WO2008150025A1 - 新しい骨量増加薬 - Google Patents

新しい骨量増加薬 Download PDF

Info

Publication number
WO2008150025A1
WO2008150025A1 PCT/JP2008/060731 JP2008060731W WO2008150025A1 WO 2008150025 A1 WO2008150025 A1 WO 2008150025A1 JP 2008060731 W JP2008060731 W JP 2008060731W WO 2008150025 A1 WO2008150025 A1 WO 2008150025A1
Authority
WO
WIPO (PCT)
Prior art keywords
osteoblasts
cells
peptide
rankl
differentiate
Prior art date
Application number
PCT/JP2008/060731
Other languages
English (en)
French (fr)
Inventor
Hisataka Yasuda
Yuriko Furuya
Yusuke Taguchi
Original Assignee
Oriental Yeast Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40093822&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008150025(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oriental Yeast Co., Ltd. filed Critical Oriental Yeast Co., Ltd.
Priority to CA002689518A priority Critical patent/CA2689518A1/en
Priority to JP2009517928A priority patent/JP5191487B2/ja
Priority to US12/663,202 priority patent/US20100260680A1/en
Priority to EP08765502.3A priority patent/EP2165716B1/en
Priority to CN2008801013270A priority patent/CN101772351B/zh
Publication of WO2008150025A1 publication Critical patent/WO2008150025A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1793Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1875Bone morphogenic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39541Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against normal tissues, cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2875Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention is a molecule that acts on cells that can differentiate into osteoblasts such as osteoblasts or osteoprogenitor cells, mesenchymal stem cells, stromal cells, myoblasts, etc., and enhances differentiation and maturation of those cells. It relates to a method for enhancing bone formation by administering an effective amount of the molecule.
  • the present invention also relates to a pharmaceutical composition for stimulating bone formation.
  • the present invention provides a method for screening a substance that acts on RANKL and transmits a signal.
  • Bone is a dynamic organ that constantly remodels and remodels and resorbs and breaks down to maintain its own morphological changes and blood calcium levels. Normally, bone formation by osteoblasts and bone resorption by osteoclasts are in an equilibrium state, and the bone mass is kept constant by the mutual response mechanism between these cells (see Non-Patent Document 1). When this equilibrium is broken due to menopause, aging, inflammation, etc., bone metabolism abnormalities such as osteoporosis and bone destruction due to rheumatoid arthritis develop. These bone metabolism disorders are now one of the major problems in an aging society, and it is an urgent task to elucidate the molecular mechanism of the onset mechanism and to develop effective therapeutic agents.
  • Osteoporosis is estimated to have more than 10 million potential patients in Japan. Osteoporosis and other bone loss include juvenile osteoporosis, osteogenesis imperfecta, hypercalcemia, hyperparathyroidism, osteomalacia, osteocalcinosis, osteolytic bone disease, bone Necrosis, Paget's disease, rheumatoid arthritis, bone loss due to osteoarthritis, inflammatory arthritis, osteomyelitis, darcocorticoid treatment, metastatic bone disease, periodontal bone loss, bone loss due to cancer, addition Includes bone loss due to age, and other bone loss.
  • Bone resorption inhibitors that inhibit the bone resorption process rather than enhancing bone formation have been used.
  • Drugs used or suggested for the treatment of osteoporosis due to their ability to inhibit bone resorption include estrogens, selective estrogen receptor modulators (SERM), ypriflavone, vitamin K2, calcium, calcitriol, calcitonin (non- There are bisphosphonates such as alendronate. (See Non-Patent Document 3).
  • SERM selective estrogen receptor modulators
  • ypriflavone ypriflavone
  • vitamin K2 calcium
  • calcitriol calcium
  • calcitonin calcitonin
  • parathyroid hormone PTH
  • BMP2, BMP7, IGF1, and FGF2 are known to promote osteogenesis, but there are only a few examples that are actually applied as osteogenesis promoters.
  • PTH has been applied clinically to osteoporosis
  • IGF1 has been clinically applied to short stature children with severe primary IGF1 deficiency.
  • osteogenesis promoting agents because the mechanism of differentiation / maturation of osteoblasts that form bone has not been elucidated.
  • Osteoclasts responsible for bone destruction are large multinucleated cells derived from monocyte / macrophage hematopoietic cells.
  • the progenitor cells are regulated by osteoblasts / stromal cells on the bone surface, and differentiate and mature into osteoclasts (see Non-Patent Document 1). Osteoclast differentiation factor
  • RTKL Receptor activator of NF- ⁇ B igand
  • TNF tumor necros is factor
  • Non-Patent Document 8 Based on research on RANKL / RANK / 0PG, including its receptor RANK (receptor act ivator of NF- ⁇ B) and decoy receptor OPG (osteoproteger in), the regulatory mechanism of osteoclast differentiation and maturation Elucidation at the biological level, The relationship between these three molecules and bone metabolic diseases has also been clarified (see Non-Patent Document 8).
  • Bone resorption and bone formation are usually in equilibrium, and there is a mechanism that regulates the extremely balance of forming only the amount absorbed. This coupling between bone resorption and bone formation is called coupling (see non-patent:?: Item 9).
  • RANKL an osteoclast differentiation factor
  • RANKL receptor on osteoclast precursor cells and osteoclasts.
  • Communicate activation signals. Based on this mechanism, there is a report that a human peptide resembling the three-dimensional structure of the binding region of TNF was used to suppress signal transduction from RANKL to RANK (see Non-Patent Documents 10 to 12).
  • Non-Patent Document 1 Suda et al., Endocr Rev, 13: 66, 1992
  • Non-Patent Document 2 Sambook et al., N Engl J Med 328: 1747, 1993
  • Non-Patent Document 3 Luckman et al., J Bone Miner Res 13: 581, 1998
  • Non-Patent Document 7 Lacey et al., Cel l 93: 165, 1998
  • Non-Patent Document 8 Suda et al., Endocr Rev, 20: 345, 1999
  • Non-Patent Document 9 Martin et al., Trends Mol Med, 11: 76, 2005
  • Non-Patent Literature 1 0 Aoki et al., J Cl in Invest 116: 1525, 2006
  • Non-Patent Document 1 Takasaki et al., Nat Biotec, 15: 1266, 1997
  • Non-Patent Literature 1 2 Cheng et al., J Biol Chem, 279; 8269, 2004 Disclosure of the Invention
  • the present invention relates to a RANKL-binding molecule that enhances differentiation / maturation / calcification of cells that can differentiate into osteoblasts or osteoblasts, and a method and bone that enhance bone formation by administering an effective amount of the molecule.
  • the object is to provide a pharmaceutical composition for stimulating formation.
  • the present inventors have found that not only a forward signal is input from the ligand RANKL to the receptor RANK but also a reverse signal is input from the RANK to RANKL. We also found that this bidirectional signal between RANKL and RANK controls bone resorption and bone formation.
  • the reverse signal from membrane type RANK on osteoclasts to membrane type RANKL on osteoblasts is thought to govern the coupling between bone resorption and bone formation in physiological bone metabolism.
  • This reverse signal it is possible to develop drugs that increase bone mass.
  • the present inventors have made in vitro action by causing various proteins, such as peptides, that are used as molecules that act on RANKL to act on RANKL on osteoblasts or cells that can differentiate into osteoblasts.
  • various proteins such as peptides
  • the present inventors when administered in vivo to mice with various proteins and peptides used as molecules that act on RANKL, increase bone density, etc., resulting in a bone metabolic disease accompanied by bone loss. As a result, the present invention has been completed.
  • the present invention is as follows.
  • a compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts is osteoblasts or [1]
  • a pharmaceutical composition for treating or preventing a bone metabolic disease accompanied by bone loss which is a compound selected from the group consisting of chemicals similar in structure to the 0PG fragment peptide.
  • RANK is a compound that acts on RANKL on osteoblasts or cells that can differentiate into osteoblasts, and promotes differentiation, proliferation, maturation or mineralization of cells that can differentiate into osteoblasts or osteoblasts.
  • a variant or fragment peptide of RANK that can act on RANKL a peptide that is similar in structure to RANK and that can act on RANKL, a peptide that is similar in structure to a fragment peptide of RANK and that can act on RANKL, and a peptide that can act on RANKL
  • Chemical substances that have similar structure and can act on RANKL chemical substances that have a similar structure to RANK fragment peptide that can act on RANKL, 0PG, mutants or fragment peptides that can act on RANKL, and structure on 0PG Peptides that have similar structure and can act on RANKL, peptides that have similar structure to 0PG fragment peptide and can act on RANKL
  • a compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts is SEQ ID NO: 7 or A pharmaceutical composition for treating or preventing a bone metabolic disease associated with bone loss according to [1] or [2], which is a peptide comprising the amino acid sequence represented by No. 16.
  • a compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts is SEQ ID NO: 7 or The fusion protein of the peptide consisting of the amino acid sequence represented by No. 16 and the Fc region of GST or IgGi [1] or [2] for the treatment or prevention of bone metabolic diseases accompanied by bone loss Pharmaceutical composition for
  • a compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts is an anti-RANKL antibody or A pharmaceutical composition for the treatment or prevention of a bone metabolic disease associated with bone loss according to [1] or [2], which is a functional fragment thereof.
  • Bone metabolic diseases with bone loss include osteoporosis, juvenile osteoporosis, osteogenesis imperfecta, hypercalcemia, hyperparathyroidism, osteomalacia, osteocalcinosis, osteolytic bone disease , Osteonecrosis, Paget's disease, rheumatoid arthritis, bone loss due to osteoarthritis, inflammatory arthritis, osteomyelitis, darcocorticoid treatment, metastatic bone disease, loss of periodontal bone, bone loss due to cancer
  • a pharmaceutical composition for treating or preventing a bone metabolic disease associated with bone loss according to any one of [1] to [8], further comprising a BMP family member as an active ingredient.
  • the cells that can differentiate into osteoblasts are selected from the group consisting of osteoprogenitor cells, mesenchymal stem cells, stromal cells, and myoblasts, [1] to [9] A pharmaceutical composition for treating or preventing a bone metabolic disease accompanied by bone loss.
  • [1 1] Acts on osteoblasts or cells that can differentiate into osteoblasts, transmits signals to cells that can differentiate into osteoblasts or osteoblasts, and differentiates, proliferates, matures or mineralizes the cells.
  • a candidate compound is contacted with an osteoblast expressing RANKL or a cell that can differentiate into an osteoblast, and the candidate compound is the osteoblast or osteoblast.
  • the scavenging compound acts on the cells that can differentiate into osteoblasts or osteoblasts, and is divided into osteoblasts or osteoblasts.
  • a screening method comprising: determining a compound that transmits a signal to a cell that can be converted and promotes differentiation, proliferation, maturation, or calcification of the cell.
  • [1 2] A compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts.
  • [1 3] Acts on osteoblasts or cells that can differentiate into osteoblasts, transmits signals to cells that can differentiate into osteoblasts or osteoblasts, and differentiates, proliferates, matures or mineralizes the cells
  • a candidate compound is administered to a mouse, in which an increase in bone density, an increase in bone mineral content, an increase in bone area, When at least one phenomenon selected from the group consisting of an increase in distal bone mass, an increase in trabecular width, and an increase in the number of trabeculae is observed, the candidate compound differentiates into osteoblasts or osteoblasts.
  • Screening a method comprising: determining a compound that acts on an obtained cell, transmits a signal to an osteoblast or a cell that can differentiate into an osteoblast, and promotes differentiation, proliferation, maturation, or calcification of the cell. .
  • [14] A compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts.
  • the cells capable of differentiating into osteoblasts are selected from the group consisting of osteoblast precursor cells, mesenchymal stem cells, stromal cells, and myoblasts, [1 1] to [14] Screening method.
  • An active ingredient is a compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts.
  • As an osteoblast differentiation / maturation agent As an osteoblast differentiation / maturation agent.
  • [1 7] A compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts.
  • Osteoblast differentiation / maturation agent that acts on RANKL on cells that can differentiate into cells or osteoblasts.
  • Compounds that act on osteoblasts or cells that can differentiate into osteoblasts and promote differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts are RANK, RANK Mutants or fragment peptides of peptides, peptides similar in structure to RANK, peptides similar in structure to RANK fragment peptides, chemicals similar in structure to RANK, chemicals similar in structure to RANK fragment peptides 0PG, 0PG mutant or fragment peptide,
  • a peptide similar in structure to 0PG a peptide similar in structure to 0PG fragment peptide,
  • the osteoblast differentiation 'maturation agent according to [16] which is a compound selected from the group consisting of a chemical substance having a structure similar to 0PG and a chemical substance having a structure similar to the fragment peptide of 0PG.
  • a compound that acts on RANKL on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation or mineralization of osteoblasts or cells that can differentiate into osteoblasts Is a mutant or fragment peptide of RANK that can act on RANK and RANKL, a peptide that is similar in structure to RANK and that can act on RANKL, a peptide that is similar in structure to a fragment peptide of RANK and that can act on RANKL, RANK Chemical substances with similar structure that can act on RANKL, chemical substances with similar structure to RANK fragment peptide that can act on RANKL, 0PG, 0PG mutant or fragment peptide that can act on RANKL, structure on 0PG Peptides that are similar to each other and can act on RAML, peptides that are similar in structure to 0PG fragment peptides and that can act on RANKL, chemicals that are similar in structure to 0PG and can
  • a compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts is SEQ ID NO: 7.
  • the osteoblast differentiation / maturation agent according to any one of [16] to [19], which is a peptide consisting of the amino acid sequence represented by SEQ ID NO: 16.
  • a compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts is SEQ ID NO: 7. or peptide consisting of the amino acid sequence of SEQ ID NO: 1 6 and GST or a fusion protein between 0 1 Fc region, [1 6] - [1 9] one of osteoblast differentiation and maturation agent .
  • a compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts is SEQ ID NO: 7.
  • the osteoblast differentiation / maturation agent according to [20] which is a peptide acetate comprising the amino acid sequence represented by SEQ ID NO: 16.
  • Anti-RANKL antibody is a compound that acts on osteoblasts or cells that can differentiate into osteoblasts and promotes differentiation, proliferation, maturation, or calcification of cells that can differentiate into osteoblasts or osteoblasts.
  • the osteoblast differentiation / maturation agent according to [19] which is a functional fragment thereof.
  • the cells capable of differentiating into osteoblasts are selected from the group consisting of osteoprogenitor cells, mesenchymal stem cells, stromal cells, and myoblasts, [16] to [23] Osteoblast differentiation / maturation agent.
  • Peptide having the amino acid sequence represented by SEQ ID NO: 7 or SEQ ID NO: 16 A pharmaceutical composition for treating or preventing a bone metabolic disease accompanied by bone loss, comprising as an active ingredient.
  • [2 7] For treatment or prevention of a bone metabolic disease accompanied by bone loss according to [2 5], wherein the active ingredient is a peptide acetate consisting of the amino acid sequence represented by SEQ ID NO: 7 or SEQ ID NO: 16 Pharmaceutical composition. .
  • FIG. 1 is a graph showing an increase in ALP activity by peptide D in human mesenchymal stem cells.
  • FIG. 2 shows the increase (staining) of ALP activity by peptide D in human mesenchymal stem cells.
  • FIG. 3 is a diagram showing the calcification effect of peptide D on human mesenchymal stem cells.
  • Figure 4 shows ALP induced by peptide D in mouse osteoprogenitor cell line MC3T3- E1 cells. It is a figure which shows the raise of activity.
  • FIG. 5 shows the calcification effect of peptide D on mouse osteoprogenitor cell line MC3T3-E1 cells.
  • FIG. 6 is a graph showing an increase in ALP activity by peptide D in mouse osteoblasts.
  • FIG. 7 is a graph showing an increase in ALP activity by anti-RANKL polyclonal antibody in mouse osteoblasts.
  • FIG. 8 is a graph showing an increase in ALP activity by anti-RANKL polyclonal antibody and anti-RANKL monoclonal antibody in mouse osteoblasts.
  • FIG. 9 shows the increase in ALP activity by peptide D, anti-RANKL polyclonal antibody and anti-RANKL monoclonal antibody in human osteoblasts.
  • FIG. 10 is a graph showing an increase in ALP activity by peptide D, 0PGFc, RA KFc and anti-RANKL monoclonal antibody in human osteoblasts.
  • FIG. 11 is a graph showing an increase in ALP activity by an anti-RANKL monoclonal antibody in mouse myoblast cell line C2C12.
  • FIG. 12 is a graph showing an increase in ALP and type I collagen gene expression by peptide D in human mesenchymal stem cells.
  • Fig. 12 A shows the results of electrophoresis
  • Fig. 12 B and C show the results normalized by the expression level of GAPDH.
  • FIG. 13 is a graph showing an increase in ALP activity of C2C12 by membrane-type RANK.
  • FIG. 14 is a graph showing an increase in ST2 ALP activity by membrane-type RANK.
  • Figure 1 4 A is in the normal medium
  • FIG. 1 4 B shows Dexamethasone (10- 7 M) and activated Vitamin D 3 (10- 8 M) results cultured under existence respectively.
  • FIG. 15 is a diagram showing the unit bone mass of the tibia in mice administered RANKL and mice not administered.
  • FIG. 16 is a graph showing the number of osteoclasts of the tibia in mice that received RANKL and mice that did not.
  • FIG. 17 is a graph showing the number of trabecular bones in the tibia in mice that received RANKL and mice that did not.
  • Figure 18 shows the / z CT of the femurs of mice with and without RANKL. It is a figure which shows the bone form measured more.
  • FIG. 19 shows the osteoblastic surface of the tibia in mice administered and not administered RANKL.
  • FIG. 2 OA is a graph showing femoral bone mineral density in mice to which peptide D was administered.
  • FIG. 20B is a diagram showing the bone area of the femur in mice administered with peptide D.
  • FIG. 20B is a diagram showing the bone area of the femur in mice administered with peptide D.
  • FIG. 20 C is a graph showing the bone density of the femur in mice administered with peptide D.
  • FIG. 21 is a graph showing bone density in each region of the femur in mice administered with peptide D.
  • Figure 2 2 A is peptide! Is a graph showing the bone density in a region 5 mm from the distal epiphysis of the femur.
  • FIG. 22B is a graph showing the amount of cortical bone in a region 5 mm from the distal epiphysis of the femur in mice administered with peptide D.
  • FIG. 23 is a diagram showing the results of three-dimensional structural analysis by ju CT of a region 2 km from the distal epiphysis of the femur in a mouse administered with peptide D.
  • FIG. 24A is a diagram showing BV / TV by trabecular structure measurement of the trabecular bone region by CT of the region 2 km from the distal epiphysis of the femur in the mouse administered peptide D.
  • FIG. 24B is a diagram showing trabecular width by measuring trabecular structure of the cancellous bone region by // CT in the region 2 km from the distal epiphysis of the femur in the mouse to which peptide D was administered.
  • FIG. 24C shows the number of trabecular bones by measuring trabecular structure in the cancellous bone region by CT in the region 2 km from the distal epiphysis of the femur in the mouse administered peptide D.
  • FIG. 25 is a graph showing the mineralization rate (A) and bone formation rate (B) in mice administered with peptide D.
  • FIG. 26 shows the phosphorylation of p38 12 hours after the addition of peptide D.
  • Fig. 27 shows the phosphorylation of p38 in a short time after addition of peptide D.
  • Figure 28 shows the phosphorylation of GSK3] 3 by adding peptide D.
  • FIG. 29 shows the phosphorylation of Smad by addition of peptide D.
  • FIG. 30 is a graph showing suppression of increase in ALP activity of peptide D by SB203580.
  • FIG. 31 is a graph showing suppression of enhancement of ALP activity of peptide D by Dkk-1.
  • FIG. 32 is a graph showing suppression of increase in ALP activity of peptide D by BMPR-IA.
  • FIG. 33 shows the ALP activity enhancement effect of peptide D and BMP-2 in combination in C2C12 cells.
  • FIG. 34 is a graph showing enhancement of ALP activity by the combined use of peptide D and BMP-2 in MC3T3-E1 cells.
  • FIG. 35 shows the promotion of RANKL expression in C2C12 cells by the addition of BMP-2.
  • FIG. 36 is a diagram showing the TRAP activity inhibitory action of peptide D and peptide E in RAW264 cells.
  • FIG. 37 is a graph showing the effect of peptide D and peptide E on enhancing ALP activity in MC3T3-E1 cells.
  • FIG. 38 is a graph showing the effect of peptide D on enhancing ALP activity in MC3T3-E1 cells in which RANKL is knocked down.
  • FIG. 39A shows the ALP activity enhancement effect of various salt substitutions of peptide D.
  • FIG. 39B shows the dose-dependent ALP activity enhancement effect of peptide D acetate.
  • FIG. 39C shows the ALP activity enhancement effect of peptide D and BMP-4 in combination.
  • FIG. 40 is a graph showing the ALP activity enhancement effect of RANKL antibody and the combination of RANKL antibody and BMP-2 in C2C12 cells.
  • FIG. 41 shows the ALP activity enhancement effect of RANKL antibody in mouse osteoblasts.
  • FIG. 42 shows the ALP activity enhancement effect of RANKL antibody and BMP-2 in combination in mouse osteoblasts.
  • FIG. 43 shows the effect of GST-RANKL on the ALP activity enhancement effect of peptide D and BMP-2 in combination in MC3T3-El cells.
  • FIG. 44 shows the effects of peptide D and RANKL antibody on the proliferation of mouse osteoblasts.
  • FIG. 45 shows changes in gene expression in MC3T3-E1 cells caused by peptide D (after 12 hours).
  • FIG. 46 shows the changes in gene expression in MC3T3-E1 cells caused by peptide D (96 hours later).
  • FIG. 47A is an electrophoretogram showing changes in gene expression of ALP, Coll, and 0C by peptide D and BMP-2 in MC3T3-E1 cells.
  • Fig. 47B shows changes in gene expression of ALP, Coll, and 0C by peptide D and BMP-2 in MC3T3-E1 cells.
  • FIG. 48 shows the increase in bone formation markers in vivo by peptide D.
  • FIG. 49 shows the bone formation effect of peptide D as a change in gene expression.
  • Figure 5 O A is a photograph showing the expression of various growth factors and their receptors by peptide D.
  • FIG. 50B shows the expression of various growth factors and their receptors by peptide D.
  • FIG. 51 is a graph showing the ability of Fc fusion peptide D to enhance ALP activity.
  • FIG. 52 shows the effect of salt-substituted peptide D on osteoclast-forming activity.
  • FIG. 53 shows the ability of various RANKL antibodies to neutralize osteoclast-forming activity by RANKL.
  • FIG. 54 is a graph showing the neutralizing ability of anti-human RANKL monoclonal antibody to osteoclast-forming activity by RANKL.
  • FIG. 55 shows the ability of GST fusion peptide D to enhance ALP activity.
  • FIG. 56 shows the ALP activity enhancement ability of anti-human RANKL monoclonal antibody.
  • RANKL Receptor activator of NF- ⁇ B li gand
  • RANK receptor activator of NF- ⁇
  • RANKL is expressed on osteoblasts or cells that can differentiate into osteoblasts upon stimulation by bone resorption factors.
  • the cells that can differentiate into osteoblasts include all cells that can differentiate into osteoblasts, such as osteoprogenitor cells, mesenchymal stem cells, stromal cells, myoblasts, etc. Is mentioned.
  • the domain consisting of the 152nd and subsequent amino acids from the N-terminal is a TNF ligand family homology domain.
  • the full-length base sequence and amino acid sequence of RANKL derived from human are shown in SEQ ID NOs: 1 and 2, respectively.
  • the full-length base sequence and amino acid sequence of RANK are shown in SEQ ID NOs: 3 and 4, respectively.
  • OPG osteoprotegerin
  • the present invention comprises as an active ingredient a compound that acts on osteoblasts or cells that can differentiate into osteoblasts, promotes differentiation, proliferation, maturation, and calcification of these cells, promotes bone formation, and increases bone mass.
  • a pharmaceutical composition comprising. As the pharmaceutical composition, a signal is transmitted to an osteoblast or a cell that can differentiate into an osteoblast, and the differentiation, proliferation, maturation, and calcification of the cell that can differentiate into an osteoblast or an osteoblast are promoted.
  • a pharmaceutical composition containing a compound that promotes formation and causes bone mass enhancement as an active ingredient acts on RANKL and transmits a signal from RANKL to osteoblasts or cells that can differentiate into osteoblasts.
  • a pharmaceutical composition containing as an active ingredient a compound that promotes differentiation, proliferation, maturation, calcification of cells that can differentiate into blasts or osteoblasts, promotes bone formation, and increases bone mass.
  • the compound acts on RANKL
  • the animal species of RANKL that can act are not limited, and RANKL derived from all animal species such as human-derived RANKL, mouse-derived RANKL, rat-derived RANKL, and the like are targeted.
  • acting on RANKL means acting on RANKL and osteoblasts from RANKL Refers to transmitting signals to cells or cells that can differentiate into osteoblasts, for example
  • It binds to RANKL and transmits a signal from RANKL to cells that can differentiate into osteoblasts or osteoblasts.
  • RANKL As a compound that acts on RANKL and promotes the differentiation, proliferation, maturation, and mineralization of cells that can differentiate into osteoblasts or osteoblasts, promotes bone formation, and increases bone mass, etc. All RANKL acting compounds are mentioned.
  • Such compounds include low molecular compounds such as natural and non-natural peptides, chemically synthesized or derived from microorganisms.
