WO2008153170A1 - 電源システムおよびそれを備えた車両、ならびに充放電制御方法 - Google Patents

電源システムおよびそれを備えた車両、ならびに充放電制御方法 Download PDF

Info

Publication number
WO2008153170A1
WO2008153170A1 PCT/JP2008/060933 JP2008060933W WO2008153170A1 WO 2008153170 A1 WO2008153170 A1 WO 2008153170A1 JP 2008060933 W JP2008060933 W JP 2008060933W WO 2008153170 A1 WO2008153170 A1 WO 2008153170A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
unit
power
storage unit
charging
Prior art date
Application number
PCT/JP2008/060933
Other languages
English (en)
French (fr)
Inventor
Takahide Iida
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2008800203969A priority Critical patent/CN101682204B/zh
Priority to KR1020107000869A priority patent/KR101135656B1/ko
Priority to US12/451,534 priority patent/US8682517B2/en
Priority to EP08765626A priority patent/EP2159897B1/en
Publication of WO2008153170A1 publication Critical patent/WO2008153170A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power supply system equipped with a plurality of chargeable / dischargeable power storage units, a vehicle including the power supply system, and a charge / discharge control method for the power supply system, and in particular, to maintain a high accuracy in estimating a charge state value.
  • a hybrid vehicle that travels by efficiently combining an engine and an electric motor has been put into practical use.
  • Such a hybrid vehicle is equipped with a chargeable / dischargeable power storage unit that supplies electric power to the motor when starting or accelerating to generate driving force, while the kinetic energy of the vehicle is used when driving downhill or braking. Is recovered as electricity.
  • a configuration for charging a power storage unit to be mounted with electric power from an external power source such as a commercial power source has been proposed.
  • an external power source such as a commercial power source
  • By charging the power storage unit in advance using an external power supply in this way it is possible to run while the engine is stopped for relatively short distances such as commuting and shopping, so that overall fuel consumption Efficiency can be improved.
  • Such a travel mode is also referred to as an EV (Electric Vehicle) travel mode.
  • a method for estimating the SOC of each power storage unit a method is known that utilizes the fact that the SOC of the power storage unit has a certain relationship with the open-circuit voltage. More specifically, it is a method of measuring the open-circuit voltage of the target storage unit and determining the SOC corresponding to the measured open-circuit voltage by referring to the relational characteristics acquired experimentally in advance. .
  • the change in the open-circuit voltage at the SOC in the practical range is relatively small. That is, the change in the open-circuit voltage is small compared to the change in SOC of the power storage unit. Therefore, sufficient estimation accuracy cannot be obtained only by measuring the open-circuit voltage. Therefore, in order to further improve the SOC estimation accuracy, it is often the case that the SOC obtained by measuring the open-circuit voltage as described above is corrected sequentially based on the integrated value of the charge / discharge amount of the power storage unit. ing.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a power supply system capable of increasing the estimation accuracy of the SOC of the power storage unit, a vehicle including the power supply system, and charge / discharge control. Is to provide a method.
  • a power supply system includes a plurality of power storage units, a plurality of voltage conversion units respectively associated with the plurality of power storage units, a power line pair in which the plurality of voltage conversion units are connected in parallel to each other, and charging A state estimation unit that estimates a charge state value of each of the plurality of power storage units, and a control unit.
  • the charging unit receives power from an external power source and charges a plurality of power storage units.
  • the state estimation unit sequentially calculates the charge state values of the plurality of power storage units based on the integrated value of the charge / discharge amount of each power storage unit, and the control unit controls voltage conversion operations in the plurality of voltage conversion units. To do.
  • control unit controls the corresponding voltage conversion unit so that the first power storage unit among the plurality of power storage units is discharged when the plurality of power storage units are made chargeable by an external power source. At least the remaining power storage unit The corresponding voltage converter is controlled so as to be charged with the discharge current from the first power storage unit.
  • the state estimator is configured to perform a first operation during a period in which the plurality of power storage units can be charged by an external power source.
  • the charge state value of the first power storage unit is reset to a reference value.
  • the corresponding voltage conversion unit is controlled to discharge a predetermined current from the first power storage unit. And based on the voltage value of the 1st electrical storage part which arises by this discharge current, the charge state value of the 1st electrical storage part calculated sequentially by the state estimation part is reset to a reference value. For this reason, even if an error caused by the integrated value of the charge / discharge amount occurs in the charge state value of the first power storage unit, it can be reset (calibrated) before external charging. As a result, the estimated accuracy of the SOC of the power storage unit can be increased.
  • the state estimation unit resets the charge state value of the first power storage unit to a reference value at a predetermined timing based on a temporal change in the discharge voltage of the first power storage unit.
  • the control unit corresponds to the corresponding voltage so that the first power storage unit is charged with the charging current from the charging unit.
  • the corresponding voltage conversion unit is controlled so that the charging current for the first power storage unit becomes larger than the charging current for the remaining power storage unit.
  • the charging unit is electrically connected between the first power storage unit and the power conversion unit corresponding to the first power storage unit.
  • the power supply system further includes a request generation unit that generates a reset request for the first power storage unit based on a charge / discharge frequency of the first power storage unit.
  • the control unit starts discharging from the first power storage unit during charging by the external power source.
  • the request generation unit can select the power storage unit that is the target of the reset request based on the charging frequency of each of the plurality of power storage units.
  • the power supply system is configured to be able to supply power to the load device (MG 2) electrically connected via the power line pair, and the control unit responds to the reset request and stores a plurality of power storage devices.
  • the plurality of power conversion units are arranged so that the discharge current from the power storage unit to the load device is larger than the discharge current from each of the remaining power storage units to the load device.
  • a vehicle according to another aspect of the present invention includes an engine, a plurality of power storage units, a plurality of voltage conversion units respectively associated with the plurality of power storage units, and a power line pair in which the plurality of voltage conversion units are connected in parallel to each other.
  • a charging unit receives power from an external power source and charges a plurality of power storage units.
  • the electric motor is connected to the pair of power lines and can generate driving force by receiving electric power from a plurality of power storage units.
  • the power generation unit is connected to the power line pair and can generate power by receiving driving force from the engine.
  • the state estimation unit sequentially calculates the charge state values of the plurality of power storage units based on the integrated value of the charge / discharge amount of each power storage unit.
  • the control unit controls voltage conversion operations in the plurality of voltage conversion units.
  • the request generation unit generates a reset request for one power storage unit among the plurality of power storage units based on the charge / discharge frequency of the plurality of power storage units.
  • the vehicle includes a first traveling mode in which charging of the plurality of power storage units by the power generation unit is restricted, and a plurality of power storage units by the power generation unit so that a charging state value of each power storage unit is maintained within a predetermined range. It is possible to drive by selecting a second driving mode that controls charging with respect to. Further, when a reset request is issued, the control unit causes a discharge current from the target power storage unit to which the reset request is issued to the electric motor from each of the remaining power storage units to the electric motor during traveling in the first travel mode.
  • the plurality of power converters are controlled so as to increase in comparison with the discharge current.
  • the control unit controls the corresponding voltage conversion unit so that the target power storage unit is discharged when the plurality of power storage units are made to be charged by an external power source.
  • the corresponding voltage conversion unit is controlled such that the remaining power storage unit is charged with at least the discharge current from the target power storage unit.
  • the state estimating unit resets the charge state value of the target power storage unit to the reference value based on the voltage value of the target power storage unit during a period in which the plurality of power storage units can be charged by the external power source.
  • a charging / discharging control method for a power supply system including a plurality of power storage units includes a plurality of voltage conversion units respectively associated with a plurality of power storage units, a power line pair in which the plurality of voltage conversion units are connected in parallel to each other, and a plurality of power storage units receiving power from an external power source.
  • the charge / discharge control method includes a step of sequentially calculating respective charge state values of a plurality of power storage units based on an integrated value of a charge / discharge amount of each power storage unit, and charging the plurality of power storage units by an external power source.
  • the corresponding voltage conversion unit When the power storage is enabled, the corresponding voltage conversion unit is controlled so as to be discharged from the first power storage unit among the plurality of power storage units, and at least the remaining power storage unit is discharged from at least the first power storage unit.
  • the step of controlling the corresponding voltage conversion unit to be charged with current and the period in which the plurality of power storage units are in a state of being chargeable by an external power source based on the voltage value of the first power unit Resetting the state of charge of the power storage unit to a reference value.
  • FIG. 1 is an overall configuration diagram for charging a vehicle equipped with a power supply system according to an embodiment of the present invention with an external power supply.
  • FIG. 2 is a schematic configuration diagram of a vehicle including the power supply system according to the embodiment of the present invention.
  • FIG. 3 is a block diagram showing a control structure in the control device according to the embodiment of the present invention.
  • FIG. 4 is a block diagram showing a more detailed control structure in the request generation unit shown in FIG.
  • FIG. 5 is a block diagram showing a more detailed control structure in the state estimation unit shown in FIG.
  • FIG. 6 is a diagram showing an example of a characteristic change in the battery voltage detected by the detection unit shown in FIG.
  • 7A and 7B are diagrams for explaining the current flow during the reset operation.
  • FIG. 8 is a diagram illustrating an example of a temporal change in SOC of the power storage unit.
  • FIG. 9 is a diagram illustrating an example of a temporal change in the battery current of the power storage unit corresponding to FIG.
  • FIG. 10 is a flowchart showing a processing procedure of the reset operation according to the embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram for charging vehicle 100 having an electric power supply system according to the embodiment of the present invention with an external power supply.
  • vehicle 100 is typically a hybrid vehicle, and includes an engine and an electric motor (motor generator) as will be described later.
  • the vehicle is controlled to the optimal ratio.
  • the vehicle 100 is equipped with a plurality of power storage units for supplying electric power to the motor generator.
  • These power storage units can be charged in response to the power generated by the operation of the engine when the vehicle 100 is in the system start-up state (hereinafter also referred to as the “IG on state”), and the vehicle 100 is in a system stop state. (Hereinafter, also referred to as “IG off state”), the battery can be charged by being electrically connected to an external power source via the connector portion 3 50.
  • IG on state system start-up state
  • IG off state the battery can be charged by being electrically connected to an external power source via the connector portion 3 50.
  • the connector unit 35 50 typically constitutes a coupling mechanism for supplying external power such as commercial power to the vehicle 100, and the charging station 300 via a power line PSL made of a cap tire cable or the like. Connected. Connector portion 35 0 is connected to vehicle 100 at the time of external charging, and electrically connects an external power source and a charging portion (not shown) mounted on vehicle 100. On the other hand, vehicle 100 is provided with a connector receiving portion (not shown) that is connected to connector portion 350 and receives an external power supply.
  • the charging station 300 supplies a part of the commercial power supplied to the house 30 2 through the commercial power supply line PS to the connector unit 3 5 0.
  • the charging station 300 may include a storage mechanism for the connector part 3500 and a power line PSL scavenging mechanism (both not shown) that ties with the connector part 3500.
  • the charging station 300 may include a security mechanism or a charging mechanism for the user.
  • charging station 300 may include a mechanism for communicating with vehicle 100.
  • the external power supplied to vehicle 100 via connector 350 may be power generated by a solar panel installed on the roof of house 302 instead of, or in addition to, commercial power. Good. ,
  • FIG. 2 is a schematic configuration diagram of vehicle 100 including the power supply system according to the embodiment of the present invention.
  • FIG. 2 shows a vehicle 100 including two power storage units 4-1 and 4-2 as a representative example of a vehicle including a plurality of power storage units.
  • power storage units 4-1 and 4-2 are also referred to as BAT 1 and BAT 2, respectively.
  • vehicle 100 includes an engine (ENG) 18, a first motor generator MG 1, and a second motor generator MG 2 as drive power sources, which are divided into power split mechanism 22. It is mechanically connected via. Then, according to the running state of the vehicle 100, the driving force is distributed and combined among the three parties via the power split mechanism 22, and as a result, the driving wheels 24F are driven.
  • ENG engine
  • power split mechanism 22 divides the driving force generated by operation of engine 18 into two parts and distributes one of them to first motor generator MG 1 side. At the same time, the remaining part is distributed to the second motor generator MG2.
  • the driving force distributed from the power split mechanism 22 to the first motor generator MG 1 side is used for power generation, while the driving force distributed to the second motor generator MG 2 side is generated by the second motor generator MG 2. It is combined with the driving force that is used to drive the drive wheel 24 F.
  • the first inverter (I NV 1) 8-1 and the second inverter (I NV 2) 8-2 associated with the motor generators MG 1 and MG 2 respectively generate DC power and AC power. Convert between each other. Mainly, the first inverter 8-1 converts the AC power generated by the first motor generator MG 1 into DC power in response to the switching command PWM1 from the control device 2, and outputs it to the positive bus MP L and the negative bus MN L. Supply. On the other hand, the second inverter 8-2 is connected directly to the positive bus MP L and the negative bus MNL in response to the switching command PWM 2 from the control device 2. The flowing power is converted to AC power and supplied to the second motor generator MG2.
  • vehicle 100 includes, as a load device, second motor generator MG 2 that can receive electric power from power storage units 4 _ 1 and 4-2 and generate a driving force, and is driven from engine 18.
  • the first motor generator MG1 which is a power generation unit that can generate power by receiving power, is provided.
  • the first power storage unit 4 1 1 and the second power storage unit 4 1 2 are both power storage elements that can be charged and discharged. Typically, they are secondary batteries such as lithium-ion batteries and nickel-hydrogen batteries, or electric double layers. It consists of power storage elements such as capacitors. Between the first power storage unit 4-1 and the first inverter 8-1, a first converter (CONV1) 6-1 capable of bidirectionally converting a DC voltage is disposed. The I / O voltage of 1 and the line voltage between the positive bus MP L and the negative bus MNL are boosted or lowered. Similarly, a second converter (CONV2) 6-2 capable of converting a DC voltage in both directions is arranged between the second power storage unit 4-2 and the second inverter 8-2.
