WO2008152828A1 - 透過型液晶表示装置 - Google Patents

透過型液晶表示装置 Download PDF

Info

Publication number
WO2008152828A1
WO2008152828A1 PCT/JP2008/051711 JP2008051711W WO2008152828A1 WO 2008152828 A1 WO2008152828 A1 WO 2008152828A1 JP 2008051711 W JP2008051711 W JP 2008051711W WO 2008152828 A1 WO2008152828 A1 WO 2008152828A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
anisotropic layer
optically anisotropic
display device
refractive index
Prior art date
Application number
PCT/JP2008/051711
Other languages
English (en)
French (fr)
Inventor
Satoru Ikeda
Tetsuya Uesaka
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to CN2008800199573A priority Critical patent/CN101681062B/zh
Priority to US12/602,584 priority patent/US8018552B2/en
Priority to EP08704390A priority patent/EP2157475A4/en
Priority to KR1020097026886A priority patent/KR101426577B1/ko
Publication of WO2008152828A1 publication Critical patent/WO2008152828A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133738Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homogeneous alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/10Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate
    • G02F2413/105Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate with varying inclination in thickness direction, e.g. hybrid oriented discotic LC
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/13Positive birefingence

Definitions

  • the present invention relates to a transmission type liquid crystal display device used for office automation equipment such as a word processor and a personal computer, portable information equipment such as an electronic notebook and a mobile phone, or a camera-integrated type VR provided with a liquid crystal monitor.
  • a liquid crystal display device is usually composed of a liquid crystal cell, a polarizing plate, and an optical compensation sheet (retardation plate).
  • a liquid crystal cell is sandwiched between a pair of polarizing plates, and one or a plurality of optical compensation sheets are disposed between the liquid crystal cell and the polarizing plate.
  • the liquid crystal cell is composed of a rod-like liquid crystal molecule, two substrates for enclosing it, and an electrode layer for applying a voltage to the rod-like liquid crystal molecule.
  • T N As the liquid crystal cell system, T N
  • the transmissive liquid crystal display device has a viewing angle such as a decrease in display contrast, a change in display color, or an inversion of gradation when viewed from an oblique direction due to the refractive index anisotropy of liquid crystal molecules. Problems cannot be avoided and improvements are desired.
  • the area where the contrast spreads is improved, but the range where the gradation is reversed is wide, and the viewing angle characteristics are not necessarily sufficient. This is because the liquid crystal layer is twisted 90 degrees, the tilted portion of the liquid crystal molecules in the liquid crystal cell when a voltage is applied spreads to the 90 degree orientation, and the range of gradation inversion is expanded. caused by.
  • the liquid crystal cell is preferably a display method using the ECB method in which the twist angle of the liquid crystal molecules is 0 degree and the orientation is homogeneous.
  • Patent Document 4 In order to improve the viewing angle of the ECB system, there has been proposed a configuration in which two optical compensation films and uniaxial retardation films that are nematically aligned on the upper and lower sides of a homogeneous liquid crystal cell are arranged (Patent Document 4).
  • Patent Document 1 Japanese Patent No. 2 6 4 0 8 3
  • Patent Document 2 Japanese Patent Laid-Open No. 1 1 1 9 4 3 2 5
  • Patent Document 3 Japanese Patent Laid-Open No. 1 1 1 9 4 3 7 1
  • Patent Document 4 Japanese Patent Laid-Open No. 2 0205-2 0 2 0 1 0 1
  • the present invention improves the above-described problems, and provides a transmissive liquid crystal display device with little variation in display characteristics, bright display, high contrast, and low viewing angle dependency. Objective.
  • a polarizing plate In the first aspect of the present invention, a polarizing plate, a second optically anisotropic layer, a first optically anisotropic layer, and a liquid crystal layer between an upper substrate and a lower substrate disposed opposite to each other in order from the backlight side.
  • birefringence wavelength dispersion of the liquid crystal film of the second optically anisotropic layer D2 birefringence wavelength dispersion DLC of the liquid crystal cell
  • the retardation values of the first optical anisotropic layer and the second optical anisotropic layer at nm are represented by Re1, Re2, and the retardation Re (LC) when the black display voltage is applied to the liquid crystal cell. ,
  • Re 2 50 nm to 1 80 nm
  • a transmissive liquid crystal display device characterized in that the first optically anisotropic layer is composed of at least a liquid crystal film having a nematic hybrid alignment structure fixed thereto.
  • a display device characterized in that the first optically anisotropic layer is composed of at least a liquid crystal film having a nematic hybrid alignment structure fixed thereto.
  • the second aspect of the present invention includes, in order from the backlight side, a polarizing plate, a homogeneous alignment liquid crystal cell in which a liquid crystal layer is sandwiched between an upper substrate and a lower substrate that are arranged to face each other, and a first optically anisotropic layer.
  • the birefringence wavelength dispersion D 1 of the liquid crystal film of the first optical anisotropic layer the second Birefringence wavelength dispersion D 2 of the liquid crystal film of the optically anisotropic layer, Birefringence wavelength dispersion DLC of the liquid crystal cell
  • the thickness of the first optically anisotropic layer is d 1, the in-plane main refractive indices are Nx l and N y 1, the main refractive index in the thickness direction is N z 1, and the in-plane main refractive index is N z 1
  • the thickness of the second optically anisotropic layer is d 2
  • the in-plane main refractive index is Nx 2 and Wavelength when Ny 2
  • the main refractive index in the thickness direction is N z 2
  • the phase difference values of the first optical anisotropic layer and the second optical anisotropic layer at 50 nm are represented by R e 1 and R e 2, and the phase difference R e (LC )But
  • R e 1 2 O nm to l 4 O nm
  • Re 2 50 nm to 1 80 nm
  • a transmissive liquid crystal display device characterized in that the first optically anisotropic layer is composed of at least a liquid crystal film having a nematic hybrid alignment structure fixed thereto.
  • a display device characterized in that the first optically anisotropic layer is composed of at least a liquid crystal film having a nematic hybrid alignment structure fixed thereto.
  • the third aspect of the present invention is a homogenous orientation in which a polarizing plate, a first optically anisotropic layer, and a liquid crystal layer are sandwiched between an upper substrate and a lower substrate that are arranged opposite to each other in order from the backlight side.
  • the retardation value of the anisotropic layer and the second optically anisotropic layer is represented by Re1, Re2, and the retardation Re (LC) when the black display voltage is applied to the liquid
  • Re 1 20 nm to 140 nm
  • Re 2 50 nm to 1 80 nm
  • a transmissive liquid crystal display device characterized in that the first optically anisotropic layer is composed of at least a liquid crystal film having a nematic hybrid alignment structure fixed thereto.
  • a display device characterized in that the first optically anisotropic layer is composed of at least a liquid crystal film having a nematic hybrid alignment structure fixed thereto.
  • the fourth aspect of the present invention is a homogenous orientation in which a polarizing plate, a second optically anisotropic layer, and a liquid crystal layer are sandwiched between an upper substrate and a lower substrate disposed opposite to each other in order from the backlight side.
  • the thickness of the first optically anisotropic layer is d 1, the in-plane main refractive indices are Nx l and N y 1, the main refractive index in the thickness direction is N z 1, and the in-plane main refractive index is N z 1
  • the thickness of the second optically anisotropic layer is d 2
  • the in-plane main refractive index is Nx 2 and Wavelength 550, where Ny 2 is the main refractive index in the thickness direction, N z 2
  • the retardation values of the first optical anisotropic layer and the second optical anisotropic layer at nm are represented by Re1, Re2, and the retardation Re (LC) when the black display voltage is applied to
  • a transmissive liquid crystal display device characterized in that the first optically anisotropic layer is composed of at least a liquid crystal film having a nematic hybrid alignment structure fixed thereto.
  • a display device characterized in that the first optically anisotropic layer is composed of at least a liquid crystal film having a nematic hybrid alignment structure fixed thereto.
  • a fifth aspect of the present invention is the transmission type liquid crystal display device according to any one of the first to fourth aspects of the present invention, wherein the second optically anisotropic layer is a polymer stretched film. is there.
  • the second optically anisotropic layer is an optical film obtained by fixing a nematic alignment formed in a liquid crystal state by a liquid crystal material having optically positive uniaxiality.
  • the transmissive liquid crystal display device according to any one of the first to fourth aspects of the present invention.
  • an angle between a tilt direction obtained by projecting a hybrid direction of the liquid crystal film of the first optically anisotropic layer onto a substrate plane and a rubbing direction of the liquid crystal layer is within 30 °.
  • an angle between a tilt direction obtained by projecting a hybrid direction of the liquid crystal film of the first optically anisotropic layer onto a substrate plane and a slow axis of the second optically anisotropic layer is 70.
  • the liquid crystal film of the first optically anisotropic layer is made of a liquid crystal material exhibiting optically positive uniaxiality, and the nematic hybrid alignment formed by the liquid crystal material in a liquid crystal state.
  • the transmission type according to any one of the first to eighth aspects of the present invention, wherein the liquid crystal film has a mean tilt angle of 5 to 45 degrees in the nematic hybrid alignment.
  • a liquid crystal display device According to a tenth aspect of the present invention, an angle formed between an absorption axis of the polarizing plate and a tilt direction in which a hybrid direction of the liquid crystal film of the first optically anisotropic layer is projected onto a substrate plane is 30 ° or more.
  • the transmission type liquid crystal display device according to any one of the first to ninth aspects of the present invention, wherein the transmission type liquid crystal display device is in a range of less than or equal to about 5 degrees.
  • the phase difference when no voltage is applied to the homogeneously aligned liquid crystal cell is 200 nm to 400 nm.
  • the liquid crystal display device of the present invention has features that the display is bright, the front contrast is high, and the viewing angle dependency is small.
  • the transmissive liquid crystal display device of the present invention has any one of the following four configurations (1) to (4), and a light diffusion layer, a light control film, a light guide plate, a prism as necessary. A member such as a sheet is further added, but there is no particular limitation on these. Any of the configurations (1) to (4) may be used in terms of obtaining optical characteristics with little viewing angle dependency.
  • Polarizing plate / liquid crystal cell First optical anisotropic layer / second optical anisotropic layer Z polarizing plate Z knock light
  • liquid crystal cell used in the present invention will be described.
  • a homogeneous alignment cell is used as a liquid crystal cell system.
  • a homogeneous orientation cell is a cell with a twist angle of approximately 0 degrees.
  • the term “substantially 0 degree” here means a twist angle of 0 degree or more and 5 degrees or less.
  • the phase difference (A nd) of the liquid crystal cell when no voltage is applied is 2 0 0 ⁇ ⁇ ! ⁇ 400 nm is preferred, more preferably 2 3 0 n n! ⁇ 3500 nm. If it is out of this range, unnecessary coloration and a decrease in brightness are caused, which is not preferable.
  • the driving method of the liquid crystal cell there is no particular limitation on the driving method of the liquid crystal cell.
  • Any driving method such as a plasma-mlessing method may be used.
  • the liquid crystal cell has a configuration in which a liquid crystal layer is sandwiched between two transparent substrates (hereinafter, the observer side is sometimes referred to as an upper substrate and the backlight side is referred to as a lower substrate).
  • the material exhibiting liquid crystallinity for forming the liquid crystal layer is not particularly limited, and examples thereof include various ordinary low-molecular liquid crystal substances, high-molecular liquid crystal substances, and mixtures thereof that can constitute various liquid crystal cells.
  • pigments, chiral agents, non-liquid crystalline substances, and the like can be added to these as long as liquid crystallinity is not impaired.