  • a mutant or fragment peptide of RANK Peptides similar in structure to RANK, peptides similar in structure to RANK fragment peptides, chemicals similar in structure to RANK, chemicals similar in structure to RANK fragment peptides Etc.
  • examples of such compounds include, for example, RANK mutants or fragment peptides that can act on RANK and RANKL, peptides that have a structure similar to RANK and that can act on RANKL, and structures that are similar to RANK fragment peptides.
  • Peptides that can act on RANKL chemical substances that have a structure similar to RANK and can act on RANKL, and chemical substances that have a structure similar to the fragment peptide of RANK that can act on RANKL.
  • RANK includes both membrane type RANK and soluble type RANK.
  • Membrane-type RANK is a RANK that has a transmembrane region that is bound to the cell surface.
  • Cells that express natural RANK are human cells such as human cells that express recombinant RANK. Can be used.
  • RANKFc is also included.
  • RANKFc is a fusion protein in which the Fc region of human IgGi is bound to the extracellular region of human RANK.
  • the phrase “similar in structure” means, for example, that the three-dimensional structures of the parts that can act on RANKL are similar.
  • the primary structure represented by the amino acid sequence is usually similar, but the amino acid sequence is not similar, the steric structure is similar, and there are compounds that can act on RANKL. included.
  • variant peptide, peptide similar in structure to 0PG, peptide similar in structure to 0PG fragment peptide, chemical substance similar in structure to 0PG, structure to 0PG fragment peptide are similar chemical substances.
  • it acts on RANKL, promotes differentiation, proliferation, maturation, calcification of cells that can differentiate into osteoblasts or osteoblasts, promotes bone formation, increases bone mass, etc.
  • 0PG mutants or fragment peptides that can act on 0PG and RANKL peptides that have a structure similar to 0PG and can act on RANKL, and compounds that have a structure similar to 0PG fragment peptide and act on RANKL Peptides that can be obtained, chemical substances that have a structure similar to 0PG and can act on RANKL, chemical substances that have a structure similar to the fragment peptide of 0PG that can act on RANKL, and the like. Chemical substances refer to compounds other than peptides and proteins.
  • 0PG includes both membrane type 0PG and soluble type 0PG.
  • Membrane type 0PG refers to 0PG that is bound to the cell surface at the C-terminal region, etc., and cells that express natural type 0PG use animal cells such as human cells that express recombinant 0PG. be able to.
  • OPGFc is also included.
  • OPGFc is a fusion protein (Fc fusion protein) in which the Fc region of human IgG! Is bound to 0PG.
  • RANK or 0PG As an analog of RANK or 0PG, for example, in the amino acid sequence of RANK or 0PG or a fragment peptide thereof, it contains an amino acid sequence in which one or several amino acids have been deleted, substituted or added, and RANK or It includes proteins or peptides with 0PG activity.
  • 1 or several is 1 to 9, preferably 1 to 5, and more preferably 1 or 2.
  • a peptide resembling the structure of the RANK RANKL binding site for example, it consists of a peptide consisting of the amino acid sequence represented by SEQ ID NO: 7 (peptide D) and an amino acid sequence represented by SEQ ID NO: 16 Peptide (Peptide E). These peptides are cyclic peptides in which the second Cys and the eighth Cys are connected by a disulfide bond.
  • peptide salts that resemble the structure of the RANK RANKL binding site can also be used.
  • the peptide salt is not limited as long as it is a pharmaceutically acceptable salt, and examples thereof include acid addition salts and base addition salts.
  • Acid addition salts include acetic acid, malic acid, succinic acid, trifluoroacetic acid (TFA) salt, salts with organic acids such as tartaric acid or citrate, And salts with inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid or phosphoric acid.
  • Examples of the base addition salts include salts with alkali metals such as sodium or potassium, salts with alkaline earth metals such as calcium or magnesium, and salts with amines such as ammonium or triethylamine.
  • alkali metals such as sodium or potassium
  • alkaline earth metals such as calcium or magnesium
  • salts with amines such as ammonium or triethylamine.
  • acetate is preferable, and particularly acetate of a peptide consisting of the amino acid sequence represented by SEQ ID NO: 7 or SEQ ID NO: 16 is preferable.
  • a fusion protein in which a peptide resembling the structure of the RANK RANKL binding site and GST (glutathione-S-transferase) or human IgGi Fc region is combined. Protein
  • fusion proteins include peptide D and GST (Daltathione-S-transferase) or a fusion protein in which the Fc region of human IgGi is bound (Fc fusion peptide D or GST fusion peptide D).
  • These fusion proteins have increased in vivo stability and a longer blood half-life.
  • a fusion protein of GST and another epitope tag of the Fc region can also be used.
  • epitopes include 2-12, preferably 4 or more, more preferably 4-7, more preferably 5 or 6 histidine polyhistidine, FLAG tag, Myc tag, V5 tag , Xpress tag, HQ tag, HA tag, AU1 tag, T7 tag, VSV-G tag, DDDDK tag, S tag, CruzTag09, CruzTag22, CruzTag41, Glu-Glu tag, Ha, 11 tag, KT3 tag, thioredoxin, maltose binding Examples include protein ( ⁇ ) and ⁇ -galactosidase.
  • RANKL a compound that acts on RANKL and promotes differentiation, proliferation, maturation, calcification of cells that can differentiate into osteoblasts or osteoblasts, promotes bone formation, and increases bone mass, etc.
  • an agonist substance for RANKL Sometimes called an agonist substance for RANKL.
  • an anti-RANKL antibody that, by acting on RANKL, promotes the differentiation, proliferation, maturation, and calcification of cells that can differentiate into osteoblasts or osteoblasts, promotes bone formation, increases bone mass, etc.
  • antibodies or functional fragments thereof that cause In the present invention, these antibodies may be different from agonist antibodies against RANKL.
  • the anti-RANKL antibody can be obtained as a polyclonal antibody or a monoclonal antibody by a known method, and a monoclonal antibody is preferable.
  • Monoclonal antibodies are hybrid It includes those produced by dormers and those produced by hosts transformed with an expression vector containing an antibody gene by genetic engineering techniques.
  • a monoclonal antibody-producing hybridoma can be prepared by a known method as follows. That is, immunization is performed by a known immunization method using membrane-type or soluble RANKL or a fragment peptide thereof as a sensitizing antigen, and the obtained immune cells are fused with a known parent cell by a conventional cell fusion method. It can be prepared by screening cells producing a monoclonal antibody by the screening method. When immunizing RANKL, it can be used in combination with carrier proteins such as mousse serum albumin (BSA) and keyhole limpet.
  • BSA mousse serum albumin
  • an antibody gene is cloned from a hybridoma, incorporated into an appropriate vector, introduced into a host, and a recombinant antibody produced using a gene recombination technique is used.
  • a recombinant antibody produced using a gene recombination technique See, for example, ⁇ , Vandamme, AM et al., Eur. J. Biochem. 1990; 192: 767-775.
  • DNA encoding the antibody heavy chain (H chain) or light chain (L chain) may be separately incorporated into an expression vector to cotransform the host cell, or the H chain and L chain may be encoded.
  • the host cell may be transformed by incorporating the DNA into a single expression vector (see WO94 / 11523).
  • recombinant antibodies can be produced by using transgenic animals.
  • an antibody gene is inserted in the middle of a gene encoding a protein (such as goat casein) inherently produced in milk to prepare a fusion gene.
  • a DNA fragment containing the fusion gene into which the antibody gene has been inserted is injected into a goat embryo and the embryo is introduced into a female goat.
  • the desired antibody is obtained from the milk produced by the transgenic goat born from the goat that received the embryo or its progeny (Ebert, KM et al., Bio / Technology 1994; 12: 699-702).
  • the anti-RANKL antibody of the present invention is a genetically engineered antibody that has been artificially modified for the purpose of reducing the heterologous antigenicity to humans, such as a chimeric antibody or humanized antibody.
  • Such antibodies include chimeric antibodies, humanized antibodies, and human antibodies, all of which can be produced using known methods.
  • the chimeric antibody is obtained by obtaining DNA encoding the obtained antibody V region, ligating it with DNA encoding the human antibody C region, incorporating it into an expression vector and introducing it into a host for production. Is obtained.
  • a humanized antibody is also referred to as a reshaped human antibody.
  • a humanized antibody is obtained by transplanting the complementarity determining region (CDR) of a mammal other than human, for example, a mouse antibody, into a complementarity determining region of a human antibody by a known method. (See European Patent Application Publication Nos. EP 125023 and TO 96/02576).
  • CDR complementarity determining region
  • C region of the chimeric antibody and humanized antibody those of a human antibody are used, for example, C yl, Cy 2, Cy 3, Cy 4 for the H chain, CK, C ⁇ can be used.
  • the human antibody C region may be modified to improve the stability of the antibody or its production.
  • a human antibody can be obtained, for example, by introducing a human antibody locus and administering an antigen to a transgenic animal having the ability to produce a human-derived antibody.
  • transgenic animal include mice, and a method for producing a mouse capable of producing a human antibody is described in, for example, International Publication No. W002 / 43478 pamphlet.
  • Anti-RANKL antibodies include not only complete antibodies but also functional fragments thereof.
  • a functional fragment of an antibody means a part (partial fragment) of an antibody that retains at least one action of the antibody on the antigen.
  • F (ab ′) 2 , Fab ′ examples include Fab, Fv, disulfide-binding Fv, single-chain Fv (scFv), and polymers thereof [DJ King., Applicat ions and Engineering of Monoclonal Antibodies., 1998 T. j. .
  • monoclonal antibody when using a monoclonal antibody, only one type of monoclonal antibody may be used, but two or more types, for example, two, three, four, or five types of monoclonal antibodies that recognize different epitopes may be used. Good.
  • Whether or not the above compound has an agonist activity that promotes signal transduction to RANKL can be determined, for example, by determining whether the antibody is an osteoblast expressing RANKL or its osteoprogenitor cells, or myoblasts or stroma. It can be determined by administering to osteoblastic progenitor cells such as cells and cells having the same properties as mesenchymal stem cells, allowing them to act on RANKL, and examining whether these cells differentiate and proliferate. Differentiation and proliferation can be determined by using, for example, an increase in cell activity phosphatase activity or calcification as an index. In addition, when the above compound is administered to animals, bone density, bone mineral content, and bone area increase.
  • Bone density is a numerical representation of the density of mineral components such as calcium in bone. Bone density is measured by pQCT ⁇ peripheral quantitative computerized tomography; Treetop bone X-ray CT device, SXA (Single Energy X-Ray Absorptiometry), DXA (Dual Energy X-Ray Absorptiometry) can do. Furthermore, when the above compounds are administered to animals, an increase in the density of cancellous bone is observed when three-dimensional structural analysis of bone is performed with / z CT. In addition, BV / TV (bone volume / total tissue volume), trabecular width, and number of trabeculae are increased by measuring cancellous trabecular structure. Furthermore, when the above compounds are administered to animals, an increase in bone density in the cortical bone region is observed by measuring bone morphology using pQCT.
  • SXA Single Energy X-Ray Absorptiometry
  • DXA Dual Energy X-Ray Absorptiometry
  • the composition of the present invention can enhance bone formation, and can be used as a research reagent in vitro or as a pharmaceutical composition in vivo.
  • the pharmaceutical composition of the present invention can be used as a pharmaceutical composition that enhances bone formation.
  • it can be used for the treatment or prevention of bone metabolic diseases accompanied by bone loss.
  • bone metabolic diseases include osteoporosis, juvenile osteoporosis, bone dysplasia, hypercalcemia, hyperparathyroidism, osteomalacia, osteocalcinosis, osteolytic bone disease, osteonecrosis , Paget's disease, rheumatoid arthritis, bone loss due to osteoarthritis, inflammatory arthritis, osteomyelitis, darcocorticoid treatment, metastatic bone disease, loss of periodontal bone, bone loss due to cancer, aging Bone loss due to and other bone loss.
  • oral administration is about 0.01 mg to 1000 mg per day for adults, which are given once or divided into several doses can do.
  • about 0.01 mg to 1000 mg can be administered once by subcutaneous injection, intramuscular injection or intravenous injection.
  • the administration time may be either before or after the clinical symptoms of arteriosclerotic disease occur.
  • the composition contains carriers, diluents and excipients commonly used in the pharmaceutical field.
  • tablet carriers and excipients include lactose, magnesium stearate, etc. Is used.
  • aqueous solution of the injection bowl physiological saline, isotonic solutions containing glucose and other adjuvants are used, and suitable solubilizers such as alcohols, polyalcohols such as propylene glycol, nonionic surface activity It may be used in combination with an agent. Sesame oil, soybean oil and the like are used as the oily liquid, and benzyl benzoate, benzyl alcohol and the like may be used in combination as the solubilizer.
  • the pharmaceutical composition of the present invention promotes differentiation, proliferation, maturation, and calcification of cells that can differentiate into osteoblasts or osteoblasts, promotes bone formation, and increases bone mass, for example,
  • BMP Bone morphogenetic protein Bone morphogenetic protein
  • the present invention relates to a compound that promotes differentiation, proliferation, maturation or mineralization of cells that can differentiate into osteoblasts or osteoblasts, particularly peptide D or peptide E, or an anti-RANKL antibody and a BMP family member. And a pharmaceutical composition for treating or preventing a bone metabolic disease accompanied by bone loss.
  • a pharmaceutical preparation containing both may be prepared and administered, or the compound of the present invention
  • BMP family members may be administered separately. That is, the pharmaceutical composition of the present invention comprises an osteoblast or a compound that promotes differentiation, proliferation, maturation or calcification of cells that can differentiate into osteoblasts, particularly peptide D or peptide E, or anti-RANKL antibody and BMP. Includes family members.
  • BMP family members include BMP-4,
  • BMP-2, BMP-7, BMP-6 etc. are mentioned.
  • the compound of the present invention and BMP family member work together to promote differentiation, proliferation, maturation and mineralization of cells that can differentiate into osteoblasts or osteoblasts, promote bone formation, increase bone mass, etc. obtain.
  • the content of the BMP member is not limited, but is about 0.01 mg to 1000 mg at a time.
  • the present invention further provides differentiation, proliferation, maturation of cells that can differentiate into osteoblasts or osteoblasts,
  • the screening method comprises administering a scavenger compound to cells having the same properties as osteoprogenitor cells such as osteoblasts, osteoprogenitor cells, stromal cells, mesenchymal stem cells, or myoblasts, and the candidate compound is What is necessary is just to test whether the said cell differentiation and proliferation are promoted.
  • the candidate compound is administered to cells having the same properties as osteoprogenitor cells such as osteoblasts, osteoprogenitor cells, mesenchymal stem cells, stromal cells or myoblasts that express RANKL on the surface. What is necessary is just to test whether a candidate compound acts on RANKL and promotes the differentiation and proliferation of the cells.
  • Differentiation and proliferation can be determined by using, for example, an increase in alkaline phosphatase activity of cells or calcification as an indicator.
  • a candidate compound is administered to a mouse, for example, C57BL / 6CrjCrlj, and whether or not an increase in bone density, bone mineral content, bone area, etc. is observed, is used as an index.
  • Differentiation of cells that can differentiate, promote proliferation, maturation, mineralization, promote bone formation, increase bone mass, etc., such as RANKL, and differentiate into cells that can differentiate into osteoblasts or osteoblasts It is possible to judge whether the compound is a compound that promotes proliferation, maturation, calcification, promotes bone formation, and increases bone mass.
  • Synthetic peptides were used in the experiment.
  • Synthetic peptide D is a peptide consisting of the amino acid sequence represented by SEQ ID NO: 7, which consists of 9 amino acids and consists of two cystines. Is a cyclic peptide in which the residues are linked by disulfide bonds. Synthetic peptide D has been reported to bind to RANKL (Aoki et al., J Cl in Invest 116: 1525, 2006). As the control peptide, a synthetic peptide without such a function was used. Cultured cells
  • Human mesenchymal stem cells were purchased from Cambrex. Lonza product was used as the dedicated passage medium. Differentiation of human mesenchymal stem cells
  • Human mesenchymal stem cells were seeded in 96-well plates (Nunc) at 1 ⁇ 10 3 cells / well or in 48-well plates (IWAKI) at 2.4 ⁇ 10 3 cells / tool. After 24 hours, the culture supernatant was removed and switched to osteoblast differentiation medium (Lonza), and the medium was changed every 3 to 4 days.
  • peptide D was added at a concentration of ⁇ (peptide D administration group).
  • the control peptide was added at the same concentration as a negative control.
  • ALP alkaline phosphatase
  • the ALP activity after fixation was measured by a method using paranitrophenyl phosphate as a substrate. That is, carbonate buffer (5 raM MgCl 2 , 50 mM NaHC0 3 ) containing 1 mg / mL of paranitrophenyl phosphate (Nacalai) was added to each wall at 100 / L, and after incubation at 37 ° C, 405mn of each well The 0D value was measured with a microplate reader (BMG Labtech). In the group in which peptide D 100 ⁇ was added to human mesenchymal stem cells, ALP activity was significantly increased in both differentiation-inducing medium and subculture medium on day 7 after differentiation induction (Fig.
  • peptide D was added at a concentration of 300 / M.
  • cells were fixed with 10% neutral buffered formalin solution and then fixed again with acetone / ethanol fixative.
  • the cells were added with a staining solution 500 prepared as described below, washed at 37 ° C for 10 minutes, washed with water, and dried.
  • MC3T3- E1 (subclonal No. 4) cell, a mouse osteoprogenitor cell line, was purchased from ATCC.
  • the newborn mouse skull was immersed in an enzyme solution (0.1% collagenase (Wako) + 0.2% dispase (joint spirit)) and shaken in a 37 ° C thermostatic bath for 5 minutes.
  • the first cell floating fraction was removed, fresh enzyme solution (10 mL) was added, and the mixture was further shaken for 10 minutes in a 37 ° C constant temperature bath. This operation was repeated 4 times, and each cell suspension was collected.
  • the cell suspension was centrifuged at 250 xg for 5 minutes, suspended in medium (0: 2 incubator for 3-4 days, collected using trypsin-EDTA solution (Nacalai), Cryopreserved in a cell banker (Juji Kagaku) Mouse osteoblast differentiation induction
  • the obtained mouse osteoblasts were seeded on a% well plate using 10% FBS + ⁇ at 0.8 ⁇ 10 4 / well.
  • differentiation induction was performed in a medium containing 5 mM i3 glyceport phosphate + 10 ⁇ g / mL ascorbic acid.
  • 300 ⁇ of synthetic peptide D showed an increase in ALP activation on differentiation medium on day 7 (Fig. 6).
  • Each antibody was added at the same time as differentiation induction at 1 / zg / mL.
  • a significant increase in ALP activity was confirmed in the group to which each factor was added on day 7 after differentiation induction (Fig. 7). This phenomenon was observed not only in the differentiation induction medium but also in mouse osteoblasts cultured in the passage medium.
  • the polyclonal antibody that binds to RANKL significantly induced the differentiation of mouse osteoblasts compared to the control antibody.
  • the anti-RANKL monoclonal antibodies A and B were used to examine whether the same differentiation was observed with the monoclonal antibody.
  • anti-RANKL polyclonal antibody increased the ALP activity of mouse osteoblasts in a concentration-dependent manner (Fig. 8).
  • a mixture of anti-RANKL monoclonal antibodies A and B similarly increased the ALP activity of mouse osteoblasts (Fig. 8). From the above, it was found that polyclonal antibodies and monoclonal antibodies against mouse RANKL induce differentiation of mouse osteoblasts.
  • Example 5 ALP activation effect of human osteoblasts
  • Reagents such as anti-RANKL polyclonal antibody and anti-RANKL monoclonal antibody were the same as those in Example 4. Furthermore, anti-RANKL monoclonal antibodies ((C) clone 12A380) (ALEXIS), human 0PGFc, and human RANKFc (R & D) were used. ALP activity was measured in the same manner as in Example 1. These antibodies are all antibodies against mouse RANKL, but have also been shown to cross and bind to human RANKL. Cultured cells
  • Human osteoblasts were purchased from Cambrex. Passaging was performed on a special medium (Lonza). Differentiation induction of human osteoblasts
  • Human osteoblasts were seeded at a density of 3.1 ⁇ 10 3 / well on 96-well plates and 7.65 ⁇ 10 3 / well on 48-well plates. After cell adhesion, differentiation induction was performed in a medium containing 5 mM] 3 glycerophosphate. The antibody was added at the same time as differentiation induction at 100 ng / mL or 1 ng / mL. After 5 or 6 days of culture, ALP activity was measured. Anti-RANKL polyclonal antibody, anti-RANKL monoclonal antibody, peptide D, 0PGFc, and RANKFc significantly increased the ALP activity of human osteoblasts and induced differentiation (FIGS. 9 and 10). From the above, it was found that polyclonal and monoclonal antibodies against mouse RANKL, 0PGFc, and RANKFc induce human osteoblast differentiation.
  • Example 6 Induction of mouse myoblast differentiation
  • Example 4 The same reagents as in Example 4 were used, such as monoclonal mRANKL antibody. ALP activity was measured in the same manner as in Example 1. Cultured cells
  • C2C12 cells a mouse myoblast precursor cell line, were purchased from RIKEN. Induction of mouse myoblast differentiation
  • PCR was performed using human alfa phosphatase (hALP) and human type I collagen (hCollagen I) specific primers. Hit for standardization
  • PCR was performed using GAPDH specific primers. The PCR primer sequences used are listed below. PCR was performed using Ex Taq TM Hot Start Version (Takara Bio Inc., Shiga, Japan) under the following conditions: Al force phosphatase (hALP) was 94 ° C. After initial heat denaturation for 15 minutes, 28 cycles were performed at 94 ° C for 1 minute, 58 ° C for 1 minute, 72 ° C for 30 seconds, and 72 ° C for 10 minutes. Type I collagen (hCollagen I) was subjected to initial heat denaturation at 94 ° C for 15 minutes, followed by 25 cycles of 94 ° C for 1 minute, 58 ° C for 1 minute, and 72 ° C for 30 seconds.
  • hALP Al force phosphatase
  • the extension reaction was performed at ° C for 10 minutes.
  • GAPDH was subjected to initial heat denaturation at 95 ° C for 3 minutes, followed by 28 cycles of 95 ° C for 10 seconds, 60 ° C for 15 seconds, 68 ° C for 1 minute, and 68 ° C for 10 minutes. Went.
  • hALP-F 5'-GGGGGTGGCCGGAAATACAT-3 '(SEQ ID NO: 8)
  • hALP-R 5'-GGGGGCCAGACCAAAGATAGAGTT-3 '(SEQ ID NO: 9)
  • hCollagenl-F 5, -ATTCCAGTTCGAGTATGGCG-3 '(SEQ ID NO: 1 0)
  • hCollagenl-R 5 '-TTTTGTATTCAATCACTGTCTTGCC-3' (SEQ ID NO: 1 1)
  • hGAPDH-F 5 '-TGAAGGTCGGAGTCAACGGATTTGGT-3' (SEQ ID NO: 1 2)
  • hGAPDH-R 5'-CATGTGGGCCATGAGGTCCACCAC-3 '(SEQ ID NO: 1 3)
  • the sample obtained after the PCR reaction was electrophoresed using a 1% agarose gel, and it was confirmed that a specific band was formed under UV using an ethimubu mouth amide (Figure 12A). .
  • the obtained image was analyzed using CSAnalyzer. In addition, it was normalized by the expression level of GAPDH and is shown in Figs. 12B and C.
  • ALP activity increased significantly in both differentiation induction medium and passage medium on the 7th day after differentiation induction, and differentiation induction was also observed.
  • Example 8 Induction of differentiation of C2C12 into osteoblasts by membrane type RANK C0S 1 was seeded on a 96-well plate with lOOOOcel ls / wel l in DMEM-5% FBS and cultured for 1 day, then various plasmid DNAs (pSR a -EXl (control expression vector 1), pSR ⁇ -mRANK (mouse RANK expression) Vector), pCAGGS-mBMP-4 (mouse BMP-4 expression vector), and purified with QIAwel l8 plasmid purification kit (Qiagen)) were transfected using FuGENE HD (Roche) at 50 ng per wellore.
  • 0.5 ng of pCAGGS-mBMP-4 was mixed with 24.5 ng of pCAGGS (control expression vector 2) and 25 ng of pSR a -mRANK and transfected.
  • 0.5 ng of pCAGGS-mBMP-4 was mixed with 24.5 ng of pCAGGS and 25 ng of pSR a -EX1 and transcribed.
  • C2C12 was seeded on a C0S1 plate transfected with 10,000 cels per well and co-cultured. Every 3 days, the medium was changed with DMEM-2. 5% FBS. After 1 week, the medium was removed, and the cells were fixed by adding acetone 'ethanol 1: 1 mixed solution.
  • membrane-type RANK alone or in combination with BMP-4 induced differentiation of mouse myoblast cell line C2C12 cells, which have the properties of osteoblast progenitor cells, into osteoblasts.
  • Example 9 Induction of ST2 differentiation into osteoblasts by membrane-type RANK
  • ST2 cells a mouse stromal cell line, were purchased from RIKEN. 96 wel pre
  • C0S1 was seeded with DMEM-5% FBS at 10000cels / wel and cultured for 1 day.
  • Well DNA pSR a-EX1 (control expression vector 1), pSR-mRANK (mouse RANK expression vector 1), purified with QIAwel l8 plasraid purificat ion kit (Qiagen) 50 ng per transfection was performed using FuGENE HD (Roche).