  • CONV1 6-1 capable of bidirectionally converting a DC voltage
  • CONV2 capable of bidirectionally converting a DC voltage
  • the input / output voltage of section 4 1-2 and the line voltage between positive bus MPL and negative bus MNL are boosted or lowered mutually. That is, converters 6-1 and 6-2 are connected in parallel to positive bus MP L and negative bus MNL, which are power line pairs.
  • the step-up / step-down operations in the comparators 6-1 and 6-2 are controlled according to the switching commands PWC 1 and PWC 2 from the control device 2, respectively.
  • the control device 2 is typically an electronic control mainly composed of a CPU (Central Processing Unit), a storage unit such as RAM (Random Access Memory) and ROM (Read Only Memory), and an input / output interface unit. It consists of equipment (ECU: Electronic Control Unit). Then, the control device 2 executes control related to vehicle running (including internal charging) and external charging when the CPU reads a program stored in advance in a ROM or the like into the RAM and executes it.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • ECU Electronic Control Unit
  • Fig. 2 shows the battery currents I bat 1 and I bat from the current sensors 1 ⁇ —1 and 10—2 inserted in the positive lines PL 1 and PL 2, respectively.
  • Power storage unit 4-1 and 4 1 Temperature sensors located in close proximity to 2 1 1 1 1 and 1 1—Battery temperature from 1—2 Tb at 1 and Tb at 2
  • Bus current I from current sensor 14 inserted in positive bus MPL I DC, the bus voltage VDC from the voltage sensor 16 arranged between the positive bus MP L and the negative bus MNL is illustrated.
  • Control device 2 continuously estimates the state of charge (SO C: State Of Charge; hereinafter, also simply referred to as “SOC”) of power storage units 4-1 and 4-2.
  • SOC can also be expressed as the absolute value of the charge amount of the battery (unit [A ⁇ h], etc.). In this specification, SOC is the ratio of the actual charge to the charge capacity of the battery (0 ⁇ 100%). More specifically, the control device 2 sequentially calculates the SOC of the power storage unit 4_1 based on the integrated value of the charge / discharge amount of the power storage unit 41 and determines the charge / discharge amount of the power storage unit 4-2. Based on the integrated value, the SOC of power storage unit 4-2 is calculated sequentially. Note that the integrated value of the charge / discharge amount can be obtained by temporally integrating the product (electric power) of the battery voltage and battery current of the corresponding power storage unit.
  • Vehicle 100 further includes a connector receiving unit 150 and a charging unit 30 as a configuration for externally charging power storage units 4-1 and 4-1 2.
  • connector unit 350 is connected to connector receiving unit 150, so that external power can be supplied via positive charging line CPL and negative charging line CNL. Power from the source is supplied to the charging unit 30.
  • the connector receiving portion 150 also includes a connection detection sensor 150a for detecting the connection state between the connector receiving portion 150 and the connector portion 350. The connection detection signal 150 from the connection detection sensor 150a Therefore, the control device 2 detects that the external power supply can be charged.
  • a single-phase AC commercial power source is used as an external power source is illustrated.
  • the “state that can be charged by an external power source” typically means a state in which the connector portion 350 is physically inserted into the connector receiving portion 150.
  • a configuration may be adopted in which electric power is supplied by electromagnetically coupling an external power source and the vehicle in a non-contact manner.
  • a primary coil is provided on the external power supply side
  • a secondary coil is provided on the vehicle side, and power is supplied using mutual inductance between the primary coil and the secondary coil.
  • the “depressed state that can be charged from an external power source” means a state in which the primary coil and the secondary coil are aligned.
  • Charging unit 30 is a device for receiving power from an external power source and externally charging power storage units 4 1 1 and 4 1 2. Positive line PL 1 and negative line NL 1 and positive charging line CPL and Arranged between the negative charge line CNL. That is, charging unit 30 is electrically connected between first power storage unit 41 and first converter 6-1 corresponding to first power storage unit 41.
  • charging unit 30 includes a current control unit 30 a and a voltage conversion unit 30 b, and converts power from an external power source into power suitable for charging power storage units 4-1 1 and 4-2.
  • the voltage conversion unit 3 Ob is a device for converting the supply voltage of the external power source into a voltage suitable for charging the power storage units 4 1 1 and 4 1 2. It consists of a wound-type transformer with a ratio and an AC-AC switching regulator.
  • the current control unit 30 0 a rectifies the AC voltage after voltage conversion by the voltage conversion unit 30 b to generate a DC voltage, and in accordance with the charging current command I ch * from the control device 2, Charge current supplied to power storage units 4 1 1 and 4 1 2 is controlled.
  • the current control unit 30 a is typically composed of a single-phase bridge circuit or the like.
  • the charging unit 30 may be realized by an AC-DC switching regulator or the like instead of the configuration including the current control unit 30 a and the voltage conversion unit 30 b.
  • control device 2 provides a reset request to power storage units 4-1 and 4-1 based on the charge / discharge frequencies of power storage units 4-1 and 4-2.
  • SOC 1 reset request and “SOC 2 reset request”, respectively.
  • the SOC reset operation is executed during a period in which charging is possible with an external power supply.
  • the control device 2 controls the corresponding converter (for example, the first converter 6-1) so that the power storage unit to be reset (for example, the first power storage unit 4-1) is discharged, Control the corresponding converter (for example, the second comparator 6-2) so that the remaining power storage unit (for example, the second power storage unit 4-12) is charged with at least the discharge current from the power storage unit to be reset.
  • the corresponding converter for example, the first converter 6-1 so that the power storage unit to be reset (for example, the first power storage unit 4-1) is discharged
  • Control the corresponding converter for example, the second comparator 6-2) so that the remaining power storage unit (for example, the second power storage unit 4-12) is charged with at least the discharge current from the power storage unit to be reset.
  • control device 2 resets the SOC of the power storage unit to be reset to a reference value (for example, 5%) based on the voltage of the power storage unit to be reset. More specifically, the SOC is reset to the reference value at a predetermined timing based on the temporal change of the discharge voltage in the power storage unit to be reset. As an example of the temporal change of the discharge voltage, as will be described later, it is a characteristic point of the battery voltage that changes (decreases) with the discharge of the power storage unit. Alternatively, the SOC may be reset to the reference value when the voltage of the power storage unit to be reset falls below a predetermined threshold fit.
  • the reference value may be set in advance based on the characteristic value of the power storage unit, or may be set dynamically in accordance with the usage status of the battery.
  • control device 2 charges (externally charges) the power storage unit to be reset with a charging current from charging unit 30.
  • the corresponding converter is controlled so that the charging current becomes larger than the charging current for the remaining power storage unit. This optimizes the charging current for each of the power storage units 41-1 and 4_2 so that they can complete external charging almost simultaneously.
  • vehicle 100 is a hybrid vehicle, and can travel and charge power storage units 4-1 and 4-2 with the driving force from engine 18.
  • power storage units 4 1 1 and 4 1 2 are externally charged and used, it is preferable to run with engine 18 stopped as much as possible. Therefore, the vehicle 100 is configured to be able to travel by selecting an EV (Electric Vehicle) travel mode and an HV (Hybrid Vehicle) travel mode.
  • EV Electric Vehicle
  • HV Hybrid Vehicle
  • vehicle 100 travels mainly only with the driving force from second motor generator MG 2 until each SOC of power storage units 4-1 and 4-2 falls below a predetermined value.
  • the engine The first motor generator MG 1 using the driving force of 18 does not perform the power generation operation, and the internal charging of the power storage units 4 1 1 and 4 1 2 is limited.
  • the EV drive mode is intended to improve the fuel consumption efficiency by maintaining the engine 1 '8 in a stopped state.
  • the catalyst warm-up The engine 18 may be started when a request unrelated to the driving force request such as a time or an air conditioning request is given, or when other conditions are satisfied.
  • the driving mode is switched to HV driving mode.
  • HV traveling mode the vehicle 100 is operated so that the SOCs of the power storage units 4-1 and 4-2 are both maintained within a predetermined range centered on a predetermined control center value. 1
  • the power generation operation by motor generator MG 1 is controlled.
  • the engine 18 starts operating. A part of driving force generated by the operation of the engine 18 is also used for traveling of the vehicle 100.
  • control device 2 determines that any one of the power storage units needs to be reset, power storage unit to be reset while vehicle 100 before external charging is traveling in the EV travel mode. Is positively discharged. Specifically, control device 2 compares the discharge current from the power storage unit to be reset to second motor generator MG2 with the discharge current from the remaining power storage unit to second motor generator MG2. Control each converter to increase. In EV driving mode, power is basically discharged from power storage units 4-1 and 4-12, so the reset operation can be speeded up by discharging one of the power storage units preferentially.
  • the power storage units 4 1 1 and 4-2 correspond to “a plurality of power storage units”, and the converters 6-1 and 6-2 Correspond to ⁇ multiple voltage converters '', positive bus MPL and negative bus MN correspond to ⁇ power line pair '', charging unit 30 corresponds to ⁇ charging unit '', second motor generator MG 2 to ⁇ load “Equipment” and “electric motor”, engine (ENG) 18 corresponds to “engine”, and first motor generator MG 1 corresponds to “power generation section”.
  • Ma “EV driving mode” force S corresponds to “first driving mode”
  • “HV driving mode” corresponds to “second driving mode”.
  • FIG. 3 is a block diagram showing a control structure in control device 2 according to the embodiment of the present invention. Each functional block shown in FIG. 3 is typically realized by the control device 2 executing a program stored in advance, but some or all of the functions may be implemented as dedicated hardware. Yo!
  • control device 2 includes request generation unit 2 0 2, state estimation unit 2 0 4, total output calculation unit 2 0 6, distribution unit 2 0 8, and converter control unit 2 1 0. And an inverter control unit 2 1 2 as functions thereof.
  • Request generation unit 20 2 generates a reset request for power storage units 4_1 and 4-2 based on the charging frequency of power storage units 4-11 and 4-12.
  • FIG. 4 is a block diagram showing a more detailed control structure in request generation unit 202 shown in FIG.
  • request generation unit 2 0 2 has a reset request determination unit 2 2 1 and an integration unit 2 2 as a function block for generating a SOC 1 reset request to first power storage unit 4-1. 2 and including. Further, request generation unit 20 2 includes a reset request determination unit 2 3 1 and an integration unit 2 3 2 as function blocks for generating a S OC 2 reset request for power storage unit 4-2.
  • the reset request determination unit 2 2 1 typically determines whether or not to generate a SOC 1 reset request based on the number of accumulated external charging starts and the travel distance. Specifically, the signal for starting external charging based on the connection signal CON from the connection detection sensor 15 50 a (Fig. 2) is integrated by the integration unit 2 2 2, and the number of integrations is determined by the reset request determination unit 2 2 Input to 1.
  • the reset request determination unit 2 2 1 receives a travel distance from a vehicle speed sensor (not shown). Then, the reset request determination unit 2 2 1 has a predetermined threshold value (for example, 10 times of external charging or 100 km travel, etc.) since the previous SOC 1 reset request is generated. ) To determine whether or not If the threshold is exceeded, a SOC 1 reset request is generated.
  • the reset request determination unit 221 reflects the influence of the error due to external charging based on the number of times of external charging, and the mileage Based on the above, the effect of error due to internal charging is reflected.
  • the reset request determination unit 221 and the reset request determination unit 231 may be coordinated so that the SOC 1 reset request and the SOC 2 reset request do not occur simultaneously.
  • the SO C 1 reset request and the SOC 2 reset request may be generated alternately.
  • the state estimation unit 204 is configured to store the power storage unit based on the battery temperatures T bat 1 and T bat 2, the battery currents I batl and I bat 2, the battery voltages V bat 1 and Vbat 2, etc. 4 1 Estimate the SOC for each of 1 and 4_2.
  • the state estimation unit 204 includes a SOC 1 calculation unit 204 a that calculates SOC 1 of the first power storage unit 4-1 and a SOC 2 calculation unit that calculates SOC 2 of the second power storage unit 4-2. Including 204 b.
  • FIG. 5 is a block diagram showing a more detailed control structure in state estimating section 204 shown in FIG.
  • SOC 1 operation unit 204a includes multiplication unit 241, multiplication unit 242, division unit 243, addition unit 244, register 245, delay unit 246, and detection unit 247.
  • the SOC 2 calculation unit 204 b includes a multiplication unit 251, an accumulation unit 252, a division unit 253, an addition unit 254, a register 255, a delay unit 256, and a detection unit 257.
  • the SOC 1 calculation unit 204a and the SOC 2 calculation unit 204b sequentially calculate the SOC of each power storage unit based on the integrated value of the charge / discharge amount of the corresponding power storage unit.
  • the multiplication unit 241 multiplies the battery voltage V batl and the battery current I bat 1 to calculate the instantaneous charging / discharging amount (electric power) of the power storage unit 41, and the integration unit 242 Integrate the quantity over the computation period ⁇ t. Further, the dividing unit 243 calculates the accumulated value I batl-Vb atl-At of the charge / discharge amount integrated by the accumulating unit 242. 4 1 Charge capacity of 1 Divide by Cb 1. That is, the calculation result output from the division unit 243 means the rate of change of SOC 1 in the latest calculation cycle ⁇ t.
  • the register 245 holds and outputs S OC 1 (t), which is the SOC of the power storage unit 4-1 in each calculation cycle. Further, the delay unit 246 holds and outputs SOC 1 (t ⁇ t) obtained by delaying the SOC 1 (t) held and output from the register 245 by the calculation cycle ⁇ t. Then, the addition unit 244 adds SOC 1 (t ⁇ A t) one calculation cycle before to the rate of change of SO C 1 output from the division unit 243, so that SOC 1 (t ) Is calculated.
  • the SOC 1 calculation unit 204a sequentially calculates the SOC 1 of the first power storage unit 4-1, based on the integrated value of the charge / discharge amount of the first power storage unit 41-1.
  • SOC 2 calculation unit 204b sequentially calculates SOC 2 of second storage unit 4-2 based on the integrated value of the charge / discharge amount of second storage unit 4_2. To do.
  • the detection unit 247 responds to the SOC 1 reset request from the request generation unit 202 (FIG. 3) based on the temporal change of the battery voltage Vb at 1 (during discharging) of the first power storage unit 4-11.
  • SOC1 which is sequentially calculated, is reset to SOC1 (reference), which is a predetermined reference value, at a predetermined timing. More specifically, when a SOC 1 reset request is issued, active discharge to the first power storage unit 4 _ 1 is started, so the battery voltage Vbat1 of the first power storage unit 4-1 is temporally descend.
  • the detection unit 247 detects a characteristic change that occurs when the battery voltage Vb at 1 decreases with time, and forcibly inputs SOC 1 (reference) to the register 245.
  • the detection unit 257 responds to the SOC 2 reset request from the request generation unit 202 (FIG. 3) and the time of the battery voltage V bat 2 (during discharge) of the second power storage unit 4-12.
  • SOC2 which is calculated sequentially, is reset to SOC2 (reference), which is a predetermined reference value, at a predetermined timing based on the change in the environment.
  • FIG. 6 is a diagram showing an example of characteristic changes in battery voltages V b at 1 and Vb at 2 detected by detection units 247 and 257 shown in FIG. 5, respectively.