  • the liquid crystal cell may include various constituent elements necessary for forming liquid crystal cells of the various types described above and various constituent members described below.
  • the transparent substrate constituting the liquid crystal cell is not particularly limited as long as the liquid crystal material constituting the liquid crystal layer is aligned in a specific alignment direction.
  • a transparent substrate having the property of orienting liquid crystals by the substrate itself, a force that lacks the alignment ability of the substrate itself, a transparent substrate having an alignment film having the property of orienting liquid crystals, etc. Can also be used.
  • well-known things, such as ITO, can be used for the electrode of a liquid crystal cell.
  • the electrode can usually be provided on the surface of the transparent substrate with which the liquid crystal layer is in contact, and when a substrate having an alignment film is used, it can be provided between the substrate and the alignment film.
  • the polarizing plate used in the present invention is not particularly limited as long as the object of the present invention can be achieved, and a normal polarizing plate used in a liquid crystal display device can be appropriately used.
  • iodine and / or dichroism is applied to hydrophilic high molecular films made of PVA such as polybulal alcohol (PVA) and partially acetalized PVA, and partially saponified ethylene monoacetate butyl copolymer.
  • a polarizing film composed of a polarizing film adsorbing a dye, a poly-oriented film such as a dehydrochlorinated product of polyvinyl chloride, and the like can be used.
  • a reflective polarizing film can also be used.
  • the polarizing plate may be used alone, or may be a polarizing film provided with a transparent protective layer or the like on one or both sides of the polarizing film for the purpose of improving strength, improving moisture resistance, improving heat resistance, etc. good.
  • a transparent protective layer transparent plastic films such as polyester, triacetyl cell mouth, cyclic olefinic polymer, etc. are laminated directly or through an adhesive layer, transparent resin coating layer, acrylic or epoxy photo-curing For example, a chemical resin layer.
  • transparent protective layers are coated on both sides of the polarizing film, different protective layers may be provided on both sides.
  • the second optically anisotropic layer used in the present invention is not particularly limited as long as it is excellent in transparency and uniformity, but a polymer stretched film or an optical film made of liquid crystal can be preferably used.
  • the stretched polymer film include uniaxial or biaxial retardation films made of cellulose, polycarbonate, polyarylate, polysulfone, polyacrylic, polyethersulfone, cyclic olefinic polymer compounds, etc. can do.
  • the second optically anisotropic layer exemplified here may be composed only of a polymer stretched film, may be composed only of an optical film composed of liquid crystal, or an optical composed of a polymer stretched film and liquid crystal. Both films can be used together.
  • an optical film made of liquid crystal various liquid crystal polymer compounds of main chain type and / or side chain type, for example, liquid crystal polyester, liquid crystal polycarbonate, liquid crystal polyacrylate, etc.
  • An optical film made of a low molecular weight liquid crystal compound having a reactivity capable of molecular weight can be listed, and these may be a self-supporting single film or formed on a transparent support substrate.
  • the positive biaxial optically anisotropic layer has a refractive index relationship of nx>nz> ny.
  • a negative biaxial optically anisotropic layer has a refractive index relationship of nx>ny> nz.
  • the first optically anisotropic layer used in the present invention is a liquid crystalline polymer exhibiting optically positive uniaxiality, specifically, a liquid crystalline polymer compound exhibiting optically positive uniaxiality, or at least An optically positive uniaxial liquid crystalline polymer composition containing one kind of the liquid crystalline polymer compound, wherein the liquid crystalline polymer compound or the liquid crystalline polymer composition is a liquid crystal
  • the layer includes at least a liquid crystal film in which a nematic hybrid alignment structure having an average tilt angle of 5 ° to 45 ° formed in a state is fixed.
  • the nematic hybrid alignment referred to in the present invention refers to an alignment form in which the liquid crystal molecules are nematically aligned, and the angle between the director of the liquid crystal molecules and the film plane at this time is different between the upper surface and the lower surface of the film. . Therefore, the angle formed by the director and the film plane is different between the vicinity of the upper surface interface and the vicinity of the lower surface interface. Therefore, the angle continuously changes between the upper surface and the lower surface of the film. It can be said.
  • the directors of the liquid crystal molecules are oriented at different angles at all positions in the film thickness direction. Therefore, the film no longer has an optical axis when viewed as a film structure.
  • the average tilt angle as used in the present invention means the average value of the angle formed by the director of the liquid crystal molecule and the film plane in the film thickness direction of the liquid crystal film.
  • the angle formed by the director and the film plane is usually 20 ° to 90 °, preferably 40 ° to 80 °, in the vicinity of one interface of the film, More preferably, it has an angle of 50 ° to 70 °, and on the opposite side, the absolute value is usually 0 ° to 20 °, preferably 0 ° to 10 °.
  • the average tilt angle is usually 5 ° to 50 ° in absolute value, preferably 20 ° to 45 °, more preferably 25 ° to 40 °.
  • the average tilt angle is out of the above range, it is not desirable because it may cause a decrease in contrast when viewed from an oblique direction.
  • the average tilt angle can be obtained by applying a crystal rotation method.
  • the liquid crystal film constituting the first optically anisotropic layer used in the present invention has the nematic hybrid alignment state of the liquid crystalline polymer compound or liquid crystalline polymer composition as described above fixed and specific.
  • any liquid crystal may be used as long as it has nematic hybrid orientation and satisfies the range of the average tilt angle.
  • a liquid crystal film obtained by forming a low-molecular liquid crystal in a nematic hybrid orientation in a liquid crystal state and then fixing it by photocrosslinking or thermal crosslinking can be used.
  • the film as used in this invention, it does not ask whether or not the film itself exhibits liquid crystallinity, but means a film obtained by forming a liquid crystal substance such as a low-molecular liquid crystal or a polymer liquid crystal into a film.
  • the in-plane apparent retardation value when viewed from the normal direction of the liquid crystal film constituting the first optically anisotropic layer is the refractive index in the direction parallel to the director in the case of a nematic hybrid oriented film.
  • ne the refractive index in the vertical direction
  • no the refractive index in the vertical direction
  • the value obtained by subtracting no from ne (ne—no) is assumed to be the birefringence above. It is assumed that the apparent retardation value is given by the product of the apparent birefringence and the absolute film thickness. This retardation value can be easily obtained by polarization optical measurement such as ellipsometry.
  • the specific arrangement conditions of the optically anisotropic layer in the liquid crystal display device of the present invention will be described.
  • the optical anisotropy composed of a liquid crystal film will be described with reference to FIGS.
  • the upper and lower layers, the tilt direction of the optically anisotropic layer, and the pretilt direction of the liquid crystal cell layer are defined below.
  • the upper and lower sides of the optically anisotropic layer made of a liquid crystal film are respectively defined by the angles formed by the liquid crystal molecule director and the film plane in the vicinity of the film interface of the liquid crystal film constituting the optically anisotropic layer.
  • the surface where the angle formed by the rectifier and the film plane forms an angle of 20 to 90 degrees on the acute angle side is defined as b surface, and the surface which forms the angle of 0 to 20 degrees on the acute angle side Is the c-plane.
  • the angle formed between the liquid crystal molecule director and the projection component of the director on the c-plane is an acute angle and parallel to the projection component. This direction is defined as the tilt direction of the optical anisotropic element (Figs. 1 and 2).
  • the driving low-molecular liquid crystal is not parallel to the cell interface but tilted at a certain angle, and this angle is generally referred to as a pretilt angle.
  • the direction in which the angle formed by the projection component on the director interface is an acute angle and the direction parallel to the projection component of the director is defined as the pretilt direction of the liquid crystal cell layer (Fig. 3).
  • the first and second optically anisotropic layers may be prepared by bonding each other through an adhesive layer or an adhesive layer.
  • Adhesive that forms the adhesive layer has sufficient adhesion to the optically anisotropic layer.
  • acrylic resin, methacrylic resin, epoxy resin, ethylene monoacetate copolymer system, rubber system examples thereof include urethane-based, polyvinyl ether-based and mixtures thereof, and various reactive types such as thermosetting type Z or photo-curing type and electron beam-curing type.
  • These adhesives include those having the function of a transparent protective layer for protecting the optically anisotropic layer.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited.
  • an acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyether, fluorine-based or rubber-based polymer is appropriately used. It can be selected and used.
  • an acrylic adhesive having excellent optical transparency, easy adjustment of wettability, cohesiveness and adhesive properties, and excellent weather resistance and heat resistance can be preferably used.
  • the adhesive and the pressure-sensitive adhesive may be collectively referred to as “sticky adhesive”
  • the adhesive and the pressure-sensitive adhesive can be performed by an appropriate method.
  • examples thereof include 10 to 40 weights obtained by dissolving or dispersing a base polymer or a composition thereof in a solvent composed of a single solvent or a mixture of suitable solvents such as toluene or ethyl acetate. / 0 about a tacky adhesive solution was prepared, as flow method and coating method suitable developing methods in a manner directly applied on the optically anisotropic layer of the like, or viscous on a separator according to the above, ⁇ A method of forming an adhesive layer and transferring it onto the optically anisotropic layer can be mentioned.
  • the viscosity and adhesive layers include, for example, natural and synthetic resins, in particular, tackifier resins, fillers and pigments made of glass fibers, glass beads, metal powders, other inorganic powders, It may contain additives such as colorants and antioxidants. Further, it may be an adhesive layer containing fine particles and exhibiting light diffusibility.
  • the surface of the optically anisotropic layer is surface-treated to improve the adhesion to the adhesive layer or the pressure-sensitive adhesive layer.
  • the surface treatment means is not particularly limited, and surface treatment methods such as corona discharge treatment, sputtering treatment, low-pressure UV irradiation, and plasma treatment that can maintain the transparency of the liquid crystal layer surface can be suitably employed. Among these surface treatment methods, edge discharge treatment is good.
  • Polarizing plate / second optically anisotropic layer liquid crystal cell / polarizing plate Z first optically anisotropic layer / knock light
  • a transparent electrode 3 made of a material having a high transmittance such as ITO is provided on the substrate 1, and a counter electrode 4 made of a material having a high transmittance such as ITO is provided on the substrate 2.
  • a liquid crystal layer 5 made of a liquid crystal material exhibiting positive dielectric anisotropy is sandwiched between the counter electrode 4.
  • a polarizing plate 7 is provided on the opposite surface of the substrate 2 on the side on which the counter electrode 4 is formed, and the first optically anisotropic layer 9 on the opposite side of the surface on which the transparent electrode 3 is formed on the substrate 1, Two optically anisotropic layers 10 and a polarizing plate 8 are provided. On the back side of the polarizing plate 8, a backlight 11 is provided.
  • the angle between the pretilt direction of the liquid crystal layer in the liquid crystal cell and the tilt direction of the first optically anisotropic layer composed of the liquid crystal film in which the nematic hybrid alignment structure is fixed is preferably in the range of 0 to 30 degrees. More preferably, it is in the range of 0 degrees to 20 degrees, and particularly preferably in the range of 0 degrees to 10 degrees. If the angle formed by both exceeds 30 degrees, sufficient viewing angle compensation may not be obtained.
