WO2009007615A1 - Matériau composite comprenant des nanotubes dispersés dans une matrice polymérique fluorée - Google Patents

Matériau composite comprenant des nanotubes dispersés dans une matrice polymérique fluorée Download PDF

Info

Publication number
WO2009007615A1
WO2009007615A1 PCT/FR2008/051185 FR2008051185W WO2009007615A1 WO 2009007615 A1 WO2009007615 A1 WO 2009007615A1 FR 2008051185 W FR2008051185 W FR 2008051185W WO 2009007615 A1 WO2009007615 A1 WO 2009007615A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanotubes
copolymer
material according
fluorinated
homo
Prior art date
Application number
PCT/FR2008/051185
Other languages
English (en)
Inventor
Gilles Hochstetter
Michael Werth
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to US12/666,654 priority Critical patent/US20100189946A1/en
Priority to BRPI0812976-2A2A priority patent/BRPI0812976A2/pt
Priority to JP2010514069A priority patent/JP2010531380A/ja
Priority to EP08806113A priority patent/EP2160444A1/fr
Priority to CN200880022401.XA priority patent/CN101688039B/zh
Publication of WO2009007615A1 publication Critical patent/WO2009007615A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/06Hoses, i.e. flexible pipes made of rubber or flexible plastics with homogeneous wall
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article