  • the battery voltages Vb at 1 and Vb at 2 are collectively referred to as “Vb at”
  • SO C 1 and S OC 2 are collectively referred to as “SOC”.
  • power storage unit 4_1 and nickel-metal hydride battery typically There is a certain correspondence between SOC and battery voltage Vbat at 4-2. Particularly in a nickel metal hydride battery, there is a flat region 280 in which the change in battery voltage Vbat is small with respect to the change in SOC. This flat region 280 overlaps with the HV control range, which is the range in which the SOC of power storage units 4-1 and 4-1 2 should be maintained in the above-described HV travel mode. Therefore, in this flat region 280, it is difficult to detect characteristic changes of power storage units 4-1 and 4-1.
  • the detection units 247 and 257 continuously monitor the battery voltages Vb at 1 and Vb at 2 that change with time due to the discharge of the corresponding power storage units 4 _ 1 and 4-2, respectively, Calculate the amount of change in battery voltage Vb at 1 and Vb at 2 over time.
  • the detectors 247 and 257 reset the corresponding SOC 1 and SOC 2 to the corresponding SOC (reference) at that timing.
  • the discharge current from power storage unit 4-1 or 4 1 2 must be a constant value. preferable.
  • total output calculation unit 206 calculates a total output necessary for traveling of vehicle 100 in accordance with the driver request and the driving situation.
  • the driver request includes the accelerator pedal depression amount, the brake pedal depression amount, the shift lever position (all not shown), and the like.
  • the traveling state includes information indicating that the vehicle 100 is accelerating or decelerating. Then, the total output calculation unit 206 determines the engine speed and the like according to the driving force of the engine 18 necessary for providing the total output. In addition, the total output calculation unit 206 The result is also transmitted to the distribution unit 2 0 8.
  • the distribution unit 20 8 calculates the torque and rotation speed of the motor generators MG 1 and MG 2 according to the calculation result from the total output calculation unit 20 6, and sends the control command to the inverter control unit 2. At the same time as output to 1 2, a control command corresponding to the power supply and demand in vehicle 1 100 is output to converter control unit 2 1 0.
  • Inverter control unit 2 1 2 generates switching commands P WM 1 and P WM 2 for driving motor generators MG 1 and MG 2 in accordance with the control commands from distribution unit 2 08.
  • the switching commands PWM 1 and P WM 2 are output to inverters I N V 1 and I N V 2, respectively.
  • Converter control unit 2 10 is in a state so that predetermined discharge power is supplied from power storage units 4-1 and 4-2 to second motor generator MG 2 in response to a control command from distribution unit 20 8. With reference to SOC 1 and SOC 2 calculated by the estimation unit 204, the share ratio of the discharge power is determined. Then, converter control unit 2 10 generates switching commands PWC 1 and P WC 2 so that electric power to be shared from power storage units 4 1 1 and 4-2 is discharged, respectively. In accordance with the switching commands PWC 1 and P WC 2, converters 6-1 and 6-2 perform voltage conversion operations, respectively, to control the discharge power (discharge current) of power storage units 4-1 and 4-1 2.
  • the switching commands PWC 1 and P WC 2 perform voltage conversion operations, respectively, to control the discharge power (discharge current) of power storage units 4-1 and 4-1 2.
  • converter control unit 210 controls the voltage conversion operation in converters 6-1 and 6-2 when the reset operation in power storage unit 4_1 or 4-2 is executed. Specifically, when a SOC 1 reset request or a SOC 2 reset request occurs in the request generation unit 2 0 2, the converter control unit 2 1 0 actively discharges the power storage unit targeted for the reset request.
  • converter control unit 210 first controls the corresponding converter so that an appropriate amount of current is discharged from the power storage unit to be reset, and at least the remaining power storage unit has at least the reset target.
  • the corresponding converter is controlled so that it is charged with the discharge current from the power storage unit.
  • FIG. 7A and FIG. 7B are diagrams for explaining the current flow during the reset operation.
  • Figure 7A shows the case when a SOC 1 reset request occurs.
  • Figure 7B shows the case when a SOC 2 reset request occurs.
  • first converter 6-1 when a SOC 1 reset request is generated and charging is possible by an external power supply, first converter 6-1 has at least discharge current I dis from first power storage unit 4-1.
  • the voltage conversion operation is performed so that the second power storage unit 4-12 is charged by 1. That is, the first converter 6-1 performs a boost operation using the discharge current I d i s 1 as a current target value.
  • second converter 6-2 performs a step-down operation so that a current value substantially the same as a current value flowing through first comparator 6-1 is supplied to second power storage unit 4-2.
  • the first power storage unit 4-11 continues discharging until a characteristic time change occurs in the battery voltage Vb at 1, that is, until S OC 1 is reset.
  • the allowable charging current value of the second power storage unit 4 1-2 is larger than the discharge current I d i s 1, the difference may be compensated by the charging current I ch from the charging unit 30.
  • the charging unit 30 supplies a charging current I ch and performs a boosting operation using the first converter 6-1 force S (I d i s 1+ I ch) as a current target value.
  • (I d i s 1 + 1 c h) corresponds to the charge allowable current value of the second power storage unit 4-2.
  • the second power storage unit 4-2 is charged with (I d i s 1+ I c h).
  • second converter 6 _ 2 when a SOC 2 reset request is generated and charging is possible by an external power supply, second converter 6 _ 2 is discharged at least from second power storage unit 4-2.
  • the voltage conversion operation is performed so that the first power storage unit 4-1 is charged by the current I dis2. That is, second converter 6-2 performs a boosting operation using I d i s 2 as a current target value.
  • first converter 6-1 performs a step-down operation so that a current value substantially the same as a current value flowing through second converter 6-2 is supplied to first power storage unit 41.
  • the second power storage unit 4 one 2 continues discharging until the battery voltage Vb at 2 until occurs between change time characteristic, i.e. SOC 2 is reset, FIG 7 A Similarly, when the charge allowable current value of the first power storage unit 4-1 is larger than the discharge current I dis 2, the difference may be compensated by the charge current I ch from the charging unit 30. As shown in FIGS. 7A and 7B, during the reset operation, the charging power of the first power storage unit 4-1 moves to the second power storage unit 4-2, or the second power storage unit 4— The charging power of 2 moves to the first power storage unit 4-1. For this reason, the reset operation start condition may be that the total SOC of the first power storage unit 41 and the second power storage unit 41 is not more than 100%.
  • the reset operation may be started under the condition that the remaining charging power of the power storage unit to be reset can be stored in the remaining power storage unit. This is because if the power stored in the power storage unit to be reset cannot be charged by the remaining power storage unit, it must be consumed by some load. In such a case, for example, electric power may be consumed by air conditioning in the passenger compartment.
  • the compactor control unit 21 is charged with the charging current from the charging unit 30 so that the charging of each power storage unit by the external power supply is almost completed at the same time.
  • the corresponding converter is controlled, and the corresponding converter is controlled such that the charging current is larger than the charging current for the remaining power storage unit.
  • the converter control unit 2 1 0 charges the power storage unit to be reset with a larger amount of charging current, thereby completing the charge completion time with the remaining power storage unit that was not the reset target. It is suppressed that there is a difference.
  • the converter control unit 2 1 0 Controls converters 6-1 and 6-2 so that the discharge current from the power storage unit to be reset is larger than the discharge current from the remaining power storage unit. This is because the reset operation can be performed quickly by lowering the SOC of the power storage unit to be reset in advance at the start of external charging.
  • Fig. 8 is a diagram showing an example of the temporal change in SOC of power storage units 4-1 and 4-12.
  • FIG. 9 is a diagram illustrating an example of a temporal change in the battery current of power storage units 4 1 1 and 4-2 corresponding to FIG.
  • vehicle 100 starts to travel at time t 1.
  • power storage units 4-1 and 4-2 are both fully charged externally, and both SOCs are fully charged.
  • the vehicle 100 first starts traveling in the EV traveling mode (time t1 to time t2).
  • a reset request (SOC 1 reset request) is issued to the first power storage unit 4-1
  • current control is performed so as to positively discharge the first power storage unit 4-1.
  • the target value of the discharge current of the first power storage unit 4-11 is set to I dis C
  • the target value for the discharge current of 2 is set to I dis A.
  • the SOC of the first power storage unit 4-1 shows a larger decrease than the SOC of the second power storage unit 4 1-2.
  • the vehicle 100 has finished traveling and can be charged by an external power source.
  • the SOC is maintained higher than the reference SOC (for example, 5%) at which the characteristic point appears in the battery voltage.
  • the reset operation itself is executed during a period in which the battery can be charged by the external power supply.
  • the EV operation mode or the EV operation mode is switched to the HV operation mode.
  • the SOC of the power storage unit to be reset (in this case, the first power storage unit 4-1) is maintained higher than the reference SOC.
  • the discharge current of the first power storage unit 4-1 to be reset is maintained at a constant current value dis B as shown in FIG.
  • the second power storage unit 4-1 that is not present is charged with a charging current I chB including at least the discharge current I dis B of the first power storage unit 4_1.
  • this charging current I ch B may also include a charging current from the charging unit 30 in addition to the discharging current I di s B from the first power storage unit 41.
  • the first power storage unit 4-1 is continuously discharged at a constant current value dis B.
  • a characteristic point appears in the battery voltage (discharge voltage) of the first power storage unit 41 at time t 3.
  • the estimated value of SOC of the first power storage unit 4 11 is reset to a predetermined reference value (for example, 5%).
  • the original external charging starts.
  • the first power storage unit 4_1 is charged with the charging current I c h C
  • the charging current of the second power storage unit 4_2 is changed from I c h B to I c h A.
  • lch CI> II ch A i and charging currents I ch C and I ch A are charged when power storage units 4 1 1 and 4 _ 2 are both fully charged at time t 4 (fully charged) ) To be calculated in advance.
  • the first power storage unit 4-11 continues to be charged with the charging current IchC, and the second power storage unit 41-2 is charged with the charging current IchA.
  • both can complete external charging almost simultaneously at time t4.
  • the state estimation unit 2 0 4 corresponds to the “state estimation unit”
  • the converter control unit 2 1 0 corresponds to the “control unit”
  • the request generator 2 0 2 corresponds to the “request generator”.
  • FIG. 10 is a flowchart showing a processing procedure of the reset operation according to the embodiment of the present invention. The processing of each step shown in FIG. 10 is realized by the control device 2 (FIG. 2) functioning as each control block shown in FIG.
  • control device 2 functioning as request generation unit 2 0 2 determines power storage unit 4-1 or 4 based on the charging frequency of power storage units 4-1 and 4-2. It is determined whether or not a reset request for 1 is necessary (step S 1 0 0).
  • step S 100 If no reset request is required for any of power storage units 4-1 and 4-1 2 (NO in step S 100), the process returns to the beginning.
  • step S102 If it is necessary to generate a reset request for power storage unit 4-1 or 4-2 (YES in step S 1 0 0), request generation unit 2 0 2
  • the control device 2 that functions as a specific power storage unit to be reset generates a reset request (step S102).
  • control device 2 functioning as converter control unit 210 determines whether or not vehicle 100 is traveling in EV (step S104).
  • control device 2 that functions as converter control unit 210 uses the remaining power storage to determine the share of discharge power from the power storage unit to be reset. It is set larger than the share ratio of the discharge power from the section (step S106).
  • control device 2 functioning as converter control unit 210 controls the voltage conversion operation in converters 6-1 and 6-2 according to the sharing ratio set in step S106 (step S108).
  • control device 2 functioning as converter control unit 210 determines whether or not vehicle 100 is stopped (IG OFF state) (step S 110). If vehicle 100 is not in the stopped state (IG off state) (NO in step S110), the process returns to step S104.
  • control device 2 that functions as converter control unit 2 10 is connected to the connector unit. Wait until 350 is connected to vehicle 100 (step S 1 12). Then, when connector unit 350 is connected to vehicle 100, control device 2 that functions as controller control unit 210 determines that charging is possible with an external power source, and the power storage unit to be reset has a predetermined current. The corresponding converter is controlled so as to be discharged, and the voltage conversion operation in the corresponding converter is controlled so that the remaining power storage unit is charged with at least the discharge current from the power storage unit to be reset (step S 114) . Further, control device 2 functioning as converter control unit 210 determines whether or not a characteristic temporal change has occurred in the battery voltage (discharge voltage) of the power storage unit to be reset (step S 116).
  • step S 116 If there is no characteristic temporal change in the battery voltage (discharge voltage) of the power storage unit to be reset (NO in step S 116), the process returns to step S 114.
  • Step S 1 18 the control device 2 functioning as the state estimation unit 204 resets the SOC of the power storage unit to be sequentially reset to a predetermined reference value.
  • control device 2 functioning as converter control unit 210 determines the ratio of the charging current to each power storage unit so that charging to all the power storage units is completed almost simultaneously (step S 120). According to the determined current ratio, the voltage conversion operation in converters 6-1 and 6-2 is controlled (step S 1 22) 0
  • control device 2 functioning as converter control unit 210 determines whether or not external charging of each power storage unit has been completed based on SOC sequentially calculated by state estimation unit 204 (step S 1 24). . If external charging of any power storage unit has not been completed (NO in step S124), the process returns to step S1 2 2.
  • step S124 when the external charging for all the power storage units is completed (in the case of YES in step S124), the processing related to the reset operation ends.
  • a vehicle 100 including two power storage units 41 and 4-2 is illustrated. It is obvious that the present invention can be applied to a vehicle including a power storage unit. Further, in the above description, the case where the charging capacities of the respective power storage units are basically the same is illustrated, but the present invention can be applied even when the charging capacities of the respective power storage units are different from each other.
  • the corresponding converter is controlled to discharge the power storage unit to be reset. Then, based on the temporal change of the discharge voltage in the power storage unit to be reset caused by the discharge current, the estimated value of the state of charge (SOC) of the power storage unit to be reset, which is sequentially calculated by the state estimation unit, is determined in advance. Reset to the reference value determined in advance at the timing. Therefore, even if there is an error due to the direct integration of the charge / discharge amount in the SOC of the power storage unit to be reset, it can be charged by the external power supply. Reset (calibration) can be performed during the period. This increases the accuracy of SOC estimation for each power storage unit. be able to.
  • the power storage unit to be reset when a reset request is generated before external charging, the power storage unit to be reset is actively discharged while the vehicle is traveling in the EV traveling mode.
  • the SOC of the power storage unit to be reset can be maintained at a lower value than the SOC of the remaining power storage units. Thereby, the reset operation for the power storage unit to be reset can be quickly performed.
  • the power storage unit to be reset is externally charged with a charging current larger than the charging current for the remaining power storage unit.
  • the target power storage unit is sufficiently discharged along with the reset operation, so that it is possible to improve the SOC estimation accuracy and to refresh the power storage unit itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