  • ST2 was seeded on a C0S1 plate transfected with 5000 cels per well and co-cultured.
  • the fixative was removed in 30 seconds and the plate was dried for about 30 minutes, and ALP detection solution (5 mM MgCl 2 , 40 niM NaHC0 3 , 1 mg / ml p-nitrophenyl phosphate)
  • ALP detection solution 5 mM MgCl 2 , 40 niM NaHC0 3 , 1 mg / ml p-nitrophenyl phosphate
  • the reaction was started by adding 100 ⁇ l at a time, and after 60 minutes, ABS405nm was measured with a microplate reader, and as a result, Dexamethasone (10 " 7 M), active type Vitamin D 3 (10- 8 M) Contact the added system (RANKL induction) Itenomi, pSR a -mRANK significantly increased ALP activity, ST2 cells exhibited osteoblast differentiation activity (Fig.
  • a cDNA encoding human RANKL residues 140-317 was added with Sal I and Not I sites by PCR, and pGEX_4T-2 (GE healthcare; Genbank) was used using these endnucleases. Accession Number U ⁇ ⁇ 8 ⁇ 4) Clutted downstream of Glutathione S-transferase.
  • SEQ ID NOs: 14 and 15 show the nucleotide sequence of DNA encoding a protein in which GST is fused to a protein consisting of the amino acid sequence from the 140th amino acid to the 317th amino acid sequence in the amino acid sequence of RANKL, and the amino acid sequence of the protein. .
  • IPTG final concentration in BL21 (DE3) Escherischia col i (invi trogen): After inducing protein expression with 0.5 mM), the cells are suspended in an extraction buffer (50 mM Tris_HCl, pH 8.0, lOOmM NaCl, IraM EDTA, lmM DTT, l% (v / v) TritonX-100). Crush using a sonicator at ° C. After centrifugation at 18000 X g for 15 min, the supernatant was recovered and applied to a Glutathione Sepharose column.
  • Tris_HCl pH 8.0
  • IraM EDTA IraM EDTA
  • lmM DTT l% (v / v) TritonX-100
  • GST-RANKL 57 nmol (low dose) and 426 nmol (high dose) were intraperitoneally administered 3 times every 24 hours and dissected 1.5 hours after the third dose in 10 7-week-old female C57BL / 6N mice.
  • a group to which PBS was similarly administered was used as a comparison target.
  • the femur, tibia, cerebrum, lung, heart, liver, thymus, spleen, kidney, and skin were collected, and the cerebrum, lung, heart, liver, thymus, spleen, kidney, and skin were naturally generated by HE staining. Lesions were observed. Bone morphometry
  • the unit bone mass and trabecular number decreased to about 50% by the high dose of GST-RANKL, and the number of osteoclasts increased. In addition, no decrease was observed at low doses ( Figures 15, 16, and 17).
  • Synthetic peptides were used in the experiment.
  • Synthetic peptide D is a peptide consisting of the amino acid sequence represented by SEQ ID NO: 7, which consists of 9 amino acids, and is a cyclic peptide in which two cystine residues are linked by a disulfide bond.
  • Synthetic peptide D has been reported to bind to RANKL (Aoki et al., J Cl in Invest 116: 1525, 2006). The synthetic peptide was dissolved in 10% DMSO (Nacalai) / PBS at a concentration of 1 mg / ml.
  • C57BL / 6CrjCrlj mice were purchased from Oriental Bio Service. This is a C57BL / 6CrjCrlj mouse inbred mouse, which is characterized by a small decrease in cellular immunity due to aging. Preliminary breeding was performed for 1 week in an environment of temperature 23 ° C ⁇ 3 ° C and humidity 50% ⁇ 30%. The lighting time was 8:00 to 20:00.
  • Peptide D was administered subcutaneously at a dose of 10 mg / kg at 8:00, 14:00, and 20:00 three times a day for 5 days.
  • the control group received 5% DMS0 / PBS.
  • Necropsy was performed 12 hours after the end of the 5-day administration period, and the femur and tibia were collected after collecting whole blood.
  • Whole blood was allowed to stand at room temperature for 1 hour and then centrifuged at 5000 rpm, 4 ° C, 5 min, and the serum was collected in a new tube.
  • the femur and tibia were fixed with cold 70% ethanol. Bone density analysis
  • the bone density, bone mineral content, and bone area of the femur fixed with ethanol were measured by single energy X-ray absorptiometry (SXA) analysis (DCS-600EX-1HR animal DXA, AL0KA).
  • SXA single energy X-ray absorptiometry
  • the total bone length was divided into 20 sections, the bone density in each area was measured, and the peptide action in each area was analyzed.
  • Bone structure analysis and trabecular structure analysis
  • Bone structure analysis was performed by peripheral bone quantitative computed tomography (hereinafter pQCT) and microphone mouth computed tomography (hereinafter / z CT).
  • pQCT peripheral bone quantitative computed tomography
  • / z CT microphone mouth computed tomography
  • Scan-Xmate-A080 Comscan Techno
  • XCT-Research SA + Stratec Medizintechnik GmbH
  • 3D-B0N 3D-B0N (Ratok)
  • the bone density of 395 mg / ra 3 or less was analyzed as cancellous bone
  • 690 mg / cm 3 or more was analyzed as cortical bone.
  • the total bone mineral content, bone area, and bone density of femurs administered with peptide D10 rag / kg three times a day for 5 days were measured by SXA analysis.
  • bone mineral content increased with administration of peptide D, and bone density showed a significant increase (/ 7 ⁇ 0. 05 vs control group) (FIGS. 20 A to C).
  • a significant increase in bone density ⁇ 0. 05 vs. control group) was confirmed in the sixth to ninth regions from the distal epiphysis (Fig. twenty one ).
  • cortical bone density in the region 5 mm from the distal epiphysis significantly increased (p ⁇ 0.05 vs control group) (Fig. 22 A).
  • the cortical bone thickness As a result of measuring the cortical bone thickness, epicardial circumference, intima circumference, bone mineral content and bone area in this region, the intima circumference has become shorter and cortical bone has increased toward the inside. (Fig. 2 2 B).
  • each group of mice was treated with 1.6% / ml of 2% aqueous ethanolic ethanol solution on the first and fourth days after the start of administration.
  • Force Lucein (Nacalai) adjusted to mL was administered intraperitoneally to each individual at a dose of 0.01 mL / g (body weight), and force Lucein labeling was performed.
  • a non-decalcified specimen was prepared by embedding Methylraethacrylate (MMA) resin in an area 5 mm from the distal epiphysis of the femur collected at autopsy and fixed with ethanol.
  • MMA Methylraethacrylate
  • This region is a region in which the bone density was significantly increased in the peptide D administration group as a result of the SXA analysis in Example 11-1.
  • the specimen was stained with toluidine blue and the osteoid area, osteoblast area, bone mineralization area, calcification rate, and bone formation rate were measured.
  • an increase in calcification rate and bone formation rate was observed in the peptide D administration group (FIGS. 25A and B).
  • SXA analysis and pQCT analysis confirmed a significant increase in cortical bone density in the peptide D administration group.However, as a result of the increase in calcification rate and bone formation rate in vivo by peptide administration, cortical bone The density is thought to have increased.
  • Example 1 3 Mechanism analysis of ALP activity enhancement effect of peptide D (Phosphorylation of signal molecule)
  • MC3T3-E1 cells were seeded at 7.5 ⁇ 10 4 cells / well on 6 well plates using 10% FBS + CK MEM (S IGMA). The media was removed after 12 hours, it was added a medium containing 200 Micromax Micromax peptide D or 200 ng / ml BMP- 2. After the elapsed time shown in each figure, the medium is removed, PBS is added to the cells, and the cells are collected using a scraper (Falcon). It was. RIPA buffer 100 / L was added to the cell pellet collected by centrifugation at 1200 rpm, 5 min, 4 ° C to dissolve the cell membrane.
  • Smadl / 5/8 which is used in the signaling pathway of bone morphogenetic factor BMP
  • MC3T3-E1 cells showed that Smad was phosphorylated in an unstimulated state.
  • Induction of phosphorylation of Sraadl / 5/8 by addition of peptide D was not observed within at least 3 hours (Fig. 29).
  • BMP-2 used as a control showed phosphorylation of Smadl / 5/8 3 hours after addition. Based on the above, Smadl / 5/8 activation similar to BMP-2 does not occur within 3 hours after addition of peptide D, but 12 hours later than seen 1 hour after addition of BMP-2.
  • MC3T3-E1 cells were seeded at 1.5 ⁇ 10 4 cells / well on a 96 well plate using 10% FBS + a MEM (SIGMA). After 12 hours, the medium was removed, and a medium containing the p38 inhibitor SB203580 (Calbiochem) was added. After another hour, 200 ⁇ of peptide D or
  • hrDkk-1 (R & D) at concentrations of 0, 25, 0.5, and 1 ⁇ g / ral were added as Wnt antagonists, respectively, and 200 ⁇ of peptide D was added after 1 hour, and 5 days.
  • ALP activity was measured by the method described in Example 1. As a result, although Dkk-1 was weak, it significantly suppressed ALP activity enhancement in a concentration-dependent manner (Fig. 31).
  • BMPR-IA (R & D) at concentrations of 0.25 and 1 ⁇ g / ral as BMP antagonists, respectively, and add 200 ⁇ M peptide D or 200 ng / ml ⁇ -2 after 1 hour.
  • the cells were cultured for 5 days, and ALP activity was measured by the method described in Example 1.
  • BMPR-IA remarkably suppressed the enhancement of ALP activity by peptide D and BMP-2 (Fig. 32). From the above results, it was considered that the action of peptide D may depend on the induction of BMP or the BMP that cells regularly self-produce.
  • Example 1 5 peptides! Analysis of the mechanism of increased ALP activity (cooperative action of peptide D and BMP-2)
  • ALP activity was measured using C2C12 cells whose ALP activity was increased depending on the addition of BMP-2.
  • C2C12 cells were seeded at 1 ⁇ 10 4 cells / well on 96 well plates using 5% FBS + ⁇ 1 (SIGMA). After 6 hours, the medium was removed and 50 ⁇ M peptide D, 100 and 200 ng / ml BMP-2,
  • Example 14 shows the action of peptide D shown in Example 14 depends on the induction of BMP or BMP that is constantly self-produced by cells.
  • the myoblast cell line, C2C12 differs from the osteoblast cell line, MC3T3-E1, in normal culture conditions.
  • ALP activity is extremely low.
  • BMP-2 is added and cultured, ALP activity is enhanced as in this Example and differentiates into osteoblasts, but in C2C12 cells, peptide D alone is considered to have a very weak effect.
  • peptide D alone has a strong ALP activity enhancing effect in MC3T3-E1 cells. This strongly suggests that the action of peptide D in MC3T3- E1 cells may be dependent on the induction of BMP or BMP that is constantly self-produced by the cell.
  • MC3T3-E1 cells were seeded at 1.5 ⁇ 10 4 cells / well on a 96 well plate using 10% FBS + o; MEM (SIGMA). After 12 hours, the medium was removed, and ALP activity was measured when 150 ⁇ peptide D was further added to 30 ng / mL BMP-2. As a result, peptide D showed additive ALP activity enhancement effect with BMP-2 in MC3T3- E1 cells (Fig. 34).
  • Centrifugation was performed for 15 minutes at 12000 ⁇ g, and the supernatant was collected in a new tube. 0.25 raL isopropanol (Nacalai) was added, and the mixture was mixed by inversion and left at room temperature for 10 minutes. 4 ° C,
  • RNA concentration 2 fig was subjected to RT-PCR.
  • RT-PCR is ThermoScript RT-PCR
  • PCR was performed using primers specific for mouse RANKL. PCR was performed using primers specific to mouse GAPDH for standardization. The PCR primer sequences used are listed below. Ex Taq TM Hot Start Vers ion (Takara Bio Inc., Shiga, Japan) PCR was performed under the following conditions.
  • Mouse RANKL was subjected to initial heat denaturation at 94 ° C for 2 minutes, followed by 35 cycles of 94 ° C for 20 seconds, 60 ° C for 20 seconds, 72 ° C for 40 seconds, and 72 ° C for 10 minutes. Went.
  • GAPDH was subjected to initial heat denaturation at 95 ° C for 3 minutes, followed by 25 cycles of 95 ° C for 10 seconds, 60 ° C for 15 seconds, 68 ° C for 1 minute, and 68 ° C for 10 minutes. Reaction was performed.
  • mRANKL-F 5, -GGCAAGCCTGAGGCCCAGCCATTT-3 '(SEQ ID NO: 17)
  • raRANKL-R 5 '-GTCTCAGTCTATGTCCTGAACTTT-3, (SEQ ID NO: 1 8)
  • mGAPDH-F 5,-CACCATGGAGAAGGCCGGGG-3, (SEQ ID NO: 19)
  • Peptide E with 1 amino acid substitution in peptide D was prepared, and the effects on osteoclast differentiation and osteoblast differentiation were measured by measuring TRAP activity and ALP activity, respectively.
  • RAW264 cells were seeded at 2 ⁇ 10 3 cells / well on a 96 well plate using 10% FBS + a MEM (SIGMA). After cell adhesion, the cells were replaced with 10% FBS + a MEM containing 10 nM GST-RANKL (manufactured by Oriental Yeast Co., Ltd.).
  • Peptide D and peptide E at concentrations of 25, 50, 100 and 200 ⁇ were added thereto and cultured for 4 days. After completion of the culture, 100 // L of caseone / ethanol was added to each tool to fix the cells and dried in a fume hood for 30 min.
  • TRAP solution After preparing p-nitrophenyl phosphate (Nacalai) with 50 raM citrate buffer to a concentration of 1.5 mg / mL, add 1/10 volume of 0.2 M sodium tartrate solution. The solution used was used. TRAP solution buffer was applied to each well at 100 / L!] And incubated for 45 min at 37 ° C, and then 50 IN NaOH solution was added to stop the reaction. As in Example 1, the 0D value at 405 nm of each well was measured with a microplate reader (BMG Labtech).
  • ALP activity was enhanced in peptide D and peptide EC MC3T3_El cells. And compared. Using peptide D and peptide E at concentrations of 25, 50, 100 and 200 ⁇ , the cells were cultured under the conditions shown in Example 14 and ALP activity was measured by the method shown in Example 1. .
  • both peptide D and peptide ⁇ showed TRAP activity inhibition and ALP activity enhancement in a concentration-dependent manner (Figs. 36 and 37).
  • TRAP activity peptide D showed a significant inhibitory effect compared to peptide E at concentrations of 100 and 200 / x M (Fig. 36).
  • ALP activity peptide D showed a significant enhancement compared to peptide E at concentrations of 50 and ⁇ (Fig. 37). Comparing the concentrations of peptide D and sputum, which give almost the same effect, one amino acid substitution almost halved the TRAP activity suppression effect, while the ALP activity enhancement effect was also reduced to about 1/4.
  • RANKL was knocked down by RNAi stealth in MC3T3-E1 cells, and the effects of peptide D on ALP activity and RANKL knockdown were examined.
  • OPTiMEM (Inv i trogen) 20 ⁇ L RNA-stealth select (tnfrsfl l) (Invi trogen)
  • RNAiMAX (Invitrogen) was added and left at room temperature for 20 minutes.
  • each tool
  • RANKL knockdown was confirmed by RT-PCR using the primers of SEQ ID NOs: 17 and 18 to determine which of KD1 and KD2.
  • the amount of RANKL mRNA was significantly and specifically decreased without affecting the amount of GAPDH mRNA compared to the respective negative controls control 1 and control 2 (Fig. 38).
  • the RANKL knockdown group significantly decreased the ALP activity when peptide D was added, suggesting that the peptide D receptor is RANKL (Fig. 3 8). .
  • peptide D acts on osteoblasts, osteoblast progenitor cells, mesenchymal stem cells, stromal cells, myoblasts and other cells that differentiate into osteoblasts, and then enhances the action of BMP. It was also suggested that osteoblast differentiation was promoted in cooperation with the action of BMP. In addition, it was suggested that BMP promotes RANKL expression in some cells and cooperates with the action of peptide D.
  • Synthetic peptide D usually contains trifluoroacetic acid (TFA) at the time of purification, so it was considered possible to damage cells by increasing the concentration. Therefore, the following experiment was conducted with the aim of obtaining a peptide having low toxicity and high ALP activity by preparing a synthetic peptide D substituted with acetate and hydrochloride. As positive controls, BMP-2 (R & D) prepared in E. coli and synthetic peptide D (50 and 150 ⁇ ⁇ ) without salt substitution were used.
  • TFA trifluoroacetic acid
  • MC3T3-E1 cells which are mouse osteoprogenitor cells, were seeded at 2 ⁇ 10 4 cells / well on a 96-well plate using 10% FBS + a MEM (SIGMA). Remove the medium after cell attachment,
  • ALP activity was measured when 50 and 150 // M peptide D (acetate and hydrochloride) was added.
  • 50 ng / raL BMP-2 (R & D) prepared in E. coli as a positive control, BMP-2 (R & D) expressed in CH0 cells, BMP-4 (R & D) expressed in NS0 cells, and TFA salt Of synthetic peptide D (50 and 150 M) was added.
  • the ED50 value is 40 to 200 ng / raL, and the ED50 value of BMP-2 expressed in E. coli is 0.3 to 1.0.
  • Example 1 W g / mL.
  • the culture supernatant was removed 5 days after the addition of each factor, and the method of Example 1 was used. ALP activity was measured.
  • acetate peptide D showed the highest ALP activity enhancing effect in MC3T3-E1 cells (FIG. 39A).
  • hydrochloride peptide D did not show high activity. Thus, it was found that the activity is affected by the salt used even with the same amino acid sequence.
  • MC3T3-E1 cells which are mouse osteoblast progenitor cells, were seeded on 96 well plates at 2 ⁇ 10 4 cells / tool using 10% FBS + a MEM (SIGMA). After cell attachment, remove the medium and measure ALP activity when 6.25, 12. 5, 25, 50 and 100 // M synthetic peptide D is mixed with 5 ng / mL BMP-2 (CH0 cells). went. On the fifth day after the addition of each factor, the culture supernatant was removed, and ALP activity was measured by the method of Example 1. As a result, an increase in ALP activity was confirmed in a dose-dependent manner with acetate synthetic peptide D (Fig. 39B).
  • MC3T3-E1 cells were seeded at 2 ⁇ 10 4 cells / well on a 96 well plate using 10% FBS + a MEM (SIGMA). After cell attachment, the medium was removed, and ⁇ acetate synthetic peptide D was added to 2 ng / mL BMP-4. The culture supernatant was removed 5 days after the addition of each factor, and ALP activity was measured by the method of Example 1.
  • BMP-2 to be added was expressed in mammalian cells (CH0 cells) (R & D) (used for C2C12 cells) and BMP-2 (R & D) expressed in E. coli (used for mouse osteoblasts) .
  • the manufacturer's instructions indicate that BMP-2 expressed in mammalian cells is about 10 times more active than that expressed in E. coli.
  • the culture supernatant was removed 5 days after the addition of each factor, and ALP activity was measured by the method of Example 1.
  • ALP activity was measured using C2C12 cells whose ALP activity was increased depending on the addition of BMP-2.
  • C2C12 cells were seeded on 96 well plates at 4 IX 10 cells / well using 5% FBS + ct MEM (SIGMA). After 6 hours, the medium was removed and 0.3 / ig / mL monoclonal RANKL antibody, 50 ng / ral BMP-2 (expressed in CH0 cells R & D), monoclonal RANKL antibody and 50 ng / ml BMP-, respectively. Medium containing 2 combinations was added.
  • ALP activity was measured when 50 ng / mL of BMP-2 (R & D expressed in E. coli) was mixed with RANKL antibody.
  • BMP-2 R & D expressed in E. coli
  • ALP activity was measured by the method of Example 1.
  • monoclonal antibody A had a concentration of 3 / g / mL in mouse osteoblasts
  • monoclonal antibody B had a weak but significant increase in ALP activity at a concentration of 0.3 ⁇ g / mL. did it.
  • the RANKL antibody was the same as that shown in Example 19, and GST-RANKL and GST were manufactured by Oriental Koganei Kogyo.
  • BMP-2 manufactured by CHO cells
  • Synthetic peptide D used was an acetate-substituted one.
  • MC3T3-E1 cells which are mouse osteoprogenitor cells, were seeded on 96-well plates at 2 ⁇ 10 4 cells / tool using 10% FBS + a MEM (SIGMA). After cell attachment, remove the medium, mix 100 // M acetate peptide D, ⁇ acetate D with 5 ng / mL BMP-2, and then add peptide D and BMP-2 mixture to 100 The medium was replaced with nM GST-RANKL or GST. The culture supernatant was removed 5 days after the addition of each factor, and ALP activity was measured by the method of Example 1.
  • the synthetic peptide D used was an acetate-substituted one.
  • BMP-2 manufactured by CH0 cells
  • Mouse osteoblasts were seeded on 96 well plates at 2 ⁇ 10 3 cells / tool using 10% FBS + o; MEM (SIGMA). After cell attachment, remove the medium and mix ⁇ ⁇ peptide D (acetate), various RANKL antibodies described in Example 19 (3 / g / mL) and 5 ng / mL BMP-2 for each factor. Was added. After 72 hours of culture, add 1/10 of WST-1 (Roche) to the medium, incubate at 37 ° C for 3 hours, and transfer the 0D value of each well at 450 nm (reference wavelength is 595 mn) to the microplate reader (BMG (Labtech).
  • peptide D and RANKL antibody B promoted proliferation of mouse osteoblasts with or without BMP-2 (Fig. 44).
  • the effect of Peptide D was weak, and other RANKL antibodies (# 22, # 36, A) did not show growth promoting effects.
  • Example 19 Analysis of the mechanism of action of 2 peptide D on MC3T3- E1 cells (DNA microarray)
  • RNA microarray analysis using 2 g of RNA (Mouse Genomu 430 2.0 Affymetrix) Went. Scanning was performed using GeneChip Scanner 3000 (Affyraetrix 690036), and numerical values were performed using Gene Chip Operating Software verl. 4.
  • osteocalcin (0C) gene which is known as one of the late differentiation markers for blasts, was also greatly increased, suggesting that peptide D differentiated MC3T3-E1 cells into osteoblasts.
  • Example 2 3 Verification of DNA array analysis by RT-PCR
  • RT-PCR was performed for this purpose. 2 g of each total RNA collected in Example 22 was subjected to RT-PCR. RT-PCR is ThermoScript RT-PCR Systenuinvitrogen) and: random primer
  • PCR was carried out using mouse Al force phosphatase (mALP) and mouse type I collagen ⁇ 1 (mCol I) and mouse osteocalcin (mOC) specific primers. PCR was performed using mouse GAPDH specific primers for standardization. The PCR primer sequences used are listed below. Ex TaqTM Hot Start Version
  • Alkaline phosphatase (mALP) was subjected to initial heat denaturation at 95 ° C for 3 minutes, followed by 28 cycles of 95 ° C for 10 seconds, 60 ° C for 15 seconds, and 68 ° C for 1 minute. An extension reaction was performed for a minute.
  • Type I collagen ⁇ 1 (mCol I) is subjected to initial heat denaturation at 93 ° C for 3 minutes, followed by 20 cycles of 94 ° C for 30 seconds, 58 ° C for 30 seconds, and 72 ° C for 15 seconds 72 The extension reaction was performed at ° C for 10 minutes.
  • Osteocalcin is initially heat-denatured at 95 ° C for 3 minutes, then at 94 ° C for 30 seconds, 58 ° C 30 seconds at 72, 15 seconds at 72: 28 and 30 cycles, and an extension reaction was performed at 72 ° C for 10 minutes.
  • GAPDH was subjected to initial heat denaturation at 95 ° C for 3 minutes, followed by 20 cycles of 94 ° C for 10 seconds, 58 ° C for 15 seconds, 68 ° C for 1 minute, and 68 ° C for 10 minutes. Went.
  • mALP-F 5 '-CCAAGCAGGCTCTGCATGAA- 3' (SEQ ID NO: 2 1)
  • raALP- R 5,-GCCAGACCAAAGATGGAGTT-3, (SEQ ID NO: 2 2)
  • mOC-F 5,-TCTGACAAAGCCTTCATGTCC-3, (SEQ ID NO: 2 3)
  • mGAPDH-F 5 '-CACCATGGAGAAGGCCGGGG-3, (SEQ ID NO: 1 9)
  • mGAPDH-R 5 '-GACGGACACATTGGGGGTAG-3' (SEQ ID NO: 20)
  • MC3T3-E1 cells were differentiated into osteoblasts by peptide D, even by changes in gene expression levels by RT-PCR.
  • Example 2 4 Analysis of bone formation markers in vivo by administration of synthetic peptides Reagents
  • C57BL / 6Crj mice were purchased from Kitayama Labes.
  • C57BL / 6Cr j mouse is an inbred mouse and is characterized by a small decrease in cellular immunity due to aging. Preliminarily reared for one week in an environment of temperature 23 ° C ⁇ 3 ° C and humidity 50% ⁇ 30%. When lighting The interval was 8: 0 to 20:00.
  • Administration method and period
  • Acetate synthetic peptide D was administered subcutaneously at a dose of 10 rag / kg at 8:00, 14:00 and 20:00 three times a day for 5 days.