Definitions

  • Composite material comprising nanotubes dispersed in a fluorinated polymeric matrix
  • the present invention relates to a composite material comprising nanotubes of at least one chemical element chosen from the elements of columns IHa, IVa and Va of the periodic table, dispersed in a polymer matrix comprising (a) at least one fluorinated homo- or copolymer and (b) at least one fluorinated homo- or copolymer grafted with at least one caiboxylic polar function.
  • this composite material also relates to the uses of this composite material, as well as the use of at least one fluorinated homo- or copolymer grafted with at least one polar carboxylic function to increase the tensile strength of a composite material comprising the aforementioned nanotubes dispersed in a fluorinated polymeric matrix.
  • fluoropolymer-based monomers such as polyvinylidene fluoride. These materials, however, do not always provide sufficient life at high temperatures, especially when subjected to stress.
  • fluoropolymers have compatibility problems with the carbon nanotubes used to strengthen them.
  • the interfaces between the fluoropolymer and the nanotubes therefore lack cohesion, which leads to the appearance of weak points at the microscopic scale when the matrix polyme ⁇ que is subject to a solicitation.
  • dispersion of the nanotubes in the fluoropolymer is not always satisfactory, which can lead to the formation of agglomerates detrimental to the desired properties po ⁇ r the final composite.
  • the subject of the present invention is thus a composite material comprising nanotubes of at least one chemical element chosen from the elements of columns IHa, IVa and Va of the periodic table, dispersed in a polyme ⁇ que matrix comprising (a) at least one homo- or fluorinated copolymer and (b) at least one fluorinated homo- or copolymer grafted with at least one polar carboxylic function.
  • It also relates to the use of at least one fluorinated homo- or copolymer grafted with at least one polar carboxylic function to increase the tensile strength of a composite material comprising ranotubes of at least one chemical element choiSx among the elements of columns IHa, IVa and Va of. periodic table, dispersed in a fluorinated polymeric matrix.
  • the composite material according to the invention comprises as first component a polymeric matrix containing at least one homo- or fluorinated copolymer, hereinafter referred to as "fluoropolymer”.
  • this fluorinated polymer comprises at least 50 mol%, and advantageously consists of monomers of formula (I):
  • X and X 1 independently denote a hydrogen or halogen atom (in particular fluorine or chlorine) or a perhalogenated alkyl radical (in particular perfluorinated).
  • X F and
  • fluoropolymers examples include:
  • PVDF poly (vinylidene fluoride)
  • TFE perfluoromethylvinyl ether
  • PMVE perfluoromethylvinyl ether
  • CFE chlorotrifluoroethylene
  • HFP hexafluoropropylene
  • the fluoropolymer is polyvinylidene fluoride (PVDF).
  • the polymeric matrix of the composite material according to the invention contains at least one fluorinated homo- or copolymer grafted with at least one polar function carbexylic, hereinafter referred to as "grafted fluoropolymer".
  • This fluorinated graft polymer is capable of being obtained by grafting at least one polar monomer carboxylic acid bearing for example at least one carboxylic acid or anhydride function on a fluorinated polymer.
  • this grafted fluoropolymer can be prepared according to a process comprising: (a) mixing, preferably in the molten state, for example by means of an extruder or a kneader, a fluoropolymer with a polar monomer bearing a carboxylic acid or anhydride function, (b) the possible transformation of this mixture into granules, powder, film or plate, (c) the irradiation of this mixture, optionally in the absence of oxygen (and, for example, in bags of polyethylene) in a dose ranging from 1 to 15 Mrad of photon or electron irradiation, to carry out the grafting of the polar monomer on the fluoropolymer, and (d) optionally the removal of the residual polar monomer not having reacted with the fluoropolymer.
  • a preparation process of this type is described in particular in application EP-I 484 346.
  • the fluorinated polymer from which the grafted fluoropolymer may be obtained may be any of the fluorinated polymers described above and in particular polyvinylidene fluoride (PVDF) or the copolymers of VDF and HFP containing preferably at least 50% by weight of VDF units.
  • PVDF polyvinylidene fluoride
  • unsaturated mono- and di-carboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms, such as acrylic, methacrylic acids, maleic, fumaric, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1,2-dicarboxylic, 4-methyl-cyclohex-4-ene-1,2-dicarboxylic, bicyclo (2,2,1) hept-5- ene-2,3-dicarboxylic, x-methylbicyclo (2,2,1) hept-5-ene-2,3-dicarboxylic and undecylenic, and their anhydrides.
  • the grafted fluoropolymer is therefore capable of being obtained from at least one of these monomers. It is preferred that this fluoropolymer is grafted with maleic anhydride.
  • Such a grafted fluoropolymer is especially available from Arkema under the trade name Kynar ° ADX 710, 711, 720 or 721.
  • the weight proportion of the fluoropolymer to the polar monomer used in the manufacture of the grafted fluoropolymer is usually 90:10 to 99.9: 0.1.
  • the grafted fluoropolymer may represent from 5 to 99% by weight and preferably from 10 to 50% by weight, relative to the weight of the polymer matrix.
  • the fluoropolymer and the grafted fluoropolymer may be mixed either in powder form or by compounding followed by granulation and grinding of the granules.
  • the polymer matrix used according to the invention may also contain various adjuvants, such as plasticizers, anti-oxygen stabilizers, light stabilizers, colorants, agents and the like. anti-shock, antistatic agents, flame retardants, lubricants, and mixtures thereof.
  • the composite material according to the invention contains nanotubes of at least one chemical element chosen from the elements of the columns IHa, IVa and Va of the periodic table.
  • These nanotubes may be based on carbon, boron, phosphorus and / or nitrogen (borides, nitrides, carbides, phosphides) and for example consisting of carbon nitride, boron nitride, boron carbide, phosphide boron, phosphorus nitride and carbon boronitride.
  • CNTs C ⁇ rbono nanotubes
  • the nanotubes that can be used according to the invention can be single-walled, double-walled or multi-walled.
  • the double-walled nanotubes can in particular be prepared as described by FLAHAUT et al in Chem. Corn. (2003), 1442.
  • the multi-walled nanotubes may themselves be prepared as described in WO 03/02456.
  • the nanotubes usually have a mean diameter ranging from 0.1 to 200 nm, preferably from 0.1 to 100 nm, more preferably from 0.4 to 50 nm and better still from 1 to 30 nm and advantageously a length of from 0 to 100 nm. , 1 to 10 ⁇ m. Their length / diameter ratio is advantageously greater than 10 and most often greater than 100. Specific surface area is for example between 100 and 300 m 2 / g and their apparent density may especially be between 0.05 and 0.5 g / cm 3 and more preferably between 0.1 and 0.2 g / cm J.
  • the Muitiparois nanotubes may for example comprise from 5 to 15 sheets and more preferably from 7 to 10 sheets.
  • crude carbon nanotubes is especially commercially available from Arkema under the trade name Graphistrength® ® C100.
  • nanotubes can be purified and / or treated (for example oxidized) and / or milled and / or functionalized before being used in the process according to the invention.
  • the grinding of the nanotubes may in particular be elfecluted cold or hot and be carried out according to known techniques used in devices such as ball mills, hammers, grinders, knives, gas jet or any other grinding system likely to reduce the size of the entangled network of nanotubes. It is preferred that this grinding step is performed according to a gas jet grinding technique and in particular in an air jet mill.
  • the purification of the crude or milled nanotubes can be carried out by washing with a sulfuric acid solution, so as to rid them of any residual mineral and metallic impurities originating from their preparation process.
  • the weight ratio of nanotubes to sulfuric acid may especially be between 1: 2 and 1: 3.
  • the purification operation may also be carried out at a temperature ranging from 90 to 120 ° C., for example for a period of 5 to 10 hours. This operation may advantageously be followed by rinsing steps with water and drying the purified nanotubes.
  • the oxidation of the nanotubes is advantageously carried out by putting them in contact with a solution of sodium hypochlorite containing from 0.5 to 15% by weight of NaOCl and preferably from 1 to 10% by weight of NaOCl, for example in a weight ratio of nanotubes to sodium hypochlorite ranging from 1: 0.1 to 1: 1.
  • the oxidation is advantageously carried out at a temperature of less than 60 ° C. and preferably at ambient temperature, for a duration ranging from a few minutes to 24 hours. This oxidation operation can advantageously be followed by filtration and / or centrifugation steps, washing and drying of the oxidized nanotubes.
  • the functionalization of the nanotubes can be carried out by grafting reactive units such as vinyl monomers on the surface of the nanotubes.
  • the constituent material of the nanotubes is used as a radical polymerization initiator after having been subjected to a heat treatment at more than 900 0 C, in an anhydrous medium and oxygen-free, which is intended to eliminate the oxygenated groups from its surface. It is thus possible to polymerize methyl methacrylate or hydroxyethyl methacrylate on the surface of carbon nanotubes in order, in particular, to facilitate their dispersion in the polymer matrix.
  • Crude nanotubes, optionally milled, that is to say nanotubes that are not oxidized, purified or functionalized and have undergone no other chemical treatment, are preferably used in the present invention.
  • the nanotubes may represent from 0.5 to 30%, preferably from 0.5 to 10 and even more preferably from 1 to 5% of the total weight of the fluoropolymer and grafted fluoropolymer mixture.
  • the nanotubes and the polymer matrix are compounded by conventional devices such as twin-screw extruders or co-kneaders.
  • polymer granules (s) are typically melt blended with the nanotubes.
  • the nanotubes may be dispersed by any suitable means in the polymeric matrix in solution in a solvent.
  • the dispersion can be improved, according to an advantageous embodiment of the present invention, by the use of particular dispersing systems or dispersing agents.
  • the method of manufacturing the composite material according to the invention may comprise a step of dispersing the nanotubes in the polymer matrix by means of ultrasound or a rotor-stator system.
  • a rotor-stator system is sold by the company SILVERSON under the trademark Silverson * L4RT.
  • Another type of rotor-stator system is marketed by the company IKA-WERKE under the name Corrrectciale Ultra-Turrax *.
  • rotor-stator systems still consist of coil mills, deflocculating turbines and high-shear mixers of the rotor-stator type, such as devices sold by the company IKA-WERKE or the company ADMIX.
  • the dispersing agents may in particular be chosen from plasticizers which may themselves be chosen from the group consisting of alkyl esters of phosphates and of hydroxybenzoic acid (the alkyl group of which, preferably linear, contains from 1 to 20 carbon atoms) of lau ⁇ que acid, azelaic acid or pelargonic acid, phthalates, in particular dialkyl or alkylaryl, in particular alkylbenzyl, linear or branched alkyl groups, independently containing from 1 to 12 carbon atoms, adipates, in particular dialkyls, sebacates, in particular dialkyls and in particular dioctyls, in particular in the case where the polymeric matrix contains a fluoropolymer, benzoates, glycols or glycerol, dibenzyl ethers, ⁇ -chloroparaffins, propylene oxide, and sulfonamides, in particular in the case where the Polyme ⁇ q ⁇ Patrice contains a polyamide, and in particular
  • the dispersing agent may be a copolymer comprising at least one hydrophilic anionic monomer and at least one monomer including at least one aromatic ring, such as the copolymers described in document FR-2 766 106, the weight ratio of the In this case, the dispersing agent with nanotubes preferably ranges from 0.6: 1 to 1.9: 1.
  • the dispersing agent may be a vinylpyrrolidone homo- or copolymer, the ratio by weight of the nanotubes to the dispersing agent preferably ranging from 0.1 to less than 2.
  • the dispersion of the nanotubes in the polymer matrix can be improved by putting them in contact with at least one compound A which can be chosen from among various polymers, monomers, plasticizers, emulsifiers, coupling agents and / or carboxylic acids, the two components (nanotubes and compound A) being mixed in the solid state or the mixture being in pulverulent form, optionally after removal of one or more solvents.
  • the composite material as described above is of interest in various applications.
  • the present invention also relates to the use of this composite material for making hollow parts such as tubes, sheaths or connectors intended in particular for containing or transporting hot fluids and possibly under pressure and / or corrosive, and in particular pipes transporting hydrocarbons such as offshore hose sheaths; fluid transport pipes produced or used in the chemical industry; or injected fittings of pressurized pipelines.
  • the pipes and hollow parts above can for example be manufactured by extrusion or injection of the composite according to the invention.
  • the composite material according to the invention can constitute the inner layer of a multilayer pipe, in contact with the fluid to be contained or transported, the other layers, external and possibly intermediate, being constituted by other materials such as polyolefin or polyamide.
  • the composite material according to the invention preferably comprises, as fluoropolymer, a fluoropolymer having a melting point of between 14 ° C. and 17 ° C., preferably between 160 ° C. and 17O 0 C, and for example around 165 0 C, to obtain a good resistance to hot creep and blistering in the event of rapid decompression due to production stoppage,
  • D3835 advantageously of extrusion grade, preferably plasticized and impact-reinforced by core-shells systems to obtain in particular good cold strength (impact resistance, fatigue resistance).
  • a hot fluid typically 90 ° C.
  • a fluoropolymer of VDF preferably extrusion grade (viscous) for the manufacture of tubes or injection grade (fluid) for the manufacture of fittings.
  • FIG. 1 illustrates the tensile strength (stress-dependent deformation) of specimens of composite materials containing or not a grafted fluoropolymer
  • FIG. 2 illustrates the resistance to hot creep of these same test pieces.
  • a homopolymer of VDF was mixed (Rynar 3710 supplied by Arkema) in solution in DMF (dimethylformamide) with a fluoropolymer (Kynar 710 v) grafted with maleic anhydride, in a weight proportion of the PVDF fluoropolymer grafted 75:25.
  • Carbon nanotubes (CNTs) (Graphistrength '3 ClOO) were then added to this mixture in a proportion of 2.5% by weight based on the weight of the polymer blend.
  • test piece was made from this compression mixture of powders obtained after evaporation of the solvent and subjected to a tensile test at 23 ° C according to ISO 527 under the following conditions: IBA; 25 mm / min.
  • the test consists of imposing a constant tensile force on the tested material and measuring the evolution of the resulting deformation over time. For a given force, the greater the creep resistance of the material, the lower the deformation over time. This force is expressed in stress, by bringing the force back to the initial section of the specimen, so as to overcome the effect of the geometry of the specimen used.
  • This specimen is typically an ISO 529 type tensile specimen.
  • Deformation is measured by means of a displacement sensor (typically of the LVDT type) attached to the barrel of the tensile specimen and the recording of the deformation over time. is done by computer acquisition, at a typically logarithmic frequency to account for the slowdown of the process over time and not to unnecessarily saturate the acquisition system.
  • the test machine used may be a dynamometer such as those used for standard tensile tests, provided that it is possible to enslave correctly the moving system of the moving crosshead of the machine to which the test specimen is hung in order to be able to work by imposing a constant force over time. This imposes a continuous and regular movement of the traverse of the machine, in order to compensate for the elongation of the specimen.
  • Another, simpler system may be used, which is to load the specimen with a dead weight.
  • the CNTs greatly increase the creep resistance of the fluorinated polymer matrix 130 n C. Incorporation of a grafted fluoropolymer does not alter the effectiveness hot CNTs.
  • the addition of the grafted fluoropolymer makes it possible to preserve or even improve the mechanical properties of the fluoropolymer at ambient temperature, without losing the advantageous properties imparted by the nanotubes to the fluoropolymer when hot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention concerne un matériau composite comprenant des nanotubes d'au moins un composé chimique choisi parmi lescomposés des éléments des colonnes IHa, IVa et Va du tableau périodique, dispersés dans une matrice polymérique comprenant (a) au moins un homo- ou copolymère fluoré et (b) au moins un homo- ou copolymère fluoré greffé par au moins une fonction polaire carboxylique. Elle concerne- également les utilisations de ce matériau composite, ainsi que l'utilisation d'au moins un homo- ou copolymère fluoré greffé par au moins une fonction polaire carboxylique pour augmenter la résistance à la traction d'un matériau composite comprenant les nanotubes précités dispersés dans une matrice polymérique fluorée.