車両は、まずEV走行モードで走行を開始する(時刻t1)。ここで、第1蓄電部に対するリセット要求(SOC1リセット要求)が発せられると、第1蓄電部を積極的に放電するように電流制御が行われる。外部電源により充電可能な状態になる時刻t2以降では、リセット対象の第1蓄電部の放電電流が一定電流値に維持されるとともに、リセット対象ではない第2蓄電部は、少なくとも第1蓄電部の放電電流を含む充電電流で充電される。その後、時刻t3において第1蓄電部の電池電圧(放電電圧)に特徴点が現れたとすると、この時刻t3のタイミングにおいて、第1蓄電部のSOCの推定値は、予め定められた基準値にリセットされる。

Description

明細書 電源システムおよびそれを備えた車両、 ならびに充放電制御方法 技術分野
この発明は、 充放電可能な複数の蓄電部を搭載した電源システムおよびそれを 備える車両、 ならびにその電源システムに対する充放電制御方法に関し、 特に充 電状態値の推定精度を高精度に維持するための構成に関する。 背景技術
近年、 環境問題を考慮して、 エンジンと電動機とを効率的に組み合わせて走行 するハイブリッド車両が実用化されている。 このようなハイブリッド車両は、 充 放電可能な蓄電部を搭載し、 発進時や加速時などに電動機へ電力を供給して駆動 力を発生する一方で、 下り坂や制動時などに車両の運動エネルギーを電力として 回収する。
このようなハイブリッド車両において、 搭載する蓄電部を商用電源などの外部 電源からの電力によって充電するための構成が提案されている。 このように外部 電源により蓄電部を予め充電することにより、 通勤や買い物などの比較的短距離 の走行であれば、 エンジンを停止状態に保ったまま走行することができるため、 総合的な燃料消費効率を向上させることが可能となる。 このような走行モードは、 E V (Electric Vehicle) 走行モードとも称される。
このような E V走行モードにおける走行性能を高めるためには、 蓄電部の充放 電能力をより高めることが望ましい。 蓄電部の充放電能力を高めるための一つの 方法として、 複数の蓄電部を搭載する構成が提案されている。 このような構成で は、 各蓄電部の充放電電流を制御するための電力変換部 (コンバータなど) が各 蓄電部に対応付けて設けられる。 これは、 各蓄電部に対する充放電を独立に行な うことで、 各々を適正な充電状態値 ( S O C : State Of Charge ;以下、 単に 「S O C」 とも称す) に維持し、 過放電や過充電などを回避するためである。 各蓄電部に対する充放電を独立に実行可能な構成の一例として、 特開 2 0 0 2 - 0 1 0 5 0 2号公報には、 複数の蓄電池 (蓄電部) の充電と放電を同時に行な うことが可能な蓄電池用充放電装置が開示されている。
ところで、 各蓄電部の S O Cの推定方法として、 蓄電部の S O Cが開放端電圧 と一定の関係を有することを利用する方法が知られている。 より具体的には、 対 象となる蓄電部の開放端電圧を測定し、 予め実験的に取得された関係特性を参照 して、 測定された開放端電圧に対応する S O Cを決定する方法である。
しかしながら、 ハイプリッド車両に搭載される蓄電部の代表例であるニッケル 水素電池などでは、 実用範囲の S O Cにおける開放端電圧の変化が相対的に小さ い。 すなわち、 蓄電部の S O Cの変化に比較して開放端電圧の変化が少ない。 そ のため、 開放端電圧の測定だけでは十分な推定精度を得ることができない。 そこで、 S O Cの推定精度をより高めるために、 上記のような開放端電圧の測 定によって得られた S O Cを、 蓄電部の充放電量の積算値に基づいて順次補正す ることがよく行なわれている。
一方、 このように蓄電部の充放電量の積算値で順次補正すると、 センサ誤差な どに起因して本来の S O Cから徐々にずれる場合があるという問題があった。 発明の開示
この発明は、 このような問題点を解決するためになされたものであって、 その 目的は、 蓄電部の S O Cの推定精度を高めることのできる電源システムおよびそ れを備える車両、 ならびに充放電制御方法を提供することである。
この発明のある局面に従う電源システムは、 複数の蓄電部と、 複数の蓄電部に それぞれ対応付けられた複数の電圧変換部と、 複数の電圧変換部が互いに並列接 続された電力線対と、 充電部と、 複数の蓄電部のそれぞれの充電状態値を推定す る状態推定部と、 制御部とを含む。 充電部は、 外部電源からの電力を受けて複数 の蓄電部を充電する。 状態推定部は、 複数の蓄電部のそれぞれの充電状態値を、 各蓄電部の充放電量の積算値に基づいて順次演算する、 制御部は、 複数の電圧変 換部における電圧変換動作を制御する。 さらに、 制御部は、 複数の蓄電部が外部 電源により充電可能な状態にされると、 複数の蓄電部のうち第 1の蓄電部が放電 されるように対応の電圧変換部を制御するとともに、 残余の蓄電部が少なくとも 第 1の蓄電部からの放電電流で充電されるように対応の電圧変換部を制御する。 状態推定部は、 複数の蓄電部が外部電源により充電可能な状態である期間に、 第
1の蓄電部に基づいて第 1の蓄電部の充電状態値を基準値にリセットする。
この発明によれば、 外部電源により充電可能な状態にされると、 対応の電圧変 換部を制御して、 第 1の蓄電部から所定電流を放電する。 そして、 この放電電流 によって生じる第 1の蓄電部の電圧値に基づいて、 状態推定部で順次演算される 第 1の蓄電部の充電状態値が基準値にリセットする。 このため、 たとえ第 1の蓄 電部の充電状態値に充放電量の積算値に起因する誤差が生じても、 外部充電前に リセット (校正) を行なうことができる。 これにより、 蓄電部の S O Cの推定精 度を高めることができる。
好ましくは、 状態推定部は、 第 1の蓄電部の放電電圧の時間的変化に基づく所 定タイミングで、 第 1の蓄電部の充電状態値を基準値にリセットする。
好ましくは、 制御部は、 状態推定部が第 1の蓄電部の充電状態値を基準値にリ セットした後、 第 1の蓄電部が充電部からの充電電流で充電されるように対応の 電圧変換部を制御するとともに、 第 1の蓄電部に対する充電電流が残余の蓄電部 に対する充電電流に比較して大きくなるように対応の電圧変換部を制御する。 好ましくは、 充電部は、 第 1の蓄電部と第 1の蓄電部に対応する電力変換部と の間に電気的に接続される。
好ましくは、 電源システムは、 第 1の蓄電部の充放電頻度に基づいて、 第 1の 蓄電部に対するリセッ ト要求を発生する要求発生部をさらに含む。 制御部は、 リ セット要求に応答して、 外部電源による充電中に第 1の蓄電部からの放電を開始 する。
さらに好ましくは、 要求発生部は、 複数の蓄電部のそれぞれの充電頻度に基づ いて、 リセット要求の対象とする蓄電部を選択可能である。
またさらに好ましくは、 電源システムは、 電力線対を介して電気的に接続され た負荷装置 (MG 2 ) に電力を供給可能に構成され、 制御部は、 リセッ ト要求に 応答して、 複数の蓄電部に対する外部電源による充電の開始前に、 の蓄電部から 負荷装置への放電電流が残余の蓄電部の各々から負荷装置への放電電流に比較し て多くなるように、 複数の電力変換部を制御する。 この発明の別の局面に従う車両は、 エンジンと、 複数の蓄電部と、 複数の蓄電 部にそれぞれ対応付けられた複数の電圧変換部と、 複数の電圧変換部が互いに並 列接続された電力線対と、 充電部と、 電動機と、 発電部と、 複数の蓄電部のそれ ぞれの充電状態値を推定する状態推定部と、 制御部と、 要求発生部とを含む。 充 電部は、 外部電源からの電力を受けて複数の蓄電部を充電する。 電動機は、 電力 線対に接続され、 複数の蓄電部からの電力を受けて駆動力を発生可能である。 発 電部は、 電力線対に接続され、 エンジンからの駆動力を受けて発電可能である。 状態推定部は、 複数の蓄電部のそれぞれの充電状態値を、 各蓄電部の充放電量の 積算値に基づいて順次演算する。 制御部は、 複数の電圧変換部における電圧変換 動作を制御する。 要求発生部は、 複数の蓄電部の充放電頻度に基づいて、 複数の 蓄電部のうち 1つの蓄電部に対するリセット要求を発生する。 車両は、 発電部に よる複数の蓄電部に対する充電が制限される第 1の走行モードと、 各蓄電部の充 電状態値が所定の範囲内に維持されるように発電部による複数の蓄電部に対する 充電を制御する第 2の走行モードとを選択して走行可能である。 さらに、 制御部 は、 リセット要求が発せられると、 第 1の走行モードで走行中に、 リセット要求 が発せられた対象の蓄電部から電動機への放電電流が残余の蓄電部の各々から電 動機への放電電流に比較して多くなるように、 複数の電力変換部を制御する。 ま た、 制御部は、 リセット要求が発せられると、 複数の蓄電部が外部電源により充 電可能な状態にされると、 対象の蓄電部が放電されるように対応の電圧変換部を 制御するとともに、 残余の蓄電部が少なくとも対象の蓄電部からの放電電流で充 電されるように対応の電圧変換部を制御する。 状態推定部は、 複数の蓄電部が外 部電源により充電可能な状態である期間に、 対象の蓄電部の電圧値に基づいて対 象の蓄電部の充電状態値を基準値にリセットする。
この発明のさらに別の局面に従えば、 複数の蓄電部を含む電源システムの充放 電制御方法を提供する。 電源システムは、 複数の蓄電部にそれぞれ対応付けられ た複数の電圧変換部と、 複数の電圧変換部が互レ、に並列接続された電力線対と、 外部電源からの電力を受けて複数の蓄電部を充電するための充電部とを含む。 充 放電制御方法は、 複数の蓄電部のそれぞれの充電状態値を、 各蓄電部の充放電量 の積算値に基づいて順次演算するステップと、 複数の蓄電部が外部電源により充 電可能な状態にされると、 複数の蓄電部のうち第 1の蓄電部から放電されるよう に対応の電圧変換部を制御するとともに、 残余の蓄電部が少なくとも第 1の蓄電 部からの放電電流で充電されるように対応の電圧変換部を制御するステップと、 複数の蓄電部が外部電源により充電可能な状態である期間に、 第 1の 電部の電 圧値に基づいて第 1の蓄電部の充電状態値を基準値にリセットするステップとを 含む。
この発明によれば、 蓄電部の S O Cの推定精度を高めることができる。 図面の簡単な説明
図 1は、 この発明の実施の形態に従う電源システムを備える車両に対して外部 電源による充電を行なうための全体構成図である。
図 2は、 この発明の実施の形態に従う電源システムを備える車両の概略構成図 である。
図 3は、 この発明の実施の形態に従う制御装置における制御構造を示すプロッ ク図である。
図 4は、 図 3に示す要求発生部におけるより詳細な制御構造を示すプロック図 である。
図 5は、 図 3に示す状態推定部におけるより詳細な制御構造を示すプロック図 である。
図 6は、 図 5に示す検出部が検出する電池電圧の特徴的な変化の一例を示す図 である。
図 7 Aおよび図 7 Bは、 リセット動作中の電流の流れを説明するための図であ る。
図 8は、 蓄電部の S O Cの時間的変化の一例を示す図である。
図 9は、 図 8に対応する、 蓄電部の電池電流の時間的変化の一例を示す図であ る。
図 1 0は、 この発明の実施の形態に従うリセット動作の処理手順を示すフロー チヤ一トである。 発明を実施するための最良の形態
本発明の実施の形態について、 図面を参照しながら詳細に説明する。 なお、 図 中の同一または相当部分については、 同一符号を付してその説明は繰返さない。
(全体構成)
図 1は、 この発明の実施の形態に従う電源システムを備える車両 1 0 0に対し て外部電源による充電を行なうための全体構成図である。
図 1を参照して、 この発明の実施の形態に従う車両 1 0 0は、 代表的にハイブ リツド車両であり、 後述するようにエンジンと電動機 (モータジェネレータ) と を搭載し、 それぞれからの駆動力を最適な比率に制御して走行する。 さらに、 車 両 1 0 0は、 このモータジェネレータに電力を供給するための複数の蓄電部を搭 載する。 これらの蓄電部は、 車両 1 0 0のシステム起動状態 (以下、 「 I Gオン 状態」 とも記す) において、 エンジンの作動により生じる動力を受けて充電可能 であるとともに、 車両 1 0 0のシステム停止中 (以下、 「 I Gオフ状態」 とも記 す) において、 コネクタ部 3 5 0を介して外部電源と電気的に接続されて充電可 能である。 以下の説明では、 それぞれの充電動作を区別するために、 外部電源に よる蓄電部の充電を 「外部充電」 とも記し、 エンジンの作動による蓄電部の充電 を 「内部充電」 とも記す。
コネクタ部 3 5 0は、 代表的に商用電源などの外部電源を車両 1 0 0に供給す るための連結機構を構成し、 キヤブタイヤケーブルなどからなる電力線 P S Lを 介して充電ステーション 3 0 0と接続される。 そして、 コネクタ部 3 5 0は、 外 部充電時に車両 1 0 0と連結され、 外部電源と車両 1 0 0に搭載された充電部 (図示しない) とを電気的に接続する。 一方、 車両 1 0 0には、 コネクタ部 3 5 0と連結され、 外部電源を受入れるためのコネクタ受入部 (図示しない) が設け られる。
充電ステーション 3 0 0は、 商用電源供給線 P Sを介して住宅 3 0 2に供給さ れる商用電源の一部をコネクタ部 3 5 0へ供給する。 充電ステーション 3 0 0は コネクタ部 3 5 0の収納機構やコネクタ部 3 5 0と繫がる電力線 P S Lの卷取機 構 (いずれも図示しない) を含んでいてもよい。 また、 充電ステーション 3 0 0 には、 使用者に対するセキュリティ機構や課金機構などを含んでいてもよい。 さ らに、 充電ステーション 300は、 車両 100との間で通信をするための機構を 含んでいてもよい。
なお、 コネクタ部 350を介して車両 100に供給される外部電源は、 商用電 源に代えて、 もしくはこれに加えて住宅 302の屋根などに設置された太陽電池 パネルによる発電電力などであってもよい。 ,
(車両の概略構成)
図 2は、 この発明の実施の形態に従う電源システムを備える車両 100の概略 構成図である。 なお、 図 2には、 複数の蓄電部を備える車両の代表例として、 2 個の蓄電部 4— 1および 4— 2を備える車両 100を示す。 なお、 以下の説明で は、 蓄電部 4— 1および 4— 2をそれぞれ BAT 1および BAT 2とも記す。 図 2を参照して、 車両 100は、 エンジン (ENG) 18と、 第 1モータジェ ネレ一タ MG 1と、 第 2モータジェネレータ MG 2とを駆動力源として備え、 こ れらは動力分割機構 22を介して機械的に連結される。 そして、 車両 100の走 行状況に応じて、 動力分割機構 22を介して上記 3者の間で駆動力の分配および 結合が行なわれ、 その結果として駆動輪 24 Fが駆動される。
車両 100の走行時 (すなわち、 非外部充電時) において、 動力分割機構 22 は、 エンジン 18の作動によって発生する駆動力を二分割し、 その一方を第 1モ ータジェネレータ MG 1側へ配分するとともに、 残部を第 2モータジェネレータ MG2へ配分する。 動力分割機構 22から第 1モータジェネレータ MG 1側へ配 分された駆動力は発電動作に用いられる一方、 第 2モータジェネレータ MG 2側 へ配分された駆動力は、 第 2モータジェネレータ MG 2で発生した駆動力と合成 されて、 駆動輪 24 Fの駆動に使用される。
このとき、 モータジェネレータ MG 1および MG 2にそれぞれ対応付けられた 第 1インバータ (I NV 1) 8— 1および第 2インバ一タ (I NV 2) 8— 2は、 直流電力と交流電力とを相互に変換する。 主として、 第 1インバータ 8— 1は、 制御装置 2からのスィツチング指令 PWM1に応じて、 第 1モータジェネレータ MG 1で発生する交流電力を直流電力に変換し、 正母線 MP Lおよび負母線 MN Lへ供給する。 一方、 第 2インバータ 8— 2は、 制御装置 2からのスイッチング 指令 PWM2に応じて、 正母線 MP Lおよび負母線 MNLを介して供給される直 流電力を交流電力に変換して、 第 2モータジェネレータ MG 2へ供給する。 すな わち、 車両 100は、 負荷装置として、 蓄電部 4 _ 1および 4— 2からの電力を 受けて駆動力を発生可能な第 2モータジェネレータ MG 2を備えるとともに、 ェ ンジン 18からの駆動力を受けて発電可能な発電部である第 1モータジエネレー タ MG 1を備える。
第 1蓄電部 4一 1および第 2蓄電部 4一 2は、 いずれも充放電可能な電力貯蔵 要素であり、 代表的にリチウムィオン電池や二ッケル水素電池などの二次電池、 もしくは電気二重層キャパシタなどの蓄電素子で構成される。 第 1蓄電部 4 - 1 と第 1インバータ 8— 1との間には、 直流電圧を双方向に電圧変換可能な第 1コ ンバータ (CONV1) 6— 1が配置されており、 蓄電部 4— 1の入出力電圧と、 正母線 MP Lと負母線 MNLとの間の線間電圧とを相互に昇圧または降圧する。 同様に、 第 2蓄電部 4— 2と第 2インバータ 8— 2との間には、 直流電圧を双方 向に電圧変換可能な第 2コンバータ (CONV2) 6— 2が配置されており、 蓄 電部 4一 2の入出力電圧と、 正母線 M P Lと負母線 MN Lとの間の線間電圧とを 相互に昇圧または降圧する。 すなわち、 コンバータ 6— 1および 6— 2は、 電力 線対である正母線 MP Lおよび負母線 MNLに対して並列接続される。 コンパ一 タ 6— 1および 6— 2における昇降圧動作は、 制御装置 2からのスィツチング指 令 PWC 1および PWC 2に従ってそれぞれ制御される。
制御装置 2は、 代表的に、 C PU (Central Processing Unit) と、 RAM (Random Access Memory) や ROM (Read Only Memory) などの記憶部と、 入出 力インターフェイス部とを主体として構成された電子制御装置 (ECU : Electronic Control Unit) からなる。 そして、 制御装置 2は、 予め ROMなど に格納されたプログラムを CPUが RAMに読み出して実行することによって、 車両走行 (内部充電を含む) および外部充電に係る制御を実行する。
制御装置 2に入力される情報の一例として、 図 2には、 正線 PL 1および P L 2にそれぞれ介挿された電流センサ 1◦— 1および 10— 2からの電池電流 I b a t 1および I b a t 2、 正線 P L 1と負線 NL 1との線間に配置された電圧セ ンサ 12— 1からの電池電圧 V b a t 1、 正線 P L 2と負線 NL 2との線間に配 置された電圧センサ 12— 2からの電池電圧 Vb a t 2、 蓄電部 4— 1および 4 一 2に近接してそれぞれ配置された温度センサ 1 1一 1および 1 1— 2からの電 池温度 Tb a t 1および Tb a t 2、 正母線 M P Lに介挿された電流センサ 14 からの母線電流 I DC、 正母線 MP Lと負母線 MNLとの線間に配置された電圧 センサ 16からの母線電圧 VDCを例示する。