  • the angle formed by the slow axis of the second optical anisotropic layer and the tilt direction of the first optical anisotropic layer is preferably 70 degrees or more and less than 110 degrees. More preferably, it is not less than 80 degrees and less than 100 degrees. If it is 1 10 degrees or more, or less than 70 degrees, the front contrast may be lowered, which is not preferable.
  • the angle between the tilt direction of the first optically anisotropic layer and the absorption axis of the polarizing plate is 30 degrees. More than 60 degrees is preferable. More preferably, it is 40 degrees or more and less than 5,0 degrees. If it is 60 degrees or more, or less than 30 degrees, the front contrast may be reduced, which is not preferable.
  • the angle formed by the slow axis of the second optically anisotropic layer and the absorption axis of the polarizing plate is preferably 30 degrees or more and less than 60 degrees. More preferably, it is 40 degrees or more and less than 50 degrees. If it is 60 ° or more, or less than 30 °, the front contrast may be lowered, which is not preferable.
  • the anisotropy ⁇ 2 is generally dependent on the wavelength (nm), and its characteristics generally have a negative tendency with respect to the wavelength; L.
  • D is the same if the liquid crystal materials are exactly the same, but different liquid crystal materials may be the same.
  • birefringence wavelength dispersions of the liquid crystal cell, the first optically anisotropic layer, and the second optically anisotropic layer are represented as DLC ;, D1, and D2, respectively.
  • the light emitted from the backlight 11 passes through the polarizing plate 8 and is incident on the second optically anisotropic layer 10.
  • the slow axis of the first optically anisotropic layer 9 is used. Is substantially parallel to the rubbing direction of the liquid crystal cell 6 and the slow axis of the second optically anisotropic layer 10 is substantially perpendicular thereto.
  • the thickness of the first optically anisotropic layer is d 1
  • the main refractive indices in the plane are Nx 1 and N y 1
  • the main refractive index in the thickness direction is N z 1
  • the in-plane retardation value R e 1 (Nx 1 -Ny 1) X d 1 [nm]
  • the thickness of the second optical anisotropic layer is d 2
  • the in-plane main refractive indices are Nx 2 and Ny 2
  • the wavelength is 550 nm.
  • phase difference value R e 1 of the first optical anisotropic layer The phase difference value R e 1 of the first optical anisotropic layer, the phase difference value R e 2 of the second optical anisotropic layer, and the phase difference R e (LC ) IR e 1 + R e (LC) -R e 2
  • the optical anisotropy of the second optical anisotropic layer is canceled by the optical anisotropy of the first optical anisotropic layer and the liquid crystal cell.
  • the light passing through the polarizing plate 8 is incident on the polarizing plate 7 almost without being affected by the phase difference, so that a black display can be obtained.
  • R e l, R e 2 and R e (LC) are out of the range of equation (1), the front contrast may be lowered, which is not preferable.
  • R e 1 is out of the range of equation (2), a sufficient viewing angle expansion effect may not be obtained, and unnecessary coloration may occur in the liquid crystal display device when viewed from an oblique direction.
  • R e 2 is out of the range of equation (3), a sufficient compensation effect may not be obtained.
  • the birefringence wavelength dispersion D 2 of the second optical anisotropic layer, the birefringence wavelength dispersion D 1 of the first optical anisotropic layer, and the birefringence wavelength of the liquid crystal cell Distributed DLC In order to obtain a good black display, the birefringence wavelength dispersion D 2 of the second optical anisotropic layer, the birefringence wavelength dispersion D 1 of the first optical anisotropic layer, and the birefringence wavelength of the liquid crystal cell Distributed DLC
  • each optically anisotropic layer and the liquid crystal cell By adjusting the dispersion of each optically anisotropic layer and the liquid crystal cell so as to satisfy the above formula, light in a wide range of wavelengths of visible light satisfies the above formula (1), and the second optically anisotropic layer, The optical anisotropy of the first optical anisotropic layer and the liquid crystal cell can be canceled, and as a result, a good black display can be obtained. If the dispersion of each optically anisotropic layer and the liquid crystal cell is out of the above range, it is not preferable because the contrast may be lowered and the display on the display device may be unnecessarily colored.
  • the light diffusion layer, the backlight, the light control film, the light guide plate, and the prism sheet are not particularly limited, and known materials can be used.
  • the liquid crystal display device of the present invention can be provided with other constituent members in addition to the constituent members described above.
  • a color filter to the liquid crystal display device of the present invention, a powerful liquid crystal display device capable of performing multicolor or full color display with high color purity can be manufactured.
  • phase difference value ( ⁇ d) in this example is a value at a wavelength of 550 nm unless otherwise specified.
  • a transparent electrode 3 made of a material having a high transmittance such as ITO is provided on the substrate 1, and a counter electrode 4 made of a material having a high transmittance such as ITO is provided on the substrate 2.
  • a liquid crystal layer 5 made of a liquid crystal material exhibiting positive dielectric anisotropy is sandwiched between 3 and the counter electrode 4.
  • a polarizing plate 7 is provided on the opposite surface of the substrate 2 on the side on which the counter electrode 4 is formed, and the first optically anisotropic layer 9 on the opposite side of the surface on which the transparent electrode 3 is formed on the substrate 1, Two optically anisotropic layers 10 and a polarizing plate 8 are provided. On the back side of the polarizing plate 8, a backlight 11 is provided.
  • a first optically anisotropic layer 9 comprising a liquid crystal film of each film thickness in which a nematic hybrid alignment with an average tilt angle in the film thickness direction of 28 degrees is fixed. 10 to 160 nm), and a liquid crystal display device with an axial arrangement as shown in Fig. 5 was produced.
  • the liquid crystal cell 6 used was ZLI-1 6 9 5 (manufactured by Merck) as the liquid crystal material, and the liquid crystal layer thickness was 4.9 ⁇ .
  • the pretilt angle at the substrate interface of the liquid crystal layer is 3 degrees.
  • the liquid crystal cell has an nd of about 320 nm and a dispersion DLC of about 1.0.
  • a polarizing plate 7 (thickness: about 100 m; 3 ⁇ 3 ⁇ -062 manufactured by Sumitomo Chemical Co., Ltd.) was placed on the viewer side (upper side of the figure) of the liquid crystal cell 6.
  • the dispersion of the Zeonor film was about 1.02, and the dispersion of the first optically anisotropic layer was about 1.16.
  • Figure 6 shows the white display 0 V, black when the backlight is lit (transmission mode) when ⁇ nd of the first optically anisotropic layer 9 is 90 nm and ⁇ d of the zenoah film is 140 nm.
  • the contrast ratio from all directions is shown with the contrast ratio (CR) as the 5 V transmittance ratio (white display) / (black display).
  • Figure 6 shows that it has good viewing angle characteristics.
  • the concentric circles in Fig. 6 are drawn at 20 ° intervals. Therefore, the outermost circle shows 80 ° from the center (the same applies to the following figures).
  • Example 1 Using the configuration of Example 1, the same measurement was performed when the phase difference of the first optically anisotropic layer was changed, and the front CR and viewing angle characteristics at that time are summarized in Table 1.
  • the symbol at the viewing angle means “good ⁇ ⁇ > X bad”.
  • FIG. 7 shows a comparative example in which ⁇ nd of the first optically anisotropic layer is 10 nm, which is outside the range of the present invention, and ⁇ nd of the second optically anisotropic layer is 60 nm.
  • the contrast ratio from all directions is shown with the transmittance ratio (white display) / (black display) of white display 0V, black display 5V as the contrast ratio. .
  • ⁇ nd of the first optically anisotropic layer of the present invention is preferably adjusted in the range of ⁇ 140 nm. table 1
  • the first optical anisotropic layer 9, the second optical anisotropic layer 10, and the polarizing plate are provided on the opposite surface of the substrate 2 on the side where the counter electrode 4 is formed. 7 is provided, and a polarizing plate 8 is provided on the opposite side of the surface of the substrate 1 on which the transparent electrode 3 is formed. A backlight 11 is provided on the back side of the polarizing plate 8.
  • the polarizing plates 7 and 8, the first optically anisotropic layer 9, and the second optically anisotropic layer 10 were the same as those in Example 1.
  • the absorption axes of the polarizing plates 7 and 8, the pretilt direction of both interfaces of the liquid crystal cell 6, the tilt direction of the liquid crystal film 9, and the slow axis of the polymer stretched film 10 were arranged under the conditions described in FIG.
  • Fig. 10 shows the contrast ratio from all directions, with the ratio of the transmittance of white display OV and black display 5 V (white display) Z (black display) when the backlight is lit (transmission mode). Is shown.
  • the second optically anisotropic layer 10 and the polarizing plate 7 are provided on the opposite surface of the substrate 2 on the side where the counter electrode 4 is formed.
  • a first optically anisotropic layer 9 and a polarizing plate 8 are provided on the opposite side of the surface on which the transparent electrode 3 is formed.
  • a backlight 11 is provided on the back side of the polarizing plate 8.
  • Figure 13 shows contrast from all directions with the contrast ratio of the transmittance ratio of white display 0 V and black display 5 V (white display) / (black display) when the backlight is lit (transmission mode). The ratio is shown.
  • Example 3 In the liquid crystal display device used in Example 3, produced in the same manner as in Example 3 except that the position of the second optically anisotropic layer 10 was replaced with the position of the first optically anisotropic layer 9. did.
  • Figure 16 shows the contrast ratio from all directions when the backlight ratio (transmission mode) is used, with the contrast ratio of the white display 0 V and black display 5 V transmittance ratio (white display) Z (black display). The ratio is shown.
  • Figure 16 shows that it has good viewing angle characteristics.
  • the experiment was performed without a color filter.
  • a color filter is provided in the liquid crystal cell, a good multi-color or full-color display can be achieved.
  • FIG. 1 is a conceptual diagram for explaining the tilt angle and twist angle of liquid crystal molecules.
  • FIG. 2 is a conceptual diagram of the alignment structure of the liquid crystalline film constituting the second optical anisotropic element.
  • FIG. 3 is a conceptual diagram illustrating the pretilt direction of the liquid crystal cell.
  • FIG. 4 is a cross-sectional view schematically showing the liquid crystal display device of Example 1.
  • FIG. 5 is a plan view showing an angular relationship among the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, the slow axis of the polymer stretched film, and the tilt direction of the liquid crystal film in Example 1.
  • FIG. 6 is a graph showing the contrast ratio when the liquid crystal display device in Example 1 is viewed from all directions.
  • FIG. 7 is a diagram showing the contrast ratio when the liquid crystal display device in the comparative example is viewed from all directions.
  • FIG. 8 is a cross-sectional view schematically showing the liquid crystal display device of Example 2.
  • FIG. 9 is a plan view showing an angular relationship among the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, the slow axis of the polymer stretched film, and the tilt direction of the liquid crystal film in Example 2.
  • FIG. 10 is a diagram showing the contrast ratio when the liquid crystal display device in Example 2 is viewed from all directions.
  • FIG. 11 is a cross-sectional view schematically showing the liquid crystal display device of Example 3.
  • FIG. 12 is a plan view showing the angular relationship among the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, the slow axis of the polymer stretched film, and the tilt direction of the liquid crystal film in Example 3.
  • FIG. 13 is a diagram showing the contrast ratio when the liquid crystal display device in Example 3 is viewed from all directions.
  • FIG. 14 is a cross-sectional view schematically showing the liquid crystal display device of Example 4.
  • FIG. 15 is a plan view showing the angular relationship between the absorption axis of the polarizing plate, the pretilt direction of the liquid crystal cell, the slow axis of the polymer stretched film, and the tilt direction of the liquid crystal film in Example 4.
  • FIG. 16 is a graph showing the contrast ratio when the liquid crystal display device in Example 4 is viewed from all directions.
  • Substrate 1 and 2: Substrate, 3: Transparent electrode, 4: Counter electrode, 5: Liquid crystal layer, 6: Liquid crystal cell, 7 and 8: Polarizing plate, 9: First optical anisotropic layer, 10: Second Optically anisotropic layer,

