなわち、 第 2の二次電池 の充放電可能電力 P r e f 2 *となる。
電源制御装置 1 1は、 第 1の二次電池 1 3の電池劣化指数 Z 1と第 2の二次電 池 1 4の Z 2とが同一の場合には各二次電池 1 3 , 1 4の劣化度合いに差が無い と判断し、 劣化度合い比較手段を終了し、 要求充放電電力分配変更手段を開始す る。 図 2のステップ S 1 0 9に示すように、 図 2のステップ S 1 0 3で設定した 各二次電池への要求充放電電力 P c h 1 * , P c h 2 *を変更せず、 そのまま再 設定を行い、 要求充放電電力分配変更手段を終了する。
電源制御装置 1 1は、 各二次電池 1 3, 1 4への要求充放電電力の再設定が終 了したら、 再設定した各要求充放電電力 P c h 1 *, P c h 2 *に対応した電流 を流す指令を直流コンバータ 1 7, 1 8に出力する。 直流コンバータ 1 7, 1 8 はこの指令に基づいて各二次電池 1 3 , 1 4から出力される電流量を調整する。 以上述べたように、 本実施形態の電源制御装置 1 1は複数の二次電池が並列に 接続された電気自動車の電源システムにおいて、 複数の二次電池の内、 劣化の度 合いの少ない二次電池の充放電電力が大きく、 劣化度合いの大きい二次電池の充 放電電力が少なくなるように、 各二次電池への要求充放電電力を再配分すること によって、 劣化度合いの大きい二次電池が選択的に劣化することを抑制し、 電源 システム全体の寿命の向上を図ることが出来るという効果を奏する。 また、 上記 制御によって複数の各二次電池の劣化度合いあるいは劣化速度を均等の状態に保 つことができ、 電源システム全体の劣化速度を抑え、 寿命の向上を図ることが出 来るという効果を奏する。

Claims

請 求 の 範 囲
1 . 負荷及び電力源に対して電気的に並列に接続された複数の二次電池を備える 電気自動車の電源制御装置であって、
電力源から充電される電力、 または負荷に放電する電力に基づいて各二次電池 への要求充放電電力を設定する要求充放電電力設定手段と、
各二次電池の劣化度合いを推定または検出する劣化度合い検出手段と、 各二次電池の劣化度合いを比較する劣化度合い比較手段と、
劣化度合い比較手段の結果に基づいて各二次電池への要求充放電電力の配分を 変更する要求充放電電力配分変更手段と、
を有することを特徴とする電気自動車の電源制御装置。
2 . 請求の範囲 1に記載の電気自動車の電源制御装置であって、
各二次電池の温度と残存容量とから各二次電池の充放電可能電力を設定する充 放電可能電力設定手段を備え、
要求充放電電力配分変更手段は、 充放電可能電力設定手段によって設定された 各二次電池の充放電可能電力と要求充放電電力設定手段によって設定された各二 次電池への要求充放電電力とに基づいて各二次電池への要求充放電電力の配分を 変更すること、
を特徴とする電気自動車の電源制御装置。
3 . 請求の範囲 2に記載の電気自動車の電源制御装置であって、
要求充放電電力配分変更手段は、 劣化度合いが大きい二次電池への要求充放電 電力の配分を小さくすること、
を特徴とする電気自動車の電源制御装置。