Description

Matériau composite comprenant des nanotubes dispersés dans une matrice polymérique fluorée
La présente invention concerne un matériau composite comprenant des nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique, dispersés dans une matrice polymérique comprenant (a) au moins un homo- ou copolymère fluoré et (b) au moins un homo- ou copolymère fluoré greffé par au moins une fonction polaire caiboxylique .
Elle concerne également les utilisations de ce matériau composite, ainsi que l'utilisation d'au moins un homo- ou copolymère fluoré greffé par au moins une fonction polaire carboxylique pour augmenter la résistance à la traction d'un matériau composite comprenant les nanotubes précités dispersés dans une matrice polymérique fluorée.
Les matériaux composites font l'objet de recherches intensives, dans la mesure où ils présentent de nombreux avantages fonctionnels (légèreté, résistance mécanique et chimique, liberté de formes) leur permettant de se substituer au métal dans des applications très diverses.
lis comprennent généralement une matrice polymérique dans laquelle sont dispersées des fibres de renfort, telles que des fibres de verre, de carbone ou d'aramide. Le choix d'une matrice et d'un renfort donnés est déterminé par la nature des propriétés que l'on souhaite obtenir en fonction de l'application envisagée. Ainsi, les tuyaux destinés au transport d'hydrocarbures extraits de gisements off-shore nécessitent de pouvoir être utilisés à des températures d'au moins 1300C et sous des pressions d'environ 700 bars tout en conservant de bonnes résistances mécanique, thermique et chimique. Il en est de même des tuyaux utilisés pour véhiculer certains fluides chimiques chauds et/ou corrosifs, tels que l'acide sulfurique à environ
140°C, des solutions à 40% de soude à environ 900C ou de l'acide nitrique chaud.
Pour ces applications, divers fournisseurs proposent d'utiliser des maLéx-iciux à base de polymères fluorés tels que le poly (fluorure de vinylidène) . Ces matériaux n'offrent toutefois pas toujours une durée de vie suffisante à haute température, en particulier lorsqu'ils sont soumis à des contraintes .
Pour remédier à cet inconvénient, il est apparu à la Demanderesse que l'introduction de nanotubes, notamment de carbone, dans des matériaux polymériques (fluorés ou non) augmentait la résistance au fluage à chaud de ces matériaux. Cependant, il a été observé que dans le cas de polymères fluorés, l'allongement à la rupture en traction à température ambiante des composites ainsi obtenus était inférieure à celle du polymère non renforcé.
En outre, les polymères fluorés présentent des problèmes de compatibilité avec les nanotubes de carbone utilisés pour les renforcer. Les interfaces entre le polymère fluoré et les nanotubes manquent par conséquent de cohésion, ce qui entraîne l'apparition de points faibles à l'échelle microscopique lorsque la matrice polymeπque est soumise a une sollicitation. Enfin, la dispersion des nanotubes dans le polymère fluoré n'est pas toujours satisfaisante, ce qui peut conduire a la formation d'agglomérats préjudiciables aux propriétés recherchées poαr le composite final.
Il subsiste par conséquent le besoin de disposer de matériaux composites cohesifs et homogènes présentant non seulement une bonne résistance au fluage a chaud, mais également une bonne résistance a la traction a température ambiante, en particulier poαr la fabrication de gaines de pression de flexibles off-shore.
Or, après de nombreuses recherches, la Demanderesse a ou Ic mente de mettre au point un matériau composite permettant de satisfaire le besoin précité.
La présente invention a ainsi pour objet un matériau composite comprenant des nanotubpq d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique, disperses dans une matrice polymeπque comprenant (a) au moins un homo- ou copolymere fluoré et (b) au moins un homo- ou copolymere fluoré greffe par au moins une fonction polaire carboxyliqαe .
Elle a également pour objet l'utilisation d'au moins un homo- ou copolymere fluoré greffe par au moins une fonction polaire carboxylique pour augmenter la résistance a la traction d'un iacenau composite comprenant des ranotubes d'au moins un élément chimique choiSx parmi les éléments des colonnes IHa, IVa et Va du. tableau périodique, dispersés dans une matrice polymérique fluorée.
En préambule, il est précisé que dans l'ensemble de cette description, l'expression "compris (e) entre" doit être interprétée comme incluant les bornes citées.
Le matériau composite selon l'invention comprend comme premier constituant une matrice polymérique renfermant au moins un homo- ou copolymère fluoré, ci- après désigné par "polymère fluoré" .
De préférence, ce polymère fluoré comprend au moins 50% molaire, et est avantageusement constitué, de monomères de formule (I) :
CFX-CHX' (I)
où X et X1 désignent indépendamment un atome d'hydrogène ou d'halogène (en particulier de fluor ou de chlore) ou un radical alkyle perhalogéné (en particulier perfluoré) . Dans la formule (I) , on préfère que X=F et
X'=H.
Comme exemples de polymères fluorés, on peut notamment citer :
- le poiy (fluorure de vinylidène) (PVDF), de préférence sous forme a,
- les copolymères de fluorure de vinylidène avec par exemple 1 'hexafluorcpropylène (HFP), le chiorotrifluoroéthylène (CTFE), 1 'hexafluoropropylène (HFP), le trifluoroéthylène (VF3) ou le éthylène (TFE) , - les homo- et copolymères de trifluoroéthylène (VF3),
- les copolymères fluoroéthylène / propylène (FEP) ,
- les copolymères d'éthylène avec le fluoroéthylène/propylène (FEP) , le tétrafluoroéthylène
(TFE) , le perfluorométhylvinyl éther (PMVE) , le chlorotrifluoroéthylène (CTFE) ou 1 ' hexafluoropropylène (HFP) , et
- leurs mélanges, certains de ces polymères étant notamment commercialises par la société ARKEMA sous la dénomination Kynaru et les préférés étant ceux de grade convenant à l'injection ou à l'extrusion et ayant de préférence une viscosité allant de 100 à 2000 Pa . s et plus préférentiellement de 300 à 1200 Pa. s, mesurée à 23O0C sous un gradient de cisaillement de 100 s'1 à l'aide d'un rhéomètre capillaire, tels que lec Kynαre 710, 711 ou 720 de grade injection ou encore les Kynar° 740, 760, 50HD, 400HD de grade extrusion ou encore les copolymères VDF/HFP commercialisés sous la dénomination Kynar° 2800 et 3120-50.
On préfère selon 1 ' invention que le polymère fluoré soit le poly ( fluorure de vinylidène) (PVDF) .
Outre ce polymère fluoré, la matrice polymérique du matériau composite selon l'invention renferme au moins un homo- ou copolymère fluoré greffé par au moins une fonction polaire carbexylique, ci-après désigné par "polymère fluoré greffé".
Ce polymère fluoré greffe est susceptible d'être obtenu par greffage d'au moins un monomère polaire carboxylique portant par exemple au moins une fonction acide ou anhydride carboxylique sur un polymère fluoré.
Plus précisément, ce polymère fluoré greffé peut être préparé selon un procédé comprenant : (a) le mélange, de préférence à l'état fondu, par exemple au moyen d'une extrudeuse ou d'un malaxeur, d'un polymère fluoré avec un monomère polaire portant une fonction acide ou anhydride carboxylique, (b) la transformation éventuelle de ce mélange en granulés, poudre, film ou plaque, (c) l'irradiation de ce mélange, éventuellement en l'absence d'oxygène (et par exemple dans des sacs de polyéthylène) sous une dose allant de 1 à 15 Mrad d'irradiation photonique ou électronique, pour réaliser le greffage du monomère polaire sur le polymère fluoré, et (d) éventuellement l'élimination du monomère polaire résiduel n'ayant pas réagi avec le polymère fluoré. Un procédé de préparation de ce type est notamment décrit dans la demande EP-I 484 346.
Le polymère fluoré à partir duquel le polymère fluoré greffé est susceptible d'être obtenu peut être l'un quelconque des polymères fluorés décrits précédemment et en particulier le poly (fluorure de vinylidène) (PVDF) ou les copolymères de VDF et d'HFP renfermant de préférence au moins 50% en poids de motifs VDF.