  • PBS was administered to the control group. Necropsy was performed 12 hours after the end of the 5-day administration period, and the femur and tibia were collected after collecting whole blood. Whole blood was allowed to stand at room temperature for 1 hour and then centrifuged at 5000 rpm, 4 ° C, 5 min, and the serum was collected in a new tube. The femur was fixed with cold 70% ethanol. The tibia was carefully removed of muscles, etc., washed with PBS, cut into 1cm pieces with scissors, and then frozen with liquid nitrogen.
  • RT-PCR is ThermoScript RT-PCR
  • mice specific force phosphatase (mALP), mouse type I collagen ⁇ chain (mCol lagen c I) and mouse osteocalcin (mOC) specific primers PCR was performed using. PCR was performed using primers specific to mouse GAPDH for standardization. The PCR conditions were the same as in Example 23, and each cycle number was 23 cycles for mOC, 20 cycles for mCollagen ct I, 28 cycles for mALP, and finally 23 cycles for mGAPDH. -Samples obtained after the PCR reaction were electrophoresed using 1% agarose gel, and it was confirmed that specific bands were formed under UV using ethidium mbamide.
  • DNA microarray analysis (Mouse Genome 430 2.0 Affymetrix) was performed. Scanning was performed with GeneChip Scanner 3000 (Affymetrix 690036), and numerical values were performed with Gene Chip Operating Software verl. 4.
  • 0C, ALP, type I collagen ⁇ 2 chain (CoLl a 2), platelet derived growth factor c peptide (PDGFc), platelet derived growth factor receptor (PDGFR jS) and insulin-like Growth factor (IGF-1) showed a significantly higher signal than the standard sample (Figure 49).
  • Example 23 RT-PCR was performed on ALP, CoLl, and 0C, and DNA microarray verification data was obtained. In order to obtain further verification data, using the cDNAs of each group obtained from MC3T3-E1 cells in Example 23, we confirmed various growth factors and their receptors that showed enhanced signals on DNA microarrays. RT-PCR was performed.
  • mice bone morphogenetic factor 4 mouse bone morphogenetic factor 4
  • raCTGF mouse connective tissue growth factor
  • mouse fibroblast growth factor (mPDGFc pept ide) and its receptor (mPDGFR; 3), mouse fibroblast growth factor
  • PCR was performed using primers specific for 2 (mFGF2) and its receptor (mFGFR2), insulin-like growth factor 2 (raIGF-2), and insulin receptor substrate (mIRS_l). PCR was performed using mouse GAPDH specific primers for standardization. The PCR primer sequences used are listed below. Ex TaqTM Hot Start Vers ion
  • IGF-2 was subjected to an extension reaction at 95 ° C for 10 seconds, 58 ° C for 15 seconds, 72 ° C for 30 seconds, and 72 ° C for 10 minutes.
  • PDGFc peptide, PDGFR i3 and IRS-1 were subjected to extension reaction at 95 ° C for 10 seconds, 58 ° C for 15 seconds, 72 ° C for 30 seconds, and 72 ° C for 10 minutes.
  • GAPDH is subjected to initial heat denaturation at 95 ° C for 3 minutes, followed by 20 cycles of 94 ° C for 10 seconds, 58 ° C for 15 seconds, 68 ° C for 1 minute, and 68 ° C for 10 minutes. Went. A part of the reaction solution was electrophoresed on 2% agarose gel and stained with ethidium bromide solution.
  • the osteoblasts stimulated with peptide D produce their own cytokines and growth factors such as PDGFR i3, PDGFc, IGF-1, IGF-2, FGF2, CTGF, and BMP-4.
  • cytokines and growth factors such as PDGFR i3, PDGFc, IGF-1, IGF-2, FGF2, CTGF, and BMP-4.
  • PDGFR] 3 FGFR2 and other cytokines and growth factor receptors are also produced, and autocrine differentiation, proliferation, and bone formation are promoted in an autocrine manner.
  • reverse signals are transmitted from RANK to RANKL to osteoblasts that are in contact with osteoclasts, causing autocrine and paraclinic chain reactions, and in contact with osteoclasts. It is thought that not only osteoblasts but also osteoblasts located in the vicinity promote the differentiation, proliferation, and bone formation.
  • mBMP-4-R 5 '-TTTATACGGTGGAAGCCCTG-3' (SEQ ID NO: 2 8)
  • mCTGF-F 5'-AGTGTGCACTGCCAAAGATG-3 '(SEQ ID NO: 29)
  • mCTGF-R 5 '-GGCCAAATGTGTCTTCCAGT-3' (SEQ ID NO: 30)
  • mFGF2-F 5 '-AAGCGGCTCTACTGCAAGAA-3' (SEQ ID NO: 3 1)
  • mFGF2-R 5 '-TCGTTTCAGTGCCACATACC-3' (SEQ ID NO: 3 2)
  • mFGFR2- F 5'-CTTTGGCCTGGCCAGGGATATCAAC-3 '(SEQ ID NO: 3 3)
  • mFGFR2-R 5'-CCAACTGCTTGAATGTGGGTCTCT-3 '(SEQ ID NO: 34)
  • mIGF2-F 5, -CCCGCTGTTCGGTTTGCATAC-3 '(SEQ ID NO: 3 5)
  • mIGF2-R 5 '-ACGGTTGGCACGGCTTGAAG-3' (SEQ ID NO: 3 6)
  • mIRSl-R 5 '-CGGTGTCACAGTGCTTTCTTGTTG-3' (SEQ ID NO: 3 8)
  • mPDGFR--F 5 '-GTCTGGTCTTTTGGGATCCTACTCT-3, (SEQ ID NO: 3 9)
  • mPDGFR ⁇ -R 5 '-CTCCTCATCTACCTGCTGGTACT-3' (SEQ ID NO: 40)
  • mPDGFc-F 5 '-CTGATTCGGTACCTAGAGCCAGAT-3' (SEQ ID NO: 41)
  • mPDGFc-R 5 '-CTGTCCTCTTTAGCTCTTCCCGT-3, (SEQ ID NO: 42)
  • mGAPDH-F 5 '-CACCATGGAGAAGGCCGGGG-3' (SEQ ID NO: 19)
  • the expression vector pFUSE-hlgGl-Fc2 (Invivogen) was digested with EcoRV and Bglll (TOYOBO). Electrophoresis was performed using 1% agarose gel (Wako), and the necessary fragments were excised from the gel and purified using Mag Extractor (TOYOBO).
  • the insert part uses oligonucleotides PDF1-F (SEQ ID NO: 4 3), PDF1-R (SEQ ID NO: 44), PAF1-F (SEQ ID NO: 4 5) and PAF1-R (SEQ ID NO: 4 6).
  • PAF1 which is an insert DNA containing peptide A consisting of the amino acid sequence of SEQ ID NO: 47, was prepared as a negative control against PDF1, which is an insert DNA containing peptide D.
  • the restriction enzyme-treated vector and two types of inserts were ligated for 1 hour at 16 ° C using Ligation Mighty Mix (TAKARA). Of this, 5 L was transformed into DH5 o; (Invitrogen).
  • PDF1-F CTACTGCTGGAGCCAGTACCTGCTACGGTGGAGGTGGTAGCG (SEQ ID NO: 4 3)
  • PDF1-R GATCCGCTACCACCTCCACCGTAGCACAGGTACTGGCTCCAGCAGTAG (AA) GCG TG ACC
  • D CTACTGCTGGAGCCAGTACCTGCTACGGTGGAGGTGGTAGCG
  • Fc fusion peptide D The obtained Fc fusion peptide D, Fc fusion peptide A, and Fc control solution were diluted with ⁇ MEM and seeded with 4 x 3 x 3 MC3T3-E1 cells / well. (Nunc) was added and cultured. On the fifth day of culture, ALP activity was measured by the method described in Example 1. As a result, Fc fusion peptide D showed a significant increase in ALP activity in MC3T3- E1 cells (Fig. 5 1). However , the Fc fusion peptide ⁇ and the Fc control addition group did not enhance ALP activity. I was not able to admit.
  • RAW264 cells were seeded at 2 ⁇ 10 3 cells / tool on a 96 well plate using 10% FBS + a MEM (SIGMA). After cell adhesion, the cells were replaced with 10% FBS + o; MEM containing 5 nM GST-RANKL (Oriental Yeast Industry). There TFA salt peptides with concentrations of 25 and 100
  • TFA salt peptide D was found to have a significant TRAP activity inhibitory effect at 25 M, but acetate D and hydrochloride-substituted peptide D showed no inhibitory effect.
  • the inhibitory activity was low. This shows that the two activities of peptide D, namely osteoblast differentiation activity and osteoclast formation inhibitory activity, can be independently regulated by modification such as salt substitution. Modified peptide D with only osteoblast differentiation activity, or only osteoclast formation inhibitory activity Example 3 0 Examination of neutralizing ability of various RANKL antibodies
  • mouse monoclonal RANKL antibody (# 22, # 36, A and B) was used.
  • RAW264 cells were seeded at 2 ⁇ 10 3 cells / tool on 96-well plates using 10% FBS + ⁇ MEM (SIGMA). After cell attachment, the cells were replaced with 10% FBS + ⁇ MEM containing 5 nM mouse sRANKL (Peprotech). 1 / zg / mL of various RANKL antibodies were added thereto and cultured for 4 days.
  • the insert DNA portion added to both ends of the BamHI restriction enzyme site is GPD1-F (SEQ ID NO:
  • SEQ ID NOs: 54 and 55 show the amino acid sequences of the base sequences of GST fusion peptide D, which is a fusion protein of peptide D and GST, respectively.
  • DH5 ct (Invitrogen) was used for the transformation. The obtained positive clones are cultured by a conventional method, and after induction of protein expression with IPTG (final concentration: 0.5 mM), the cells are extracted.
  • Buffer 50 raM Tris-HC1, H 8.0, 100 mM NaCl) 1 mM EDTA, 1 mM DTT, 1% (v / v) Triton X-100
  • Buffer 50 raM Tris-HC1, H 8.0, 100 mM NaCl
  • 1 mM EDTA 1 mM DTT
  • mice were immunized with GST-RANKL (Oriental Yeast Co., Ltd.) containing the extracellular domain of human RANKL (aal40-317), and a hyperprideoma was prepared by a conventional method.
  • the prepared hybridomas were cultured in DMEM (containing 4.5 g / L glucose, L-glutamine) + 10% FBS, which is a medium for cell culture. After cloning by limiting dilution, 6 types were selected. Each culture supernatant was collected. The collected culture supernatant was filtered through a 0.22 // ra filter (Pole) and applied to a protein G Sepharose column (GE Healthcare).
  • the neutralizing activity of RANKL on osteoclast-forming ability was examined using the anti-human RANKL monoclonal antibody prepared in 2. Clones used were 4G4, 7H12 and 10C11.
  • RAW264 cells were seeded at 2 ⁇ 10 3 cells / well on a 96 well plate using 10% FBS + aMEM (SIGMA). 10% containing 5nM human sRANKL (Peprotech) after cell attachment
  • TRAP activity was measured by the method described in 6. As a result, 10C11 showed a significant TRAP activity inhibitory effect at l / g / mL, but no inhibitory effect was observed at concentrations of 0.25 and 0.0625 g / mL (Fig. 54). .
  • Example 3 Effect of GST fusion peptide D and anti-human RANKL monoclonal antibody on differentiation induction of human mesenchymal stem cells
  • hMS Human mesenchymal stem cells
  • hMSC Human mesenchymal stem cells
  • Nunc 96 cells
  • 100 nM dexamethasone (Lonza) was added to the dedicated maintenance medium (Lonza).
  • SIGMA 10 mM BGP
  • 50 ⁇ g / mL ascorbic acid added to differentiation induction medium
  • 10 nM GST fusion peptide D and GST or 0.3 and 3 ⁇ g /
  • Three types of anti-human RANKL monoclonal antibodies were added at a concentration of mL, and ALP activity was measured by the method described in Example 1 on day 5. As a result, GST fusion was performed in hMSC.
  • Peptide D confirmed a significant increase in ALP activity (Fig. 5 5) GST alone showed no change in ALP activity
  • the three anti-human RANKL monoclonals used in Example 33 When antibody is added to hMSC, 10C11 antibody significantly enhances ALP activity And (5 6). The 4G4 and 7H12 were not observed ALP activity enhancement action.
  • anti-mouse RANKL monoclonal antibodies (# 22 and B antibodies) that neutralize the osteoclast differentiation of RANKL are also effective in osteoblast proliferation. Some antibodies have (B antibody) and some do not (# 22), and some antibodies (# 22, # 36, A and B) show osteoblast differentiation action, whether neutral antibodies or not It was shown that.
  • anti-human RANKL monoclonal antibodies (7H12 and 10C11) that neutralize the osteoclast differentiation of RANKL include those with osteoblast differentiation (10C11) and those without (7H12). It has been shown. On the other hand, there was an antibody (4G4) that did not show either action.
  • a forward signal enters from the ligand RANKL to its receptor RANK
  • a reverse signal from RANK to RANKL enters an osteoblast or a cell that can differentiate into an osteoblast. It ’s a headline.
  • This bidirectional signal between RANKL and RANK governs the coupling between bone resorption and bone formation.
  • the reverse signal from membrane type RANK on osteoclasts to membrane type RANKL on osteoblasts is the result of physiological bone metabolism It is thought that it is responsible for the power repulsion of bone resorption and bone formation. By using this reverse signal, it is possible to develop drugs that increase bone mass.
  • membrane-type RANK, RANK-like peptide, anti-RANKL antibody, soluble RANK, OPG and their mutants, analogs, etc. by reverse signal due to action on membrane-type RANKL Osteoblast differentiation / maturation is increased and bone mass can be increased.
  • Cells that can differentiate into osteoblasts or osteoblasts such as membrane RANK, RANK-like peptides, anti-RANKL antibodies, soluble RANK, OPG and their mutants and analogues, and natural or synthetic low-molecular compounds
  • Compounds that promote differentiation, proliferation, maturation or calcification of the bone such as RANKL acting molecules, can be used to increase osteoblast differentiation / maturation and increase bone mass.
  • the method can be used for pharmaceuticals and in-vitro diagnostics.
  • screening for compounds that promote differentiation, proliferation, maturation, or calcification of osteoblasts or cells that can differentiate into osteoblasts will explore and develop new osteogenic agents. It can be used for that.