また、 制御装置 2は、 蓄電部 4— 1および 4— 2のそれぞれの充電状態 (SO C : State Of Charge;以下、 単に 「SOC」 とも称す) を連続的に推定する。 SOCは、 蓄電部の充電量の絶対値 (単位 [A · h] など) としても表すことが できるが、 本明細書においては、 SOCは蓄電部の充電容量に対する実際の充電 量の比率 (0〜100%) として表す。 より具体的には、 制御装置 2は、 蓄電部 4一 1の充放電量の積算値に基づいて蓄電部 4_ 1の SOCを順次演算するとと もに、 蓄電部 4— 2の充放電量の積算値に基づいて蓄電部 4— 2の S O Cを順次 演算する。 なお、 充放電量の積算値は、 対応する蓄電部の電池電圧と電池電流と の積 (電力) を時間的に積分することで得られる。
車両 100は、 蓄電部 4— 1および 4一 2を外部充電するための構成として、 コネクタ受入部 150と、 充電部 30とをさらに備える。 蓄電部 4— 1および 4 一 2に対して外部充電を行なう場合には、 コネクタ部 350がコネクタ受入部 1 50に連結されることで、 正充電線 C P Lおよび負充電線 CNLを介して外部電 源からの電力が充電部 30へ供給される。 また、 コネクタ受入部 1 50は、 コネ クタ受入部 150とコネクタ部 350との連結状態を検出するための連結検出セ ンサ 150 aを含んでおり、 この連結検出センサ 150 aからの連結信号 CON によつて制御装置 2は、 外部電源、より充電可能な状態となったことを検出する。 なお、 本実施の形態においては、 外部電源として単相交流の商用電源が用いられ る場合について例示する。
また、 本明細書において、 「外部電源により充電可能な状態」 とは、 代表的に、 コネクタ部 350がコネクタ受入部 1 50に物理的に挿入されている状態を意味 する。 なお、 図 1および図 2に示す構成に代えて、 外部電源と車両とを非接触の まま電磁的に結合して電力を供給する構成を採用することもできる。 具体的には、 外部電源側に一次コイルを設けるとともに、 車両側に二次コイルを設け、 一次コ ィルと二次コィルとの間の相互ィンダクタンスを利用して電力供給を行なう構成 を採用することもでき、 この構成では、 「外部電源より充電可能な伏態」 とは、 一次コイルと二次コイルとが位置あわせされた状態を意味する。
充電部 3 0は、 外部電源からの電力を受けて蓄電部 4一 1および 4一 2を外部 充電するための装置であり、 正線 P L 1および負線 N L 1と正充電線 C P Lおよ び負充電線 C N Lとの間に配置される。 すなわち、 充電部 3 0は、 第 1蓄電部 4 一 1と第 1蓄電部 4一 1に対応する第 1コンバータ 6— 1との間に電気的に接続 される。
また、 充電部 3 0は、 電流制御部 3 0 aと、 電圧変換部 3 0 bとを含み、 外部 電源からの電力を蓄電部 4一 1および 4— 2の充電に適した電力に変換する。 具 体的には、 電圧変換部 3 O bは、 外部電源の供給電圧を蓄電部 4一 1および 4一 2の充電に適した電圧に変換するための装置であり、 代表的に所定の変圧比を有 する巻線型の変圧器や、 A C— A Cスイッチングレギユレータなどからなる。 ま た、 電流制御部 3 0 aは、 電圧変換部 3 0 bによる電圧変換後の交流電圧を整流 して直流電圧を生成するとともに、 制御装置 2からの充電電流指令 I c h *に従 つて、 蓄電部 4一 1および 4一 2に供給する充電電流を制御する。 電流制御部 3 0 aは、 代表的に単相のプリッジ回路などからなる。 なお、 電流制御部 3 0 aお よび電圧変換部 3 0 bからなる構成に代えて、 A C— D Cスィツチングレギユレ ータなどによって充電部 3 0を実現してもよレ、。
特に、 本実施の形態に従う制御装置 2は、 蓄電部 4— 1および 4— 2のそれぞ れの充放電頻度に基づいて、 蓄電部 4一 1および 4一 2に対するリセット要求
(以下、 それぞれ 「S O C 1 リセット要求」 および 「S O C 2リセット要求」 と も記す) の発生要否を判断する。 そして、 蓄電部 4— 1および 4— 2のいずれか の S O Cをリセットする必要があると判断すると、 外部電源により充電可能な状 態にある期間中に、 S O Cのリセッ ト動作を実行する。 具体的には、 制御装置 2 は、 リセット対象の蓄電部 (たとえば、 第 1蓄電部 4— 1 ) が放電されるように 対応のコンバータ (たとえば、 第 1コンバータ 6— 1 ) を制御するととともに、 残余の蓄電部 (たとえば、 第 2蓄電部 4一 2 ) が少なくともリセッ ト対象の蓄電 部からの放電電流で充電されるように対応のコンバータ (たとえば、 第 2コンパ —タ 6— 2 ) を制御する。 なお、 残余の蓄電部の充電許容電流値がリセット対象 の蓄電部からの放電電流値より大きい場合には、 その差分を補償するように充電 部 30から充電電流を供給するようにしてもよい。 そして、 制御装置 2は、 上記 リセット対象の蓄電部の電圧に基づいて、 上記リセット対象の蓄電部についての SOCを基準値 (たとえば、 5%) にリセットする。 より具体的には、 リセット 対象の蓄電部における放電電圧の時間的変化に基づく所定タイミングで、 SOC が基準値にリセットされる。 この放電電圧の時間的変化の一例としては、 後述す るように、 蓄電部の放電に伴って変化 (低下) する電池電圧の特徴点である。 こ れに代えて、 リセット対象の蓄電部の電圧が予め定められたしきい fitを下回った 時点で、 SOCを基準値にリセットしてもよレ、。
なお、 この基準値は、 蓄電部の特性値などに基づいて予め設定しておいてもよ いし、 電池の使用状況などに応じて動的に設定してもよい。
このように、' 各蓄電部の SOCを所定頻度でリセットすることで、 電流センサ 10- 1および 10_ 2や電圧センサ 1 2 - 1および 1 2— 2などにおける検出 誤差の影響を排除して、 SOCを高精度で推定できる。
さらに、 リセット対象の蓄電部の SO Cが予め定められた基準値にリセットす ると、 制御装置 2は、 リセット対象の蓄電部を充電部 30からの充電電流で充電 (外部充電) を行なうとともに、 その充電電流が残余の蓄電部に対する充電電流 に比較して大きくなるように対応のコンバータを制御する。 これは、 蓄電部 4一 1および 4 _ 2がほぼ同時に外部充電を完了できるように、 それぞれに対する充 電電流を最適化するものである。
ところで、 本実施の形態に従う車両 100はハイブリッド車両であり、 ェンジ ン 18からの駆動力によって、 走行ならびに蓄電部 4— 1および 4— 2の充電が 可能である。 一方、 蓄電部 4一 1および 4一 2を外部充電して使用する態様にお いては、 エンジン 18を可能な限り停止状態に維持して走行することが好ましい。 そのため、 車両 1 0 0は、 EV (Electric Vehicle) 走行モードと、 HV (Hybrid Vehicle) 走行モードとを選択して走行可能に構成される。
すなわち、 EV走行モードにおいては、 車両 100は、 蓄電部 4— 1および 4 — 2のそれぞれの SOCが所定値を下回るまでの間、 主として第 2モータジエネ レータ MG 2からの駆動力のみで走行する。 この EV走行モードでは、 エンジン 1 8の駆動力を用いた第 1モータジェネレータ MG 1での発電動作は行われず、 蓄電部 4一 1および 4一 2に対する内部充電が制限される。 なお、 E V走行モー ドは、 エンジン 1 '8を停止状態に維持して燃料消費効率を向上させることを目的 としているが、 運転者から急加速などの駆動力要求が与えられた場合、 触媒暖機 時や空調要求などの駆動力要求とは無関係な要求が与えられた場合、 およびその 他の条件が成立した場合などにおいては、 エンジン 1 8を始動してもよい。
E V走行モード中に蓄電部 4— 1および 4一 2のそれぞれの S O Cが所定値を 下回ると、 走行モードは HV走行モードに切替わる。 HV走行モードにおいては、 車両 1 0 0は、 蓄電部 4— 1および 4— 2の S O Cがいずれも予め定められた制 御中心値を中心とする所定の範囲内に維持されるように、 第 1モータジエネレー タ MG 1による発電動作が制御される。 この第 1モータジェネレータ MG 1での 発電動作に応じて、 エンジン 1 8も作動を開始する。 なお、 エンジン 1 8の作動 によって生じる駆動力の一部は車両 1 0 0の走行にも用いられる。
ところで、 外部充電に要する時間を短縮するためには、 上述したリセット動作 の開始前に予めリセット対象の蓄電部を低充電状態にしておくことが望ましい。 そこで、 本実施の形態に従う制御装置 2は、 いずれかの蓄電部をリセットする必 要があると判断すると、 外部充電前の車両 1 0 0が E V走行モードで走行中に、 リセット対象の蓄電部を積極的に放電させる。 具体的には、 制御装置 2は、 リセ ット対象の蓄電部から第 2モータジェネレータ MG 2への放電電流が、 残余の蓄 電部から第 2モータジェネレータ MG 2への放電電流に比較して多くなるように 各コンバータを制御する。 E V走行モードでは、 基本的に蓄電部 4— 1および 4 一 2から電力が放電されるので、 いずれか一方の蓄電部を優先的に放電すること で、 リセット動作をより迅速化できる。
図 2に示すこの発明の実施の形態と本願発明との対応関係については、 蓄電部 4一 1および 4— 2が 「複数の蓄電部」 に相当し、 コンバータ 6— 1および 6— 2が 「複数の電圧変換部」 に相当し、 正母線 M P Lおよび負母線 MNしが 「電力 線対」 に相当し、 充電部 3 0が 「充電部」 に相当し、 第 2モータジェネレータ M G 2が 「負荷装置」 および 「電動機」 に相当し、 エンジン (E N G ) 1 8が 「ェ ンジン」 に相当し、 第 1モータジェネレータ MG 1が 「発電部」 に相当する。 ま た、 「E V走行モード」 力 S 「第 1の走行モード」 に相当し、 「H V走行モード」 が 「第 2の走行モード」 に相当する。
(制御構造)
次に、 図 3を参照して、 本実施の形態に従う電源システムにおけるリセット動 作を実現するための制御構造について説明する。
図 3は、 この発明の実施の形態に従う制御装置 2における制御構造を示すプロ ック図である。 図 3に示す各機能ブロックは、 代表的に制御装置 2が予め格納さ れたプログラムを実行することで実現されるが、 その機能の一部または全部を専 用のハードウェアとして実装してもよレ、。
図 3を参照して、 制御装置 2は、 要求発生部 2 0 2と、 状態推定部 2 0 4と、 総合出力演算部 2 0 6と、 配分部 2 0 8と、 コンバータ制御部 2 1 0と、 インバ ータ制御部 2 1 2とをその機能として含む。
要求発生部 2 0 2は、 蓄電部 4一 1および 4一 2の各々の充電頻度に基づいて、 蓄電部 4 _ 1および 4— 2に対するリセット要求を発生する。
図 4は、 図 3に示す要求発生部 2 0 2におけるより詳細な制御構造を示すプロ ック図である。
図 4を参照して、 要求発生部 2 0 2は、 第 1蓄電部 4— 1に対する S O C 1リ セット要求.を発生するための機能プロックとして、 リセット要求判断部 2 2 1と 積算部 2 2 2とを含む。 また、 要求発生部 2 0 2は、 蓄電部 4— 2に対する S O C 2リセット要求を発生するための機能プロックとして、 リセット要求判断部 2 3 1と積算部 2 3 2とを含む。
リセット要求判断部 2 2 1は、 代表的に外部充電開始の積算回数や走行距離に 基づいて、 S O C 1リセット要求を発生するか否かを判断する。 具体的には、 連 結検出センサ 1 5 0 a (図 2 ) からの連結信号 C O Nに基づく外部充電開始の信 号が積算部 2 2 2で積算され、 その積算回数がリセット要求判断部 2 2 1へ入力 される。 また、 リセット要求判断部 2 2 1は、 図示しない車速センサなどから走 行距離が入力される。 そして、 リセット要求判断部 2 2 1は、 前回の S O C 1 リ セット要求を発生してからの積算回数や走行距離が所定のしきい値 (たとえば、 外部充電 1 0回や 1 0 0 k m走行など) を超過しているか否かを判断し、 所定の しきい値を超過していれば SOC 1リセット要求を発生する。
これは、 蓄電部の S O Cに対する誤差は充電回数が大きくなるほど蓄積するの で、 リセット要求判断部 221は、 外部充電の積算回数に基づいて外部充電によ る誤差の影響を反映するとともに、 走行距離に基づいて内部充電による誤差の影 響を反映する。
また、 リセット要求判断部 231および積算部 232における動作についても 同様であるので、 詳細な説明は繰返さない。 なお、 SOC 1リセット要求と SO C 2リセット要求とが同時に発生しないように、 リセット要求判断部 221とリ セット要求判断部 23 1との間で協調動作するようにしてもよい。 さらに、 SO C 1リセット要求と SOC 2リセット要求とが交互に発生するようにしてもよレ、。 再度、 図 3を参照して、 状態推定部 204は、 電池温度 T b a t 1および T b a t 2、 電池電流 I b a t lおよび I b a t 2、 電池電圧 V b a t 1および Vb a t 2などに基づいて、 蓄電部 4一 1および 4_ 2の各々についての SOCを推 定する。 より詳細には、 状態推定部 204は、 第 1蓄電部 4— 1の SOC 1を演 算する SOC 1演算部 204 aと、 第 2蓄電部 4— 2の S O C 2を演算する S O C 2演算部 204 bとを含む。
図 5は、 図 3に示す状態推定部 204におけるより詳細な制御構造を示すプロ ック図である。
図 5を参照して、 S O C 1演算部 204 aは、 掛算部 241と、 積算部 242 と、 割算部 243と、 加算部 244と、 レジスタ 245と、 遅延部 246と、 検 出部 247とを含む。 また、 SOC 2演算部 204 bは、 掛算部 251と、 積算 部 252と、 割算部 253と、 加算部 254と、 レジスタ 255と、 遅延部 25 6と、 検出部 257とを含む。 SOC 1演算部 204 aおよび SOC 2演算部 2 04 bは、 それぞれ対応する蓄電部の充放電量の積算値に基づいて、 それぞれの 蓄電部の SOCを順次演算する。
具体的には、 掛算部 241が電池電圧 V b a t lと電池電流 I b a t 1とを掛 算して蓄電部 4一 1の瞬間の充放電量 (電力) を演算し、 積算部 242がこの充 放電量を演算周期 Δ tにわたつて積分する。 さらに、 割算部 243がこの積算部 242で積分された充放電量の積算値 I b a t l - Vb a t l - A tを蓄電部 4一 1の充電容量 Cb 1で除算する。 すなわち、 割算部 243から出力される演 算結果は、 直近の演算周期 Δ tにおける SOC 1の変化率を意味する。
一方、 レジスタ 245は、 各演算周期における蓄電部 4— 1の SOCである S OC 1 ( t) を保持出力する。 また、 遅延部 246は、 このレジスタ 245から 保持出力される SOC 1 ( t) を演算周期 Δ tだけ遅延させた SOC 1 (t— Δ t) を保持出力する。 そして、 加算部 244が割算部 243から出力される SO C 1の変化率に、 1演算周期前の SOC 1 (t— A t) を加算することで、 今回 の演算周期における SOC 1 (t) を演算する。
このように、 SOC 1演算部 204 aは、 第 1蓄電部 4一 1の充放電量の積算 値に基づいて第 1蓄電部 4— 1の SOC 1を順次演算する。 また、 SOC 2演算 部 204 bについても SOC 1演算部 204 aと同様に、 第 2蓄電部 4 _ 2の充 放電量の積算値に基づいて第 2蓄電部 4— 2の SOC 2を順次演算する。
さらに、 検出部 247は、 要求発生部 202 (図 3) からの SOC 1リセット 要求に応答して、 第 1蓄電部 4一 1の電池電圧 Vb a t 1 (放電時) の時間的変 化に基づく所定タイミングで、 順次演算する S OC 1を予め定められた基準値で ある SOC 1 (基準) にリセットする。 より具体的には、 SOC 1リセット要求 が発せられると、 第 1蓄電部 4 _ 1に対する積極的な放電が開始されるので、 第 1蓄電部 4一 1の電池電圧 Vb a t 1は時間的に低下する。 検出部 247は、 こ の電池電圧 Vb a t 1が時間的に低下するときに生じる特徴的な変化を検出して、 SOC 1 (基準) をレジスタ 245に強制的に入力する。
また、 検出部 257についても同様に、 要求発生部 202 (図 3) からの SO C 2リセッ ト要求に応答して、 第 2蓄電部 4一 2の電池電圧 V b a t 2 (放電 時) の時間的変化に基づく所定タイミングで、 順次演算する S OC 2を予め定め られた基準値である SOC2 (基準) にリセットする。
図 6は、 図 5に示す検出部 247および 257がそれぞれ検出する電池電圧 V b a t 1および Vb a t 2の特徴的な変化の一例を示す図である。 なお、 図 6で は、 電池電圧 Vb a t 1および Vb a t 2を総称して 「Vb a t」 と記し、 SO C 1および S OC 2を総称して 「SOC」 と記す。
図 6を参照して、 代表的にニッケル水素電池などからなる蓄電部 4 _ 1および 4— 2における SOCと電池電圧 Vb a tとの間には、 一定の対応関係を有する。 特にニッケル水素電池などでは、 SOCの変化に対して電池電圧 Vb a tの変化 が小さい平坦領域 280が存在する。 この平坦領域 280は、 上述した HV走行 モードにおいて蓄電部 4— 1および 4一 2の SOCを維持すベき範囲である H V 制御範囲と重複する。 そのため、 この平坦領域 280においては、 蓄電部 4— 1 および 4一 2の特徴的な変化を検出することが難しい。
これに対して、 SOCが相対的に低い領域 (過放電側) において、 S〇Cの変 化に対して電池電圧 Vb a tが相対的に大きく変化する領域 (特徴領域 270) が現れる。 この特徴領域 270は常にほぼ同一の SOCにおいて生じるので、 予 め実験的にこの特徴領域 270に対応する SOCを取得しておくことで、 蓄電部 4— 1および 4— 2の SOCを適切にリセットすることができる。
より具体的には、 検出部 247および 257は、 それぞれ対応する蓄電部 4 _ 1および 4— 2の放電によって時間的に変化する電池電圧 Vb a t 1および Vb a t 2を連続的に監視するとともに、 電池電圧 Vb a t 1および Vb a t 2の時 間的な変化量を随時演算する。 そして、 随時演算される電池電圧 Vb a t 1およ び Vb a t 2の時間的な変化量が所定の負のしきい値を下回ると、 すなわち電池 電圧 Vb a t 1および Vb a t 2が急激に減少を開始すると、 検出部 247およ び 257は、 そのタイミングにおいて対応する SOC 1および SOC2をそれぞ れ対応の SOC (基準) にリセットする。
なお、 後述するように、 電池電圧 Vb a t 1または Vb a t 2の特徴的な変化 をより正確に検出するために、 蓄電部 4— 1または 4一 2からの放電電流は一定 値であることが好ましい。