4 . 請求の範囲 2に記載の電気自動車の電源制御装置であって、
充放電可能電力設定手段は、 劣化度合い検出手段によって推定又は検出された 各二次電池の劣化度合いによって各二次電池の充放電可能電力を設定すること、 を特徴とする電気自動車の電源制御装置。
5 . 請求の範囲 3に記載の電気自動車の電源制御装置であって、
充放電可能電力設定手段は、 劣化度合い検出手段によって推定又は検出された 各二次電池の劣化度合いによって各二次電池の充放電可能電力を設定すること、 を特徴とする電気自動車の電源制御装置。
6 . 負荷及び電力源に対して電気的に並列に接続された複数の二次電池を備える 電気自動車の電源システムであって、
電力源から充電される電力、 または負荷に放電する電力に基づいて各二次電池 への要求充放電電力を設定する要求充放電電力設定手段と、 各二次電池の劣化度 合いを推定または検出する劣化度合い検出手段と、 各二次電池の劣化度合いを比 較する劣化度合い比較手段と、 劣化度合い比較手段の結果に基づいて各二次電池 への要求充放電電力の配分を変更する要求充放電電力配分変更手段と、 を含む電 源制御装置と、
各二次電池と負荷及び電力源との間に設けられ、 各二次電池に配分された要求 充放電電力に応じて各二次電池の出力電流を変更する電流調整器と、
を有することを特徴とする電気自動車の電源システム。
7 . 請求の範囲 6に記載の電気自動車の電源システムであって、
電源制御装置は、
各二次電池の温度と残存容量とから各二次電池の充放電可能電力を設定する充 放電可能電力設定手段を備え、
要求充放電電力配分変更手段は、 充放電可能電力設定手段によって設定された 各二次電池の充放電可能電力と要求充放電電力設定手段によって設定された各二 次電池への要求充放電電力とに基づいて各二次電池への要求充放電電力の配分を 変更すること、
を特徴とする電気自動車の電源システム。
8 . 請求の範囲 Ίに記載の電気自動車の電源システムであって、
電源制御装置の要求充放電電力配分変更手段は、 劣化度合いが大きい二次電池 への要求充放電電力の配分を小さくすること、
を特徴とする電気自動車の電源システム。
9 . 請求の範囲 7に記載の電気自動車の電源システムであって、
充放電可能電力設定手段は、 劣化度合い検出手段によって推定又は検出された 各二次電池の劣化度合いによって各二次電池の充放電可能電力を設定すること、 を特徴とする電気自動車の電源システム。
1 0 . 請求の範囲 8に記載の電気自動車の電源システムであって、
.充放電可能電力設定手段は、 劣化度合い検出手段によって推定又は検出された 各二次電池の劣化度合いによって各二次電池の充放電可能電力を設定すること、 を特徴とする電気自動車の電源システム。
PCT/JP2008/063341 2007-08-09 2008-07-17 電気自動車の電源制御装置及び電源システム WO2009019992A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-207312 2007-08-09
JP2007207312A JP2009044862A (ja) 2007-08-09 2007-08-09 電気自動車の電源制御装置及び電源システム