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

表示特性のばらつきが少なく、表示が明るく、高コントラストで、視野角依存性の少ない透過型液晶表示装置として、バックライト側から順に、偏光板、第2の光学異方性層、第1の光学異方性層、互いに対向配置された上基板と下基板との間に液晶層が挟持されたホモジニアス配向液晶セルおよび偏光板から構成され、第1の光学異方性層の液晶フィルム、第2の光学異方性層の液晶フィルムおよび液晶セルのそれぞれの複屈折波長分散が所定の関係を有し、第1の光学異方性層、第2の光学異方性層および液晶セルの黒表示電圧印加時の位相差値が所定の関係を有し、第1の光学異方性層がネマチックハイブリッド配向構造を固定化した液晶フィルムから構成される透過型液晶表示装置が提供される。

Description

透過型液晶表示装置
[技術分野]
本発明は、 ワードプロセッサやパーソナルコンピュータなどの O A機器や、 電 子手帳、 携帯電話等の携帯情報機器、 あるいは、 液晶モニターを備えたカメラ一 体型 V T R等に用いられる透過型液晶表示装置に関する。
[背景技術]
液晶表示装置は、 通常、 液晶セル、 偏光板書および光学補償シート (位相差板) から構成される。 透過型液晶表示装置では、 一対の偏光板の間に液晶セルを挟持 し、 一枚または複数枚の光学補償シートを液晶セルと偏光板との間に配置する。 液晶セルは、 棒状液晶性分子、 それを封入するための二枚の基板および棒状液 晶性分子に電圧を加えるための電極層からなる。 液晶セルの方式としては、 T N
(Twisted Nematic)方式、 S T N (Super Twisted Nematic)方式、 E C B (E lectrically Controlled Birefringence) 方式、 I P S (In-Plane Switching) 方 式、 V A (Vertical Alignment) 方式、 O C B (Optically Compensated. Biref ringence) 方式、 H A N (Hybrid Aligned Nematic) 方式、 A S M (Axially S ymmetric Aligned Microcell) 方式、 ノヽーフ トーングレイスケーノレ方式、 ドメイ ン分割方式、 あるいは強誘電性液晶、 反強誘電性液晶を利用した表示方式等の各 種の方式が挙げられる。
ところで、 透過型液晶表示装置は、 液晶分子の持つ屈折率異方性のために斜め から見た時に表示コントラス トが低下する、 表示色が変化する、 あるいは階調が 反転するなどの視野角の問題が避けられずその改善が望まれている。
この問題を解決させる方法として、 従来、 T N方式 (液晶のねじれ角 9 0度) を用いた透過型液晶表示装置では、 光学補償フィルムを液晶セルと上下偏光板の 間に配置する提案がなされ、 実用化されている。
例えば、 ディスコチック液晶をハイプリッド配向させた光学補償フィルムを液 晶セルと上下偏光板の間に配置した構成、 また液晶性高分子をネマチックハイブ リッド配向させた光学補償フィルムを液晶セルと上下偏光板の間に配置した構成 などが知られている (特許文献 1〜 3参照) 。
しかしながら、 T N方式の場合、 コントラストが広がる領域は改善されるが、 階調が反転する範囲が広く、 必ずしも視野角特性は十分とは言えない。 これは、 液晶層が 9 0度ねじれている分、 電圧を印加した時の液晶セル内の液晶分子の傾 斜している部分が 9 0度方位まで広がる分、 階調反転する範囲が広がることに起 因する。
上記理由から、 階調が反転する範囲を狭めるという意味では、 前記液晶セルの 方式としては、 液晶分子のねじれ角が 0度でかつホモジニァス配向した E C B方 式を利用した表示方式が好ましい。 E C B方式の視野角改善として、 ホモジユア ス液晶セルの上下にネマチックハイプリッド配向させた光学補償フィルムと 1軸 性位相差フィルムをそれぞれ 2枚配置した構成が提案されている(特許文献 4 )。
しかしながら、 上記の方法を用いても、 斜めから見た時に表示コントラストが 低下する、 表示色が変化する、 あるいは階調が反転するなどの視野角の問題は解 決しておらず、 更に上下合計 4枚のフィルムを使う分、 各フィルムのパラメータ のばらつきによる表示特性のばらつきが多い、 総膜厚が厚くなる、 信頼性が落ち る等、 課題が残っており、 これらの改良が望まれている。
(1) 特許文献 1 :特許第 2 6 4 0 0 8 3号公報
(2) 特許文献 2 :特開平 1 1一 1 9 4 3 2 5号公報
(3) 特許文献 3 :特開平 1 1一 1 9 4 3 7 1号公報
(4) 特許文献 4 :特開 2 0 0 5— 2 0 2 0 1 0 1号公報
[発明の開示]
本発明は上述の問題点の改良をなすものであり、 表示特性のばらつきが少なく て、 表示が明るく、 高コントラス トであり、 視野角依存性の少ない透過型液晶表 示装置を提供することを目的とする。
本発明の第 1は、 バックライ ト側から順に、 偏光板、 第 2の光学異方性層、 第 1の光学異方性層、 互いに対向配置された上基板と下基板との間に液晶層が挟持 されたホモジニァス配向液晶セルおよび偏光板から少なくとも構成される液晶表 示装置であって、 波長え = 4 5 0 n m及び λ = 5 9 0 n mにおける屈折率異方性 Δ nの比を複屈折波長分散 D (D= Δ n (450) /Δ n (5 9 0) ) と定義し た場合、 前記第 1の光学異方性層の液晶フィルムの複屈折波長分散 D 1、 前記第 2の光学異方性層の液晶フィルムの複屈折波長分散 D 2、 前記液晶セルの複屈折 波長分散 DLCが、
D 1 >D 2
D l = l . 00〜1. 20
D 2 = 0. 80〜: L. 1 0
I (DLC+D 1 ) /2— D 2 | < 0. 5
の範囲であり、 かつ第 1の光学異方性層の厚さを d 1、 面内の主屈折率を Nx l および Ny 1、厚さ方向の主屈折率を N z 1、面内のリタデーション値 R e 1を、 R e 1 = (Nx 1 -Ny 1) X d l [nm]、 第 2の光学異方性層の厚さを d 2、 面内の主屈折率を Nx 2および Ny 2、 厚さ方向の主屈折率を N z 2、 面内のリ タデーシヨン値 R e 2を、 R e 2= (N x 2 -N y 2) X d 2 [nm]とした時、 波長 5 50 nmにおける第 1の光学異方性層、 第 2の光学異方性層の位相差値を R e 1、 R e 2、 前記液晶セルの黒表示電圧印加時の位相差 R e (LC)が、
I R e 1 +R e (LC) -R e 2 | < 30 n m
R e l = 20 nn!〜 1 40 nm
R e 2 = 50 nm〜 1 80 nm
の範囲であることを特徴とする液晶表示装置であって、 第 1の光学異方性層が、 ネマチックハイプリッド配向構造を固定化した液晶フィルムから少なくとも構成 されることを特徴とする透過型液晶表示装置、 である。
本発明の第 2は、 バックライ ト側から順に、 偏光板、 互いに対向配置された上 基板と下基板との間に液晶層が挟持されたホモジニァス配向液晶セル、 第 1の光 学異方性層、 第 2の光学異方性層および偏光板から少なくとも構成される液晶表 示装置であって、 波長; I = 450 nm及び; I = 5 90 nmにおける屈折率異方性 Δ nの比を複屈折波長分散 D (ϋ=Δ η (450) /Δ η (5 90) ) と定義し た場合、 前記第 1の光学異方性層の液晶フィルムの複屈折波長分散 D 1、 前記第 2の光学異方性層の液晶フィルムの複屈折波長分散 D 2、 前記液晶セルの複屈折 波長分散 DLCが、
D 1 >D 2 D 1 = 1. 00〜1. 20
D 2 = 0. 80〜1. 1 0
I (DLC+D 1 ) /2— D 2 I < 0. 5
の範囲であり、 かつ第 1の光学異方性層の厚さを d 1、 面内の主屈折率を Nx l および N y 1、厚さ方向の主屈折率を N z 1、面内のリタデーション値 R e 1を、 R e 1 = (Nx 1 -Ny 1) X d 1 [nm], 第 2の光学異方性層の厚さを d 2、 面内の主屈折率を Nx 2および Ny 2、 厚さ方向の主屈折率を N z 2、 面内のリ タデーシヨン値 R e 2を、 R e 2= (N x 2 -N y 2) X d 2 [nm]とした時、 波長 5 50 nmにおける第 1の光学異方性層、 第 2の光学異方性層の位相差値を R e 1、 R e 2、 前記液晶セルの黒表示電圧印加時の位相差 R e (LC)が、
I R e 1 +R e (LC) -R e 2 | < 30 nm
R e 1 = 2 O nm~l 4 O nm
R e 2 = 50 nm〜 1 80 nm
の範囲であることを特徴とする液晶表示装置であって、 第 1の光学異方性層が、 ネマチックハイプリッド配向構造を固定化した液晶フィルムから少なくとも構成 されることを特徴とする透過型液晶表示装置、 である。
本発明の第 3は、 バックライ ト側から順に、 偏光板、 第 1の光学異方性層、 互 いに対向配置された上基板と下基板との間に液晶層が挟持されたホモジニァス配 向液晶セル、 第 2の光学異方性層および偏光板から少なくとも構成される液晶表 示装置であって、 波長; 1 = 450 nm及びえ = 5 90 nmにおける屈折率異方性 厶 nの比を複屈折波長分散 D (D= Δ n (450) /Δ η (5 90) ) と定義し た場合、 前記第 1の光学異方性層の液晶フィルムの複屈折波長分散 D 1、 前記第 2の光学異方性層の液晶フィルムの複屈折波長分散 D 2、 前記液晶セルの複屈折 波長分散 DLCが、
D 1 > D 2
D 1 = 1. 00〜: L . 20
D 2 = 0. 80〜: L . 1 0
I (DLC+D 1 ) /2— D 2 I < 0. 5
の範囲であり、 かつ第 1の光学異方性層の厚さを d 1、 面内の主屈折率を Nx l および N y 1、厚さ方向の主屈折率を N z 1、面内のリタデーション値 R e 1を、 R e 1 = (Nx l—Ny l) X d 1 [nm], 第 2の光学異方性層の厚さを d 2、 面内の主屈折率を Nx 2および Ny 2、 厚さ方向の主屈折率を N z 2、 面内のリ タデーシヨン値 R e 2を、 R e 2 = (N x 2 -N y 2) X d 2 [nm]とした時、 波長 550 nmにおける第 1の光学異方性層、 第 2の光学異方性層の位相差値を R e 1、 R e 2、 前記液晶セルの黒表示電圧印加時の位相差 R e (LC)が、
I R e 1 +R e (LC) -R e 2 | < 30 nm
R e 1 = 20 n m〜 140 n m
R e 2 = 50 nm〜 1 80 n m
の範囲であることを特徴とする液晶表示装置であって、 第 1の光学異方性層が、 ネマチックハイプリッド配向構造を固定化した液晶フィルムから少なくとも構成 されることを特徴とする透過型液晶表示装置、 である。
本発明の第 4は、 バックライト側から順に、 偏光板、 第 2の光学異方性層、 互 いに対向配置された上基板と下基板との間に液晶層が挟持されたホモジニァス配 向液晶セル、 第 1の光学異方性層および偏光板から少なくとも構成される液晶表 示装置であって、 波長 λ = 450 !1111及ぴ;1 = 5 90 nmにおける屈折率異方性 Δ nの比を複屈折波長分散 D (D = Δ n (450) /Δ η (5 90) ) と定義し た場合、 前記第 1の光学異方性層の液晶フィルムの複屈折波長分散 D l、 前記第 2の光学異方性層の液晶フィルムの複屈折波長分散 D 2、 前記液晶セルの複屈折 波長分散 DLCが、
D 1 >D 2
D 1 = 1. 00〜: 1. 20
D 2 = 0. 80〜1. 1 0
I (DLC+D 1) /2— D 2 I < 0. 5
の範囲であり、 かつ第 1の光学異方性層の厚さを d 1、 面内の主屈折率を Nx l および N y 1、厚さ方向の主屈折率を N z 1、面内のリタデーション値 R e 1を、 R e 1 = (Nx l—Ny l) X d 1 [nm], 第 2の光学異方性層の厚さを d 2、 面内の主屈折率を Nx 2および Ny 2、 厚さ方向の主屈折率を N z 2、 面内のリ タデーシヨン値 R e 2を、 R e 2 = (N x 2 -Ny 2) X d 2 [nm]とした時、 波長 550 nmにおける第 1の光学異方性層、 第 2の光学異方性層の位相差値を R e 1、 R e 2、 前記液晶セルの黒表示電圧印加時の位相差 R e (LC)が、 I R e 1 + R e (LC)一 R e 2 | く 3 0 n m
R e l = 2 0 n m~ l 4 0 n m
R e 2 = 5 0 n m〜 1 8 0 n m
の範囲であることを特徴とする液晶表示装置であって、 第 1の光学異方性層が、 ネマチックハイプリッド配向構造を固定化した液晶フィルムから少なくとも構成 されることを特徴とする透過型液晶表示装置、 である。
本発明の第 5は、 前記第 2の光学異方性層が、 高分子延伸フィルムであること を特徴とする本発明の第 1〜第 4のいずれかに記載の透過型液晶表示装置、 であ る。
本発明の第 6は、 前記第 2の光学異方性層が、 光学的に正の一軸性を示す液晶 物質が液晶状態において形成したネマチック配向を固定化してなる光学フィルム であることを特徴とする本発明の第 1〜第 4のいずれかに記載の透過型液晶表示 装置、 である。
本発明の第 7は、 前記第 1の光学異方性層の液晶フィルムのハイプリッド方向 を基板平面に投影したチルト方向と前記液晶層のラビング方向との角度が 3 0度 以内の範囲にあることを特徴とする本発明の第 1〜第 6のいずれかに記載の透過 型液晶表示装置、 である。
本発明の第 8は、 前記第 1の光学異方性層の液晶フィルムのハイプリッド方向 を基板平面に投影したチルト方向と前記第 2の光学異方性層の遅相軸との角度が 7 0度以上 1 1 0度未満の範囲であることを特徴とする本発明の第 1〜第 7のい ずれかに記載の透過型液晶表示装置、 である。
本発明の第 9は、 前記第 1の光学異方性層の液晶フィルムが、 光学的に正の一 軸性を示す液晶物質からなり、 当該液晶物質が液晶状態において形成したネマチ ックハイブリッド配向を固定化した液晶フィルムであり、 当該ネマチックハイブ リッド配向における平均チルト角が 5〜4 5度の液晶フィルムであることを特徴 とする本発明の第 1〜第 8のいずれかに記載の透過型液晶表示装置、 である。 本発明の第 1 0は、 前記偏光板の吸収軸と前記第 1の光学異方性層の液晶フィ ルムのハイプリッド方向を基板平面に投影したチルト方向とのなす角度が 3 0度 以上 6 0度以下の範囲にあること特徴とする本発明の第 1〜第 9のいずれかに記 載の透過型液晶表示装置、 である。 本発明の第 1 1は、 前記ホモジニァス配向液晶セルの電圧無印加時の位相差が 2 0 0〜4 0 0 n mであることを特徴とする本発明の第 1〜第 1 0のいずれかに 記載の透過型液晶表示装置、 である。
[発明の効果]
本発明の液晶表示装置は、 表示が明るく、 正面コントラス トが高く、 視野角依 存性の少ない特徴を有している。