再度、 図 3を参照して、 総合出力演算部 206は、 運転者要求および走行状況 に応じて、 車両 100の走行に必要な総合出力を演算する。 なお、 運転者要求に は、 アクセルペダルの踏込量、 ブレーキペダルの踏込量、 シフトレバーのポジシ ヨン (いずれも図示しない) などが含まれる。 また、 走行状況には、 車両 100 が加速中または減速中であることを示す情報などが含まれる。 そして、 総合出力 演算部 206は、 総合出力を提供するために必要なエンジン 18の駆動力に応じ て、 エンジン回転数などを決定する。 また、 総合出力演算部 206における演算 結果は、 配分部 2 0 8 へも伝達される。
配分部 2 0 8は、 総合出力演算部 2 0 6からの演算結果に応じて、 モータジェ ネレ一タ MG 1および MG 2のトルクや回転数を演算し、 その制御指令をインバ ータ制御部 2 1 2へ出力すると同時に、 車両 1 0 0内における電力需給に応じた 制御指令をコンバータ制御部 2 1 0へ出力する。
インバータ制御部 2 1 2は、 配分部 2 0 8からの制御指令に応じて、 モータジ エネレータ MG 1および MG 2を駆動するためのスィツチング指令 P WM 1およ び P WM 2をそれぞれ生成する。 このスィツチング指令 PWM 1および P WM 2 は、 それぞれインバータ I N V 1および I N V 2へ出力される。
コンバータ制御部 2 1 0は、 配分部 2 0 8からの制御指令に応じて、 蓄電部 4 — 1および 4— 2から第 2モータジェネレータ MG 2へ所定の放電電力が供給さ れるように、 状態推定部 2 0 4で演算される S O C 1および S O C 2を参照して、 放電電力の分担比率を決定する。 そして、 コンバータ制御部 2 1 0は、 蓄電部 4 一 1および 4— 2からそれぞれ分担すべき電力が放電されるように、 スィッチン グ指令 PWC 1および P WC 2をそれぞれ生成する。 このスィツチング指令 P W C 1および P WC 2に従って、 それぞれコンバータ 6— 1および 6— 2が電圧変 換動作を行なうことで、 蓄電部 4— 1および 4一 2の放電電力 (放電電流) が制 御される。
特に、 コンバータ制御部 2 1 0は、 蓄電部 4 _ 1または 4— 2におけるリセッ ト動作の実行時に、 コンバータ 6— 1および 6— 2での電圧変換動作を制御する。 具体的には、 要求発生部 2 0 2で S O C 1 リセット要求または S O C 2 リセッ ト 要求が発生すると、 コンバータ制御部 2 1 0は、 リセッ ト要求の対象となった蓄 電部を積極的に放電させる。
リセット動作中においては、 コンバータ制御部 2 1 0は、 まず、 リセット対象 の蓄電部から適正な量の電流が放電されるように対応のコンバータを制御すると ともに、 残余の蓄電部が少なくとも当該リセット対象の蓄電部からの放電電流で 充電されるように対応のコンバータを制御する。
7図 7 Aおよび図 7 Bは、 リセット動作中の電流の流れを説明するための図で ある。 図 7 Aは、 SOC 1リセット要求が発生した場合を示す。
図 7Bは、 SOC 2リセット要求が発生した場合を示す。
図 7 Aを参照して、 SOC 1リセット要求が発生し、 かつ外部電源により充電 可能な状態になると、 第 1コンバータ 6— 1は、 少なくとも第 1蓄電部 4—1か らの放電電流 I d i s 1によって第 2蓄電部 4一 2が充電されるように電圧変換 動作を行なう。 すなわち、 第 1コンバータ 6— 1は、 放電電流 I d i s 1を電流 目標値として昇圧動作を行なう。 一方、 第 2コンバータ 6— 2は、 第 1コンパ一 タ 6— 1を流れる電流値と実質的に同一の電流値が第 2蓄電部 4— 2へ供給され るように、 降圧動作を行なう。
このようにして、 第 1蓄電部 4一 1は、 その電池電圧 Vb a t 1に特徴的な時 間的変化が生じるまで、 すなわち S OC 1がリセットされるまで放電を継続する。 なお、 第 2蓄電部 4一 2の充電許容電流値が放電電流 I d i s 1より大きい場合 には、 その差分を充電部 30からの充電電流 I c hで補償してもよレ、。 この場合 には、 充電部 30が充電電流 I c hを供給するとともに、 第 1コンバータ 6— 1 力 S (I d i s 1+ I c h) を電流目標値として昇圧動作を行なう。 ここで、 ( I d i s 1+ 1 c h) は、 第 2蓄電部 4— 2の充電許容電流値に相当する。 これに より、 第 2蓄電部 4— 2は、 (I d i s 1+ I c h) で充電される。
また、 図 7 Bを参照して、 SOC 2リセット要求が発生し、 かつ外部電源によ り充電可能な状態になると、 第 2コンバータ 6 _ 2は、 少なくとも第 2蓄電部 4 — 2からの放電電流 I d i s 2によって第 1蓄電部 4— 1が充電されるように電 圧変換動作を行なう。 すなわち、 第 2コンバータ 6— 2は、 I d i s 2を電流目 標値として昇圧動作を行なう。 一方、 第 1コンバータ 6— 1は、 第 2コンバータ 6— 2を流れる電流値と実質的に同一の電流値が第 1蓄電部 4一 1へ供給される ように、 降圧動作を行なう。
このようにして、 第 2蓄電部 4一 2は、 その電池電圧 Vb a t 2に特徴的な時 間的変化が生じるまで、 すなわち SOC 2がリセットされるまで放電を継続する c なお、 図 7 Aと同様に、 第 1蓄電部 4— 1の充電許容電流値が放電電流 I d i s 2より大きい場合には、 その差分を充電部 30からの充電電流 I c hで補償して もよい。 なお、 図 7 Aおよび図 7 Bに示すように、 リセット動作中においては、 第 1蓄 電部 4— 1の充電電力が第 2蓄電部 4— 2へ移動し、 もしくは第 2蓄電部 4— 2 の充電電力が第 1蓄電部 4— 1へ移動する。 そのため、 第 1蓄電部 4一 1と第 2 蓄電部 4一 2との合計の S O Cが 1 0 0 %以下であることをリセット動作の開始 条件としてもよい。 すなわち、 リセット対象の蓄電部の残存する充電電力が残余 の蓄電部に蓄えられることが可能であるとの条件下で、 リセット動作を開始する ようにしてもよい。 これは、 リセット対象の蓄電部の充電電力が残余の蓄電部で 充電しきれなければ、 何らかの負荷で消費しなければならないためである。 なお、 このような場合には、 たとえば車室内の空調などで電力を消費するようにしても よい。
再度、 図 3を参照して、 このようにリセッド対象の蓄電部がリセットされた後、 蓄電部 4一 1および 4 _ 2に対する外部充電が開始される。 具体的には、 コンパ ータ制御部 2 1 0は、 それぞれの蓄電部の外部電源による充電完了がほぼ同時と なるように、 当該リセット対象の蓄電部が充電部 3 0からの充電電流で充電され るように対応のコンバータを制御するとともに、 その充電電流が残余の蓄電部に 対する充電電流に比較して大きくなるように対応のコンバータを制御する。 すな わち、 コンバータ制御部 2 1 0は、 リセット後において、 リセット対象の蓄電部 をより多くの充電電流で充電することで、 リセット対象ではなかった残余の蓄電 部との間で充電完了時間に差ができることを抑制する。
これに対して、 車両 1 0 0の走行中に S O C 1リセット要求または S O C 2リ セット要求が発生し、 そのときの車両 1 0 0が E V走行モードである場合には、 コンバータ制御部 2 1 0は、 リセット対象の蓄電部からの放電電流が残余の蓄電 部からの放電電流に比較して多くなるように、 コンバータ 6— 1および 6— 2を 制御する。 これは、 外部充電開始時に、 予めリセット対象の蓄電部の S O Cを低 下させておくことで、 リセット動作を迅速に行なうためである。
図 8および図 9を参照して、 上記の E V走行中、 リセット動作中、 およびリセ ット動作後における蓄電部 4 _ 1および 4— 2における充放電動作について説明 する。
図 8は、 蓄電部 4— 1および 4一 2の S O Cの時間的変化の一例を示す図であ る。
図 9は、 図 8に対応する、 蓄電部 4一 1および 4— 2の電池電流の時間的変化 の一例を示す図である。
図 8を参照して、 まず時刻 t 1において車両 100の走行が開始されたとする。 この時刻 t 1においては、 蓄電部 4— 1および 4— 2がいずれも十分に外部充電 されており、 いずれの SOCも満充電となっているものとする。 すると、 車両 1 00は、 まず EV走行モードで走行を開始する (時刻 t 1〜時刻 t 2) 。
ここで、 第 1蓄電部 4— 1に対するリセット要求 (SOC 1リセット要求) 力 発せられると、 第 1蓄電部 4一 1を積極的に放電するように電流制御が行われる。 具体的には、 図 9に示すように、 時刻 t 1〜時刻 t 2の期間において、 第 1蓄電 部 4一 1の放電電流の目標値は I d i s Cに設定され、 第 2蓄電部 4— 2の放電 電流の目標値は I d i s Aに設定される。 ここで、 | l d i s C | > | l d i s A Iである。
すると、 図 8に示すように、 第 1蓄電部 4— 1の SOCは、 第 2蓄電部 4一 2 の S O Cに比較してより大きな減少量を示す。
続いて、 時刻 t 2において、 車両 100の走行が終了し、 外部電源により充電 可能な状態になったとする。 この時刻 t 2では、 電池電圧に特徴点が現れる基準 の SOC (たとえば、 5%) より高い SO Cに維持される。 これは、 リセット動 作自体は、 外部電源により充電可能な状態にある期間中に実行されるようにする ためであり、 たとえば、 EV走行モード中、 または EV走行モードから HV走行 モードに切替わった後には、 リセット対象の蓄電部 (この場合には、 第 1蓄電部 4- 1) の SOCは基準の SOCより高い状態に維持される。
外部電源により充電可能な状態になった時刻 t 2以降では、 図 9に示すように リセット対象の第 1蓄電部 4— 1の放電電流が一定電流値 d i s Bに維持される とともに、 リセット対象ではない第 2蓄電部 4一 2は、 少なくとも第 1蓄電部 4 _ 1の放電電流 I d i s Bを含む充電電流 I c hBで充電される。 なお、 この充 電電流 I c h Bには、 第 1蓄電部 4一 1からの放電電流 I d i s Bに加えて、 充 電部 30からの充電電流も含まれてもよい。
このように第 1蓄電部 4— 1に対して一定電流値 d i s Bで放電を継続すると、 時刻 t 3において第 1蓄電部 4一 1の電池電圧 (放電電圧) に特徴点が現れたと する。 すると、 この時刻 t 3のタイミングにおいて、 第 1蓄電部 4一 1の S O C の推定値は、 予め定められた基準値 (たとえば、 5 %) にリセットされる。
このリセット動作後 (時刻 t 3以降) 、 本来の外部充電が開始される。 図 9に 示すように、 第 1蓄電部 4 _ 1は充電電流 I c h Cで充電されるとともに、 第 2 蓄電部 4 _ 2の充電電流は I c h Bから I c h Aに変更される。 ここで、 | l c h C I > I I c h A iであり、 充電電流 I c h Cおよび I c h Aの ί直は、 蓄電部 4一 1および 4 _ 2がいずれも時刻 t 4で充電完了 (満充電状態) となるように 予め演算される。
このように、 時刻 t 3〜時刻 t 4の期間において、 第 1蓄電部 4一 1が充電電 流 I c h Cで充電を継続し、 第 2蓄電部 4一 2が充電電流 I c h Aで充電を継続 することで、 両者は時刻 t 4において、 ほぼ同時に外部充電を完了することがで さる。
図 3に示すこの発明の実施の形態と本願発明との対応関係については、 状態推 定部 2 0 4が 「状態推定部」 に相当し、 コンバータ制御部 2 1 0が 「制御部」 に 相当し、 要求発生部 2 0 2が 「要求発生部」 に相当する。
以上の処理は、 図 1 0に示すような処理フローにまとめることができる。
(フローチヤ一ト)
図 1 0は、 この発明の実施の形態に従うリセット動作の処理手順を示すフロー チャートである。 なお、 図 1 0に示す各ステップの処理は、 制御装置 2 (図 2 ) が図 3に示す各制御プロックとして機能することで実現される。
図 3および図 1 0を参照して、 要求発生部 2 0 2として機能する制御装置 2は、 蓄電部 4— 1および 4— 2の各々の充電頻度に基づいて、 蓄電部 4— 1または 4 一 2に対するリセット要求の発生が必要であるか否かを判断する (ステップ S 1 0 0 ) 。
蓄電部 4— 1および 4一 2のいずれに対してもリセット要求の発生が必要ない 場合 (ステップ S 1 0 0において N Oの場合) には、 処理は最初に戻る。
これに対して、 蓄電部 4— 1または 4— 2に対してリセット要求の発生が必要 である場合 (ステップ S 1 0 0において Y E Sの場合) には、 要求発生部 2 0 2 として機能する制御装置 2は、 リセット対象の蓄電部を特定してリセット要求を 発生する (ステップ S 102) 。
次に、 コンバータ制御部 210として機能する制御装置 2は、 車両 100が E V走行中であるか否かを判断する (ステップ S 104) 。 車両 100が EV走行 中である場合 (ステップ S 104において YE Sの場合) には、 コンバータ制御 部 210として機能する制御装置 2は、 リセット対象の蓄電部からの放電電力の 分担比率を残余の蓄電部からの放電電力の分担比率に比較して大きく設定する (ステップ S 106) 。 そして、 コンバータ制御部 210として機能する制御装 置 2は、 ステップ S 106で設定した分担比率に従って、 コンバータ 6— 1およ び 6— 2における電圧変換動作を制御する (ステップ S 108) 。
さらに、 コンバータ制御部 210として機能する制御装置 2は、 車両 100が 停止状態 (I Gオフ状態) になったか否かを判断する (ステップ S 1 10) 。 車 両 100が停止状態 (I Gオフ状態) でない場合 (ステップ S 1 10において N Oの場合) には、 処理はステップ S 104に戻される。
これに対して、 車両 100が停止状態 (I Gオフ状態) になった場合 (ステツ プ S 1 10において YE Sの場合) には、 コンバータ制御部 2 10として機能す る制御装置 2は、 コネクタ部 350が車両 100に連結されるまで待つ (ステツ プ S 1 12) 。 そして、 コネクタ部 350が車両 100に連結されると、 コンパ ータ制御部 210として機能する制御装置 2は、 外部電源により充電可能な状態 になったと判断し、 リセット対象の蓄電部が所定電流で放電されるように対応の コンバータを制御するとともに、 残余の蓄電部が少なくともリセット対象の蓄電 部からの放電電流で充電されるように対応のコンバータにおける電圧変換動作を 制御する (ステップ S 1 14) 。 さらに、 コンバータ制御部 210とし て機能する制御装置 2は、 リセット対象の蓄電部の電池電圧 (放電電圧) に特徴 的な時間的変化が生じたか否かを判断する (ステップ S 1 16) 。
リセット対象の蓄電部の電池電圧 (放電電圧) に特徴的な時間的変化が生じて いない場合 (ステップ S 1 16において NOの場合) には、 処理はステップ S 1 14に戻される。
これに対して、 リセット対象の蓄電部の電池電圧 (放電電圧) に特徴的な時間 的変化が生じた場合 (ステップ S I 16において YESの場合) には、 状態推定 部 204として機能する制御装置 2は、 順次演算するリセット対象の蓄電部の S OCを予め定められた基準値にリセットする (ステップ S 1 18) 。
このリセット動作後、 コンバータ制御部 210として機能する制御装置 2は、 すべての蓄電部に対する充電がほぼ同時に完了するように、 各蓄電部に対する充 電電流の比率を決定し (ステップ S 1 20) 、 当該決定した電流比率に従って、 コンバータ 6— 1および 6— 2における電圧変換動作を制御する (ステップ S 1 22) 0
さらに、 コンバータ制御部 210として機能する制御装置 2は、 状態推定部 2 04で順次演算される SOCに基づいて、 各蓄電部の外部充電が完了したか否か を判断する (ステップ S 1 24) 。 いずれかの蓄電部の外部充電が完了していな い場合 (ステップ S 124においての NOの場合) には、 処理はステップ S 1 2 2に戻される。
これに対して、 すべての蓄電部に対する外部充電が完了した場合 (ステップ S 124において YE Sの場合) には、 リセット動作に係る処理は終了する。
なお、 上述の説明においては、 複数の蓄電部を備える車両の代表例として、 2 個の蓄電部 4一 1および 4— 2を備える車両 100について例示したが、 本願発 明は、 3個以上の蓄電部を備える車両についても適用できることは自明である。 また、 上述の説明においては、 基本的に各蓄電部の充電容量がほぼ同一である 場合について例示したが、 本願発明は各蓄電部の充電容量が互いに異なる場合で あっても適用できる。
この発明の実施の形態によれば、 外部電源により充電可能な状態である期間中 に、 対応のコンバータを制御してリセット対象の蓄電部を放電する。 そして、 こ の放電電流によって生じるリセット対象の蓄電部における放電電圧の時間的変化 に基づいて、 状態推定部で順次演算される当該リセット対象の蓄電部の充電状態 値 (SOC) の推定値を所定タイミングで予め定められた基準値にリセットする, このため、 たとえリセット対象の蓄電部の SO Cに充放電量の積算ィ直に起因する 誤差が生じても、 外部電源により充電可能な状態である期間中にリセット (校 正) を行なうことができる。 これにより、 各蓄電部の SOCの推定精度を高める ことができる。
また、 この発明の実施の形態によれば、 外部充電前にリセット要求が発生して いる場合には、 車両が E V走行モードで走行中に、 リセット対象の蓄電部を積極 的に放電させる。 これにより、 車両の走行が終了し、 外部電源により充電可能な 状態になった時点において、 リセット対象の蓄電部の S O Cを残余の蓄電部の S O Cに比較して低い値に維持できる。 これにより、 リセット対象の蓄電部に対す るリセット動作を迅速に行なうことができる。
また、 この発明の実施の形態によれば、 リセット動作の終了後において、 残余 の蓄電部に対する充電電流に比較して多い充電電流でリセット対象の蓄電部を外 部充電する。 これにより、 リセット動作の終了時点において相対的に S O Cが低 くなっているリセット対象の蓄電部に対する外部充電を残余の蓄電部に対する外 部充電の終了とほぼ同時に完了することができる。 そのため、 リセット対象の蓄 電部と残余の蓄電部との間で、 充電状態がアンバランス (不均衡) となることを 抑制できる。
また、 この発明の実施の形態によれば、 リセット動作に伴って対象の蓄電部が 十分に放電されるので、 S O Cの推定精度を高めることができるとともに、 蓄電 部自体のリフレッシュを行なうこともできる。
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は、 上記した説明ではなく、 特許請求の 範囲によって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が 含まれることが意図される。