  • compounds that promote differentiation, proliferation, maturation or mineralization of cells that can differentiate into osteoblasts or osteoblasts such as RANKL agonist molecules, transmit signals to osteoblasts or cells that can differentiate into osteoblasts. It can also be used as a reagent for differentiation / ripening.
  • RANKL-expressing cells are known to be osteoblasts or cells that can differentiate into osteoblasts, but various cells such as T cells, B cells, and synovial cells are known.
  • Compounds that promote differentiation, proliferation, maturation or calcification of differentiable cells, such as RANKL acting molecules, can transmit signals to these cells as well, causing differentiation, maturation, and activation. It can be used for various purposes such as in vitro diagnostics and research reagents.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)

Abstract

 骨芽細胞又は骨芽細胞に分化し得る細胞の分化・成熟・石灰化を増強するRANKL作用分子を含む骨形成増強剤の提供。骨芽細胞又は骨芽細胞に分化し得る細胞上のRANKLに作用し、骨芽細胞又は骨芽細胞に分化し得る細胞の分化、増殖、成熟又は石灰化を促進する化合物を有効成分として含む、骨量減少を伴う骨代謝疾患の治療又は予防のための医薬組成物。

Description

新しい骨量増加薬 技術分野
本発明は、 骨芽細胞又は骨芽前駆細胞、 間葉系幹細胞、 間質細胞、 筋芽細胞等 の骨芽細胞に分化し得る細胞に作用しそれらの細胞の分化 ·成熟を増強する分子 であって、その分子を有効量投与することにより骨形成を増強する方法に関する。
本発明はまた骨形成を刺激するための医薬品組成物に関する。
さらに本発明は RANKLに作用し、シグナルを伝える物質のスクリ一二ング方法、 書
及びこれにより得られた物質、 及び得られた物質を含有する医薬品組成物に関す る。 背景技術
骨は自らの形態変化や血中カルシウム濃度の維持のため、 常に形成と吸収 ·破 壊を繰り返し再構築を行う動的な器官である。 通常は骨芽細胞による骨形成と破 骨細胞による骨吸収とは平衡状態にあり、 これらの細胞間の相互応答機構により 骨量が一定に保たれる (非特許文献 1を参照) 。 閉経、 老化、 炎症などによりこ の平衡状態が破綻すると骨粗鬆症、 関節リゥマチによる骨破壊などの骨代謝異常 を発症する。 これらの骨代謝異常症は現在高齢化社会の大きな問題の一つとなつ ており、 その発症メ力二ズムの分子レベルでの解明と有効な治療薬の開発は急務 である。
骨粗鬆症は日本においては 1千万人以上の潜在的な患者がいると推測されてい る。 骨粗鬆症をはじめとする骨量減少症には、 若年性骨粗鬆症、 骨形成不全、 高 カルシウム血症、 上皮小体機能亢進症、 骨軟化症、 骨石灰脱失症、 骨溶解性骨疾 患、 骨壊死、 パジェット病、 関節リウマチ、 変形性関節症による骨の低下、 炎症 性関節炎、骨髄炎、 ダルココルチコィド処置、転移性の骨疾患、歯周の骨の喪失、 癌による骨の喪失、 加齢による骨の喪失、 及びその他の骨量減少症が含まれる。 これまで骨粗鬆症などの骨量減少を示す骨代謝疾患に対する治療薬としては、 骨形成の増強よりむしろ骨吸収過程を阻害する骨吸収抑制剤が用いられてきた。 骨吸収を阻害する能力により、 骨粗鬆症の治療に使用又は示唆されている薬剤に は、 エス トロゲン、 選択的エス トロゲンレセプター調節因子 (SERM) 、 ィプリフ ラボン、 ビタミン K2、 カルシウム、 カルシトリオール、 カルシトニン (非特許文 献 2を参照) 、 アレンドロネートなどのビスホスホネートがある。 (非特許文献 3 を参照)。 しかし、 これらの薬剤を用いた治療法は、 その効果並びに治療結果にお いて必ずしも満足できるものではなく、 より安全かつ有効性の高い新しい治療薬 の開発が待ち望まれている。 特に、 これらビスホスホネートを中心とする骨吸収 抑制剤による過度の骨吸収抑制は、 人体に悪影響を及ぼすのではないかといぅ懸 念がある。 医原性大理石骨病になる危険もあり(非特許文献 4を参照)、 特に若年 者への投与は慎重に行う必要がある。 特にビスホスホネートによって高度に骨代 謝回転が低下する症例では、骨折治癒が遅延する可能性も報告されている(非特許 文献 5を参照)。
一方、 日本では骨形成促進薬としては副甲状腺ホルモン(parathyroi d hormone, PTH)が臨床開発中である。 その他には BMP2、 BMP7、 IGF1、 FGF2などに骨形成促進 作用が知られているが、 実際に骨形成促進薬として応用されている例は限られて いる。例えば、米国などで PTHが骨粗鬆症に、 BMP2、 BMP7が脊椎すベり症などに、 IGF1 が重症原発性 IGF1欠損症による低身長の小児に臨床応用されているのみで ある。 このように骨形成促進薬の応用例が非常に少ないのは骨形成を行う骨芽細 胞の分化 ·成熟のメカニズムが解明されていないからであった。
骨破壊を司る破骨細胞は単球 ·マクロファージ系の造血細胞に由来する大型の 多核細胞である。その前駆細胞は骨表面におレ、て骨芽細胞/間質細胞による調節を 受け破骨細胞へと分化 ·成熟する(非特許文献 1を参照)。 破骨細胞分化因子
(RANKL ; receptor act ivator of NF- κ B l igand)は、 骨吸収因子によって骨芽細 胞 /間質細胞上に誘導される腫瘍壊死因子(TNF ; tumor necros i s factor)ファミ リ 一に属する膜結合タンパク質で、破骨細胞分化'成熟に必須の因子である(非特許 文献 6及ぴ 7を参照)。 その受容体である RANK (receptor act ivator of NF- κ B) 及びおとり受容体の OPG (osteoproteger in)を含めた RANKL/RANK/0PGを軸とした 研究により、 破骨細胞分化 ·成熟の調節メカニズムの解明が生体レベルで進み、 これら 3分子と骨代謝疾患との関わりも明らかになってきている(非特許文献 8 を参照)。
骨吸収と骨形成は通常平衡状態にあり、 吸収した量だけ形成するという絶妙の バランスを調節するメカニズムが存在する。 この骨吸収と骨形成の共役のことは カップリングと呼ばれる(非特許:?:献 9を参照)。 破骨細胞分化因子である RANKL は骨吸収因子の刺激を受けて骨芽細胞上に産生され、 破骨細胞前駆細胞や破骨細 胞上の RANKL受容体である RANKに結合することにより、分化 ·活性化シグナルを 伝える。 このメカニズムに基づいて、 TNF の結合領域の立体構造に似せた人エペ プチドを RANKLから RANKへのシグナル伝達の抑制に用いたという報告がある(非 特許文献 1 0〜 1 2を参照)。
一方、 骨吸収のシグナルを受けて、 骨芽細胞に骨形成シグナルを伝えるメカ二 ズムは解明されていなかった。
非特許文献 1 Sudaら、 Endocr Rev, 13: 66, 1992
非特許文献 2 Sambookら, N Engl J Med 328: 1747, 1993
非特許文献 3 Luckmanら、 J Bone Miner Res 13 : 581, 1998
非特許文献 4 Whyteら、 N Engl J Med 349 : 457, 2003
非特許文献 5 Odvinaら、 J Cl in Endocrinol Metab 90 : 1294, 2005 非特許文献 6 Yasudaら、 Proc Natl Acad Sci USA 95: 3597, 1998
非特許文献 7 Laceyら、 Cel l 93: 165, 1998
非特許文献 8 Sudaら、 Endocr Rev, 20: 345, 1999
非特許文献 9 Martinら、 Trends Mol Med, 11: 76, 2005
非特許文献 1 0 Aoki ら、 J Cl in Invest 116: 1525, 2006
非特許文献 1 1 Takasaki ら、 Nat Biotec, 15 : 1266, 1997
非特許文献 1 2 Chengら、 J Biol Chem, 279; 8269, 2004 発明の開示
本発明は骨芽細胞又は骨芽細胞に分化し得る細胞の分化 ·成熟 ·石灰化を増強 する RANKL結合分子であって、 その分子を有効量投与することにより骨形成を増 強する方法及び骨形成を刺激するための医薬品組成物の提供を目的とする。 本発明者らは、リガンドである RANKLからその受容体である RANKに順方向のシ グナルが入るだけでなく、 RANKから RANKLに逆方向のシグナルが入ることを見出 した。 また、 この RANKLと RANKの間の双方向性シグナルが、 骨吸収と骨形成の力 ップリングを司ることを見出した。破骨細胞上の膜型 RANKから骨芽細胞上の膜型 RANKL への逆シグナルは、 生理的骨代謝において骨吸収と骨形成のカップリング を司ると考えられる。 この逆シグナルを利用することにより、 骨量を増加させる 薬剤の開発が可能である。 具体的には膜型 RANK、 RANK 類似ペプチド、 抗 RANKL 抗体、 可溶型 RANK、 0PG及びそれらの変異体、 類似物などの RANKL結合分子によ る膜型 RANKLへの結合による逆シグナルにより、 骨芽細胞分化 '成熟が亢進し、 骨量を増加させることができる。
このようにして、 本発明者等は、 RANKL に作用する分子として用いられる様々 なタンパク質ゃぺプチドなどを骨芽細胞又は骨芽細胞に分化し得る細胞上の RANKLに作用させることにより、 in vi troにおいて骨芽細胞が分化 ·成熟し、 石 灰化が起こることを見出した。 さらに、 本発明者等は、 RANKL に作用する分子と して用いられる様々なタンパク質ゃぺプチドなどをマウスに in vivoで投与する と、 骨密度等が増加し、 骨量減少を伴う骨代謝疾患の治療や予防に用いられるこ とを見出し、 本発明を完成させるに至った。
すなわち、 本発明は以下のとおりである。
[ 1 ] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物を有効成分と して含む、 骨量減少を伴う骨代謝疾患の治療又は予防のための医薬組成物。
[ 2 ] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が、 骨芽細胞 又は骨芽細胞に分化し得る細胞上の RANKLに作用する、 [ 1 ]の骨量減少を伴う骨 代謝疾患の治療又は予防のための医薬組成物。
[ 3 ] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が RANK、 RANK の変異体若しくは断片べプチド、 RANKに構造が類似したぺプチド、 RANKの断片べ プチドに構造が類似したぺプチド、 RANKに構造が類似した化学物質、 RANKの断片 ペプチドに構造が類似した化学物質、 0PG、 OPG の変異体若しくは断片ペプチド、 0PGに構造が類似したべプチド、 0PGの断片べプチドに構造が類似したぺプチド、 0PGに構造が類似した化学物質、 並びに 0PGの断片べプチドに構造が類似した化 学物質からなる群から選択される化合物である、 [ 1 ]の骨量減少を伴う骨代謝疾 患の治療又は予防のための医薬組成物。
[ 4 ] 骨芽細胞又は骨芽細胞に分化し得る細胞上の RANKLに作用し、 骨芽細胞又 は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が RANK, RANKLに作用し得る RANKの変異体若しくは断片ぺプチド、 RANKに構造が類 似し RANKLに作用し得るぺプチド、 RANKの断片べプチドに構造が類似し RANKLに 作用し得るぺプチド、 RANKに構造が類似し RANKLに作用し得る化学物質、 RANKL に作用し得る RANKの断片ぺプチドに構造が類似した化学物質、 0PG、 RANKLに作 用し得る 0PGの変異体若しくは断片べプチド、 0PGに構造が類似し RANKLに作用 し得るぺプチド、 0PGの断片べプチドに構造が類似し RANKLに作用し得るぺプチ ド、 0PGに構造が類似し RANKLに作用し得る化学物質、 並びに RANKLに作用し得 る 0PGの断片べプチドに構造が類似した化学物質からなる群から選択される化合 物である、 [ 2 ]の骨量減少を伴う骨代謝疾患の治療又は予防のための医薬組成物。
[ 5 ] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が配列番号 7 又は配列番号 1 6で表されるアミノ酸配列からなるペプチドである、 [ 1 ]又は [ 2 ]の骨量減少を伴う骨代謝疾患の治療又は予防のための医薬組成物。
[ 6 ] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が配列番号 7 又は配列番号 1 6で表されるァミノ酸配列からなるぺプチドと GST又は IgGiの Fc 領域との融合タンパク質である、 [ 1 ]又は [ 2 ]の骨量減少を伴う骨代謝疾患の治 療又は予防のための医薬組成物。
[ 7 ] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が抗 RANKL抗 体又はその機能的断片である、 [ 1 ]又は [ 2 ]の骨量減少を伴う骨代謝疾患の治療 又は予防のための医薬組成物。 [8] 骨量減少を伴う骨代謝疾患が、 骨粗鬆症、 若年性骨粗鬆症、 骨形成不全、 高カルシウム血症、 上皮小体機能亢進症、 骨軟化症、 骨石灰脱失症、 骨溶解性骨 疾患、 骨壊死、 パジェッ ト病、 関節リウマチ、 変形性関節症による骨の低下、 炎 症性関節炎、 骨髄炎、 ダルココルチコイ ド処置、 転移性の骨疾患、 歯周の骨の喪 失、癌による骨の喪失、及び加齢による骨の喪失からなる群から選択される、 [1 ] 〜[ 7 ]のいずれかの骨量減少を伴う骨代謝疾患の治療又は予防のための医薬組成 物。
[9] さらに、 BMP ファミ リーメンバーを有効成分として含む、 [1]〜[8]のい ずれかの骨量減少を伴う骨代謝疾患の治療又は予防のための医薬組成物。
[1 0] 骨芽細胞に分化し得る細胞が、 骨芽前駆細胞、 間葉系幹細胞、 間質細胞 及び筋芽細胞からなる群から選択される、 [1 ]〜[ 9]のいずれかの骨量減少を伴 う骨代謝疾患の治療又は予防のための医薬組成物。
[1 1] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞にシグナルを伝達し、 前記細胞の分化、 増殖、 成熟又は石灰 化を促進する化合物をスク リーニングする方法であって、 候補化合物を、 RANKL を発現している骨芽細胞又は骨芽細胞に分化し得る細胞と接触させ、 候補化合物 が該骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促 進した場合に、 候捕化合物が骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞に分化し得る細胞にシグナルを伝達し、 前記細胞の分化、 増殖、 成熟又は石灰化を促進する化合物であると判断することを含む、 スクリー ニング方法。
[1 2] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が、 骨芽細 胞又は骨芽細胞に分化し得る細胞上の RANKLに作用する、 [1 1]のスクリーニン グ方法。
[1 3] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞にシグナルを伝達し、 前記細胞の分化、 増殖、 成熟又は石灰 化を促進する化合物をスク リーニングする方法であって、 候補化合物を、 マウス に投与し、 該マウスにおいて、 骨密度の増加、 骨塩量の増加、 骨面積の増加、 単 位骨量の増加、 骨梁幅の増加、 骨梁数の増加からなる群から選択される少なく と も 1つの現象が認められた場合に、 候補化合物が骨芽細胞又は骨芽細胞に分化し 得る細胞に作用し、骨芽細胞又は骨芽細胞に分化し得る細胞にシグナルを伝達し、 前記細胞の分化、 増殖、 成熟又は石灰化を促進する化合物であると判断すること を含む、 スクリーニング方法。
[14] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が、 骨芽細 胞又は骨芽細胞に分化し得る細胞上の RANKLに作用する、 [1 3]のスクリーニン グ方法。
[1 5] 骨芽細胞に分化し得る細胞が、 骨芽前駆細胞、 間葉系幹細胞、 間質細胞 及び筋芽細胞からなる群から選択される、 [1 1 ]〜[ 14]のいずれかのスクリ一 ニング方法。
[1 6] 骨芽細胞又は骨芽細胞に分化し得る細胞に作甩し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物を有効成分 として含む、 骨芽細胞分化 ·成熟剤。
[1 7] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が、 骨芽細 胞又は骨芽細胞に分化し得る細胞上の RANKL に作用する、 [1 6]の骨芽細胞分 化 ·成熟剤。
[1 8] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、増殖、成熟又は石灰化を促進する化合物が RANK、 RANK の変異体若しくは断片べプチド、 RANKに構造が類似したぺプチド、 RANKの断片べ プチドに構造が類似したべプチド、 RANKに構造が類似した化学物質、 RANKの断片 ペプチドに構造が類似した化学物質、 0PG、 0PG の変異体若しくは断片ペプチド、
0PGに構造が類似したべプチド、 0PGの断片べプチドに構造が類似したべプチド、
0PGに構造が類似した化学物質、 並びに 0PGの断片べプチドに構造が類似した化 学物質からなる群から選択される化合物である、 [1 6]の骨芽細胞分化'成熟剤。
[1 9] 骨芽細胞又は骨芽細胞に分化し得る細胞上の RANKLに作用し、 骨芽細胞 又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物 が RANK、 RANKLに作用し得る RANKの変異体若しくは断片べプチド、 RANKに構造 が類似し RANKLに作用し得るぺプチド、 RANKの断片べプチドに構造が類似し RANKL に作用し得るペプチド、 RANKに構造が類似し RANKLに作用し得る化学物質、 RANKL に作用し得る RANKの断片べプチドに構造が類似した化学物質、 0PG、 RANKLに作 用し得る 0PGの変異体若しくは断片べプチド、 0PGに構造が類似し RAMLに作用 し得るぺプチド、 0PGの断片べプチドに構造が類似し RANKLに作用し得るぺプチ ド、 0PGに構造が類似し RANKLに作用し得る化学物質、 並びに RANKLに作用し得 る 0PGの断片べプチドに構造が類似した化学物質からなる群から選択される化合 物である、 [ 1 7]の骨芽細胞分化 ·成熟剤。
[2 0] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が配列番号 7又は配列番号 1 6で表されるアミノ酸配列からなるぺプチドである、 [ 1 6]〜 [1 9]のいずれかの骨芽細胞分化 ·成熟剤。
[2 1 ] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が配列番号 7又は配列番号 1 6で表されるアミノ酸配列からなるぺプチドと GST又は 01の Fc領域との融合タンパク質である、 [1 6]〜[1 9]のいずれかの骨芽細胞分化 · 成熟剤。
[2 2] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が配列番号 7又は配列番号 1 6で表されるアミノ酸配列からなるぺプチドの酢酸塩である、 [2 0]の骨芽細胞分化 ·成熟剤。
[2 3] 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が抗 RANKL 抗体又はその機能的断片である、 [ 1 9]の骨芽細胞分化 ·成熟剤。
[24] 骨芽細胞に分化し得る細胞が、 骨芽前駆細胞、 間葉系幹細胞、 間質細胞 及び筋芽細胞からなる群から選択される、 [ 1 6]〜[2 3]のいずれかの骨芽細胞 分化 ·成熟剤。
[2 5] 配列番号 7又は配列番号 1 6で表されるアミノ酸配列からなるペプチド を有効成分として含む、 骨量減少を伴う骨代謝疾患の治療又は予防のための医薬 組成物。
[ 2 6 ] 配列番号 7又は配列番号 1 6で表されるアミノ酸配列からなるペプチド と GST又は IgGiの Fc領域との融合タンパク質を有効成分として含む、 骨量減少 を伴う骨代謝疾患の治療又は予防のための医薬組成物。
[ 2 7 ] 有効成分が配列番号 7又は配列番号 1 6で表されるアミノ酸配列からな るペプチドの酢酸塩である、 [ 2 5 ]の骨量減少を伴う骨代謝疾患の治療又は予防 のための医薬組成物。 .
[ 2 8 ] 骨量減少を伴う骨代謝疾患が、骨粗鬆症、若年性骨粗鬆症、骨形成不全、 高カルシウム血症、 上皮小体機能亢進症、 骨軟化症、 骨石灰脱失症、 骨溶解性骨 疾患、 骨壊死、 パジェット病、 関節リウマチ、 変形性関節症による骨の低下、 炎 症性関節炎、 骨髄炎、 ダルココルチコィ ド処置、 転移性の骨疾患、 歯周の骨の喪 失、 癌による骨の喪失、 及び加齢による骨の喪失からなる群から選択される、 [ 2 5 ]〜[ 2 7 ]のいずれかの骨量減少を伴う骨代謝疾患の治療又は予防のための医 薬組成物。
[ 2 9 ] さらに、 BMPファミリーメンバーを有効成分として含む、 [ 2 5:!〜 [ 2 8 ] のいずれかの骨量減少を伴う骨代謝疾患の治療又は予防のための医薬組成物。 本明細書は本願の優先権の基礎である日本国特許出願 2007-149799号、 日本国 特許出願 2007-313822、 日本国特許出願 2008-60145 及び日本国特許出願 2008-131572号の明細書および または図面に記載される内容を包含する。 図面の簡単な説明
図 1は、 ヒ ト間葉系幹細胞におけるペプチド Dによる ALP活性の上昇を示す図 である。
図 2は、 ヒ ト間葉系幹細胞におけるペプチド Dによる ALP活性の上昇 (染色) を示す図である。
図 3は、 ヒ ト間葉系幹細胞におけるペプチド Dによる石灰化作用を示す図であ る。
図 4は、 マウス骨芽前駆細胞株 MC3T3- E1 細胞におけるぺプチド D による ALP 活性の上昇を示す図である。
図 5は、マウス骨芽前駆細胞株 MC3T3-E1細胞におけるぺプチド Dによる石灰化 作用を示す図である。
図 6は、 マウス骨芽細胞におけるぺプチド Dによる ALP活性の上昇を示す図で ある。
図 7は、 マウス骨芽細胞における抗 RANKLポリクローナル抗体による ALP活性 の上昇を示す図である。
図 8は、 マウス骨芽細胞における抗 RANKLポリクローナル抗体及び抗 RANKLモ ノクローナル抗体による ALP活性の上昇を示す図である。
図 9は、 ヒ ト骨芽細胞におけるぺプチド D、 抗 RANKLポリクローナル抗体及び 抗 RANKLモノクローナル抗体による ALP活性の上昇を示す図である。
図 1 0は、 ヒ ト骨芽細胞におけるぺプチド D、 0PGFc、 RA KFc及び抗 RANKLモノ クローナル抗体による ALP活性の上昇を示す図である。
図 1 1は、 マウス筋芽細胞株 C2C12における抗 RANKLモノクローナル抗体によ る ALP活性の上昇を示す図である。
図 1 2は、 ヒ ト間葉系幹細胞におけるぺプチド Dによる ALP及び I型コラーゲ ン遺伝子発現の上昇を示す図である。 図 1 2 A は、 電気泳動の結果を示し、 図 1 2 B及び Cは GAPDHの発現量で標準化した結果を示す。
図 1 3は、 膜型 RANKによる C2C12の ALP活性の上昇を示す図である。
図 1 4は、 膜型 RANKによる ST2の ALP活性の上昇を示す図である。 図 1 4 Aは 通常培地にて、 図 1 4 Bは Dexamethasone (10— 7M)及び活性型 Vitamin D3 (10- 8M)存 在下で培養した結果をそれぞれ示す。
図 1 5は、 RANKL を投与したマウス及び投与しないマウスにおける頸骨の単位 骨量を示す図である。
図 1 6は、 RANKL を投与したマウス及び投与しないマウスにおける頸骨の破骨 細胞数を示す図である。
図 1 7は、 RANKL を投与したマウス及び投与しないマウスにおける頸骨の骨梁 数を示す図である。
図 1 8は、 RANKLを投与したマウス及び投与しないマウスの大腿骨の、 /z CTに より測定した骨形態を示す図である。
図 1 9は、 RANKL を投与したマウス及び投与しないマウスにおける頸骨の骨芽 細胞面を示す図である。
図 2 O Aは、 ぺプチド Dを投与したマウスにおける大腿骨の骨塩量を示す図で ある。
図 2 0 Bは、 ぺプチド Dを投与したマウスにおける大腿骨の骨面積を示す図で める。
図 2 0 Cは、 ぺプチド Dを投与したマウスにおける大腿骨の骨密度を示す図で ある。
図 2 1は、 ペプチド Dを投与したマウスにおける大腿骨の各領域における骨密 度を示す図である。
図 2 2 Aは、 ペプチド!)を投与したマウスにおける大腿骨の遠位骨端部から 5 mmの領域の骨密度を示す図である。
図 2 2 Bは、 ベプチド Dを投与したマウスにおける大腿骨の遠位骨端部から 5 mmの領域の皮質骨量を示す図である。
図 2 3は、 ぺプチド Dを投与したマウスにおける大腿骨の遠位骨端部から 2讓 の領域の ju CTによる 3次元構造解析の結果を示す図である。
図 2 4 Aは、 ぺプチド Dを投与したマウスにおける大腿骨の遠位骨端部から 2 讓 の領域の CTによる海綿骨領域の骨梁構造計測による BV/TVを示す図である。 図 2 4 Bは、 ぺプチド Dを投与したマウスにおける大腿骨の遠位骨端部から 2 讓の領域の // CTによる海綿骨領域の骨梁構造計測による骨梁幅を示す図である。 図 2 4 Cは、 ぺプチド Dを投与したマウスにおける大腿骨の遠位骨端部から 2 匪の領域の CTによる海綿骨領域の骨梁構造計測による骨梁数を示す図である。 図 2 5は、ぺプチド Dを投与したマウスにおける石灰化率(A)及び骨形成率(B) を示す図である。
図 2 6は、ペプチド Dを添加してから 12時間後の p38のリン酸化を示す図であ る。
図 2 7は、 ペプチド Dを添加してから短時間での p38のリン酸化を示す図であ る。 図 2 8は、 ぺプチド D添加による GSK3 ]3のリン酸化を示す図である。
図 2 9は、 ペプチド D添加による Smadのリン酸化を示す図である。
図 3 0は、 SB203580によるべプチド Dの ALP活性亢進の抑制を示す図である。 図 3 1は、 Dkk-1によるペプチド Dの ALP活性亢進の抑制を示す図である。 図 3 2は、 BMPR-IAによるべプチド Dの ALP活性亢進の抑制を示す図である。 図 3 3は、 C2C12細胞におけるぺプチド D と BMP- 2の併用による ALP活性亢進 作用を示す図である。
図 3 4は、 MC3T3- E1細胞におけるぺプチド Dと BMP- 2の併用による ALP活性の 亢進を示す図である。
図 3 5は、 BMP-2添加による C2C12細胞での RANKLの発現の促進を示す図であ る。
図 3 6は、 ぺプチド D及びぺプチド Eの RAW264細胞での TRAP活性抑制作用を 示す図である。
図 3 7は、ぺプチド D及びべプチド Eの MC3T3-E1細胞での ALP活性の亢進作用 を示す図である。
図 3 8は、 RANKLをノックダウンした MC3T3- E1細胞におけるぺプチド Dの ALP 活性亢進作用を示す図である。