[発明を実施するための最良の形態]
以下、 本発明を詳細に説明する。
本発明の透過型液晶表示装置は、 以下のような (1 ) 〜 (4 ) の 4通りのいず れかの構成からなり、 必要に応じて光拡散層、 光制御フィルム、 導光板、 プリズ ムシート等の部材が更に追加されるが、 これらに特に制限は無い。 視野角依存性 の少ない光学特性を得ると言う点では、 (1 ) 〜 (4 ) のいずれの構成を用いて も構わない。
( 1 ) 偏光板/液晶セル 第 1の光学異方性層/第 2の光学異方性層 Z偏光板 Z ノ ックライト
( 2 ) 偏光板/第 2の光学異方性層/第 1の光学異方性層/液晶セル/偏光板 ノ ックライ ト
( 3 ) 偏光板 Z第 2の光学異方性層/液晶セルノ第 1の光学異方性層/偏光板/ ノ ックライ ト
( 4 ) 偏光板ノ第 1の光学異方性層/液晶セルノ第 2の光学異方性層/偏光板 Z ノ ックライト 以下、 本発明に用いられる構成部材について順に説明する。
まず、 本発明に用いられる液晶セルについて説明する。
本発明は、 液晶セルの方式としてホモジニァス配向セルを用いる。 ホモジニァ ス配向セルとは、 そのツイスト角度は略 0度のセルである。 ここでいう略 0度と は、 0度以上、 5度以下のツイス ト角度である。 電圧無印加時の液晶セルの位相 差 (A n d ) は 2 0 0 η η!〜 4 0 0 n mが好ましく、 さらに好ましくは 2 3 0 n n!〜 3 5 0 n mである。 この範囲を外れた場合、 不必要な着色や明るさの低下を 招き好ましくない。
また、 液晶セルの駆動方式も特に制限はなく、 S T N— L C D等に用いられる パッシブマトリクス方式、並びに T F T (Thin Film Transistor)電極、 T F D (T hin Film Diode)電極等の能動電極を用いるアクティブマトリクス方式、 プラズ マァドレス方式等のいずれの駆動方式であっても良い。
液晶セルは、互いに対向配置された 2つの透明基板(以下、観察者側を上基板、 バックライ ト側を下基板ということがある。 ) との間に液晶層が挟持された構成 から成る。
前記液晶層を形成する液晶性を示す材料としては、 特に制限されず、 各種の液 晶セルを構成し得る通常の各種低分子液晶物質、 高分子液晶物質およびこれらの 混合物が挙げられる。 また、 これらに液晶性を損なわない範囲で色素やカイラル 剤、 非液晶性物質等を添加することもできる。 前記液晶セルは、 前記電極基板お ょぴ液晶層の他に、 前の各種の方式の液晶セルとするのに必要な各種の構成要素 や、 後述する各種の構成部材を備えていても良い。
液晶セルを構成する透明基板としては、 液晶層を構成する液晶性を示す材料を 特定の配向方向に配向させるものであれば特に制限はない。 具体的には、 基板自 体が液晶を配向させる性質を有している透明基板、基板自体は配向能に欠ける力 液晶を配向させる性質を有する配向膜等をこれに設けた透明基板等がいずれも使 用できる。 また、 液晶セルの電極は、 I T O等の公知のものが使用できる。 電極 は通常、 液晶層が接する透明基板の面上に設けることができ、 配向膜を有する基 板を使用する場合は、 基板と配向膜との間に設けることができる。
本発明に用いられる偏光板は、 本発明の目的が達成し得るものであれば特に制 限されず、 液晶表示装置に用いられる通常のものを適宜使用することができる。 具体的には、 ポリビュルアルコール (P V A) や部分ァセタール化 P V Aのよう な P V A系やエチレン一酢酸ビュル共重合体の部分ケン化物等からなる親水性高 分子フィルムに、 ヨウ素および/または 2色性色素を吸着した偏光フィルム、 ポ リ塩化ビニルの脱塩酸処理物のようなポリェン配向フィルムなどからなる偏光フ イルムを使用することができる。 また、 反射型の偏光フィルムも使用することが できる。 該偏光板は、 偏光フィルム単独で使用しても良いし、 強度向上、 耐湿性向上、 耐熱性の向上等の目的で偏光フィルムの片面または両面に透明保護層等を設けた ものであっても良い。 透明保護層としては、 ポリエステル、 トリァセチルセル口 ース、 環状ォレフィン系高分子等の透明プラスチックフィルムを直接または接着 層を介して積層したもの、 透明樹脂の塗布層、 アクリル系やエポキシ系等の光硬 化型樹脂層などが挙げられる。 これら透明保護層を偏光フィルムの両面に被覆す る場合、 両側に異なる保護層を設けても良い。
本発明に用いられる第 2の光学異方性層としては、 透明性と均一性に優れたも のであれば特に制限されないが、 高分子延伸フィルムや、 液晶からなる光学フィ ルムが好ましく使用できる。 高分子延伸フィルムとしては、 セルロース系、 ポリ カーボネート系、 ポリアリレート系、 ポリスルフォン系、 ポリアク リル系、 ポリ エーテルスルフォン系、 環状ォレフィン系高分子化合物等からなる 1軸又は 2軸 位相差フィルムを例示することができる。ここに例示した第 2の光学異方性層は、 高分子延伸フィルムのみで構成されても良いし、 液晶からなる光学フイルムのみ で構成されても良いし、 高分子延伸フィルムと液晶からなる光学フィルムの両方 を併用することもできる。 また、 液晶からなる光学フィルムとしては、 主鎖型お よび/または側鎖型の各種液晶性高分子化合物、 例えば、 液晶性ポリエステル、 液晶性ポリカーボネート、 液晶性ポリアクリレート等ゃ配向後架橋等により高分 子量化できる反応性を有する低分子量の液晶化合物等からなる光学フィルムを挙 げることができ、 これらは自立性のある単独フィルムでも透明支持基板上に形成 されたものでもよい。
面内方向に X方向、 y方向を取り、 厚さ方向を z方向とする場合、 正の 1軸性 光学異方性層は、 屈折率として n X > n y == n zの関係を有する。 また、 正の 2 軸性光学異方性層は、 屈折率として n x > n z〉n yの関係を有する。 負の 1軸 性光学異方性層は、 屈折率として n x = n y > n Zの関係を有する。 負の 2軸性 光学異方性層は、 屈折率として n x > n y > n zの関係を有する。
本発明に用いられる第 1の光学異方性層は、 光学的に正の一軸性を示す液晶性 高分子、 具体的には光学的に正の一軸性を示す液晶性高分子化合物または少なく とも 1種の該液晶性高分子化合物を含有する光学的に正の一軸性を示す液晶性高 分子組成物から成り、 該液晶性高分子化合物または該液晶性高分子組成物が液晶 状態において形成した平均チルト角が 5 ° 〜4 5 ° のネマチックハイブリッド配 向構造を固定化した液晶フィルムを少なくとも含む層である。
ここで、 本発明で言うネマチックハイブリッド配向とは、 液晶分子がネマチッ ク配向しており、 このときの液晶分子のダイレクターとフィルム平面のなす角が フィルム上面と下面とで異なった配向形態を言う。 したがって、 上面界面近傍と 下面界面近傍とで該ダイレクターとフィルム平面との成す角度が異なっているこ と力 ら、 該フィルムの上面と下面との間では該角度が連続的に変化しているもの といえる。
またネマチックハイプリッド配向状態を固定化したフィルムは、 液晶分子のダ ィレクターがフィルムの膜厚方向のすべての場所において異なる角度を向いてい る。 したがって当該フィルムは、 フィルムという構造体として見た場合、 もはや 光軸は存在しない。
また本発明でいう平均チルト角とは、 液晶フィルムの膜厚方向における液晶分 子のダイレクターとフィルム平面との成す角度の平均値を意味するものである。 本発明に供される液晶フィルムは、 フィルムの一方の界面付近ではダイレクター とフィルム平面との成す角度が、 絶対値として通常 2 0 ° 〜9 0 ° 、 好ましくは 4 0 ° 〜8 0 ° 、 さらに好ましくは 5 0 ° 〜7 0 ° の角度をなしており、 当該面 の反対においては、 絶対値として通常 0 ° 〜2 0 ° 、 好ましくは 0 ° 〜1 0 ° の 角度を成しており、 その平均チルト角は、 絶対値として通常 5 ° 〜5 0 ° 、 好ま しくは 2 0 ° 〜4 5 ° 、 さらに好ましくは 2 5 ° 〜4 0 ° である。
平均チルト角が上記範囲から外れた場合、 斜め方向から見た場合のコントラス トの低下等の恐れがあり望ましくない。 なお平均チルト角は、 ク リスタルローテ ーシヨン法を応用して求めることができる。
本発明に用いられる第 1の光学異方性層を構成する液晶フィルムは、 上記のよ うな液晶性高分子化合物や液晶性高分子組成物のネマチックハイプリッド配向状 態が固定化され、 かつ特定の平均チルト角を有するものからなるが、 ネマチック ハイブリッド配向しかつ平均チルト角の範囲を満たすものであれば、 如何様な液 晶から形成されたものであっても構わない。 例えば低分子液晶を液晶状態におい てネマチックハイブリッド配向に形成後、 光架橋や熱架橋によって固定化して得 られる液晶フィルムを用いることもできる。なお本発明でいう液晶フィルムとは、 フィルム自体が液晶性を呈するか否かを問うものではなく、 低分子液晶、 高分子 液晶などの液晶物質をフィルム化することによって得られるものを意味する。 また第 1の光学異方性層を構成する液晶フィルムの法線方向から見た場合の面 内の見かけの位相差値としては、ネマチックハイブリッド配向したフィルムでは、 ダイレクターに平行な方向の屈折率(以下 n eと呼ぶ) と垂直な方向の屈折率(以 下 n oと呼ぶ) が異なっており、 n eから n oを引いた値 (n e— n o ) を見か け上の複屈折率とした場合、 見かけ上の位相差値は見かけ上の複屈折率と絶対膜 厚との積で与えられるとする。 この位相差値は、 エリプソメ トリー等の偏光光学 測定により容易に求めることができる。
本発明の液晶表示装置における光学異方性層の具体的な配置条件について説明 するが、 より具体的な配置条件を説明するにあたり、 図 1〜3を用いて液晶フィ ルムからなる光学異方性層の上下、 該光学異方性層のチルト方向および液晶セル 層のプレチルト方向をそれぞれ以下に定義する。
まず液晶フィルムからなる光学異方性層の上下を、 該光学異方性層を構成する 液晶フィルムのフィルム界面近傍における液晶分子ダイレクターとフィルム平面 との成す角度によってそれぞれ定義すると、 液晶分子のダイレクターとフィルム 平面との成す角度が鋭角側で 2 0〜9 0度の角度を成している面を b面とし、 該 角度が鋭角側で 0〜2 0度の角度を成している面を c面とする。
この光学異方素子の b面から液晶フィルム層を通して c面を見た場合、 液晶分 子ダイレクターとダイレクターの c面への投影成分が成す角度が鋭角となる方向 で、 かつ投影成分と平行な方向を光学異方素子のチルト方向と定義する (図 1及 び図 2 ) 。
次いで通常、 液晶セル層のセル界面では、 駆動用低分子液晶はセル界面に対し て平行ではなくある角度もって傾いており一般にこの角度をプレチルト角と言う が、 セル界面の液晶分子のダイレクターとダイレクターの界面への投影成分とが なす角度が鋭角である方向で、 かつダイレクターの投影成分と平行な方向を液晶 セル層のプレチルト方向と定義する (図 3 ) 。
前記第 1、 第 2の光学異方性層は、 それぞれ接着剤層あるいは粘着剤層を介し て互いに貼り合わせることにより作製してもよレ、。
接着剤層を形成する接着剤としては、 光学異方性層に対して十分な接着力を有 し、かつ光学異方性層の光学的特性を損なわないものであれば、特に制限はなく、 例えば、 アクリル樹脂系、 メタクリル樹脂系、 エポキシ樹脂系、 エチレン一酢酸 ビニル共重合体系、 ゴム系、 ウレタン系、 ポリビニルエーテル系およびこれらの 混合物系や、 熱硬化型おょぴ Zまたは光硬化型、 電子線硬化型等の各種反応性の ものを挙げることができる。 これらの接着剤は、 光学異方性質層を保護する透明 保護層の機能を兼ね備えたものも含まれる。
粘着剤層を形成する粘着剤は特に制限されないが、 例えばァクリル系重合体、 シリコーン系ポリマー、 ポリエステル、 ポリウレタン、 ポリアミ ド、 ポリエーテ ル、 フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択 して用いることができる。 特に、 アクリル系粘着剤の如く光学的透明性に優れ、 濡れ性、 凝集性や粘着特性の調整が容易で、 耐候性や耐熱性などに優れるものが 好ましく用いうる。
接着剤層または粘着剤層 (以下、 接着剤と粘着剤を合わせて 「粘 ·接着剤」 と いうことがある) の形成は、 適宜な方式で行うことができる。 その例としては、 例えばトルェンゃ酢酸ェチル等の適宜な溶剤の単独物又は混合物からなる溶媒に ベースポリマーまたはその組成物を溶解又は分散させた 1 0〜4 0重量。 /0程度の 粘 ·接着剤溶液を調製し、 それを流延方式や塗工方式等の適宜な展開方式で前記 光学異方性層上に直接付設する方式、 あるいは前記に準じセパレータ上に粘 ·接 着剤層を形成してそれを前記光学異方性層上に移着する方式などが挙げられる。 また、 粘,接着剤層には、 例えば天然物や合成物の樹脂類、 特に、 粘着性付与樹 脂や、 ガラス繊維、 ガラスビーズ、 金属粉、 その他の無機粉末等からなる充填剤 や顔料、 着色剤、 酸化防止剤などの添加剤を含有していてもよい。 また微粒子を 含有して光拡散性を示す粘 ·接着剤層などであってもよい。
なお、 光学異方性層間を接着剤層あるいは粘着剤層を介して、 互いに貼り合せ る際には、 光学異方性層表面を表面処理して接着剤層あるいは粘着剤層との密着 性を向上することができる。 表面処理の手段は、 特に制限されないが、 前記液晶 層表面の透明性を維持できるコロナ放電処理、 スパッタ処理、 低圧 U V照射、 プ ラズマ処理などの表面処理法を好適に採用できる。 これら表面処理法のなかでも コ口ナ放電処理が良好である。 次に、 上記部材から構成される本発明の液晶表示装置の構成ついて説明する。 本発明の液晶表示装置の構成は、 図 4、 図 8、 図 1 1、 図 1 4に示すような以 下の (1 ) 〜 (4 ) の 4通りから選ばれることを必須とする。
( 1 ) 偏光板 Z液晶セル Z第 1の光学異方性層 Z第 2の光学異方性層/偏光板/ ノ ックライ ト
( 2 ) 偏光板/第 2の光学異方性層/第 1の光学異方性層 液晶セルノ偏光板 Z ノ ックライ ト
( 3 ) 偏光板/第 2の光学異方性層ノ液晶セル/偏光板 Z第 1の光学異方性層/ ノ ックライ ト
( 4 ) 偏光板 Z第 1の光学異方性層 Z液晶セル Z第 2の光学異方性層 偏光板/ ノくックライト
ここで、 上記構成 (1 ) を例にとり、 図 4を用いて本実施形態の液晶表示装置 の表示原理について説明する。
基板 1に I T O等の透過率の高い材料で形成された透明電極 3が設けられ、 基 板 2に I T O等の透過率の高い材料で形成された対向電極 4が設けられ、 透明電 極 3と対向電極 4との間に正の誘電率異方性を示す液晶材料からなる液晶層 5が 挟持されている。 基板 2の対向電極 4が形成された側の反対面に偏光板 7が設け られており、 基板 1の透明電極 3が形成された面の反対側に第 1の光学異方性層 9、 第 2の光学異方性層 1 0及び偏光板 8が設けられている。 偏光板 8の背面側 にはバックライ ト 1 1が設けられている。