Claims

請求の範囲
1 . 複数の蓄電部 (4— 1 , 4— 2 ) と、
前記複数の蓄電部にそれぞれ対応付けられた複数の電圧変換部 (6— 1, 6 - 2 ) と、
前記複数の電圧変換部が互いに並列接続された電力線対 (M P L , MN L ) と、 外部電源からの電力を受けて前記複数の蓄電部を充電するための充電部 (3 0 ) と、
前記複数の蓄電部のそれぞれの充電状態値を推定する状態推定部 (2 ; 2 0 4 ) とを備え、 前記状態推定部は、 前記複数の蓄電部のそれぞれの充電状態値を、 各蓄電部の充放電量の積算値に基づいて順次演算し、 さらに
前記複数の電圧変換部における電圧変換動作を制御する制御部 (2 ; 2 1 0 ) を備え、
前記制御部は、 前記複数の蓄電部が外部電源により充電可能な状態にされると、 前記複数の蓄電部のうち第 1の蓄電部が放電されるように対応の電圧変換部を制 御するとともに、 残余の前記蓄電部が少なくとも前記第 1の蓄電部からの放電電 流で充電されるように対応の電圧変換部を制御し、
前記状態推定部は、 前記複数の蓄電部が外部電源により充電可能な状態である 期間に、 前記第 1の蓄電部に基づいて前記第 1の蓄電部の充電状態 ί直を基準値に リセッ トする、 ?源システム。
2 . 前記状態推定部は、 前記第 1の蓄電部の放電電圧の時間的変化に基づく所定 タイミングで、 前記第 1の蓄電部の充電状態値を前記基準値にリセットする、 請 求の範囲第 1項に記載の電源システム。
3 . 前記制御部は、 前記状態推定部が前記第 1の蓄電部の充電状態^:を前記基準 値にリセットした後、 前記第 1の蓄電部が前記充電部からの充電電流で充電され るように対応の電圧変換部を制御するとともに、 前記第 1の蓄電部に対する充電 電流が残余の前記蓄電部に対する充電電流に比較して大きくなるように対応の電 圧変換部を制御する、 請求の範囲第 1項に記載の電源システム。
4 . 前記充電部は、 前記第 1の蓄電部と前記第 1の蓄電部に対応する電力変換部 との間に電気的に接続される、 請求の範囲第 1項に記載の電源システム。
5. 前記電源システムは、 前記第 1の蓄電部の充放電頻度に基づいて、 前記第 1 の蓄電部に対するリセット要求を発生する要求発生部 (2 ; 202) をさらに備 、
前記制御部は、 前記リセット要求に応答して、 外部電源による充電中に前記第 1の蓄電部からの放電を開始する、 請求の範囲第 1項に記載の電源システム。
6. 前記要求発生部は、 前記複数の蓄電部のそれぞれの充電頻度に基づいて、 前 記リセット要求の対象とする蓄電部を選択可能である、 請求の範囲第 5項に記載 の電源システム。
7. 前記電源システムは、 前記電力線対を介して電気的に接続された負荷装置 (MG2) に電力を供給可能に構成され、
前記制御部は、 前記リセット要求に応答して、 前記複数の蓄電部に対する外部 電源による充電の開始前に、 前記第 1の蓄電部から前記負荷装置への放電電流が 前記残余の蓄電部の各々から前記負荷装置への放電電流に比較して多くなるよう に、 前記複数の電力変換部を制御する、 請求の範囲第 5項に記載の電源システム。
8. エンジン (ENG) と、
複数の蓄電部 (4— 1, 4-2) と、
前記複数の蓄電部にそれぞれ対応付けられた複数の電圧変換部 (6— 1, 6- 2) と、
前記複数の電圧変換部が互いに並列接続された電力線対 (MPL, MNL) と、 外部電源からの電力を受けて前記複数の蓄電部を充電するための充電部 (3 0) と、
前記電力線対に接続され、 前記複数の蓄電部からの電力を受けて駆動力を発生 可能な電動機 (MG2) と、
前記電力線対に接続され、 前記エンジンからの駆動力を受けて発電可能な発電 部 (MG 1) と、
前記複数の蓄電部のそれぞれの充電状態値を推定する状態推定部 (2 ; 20 4) とを備え、 前記状態推定部は、 前記複数の蓄電部のそれぞれの充電状態値を、 各蓄電部の充放電量の積算値に基づいて順次演算し、 さらに 前記複数の電圧変換部における電圧変換動作を制御する制御部 (2 ; 2 1 0 ) と、
前記複数の蓄電部の充放電頻度に基づいて、 前記複数の蓄電部のうち 1つの蓄 電部に対するリセット要求を発生する要求発生部 (2 ; 2 0 2 ) とを備え、 前記車両は、 前記発電部による前記複数の蓄電部に対する充電が制限される第 1の走行モードと、 各蓄電部の充電状態値が所定の範囲内に維持されるように前 記発電部による前記複数の蓄電部に対する充電を制御する第 2の走行モードとを 選択して走行可能であり、
前記制御部は、 前記リセット要求が発せられると、
前記第 1の走行モードで走行中に、 前記リセット要求が発せられた対象の蓄電 部から前記電動機への放電電流が前記残余の蓄電部の各々から前記電動機への放 電電流に比較して多くなるように、 前記複数の電力変換部を制御し、
前記複数の蓄電部が外部電源により充電可能な状態にされると、 前記対象の蓄 電部が放電されるように対応の電圧変換部を制御するとともに、 残余の前記蓄電 部が少なくとも前記対象の蓄電部からの放電電流で充電されるように対応の電圧 変換部を制御し、
前記状態推定部は、 前記複数の蓄電部が外部電源により充電可能な状態である 期間に、 前記対象の蓄電部の電圧値に基づいて前記対象の蓄電部の充電状態値を 基準値にリセットする、 車両。
9 . 複数の蓄電部 (4— 1 , 4 - 2 ) を備える電源システムの充放電制御方法で あって、
前記電源システムは、
前記複数の蓄電部にそれぞれ対応付けられた複数の電圧変換部 (6— 1, 6— 2 ) と、
前記複数の電圧変換部が互いに並列接続された電力線対 (M P L, MN L ) と、 外部電源からの電力を受けて前記複数の蓄電部を充電するための充電部 ( 3 0 ) とを備え、
前記充放電制御方法は、
前記複数の蓄電部のそれぞれの充電状態値を、 各蓄電部の充放電量の積算値に 基づいて順次演算するステップ (241, 242, 243, 244, 245, 2 46 ; 25 1, 252, 253, 254, 255, 256) と、
前記複数の蓄電部が外部電源により充電可能な状態にされると、 前記複数の蓄 電部のうち第 1の蓄電部から放電されるように対応の電圧変換部を制御するとと もに、 残余の前記蓄電部が少なくとも前記第 1の蓄電部からの放電電流で充電さ れるように対応の電圧変換部を制御するステップ (S 1 14) と、
前記複数の蓄電部が外部電源により充電可能な状態である期間に、 前記第 1の 蓄電部の電圧値に基づいて前記第 1の蓄電部の充電状態値を基準値にリセットす るステップ (S 1 16, S 1 18) とを備える、 充放電制御方法。
PCT/JP2008/060933 2007-06-15 2008-06-10 電源システムおよびそれを備えた車両、ならびに充放電制御方法 WO2008153170A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008800203969A CN101682204B (zh) 2007-06-15 2008-06-10 电源系统、具备该电源系统的车辆以及充放电控制方法
KR1020107000869A KR101135656B1 (ko) 2007-06-15 2008-06-10 전원시스템 및 그것을 구비한 차량 및 충방전 제어방법
US12/451,534 US8682517B2 (en) 2007-06-15 2008-06-10 Power supply system, vehicle with the same and charge/discharge control method
EP08765626A EP2159897B1 (en) 2007-06-15 2008-06-10 Power supply system, vehicle having same, and charge/discharge control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007158727A JP5036416B2 (ja) 2007-06-15 2007-06-15 電源システムおよびそれを備えた車両、ならびに充放電制御方法
JP2007-158727 2007-06-15