図 3 9 Aは、 ぺプチド Dの様々な塩置換体による ALP活性亢進作用を示す図で ある。
図 3 9 Bは、 ぺプチド Dの酢酸塩の用量依存的な ALP活性亢進作用を示す図で ある。
図 3 9 Cは、 ぺプチド Dと BMP- 4の併用による ALP活性亢進作用を示す図であ る。
図 4 0は、 C2C12細胞における RANKL抗体および RANKL抗体と BMP- 2の併用に よる ALP活性亢進作用を示す図である。
図 4 1は、 マウス骨芽細胞における RANKL抗体による ALP活性亢進作用を示す 図である。
図 4 2は、 マウス骨芽細胞における RANKL抗体と BMP- 2の併用による ALP活性 亢進作用を示す図である。 図 4 3は、 MC3T3- El細胞におけるぺプチド Dと BMP- 2の併用による ALP活性亢 進作用に対する GST-RANKLの影響を示す図である。
図 4 4は、 ぺプチド Dおよび RANKL抗体のマウス骨芽細胞の増殖促進作用を示 す図である。
図 4 5は、ペプチド Dによる MC3T3-E1細胞における遺伝子発現変化を示す図で ある (1 2時間後) 。
図 4 6は、ぺプチド Dによる MC3T3-E1細胞における遺伝子発現変化を示す図で ある (9 6時間後) 。
図 4 7 Aは、 MC3T3- E1細胞におけるペプチド Dおよび BMP- 2による ALP, Col l, 0Cそれぞれの遺伝子発現変化を示す電気泳動図である。
図 4 7 Bは、 MC3T3- E1細胞におけるペプチド Dおよび BMP- 2による ALP, Coll, 0Cそれぞれの遺伝子発現変化を示す図である。
図 4 8は、 ぺプチド Dによる生体内骨形成マーカーの増加を示す図である。 図 4 9は、 ペプチド Dの骨形成作用を遺伝子発現変化にて示す図である。
図 5 O Aは、 ぺプチド Dによる各種増殖因子およびその受容体などの発現を示 す写真である。
図 5 0 Bは、 ぺプチド Dによる各種増殖因子およびその受容体などの発現を示 す図である。
図 5 1は、 Fc融合ペプチド Dの ALP活性亢進能を示す図である。
図 5 2は、 塩置換したペプチド Dの破骨細胞形成活性に対する影響を示す図で ある。
図 5 3は、 各種 RANKL抗体の RANKLによる破骨細胞形成活性に対する中和能を 示す図である。
図 5 4は、 抗ヒ ト RANKLモノクローナル抗体の RANKLによる破骨細胞形成活性 に対する中和能を示す図である。
図 5 5は、 GST融合べプチド Dの ALP活性亢進能を示す図である。
図 5 6は、抗ヒ ト RANKLモノクローナル抗体の ALP活性亢進能を示す図である。 発明を実施するための最良の形態 以下、 本発明を詳細に説明する。
RANKL (Receptor act i vator of NF- κ B l i gand) は、 TNF スーパーファミリ一 のメンバーである RANK (NF- κ Βの受容体ァクティベータ一) のリガンドであり、 細胞内ドメイン (RANKの Ν末端から第 1番目から 48番目のアミノ酸からなるド メイン)、膜貫通ドメイン及び細胞外ドメインを有する 2型貫通タンパク質である (特表 2002-509430号公報、国際公開第 W098/46644号パンフレツト、後者は現在 特許公報 3523650号となっている)。 RANKLは骨吸収因子の刺激を受けて骨芽細胞 又は骨芽細胞に分化し得る細胞上に発現する。 ここで、 骨芽細胞に分化し得る細 胞には、 骨芽細胞に分化し得る限りあらゆる細胞が含まれ、 例えば、 骨芽前駆細 胞、 間葉系幹細胞、 間質細胞、 筋芽細胞等が挙げられる。 細胞外ドメイン中、 N 末端から第 152番目以降のアミノ酸からなるドメインは、 TNF リガンドファミリ 一相同性ドメインである。ヒ ト由来の RANKLの全長塩基配列及びァミノ酸配列を、 それぞれ配列番号 1及び 2に示す。 RANKの全長塩基配列及びァミノ酸配列を、 そ れぞれ配列番号 3及び 4に示す。
OPG (osteoprotegerin)は、 構造;^ RANK に類似したタンパク質であり、 RANKL に作用し得る。 0PG の全長塩基配列及びアミノ酸配列を、 それぞれ配列番号 5及 び 6に示す。
本発明は、骨芽細胞又は骨芽細胞に分化し得る細胞に作用しそれら細胞の分化、 増殖、 成熟、 石灰化を促進し、 骨形成を促し、 骨量増強等を引き起こす化合物を 有効成分として含む医薬組成物である。 該医薬組成物として、 骨芽細胞又は骨芽 細胞に分化し得る細胞にシグナルを伝達し、 骨芽細胞又は骨芽細胞に分化し得る 細胞の分化、 増殖、 成熟、 石灰化を促進し、 骨形成を促し、 骨量増強等を引き起 こす化合物を有効成分として含む医薬組成物、 例えば、 RANKL に作用し、 RANKL から骨芽細胞又は骨芽細胞に分化し得る細胞にシグナルを伝達し、 骨芽細胞又は 骨芽細胞に分化し得る細胞の分化、増殖、成熟、石灰化を促進し、骨形成を促し、 骨量増強等を引き起こす化合物を有効成分として含む医薬組成物がある。 前記化 合物が RANKLに作用する場合、 作用し得る RANKLの由来動物種は限定されず、 ヒ ト由来 RANKL、マウス由来 RANKL、ラット由来 RANKL等あらゆる動物種由来の RANKL が対象となる。 ここで、 RANKLに作用するとは、 RANKLに作用して RANKLから骨芽 細胞又は骨芽細胞に分化し得る細胞にシグナルを伝達することをいい、 例えば、
RANKLに結合し、 RANKLから骨芽細胞又は骨芽細胞に分化し得る細胞にシグナルを 伝達する。
RANKLに作用し、骨芽細胞又は骨芽細胞に分化し得る細胞の分化、増殖、成熟、 石灰化を促進し、 骨形成を促し、 骨量増強等を引き起こす化合物として、 あらゆ る動物種由来のあらゆる RANKL作用化合物が挙げられる。 該化合物は、 天然及び 非天然べプチドゃ化学合成あるいは微生物由来などの低分子化合物を含む。
本発明の骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟、 石灰化 を促進し、 骨形成を促し、 骨量増強等を引き起こす化合物として、 RANKの変異体 若しくは断片べプチド、 RANKに構造が類似しているべプチド、 RANKの断片べプチ ドに構造が類似しているペプチド、 RANK に構造が類似している化学物質、 RANK の断片べプチドに構造が類似した化学物質等が挙げられる。 このような化合物と して、 例えば、 RANK、 RANKLに作用し得る RANKの変異体若しくは断片べプチド、 RANKに構造が類似し RANKLに作用し得るぺプチド、 RANKの断片べプチドに構造が 類似し RANKLに作用し得るぺプチド、 RANKに構造が類似し RANKLに作用し得る化 学物質、 RANKLに作用し得る RANKの断片べプチドに構造が類似した化学物質等が 挙げられる。
また、 化学物質とは、 ペプチド及びタンパク質以外の化合物をいう。 RANKは膜 型 RANKも可溶型 RANKも含む。膜型 RANKとは、細胞表面に結合している状態の膜 貫通領域を有する RANKをいい、 天然型 RANKを発現している細胞ゃリコンビナン ト RANK を発現しているヒ ト細胞等の動物細胞を用いることができる。 また、 RANKFc も含まれる。 ここで、 RANKFcはヒ ト RANKの細胞外領域にヒ ト IgGiの Fc 領域を結合させた融合タンパク質である。
また、 本発明において、 構造が類似しているとは、 例えば、 RANKL に作用し得 る部分の立体構造が類似していることをいう。 ペプチドやタンパク質の場合、 通 常ァミノ酸配列で表される 1次構造も類似しているが、 ァミノ酸配列が類似して おらず、 立体構造が類似しており、 RANKLに作用し得る化合物も含まれる。
さらに、 骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟、 石灰化 を促進し、 骨形成を促し、 骨量増強等を引き起こす化合物として、 0PG、 0PGの変 異体若しくは断片べプチド、 0PGに構造が類似しているべプチド、 0PGの断片ぺプ チドに構造が類似しているペプチド、 0PG に構造が類似している化学物質、 0PG の断片べプチドに構造が類似した化学物質等が挙げられる。 このような化合物と して、例えば、 RANKLに作用し、骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟、 石灰化を促進し、 骨形成を促し、 骨量増強等を引き起こす化合物と して、 0PG、 RANKLに作用し得る 0PGの変異体若しくは断片べプチド、 0PGに構造 が類似し RANKLに作用し得るぺプチド、 0PGの断片べプチドに構造が類似し RANKL に作用し得るぺプチド、 0PGに構造が類似し RANKLに作用し得る化学物質、 RANKL に作用し得る 0PGの断片べプチドに構造が類似した化学物質等が挙げられる。 また、 化学物質とは、 ペプチド及びタンパク質以外の化合物をいう。 0PG は膜 型 0PGも可溶型 0PGも含む。 膜型 0PGとは、 C末端領域などで細胞表面に結合し ている状態の 0PGをいい、 天然型 0PGを発現している細胞ゃリコンビナント 0PG を発現しているヒ ト細胞等の動物細胞を用いることができる。 また、 OPGFc も含 まれる。 ここで、 OPGFcとは、 0PGにヒ ト IgG!の Fc領域を結合させた融合タンパ ク質 (Fc融合タンパク質) である。
RANK又は 0PGの類似体として、例えば、 RANK若しくは 0PG又はそれらの断片べ プチドのアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しく は付加されたァミノ酸配列を含み、かつ RANK又は 0PGの活性を有するタンパク質 若しくはペプチドを含む。 ここで、 1又は数個とは 1〜9個、 好ましくは 1〜5 個、 さらに好ましくは 1若しくは 2個である。
RANKの RANKLに結合する部位の構造に似せたぺプチドとして、 例えば、 配列番 号 7で表されるアミノ酸配列からなるぺプチド(ぺプチド D)及び配列番号 1 6で 表されるアミノ酸配列からなるペプチド (ペプチド E)が挙げられる。 これらのぺ プチドは、 2番目の Cysと 8番目の Cysがジスルフィ ド結合で結ばれた環状ぺプ チドである。
さらに、上記の RANKの RANKLに結合する部位の構造に似せたぺプチド塩も用い 得る。ぺプチド塩は、薬学的に許容できる塩であれば限定されないが、たとえば、 酸付加塩および塩基付加塩が挙げられる。 酸付加塩としては、 酢酸、 リンゴ酸、 コハク酸、 トリフルォロ酢酸(TFA)塩、 酒石酸またはクェン酸等の有機酸との塩、 塩酸、 硫酸、 硝酸またはリン酸等の無機酸との塩が挙げられる。 また塩基付加塩 としては、 ナトリウムまたはカリウム等のアルカリ金属との塩、 カルシウムまた はマグネシウム等のアル力リ土類金属との塩、 アンモニゥムまたはトリェチルァ ミン等のアミン類との塩が挙げられる。 この中でも、 酢酸塩が好ましく、 特に配 列番号 7又は配列番号 1 6で表されるアミノ酸配列からなるぺプチドの酢酸塩が 好ましい。
また、 上記の RANKの RANKLに結合する部位の構造に似せたぺプチドと GST (グ ルタチオン- S-トランスフェラーゼ) 又はヒ ト IgGiの Fc領域を結合させた融合タ ンパク質 (Fc融合タンパク質又は GST融合タンパク質) も用いることができる。 このような融合タンパク質として、 例えばべプチド Dと GST (ダルタチオン- S-ト ランスフェラーゼ) 又はヒ ト IgGiの Fc領域を結合させた融合タンパク質 (Fc融 合ペプチド D又は GST融合ペプチド D) が挙げられる。 これらの融合タンパク質 は、 生体内での安定性が増し、 血中半減期が長くなる。 また、 GSTと Fc領域の他 のェピトープタグとの融合タンパク質も用いることができる。 他のェピトープタ グとしては、 2〜12個、 好ましくは 4個以上、 さらに好ましくは 4〜 7個、 さら に好ましくは 5個若しくは 6個のヒスチジンからなるポリヒスチジン、 FLAGタグ、 Myc タグ、 V5 タグ、 Xpress タグ、 HQタグ、 HAタグ、 AU1 タグ、 T7 タグ、 VSV- G タグ、 DDDDKタグ、 S タグ、 CruzTag09、 CruzTag22、 CruzTag41、 Glu- Gluタグ、 Ha, 11タグ、 KT3タグ、 チォレドキシン、 マルトース結合タンパク質 (ΜΒΡ)、 βガ ラク トシダーゼ等が挙げられる。
本発明において、 RANKL に作用し、 骨芽細胞又は骨芽細胞に分化し得る細胞の 分化、 増殖、 成熟、 石灰化を促進し、 骨形成を促し、 骨量増強等を引き起こす化 合物を、 RANKLに対するァゴニスト物質ということがある。
さらに、 抗 RANKL抗体であって、 RANKLに作用することにより、 骨芽細胞又は 骨芽細胞に分化し得る細胞の分化、増殖、成熟、石灰化を促進し、骨形成を促し、 骨量増強等を引き起こす抗体又はその機能的断片も含まれる。 本発明において、 これらの抗体を RANKLに対するァゴニスト抗体とレ、うことがある。 抗 RANKL抗体 は、 公知の方法により、 ポリクローナル抗体又はモノクローナル抗体として得る ことができ、 モノクローナル抗体が好ましい。 モノクローナル抗体は、 ハイブリ ドーマに産生されるもの、 及び遺伝子工学的手法により抗体遺伝子を含む発現べ クタ一で形質転換した宿主に産生されるものを含む。 モノクローナル抗体産生ハ イブリ ドーマは、 公知の手法により、 以下のようにして作製できる。 すなわち、 膜型若しくは可溶型 RANKL又はその断片べプチドを感作抗原として用いて、 公知 の免疫方法により免疫し、 得られる免疫細胞を通常の細胞融合法によって公知の 親細胞と融合させ、 公知のスクリーニング法により、 モノクローナル抗体を産生 する細胞をスクリーニングすることによって作製することができる。 RANKL を免 疫する際、 ゥシ血清アルブミン (BSA)、 キーホールリンペッ トへモシァニン等の キヤリアタンパク質と結合させて用いてもよレ、。 モノクローナル抗体としては、 抗体遺伝子をハイブリ ドーマからクローニングし、適当なベクタ一に組み込んで、 これを宿主に導入し、 遺伝子組換え技術を用いて産生させた組換え型のものを用 レヽるこ とカ できる (例え ίま、、 Vandamme, A. M. et al. , Eur. J. Biochem. 1990 ; 192 : 767-775.参照)。 この際、 抗体重鎖 (H鎖) 又は軽鎖 (L鎖) をコードす る DNAを別々に発現ベクターに組み込んで宿主細胞を同時形質転換させてもよい し、 あるいは H鎖及び L鎖をコードする DNAを単一の発現ベクターに組み込んで 宿主細胞を形質転換させてもよい (W0 94/11523 号公報参照)。 また、 トランスジ エニック動物を使用することにより、 組換え型抗体を産生することもできる。 例 えば、 抗体遺伝子を、 乳汁中に固有に産生されるタンパク質 (ャギ カゼインな ど) をコードする遺伝子の途中に挿入して融合遺伝子として調製する。 抗体遺伝 子が挿入された融合遺伝子を含む DNA断片をャギの胚へ注入し、 この胚を雌のャ ギへ導入する。 胚を受容したャギから生まれるトランスジヱニックャギ又はその 子孫が産生する乳汁から所望の抗体を得る (Ebert, K. M. et al. , Bio/Technology 1994 ; 12 : 699-702)。
本発明の抗 RANKL抗体は、 ヒ トに対する異種抗原性を低下させること等を目的 として人為的に改変した遺伝子組換え型抗体、 例えば、 キメラ抗体、 ヒ ト型化
(Humanized) 抗体をも含む。 このような抗体としてはキメラ抗体、 ヒ ト化抗体、 ヒ ト抗体が挙げられ、 いずれも公知の方法を用いて製造することができる。 キメ ラ抗体は、 得た抗体 V領域をコードする DNAを得て、 ヒ ト抗体 C領域をコードす る DNAと連結し、 これを発現ベクターに組み込んで宿主に導入し産生させること により得られる。 ヒ ト型化抗体は、 再構成 (reshaped) ヒ ト抗体ともいう。 ヒ ト 型化抗体は、 ヒ ト以外の哺乳動物、 例えばマウス抗体の相補性決定領域 (CDR ; complementari ty determining region) をヒ 卜抗体の相補性決定領域へ移植した ものであり、 公知の方法により作製することができる (欧州特許出願公開番号 EP 125023 号公報、 TO 96/02576 号公報参照)。 キメラ抗体及びヒ ト型化抗体の C領 域には、 ヒ ト抗体のものが使用され、例えば H鎖では、 C y l、 C y 2、 C y 3、 C y 4を、 L鎖では C K、 C λを使用することができる。 また、 抗体又はその産 生の安定性を改善するために、 ヒ ト抗体 C領域を修飾してもよい。
ヒ ト抗体は、 例えばヒ ト抗体遺伝子座を導入し、 ヒ ト由来抗体を産生する能力 を有する トランスジエニック動物に抗原を投与することにより得ることができる。 該トランスジヱニック動物としてマウスが挙げられ、 ヒ ト抗体を産生し得るマウ スの作出方法は、例えば、国際公開第 W002/43478号パンフレツトに記載されてい る。
抗 RANKL抗体は、 完全抗体だけでなく、 その機能的断片も含む。 抗体の機能的 断片とは、 抗体の一部分 (部分断片) であって、 抗体の抗原への作用を 1つ以上 保持するものを意味し、 具体的には F (ab' ) 2 、 Fab' , Fab、 Fv、 ジスルフィ ド 結合 Fv、 一本鎖 Fv ( scFv) , 及びこれらの重合体等が挙げられる [D. J. King. , Appl icat ions and Engineering of Monoclonal Antibodies. , 1998 T. j .丄 nternational Ltd]。
また、 モノクローナル抗体を用いる場合、 1種類のみのモノクローナル抗体を 用いてもよいが、 認識するェピトープが異なる 2種類以上、 例えば 2種類、 3種 類、 4種類又は 5種類のモノクローナル抗体を用いてもよい。
上記の化合物が、 RANKL に対してシグナル伝達を促進させるァゴニス ト活性を 有するか否かは、 例えば、 抗体を RANKLを発現する骨芽細胞又はその骨芽前駆細 胞、 若しくは筋芽細胞や間質細胞等の骨芽前駆細胞、 間葉系幹細胞と同様の性質 を有する細胞に投与し、 RANKL に作用させ、 これらの細胞が分化、 増殖するかを 検定することにより、 決定することができる。 分化、 増殖は、 例えば細胞のアル 力リフォスファターゼ活性の上昇や石灰化等を指標に決定することができる。 また、上記化合物を動物に投与した場合、骨密度、骨塩量、骨面積が増加する。 骨密度とは、 骨中のカルシゥムなどミネラル成分の密度を数字で表したものをい つ。 骨密度は、 pQCT ^peripheral quantitative computerized tomography ; 木梢 骨 X線 CT装置)、 SXA (Single Energy X-Ray Absorptiometry) , DXA (Dual Energy X-Ray Absorptiometry ; 二重エネルギー X線吸収法) 等により計測することがで きる。 さらに、 上記化合物を動物に投与した場合、 /z CTで骨の 3次元構造解析を 行った場合、 海綿骨の密度の上昇が認められる。 さらに、 海綿骨骨梁構造計測に より、 BV/TV (単位骨量: bone volume/total tissue volume)、 骨梁幅、 骨梁数の 増加が認められる。 さらに、 上記化合物を動物に投与した場合、 pQCTによる骨形 態計測により、 皮質骨領域の骨密度の増加が認められる。
このことは、上記化合物が骨芽細胞、骨芽前駆細胞、間葉系幹細胞、間質細胞、 筋芽細胞上の RANKLに作用することにより、 逆シグナルが入り、 そのために骨形 成が促進されたことを示している。 本発明の組成物は、 骨形成を増強し得、 in vitroで研究用試薬として用いることもでき、 また in vivoで医薬組成物として 用いることもできる。
本発明の医薬組成物は、 骨形成を増強する医薬組成物として用いることができ る。 特に、 骨量減少を伴う骨代謝疾患の治療又は予防のために用いることができ る。 このような、骨代謝疾患としては、骨粗鬆症、若年性骨粗鬆症、骨形成不全、 高カルシウム血症、 上皮小体機能亢進症、 骨軟化症、 骨石灰脱失症、 骨溶解性骨 疾患、 骨壊死、 パジェット病、 関節リウマチ、 変形性関節症による骨の低下、 炎 症性関節炎、 骨髄炎、 ダルココルチコイド処置、 転移性の骨疾患、 歯周の骨の喪 失、 癌による骨の喪失、 加齢による骨の喪失、 及びその他の骨量減少症が挙げら れる。
投与量は、 症状、 年齢、 体重などによって異なるが、 通常、 経口投与では、 成 人に対して、 1 日約 0. 01mg〜1000mgであり、 これらを 1回、 又は数回に分けて投 与することができる。また、非経口投与では、 1回約 0. 01mg〜1000mgを皮下注射、 筋肉注射又は静脈注射によって投与することができる。また、投与時期としては、 勲脈硬化性疾患の臨床症状が生ずる前後いずれでもよい。
組成物は、 製剤分野において通常用いられる担体、 希釈剤、 賦形剤を含む。 た とえば、 錠剤用の担体、 賦形剤としては、 乳糖、 ステアリン酸マグネシウムなど が使用される。 注射甩の水性液としては、 生理食塩水、 ブドウ糖やその他の補助 薬を含む等張液などが使用され、 適当な溶解補助剤、 たとえばアルコール、 プロ ピレンダリコールなどのポリアルコール、 非イオン界面活性剤などと併用しても よい。 油性液としては、 ゴマ油、 大豆油などが使用され、 溶解補助剤としては安 息香酸ベンジル、 ベンジルアルコールなどを併用してもよい。
本発明の医薬組成物は、骨芽細胞又は骨芽細胞に分化し得る細胞の分化、増殖、 成熟、 石灰化を促進し、 骨形成を促し、 骨量増強等を引き起こす化合物、 例えば
RANKL に作用し、 骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟、 石灰化を促進し、 骨形成を促し、 骨量増強等を引き起こす化合物の他、 BMP (Bone morphogenetic protein;骨形成タンパク質) ファミリーメンバーを含んでいても よい。 すなわち、 骨芽細胞又は骨芽細胞に分化し得る細胞上の RANKLに作用する か、 あるいはしないで骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成 熟又は石灰化を促進する化合物を BMPファミリーメンバーと併用することにより、 より優れた効果を得ることができる。 特にべプチド D若しくはべプチド E又は抗
RANKL抗体と BMP ファミ リーメンバーとの併用が好ましい。 すなわち、 本発明は 骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進す る化合物、 特にべプチド D若しくはぺプチド E又は抗 RANKL抗体と BMPファミ リ 一メンバーを組合せてなる骨量減少を伴う骨代謝疾患の治療又は予防のための医 薬組成物を包含する。 本発明の化合物と BMPファミ リーメンバーとを併用する場 合、 両方を含む医薬製剤を調製し、 それを投与してもよいし、 本発明の化合物と
BMP ファミ リーメンバーを別々に投与してもよい。 すなわち、 本発明の医薬組成 物は、 骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を 促進する化合物、 特にべプチド D若しくはぺプチド E又は抗 RANKL抗体と BMPフ アミリーメンバーの配合剤を含む。 BMP ファミリーメンバーとしては、 BMP - 4、
BMP- 2、 BMP-7、 BMP - 6等が挙げられる。 本発明の化合物と BMP ファミ リーメンバ 一は共同作用し、 骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟、 石灰化を促進し、 骨形成を促し、 骨量増強等を引き起こし得る。 BMP メンバーの 含有量は限定されないが、 1回約 0. 01mg〜1000mgである。
本発明は、 さらに骨芽細胞又は骨芽細胞に分化し得る細胞の分化、増殖、成熟、 石灰化を促進し、 骨形成を促し、 骨量増強等を引き起こす化合物、 例えば RANKL に作用し、 骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟、 石灰化 を促進し、 骨形成を促し、 骨量増強等を引き起こす化合物のスクリーニング方法 を包含する。
該スクリーニング方法は、 骨芽細胞、 骨芽前駆細胞、 間質細胞若しくは間葉系 幹細胞又は筋芽細胞等の骨芽前駆細胞と同様の性質を有する細胞に候捕化合物を 投与し、 候補化合物が、 上記細胞の分化、 増殖を促進するかを検定すればよい。 例えば、 RANKL を表面に発現している骨芽細胞、 骨芽前駆細胞、 間葉系幹細胞、 間質細胞又は筋芽細胞等の骨芽前駆細胞と同様の性質を有する細胞に候補化合物 を投与し、 候補化合物が RANKLに作用し、 上記細胞の分化、 增殖を促進するかを 検定すればよい。 分化、 増殖は、 例えば細胞のアルカリフォスファターゼ活性の 上昇や石灰化等を指標に決定することができる。 分化、 増殖を促進する場合、 候 捕化合物を骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟、 石灰化 を促進し、 骨形成を促し、 骨量増強等を引き起こす化合物、 例えば RANKLに作用 し、 骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟、 石灰化を促進 し、 骨形成を促し、 骨量増強等を引き起こす化合物であると判断することができ る。
また、 例えば候補化合物をマウス、 例えば C57BL/6CrjCrljに投与し、 骨密度、 骨塩量、 骨面積等の上昇が認められるか否かを指標に、 該候補化合物が骨芽細胞 又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟、 石灰化を促進し、 骨形成を 促し、 骨量増強等を引き起こす化合物、 例えば RANKLに作用し、 骨芽細胞又は骨 芽細胞に分化し得る細胞の分化、 増殖、 成熟、 石灰化を促進し、 骨形成を促し、 骨量増強等を引き起こす化合物であるか否かを判断することができる。
本発明を以下の実施例によって具体的に説明するが、 本発明はこれらの実施例 によって限定されるものではない。
実施例 1 ヒ ト間葉系幹細胞の分化誘導
試薬
実験には合成べプチドを使用した。 合成べプチド Dは配列番号 7で表されるァ ミノ酸配列からなるペプチドであり、 9 アミノ酸から構成され、 二つのシスティ ン残基がジスルフィ ド結合により結合した環状ペプチドである。 合成ペプチド D は RANKLに結合することが報告されている (Aoki ら、 J Cl in Invest 116: 1525, 2006)。コントロールぺプチドはそのような機能を持たない合成べプチドを使用し た。 培養細胞
ヒ ト間葉系幹細胞は Cambrex社から購入した。 専用の継代培地は Lonza社製品 を使用した。 ヒ ト間葉系幹細胞の分化誘導
ヒ ト間葉系幹細胞を、 1 X 103個/ゥエルずつ 96 ゥヱルプレート(Nunc)に、 又は 2. 4 X 103個/ゥヱルずつ 48 ゥヱルプレート(IWAKI)に播種した。 24時間後に培養 上清を除去し、骨芽細胞分化誘導培地(Lonza)に切換え、 3〜4日毎に培地を交換 した。
同時に ΙΟΟ μ Μの濃度でペプチド Dを添加した (ペプチド D投与群)。 ネガティ ブコントロールとしてコントロールぺプチドを同濃度で添加した。
ALP (アルカリフォスファタ一ゼ) 活性測定
分化誘導後 7 日目に培養上清を除去し、 細胞をァセトン ·エタノール固定液で 固定した。 固定後の ALP活性は、 パラニトロフエニルリン酸を基質とする方法で 測定を行った。 すなわち、 パラニトロフエニルリン酸(Nacalai) 1 mg/mLを含む 炭酸バッファー(5 raM MgCl2, 50 mM NaHC03)を各ゥヱルに 100 / L添加し、 37°Cで ィンキュベート後に各ゥエルの 405mnにおける 0D値をマイクロプレートリーダー (BMG Labtech) にて測定した。 ヒ ト間葉系幹細胞にペプチド D 100 μ Μを添加した群では、分化誘導後 7 日目に おいて、 分化誘導培地及び継代培地の両方で ALP活性が有意に上昇していた (図