液晶セル内の液晶層のプレチルト方向とネマチックハイプリッド配向構造を固 定化した液晶フィルムからなる第 1の光学異方性層のチルト方向のなす角度は 0 度から 3 0度の範囲が好ましく、 より好ましくは 0度から 2 0度の範囲であり、 特に好ましくは 0度から 1 0度の範囲である。 両者のなす角度が 3 0度を超える と十分な視野角補償効果が得られない恐れがある。
また、 第 2の光学異方性層の遅相軸と第 1の光学異方性層のチルト方向のなす 角度は 7 0度以上 1 1 0度未満であることが好ましい。 さらに好ましくは 8 0度 以上 1 0 0度未満である。 1 1 0度以上の場合、 または 7 0度より小さい場合に は、 正面コントラストの低下を招く可能性があり好ましくない。
また、 第 1の光学異方性層のチルト方向と偏光板の吸収軸のなす角度は 3 0度 以上 60度未満であることが好ましい。 さらに好ましくは 40度以上 5,0度未満 である。 60度以上の場合、 または 30度より小さい場合には、 正面コントラス 'トの低下を招く可能性があり好ましくない。
また、 第 2の光学異方性層の遅相軸と偏光板の吸収軸のなす角度は 30度以上 60度未満であることが好ましい。 さらに好ましくは 40度以上 50度未満であ る。 6 0度以上の場合、 または 30度より小さい場合には、 正面コントラストの 低下を招く可能性があり好ましくない。
前記液晶セルに使用される液晶材料の屈折率異方性 Δ nLC、 前記第 1の光学異 方性層の屈折率異方性 Δ η 1、 および前記第 2の光学異方性層の屈折率異方性 Δ η 2は、 一般に波長え (nm) に対し依存性があり、 その特性は一般的に波長; L に対して負の傾向を有する。 波長 λ = 450 nm及び; = 5 90 nmにおける 屈折率異方性 (以下それぞれ「Δ η (450) 」、 「Δ η (590) 」と表す。 ) の 比を複屈折波長分散 Dとし、
D = Δ η (450) /Δ η (590)
と定義する。 Dは液晶材料が全く同一ならば同一であるが、 異なった液晶材料で も同一となることはある。 本発明における、 前記液晶セル、 第 1の光学異方性層 およぴ第 2の光学異方性層の複屈折波長分散をそれぞれ DLC;、 D 1、D 2と表す。 バックライ ト 1 1から出射された光は偏光板 8を通って第 2の光学異方性層 1 0側に入射されるが、 上記構成では、 第 1の光学異方性層 9の遅相軸が液晶セル 6のラビング方向と略並行であり、 かつ第 2の光学異方性層 1 0の遅相軸はそれ らとは略垂直である。
ここで、 第 1の光学異方性層の厚さを d 1、 面内の主屈折率を Nx 1および N y 1、 厚さ方向の主屈折率を N z 1、 面内のリタデーション値 R e 1を、 R e 1 = (Nx 1 -Ny 1) X d 1 [nm], 第 2の光学異方性層の厚さを d 2、 面内の 主屈折率を Nx 2および Ny 2、 厚さ方向の主屈折率を N z 2、 面内のリタデー ション値 R e 2を、 R e 2= (Nx 2 -Ny 2) X d 2 [nm]とした場合に、 波 長 5 50 nmにおける第 1の光学異方性層の位相差値 R e 1、 第 2の光学異方性 層の位相差値 R e 2、及び前記液晶セルの黒表示電圧印加時の位相差 R e (LC)が、 I R e 1 +R e (LC) -R e 2 | < 30 nm · . · (1)
R e 1 = 20 nm〜: 140 nm · ' · (2) R e 2 = 50 nm〜 1 80 nm · · · ( 3 )
の関係を満たす様調整する。
この時、 第 2の光学異方性層の持つ光学異方性は、 第 1の光学異方性層おょぴ 液晶セルの光学異方性によって打ち消される。この結果、偏光板 8を通った光は、 ほぼ位相差の影響を受けることなく偏光板 7に入射されるため、 黒表示を得るこ とが出来る。 R e l、 R e 2及び R e (LC)が式 (1) の範囲を外れた場合、 正面 コントラストの低下を招く恐れがあるため好ましくない。 R e 1が式 (2) の範 囲を外れた場合、 十分な視野角拡大効果が得られないことや、 斜めから見た時に 液晶表示装置に不必要な色づきが生じる恐れがある。 R e 2が式 (3) の範囲を 外れた場合、 十分な補償効果が得られない恐れがあるため好ましくない。
また、 良好な黒表示を得るためには、 第 2の光学異方性層の複屈折波長分散 D 2、 第 1の光学異方性層の複屈折波長分散 D 1および液晶セルの複屈折波長分散 DLCを
D 1 >D 2 · · · (4)
D 1 = 1 ' 00〜: 1. 20 · · · (5)
D 2 = 0. 80〜: 1. 1 0 · · · (6)
I (DLC+D 1 ) /2— D 2 | く 0. 5 · · · (7)
の関係を満たすよう調整することが好ましい。
各光学異方性層及び液晶セルの分散を、上記式を満たすように調整することで、 可視光の広範囲の波長の光が上記 (1) 式を満たし、 第 2の光学異方性層、 第 1 の光学異方性層および液晶セルの光学異方性を打ち消すことができ、 その結果良 好な黒表示を得ることが出来る。 各光学異方性層及び液晶セルの分散が上記の範 囲を外れた場合、 コントラストの低下や、 表示装置の表示が不必要に色づく恐れ がある為、 好ましくない。
前記光拡散層、 バックライ ト、 光制御フィルム、 導光板、 プリズムシートとし ては、 特に制限されず公知のものを使用することができる。
本発明の液晶表示装置は、 前記した構成部材以外にも他の構成部材を付設する ことができる。 例えば、 カラーフィルターを本発明の液晶表示装置に付設するこ とにより、 色純度の高いマルチカラー又はフルカラー表示を行うことができる力 ラー液晶表示装置を作製することができる。 [実施例]
以下、 本発明を実施例および比較例によりさらに具体的に説明するが、 本発明 はこれらに限定されるものではない。 なお、 本実施例における位相差値(Δ η d) は特に断りのない限り波長 5 50 nmにおける値とする。
(1) フィルム膜厚測定法
S LOAN社製 SURF AC E TEXTURE ANALYS I S SYS TEM D e k t a k 3030 S Tを用いた。また、干渉波測定(日本分光(株) 製 紫外 ·可視 ·近赤外分光光度計 V— 5 70) と屈折率のデータから膜厚を求 める方法も併用した。
(2) 液晶フィルムのパラメータ測定
王子計測機器 (株) 製自動複屈折計 KOBRA2 1 ADHを用いた。 く実施例 1 >
実施例 1の液晶表示装置の概念図については図 4を、 その軸構成については図 5を用いて説明する。
基板 1に I TO等の透過率の高い材料で形成された透明電極 3が設けられ、 基 板 2に I TO等の透過率の高い材料で形成された対向電極 4が設けられ、 透明電 極 3と対向電極 4との間に正の誘電率異方性を示す液晶材料からなる液晶層 5が 挟持されている。 基板 2の対向電極 4が形成された側の反対面に偏光板 7が設け られており、 基板 1の透明電極 3が形成された面の反対側に第 1の光学異方性層 9、 第 2の光学異方性層 1 0及び偏光板 8が設けられている。 偏光板 8の背面側 にはバックライ ト 1 1が設けられている。
特開平 6— 347 742号公報に従って、 膜厚方向の平均チルト角が 28度の ネマチックハイプリッド配向が固定化された各膜厚の液晶フィルムからなる第 1 の光学異方性層 9 (A n dは 10〜 1 60 n m) を作製し、 図 5に示したような 軸配置で液晶表示装置を作製した。
使用した液晶セル 6は、 液晶材料として Z L I— 1 6 9 5 (Me r c k社製) を用い、 液晶層厚は 4. 9 μπιとした。 液晶層の基板両界面のプレチルト角は 3 度であり、 液晶セルの A n dは、 略 320 nm、 分散 DLCは、 略 1. 0 3であつ 液晶セル 6の観察者側 (図の上側) に偏光板 7 (厚み約 100 m;住友化学 (株) 製3<3^ — 062) を配置した。
また、 観察者から見て液晶セル 6の後方に、 第 1の光学異方性層 9として、 液 晶フィルム 9、 第 2の光学異方性層 10として、 一軸延伸したゼォノアフィルム (商品名, 日本ゼオン (株) 製) からなる高分子延伸フィルム 10を配置し、 更 に背面に偏光板 8を配置した。
ゼォノアフィルムの分散は、略 1. 02、第 1の光学異方性層の分散は、略 1. 16であった。
偏光板 7及び 8の吸収軸、 液晶セル 6の両界面のプレチルト方向、 液晶フィル ム 9のチルト方向、 高分子延伸フィルム 10の遅相軸は図 5に記載した条件で配 置した。
図 6は、 第 1の光学異方性層 9の Δ n dを 90 nm、 ゼォノアフィルムの Δ η dを 140 nmとした時の、 バックライ ト点灯時 (透過モード) での、 白表示 0 V、 黒表示 5 Vの透過率の比 (白表示) / (黒表示) をコントラス ト比 (CR) として、 全方位からのコントラスト比を示している。
図 6から良好な視野角特性を持っていることが分かった。 図 6の同心円は 2 0° 間隔で描かれている。 したがって最外円は中心から 80° を示す (以下の図 も同様) 。
実施例 1の構成を用いて、 第 1の光学異方性層の位相差を変えた場合について も同様の測定を行い、 その時の正面 CR及び視野角特性を表 1にまとめた。 なお 表 1中、 視野角における記号は、 「良 ©〉〇>X 悪」 を意味する。
また、 図 7には比較例として、 第 1の光学異方性層の Δ n dを本発明の範囲外 である 10 nm、 第 2の光学異方性層の Δ n dを 60 nmとした時の、 バックラ ィト点灯時 (透過モード) での、 白表示 0V、 黒表示 5 Vの透過率の比 (白表示) / (黒表示) をコントラスト比として、 全方位からのコントラスト比を示してい る。
表 1と比較例より、 第 1の光学異方性層の Δ η dを下げていくと正面 CRは向 上するが、 視野角は徐々に狭くなり、 20 nm未満では十分な視野角が得られず 好ましくない。
また、 第 1の光学異方性層の Δη dが大きすぎる場合も、 十分な正面 CRが得 られず好ましくない。 従って本発明の第 1の光学異方性層の Δ n dは、 ~ 1 4 0 n mの範囲に調整するのが望ましいことが分かった。 表 1
Figure imgf000020_0001
視野角の記号の意味: 良 ©〉〇> χ
<実施例 2 >
実施例 2の液晶表示装置の概念図については図 8を、 その軸構成については図 9を用いて説明する。
実施例 1で用いた液晶セル 6において、 基板 2の対向電極 4が形成された側の 反対面に、 第 1の光学異方性層 9、 第 2の光学異方性層 1 0及び偏光板 7が設け られており、 基板 1の透明電極 3が形成された面の反対側に偏光板 8が設けられ ている。 偏光板 8の背面側にはバックライ ト 1 1が設けられている。
偏光板 7、 8、 第 1の光学異方性層 9、 第 2の光学異方性層 1 0は、 実施例 1 と同様のものを用いた。
偏光板 7及び 8の吸収軸、 液晶セル 6の両界面のプレチルト方向、 液晶フィル ム 9のチルト方向、 高分子延伸フィルム 1 0の遅相軸は図 8に記載した条件で配 置した。
図 1 0は、 バックライ ト点灯時 (透過モード) での、 白表示 O V、 黒表示 5 V の透過率の比 (白表示) Z (黒表示) をコントラスト比として、 全方位からのコ ントラスト比を示している。
図 1 0から良好な視野角特性を持っていることが分かった。
<実施例 3 >
実施例 3の液晶表示装置の概念図については図 1 1を、 その軸構成については 図 1 2を用いて説明する。
実施例 1で用いた液晶セル 6において、 基板 2の対向電極 4が形成された側の 反対面に、 第 2の光学異方性層 1 0及び偏光板 7が設けられており、 基板 1の透 明電極 3が形成された面の反対側に第 1の光学異方性層 9及び偏光板 8が設けら れている。 偏光板 8の背面側にはバックライ ト 1 1が設けられている。
図 1 3は、 バックライ ト点灯時 (透過モード) での、 白表示 0 V、 黒表示 5 V の透過率の比 (白表示) / (黒表示) をコントラスト比として、 全方位からのコ ントラスト比を示している。
図 1 3から良好な視野角特性を持っていることが分かつた。
<実施例 4〉
実施例 4の液晶表示装置の概念図については図 1 4を、 その軸構成については 図 1 5を用いて説明する。
実施例 3で用いた液晶表示装置において、 第 2の光学異方性層 1 0の位置を、 第 1の光学異方性層 9の位置と入れ替えた以外は、 実施例 3と同様にして作製し た。
図 1 6は、 バックライ ト点灯時 (透過モード) での、 白表示 0 V、 黒表示 5 V の透過率の比 (白表示) Z (黒表示) をコントラスト比として、 全方位からのコ ントラスト比を示している。
図 1 6から良好な視野角特性を持っていることが分かった。
本実施例では、 カラーフィルターの無い形態で実験を行ったが、 液晶セル中に カラーフィルターを設ければ、 良好なマルチカラー、 またはフルカラー表示がで きることは言うまでもない。
[図面の簡単な説明]
図 1は、 液晶分子のチルト角及びツイスト角を説明するための概念図である。 図 2は、 第 2の光学異方素子を構成する液晶性フィルムの配向構造の概念図で ある。
図 3は、 液晶セルのプレチルト方向を説明する概念図である。
図 4は、 実施例 1の液晶表示装置を模式的に表した断面図である。 図 5は、 実施例 1における偏光板の吸収軸、 液晶セルのプレチルト方向、 高分 子延伸フィルムの遅相軸および液晶フィルムのチルト方向の角度関係を示した平 面図である。
図 6は、 実施例 1における液晶表示装置を全方位から見た時のコントラスト比 を示す図である。
図 7は、 比較例における液晶表示装置を全方位から見た時のコントラスト比を 示す図である。
図 8は、 実施例 2の液晶表示装置を模式的に表した断面図である。
図 9は、 実施例 2における偏光板の吸収軸、 液晶セルのプレチルト方向、 高分 子延伸フィルムの遅相軸および液晶フィルムのチルト方向の角度関係を示した平 面図である。
図 1 0は、 実施例 2における液晶表示装置を全方位から見た時のコントラスト 比を示す図である。
図 1 1は、 実施例 3の液晶表示装置を模式的に表した断面図である。
図 1 2は、 実施例 3における偏光板の吸収軸、 液晶セルのプレチルト方向、 高 分子延伸フィルムの遅相軸および液晶フィルムのチルト方向の角度関係を示した 平面図である。
図 1 3は、 実施例 3における液晶表示装置を全方位から見た時のコントラスト 比を示す図である。
図 1 4は、 実施例 4の液晶表示装置を模式的に表した断面図である。
図 1 5は、 実施例 4における偏光板の吸収軸、 液晶セルのプレチルト方向、 高 分子延伸フィルムの遅相軸およぴ液晶フィルムのチルト方向の角度関係を示した 平面図である。
図 1 6は、 実施例 4における液晶表示装置を全方位から見た時のコントラスト 比を示す図である。
(符号の説明)
1 , 2 :基板、 3 :透明電極、 4 :対向電極、 5 :液晶層、 6 :液晶セル、 7 , 8 :偏光板、 9 :第 1の光学異方性層、 1 0 :第 2の光学異方性層、
1 1 : ノくックライ ト