Comme monomères polaires portant une fonction carboxylique, on peut notamment citer les mono- et diacides carboxyliques insacurés ayant de 2 à 20 atomes de carbone, et en particulier de 4 à 10 atomes de carbone, tels que les acides acrylique, méthacrylique, maiéique, fumarique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène-l, 2-dicarboxylique, 4-méthyl-cyclohex-4-ène-l, 2-dicarboxylique, bicyclo (2,2,1) hept-5-ène-2, 3-dicarboxylique, x-méthyl bicyclo (2, 2, 1) hept-5-ène-2, 3-dicarboxylique et undécylénique, ainsi que leurs anhydrides.
Le polymère fluoré greffé est donc susceptible d'être obtenu à partir de l'un au moins de ces monomères. On préfère que ce polymère fluoré soit greffé par l'anhydride maleique.
Un tel polymère fluoré greffé est notamment disponible auprès de la société ARKEMA sous la dénomination commerciale Kynar° ADX 710, 711, 720 ou 721.
La proportion en poids du polymère fluoré au monomère polaire utilisés dans la fabrication du polymère fluoré greffé va habituellement de 90:10 à 99,9:0,1.
Le polymère fluoré greffé peut représenter de 5 à 99% en poids et de préférence de 10 à 50% en poids, par rapport au poids de la matrice polymérique.
Le polymère fluoré et le polymère fluoré greffé peuvent être mélangés soit à l'état de poudre, soit par compoundage suivi d'une granulation et d'un broyage des granulés .
La matrice polymérique utilisée selon l'invention peut par ailleurs contenir différents adjuvants, tels que des plastifiants, des stabilisants anti-oxygène, des stabilisants à la lumière, des colorants, des agents anti-choc, des agents antistatiques, des agents ignifugeants, des lubrifiants, et leurs mélanges.
Outre la matrice polymérique décrite précédemment, le matériau composite selon l'invention renferme des nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique .
Ces nanotubes peuvent être à base de carbone, de bore, de phosphore et/ou d'azote (borures, nitrures, carbures, phosphures) et par exemple constitué de nitrure de carbone, de nitrure de bore, de carbure de bore, de phosphure de bore, de nitrure de phosphore et de boronitrure de carbone.
Les nanotubes do cαrbono (ci-après, NTC) sont préférés pour une utilisation dans la présente invention.
Les nanotubes utilisables selon l'invention peuvent être du type monoparoi, à double paroi ou à parois multiples. Les nanotubes à double paroi peuvent notamment être préparés comme décrit par FLAHAUT et al dans Chem. Corn. (2003), 1442. Les nanotubes à parois multiples peuvent de leur côté être préparés comme décrit dans le document WO 03/02456.
Les nanotubes ont habituellement un diamètre moyen allant de 0,1 à 200 nm, de préférence de 0,1 à 100 nm, plus préférentiellement de 0,4 à 50 nm et, mieux, de 1 à 30 nm et avantageusement une longueur de 0,1 à 10 μm. Leur rapport longueur/diamètre est avantageusement supérieur à 10 et le plus souvent supérieur à 100. Leur surface spécifique est par exemple comprise entre 100 et 300 m2 /g et leur densité apparente peut notamment être comprise entre 0,05 et 0,5 g/cm3 et plus préférentiellement entre 0,1 et 0,2 g/cmJ. Les nanotubes muitiparois peuvent par exemple comprendre de 5 à 15 feuillets et plus préférentieliement de 7 à 10 feuillets.
Un exemple de nanotubes de carbone bruts est notamment disponible dans le commerce auprès de la société ARKEMA sous la dénomination commerciale Graphistrength® C100.
Ces nanotubes peuvent être purifiés et/ou traités (par exemple oxydés) et/ou broyés et/ou fonctionnalisés, avant leur mise en oeuvre dans le procédé selon l ' invention .
Le broyage des nanotubes peut être notamment elfecLué à froid ou à chaud et être réalisé selon les techniques connues mises en oeuvre dans des appareils tels que broyeurs à boulets, à marteaux, à meules, à couteaux, jet de gaz ou tout autre système de broyage susceptible de réduire la taille du réseau enchevêtré de nanotubes. On préfère que cette étape de broyage soit pratiquée selon une technique de broyage par jet de gaz et en particulier dans un broyeur à jet d'air.
La purification des nanotubes bruts ou broyés peut être réalisée par lavage à l'aide d'une solution d'acide sulfurique, de manière à les débarrasser d'éventuelles impuretés minérales et métalliques résiduelles, provenant de leur procédé de préparation. Le rapport pondéral des nanotubes a l'acide sulfurique peut notamment être compris entre 1 :2 et 1 :3. L'opération de purification peut par ailleurs être effectuée à une température allant de 90 à 12O0C, par exemple pendant une durée de 5 à 10 heures. Cette opération peut avantageusement être suivie d'étapes de rinçage à l'eau et de séchage des nanotubes purifiés .
L'oxydation des nanotubes est avantageusement réalisée en mettant ceux-ci en contact avec une solution d' hypochlorite de sodium renfermant de 0,5 à 15% en poids de NaOCl et de préférence de 1 à 10% en poids de NaOCl, par exemple dans un rapport pondéral des nanotubes à l ' hypochlorite de sodium allant de 1:0,1 à 1:1. L'oxydation est avantageusement réalisée à une température inférieure à 6O0C et de préférence à température ambiante, pendant une durée allant de quelques minutes à 24 heures. Cette opération d'oxydation peut avantageusement être suivie d'étapes de filtration et/ou centri fugat i on , lavage et séchage des nanotubes oxydés .
La fonctionnalisation des nanotubes peut être réalisée par greffage de motifs réactifs tels gue des monomères vinyliques à la surface des nanotubes. Le matériau constitutif des nanotubes est utilisé comme initiateur de polymérisation radicalaire après avoir été soumis à un traitement thermique à plus de 9000C, en milieu anhydre et dépourvu d'oxygène, qui est destiné à éliminer les groupes oxygénés de sa surface. Il est ainsi possible de polymériser du méthacrylate de méthyle ou du méthacryiate d' hydroxyéthyle à la surface de nanotubes de carbone en vue de faciliter notamment leur dispersion dans la matrice polymérique. On utilise de préférence dans la présente invention des nanotubes bruts éventuellement broyés, c'est-à-dire des nanotubes qui ne sont ni oxydés ni purifiés ni fonctionnalisés et n'ont subi aucun autre traitement chimique .
Les nanotubes peuvent représenter de 0,5 à 30%, de préférence de 0,5 à 10 et encore plus préférentiellement de 1 à 5% du poids total du mélange polymère fluoré et polymère fluoré greffé.
On préfère que les nanotubes et la matrice polymérique soient mélangés par compoundage à l'aide de dispositifs usuels tels que des extrudeuses bi-vis ou des co-malaxeurs . Dans ce procédé, des granulés de polymère (s) sont typiquement mélangés à l'état fondu avec les nanotubes .
En variante, les nanotubes peuvent être dispersés par tout moyen approprié dans la matrice polymérique se trouvant en solution dans un solvant. Dans ce cas, la dispersion peut être améliorée, selon une forme d'exécution avantageuse de la présente invention, par l'utilisation de systèmes de dispersion ou d'agents dispersants particuliers.
Ainsi, dans le cas d'une dispersion en voie solvant, le procédé de fabrication du matériau composite selon 1 ' invention peut comprendre une étape de dispersion des nanotubes dans la matrice polymérique au moyen d'ultrasons ou d'un système rotor-stator. Un tel système rotor-stator est notamment commercialise par la société SILVERSON sous la dénomination commerciale Silverson* L4RT. Jn autre type de système rotor-stator est commercialise par la société IKA-WERKE sous la dénomination corrrterciale Ultra-Turrax*.
D'autres systèmes rotor-stator encore sont constitues des moulins coiloidaux, des turbines defloculeuses et des mélangeurs a fort cisaillement de type rotor-stator, tels que ±es appareils commercialises par la société IKA-WERKE ou par la société ADMIX.