1 )。 また、 分化誘導後 7 日目において細胞の ALP染色を行った場合にも、 対照群 に対しぺプチド D投与群で濃度依存的な ALP染色が認められた(図 2 )。 実施例 2 ヒ ト間葉系幹細胞の石灰化
ALP染色
分化誘導と同時にぺプチド Dを 300 / Mの濃度で添加し、誘導後 7 日目に細胞を 10%中性緩衝ホルマリン溶液で固定後、 アセ トン ·エタノール固定液で再固定し た。
細胞には、 下記の通りに調製した染色液 500 しを添加し、 37°Cで 10分インキ ュペート後に水洗し、 乾燥させた。
(染色液の組成)
ナフ トール AS-MX リ ン酸塩(SIGMA) 5mg
N- N -ジメチルホルムアミ ド(Wako) 0. 5raL
0. 1M Tris-HCl (pH8. 5) 50mL
ファース トブルー塩へミ(SIGMA) 30mg ァリザリンレッ ド S染色
分化誘導後 21 日目に細胞を PBSで洗浄し、 10%中性緩衝ホルマリン溶液で固定 した。
固定液除去後に水洗し、 1 %ァリザリンレツド S染色液(Nacalai)を 150 ^ L加 え、 室温で 3分間放置した。 この後、 染色液を除去後水洗し、 乾燥後に顕微鏡下 で観察した。 ヒ ト間葉系幹細胞の培養は実施例 1と同様の方法で行なった。 ヒ ト間葉系幹細 胞にペプチド D を 300 μ Μ添加することにより、 分化誘導の有無に関わらず、 21 日目において強いァリザリ ンレツ ド染色が認められた。 ペプチド Dが ALP活性上 昇と共に石灰化も誘導することが示された(図 3 )。 実施例 3 マウス骨芽前駆細胞株 MC3T3- E1の分化誘導
培養細胞
マウス骨芽前駆細胞株である MC3T3- E1 (サブクロ一ン No. 4)細胞は ATCCより購 入した マウス骨芽前駆細胞 MC3T3- E1
8X103個/ゥエルを 96ゥエルプレー卜に、又は 2 X104個/ゥエルを 48ゥエルプ レートに 10%FBS+aMEM (GIBC0)を用いて播種した。 分化誘導のため 48時間後に 培養上清を交換し、 5mMj3グリセ口リン酸(SIGMA) +10 i g/mL ァスコルビン酸ナ トリゥム(SIGMA)を含む 10%FBS+ctMEMに切換え、 3〜4 日毎に培地を交換した。 対照としてプレー卜の半分では継代培地である 10%FBS+ctMEMにて MC3T3-E1を培 養した。 培地交換と同時に 300 juMの濃度でペプチドを添加した。 ALP活性測定及 びァリザリンレツド S染色は実施例 1と同様の方法で、 それぞれ 7日目、 21 日目 に行なった。 マウス骨芽前駆細胞株の分化誘導
300μΜぺプチド Dを添加した群では、 MC3T3- E1細胞の分化誘導後 7 日目におレヽ て ALP活性が有意に上昇していた (図 4)。 ぺプチド Dによる石灰化作用
ペプチド!) 300 μΜを添加した群では、 マウス骨芽前駆細胞 MC3T3-E1の分化誘 導後 21 日目において、強いァリザリンレツド染色が認められた(図 5)。ぺプチド Dが ALP活性の上昇と共に石灰化も誘導することが示された。 この現象は分化誘 導培地だけでなく、 継代培地で培養した MC3T3-E1でも観察された。 実施例 4 マウス骨芽細胞の分化誘導 実験には goat ポリクローナル mRANKL抗体(R&D、 Saint Cruz) , モノクローナ ル raRANKL抗体 ((A)クローン 88227 (R&D)、 及び(B)クローン 12A668) (ALEXIS) 及び合成べプチド Dを使用した。ネガティブコントロールとして goat IgG(ZYMED)、 及びコントロールぺプチドを使用した。 合成べプチド D及びコントロールぺプチ ドは実施例 1 と同じ物を使用した。 また陽性対照として 300 ng/mL BMP-2 (R&D) を使用した。 ALP活性測定は実施例 1と同様に行った。 マウス骨芽細胞の採取
新生児マウス頭蓋骨を酵素溶液 (0· 1%コラゲナ一ゼ(Wako) + 0. 2%ディスパー ゼ(合同酒精)) に浸して、 37°Cの恒温槽にて 5分間振とうさせた。 最初の細胞浮 遊画分は除去し、 新しい酵素液 lOmLを添加し、 さらに 37°Cの恒温槽にて 10分間 振とうさせた。 この操作を 4回繰り返し、 それぞれの細胞浮遊液を回収した。 細 胞浮遊液を 250 X gで 5分間遠心し、 培地に懸濁して(:02ィンキュベータ一内で 3 〜4日間培養した。 トリプシン- EDTA溶液(Nacalai)を用いてこれら細胞を回収し、 セルバンカー (十慈科学) にて凍結保存した。 マウス骨芽細胞の分化誘導
得られたマウス骨芽細胞を 0. 8 X 104/wellとなるように%wellプレートに 10% FBS+ α ΜΕΜを用いて播種した。 細胞が接着後に、 5 mMの i3グリセ口リン酸 + 10 μ g/mLのァスコルビン酸を含む培地にて分化誘導を行った。 300 μ Μの合成ペプチド Dにより分化培地にて 7日目に ALP活性化の上昇が認められた (図 6 )。 各抗体は 1 /z g/mLを分化誘導と同時に添加した。分化誘導後 7日目に各因子を添加した群 において、 有意な ALP活性の上昇が確認された (図 7 )。 この現象は分化誘導培地 だけでなく、 継代培地で培養したマウス骨芽細胞でも観察された。 即ち、 RANKL に結合するポリクローナル抗体がコントロール抗体に比べて有意にマウス骨芽細 胞の分化を誘導した。 さらに詳細に抗体の効果を確かめるために、 ポリクロ一ナ ル抗体の濃度を変えてマウス骨芽細胞に加え、 7日間継代培地で培養した。 同時 に抗 RANKLモノクローナル抗体 Aと Bを用いてモノクローナル抗体でも同様の分 化作用が認められるかを調べた。 その結果、 ばらつきはあるものの抗 RANKLポリ クローナル抗体は濃度依存的にマウス骨芽細胞の ALP活性を上昇させた (図 8 )。 さらに抗 RANKLモノクローナル抗体 Aと Bの混合物は同様にマウス骨芽細胞の ALP 活性を上昇させた (図 8 )。 以上のことから、 マウス RANKLに対するポリクローナ ル抗体やモノクローナル抗体はマウス骨芽細胞の分化を誘導することがわかった。 実施例 5 ヒ ト骨芽細胞の ALP活性化作用
抗 RANKLポリクローナル抗体ゃ抗 RANKLモノクローナル抗体などの試薬は実施 例 4と同じものを使用した。 さらに、 抗 RANKLモノクローナル抗体 ((C)クローン 12A380) (ALEXIS)、 ヒ ト 0PGFc、 ヒ ト RANKFc (R&D)を用いた。 ALP活性測定は実施 例 1と同様に行った。これらの抗体はすべてマウス RANKLに対する抗体であるが、 ヒ ト RANKLにも交差し、 結合することが分かっている。 培養細胞
ヒ ト骨芽細胞は Cambrex社から購入した。 継代は専用培地(Lonza)にて行った。 ヒ ト骨芽細胞の分化誘導
ヒ ト骨芽細胞は 96ゥエルプレートには 3. 1 X 103/ゥエル、 48ゥエルプレートに は 7. 65 X 103/ゥエルとなるように播種した。 細胞接着後に、 5mM ]3のグリセロリ ン酸を含む培地にて分化誘導を行った。 抗体は 100 ng/mL又は 1 ng/mLを分化誘 導と同時に添加した。 5日又は 6日間培養し、 ALP活性を測定した。 抗 RANKLポリクローナル抗体ゃ抗 RANKLモノクローナル抗体、ぺプチド D、0PGFc、 及び RANKFcによってヒ ト骨芽細胞の ALP活性が有意に上昇し、分化誘導が認めら れた (図 9、 1 0 )。 以上のことから、 マウス RANKLに対するポリクローナル抗体 及びモノクローナル抗体、 0PGFc、 及び RANKFcはヒ ト骨芽細胞の分化を誘導する ことがわかった。 実施例 6 マウス筋芽細胞の分化誘導
モノクローナル mRANKL抗体などの試薬は実施例 4と同じものを使用した。 ALP 活性測定は実施例 1と同様に行った。 培養細胞
マウス筋芽前駆細胞株である C2C12細胞は理化学研究所より購入した。 マウス筋芽細胞の分化誘導
マウス筋芽前駆細胞である C2C12細胞 6. 5 X 103個/ゥエルを 96 ゥヱルプレー トに播種した。 48時間後に培養上清を交換し、 300 ng/mL BMP-2 (R&D)を含む 5% FBS + DMEM (SIGMA)に切換えた。 培地交換と同時に抗体 lOOng/mLを添加し、 7日 間培養した。 monoclonal mRANKL抗体 ((A)クローン 88227 (R&D) ) によってマウ ス筋芽細胞の ALP活性が有意に上昇し、 骨芽細胞へと分化誘導したことが確認で きた(図 1 1 )。 この実験では抗 RANKLモノクローナル抗体が単独で骨芽細胞前駆 細胞の性質を持つマウス筋芽細胞に作用して骨芽細胞へと分化誘導したことが明 らかとなつた。 実施例 7 ペプチド Dによるヒ ト間葉系幹細胞の ALP活性化作用
RT-PCR解析
6ゥ ルプレートにヒ ト間葉系幹細胞 3 X 104個を播種し、 骨芽細胞分化誘導培 地(Lonza)又は維持培地(Lonza)存在下で 7日間培養した。 各ゥヱルには 100及び 300 /z Mのぺプチド D、 さらにコントロール群にはぺプチドの溶媒を添加した。 培 養後に細胞を PBSで洗浄し、 QIAzol Lysis Reagent (QIAGEN) 0. 75mLに細胞を溶解 させ、 溶液を回収した。 室温で 5分間溶液を放置後に 0. 15mL のクロ口ホルム (Wako) を添加し、 激しく転倒混和させてから、 4 °C、 12000 X g の条件で 15分 間遠心を行い、 上清を新しいチューブに回収した。 上清から EZ1 RNA universal tissue kit (QIAGEN)及び Magtration Systeml2GC (QIAGEN)を用いて RNAの単離を 行った。 RNA濃度測定後に 250ngの各 RNAを 1 %ァガロースゲルにて電気泳動を 行い、 RNA分解の有無を確認し、 分解のない RNAそれぞれ 500 ngを RT-PCRに供 した。 RT- PCR は ThermoScript RT-PCR Systemunvitrogen)及び random primer を用いて行った。
cDNA合成後に、 ヒ トのアル力リフォスファターゼ(hALP)及びヒ トの I型コラー ゲン(hCol lagen I )特異的なプライマーを用いて PCR を行った。 標準化用にヒ ト
GAPDH特異的なプライマーを用いて PCRを行った。 用いた PCRプライマー配列は 下 tこ Sci載した。 Ex Taq™ Hot Start Version (Takara Bio Inc. , Shiga, Japan; を用いて以下の条件で PCRを行った。 アル力リフォスファターゼ(hALP)は 94°Cで 15分初期熱変性を行った後、 94°Cで 1分、 58°Cで 1分、 72°Cで 30秒を 28サイク ル行い、 72°Cで 10分間伸長反応を行った。 I型コラーゲン(hCollagen I )は、94°C で 15分初期熱変性を行った後、 94°Cで 1分、 58°Cで 1分、 72°Cで 30秒を 25サイ クル行い、 72°Cで 10分間伸長反応を行った。 GAPDHは、 95°Cで 3分初期熱変性を 行った後、 95°Cで 10秒、 60°Cで 15秒、 68°Cで 1分を 28サイクル行い、 68°Cで 10分間伸長反応を行った。
PCRプライマー配列
hALP-F : 5 ' -GGGGGTGGCCGGAAATACAT-3 ' (配列番号 8 )
hALP-R : 5' -GGGGGCCAGACCAAAGATAGAGTT-3 ' (配列番号 9 )
hCollagenl-F : 5, -ATTCCAGTTCGAGTATGGCG- 3 ' (配列番号 1 0 )
hCollagenl-R : 5 ' - TTTTGTATTCAATCACTGTCTTGCC- 3 ' (配列番号 1 1 ) hGAPDH-F : 5 ' - TGAAGGTCGGAGTCAACGGATTTGGT- 3 ' (配列番号 1 2 )
hGAPDH-R : 5 ' -CATGTGGGCCATGAGGTCCACCAC-3 ' (配列番号 1 3 )
PCR反応後得られたサンプルは、 1 %ァガロースゲルを用いて電気泳動を行い、 ェチジゥムブ口マイ ドを用いて、 UV下で特異的なバンドが形成されていることを 確認した(図 1 2 A)。得られた画像は、 CSAnalyzerを用いて解析した。また、 GAPDH の発現量で標準化し、 図 1 2 B及び Cに示した。 ヒ ト間葉系幹細胞にペプチド D 300 Mを添加した群では、分化誘導後 7 日目に おいて、 分化誘導培地及び継代培地の両方で ALP活性が有意に上昇し、 また、 分 化誘導後 7日目において細胞の ALP染色を行った場合にも、 対照群に対しべプチ ド D投与群で濃度依存的な ALP染色が認められたが、 PCR解析の結果、 ヒ ト間葉 系幹細胞をべプチド存在下で 7日間分化誘導を行うと、 ぺプチドの濃度依存的に アル力リフォスファターゼ及び I型コラーゲンの発現が上昇することが確認され た (図 1 2 A)。 また、 継代培地下でも 300 μ Μの濃度でぺプチドはアル力リフォス ファターゼ及び I型コラーゲンの mRNA発現を上昇させた (図 1 2 B及び C)。 実施例 8 膜型 RANKによる C2C12の骨芽細胞への分化誘導 96ゥヱルプレートに C0S 1を lOOOOcel ls/wel lで DMEM- 5% FBSで播種し 1 日培 養後、 各種プラスミ ド DNA (pSR a -EXl (コントロール発現ベクター 1 )、 pSR α -mRANK (マウス RANK発現ベクター)、 pCAGGS- mBMP- 4 (マウス BMP - 4発現ベクター)、 QIAwel l8 plasmi d purification ki t (Qiagen)にて精製) をウエノレあたり 50 ng ずつ FuGENE HD (Roche)を用いてトランスフエクションした。 同様に 0. 5 ng の pCAGGS-mBMP-4 は 24. 5 ng の pCAGGS (コントロール発現ベクター 2 ) 及び 25ng の pSR a -mRANK と混合し、 トランスフエクシヨンした。 その対照として 0. 5 ng の pCAGGS-mBMP- 4は 24· 5 ngの pCAGGS及び 25ngの pSR a - EX1 と混合し、 トラン スフエクシヨンした。 翌日、 C2C12をゥエルあたり 10000cel lsずつトランスフェ クシヨンした C0S1プレートに播種し共培養した。 3日ごとに DMEM-2. 5% FBSに て培地交換し、 1週間後、 培地を除去し、 アセ トン 'エタノール 1 : 1混合溶液 を加えて細胞を固定した。固定液を 30秒で除去しプレートを 30分程度乾燥させ、 乾燥中に ALP 検出溶液( 5 mM MgCl2, 40mM NaHC03, 1 mg/ral p-nitrophenyl phosphate)を作製し、 100 μ 1ずつ加えて反応を開始した。 60分後、 マイクロプレ —トリーダーで ABS405nm を測定した。 その結果、 陽性コントロールである pCAGGS-mBMP-4が強い骨芽細胞分化活性を示すのに比べ弱いものの、 pSR a -mRANK は有意に ALP 活性を上昇させ、 骨芽細胞分化活性を示した (図 1 3 )。 また、 pCAGGS- mBMP- 4 量を 1 %に減らすとコントロール発現ベクターである pSR a - EX1 との間で有意差はなくなつたが、 pSR ct - mRANK と同時にトランスフエクシヨンす ることにより、 有意に ALP活性が上昇した (図 1 3 )。 また、 pCAGGS_mBMP-4量を 1 %に減らし pSR ct - mRANK と同時にトランスフエクシヨンすることにより、 pSR α - mRANK単独のトランスフエクシヨンよりも有意に ALP活性が上昇した(図 1 3 )。 これは膜型 RANKが BMP - 4と共同で作用したことを意味する。このように膜型 RANK は単独で、 あるいは BMP-4と共同で骨芽細胞前駆細胞の性質を持つマウス筋芽細 胞株である C2C12細胞を骨芽細胞へと分化誘導した。 実施例 9 膜型 RANKによる ST2の骨芽細胞への分化誘導
マウス間質細胞株である ST2細胞は理化学研究所より購入した。 96ゥエルプレ
—トに C0S1を 10000cel ls/wel lで DMEM- 5 % FBSで播種し 1 日培養後、各種プラ スミ ド DNA (pSR a - EX1 (コント口ール発現べクタ一 1 )、 pSRひ -mRANK (マウス RANK 発現べクタ一)、 QIAwel l8 plasraid purificat ion kit (Qiagen)にて精製) をゥェ ルあたり 50ngずつ FuGENE HD (Roche)を用いてトランスフエクションした。翌日、 ST2をゥエルあたり 5000cel lsずつトランスフエクションした C0S1プレートに播 種 し共培養 した。 こ の と き 、 ST2 に RANKL 発現誘導する た め に Dexamethasone (10— 7M)、 活性型 Vitamin D3 (10"8M)をカロえる系と加えない系 (RANKL 発現誘導なし) を作製した。 3日後に DMEM-2. 5% FBSを追加し、 さらに 3日後に DMEM-2. 5% FBSにて培地交換し、 1週間後、 培地を除去し、 アセトン 'エタノー ル 1 : 1混合溶液を加えて細胞を固定した。 固定液を 30 秒で除去しプレートを 30分程度乾燥させ、 乾燥中に ALP検出溶液(5 mM MgCl2, 40 niM NaHC03, 1 mg/ml p-nitrophenyl phosphate)を作製し、 100 μ 1ずつ加えて反応を開始した。 60分後、 マイ ク ロ プ レー ト リ ーダーで ABS405nm を測定 した。 その結果、 Dexamethasone (10"7M) , 活' 型 Vitamin D3 (10— 8M)を加える系 (RANKL 誘導) にお いてのみ、 pSR a -mRANKは有意に ALP活性を上昇させ、 ST2細胞は骨芽細胞分化活 性を示した(図 1 4 及び¾。 このように膜型 RANKは単独で骨芽細胞前駆細胞や 脂肪細胞前駆細胞の性質を持つマウス間質細胞株である ST2細胞を骨芽細胞へと 分化誘導したが、 この現象は RANKLを発現誘導した ST2細胞を用いた場合にのみ 認められた。これは膜型 RANKが ST2細胞上に発現誘導された膜型 RANKLに結合し て ST2細胞内に骨芽細胞分化シグナルが伝わったことを示す。 実施例 1 0 生体内で分化誘導された破骨細胞による骨芽細胞の増殖、 分化 GST-RANKLの調製
ヒ ト型 RANKL残基 140— 317をコードする cDNAに PCRにて Sal I, Not Iサイ ト を付カ卩 し、 これ らのェン ドヌ ク レアーゼを用いて、 pGEX_4T-2 ( GE healthcare; Genbank Accession Number U丄 ύ8ο4) の Glutathione S- transferase の下流にクローユングした。 配列番号 1 4及び 1 5に、 RANKL のアミノ酸配列中 第 140番目のアミノ酸から第 317番目のアミノ酸配列からなるタンパク質に GST が融合したタンパク質をコードする DNAの塩基配列及び該タンパク質のアミノ酸 配列を示す。 BL21 (DE3) Escherischia col i (invi trogen)における IPTG (終濃度: 0. 5mM) によるタンパク質発現の誘導後、 菌体を抽出バッファー (50mM Tris_HCl, pH8. 0, lOOmM NaCl, IraM EDTA, lmM DTT, l% (v/v) TritonX-100) にて懸濁し、 4 °C でソニケ一ターを用いて破砕した。 18000 X g、 15min で遠心後、 上清を回収し Glutathione Sepharoseカラムにかけた。 続いて洗浄バッファー (50mM Tris- HC1, pH8. 0, lOOmM NaCl, IraM DTT, 0. 1 % (v/v) TritonX- 100) にて洗浄した。 その後、 Glutathione溶液 (20mM 還元型グルタチオン, 50mM Tris_HCl, pH8. 0) で溶出し た。 SDS- PAGEにて精製した GST-RANKLの分子量及び純度を確認し、 フィルターろ 過した。 分子量 47. 0kDa、 純度 95%以上であった。 また、 リムルス変形細胞溶解 物試験 (l imulus amebocyte lysate assay) によりエンドトキシン濃度を測定し、 lEU/ug未満であることを確認した。
RANKL投与試験
7週齢の C57BL/6Nマウス雌 10匹に GST-RANKLを 57nmol (低用量)及び 426nmol (高用量) を 24時間毎 3回腹腔内投与し 3回目投与より 1. 5時間後に解剖した。 比較対象として PBSを同様に投与した群を用いた。
解剖後のマウスは大腿骨、 頸骨、 大脳、 肺、 心臓、 肝臓、 胸腺、 脾臓、 腎臓、 皮膚を採取し、 大脳、 肺、 心臓、 肝臓、 胸腺、 脾臓、 腎臓、 皮膚は HE染色により 自然発生病変を観察した。 骨形態計測
骨形態計測の結果単位骨量及び骨梁数は、 GST-RANKL 高用量の投与により約 50%まで減少し、 破骨細胞数は増加した。 また低用量の投与において減少は見ら れなかった (図 1 5、 1 6及び 1 7 )。
大腿骨の骨形態を CTにより測定したところ高用量の GST- RANKL投与群におい ては顕著な骨の減少が見られた (図 1 8 )。
採取した大脳、 肺、 心臓、 肝臓、 胸腺、 脾臓、 腎臓、 及び皮膚を HE染色し観察 したが、 すべての群で異常所見及び自然発生病変は認められなかった。 骨芽細胞面
高用量の GST-RANKL投与により破骨細胞数の増加、 骨量の減少、 骨吸収が見ら れた。 さらに骨芽細胞面を調べたところ、有意に上昇していることがわかった(図
1 9 )。 これは破骨細胞数の増加や破骨細胞の活性化による骨吸収の亢進により、 骨形成が促進されるという現象、 即ち骨吸収と骨形成の力ップリングが起こって いることを示す。 高用量の GST-RANKLを投与されたマウスでは、 骨の微少環境に おいて増力 Ρ ·活性化した破骨細胞上の RANKが骨芽細胞上の RANKLに作用し、分化、 増殖、 成熟又は石灰化などのシグナルを伝えていると考えられる。 実施例 1 1 合成ペプチド投与による生体内における骨量増加
ρ¾
実験には合成べプチドを使用した。 合成べプチド Dは配列番号 7で表されるァ ミノ酸配列からなるペプチドであり、 9 アミノ酸から構成され、 二つのシスティ ン残基がジスルフィ ド結合により結合した環状ペプチドである。 合成ペプチド D は RANKLに結合することが報告されている (Aoki ら、 J Cl in Invest 116 : 1525, 2006)。合成べプチドは 10% DMSO (Nacalai) /PBSに 1 mg/mlの濃度で溶解させた。 実験動物
C57BL/6CrjCrlj マウスは㈱ォリェンタルバイォサービスから購入した。 C57BL/6CrjCrljマウス近交系マウスであり、老化による細胞性免疫能の低下が少 ないという特徴を有するマウスである。 温度 23°C ± 3°C、 湿度 50% ± 30%の環境 下で 1週間予備飼育した。 照明時間は 8 : 00〜20 : 00とした。
実験期間中は全数 CR-LPF (オリエンタル酵母工業) を給餌した。
コントロール群を n=5でぺプチド D投与群を n=4でケージ飼育した。
投与方法及び期間
ペプチド Dは 10 mg/kgの用量で 8 : 00、 14 : 00及び 20 : 00の 1 日 3回、 5 日間皮 下投与を行った。 コントロール群には 5% DMS0/PBSを投与した。 5 日の投与期間 終了後 12時間後に剖検を行い、全血採血後に大腿骨及び脛骨を採取した。全血は 1時間室温で放置後、 5000 rpm、 4°C、 5 minの条件で遠心分離を行い、 血清を新 しいチューブに回収した。 大腿骨及び脛骨は冷 70%エタノールで固定した。 骨密度解析
エタノール固定した大腿骨を Single energy X- ray absorptiometry (SXA)解析 (DCS-600EX-1HR 動物用 DXA, AL0KA) により骨密度、 骨塩量及び骨面積の測定 を行った。 骨全長を 20分割し、各領域の骨密度を測定し、領域毎のペプチドの作 用について解析を行った。 骨構造解析及び骨梁構造解析
骨構造解析は末梢骨定量的コンピューター断層撮影(以下 pQCT)及びマイク口 コンピューター断層撮影(以下/ z CT) により行った。 CTは Scan- Xmate- A080 (コ ムスキャンテクノ) を、 pQCTは XCT- Research SA+ (Stratec Medizintechnik GmbH) を用いた。 μ τデータを用いた三次元構造作製及び骨梁構造解析には専用ソフト である 3D-B0N (ラトック社) を用いて行った。 なお pQCTによる解析において、 骨密度が 395 mgん ra3以下の部分を海綿骨、 骨密度が 690 mg/cm3以上の部分を皮質 骨として解析を行った。 ペプチド D10 rag/kgを 1 日 3回、 5日間投与した大腿骨を、 SXA解析により全体 の骨塩量、 骨面積及び骨密度を測定した。 その結果、 ペプチド D投与により骨塩 量は増加し、 骨密度は有意な増加 (/7〈0. 05 vs コントロール群) を示した (図 2 0 A〜C)。 さらに SXA20分割解析で各領域の骨密度を測定した結果、遠位骨端部か ら 6番目から 9番目の領域で骨密度の有意な増加 <0. 05 vs コントロール群) が確認できた (図 2 1 )。 また pQCTによる大腿骨骨密度解析の結果、 遠位骨端部 から 5 mmの領域における皮質骨骨密度が有意 (p〈0. 05 vs コントロール群) に 増加した (図 2 2 A)。 この領域での皮質骨の厚み、 外膜周囲長、 内膜周囲長、 骨 塩量及び骨面積を計測した結果、 内膜周囲長が短くなつており、 内側に向けて皮 質骨が増えていることが示唆された (図 2 2 B)。
一方、 成長板付近の海綿骨が多く含まれる骨幹端領域について、 による 3 次元構造解析を行った結果、 ペプチド Dを投与することにより遠位部骨端より 2 瞧の位置で海綿骨量が増加していることが観察された (図 2 3 )。 そこで; u CTに よる海綿骨領域の骨梁構造計測を行ったところ、 海綿骨の BV/TV及び骨梁幅が増 加した (図 2 4 A〜C)。 ぺプチド Dの骨に対する作用としては、 / CTによる骨梁構造計測の結果から、 弱いながらも骨吸収抑制作用を有していることは示された。 しかしながら、 わず か 5日間の投与で骨幹部付近の皮質骨の骨密度を上昇させる作用については、 こ の弱い骨吸収抑制作用だけでは説明ができない。 この結果は、 このペプチドが骨 形成作用を有していることを示唆する。 実施例 1 2 骨形態計測
実施例 1 1において合成ペプチド Dをマウスに投与した実験において、 各群の マウスには、投与開始後 1 日目及び 4 日目において、 2 %炭酸水素エタノール水溶 液を用いて 1. 6 mg/mLに調整した力ルセイン (Nacalai) を 0. 01 mL/g (体重) の 用量で各個体に腹腔内に投与し、 力ルセインラベルを行った。 剖検時に回収しェ タノール固定した大腿骨の遠位骨端部から 5mm の領域を Methylraethacrylate (MMA) 樹脂包埋し、 非脱灰標本を作製した。 この領域は実施例 1 1における SXA 解析の結果、 ペプチド D投与群にて骨密度が有意に増加していた領域である。 標 本はトルイジンブルー染色を行い、 類骨面積、 骨芽細胞面積、 骨石灰化面積、 石 灰化速度及び骨形成率等を計測した。 その結果、 ペプチド D投与群にて石灰化率 及び骨形成率の増加が認められた (図 2 5 A及び B)。 SXA解析及び pQCT解析でぺ プチド D投与群において皮質骨骨密度の有意な増加が確認されたが、 ぺプチド投 与により in vivoでの石灰化率及び骨形成率が上昇した結果、 皮質骨骨密度が増 加したと考えられる。 実施例 1 3 ペプチド Dの ALP活性亢進作用のメカニズム解析 (シグナル分子の リン酸化)