Publications (1)

Publication Number Publication Date
WO2008153170A1 true WO2008153170A1 (ja) 2008-12-18

Family

ID=40129771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060933 WO2008153170A1 (ja) 2007-06-15 2008-06-10 電源システムおよびそれを備えた車両、ならびに充放電制御方法

Country Status (6)

Country Link
US (1) US8682517B2 (ja)
EP (1) EP2159897B1 (ja)
JP (1) JP5036416B2 (ja)
KR (1) KR101135656B1 (ja)
CN (1) CN101682204B (ja)
WO (1) WO2008153170A1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274274B1 (en) 1999-07-09 2001-08-14 Johnson Controls Technology Company Modification of the shape/surface finish of battery grid wires to improve paste adhesion
KR101317113B1 (ko) 2005-05-23 2013-10-11 존슨 컨트롤스 테크놀러지 컴퍼니 배터리 그리드
BRPI0808481B1 (pt) 2007-03-02 2018-12-26 Johnson Controls Tech Co método para produzir uma grade negativa para uma bateria
JP5036416B2 (ja) * 2007-06-15 2012-09-26 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに充放電制御方法
JP4306775B2 (ja) * 2007-08-31 2009-08-05 トヨタ自動車株式会社 電動車両
US9614389B2 (en) * 2009-04-14 2017-04-04 Ford Global Technologies, Llc Method and system for controlling current flow through a power distribution circuit
US9132741B2 (en) * 2009-10-08 2015-09-15 Ford Global Technologies, Llc Method and system for controlling current flow through a power distribution circuit
JP5570782B2 (ja) * 2009-10-16 2014-08-13 三洋電機株式会社 電源装置及びこれを備える車両並びに電源装置の充放電制御方法
JP5289302B2 (ja) * 2009-12-25 2013-09-11 本田技研工業株式会社 電源システム
US9130232B2 (en) 2010-03-03 2015-09-08 Johnson Controls Technology Company Battery grids and methods for manufacturing same
US8855951B2 (en) * 2010-04-13 2014-10-07 Ford Global Technologies, Llc Power distribution circuit diagnostic system and method
US9748578B2 (en) 2010-04-14 2017-08-29 Johnson Controls Technology Company Battery and battery plate assembly
EP2579059B1 (en) * 2010-06-07 2014-04-02 Mitsubishi Electric Corporation Charge status estimation apparatus
ES2381405B1 (es) * 2010-06-28 2013-05-08 Enrique Martin-Lorente Rivera Metodo y dispositivo medidor de energia y capacidad para baterias
JP5168330B2 (ja) * 2010-09-09 2013-03-21 トヨタ自動車株式会社 負荷駆動装置およびそれを備える車両ならびに負荷駆動装置の制御方法
JP5447450B2 (ja) * 2011-01-25 2014-03-19 株式会社デンソー 通信装置
KR101229441B1 (ko) * 2011-03-18 2013-02-06 주식회사 만도 배터리 충전 장치
JP5682702B2 (ja) * 2011-03-24 2015-03-11 トヨタ自動車株式会社 電力変換設備、電動車両および電動車両の充電システム
JP5304844B2 (ja) * 2011-05-24 2013-10-02 トヨタ自動車株式会社 バッテリの充電制御装置
US9761883B2 (en) 2011-11-03 2017-09-12 Johnson Controls Technology Company Battery grid with varied corrosion resistance
CN104350662B (zh) * 2011-12-15 2018-10-12 A123系统公司 混合电池系统
JP5830449B2 (ja) * 2012-08-30 2015-12-09 日立オートモティブシステムズ株式会社 電動車駆動システム
DE102013111109A1 (de) 2013-10-08 2015-04-09 Johnson Controls Autobatterie Gmbh & Co. Kgaa Gitteranordnung für eine plattenförmige Batterieelektrode eines elektrochemischen Akkumulators sowie Akkumulator
DE102013111667A1 (de) 2013-10-23 2015-04-23 Johnson Controls Autobatterie Gmbh & Co. Kgaa Gitteranordnung für eine plattenförmige Batterieelektrode und Akkumulator
JP2015105045A (ja) * 2013-11-29 2015-06-08 トヨタ自動車株式会社 電力変換器の制御装置
KR101637710B1 (ko) * 2014-10-30 2016-07-07 현대자동차주식회사 하이브리드 차량의 ldc 제어 회로 및 ldc 제어 방법
JP6223406B2 (ja) 2015-11-28 2017-11-01 本田技研工業株式会社 電力供給システム
JP6647963B2 (ja) * 2016-05-18 2020-02-14 日立建機株式会社 建設機械
JP6348929B2 (ja) * 2016-05-23 2018-06-27 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法
TW201742350A (zh) * 2016-05-30 2017-12-01 微星科技股份有限公司 可充電的電池及其充電方法
CN110121822B (zh) * 2017-01-05 2023-10-27 索尼互动娱乐股份有限公司 电子设备
JP6683175B2 (ja) * 2017-05-17 2020-04-15 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US10875397B2 (en) * 2017-06-30 2020-12-29 Hamilton Sundstrand Corporation HESM fast recharge algorithm
JP6948416B2 (ja) * 2017-11-15 2021-10-13 三菱重工業株式会社 電力管理方法及び充電管理方法
JP7042597B2 (ja) * 2017-12-04 2022-03-28 株式会社東芝 車両用制御装置及び電動車両
US11764668B2 (en) * 2018-12-06 2023-09-19 Rohm Co., Ltd. Control device for controlling an electric power conversion device incorporating a bidirectional inverter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107606A (ja) * 1994-10-03 1996-04-23 Honda Motor Co Ltd 電動車両用充電装置
JP2001169464A (ja) * 1999-12-09 2001-06-22 Mitsubishi Motors Corp バッテリの充電制御装置及びバッテリの充電状態推定装置
JP2002010502A (ja) 2000-06-16 2002-01-11 Sansha Electric Mfg Co Ltd 蓄電池用充放電装置
US20020113595A1 (en) 2001-02-14 2002-08-22 Denso Corporation Battery control method for hybrid vehicle
JP2006209969A (ja) * 2006-04-28 2006-08-10 Toshiba Corp 半導体装置
JP2006338889A (ja) * 2005-05-31 2006-12-14 Matsushita Electric Ind Co Ltd 電力管理システムおよび電力システム管理方法
JP2007017357A (ja) * 2005-07-08 2007-01-25 Toyota Central Res & Dev Lab Inc 電池残存容量検出方法及び電池残存容量検出装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE429162B (sv) * 1981-12-23 1983-08-15 Nils Hugo Leopold Abramson Anordning for att beroringsfritt och artificiellt fasthalla ett objekts tva- eller tredimensionella form jemte anvendning av anordningen i en kontroll- eller styrutrustning
JPH07128416A (ja) * 1993-11-04 1995-05-19 Mitsubishi Motors Corp 電気自動車用バッテリ残存容量計
US5684384A (en) * 1995-10-31 1997-11-04 Motorola, Inc. Apparatus and method for discharging and charging a multiple battery arrangement
JP4049833B2 (ja) * 1996-07-26 2008-02-20 トヨタ自動車株式会社 電源装置および電気自動車
JP3185674B2 (ja) 1996-07-30 2001-07-11 トヨタ自動車株式会社 ハイブリッド自動車の発電制御装置
JP3304777B2 (ja) 1996-08-22 2002-07-22 トヨタ自動車株式会社 電動車両
JP3099181B2 (ja) * 1996-09-10 2000-10-16 本田技研工業株式会社 蓄電器の電圧制御装置
US5910722A (en) * 1997-11-21 1999-06-08 Lockheed Martin Corp. Hybrid electric vehicle with reduced auxiliary power to batteries during regenerative braking
US5982146A (en) * 1998-05-15 1999-11-09 Intel Corporation Method and apparatus for conditioning battery while external power is applied
JP3410022B2 (ja) * 1998-05-20 2003-05-26 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3829250B2 (ja) * 1998-06-24 2006-10-04 本田技研工業株式会社 バッテリ交換システムのバッテリ充電制御装置
JP3300295B2 (ja) * 1998-12-07 2002-07-08 本田技研工業株式会社 ハイブリッド車両の制御装置
JP2000184508A (ja) * 1998-12-18 2000-06-30 Nissan Diesel Motor Co Ltd 車両のハイブリッド駆動システム
EP1059190A4 (en) * 1998-12-28 2004-06-09 Yamaha Motor Co Ltd POWER SUPPLY SYSTEM FOR A VEHICLE
JP2001069611A (ja) * 1999-08-27 2001-03-16 Honda Motor Co Ltd ハイブリッド車両のバッテリ制御装置
KR100554241B1 (ko) * 1999-09-09 2006-02-22 도요다 지도샤 가부시끼가이샤 배터리용량계측 및 잔존용량 산출장치
JP3912475B2 (ja) * 2000-02-24 2007-05-09 三菱ふそうトラック・バス株式会社 ハイブリッド電気自動車の発電制御装置
JP3381708B2 (ja) * 2000-05-02 2003-03-04 トヨタ自動車株式会社 車両、電源系制御装置、電源系を制御する方法および車両の始動時制御方法
JP5140894B2 (ja) * 2000-05-15 2013-02-13 トヨタ自動車株式会社 燃料電池と充放電可能な蓄電部とを利用した電力の供給
JP3656243B2 (ja) * 2000-06-06 2005-06-08 スズキ株式会社 ハイブリッド車両の制御装置
JP3904388B2 (ja) * 2000-12-04 2007-04-11 松下電器産業株式会社 ハイブリッド自動車の制御装置
US6445982B1 (en) * 2001-03-26 2002-09-03 Visteon Global Technologies, Inc. Regenerative deceleration for a hybrid drive system
JP3934365B2 (ja) * 2001-06-20 2007-06-20 松下電器産業株式会社 バッテリの充放電制御方法
JP4158363B2 (ja) * 2001-08-01 2008-10-01 アイシン・エィ・ダブリュ株式会社 ハイブリッド型車両駆動制御装置
US6608396B2 (en) 2001-12-06 2003-08-19 General Motors Corporation Electrical motor power management system
US6614204B2 (en) * 2001-12-21 2003-09-02 Nicholas J. Pellegrino Charging station for hybrid powered vehicles
JP4506980B2 (ja) * 2004-02-03 2010-07-21 トヨタ自動車株式会社 ハイブリッド燃料電池システム及びその電圧変換制御方法
CA2600512A1 (en) * 2005-03-11 2006-09-14 Techtium Ltd. Bidirectional battery charge controller
JP4271682B2 (ja) * 2005-11-24 2009-06-03 本田技研工業株式会社 モータ駆動車両の制御装置
US20070216360A1 (en) * 2006-03-15 2007-09-20 Taiken Matsui Battery control system and method
JP4784566B2 (ja) * 2006-07-12 2011-10-05 日産自動車株式会社 二次電池の入出力電力制御装置及び入出力電力制御方法
US7683576B2 (en) * 2007-05-01 2010-03-23 Jenn-Yang Tien Smart lead acid battery charging/discharging management system
JP5036416B2 (ja) * 2007-06-15 2012-09-26 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに充放電制御方法
KR100992755B1 (ko) * 2007-12-13 2010-11-05 기아자동차주식회사 하이브리드 차량의 soc별 최적 운전점 결정 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107606A (ja) * 1994-10-03 1996-04-23 Honda Motor Co Ltd 電動車両用充電装置
JP2001169464A (ja) * 1999-12-09 2001-06-22 Mitsubishi Motors Corp バッテリの充電制御装置及びバッテリの充電状態推定装置
JP2002010502A (ja) 2000-06-16 2002-01-11 Sansha Electric Mfg Co Ltd 蓄電池用充放電装置
US20020113595A1 (en) 2001-02-14 2002-08-22 Denso Corporation Battery control method for hybrid vehicle
JP2006338889A (ja) * 2005-05-31 2006-12-14 Matsushita Electric Ind Co Ltd 電力管理システムおよび電力システム管理方法
JP2007017357A (ja) * 2005-07-08 2007-01-25 Toyota Central Res & Dev Lab Inc 電池残存容量検出方法及び電池残存容量検出装置
JP2006209969A (ja) * 2006-04-28 2006-08-10 Toshiba Corp 半導体装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCHMIDT H ET AL.: "THE CHARGE EQUALIZER. A NEW SYSTEM TO EXTEND BATTERY LIFETIME IN PHOTOVOLTAIC SYSTEMS, U.P.S: AND ELECTRIC VEHICLES", INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE (INELEC), PARIS, 27 September 1993 (1993-09-27)
See also references of EP2159897A4

Also Published As

Publication number Publication date
JP5036416B2 (ja) 2012-09-26
KR20100022109A (ko) 2010-02-26
CN101682204B (zh) 2012-06-13
CN101682204A (zh) 2010-03-24
EP2159897B1 (en) 2013-01-02
EP2159897A4 (en) 2011-06-08
KR101135656B1 (ko) 2012-04-13
US20100131137A1 (en) 2010-05-27
US8682517B2 (en) 2014-03-25
EP2159897A1 (en) 2010-03-03
JP2008312381A (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5036416B2 (ja) 電源システムおよびそれを備えた車両、ならびに充放電制御方法
JP4640391B2 (ja) 電源システムおよびそれを備えた車両
US9004207B2 (en) Control apparatus and control method for hybrid vehicle
JP4715881B2 (ja) 電源システムおよびそれを備えた車両
US8509975B2 (en) Vehicle, method of estimating state of charge of secondary battery, and method of controlling vehicle
US8442727B2 (en) Electric vehicle and method for setting total allowable discharge electric energy in the electric vehicle
CN102341285B (zh) 混合动力车辆的充放电控制系统及其控制方法
US8498766B2 (en) Control system of vehicle
CN102834280B (zh) 电源系统以及装有电源系统的车辆
US20140021919A1 (en) Electrically powered vehicle and method for controlling same
JP2012105527A (ja) 電気自動車を充電する装置および方法
US9701186B2 (en) Vehicle
CN101362442A (zh) 电动车辆
WO2007148592A1 (ja) 電源システムおよびそれを備える車両
US9252630B2 (en) Battery charge control apparatus
CN105172784A (zh) 混合动力车辆
JP2010280379A (ja) ハイブリッド車両の制御装置
JP2015095917A (ja) 車両
WO2010061449A1 (ja) 電源システムおよびハイブリッド車両、ならびに電源システムの充電制御方法
US11811028B2 (en) On-vehicle system, secondary battery management system, charge rate output method, and program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880020396.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12451534

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008765626

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107000869

Country of ref document: KR

Kind code of ref document: A