Les agents dispersants peuvent être notamment choisis parmi les plastifiants qui peuvent être eux-mêmes choisis dans le groupe constitue : des alkylesters de phosphates, d'acide hydroxybenzoique (dont le groupe alkyle, de préférence linéaire, renferme de 1 a 20 atomes de carbone), d'acide lauπque, d'acide azelaique ou d'acide pelargonique, - des phtalates, notamment de dialkyle ou d'alkyl- aryle, en particulier d' alkylbenzyle, les groupes alkyles, linéaires ou ramifies, renfermant indépendamment de 1 a 12 atomes de carbone, des adipates, notamment de dialkyles, - des sebacates, notamment de dxalkyles et en particulier de dioctyle, en particulier dans le cas ou la matrice poiymenque contient un fluoropolymere, des benzoates αe glycols ou de glycerol, des etners de dibenzyie, - αes chloroparaffines, du carDonate de propvxene, des sαifonamiαes, en particulier dans le cas ou la Patrice polymeπqαe contiert un polyamide, et notamment des aryl sulfonamides dont le groupe aryle est éventuellement substitué par au moins un groupe alkyle contenant de 1 à 6 atomes de carbone, telles que les benzène sulfonamides et les toluène sulfonamides, qui peuvent être N-substituées ou N, N-disubstituées par au moins un groupe alkyle, de préférence linéaire, renfermant de 1 à 20 atomes de carbone, des glycols, et de leurs mélanges.
En variante, l'agent dispersant peut être un copolymère comprenant au moins un monomère hydrophile anionique et au moins un monomère incluant au moins un cycle aromatique, tels que les copolymères décrits dans le document FR-2 766 106, le rapport en poids de l'agent dispersant aux nanotubes allant dans ce cas de préférence de 0,6:1 à 1,9:1.
Dans une autre forme d'exécution, l'agent dispersant peut être un homo- ou un copolymère de vinylpyrrolidone, le rapport en poids des nanotubes à l'agent dispersant allant dans ce cas de préférence de 0,1 à moins de 2.
Dans une autre forme d'exécution encore, la dispersion des nanotubes dans la matrice polymérique peut être améliorée en mettant ceux-ci en contact avec au moins un composé A qui peut être choisi parmi différents polymères, monomères, plastifiants, émulsionnants, agents de couplage et/ou acides carboxyliques, les deux composants (nanotubes et composé A) étant mélangés à l'état solide ou le mélange se présentant sous forme pulvérulente, éventuellement après élimination d'un ou plusieurs solvants. Le matériau composite tel que décrit précédemment trouve un intérêt dans diverses applications.
La présente invention a encore pour objet l'utilisation de ce matériau composite pour fabriquer des pièces creuses telles que des tubes, gaines ou raccords destinés notamment à contenir ou transporter des fluides chauds et éventuellement sous pression et/ou corrosifs, et en particulier des tuyaux de transport d'hydrocarbures tels que des gaines de flexibles off-shore ; des tuyaux de transport de fluides produits ou utilisés dans l'industrie chimique ; ou des raccords injectés de canalisations sous pression.
Les tuyaux et pièces creuses ci-dessus peuvent par exemple être fabriqué par extrusion ou par injection du composite selon l'invention.
Dans les applications précitées, le matériau composite selon l'invention peut constituer la couche intérieure d'un tuyau multicouche, en contact avec le fluide à contenir ou transporter, les autres couches, externe et éventuellement intermédiaire (s) , étant constituées d'autres matériaux tels qu'une polyoléfine ou un polyamide.
Pour une application comme gaine de pression de flexible off-shore, le matériau composite selon l'invention comprend de préférence comme polymère fluoré un ccpoiymère fluoré ayant un point de fusion compris entre 14U13C et 17O0C, de préférence entre 1600C et 17O0C, et par exemple aux environs de 1650C, pour obtenir une bonne résistance au fluage à chaud et au cloquage en cas de décompression rapide lié à un arrêt de production,
(typiquement 130°c de 750 à 2500 bars, par exemple pour un taux de décompression de 70 mbar/min) ou un homopolymère de VDF ayant une viscosité supérieure à 12 kilopoises (kP) mesurée à 100 s"1 et à 2320C (ASTM
D3835) , avantageusement de grade extrusion, de préférence plastifié et renforcé aux chocs par des systèmes coeur- écorce (core-shells) pour obtenir notamment une bonne résistance mécanique à froid (résistance aux chocs, résistance à la fatigue) .
Pour une application comme tube lisse ou raccord injecté soumis à une pression interne et/ou transportant un fluide chaud (typiquement 900C), éventuellement corrosif, tel que de la soude, on choisira par exemple comme polymère fluoré un homopolymère de VDF, de préférence de grade extrusion (visqueux) pour la fabrication de tubes ou de grade injection (fluide) pour la fabrication de raccords.
I/ invention sera maintenant illustrée par les exemples non limitatifs suivants, pris en combinaison avec les figures annexées dans lesquelles : - la figure 1 illustre la résistance à la traction (déformation en fonction de la contrainte) d ' éprouvettes de matériaux composites contenant ou non un polymère fluoré greffé, et
- la figure 2 illustre la résistance au fluage à chaud de ces mêmes éprouvettes .
EXEMPLES Exemple 1 : Effet de l'ajout d'un polymère fluoré greffé sur la résistance à la traction d'une matrice polymérique fluorée contenant des nanotubes de carbone
On a mélangé un homopolymère de VDF (Rynar3 710 fourni par ARKEMA) en solution dans du DMF (dimethylformamide) avec un polymère fluoré (Kynarv 710) greffé par l'anhydride maléique, dans une proportion pondérale du PVDF au polymère fluoré greffé de 75:25. Des nanotubes de carbone (NTC) (Graphistrength'3 ClOO) ont ensuite été ajoutés à ce mélange en proportion de 2,5% en poids par rapport au poids du mélange de polymères.
Une éprouvette a été fabriquée à partir de ce mélange par compression de poudres obtenues après l ' évaporation du solvant et soumise à un test de traction à 23°C selon la norme ISO 527 dans les conditions suivantes : IBA ; 25 mm/mn .
Celle-ci a été comparée à des éprouvettes similaires, mais dont la matrice polymérique n'était constituée que du polymère fluoré, respectivement avec et sans NTC.
Les résultats de ce test de traction sont donnés à la Figure 1, de laquelle il ressort que :
- l'ajout de NTC fragilise le polymère fluoré puisque l'allongement à la rupture passe d'environ 20 à 10%,
- l'introduction du polyrr.ère fluoré greffé permet de renforcer la matrice polymère et d'améliorer sa résistance à la traction, qui se traduit par une augmentation de l'allongement à la rupture de 20 à 38%. Exemple 2 : Effet de l'ajout d'un polymère fluoré greffé sur la résistance au fluage d'une matrice polymérique fluorée contenant des nanotubes de carbone
Protocole :
On a mesuré la résistance au fluage des éprouvettes préparées comme décrit à l'Exemple 1.
Le protocole général de ce test était le suivant.
Le test consiste à imposer une force constante, en traction, au matériau testé et à mesurer l'évolution de la déformation résultante au cours du temps . Pour une force donnée, plus la résistance au fluage du matériau est grande, plus faible est la déformation au cours du temps. Cette force est exprimée en contrainte, en rapportant la force à la section initiale de 1 ' éprouvette, de façon à s'affranchir de l'effet de la géométrie de 1 'éprouvette utilisée. Cette éprouvette est typiquement une éprouvette de traction de type ISO 529. La déformation est mesurée au moyen d'un capteur de déplacement (typiquement de type LVDT) accroché au fût de l' éprouvette de traction et l'enregistrement de la déformation dans le temps se fait par acquisition sur ordinateur, à une fréquence typiquement logarithmique afin de tenir compte du ralentissement du processus au cours du temps et de ne pas saturer inutilement le système d'acquisition. La machine d'essai utilisée peut être un dynamomètre tel que ceux utilisés pour les essais de traction standard, à la condition qu'il soit possible d'asservir correctement le système de déplacement de la traverse mobile de la machine à laquelle l' éprouvette est accrochée, afin d'être capable de travailler en imposant une force constante au cours du temps. Cela impose un mouvement continu et régulier de la traverse de la machine, afin de compenser l'allongement de 1 ' éprouvette . Un autre système, plus simple, peut être utilisé, qui consiste à charger l' éprouvette avec un poids mort.
Résultats :
Comme le montre la Figure 2, les NTC augmentent fortement la tenue au fluage de la matrice polymérique fluorée à 130nC. L'incorporation d'un polymère fluoré greffé ne modifie pas l'efficacité à chaud des NTC.
Il ressort donc de ces exemples que l'ajout du polymère fluoré greffé permet de conserver voire d'améliorer leo propriétés mécaniques du polymère fluoré à température ambiante, sans perdre les propriétés avantageuses conférées à chaud au polymère fluoré par les nanotubes .