Claims

請 求 の 範 囲
1. バックライ ト側から順に、 偏光板、 第 2の光学異方性層、 第 1の光学 異方性層、 互いに対向配置された上基板と下基板との間に液晶層が挟持されたホ モジニァス配向液晶セルおよび偏光板から少なくとも構成される液晶表示装置で あって、 波長え = 450 nm及び λ = 590 n mにおける屈折率異方性 Δ nの比 を複屈折波長分散 D (ϋ=Δ n (450) /Δ n (5 90) ) と定義した場合、 前記第 1の光学異方性層の液晶フィルムの複屈折波長分散 D 1、 前記第 2の光学 異方性層の液晶フィルムの複屈折波長分散 D 2、 前記液晶セルの複屈折波長分散 DLCが、
D 1 >D 2
D 1 = 1. 00〜1. 20
D 2 = 0. 80〜: 1. 1 0
I (DLC+D 1) /2— D 2 I < 0. 5
の範囲であり、 かつ第 1の光学異方性層の厚さを d 1、 面内の主屈折率を Nx l および Ny 1、厚さ方向の主屈折率を N z 1、面内のリタデーション値 R e 1を、 R e 1 = (Nx l—Ny l) X d l [nm]、 第 2の光学異方性層の厚さを d 2、 面内の主屈折率を N X 2および Ny 2、 厚さ方向の主屈折率を N z 2、 面内のリ タデーシヨン値 R e 2を、 R e 2= (N x 2 -N y 2) X d 2 [ n m]とした時、 波長 5 50 nmにおける第 1の光学異方性層、 第 2の光学異方性層の位相差値を R e 1、 R e 2、 前記液晶セルの黒表示電圧印加時の位相差 R e (LC)が、
I R e 1 + R e (LC)— R e 2 | < 30 n m
R e 1 = 2 O nm〜l 40 n m
R e 2 = 50 n m~ 1 80 n m
の範囲であることを特徴とする液晶表示装置であって、 第 1の光学異方性層が、 ネマチックハイプリッド配向構造を固定化した液晶フィルムから少なくとも構成 されることを特徴とする透過型液晶表示装置。
2. バックライ ト側から順に、 偏光板、 互いに対向配置された上基板と下 基板との間に液晶層が挟持されたホモジ-ァス配向液晶セル、 第 1の光学異方性 層、 第 2の光学異方性層および偏光板から少なくとも構成される液晶表示装置で あって、 波長; I = 450 nm及ぴえ = 590 n mにおける屈折率異方性 Δ nの比 を複屈折波長分散 D (ϋ=Δ n (450) /Δ n (5 90) ) と定義した場合、 前記第 1の光学異方性層の液晶フィルムの複屈折波長分散 D 1、 前記第 2の光学 異方性層の液晶フィルムの複屈折波長分散 D 2、 前記液晶セルの複屈折波長分散 DLCが、
D 1 >D 2
D 1 = 1. 00〜1. 20
D 2 = 0. 80〜1. 1 0
I (DLC+D 1) /2— D 2 I < 0. 5
の範囲であり、 かつ第 1の光学異方性層の厚さを d 1、 面内の主屈折率を Nx l および N y 1、厚さ方向の主屈折率を N z 1、面内のリタデーション値 R e 1を、 R e 1 = (N X 1 -N y 1 ) X d 1 [nm], 第 2の光学異方性層の厚さを d 2、 面内の主屈折率を Nx 2および Ny 2、 厚さ方向の主屈折率を N z 2、 面内のリ タデーション値 R e 2を、 R e 2= (N x 2 -N y 2) X d 2 [nm]とした時、 波長 5 50 nmにおける第 1の光学異方性層、 第 2の光学異方性層の位相差値を R e 1、 R e 2、 前記液晶セルの黒表示電圧印加時の位相差 R e (LC)が、
I R e 1 + R e (LC) -R e 2 | < 30 n m
R e 1 = 20 nm〜 140 n m
R e 2 = 50 nn!〜 1 80 nm
の範囲であることを特徴とする液晶表示装置であって、 第 1の光学異方性層が、 ネマチックハイプリッド配向構造を固定化した液晶フィルムから少なくとも構成 されることを特徴とする透過型液晶表示装置。
3. バックライ ト側から順に、 偏光板、 第 1の光学異方性層、 互いに対向 配置された上基板と下基板との間に液晶層が挟持されたホモジニァス配向液晶セ ル、 第 2の光学異方性層および偏光板から少なくとも構成される液晶表示装置で あって、 波長 λ = 450 nm及び; L = 590 n mにおける屈折率異方性厶 nの比 を複屈折波長分散 D (Ό=Δ η (450) ノ Δ η (5 90) ) と定義した場合、 前記第 1の光学異方性層の液晶フィルムの複屈折波長分散 D 1、 前記第 2の光学 異方性層の液晶フィルムの複屈折波長分散 D 2、 前記液晶セルの複屈折波長分散 DLCが、
D 1 >D 2
D 1 = 1. 00〜: 1. 20
D 2 = 0. 80〜: I . 1 0
I (DLC+D 1 ) /2— D 2 I < 0. 5
の範囲であり、 かつ第 1の光学異方性層の厚さを d 1、 面内の主屈折率を Nx l および Ny 1、厚さ方向の主屈折率を N z 1、面内のリタデーション値 R e 1を、 R e 1 = (Nx l -N y 1 ) X d 1 [nm], 第 2の光学異方性層の厚さを d 2、 面内の主屈折率を Nx 2および Ny 2、 厚さ方向の主屈折率を N z 2、 面内のリ タデーシヨン値 R e 2を、 R e 2= (N x 2 -N y 2) X d 2 [n m]とした時、 波長 550 nmにおける第 1の光学異方性層、 第 2の光学異方性層の位相差値を R e 1、 R e 2、 前記液晶セルの黒表示電圧印加時の位相差 R e (LC)が、
I R e 1 +R e (LC)一 R e 2 | く 30 nm
R e 1 = 20 n m~ 140 n m
R e 2 = 50 nn!〜 1 80 nm
の範囲であることを特徴とする液晶表示装置であって、 第 1の光学異方性層が、 ネマチックハイプリッド配向構造を固定化した液晶フィルムから少なくとも構成 されることを特徴とする透過型液晶表示装置。
4. バックライ ト側から順に、 偏光板、 第 2の光学異方性層、 互いに対向 配置された上基板と下基板との間に液晶層が挟持されたホモジニァス配向液晶セ ル、 第 1の光学異方性層および偏光板から少なくとも構成される液晶表示装置で あって、 波長; 1 = 450 nm及びぇ= 5 90 n mにおける屈折率異方性 Δ nの比 を複屈折波長分散 D (D=A n (450) /Δ n (5 90) ) と定義した場合、 前記第 1の光学異方性層の液晶フィルムの複屈折波長分散 D 1、 前記第 2の光学 異方性層の液晶フィルムの複屈折波長分散 D 2、 前記液晶セルの複屈折波長分散 DLCが、
D 1 >D 2
D 1 = 1. 00〜1. 20 D 2 = 0. 80〜: L . 1 0
I (DLC+D 1 ) /2— D 2 I < 0. 5
の範囲であり、 かつ第 1の光学異方性層の厚さを d 1、 面内の主屈折率を Nx l および N y 1、厚さ方向の主屈折率を N z 1、面内のリタデーション値 R e 1を、 R e 1 = (Nx l -Ny 1 ) X d l [nm]、 第 2の光学異方性層の厚さを d 2、 面内の主屈折率を Nx 2および Ny 2、 厚さ方向の主屈折率を N z 2、 面内のリ タデーシヨン値 R e 2を、 R e 2= (N x 2 -N y 2) X d 2 [ n m]とした時、 波長 5 50 nmにおける第 1の光学異方性層、 第 2の光学異方性層の位相差値を R e 1、 R e 2、 前記液晶セルの黒表示電圧印加時の位相差 R e (LC)が、
I R e 1 + R e (LC) -R e 2 | < 30 n m
R e l = 20 nm〜140 nm
R e 2 = 50 nm〜l 80 nm
の範囲であることを特徴とする液晶表示装置であって、 第 1の光学異方性層が、 ネマチックハイプリッド配向構造を固定化した液晶フィルムから少なくとも構成 されることを特徴とする透過型液晶表示装置。
5. 前記第 2の光学異方性層が、 高分子延伸フィルムであることを特徴と する請求項 1〜4のいずれかに記載の透過型液晶表示装置。
6. 前記第 2の光学異方性層が、 光学的に正の一軸性を示す液晶物質が液 晶状態において形成したネマチック配向を固定化してなる光学フィルムであるこ とを特徴とする請求項 1〜 4のいずれかに記載の透過型液晶表示装置。
7. 前記第 1の光学異方性層の液晶フィルムのハイプリッド方向を基板平 面に投影したチルト方向と前記液晶層のラビング方向との角度が 30度以内の範 囲にあることを特徴とする請求項 1〜 6のいずれかに記載の透過型液晶表示装置。
8. 前記第 1の光学異方性層の液晶フィルムのハイプリッド方向を基板平 面に投影したチルト方向と前記第 2の光学異方性層の遅相軸との角度が 70度以 上 1 1 0度未満の範囲であることを特徴とする請求項 1〜 7のいずれかに記載の 透過型液晶表示装置 ,
9 . 前記第 1の光学異方性層の液晶フィルムが、 光学的に正の一軸性を示 す液晶物質からなり、 当該液晶物質が液晶状態において形成したネマチックハイ プリッド配向を固定化した液晶フィルムであり、 当該ネマチックハイプリッド配 向における平均チルト角が 5〜4 5度の液晶フィルムであることを特徴とする請 求項 1〜 8のいずれかに記載の透過型液晶表示装置。
1 0 . 前記偏光板の吸収軸と前記第 1の光学異方性層の液晶フィルムのハイ プリッド方向を基板平面に投影したチルト方向とのなす角度が 3 0度以上 6 0度 以下の範囲にあること特徴とする請求項 1〜 9のいずれかに記載の透過型液晶表 示装置。
1 1 . 前記ホモジニァス配向液晶セルの電圧無印加時の位相差が 2 0 0〜4 0 0 n mであることを特徴とする請求項 1〜1 0のいずれかに記載の透過型液晶 表示装置。
PCT/JP2008/051711 2007-06-13 2008-01-29 透過型液晶表示装置 WO2008152828A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008800199573A CN101681062B (zh) 2007-06-13 2008-01-29 透射式液晶显示装置
US12/602,584 US8018552B2 (en) 2007-06-13 2008-01-29 Transmissive liquid crystal display device
EP08704390A EP2157475A4 (en) 2007-06-13 2008-01-29 TRANSMISSIVE LIQUID CRYSTAL DISPLAY DEVICE
KR1020097026886A KR101426577B1 (ko) 2007-06-13 2008-01-29 투과형 액정 표시장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-156623 2007-06-13
JP2007156623A JP2008309957A (ja) 2007-06-13 2007-06-13 透過型液晶表示装置