Publications (1)

Publication Number Publication Date
WO2009019992A1 true WO2009019992A1 (ja) 2009-02-12

Family

ID=40341227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063341 WO2009019992A1 (ja) 2007-08-09 2008-07-17 電気自動車の電源制御装置及び電源システム

Country Status (2)

Country Link
JP (1) JP2009044862A (ja)
WO (1) WO2009019992A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111234A1 (ja) * 2011-02-18 2012-08-23 三洋電機株式会社 電力供給システム
CN103329392A (zh) * 2011-01-18 2013-09-25 日产自动车株式会社 电池控制装置
US8575886B2 (en) 2009-09-10 2013-11-05 Hitachi Engineering & Services Co., Ltd. Power storage apparatus of power generation system and operating method of power storage apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4744622B2 (ja) * 2009-07-01 2011-08-10 トヨタ自動車株式会社 車両の制御装置
DE102010030885A1 (de) * 2010-07-02 2012-01-05 Robert Bosch Gmbh Verfahren zum Steuern der Energieversorgung eines Elektromotors
US9812871B2 (en) 2012-02-28 2017-11-07 Nec Corporation Regulating device control system, regulating device control method, and recording medium for regulating the balance between power supply and demand
JP6096447B2 (ja) * 2012-09-13 2017-03-15 株式会社東芝 蓄電池管理装置および蓄電池管理システム
JP6126520B2 (ja) * 2013-12-09 2017-05-10 株式会社日立製作所 蓄電システム及び電力調整器並びに蓄電システムの制御方法
US9878632B2 (en) * 2014-08-19 2018-01-30 General Electric Company Vehicle propulsion system having an energy storage system and optimized method of controlling operation thereof
US20160105044A1 (en) * 2014-10-08 2016-04-14 Panasonic Intellectual Property Management Co., Ltd. Power-storage-system control method and power-storage-system control apparatus
KR101619634B1 (ko) 2014-11-06 2016-05-10 현대자동차주식회사 배터리 모델 파라미터를 이용한 배터리 성능상태 추정 시스템 및 그 방법
JP2016220352A (ja) * 2015-05-18 2016-12-22 パナソニックIpマネジメント株式会社 分散電源システム、および、分散電源システムの制御方法
WO2017056502A1 (ja) * 2015-09-29 2017-04-06 京セラ株式会社 電源装置、分散電源システム及びその制御方法
JP2023170814A (ja) * 2022-05-20 2023-12-01 三菱重工業株式会社 充放電制御装置、充放電制御方法、およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187577A (ja) * 1997-10-13 1999-07-09 Toyota Motor Corp 二次電池の充放電制御装置
JP2003209969A (ja) * 2001-12-06 2003-07-25 General Motors Corp <Gm> 電動モータ電源管理システム
JP2005176430A (ja) * 2003-12-08 2005-06-30 Sharp Corp 電源制御システム、及び該電源制御システムを用いた電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4268593B2 (ja) * 2005-03-16 2009-05-27 株式会社明電舎 電力供給システム、電力供給方法、及び建造物
JP2006312528A (ja) * 2005-05-09 2006-11-16 Mitsubishi Electric Corp エレベータの電力蓄積装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187577A (ja) * 1997-10-13 1999-07-09 Toyota Motor Corp 二次電池の充放電制御装置
JP2003209969A (ja) * 2001-12-06 2003-07-25 General Motors Corp <Gm> 電動モータ電源管理システム
JP2005176430A (ja) * 2003-12-08 2005-06-30 Sharp Corp 電源制御システム、及び該電源制御システムを用いた電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575886B2 (en) 2009-09-10 2013-11-05 Hitachi Engineering & Services Co., Ltd. Power storage apparatus of power generation system and operating method of power storage apparatus
CN103329392A (zh) * 2011-01-18 2013-09-25 日产自动车株式会社 电池控制装置
EP2667479A4 (en) * 2011-01-18 2016-10-12 Nissan Motor BATTERY CONTROL DEVICE
WO2012111234A1 (ja) * 2011-02-18 2012-08-23 三洋電機株式会社 電力供給システム

Also Published As

Publication number Publication date
JP2009044862A (ja) 2009-02-26

Similar Documents

Publication Publication Date Title
WO2009019992A1 (ja) 電気自動車の電源制御装置及び電源システム
KR101245788B1 (ko) 배터리의 작동점 제어 방법 및 장치
US9889763B2 (en) External power supply of fuel cell mounted vehicle and control method therefor
US9272635B2 (en) Power storage system and method of calculating full charge capacity
US9428177B2 (en) Vehicle
CN102379054B (zh) 燃料电池系统、用于该燃料电池系统的控制方法以及配备有该燃料电池系统的车辆
JP5682433B2 (ja) 充電制御システム
JP5621818B2 (ja) 蓄電システムおよび均等化方法
JP5719236B2 (ja) 二次電池の制御装置
US20160049821A1 (en) Electrical storage system, and full charge capacity estimation method for electrical storage device
US9731619B2 (en) Vehicle and control method for vehicle
JP5105031B2 (ja) 蓄電システム
US20160318417A1 (en) Electrical storage system
CN109760549A (zh) 用于电池组的最大电流计算和功率预测
JP2014138525A (ja) 蓄電システム
JP5677917B2 (ja) 充電制御装置
US10998748B2 (en) Electric power supply system and control method therefor
JP2014523729A (ja) 電気アクセサリが連結された電気バッテリを含む自動車の電気アクセサリに給電する方法
JP5862478B2 (ja) 蓄電システムおよび制御方法
JP2014169937A (ja) 充電状態算出装置
KR101673345B1 (ko) 연료전지 차의 절연저항 측정방법 및 절연저항 측정장치
JP2014233183A (ja) 蓄電システム及び制御方法
JP2014072992A (ja) 電池の充電可否判断装置
JP2009044851A (ja) 電気自動車の電源制御装置及び電源システム
JP5772615B2 (ja) 蓄電システム

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08791591

Country of ref document: EP

Kind code of ref document: A1