Claims

REVENDICATIONS
1. Matériau composite comprenant des nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique, dispersés dans une matrice polymérique comprenant (a) au moins un homo- ou copolymère fluoré et (b) au moins un homo- ou copolymère fluoré greffé par au moins une fonction polaire carboxylique .
2. Matériau selon la revendication 1, caractérisé en ce que 1 ' homo- ou copolymère fluoré comprend au moins 50% molaire, et est avantageusement constitué, de monomères de formule (I) :
CFX=CHX' (I) où X ot X' désignent indépendamment un atome d'hydrogène ou d'halogène (en particulier de fluor ou de chlore) ou un radical alkyle perhalogéné (en particulier perfluoré) .
3. Matériau selon la revendication 1 ou 2, caractérisé en ce que l'homo- ou copolymère fluoré est choisi parmi : - le poly (fluorure de vinylidène) (PVDF), de préférence sous forme α,
- les copolymères de fluorure de vinylidène avec par exemple 1 'hexafluoropropylène (HFP), le chlorotrifluoroéthylène (CTFE), i ' hexafluoropropylène (HFP), le trifluoroéthylène (VF3) ou le tétrafluoroéthylène (TFE) ,
- les homo- et copolymères de trifluoroéthylène (VF3) , - les copolymeres fluoroethyleπe / propylene (FEP) ,
- les copolymeres d'ethylene a\ec le fluoroethylene/propylene (FEP), le tetrafluoroethylene (TFE), le perfluoronethylvmyl ether (PMVE), le chlorotrifluoroethyiere (CTFE) ou 1 ' hexafluoropropylene (HFP) , et
- leurs mélanges .
4. Matériau selor la revendication 3, caractérise en ce que l'homo- ou copolymere fluoré est le poly (fluorure de vinyliαene) .
5. Matériau selon l'une quelconque des revendications 1 a 4, caractérise en ce que l'homo- ou copolymere fluorc greffe est susceptible d'être obtenu a partir d'un polymère fluoré tel que défini dans l'une quelconque des revendications 2 a 4.
6. Matériau selon 1 'une quplrnnque des revendications 1 a 5, caractérise en ce que l'homo- ou copolymere fluoré greffe est susceptible d'être obtenu a partir d'au moins un monomère choisi parmi : les mono- et diacides carboxyliques insatures ayant de 2 a 20 atomes de carbone, et en particulier de 4 a 10 atomes de carbone, tels que les acides acrylique, methacrylique, maleique, fumanque, itaconique, citraconique, axiylsuccimque, cyclonex-4-ene-i, 2-dicarboxylique, 4- methyl-cyclohex-4-ene-l, 2-dicarboxylique, bicyclo(2,2,l) hept-5-ene-2, 3-αicarboxyiique, x-methy± bicyclo (2, 2, 1) hept-5-ene-2, 3-dicarboxyi~que et jndecyleπque, ainsi que xeurs anhyαπαes .
7. Matériau selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'homo- ou copolymère fluoré greffé par une fonction polaire carboxylique est greffé par l'anhydride rnaléique.
8. Matériau selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le polymère fluoré greffé représente de 5 à 99% en poids et de préférence de 10 à 50% en poids, par rapport au poids de la matrice polymérique.
9. Matériau selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les nanotubes sont constitué de nitrure de carbone, de nitrure de bore, de carbure de bore, de phosphure de bore, de ni Li. une de phosphore ou de boronitrure de carbone.
10. Matériau selon la revendication 9, caractérisé en ce que les nanotubes sont des nanotubes de carbone.
11. Matériau selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les nanotubes représentent de 0,5 à 30% et de préférence de 0,5 à 10% du poids total de l'homo- ou copolymère fluoré et du polymère fluoré greffé.
12. Utilisation d'un matériau composite selon l'une quelconque des revendications 1 à 11 pour fabriquer des pièces creuses telles que des tubes, gaines ou raccords destinés notamment à contenir ou transporter des fluides chauds et éventuellement sous pression et/ou corrosifs, et en particulier des tuyaux de transport d'hydrocarbures tels que des gaines de flexibles off-shore ; des tuyaux de transport de fluides produits ou utilisés dans l'industrie chimique ; ou des raccords injectés de canalisations sous pression.
13. Utilisation d'au moins un homo- ou copolymère fluoré greffé par au moins une fonction polaire carboxylique pour augmenter la résistance à la traction d'un matériau composite comprenant des nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique, dispersés dans une matrice polymérique fluorée.
PCT/FR2008/051185 2007-06-27 2008-06-27 Matériau composite comprenant des nanotubes dispersés dans une matrice polymérique fluorée WO2009007615A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/666,654 US20100189946A1 (en) 2007-06-27 2008-06-27 Composite material including nanotubes dispersed in a fluorinated polymer matrix
BRPI0812976-2A2A BRPI0812976A2 (pt) 2007-06-27 2008-06-27 Material compósito que compreende nanotubos dispersos em uma matriz polimérica fluorada
JP2010514069A JP2010531380A (ja) 2007-06-27 2008-06-27 フッ素化ポリマーマトリクス中に分散したナノチューブを含む複合材料
EP08806113A EP2160444A1 (fr) 2007-06-27 2008-06-27 Matériau composite comprenant des nanotubes dispersés dans une matrice polymérique fluorée
CN200880022401.XA CN101688039B (zh) 2007-06-27 2008-06-27 包含分散在氟化聚合物基质中的纳米管的复合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0704618A FR2918067B1 (fr) 2007-06-27 2007-06-27 Materiau composite comprenant des nanotubes disperses dans une matrice polymerique fluroree.
FR0704618 2007-06-27