Publications (1)

Publication Number Publication Date
WO2008152828A1 true WO2008152828A1 (ja) 2008-12-18

Family

ID=40129442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051711 WO2008152828A1 (ja) 2007-06-13 2008-01-29 透過型液晶表示装置

Country Status (7)

Country Link
US (1) US8018552B2 (ja)
EP (1) EP2157475A4 (ja)
JP (1) JP2008309957A (ja)
KR (1) KR101426577B1 (ja)
CN (1) CN101681062B (ja)
TW (1) TWI396009B (ja)
WO (1) WO2008152828A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199257A (ja) * 2006-01-25 2007-08-09 Nippon Oil Corp 液晶表示装置
JP4228004B2 (ja) * 2006-05-24 2009-02-25 新日本石油株式会社 透過型液晶表示装置
JP4975415B2 (ja) * 2006-11-17 2012-07-11 Jx日鉱日石エネルギー株式会社 透過型液晶表示装置
EP2083290A4 (en) * 2006-11-17 2012-02-08 Nippon Oil Corp ELLIPTIC POLARIZING PLATE AND VERTICALLY ALIGNED LIQUID CRYSTAL DISPLAY
JP5072520B2 (ja) * 2006-12-19 2012-11-14 株式会社ジャパンディスプレイセントラル 液晶表示装置
JP2009075533A (ja) * 2007-08-31 2009-04-09 Nippon Oil Corp 楕円偏光板および液晶表示装置
JP2009300760A (ja) * 2008-06-13 2009-12-24 Nippon Oil Corp 楕円偏光板およびそれを用いた垂直配向型液晶表示装置
EP2477063A4 (en) 2009-09-08 2014-04-02 Sharp Kk LIQUID CRYSTAL DISPLAY DEVICE
CN103493120B (zh) * 2011-04-28 2016-03-09 夏普株式会社 显示装置的制造方法、显示装置以及多显示器系统
WO2014081260A1 (ko) * 2012-11-23 2014-05-30 주식회사 엘지화학 광학 필름
KR101395319B1 (ko) * 2012-11-23 2014-05-21 주식회사 엘지화학 광학 필름
CN105229504A (zh) * 2013-05-21 2016-01-06 富士胶片株式会社 偏振片及其制造方法以及转印材料
CN104345371A (zh) * 2013-08-09 2015-02-11 住友化学株式会社 光学膜
WO2015046983A1 (ko) * 2013-09-27 2015-04-02 주식회사 엘지화학 광학 필름
TWI547719B (zh) * 2013-09-27 2016-09-01 Lg化學股份有限公司 光學膜
US10656462B2 (en) * 2016-09-23 2020-05-19 Samsung Electronics Co., Ltd. Liquid crystal display
EP3617786B1 (en) 2017-04-28 2022-12-28 LG Chem, Ltd. Optical modulation device
US11624864B2 (en) * 2020-04-15 2023-04-11 Meta Platforms Technologies, Llc Optical device including optically anisotropic molecules having intermediate pretilt angles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235747A (ja) * 2000-02-24 2001-08-31 Nippon Mitsubishi Oil Corp 液晶プロジェクタ
US20020005925A1 (en) 2000-05-17 2002-01-17 Fuji Photo Film Co., Ltd. Retardation plate and fabrication method thereof, and plate for circularly polarizing light, 1/2 wave plate and reflection-type liquid crystal display device utilizing the retardation plate
US20020130997A1 (en) 2001-03-15 2002-09-19 Nitto Denko Corporation Optical film, polarizer and liquid-crystal display device
US20040257498A1 (en) 2001-11-19 2004-12-23 Tetsuya Uesaka Circular polarizing plate and liquid crystal display device
JP2005202101A (ja) * 2004-01-15 2005-07-28 Nippon Oil Corp 透過型液晶表示素子
JP2008064843A (ja) * 2006-09-05 2008-03-21 Nec Lcd Technologies Ltd 液晶表示装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469272B2 (ja) 1993-06-02 2003-11-25 新日本石油株式会社 液晶性高分子組成物
DE69413746T2 (de) 1993-06-02 1999-02-25 Nippon Oil Co., Ltd., Tokio/Tokyo Flüssigkristallpolymerfilm, Verfahren zu dessen Herstellung und dessen Verwendung
JP2640083B2 (ja) 1993-09-22 1997-08-13 富士写真フイルム株式会社 光学補償シート及びそれを用いた液晶表示装置
JP2692035B2 (ja) 1994-05-13 1997-12-17 富士写真フイルム株式会社 薄膜の製造方法
US5635105A (en) 1994-05-13 1997-06-03 Fuji Photo Film Co., Ltd. Liquid crystal display and optical compensatory sheet and process for preparation of the same
JP3872583B2 (ja) 1997-12-26 2007-01-24 新日本石油株式会社 液晶表示装置
EP0926534B1 (en) 1997-12-26 2006-08-09 Nippon Mitsubishi Oil Corporation Liquid crystal displays
JP4260912B2 (ja) 1997-12-26 2009-04-30 新日本石油株式会社 液晶表示装置
DE69925320T2 (de) 1998-01-07 2006-02-02 Fuji Photo Film Co., Ltd., Minami-Ashigara Optische Kompensationsfolie und Flüssigkristallanzeige
JP4084483B2 (ja) 1998-01-07 2008-04-30 富士フイルム株式会社 光学補償シートおよび液晶表示装置
JPH11271759A (ja) 1998-03-23 1999-10-08 Matsushita Electric Ind Co Ltd 液晶表示装置
JP4234823B2 (ja) 1998-09-30 2009-03-04 富士フイルム株式会社 光学補償シートおよび液晶表示装置
JP3926072B2 (ja) 1998-12-18 2007-06-06 シャープ株式会社 液晶表示装置
JP4260332B2 (ja) 1999-03-31 2009-04-30 富士フイルム株式会社 セルロースエステルフイルム用レターデーション上昇剤、セルロースエステルフイルム、光学補償シート、楕円偏光板および液晶表示装置
US6630973B1 (en) 1999-03-31 2003-10-07 Fuji Photo Film Co., Ltd. Optically anisotropic cellulose ester film containing discotic compound
JP2001004837A (ja) 1999-06-22 2001-01-12 Fuji Photo Film Co Ltd 位相差板および円偏光板
KR100728560B1 (ko) 1999-09-16 2007-06-14 메르크 파텐트 게엠베하 광학 보정기 및 액정 디스플레이 ⅱ
JP2002031717A (ja) 2000-07-14 2002-01-31 Nippon Mitsubishi Oil Corp 円偏光板および液晶表示装置
JP3863446B2 (ja) 2002-03-08 2006-12-27 シャープ株式会社 液晶表示装置
US6937308B2 (en) * 2002-07-26 2005-08-30 Eastman Kodak Company In-plane switching liquid crystal display with compensation film
JP2004125830A (ja) 2002-09-30 2004-04-22 Nippon Oil Corp 半透過反射型液晶表示素子
JP3901074B2 (ja) 2002-11-08 2007-04-04 セイコーエプソン株式会社 液晶表示装置及び電子機器
US6937310B2 (en) * 2003-05-16 2005-08-30 Eastman Kodak Company Compensation films for LCDs
EP1654585B1 (en) * 2003-08-14 2013-07-24 LG Chemical, Ltd. Liquid crystal display comprising complex light-compensation c plate with two or more of c plates different in dispersion ratio value
JP2005189633A (ja) 2003-12-26 2005-07-14 Nippon Oil Corp 透過型液晶表示素子
US7719644B2 (en) * 2005-02-25 2010-05-18 Fujifilm Corporation Optical compensation sheet, polarizing plate and liquid crystal display
EP1875281A1 (en) 2005-03-10 2008-01-09 FUJIFILM Corporation Optical compensation film, polarizing plate and liquid crystal display
CN101310212B (zh) 2005-11-14 2010-05-19 富士胶片株式会社 液晶显示装置用基板的制造方法、液晶显示装置用基板及液晶显示装置
JP2007199257A (ja) 2006-01-25 2007-08-09 Nippon Oil Corp 液晶表示装置
JP2007212959A (ja) 2006-02-13 2007-08-23 Nippon Oil Corp 透過型液晶表示装置
JP4228004B2 (ja) 2006-05-24 2009-02-25 新日本石油株式会社 透過型液晶表示装置
JP4975415B2 (ja) 2006-11-17 2012-07-11 Jx日鉱日石エネルギー株式会社 透過型液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235747A (ja) * 2000-02-24 2001-08-31 Nippon Mitsubishi Oil Corp 液晶プロジェクタ
US20020005925A1 (en) 2000-05-17 2002-01-17 Fuji Photo Film Co., Ltd. Retardation plate and fabrication method thereof, and plate for circularly polarizing light, 1/2 wave plate and reflection-type liquid crystal display device utilizing the retardation plate
US20020130997A1 (en) 2001-03-15 2002-09-19 Nitto Denko Corporation Optical film, polarizer and liquid-crystal display device
US20040257498A1 (en) 2001-11-19 2004-12-23 Tetsuya Uesaka Circular polarizing plate and liquid crystal display device
JP2005202101A (ja) * 2004-01-15 2005-07-28 Nippon Oil Corp 透過型液晶表示素子
JP2008064843A (ja) * 2006-09-05 2008-03-21 Nec Lcd Technologies Ltd 液晶表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FROM WITTE ET AL.: "VIEWING ANGLE COMPENSATORS FOR LIQUID CRYSTAL DISPLAYS BASED ON LAYERS WITH A POSITIVE BIREFRINGENCE", JAPANESE JOURNAL OF APPLIED PHYSICS, JAPAN SOCIETY OF APPLIED PHYSICS, vol. 39, no. 1, pages 101 - 108, XP001017771, DOI: doi:10.1143/JJAP.39.101
See also references of EP2157475A4

Also Published As

Publication number Publication date
US8018552B2 (en) 2011-09-13
EP2157475A4 (en) 2010-07-28
US20100182544A1 (en) 2010-07-22
TWI396009B (zh) 2013-05-11
KR20100031690A (ko) 2010-03-24
KR101426577B1 (ko) 2014-08-05
JP2008309957A (ja) 2008-12-25
CN101681062B (zh) 2011-10-12
TW200912458A (en) 2009-03-16
EP2157475A1 (en) 2010-02-24
CN101681062A (zh) 2010-03-24

Similar Documents

Publication Publication Date Title
KR101426577B1 (ko) 투과형 액정 표시장치
JP4975415B2 (ja) 透過型液晶表示装置
JP4228004B2 (ja) 透過型液晶表示装置
KR101337827B1 (ko) 투과형 액정표시장치
TWI406043B (zh) 液晶顯示裝置
JP4166791B2 (ja) 液晶表示装置
JP2005164957A (ja) 円偏光板および液晶表示素子
JP2803820B2 (ja) 液晶表示素子
WO2007094102A1 (ja) 光学積層体、楕円偏光板及び液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880019957.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08704390

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12602584

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008704390

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20097026886

Country of ref document: KR

Kind code of ref document: A