Publications (1)

Publication Number Publication Date
WO2009007615A1 true WO2009007615A1 (fr) 2009-01-15

Family

ID=39032308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051185 WO2009007615A1 (fr) 2007-06-27 2008-06-27 Matériau composite comprenant des nanotubes dispersés dans une matrice polymérique fluorée

Country Status (8)

Country Link
US (1) US20100189946A1 (fr)
EP (1) EP2160444A1 (fr)
JP (1) JP2010531380A (fr)
KR (1) KR20100036267A (fr)
CN (1) CN101688039B (fr)
BR (1) BRPI0812976A2 (fr)
FR (1) FR2918067B1 (fr)
WO (1) WO2009007615A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196584A (ja) * 2015-04-03 2016-11-24 株式会社クレハ フッ化ビニリデン系樹脂組成物および成形物ならびにそれらの製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918082B1 (fr) * 2007-06-27 2011-07-01 Arkema France Procede d'impregnation de fibres continues par une matrice polymerique composite renfermant un polymere fluore greffe.
FR2956183B1 (fr) 2010-02-09 2012-03-16 Technip France Conduite flexible sous-marine comprenant une couche comprenant une resine polymere comprenant des nanoparticules de titane modifiees en surface
FR2968060B1 (fr) 2010-11-25 2013-06-21 Technip France Conduite flexible sous marine comprenant une couche comprenant une resine polymere comprenant des nanotubes alumino- ou magnesiosilicate
GB201122296D0 (en) 2011-12-23 2012-02-01 Cytec Tech Corp Composite materials
TWI510511B (zh) * 2012-06-01 2015-12-01 Lg Chemical Ltd 聚合物,彼之製法,以及含彼之組成物與膜
CN103509298B (zh) * 2012-06-20 2015-11-25 中国科学院合肥物质科学研究院 氟塑料基微纳复合吸波材料及其制备方法
GB201322093D0 (en) 2013-12-13 2014-01-29 Cytec Ind Inc Compositive materials with electrically conductive and delamination resistant properties
GB201402264D0 (en) * 2014-02-10 2014-03-26 Wellstream Int Ltd Composite
WO2019013934A1 (fr) 2017-07-14 2019-01-17 Arkema Inc. Composés renforcés à base de fluorure de polyvinylidène à haute résistance
WO2019014661A1 (fr) * 2017-07-14 2019-01-17 Arkema Inc Composite de fluorure de polyvinylidène à haute résistance
KR102244303B1 (ko) * 2019-05-22 2021-04-26 연세대학교 산학협력단 마찰재 및 그 제조방법
CN112852077B (zh) * 2021-01-13 2023-10-27 业成科技(成都)有限公司 压电复合材料薄膜及其制造方法及压电式扬声器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541343A1 (fr) * 2003-12-02 2005-06-15 Arkema Utilisation d'une structure à base de polymère fluoré greffé pour le stockage et le transport de produits chimiques
WO2006045636A1 (fr) * 2004-10-19 2006-05-04 Arkema France Tube a base d'elastomere vulcanise et d'un fluoropolymere modifie

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3561493A (en) * 1965-04-21 1971-02-09 Paul Maillard Composite tubes and method of manufacturing same
US4129617A (en) * 1975-06-09 1978-12-12 Japan Atomic Energy Research Institute Fluoro carbon graft copolymer and process for the production thereof
DE2559260C3 (de) * 1975-12-31 1982-04-01 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Modifizierung von Polyvinylidenfluorid
US5093427A (en) * 1990-05-10 1992-03-03 Atochem North America, Inc. Copolymers of vinylidene fluoride and hexafluoropropylene and process for preparing the same
US5759329A (en) * 1992-01-06 1998-06-02 Pilot Industries, Inc. Fluoropolymer composite tube and method of preparation
JPH085167B2 (ja) * 1992-01-06 1996-01-24 パイロット インダストリーズ、インコーポレイテッド フルオロポリマー複合材料製チューブおよびその製造方法
US5743304A (en) * 1992-04-14 1998-04-28 Itt Corporation Multi-layer fuel and vapor tube
US5296318A (en) * 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
EP0637509B1 (fr) * 1993-08-03 2002-10-23 Nitta Moore Company Tube pour transport d'essence
DE69435291D1 (de) * 1993-10-28 2010-06-10 Asahi Glass Co Ltd Fluorid-enthaltender Polymerklebstoff und diesen gebrauchendes Laminat
US5576106A (en) * 1994-07-28 1996-11-19 E. I. Du Pont De Nemours And Company Grafted fluoropolymer powders
US5656121A (en) * 1994-08-19 1997-08-12 Minnesota Mining And Manufacturing Company Method of making multi-layer composites having a fluoropolymer layer
US5566720A (en) * 1995-01-10 1996-10-22 Itt Corporation Elongated fuel and vapor tube having multiple layers and method of making the same
FR2731497B1 (fr) * 1995-03-10 1997-04-30 Atochem Elf Sa Tube pour transport d'eau potable
US6476125B1 (en) * 1995-08-24 2002-11-05 Asahi Glass Company Ltd. Fluorine-containing polymer alloy, and method for its preparation and method for its molding
FR2742445B1 (fr) * 1995-12-19 1998-01-16 Atochem Elf Sa Compositions antistatiques et adherentes a base de polyamide
US6176268B1 (en) * 1996-01-29 2001-01-23 Hybritech Polymers Multi-layer assembly for fluid and vapor handling and containment systems
US6263920B1 (en) * 1996-01-29 2001-07-24 Hybritech Polymers Multi-layer assembly for fluid and vapor handling and containment systems
US6179008B1 (en) * 1996-02-09 2001-01-30 The Yokohama Rubber Co., Ltd. Thermoplastic elastomer composition, process for the preparation there of, hose made by using the composition, and process for the production thereof
US5993922A (en) * 1996-03-29 1999-11-30 Cryovac, Inc. Compositions and methods for selectively crosslinking films and improved film articles resulting therefrom
JPH10144571A (ja) * 1996-09-13 1998-05-29 Tdk Corp 固体型電気二重層キャパシタ
US6743876B2 (en) * 1997-02-28 2004-06-01 Atofina Chemicals, Inc. Copolymers of vinylidene fluoride and hexafluoropropylene having reduced extractable content and improved solution clarity
JPH10334948A (ja) * 1997-05-30 1998-12-18 Tdk Corp 電極、この電極を用いたリチウム2次電池および電気2重層キャパシタ
EP0911347B1 (fr) * 1997-10-15 2006-08-23 E.I. Du Pont De Nemours And Company Copolymères à base d' anhydride maléique ou d' acide maléique et de fluoro-oléfines
FR2776228B1 (fr) * 1998-03-20 2000-05-19 Solvay Corps creux multicouche en matiere thermoplastique
US6645590B1 (en) * 1998-06-28 2003-11-11 E. I. Du Pont De Nemours And Company Articles of functional fluoropolymer
JP3608406B2 (ja) * 1998-11-25 2005-01-12 日立電線株式会社 改質ふっ素樹脂成形体の製造方法
ATE267084T1 (de) * 1999-09-30 2004-06-15 Asahi Glass Co Ltd Kraftstoffschlauch
EP1217278A4 (fr) * 1999-09-30 2004-12-15 Asahi Glass Co Ltd Tuyau souple de carburant
CN1189489C (zh) * 1999-11-03 2005-02-16 阿托费纳化学股份有限公司 1,1-二氟乙烯与六氟丙烯的低结晶度共聚物
JP4055344B2 (ja) * 1999-11-16 2008-03-05 東海ゴム工業株式会社 燃料系ホース
US6470691B1 (en) * 2000-06-13 2002-10-29 Atofina Chemicals, Inc. Fluid transport
TW592960B (en) * 2001-01-22 2004-06-21 Atofina Thermoforming multilayer film for protecting substrates, and objects obtained
US20030106602A1 (en) * 2001-12-07 2003-06-12 Hsich Henry S. Multi-layer assembly for fluid handling and containment systems
US7423084B2 (en) * 2002-02-15 2008-09-09 Dsm Ip Assets B.V. Method of producing high strength elongated products containing nanotubes
US6849314B2 (en) * 2002-04-18 2005-02-01 3M Innovative Properties Company Fluoropolymer blends and multilayer articles
EP1362870A1 (fr) * 2002-05-16 2003-11-19 Atofina Structure multicouche comprenant un liant à base de polyoléfine greffée par un monomère acrylique
JP2004075848A (ja) * 2002-08-19 2004-03-11 Asahi Glass Co Ltd 導電性含フッ素共重合体組成物及びそれを用いた積層体
JP2007516314A (ja) * 2003-05-22 2007-06-21 ザイベックス コーポレーション ナノコンポジットおよびナノコンポジットに関する方法
US7956108B2 (en) * 2003-05-30 2011-06-07 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth, Near Dublin Product
US7241817B2 (en) * 2003-06-06 2007-07-10 Arkema France Process for grafting a fluoropolymer and multilayer structures comprising this grafted polymer
ES2299136T3 (es) * 2003-12-01 2008-05-16 Arkema France Utilizacion de una tuberia a base de polimero fluorado injertado por irradiacion para el transporte de gasolina en una estacion de servicio.
FR2864542B1 (fr) * 2003-12-29 2007-02-23 Arkema Procede de greffage de polymere fluore et structures multicouches comprenant ce polymere greffe
US7557154B2 (en) * 2004-12-23 2009-07-07 Sabic Innovative Plastics Ip B.V. Polymer compositions, method of manufacture, and articles formed therefrom
FR2870251B1 (fr) * 2004-05-11 2010-09-17 Arkema Materiaux composites a base de nanotubes de carbone et matrices polymeres et leurs procedes d'obtention
FR2876626B1 (fr) * 2004-10-19 2007-01-05 Arkema Sa Utilisation d'un polymere fluore pour proteger la surface d' un materiau inorganique contre la corrosion
FR2886708B1 (fr) * 2005-06-02 2007-08-17 Arkema Sa Utilisation de polymere fluore modifie pour le transport d'eau ou de gaz
JP2008542075A (ja) * 2005-06-02 2008-11-27 アーケマ・フランス 水またはガスの輸送用多層管
FR2892171B1 (fr) * 2005-10-13 2008-04-18 Arkema Sa Tube multicouche a base de polymere fluore modifie
FR2892172B1 (fr) * 2005-10-13 2007-12-14 Arkema Sa Tube multicouche a base de polymere fluore modifie
FR2893696B1 (fr) * 2005-11-24 2009-03-06 Arkema Sa Tube multicouche pour le transport d'eau ou de gaz
FR2896445B1 (fr) * 2006-01-25 2010-08-20 Arkema Film flexible a base de polymere fluore
US8585753B2 (en) * 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
EP2010388A2 (fr) * 2006-04-21 2009-01-07 Arkema France Structure multicouches présentant une couche composite de fluorure de polyvinylidène greffé
FR2908075B1 (fr) * 2006-11-07 2012-03-16 Arkema France Structure multicouche a base d'un polymere barriere eventuellement renforce a l'impact

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541343A1 (fr) * 2003-12-02 2005-06-15 Arkema Utilisation d'une structure à base de polymère fluoré greffé pour le stockage et le transport de produits chimiques
WO2006045636A1 (fr) * 2004-10-19 2006-05-04 Arkema France Tube a base d'elastomere vulcanise et d'un fluoropolymere modifie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196584A (ja) * 2015-04-03 2016-11-24 株式会社クレハ フッ化ビニリデン系樹脂組成物および成形物ならびにそれらの製造方法

Also Published As

Publication number Publication date
JP2010531380A (ja) 2010-09-24
US20100189946A1 (en) 2010-07-29
KR20100036267A (ko) 2010-04-07
EP2160444A1 (fr) 2010-03-10
CN101688039B (zh) 2014-05-07
BRPI0812976A2 (pt) 2014-12-16
CN101688039A (zh) 2010-03-31
FR2918067A1 (fr) 2009-01-02
FR2918067B1 (fr) 2011-07-01

Similar Documents

Publication Publication Date Title
WO2009007615A1 (fr) Matériau composite comprenant des nanotubes dispersés dans une matrice polymérique fluorée
EP2160275B1 (fr) Procédé d'imprégnation de fibres continues par une matrice polymérique composite renfermant un polymère fluoré greffé
US8231974B2 (en) Fluoropolymer molding method and molded article
US20110251331A1 (en) Use of nanotubes, especially carbon nanotubes, to improve the high temperature mechanical properties of a polymeric matrix
WO2009007617A2 (fr) Procede d'impregnation de fibres continues par une matrice polymerique composite renfermant un polymere thermoplastique
FR2946176A1 (fr) Fibre conductrice multicouche et son procede d'obtention par co-extrusion.
FR3010082A1 (fr) Procede de preparation d'une composition de polymeres fluores reticules
WO2010109118A1 (fr) Procede de preparation d'un materiau composite elastomerique a haute teneur en nanotubes
EP1995274A1 (fr) Procédé de préparation de pré-composites à base de nanotubes, notamment de carbone
EP3041898A1 (fr) Composition de polymeres fluores thermoplastiques pour les tubes off-shore
FR2594380A1 (fr) Materiau composite flexible renforce de fibres de verre utilisant une resine fluoree souple
FR2892171A1 (fr) Tube multicouche a base de polymere fluore modifie
FR2893696A1 (fr) Tube multicouche pour le transport d'eau ou de gaz
FR2935706A1 (fr) Composition fluoree pour tuyau offshore
BE1004682A3 (fr) Compositions a base de polyamides et objets faconnes a partir de ces compositions.
WO2018224583A1 (fr) Fibre multicouche de polymeres fluores
EP0554931B1 (fr) Matériaux plastiques formés de copolymères hétérogènes de fluorure de vinylidène et de chlortrifluoréthylène
EP1279685B1 (fr) Polymère du fluorure de vinylidène à fraction de chaînes non transférées et son procédé de fabrication
FR2886707A1 (fr) Utilisation d'un tube a base de polymere fluore greffe par irradiation pour le transport de fluides sous pression
FR2864542A1 (fr) Procede de greffage de polymere fluore et structures multicouches comprenant ce polymere greffe
FR3067364A1 (fr) Fibre multicouche de polymeres fluores
FR2893944A1 (fr) Copolymere greffe par du polyamide, materiau le contenant, procede de fabrication et utilisations
FR3052167A1 (fr) Composition a base de polymere fluore greffe et son utilisation pour limiter la proliferation batcterienne

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880022401.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08806113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008806113

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20097027066

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12666654

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010514069

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 297/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0812976

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091228