MC3T3-E1細胞を 10%FBS+ CK MEM (S IGMA)を用いて 6ゥエルプレートに 7. 5 X 104 個/ゥエルにて播種した。 12時間後に培地を除去し、 200 Μ Μペプチド D又は 200 ng/ml の BMP- 2を含む培地を添加した。 それぞれの図に示した経過時間後に培地 を除去し、 PBS を細胞に添加し、 スクレイパー (Falcon) を用いて細胞を回収し た。 1200rpm、 5min、 4°Cで遠心分離して回収した細胞ペレツトに RIPAバッファー 100 / Lを添加して細胞膜を溶解させた。 さらに、 これを 14500rpm、 25min、 4°Cの 条件で遠心分離を行い、 上清を細胞抽出液として回収した。 細胞抽出液の一部を 用いて BCAプロテインアツセィキッ ト (PIERCE) にてタンパク質濃度の定量を行 つた。 SDS- PAGE用に、 細胞抽出液量の 1/4量のサンプルバッファー (Fermentas) を添加し、 95°Cで 5min加熱した。 調整したサンプルを 10%ポリアクリルアミ ド ゲル(BioRad)に 7.5又は アプライし、 170Vで 1時間電気泳動を行った。 泳 動後に PVDFメンブレン (Millipore) に 80mA、 40minでトランスファーした。 メ ンブレンをブロッキング液(Nacalai)で室温 1時間振とう後に 1次抗体を添加し、 室温で 1時間もしくは 4°Cで 12時間の振とうを行った。 1次抗体溶液を除去後、 3 回メンブレンを洗浄し、 2次抗体含有ブロッキング液で室温 1時間振とうした。 2 次抗体溶液を除去後に 3回メンブレンを洗浄した。 検出は ECLplus (GEヘルスケ ァバイオサイエンス) にて行った。 なお 1次抗体及び 2次抗体の組み合わせは以下に記載した通りである。
(1) 1次抗体 : リン酸化 p38抗体 (Cell signaling) , 2次抗体 : Goat ant i rabbit IgG HRP conjugated (santa cruz)
(2) 1次抗体 : p38抗体(santa cruz), 2次抗体 : Goat anti mouse IgGl- HRP conjugated (SouthernBiotech)
(3) 1次抗体 : j3ァクチン抗体(santa cruz), 2次抗体 : Goat anti rabbit IgG HRP conjugated (santa cruz)
(4) 1次抗体 : GSK3c /)3抗体(santa cruz), 2次抗体 : Goat anti mouse IgG HRP conjugated (SIGMA)
(5) 1次抗体 : リン酸化 GSK3a//3抗体(Cell signaling), 2次抗体 : Goat anti mouse IgG HRP conjugated (SIGMA
(6) 1次抗体 : リン酸化 smadl/5/8 (Cell signaling) , 2次抗体 : Goat anti rabbit IgG HRP conjugated (santa cruz) 既知の骨形成因子である BMP- 2及び PTHが.、 骨形成を誘導する際に用いる主要 なシグナル伝達経路である MAPキナーゼ p38のリン酸化についてウェスタンブロ ッティングにより検出を行った。 その結果ペプチド D添加後 12時間後に著しい P38のリン酸化を検出できた(図 2 6 )。なお、ペプチド D添加から短時間での p38 のリン酸化についても検討を行ったが、顕著な変化は認められなかった(図 2 7 )。 一方、対照として用いた BMP-2では添加 1時間後に p38のリン酸化が認められた。 次に骨形成因子の 1つである Wntのシグナル伝達経路に使用される GSK3 i3のリ ン酸化についてウェスタンブロッティングにより検出を行った。 ぺプチド D添加 後 1及び 3時間後に、 GSK3 j3のリン酸化が誘導されていることが示された (図 2 8 )。 対照として用いた BMP-2でも同様に添加後 1及び 3時間後に GSK3 のリン 酸化が認められた。
さらに骨形成因子 BMPのシグナル伝達経路に使用される Smadl/5/8のリン酸化 についてウェスタンブロッテイングにより検出を行った。 その結果、 MC3T3-E1細 胞では無刺激の状態で Smadがリン酸化を受けていることが示された。ぺプチド D 添加による Sraadl/5/8のリン酸化誘導は少なく とも 3時間以内には認められなか つた (図 2 9 )。 一方、 対照として用いた BMP-2 では添加 3時間後に Smadl/5/8 のリン酸化が認められた。 以上から、 ペプチド D添加後、 少なく とも 3時間以内 には BMP-2と同様の Smadl/5/8の活性化は起こらないが、 12時間後には BMP-2添 加 1時間後に見られるよりも顕著な p38のリン酸化が起こることが分かった。 従 つてぺプチド Dは添加後数時間では明らかに BMP- 2とは異なるシグナルを使って いることが示された。 一方、 GSK3 /3のリン酸化についてはペプチド!)、 BMP- 2共に 添加後 1時間及び 3時間でほぼ同程度に認められたので、 ペプチド D は一部で BMP-2と類似したシグナルを使っていることが示された。 実施例 1 4 ペプチド Dの ALP活性亢進のメカニズム解析 (阻害剤の作用)
MC3T3- E1細胞を 10%FBS+ a MEM (SIGMA)を用いて 96ゥェルプレートに 1. 5 X 104 個/ゥエルにて播種した。 12時間後に培地を除去し、 p38阻害剤 SB203580 (カル ビオケム) を含む培地を添加した。 さらに 1時間後に 200 μ Μのペプチド D又は
100 ng/ralの BMP- 2を添加し、 5 日間培養を行い、 実施例 1に記載した方法で ALP 活性測定を行った。 その結果、 SB203580の濃度依存的にペプチド Dによる ALP活 性亢進が抑制され、 Ι μ Μで有意に、 さらに 10 Μで完全に抑制された(図 3 0 )。 一方、対照として用いた BMP - 2では Ι μ Μでは有意な ALP活性亢進の抑制が認めら れず、 10 で弱い抑制効果が見られた。
同様に Wnt アンタゴニス トと してそれぞれ 0· 25、 0. 5、 1 μ g/ral の濃度の hrDkk- 1 (R&D)を添加し、 1時間後に 200 μ Μのペプチド Dを添加し、 5 日間培養を 行い、 実施例 1に記載した方法で ALP活性測定を行った。 その結果、 Dkk-1は弱 いながらも有意にかつ濃度依存的に ALP活性亢進を抑制した (図 3 1 )。
また、 同様に BMP アンタゴニス トとしてそれぞれ 0. 25、 1 μ g/ral の濃度の BMPR-IA (R&D) を添加し、 1時間後に 200 μ Mのペプチド D又は 200 ng/mlの ΒΜΡ-2 を添加し、 5日間培養を行い、実施例 1に記載した方法で ALP活性測定を行った。 その結果、 BMPR- IA はペプチド D及び BMP- 2による ALP活性亢進を著しく抑制し た (図 3 2 )。 以上の結果から、 ペプチド Dの作用が BMPの誘導もしくは細胞が定 常的に自己産生する BMPに依存している可能性が考えられた。 実施例 1 5 ぺプチド!)の ALP活性亢進のメカニズム解析 (ぺプチド Dと BMP-2 の協調作用)
ペプチド Dの BMP-2との相乗効果を検討するために、 BMP- 2添加に依存して ALP 活性亢進される C2C12細胞を用いて ALP活性測定を行った。 C2C12細胞を 5%FBS+ α ΜΕΜ (SIGMA)を用いて 96 ゥエルプレートに 1 X 104個/ゥエルにて播種した。 6 時間後に培地を除去し、それぞれ 50 ^ Mのペプチド D、 100及び 200 ng/mlの BMP - 2、
50 μ Μのペプチド Dと 100 ng/mlの BMP- 2の組み合わせを含む培地を添加した。 6 日間培養を行い、 実施例 1に記載した方法で ALP活性測定を行った。 その結果、
50 μ Μのぺプチド D 単独では ALP活性亢進作用が認められなかった。 ΒΜΡ-2は濃 度依存的に ALP活性を亢進した。 一方、 50 μ Μのぺプチド Dに 100 ng/mL BMP-2 を加えた場合、 BMP-2単独添加時の 5倍以上の ALP活性亢進作用が確認できた(図
3 3 )。この結果は実施例 1 4にて示したぺプチド Dの作用が BMPの誘導又は細胞 が定常的に自己産生する BMPに依存している可能性を支持する。 筋芽細胞株であ る C2C12細胞は骨芽細胞株である MC3T3-E1細胞とは異なり、通常の培養条件では ALP活性が極めて低い。 BMP- 2を添加して培養すると本実施例のように ALP活性が 亢進し、 骨芽細胞に分化するが、 C2C12細胞ではペプチド D単独ではその作用は 極めて弱いと考えられる。一方、 これまでの実施例で示したように MC3T3-E1細胞 ではべプチド D は単独でも強い ALP活性亢進作用を示す。 このことは MC3T3- E1 細胞においてべプチド Dの作用が BMPの誘導もしくは細胞が定常的に自己産生す る BMPに依存している可能性を強く示唆する。
さらに MC3T3-E1細胞における、 BMP - 2とぺプチド Dの協調作用についても検討 を行った。 MC3T3-E1細胞を 10%FBS+ o; MEM (SIGMA)を用いて 96ゥエルプレートに 1. 5 X 104個/ゥエルにて播種した。 12時間後に培地を除去し、 30 ng/mL の BMP- 2 にさらに 150 μぺプチド Dを添加した場合の ALP活性測定を行った。 その結果、 MC3T3- E1細胞においてべプチド Dは BMP- 2と相加的な ALP活性亢進作用を示した (図 3 4 )。
C2C12細胞及び MC3T3-E1細胞における BMP- 2とぺプチド Dの ALP活性に対する 相乗効果を図 3 3で示したが、 C2C12細胞に BMP-2を加えた場合に、 RANKLの発現 が上昇するという報告があった (Fuj i ta ら、 Molecular Cancer 6: 71, 2007)。 そこで BMP添加時の RANKL発現について RT-PCRを用いて確認を行った。
96ゥヱルプレートに各ゥヱル 5xl03細胞ずつ C2C12細胞を播種した。 細胞接着 後 100 ng/mLとなるように BMP- 2を添加し、 36時間後に各ゥエルに 84 μ Lの TRIZ0L 液 (Invi trogen) を添加し細胞を溶解させ RNAを抽出した。 1群 6 ゥヱル分をま とめ、 0. 1 mLのクロ口ホルム (Wako) を添加し、激しく転倒混和させてから、 4°C、
12000 X gの条件で 15分間遠心を行い、上清を新しいチューブに回収した。 0. 25raL イソプロパノール(Nacalai )を添加し、転倒混和後に室温で lOmin放置した。 4°C、
12000 X gの条件で 10分間遠心を行い、上清を除去後に 1 mLの 70%ェタノールを 添加し 4°C、 12000 X gの条件で 5分間遠心し、 さらに上清を除去した。 RNA濃度 を測定後に 2 fi g を RT- PCR に供した。 RT- PCR は ThermoScript RT-PCR
System (Invi trogen)及ぴ random primerを用レヽて行った。 cDNA合成後【こ、 マウス の RANKLに特異的なプライマーを用いて PCRを行った。 標準化用にマウス GAPDH 特異的なプライマーを用いて PCRを行った。 用いた PCRプライマー配列は下に記 載した。 Ex Taq™ Hot Start Vers ion (Takara Bio Inc. , Shi ga, Japan)を用レヽ て以下の条件で PCRを行った。
マウス RANKLは 94°Cで 2分初期熱変性を行った後、 94°Cで 20秒、 60°Cで 20秒、 72°Cで 40秒を 35サイクル行い、 72°Cで 10分間伸長反応を行った。 GAPDHは、 95°C で 3分初期熱変性を行った後、 95°Cで 10秒、 60°Cで 15秒、 68°Cで 1分を 25サイ クル行い、 68°Cで 10分間伸長反応を行った。
mRANKL-F : 5, -GGCAAGCCTGAGGCCCAGCCATTT-3 ' (配列番号 1 7 )
raRANKL-R : 5 ' - GTCTCAGTCTATGTCCTGAACTTT - 3, (配列番号 1 8 )
mGAPDH-F : 5, - CACCATGGAGAAGGCCGGGG- 3, (配列番号 1 9 )
mGAPDH-R : 5, -GACGGACACATTGGGGGTAG-3 ' (配列番号 2 0 )
その結果、 BMP-2添加により C2C12細胞での RANKLの発現が上昇することが確 認できた (図 3 5 )。 この結果、 BMP- 2は C2C12細胞に作用して RANKLの発現を促 し、 ぺプチドりが RANKLに作用する補助をしていることが示唆された。 実施例 1 6 ペプチド Dとぺプチド Eの活性比較
ペプチド Dに 1アミノ酸置換を行ったペプチド E (配列番号 1 6 ) を作製し、 破骨細胞の分化及び骨芽細胞の分化に対する効果を、それぞれ TRAP活性及ぴ ALP 活性を測定することにより行った。 RAW264細胞を 10%FBS+ a MEM (SIGMA)を用い て 96 ゥエルプレートに 2 X 103個/ゥエルにて播種した。 細胞接着後に 10 nM GST- RANKL (オリエンタル酵母工業製) を含む 10%FBS+ a MEMに置換した。 そこに 25、 50、 100及び 200 μ Μの濃度のペプチド D及びペプチド Eを添加し、 4日間培 養を行った。 培養終了後に 100 // Lのァセトン/エタノールを各ゥヱルに加え細胞 を固定し、 ドラフト内で 30min乾燥させた。
TRAP solution バッファ一は、 1. 5 mg/mL 濃度になるように p— nitrophenyl phosphate (Nacalai)を 50 raM クェン酸バッファーで調製後、 1 /10量の 0. 2 M酒 石酸ナトリウム溶液を添加した溶液を用いた。 TRAP solution バッファーを各ゥ エルに 100 / L力!]え、 45min 37°Cインキュベートを行った後に 50 の IN NaOH 溶液を加え反応停止させた。実施例 1と同様に各ゥエルの 405nmにおける 0D値を マイクロプレートリーダー (BMG Labtech) にて測定した。
さらにべプチド D及びべプチド E C MC3T3_El細胞での ALP活性亢進作用につい て比較を行った。 25、 50、 100及び 200 μ Μの濃度のペプチド D及びペプチド Eを 用いて、実施例 1 4に示した条件にて培養を行い、実施例 1に示した方法にて ALP 活性測定を行った。
その結果、ぺプチド D及びべプチド Εは共に濃度依存的に TRAP活性の抑制及び ALP 活性の亢進を示した (図 3 6及び図 3 7 )。 TRAP 活性については、 100、 200 /x Mの濃度においてぺプチド E と比較してぺプチド Dが有意な抑制作用を示した (図 3 6 )。 また、 ALP活性については 50、 ΙΟΟ μ Μの濃度においてペプチド E と 比較してペプチド Dが有意な亢進作用を示した (図 3 7 )。 ほぼ同等の効果を与え るぺプチド D及び Εの濃度を比較すると、 1アミノ酸置換により TRAP活性抑制作 用がほぼ半減し、 一方 ALP活性亢進作用も約 1/4まで低下していた。 この 1アミ ノ酸置換によりペプチド Dの sRANKLに対する親和性が約 1/3まで低下することが 知られている (Aoki ら、 J Cl i n Invest 116: 1525, 2006)。 以上の結果から、 ぺ プチド Dによる TRAP活性の中和作用と骨芽細胞での ALP活性亢進作用は、 共に RANKLへの作用を介して発揮されていることが示唆された。 実施例 1 7 ペプチド Dレセプターのノックダウンによるペプチド Dの ALP活性 亢進作用のメカニズム解析
C2C12 細胞において BMP- 2 とペプチド D の相乗効果が図 3 3で示されたが、
C2C12細胞に BMP-2添加時に RANKL発現の上昇が確認された (図 3 5 )。 そこで、
MC3T3-E1細胞において RNAi stealthによる RANKLのノックダウンを行い、ぺプチ ド D の ALP 活性亢進作用と RANKL ノ ックダウンの影響を検討した。
OPTiMEM (Inv i trogen) 20 μ L RNA - stealth select (tnfrsfl l) (Invi trogen)
1. 2praol を穏ゃ力 こウエノレ中で混合した。 5 分後に 0. 2 し の Lipofectamine
RNAiMAX (Invi trogen)を添加し、 室温で 20 分間放置した。 さらに各ゥヱルに
MC3T3-E1細胞 4xl03を播種し、 C02インキュベータ内で 48時間培養を行った。 培 養液を除去した後、 200 μ Μのぺプチド D又は 200 ng/mlの BMP-2を含む α ΜΕΜを 添加し、さらに 5 日間培養し、実施例 1に記載した方法で ALP活性測定を行った。 なお、 3種類の RANKL (TNFRSFl l)の KDの negat ive control としては Stealth RNAi negat ive un iversal control (Inv itrogen) ¾用レヽて 様の実験を?Tつに。 ——部糸田 胞を回収し実施例 7の方法を用いて mRNAを抽出し、配列番号 1 7および 1 8のプ ライマーを用いて RT- PCRにより RANKLのノックダウンの確認を行ったところ、 KD1 及び KD2 いずれの場合もそれぞれの陰性コン ト ロールである control l 及ぴ control2に比べて、 GAPDH mRNA量には影響せず、 顕著にかつ特異的に RANKL mRNA 量を減少させた (図 3 8 )。 KD1及び KD2いずれの場合も RANKLノックダウン群で はぺプチド D添加時の ALP活性亢進が有意に低下しており、 ぺプチド Dのレセプ ターが RANKLであることが示唆された (図 3 8 )。 また、 MC3T3- E1細胞において BMP-2単独による ALP活性亢進は RANKLノックダウンによる影響を受けなかった。 以上より、 ペプチド Dは骨芽細胞や骨芽細胞前駆細胞、 間葉系幹細胞、 間質細 胞、 筋芽細胞など骨芽細胞に分化する細胞に作用し、 その後、 BMP の作用を強め る、あるいは BMPの作用と協調して骨芽細胞の分化を促進することが示唆された。 また、 細胞によっては BMPが RANKLの発現を促進し、 ペプチド Dの作用と協調し ていることが示唆された。 実施例 1 8 合成ペプチド Dの精製方法による ALP活性亢進作用への影響
通常、 合成べプチド Dは精製時にトリフルォロ酢酸 (TFA) を含むため、 濃度を 上げることにより細胞にダメージを与える可能性が考えられた。 そこで、 合成べ プチド Dを酢酸塩及び塩酸塩で置換したものを作製し、 毒性が低くなおかつ高い ALP活性を有するぺプチドを得ることを目的として以下の実験を行った。 陽性対 照として大腸菌にて作製した BMP-2 (R&D)及び塩置換を行わない合成ぺプチド D (50及び 150 μ Μ) を使用した。
マウス骨芽前駆細胞である MC3T3-E1細胞を 10%FBS+ a MEM (SIGMA)を用いて 96 ゥヱルプレートに 2 X 104個/ゥエルにて播種した。 細胞接着後に培地を除去し、
50及び 150 // Mのぺプチド D (酢酸塩および塩酸塩) を添加した場合の ALP活性測 定を行った。 陽性対照として大腸菌にて作製し.た 50 ng/raL BMP- 2 (R&D)、 CH0細胞 で発現させた BMP-2 (R&D) と NS0細胞で発現させた BMP-4 (R&D)及び、 TFA塩の合 成ペプチド D (50及び 150 M) を添加した。 なお CH0細胞で発現させた BMP - 2の
ED50値は 40〜 200 ng/raLであり、大腸菌で発現させた BMP- 2の ED50値は 0. 3〜1. 0
W g/mLである。 各因子を添加後 5 日目に培養上清を除去し、 実施例 1の方法にて ALP活性測定を行った。 その結果、 MC3T3-E1細胞において酢酸塩ペプチド Dが最 も高い ALP活性亢進作用を示した (図 3 9 A) 。 一方、 塩酸塩ペプチド Dでは高い 活性は見られなかった。 このように同じアミノ酸配列でも用いる塩によって活性 に影響が出ることが分かった。
次に酢酸塩合成べプチド Dと BMP- 2の ALP活性に対する相乗効果について検討 を行った。 マウス骨芽前駆細胞である MC3T3-E1細胞を 10%FBS+ a MEM (SIGMA)を 用いて 96ゥエルプレートに 2 X 104個/ゥヱルにて播種した。 細胞接着後に培地を 除去し、 6. 25、 12. 5、 25、 50および 100 // Mの合成ぺプチド Dに 5 ng/mLBMP- 2 (CH0 細胞製)を混合した場合の ALP活性測定を行った。各因子を添加後 5 日目に培養上 清を除去し、 実施例 1の方法にて ALP活性測定を行った。 その結果、 酢酸塩合成 ペプチド Dの用量依存的に ALP活性の上昇が確認された (図 3 9 B) 。
最後に BMP- 4 (R&D) との相乗効果についても検討を行った。 MC3T3-E1細胞を 10%FBS+ a MEM (SIGMA)を用いて 96ゥエルプレートに 2 X 104個/ゥエルにて播種 した。 細胞接着後に培地を除去し、 2 ng/mLの BMP- 4に対し ΙΟΟ μ Μの酢酸塩合成 ペプチド Dを添加した。 各因子を添加後 5 日目に培養上清を除去し、 実施例 1の 方法にて ALP活性測定を行った。
合成ぺプチド Dと ΒΜΡ-4を同時に添加することで有意な ALP活性の上昇が確認 され、 BMP- 2だけでなく BMP- 4においても酢酸塩合成ペプチド Dが相乗効果を示 すことが確認できた (図 3 9 C) 。
以上の結果から、 合成ペプチド Dを精製する際に、 細胞に障害を及ぼす可能性 のある TFA塩よりは酢酸塩とする方がより高い ALP活性を誘導できることが示さ れた。また、酢酸塩置換を行った合成べプチド Dにおいて、 BMP-2だけでなく BMP-4 についても ALP活性亢進能について相乗効果を示した。 今後の実験には酢酸塩べ プチド Dを用いることとした。 実施例 1 9 RANKL抗体の ALP活性亢進のメ力二ズム解析 (RANKL抗体と BMP-2 の協調作用)
実験にはモノクローナル mRANKL抗体 ((A)クローン 88227 (R&D) 、 及び(B)ク ローン 12A668) (ALEXIS) 及びコントロール抗体 (オリエンタル酵母工業製) 、 モノクローナル mRANKL抗体 # 22 (クローン IKK22/5)及び、 # 36抗体 (クローン IKK36/12) を使用した。 # 22、 # 36抗体は、 順天堂大学医学部に所属の奥村康氏 より譲渡を受けた。また、これらの抗体は、 Biochemical and Biophysical Research Communication 2006; 347, 124- 132に記載されている。 合成ペプチド Dは酢酸塩 置換したものを用いた。 添加する BMP-2は哺乳動物細胞 (CH0細胞) で発現させ たもの(R&D) (C2C12細胞に使用) 及び大腸菌で発現させた BMP-2 (R&D) (マウス 骨芽細胞に使用) を使用した。 製造メーカーの説明書には哺乳動物細胞で発現さ せた BMP-2は大腸菌で発現させたものよりも約 10倍活性が強いと示されている。 各因子を添加後 5 日目に培養上清を除去し、 実施例 1の方法にて ALP活性測定を 行った。
モノクローナル RANKL抗体の BMP- 2 との相乗効果を検討するために、 BMP- 2添 加に依存して ALP活性亢進される C2C12細胞を用いて ALP活性測定を行った。 C2C12細胞を 5%FBS+ ct MEM (SIGMA)を用いて 96ゥエルプレートに I X 104個/ゥェ ルにて播種した。 6時間後に培地を除去し、 それぞれ 0. 3 /i g/mLのモノクローナ ル RANKL抗体、 50 ng/ralの BMP- 2 (CH0細胞で発現 R&D) 、 モノクローナル RANKL 抗体と 50 ng/mlの BMP-2の組み合わせを含む培地を添加した。 各因子を添加後 6 日目に培養上清を除去し、実施例 1の方法にて ALP活性測定を行った。その結果、 0. S ^ g/mLのモノクローナル抗体 A、 Bおよび #22単独で有意な ALP活性亢進作用 が認められた。 またモノクローナル抗体 Aおよび Bについては BMP- 2添加時にも ALP活性の有意な上昇が認められた (図 4 0 ) 。
さらにマウス骨芽細胞を用いた検討を行った。 10%FBS+ a MEM (SIGMA)を用いて
96ゥエルプレートに 8xl03個/ゥヱルにて播種した。 細胞接着後に培地を除去し、
0. 3-3 I g/mLの各 RANKL抗体、 RANKL抗体に 50 ng/mLの BMP- 2 (大腸菌で発現 R&D) を混合した場合の ALP活性測定を行った。 各因子を添加後 4日目に培養上清を除 去し、 実施例 1の方法にて ALP活性測定を行った。 その結果、 マウス骨芽細胞に おいてモノクローナル抗体 Aは 3 / g/mLの濃度で、 モノクローナル抗体 Bにおい ては 0. 3 μ g/mLの濃度で弱いながらも有意な ALP活性の上昇が確認できた。 陰性 対照として用いたコントロール抗体 (オリエンタル酵母工業製) ではそのような 作用は認められなかった。 またモノクローナル抗体 # 36及び #22については 0. 3 および 3 z g/raLの濃度で有意な ALP活性の上昇が確認できた (図 4 1 ) 。 また、 BMP-2とモノクローナル RANKL抗体の ALP活性に対する協調作用は全てのモノク 口一ナル抗体において確認できた (図 4 2 ) 。 このように実験に用いたすべての 抗 RANKLモノクローナル抗体は程度の差はあるものの、 マウス骨芽細胞の ALP活 性亢進作用を示し、 また BMP-2と相乗的な ALP活性亢進作用を示した。 実施例 2 0 ぺプチド D (酢酸塩) と BMP- 2の相乗効果に対する GST-RANKLの作 用
BMP - 2と酢酸塩ぺプチド Dを MC3T3-E1細胞に同時に添加することにより ALP活 性亢進作用に相乗効果が認められるが、 その際に GST-RANKLを添加した場合の、 ALP活性亢進作用に対する影響について検討を行った。
RANKL抗体は実施例 1 9に示したものを、 GST-RANKL及び GSTはォリェンタル酵 母工業製を使用した。 BMP- 2 (CHO細胞製) は R&D社のものを用いた。 合成べプチ ド Dは酢酸塩置換したものを用いた。
マウス骨芽前駆細胞である MC3T3- E1細胞を 10%FBS+ a MEM (SIGMA)を用いて 96 ゥヱルプレートに 2 X 104個/ゥヱルにて播種した。 細胞接着後に培地を除去し、 100 // Mの酢酸べプチド D、 ΙΟΟ μ Μ酢酸べプチド Dに 5 ng/mLの BMP- 2を混合した 培地、 さらにぺプチド Dと BMP-2混合物に 100 nMの GST-RANKLもしくは GSTを添 加した培地に交換した。 各因子を添加後 5 日目に培養上清を除去し、 実施例 1の 方法にて ALP活性測定を行った。その結果、 MC3T3-E1細胞において GST-RANKLは、 ぺプチド D (酢酸塩) と BMP - 2との相乗的な ALP活性亢進作用を有意に抑制した (図 4 3 ) 。 一方、 GST添加群では有意な抑制は認められなかった。 このことは ぺプチド Dが MC3T3-E1細胞上に発現している RANKLに作用して ALP活性を亢進さ せていることを示す。 GST- RANKLは細胞膜上の RANKLに拮抗してぺプチド Dの作 用を抑制したと考えられる。 実施例 2 1 ペプチド D及び RANKL抗体のマウス骨芽細胞増殖作用
ペプチド Dまたは RANKL抗体と BMP-2を同時添加することで ALP活性亢進作用 が認められることは実施例 1 9及び 2 0に示した。 BMP-2との相乗的な効果を有 するぺプチド D及び RANKL抗体がマウス骨芽細胞に対し増殖作用を有するかどう かについて検討を行った。
合成べプチド Dは酢酸塩置換したものを用いた。 BMP-2 (CH0細胞製)は R&D社の ものを用いた。
マウス骨芽細胞を 10%FBS+ o; MEM (SIGMA)を用いて 96ゥエルプレートに 2 X 103 個/ゥヱルにて播種した。 細胞接着後に培地を除去し、 ΙΟΟ μ Μのペプチド D (酢酸 塩)、実施例 1 9に記載の各種 RANKL抗体(3 / g/mL)及び各因子に 5 ng/mLの BMP - 2 を混合した培地を添加した。 培養 72時間後に WST- 1 (Roche) を培地量の 1/10の 量添加し、 37°Cで 3時間ィンキュベート後に各ゥエルの 450nmにおける 0D値(参 照波長は 595mn) をマイクロプレートリーダー (BMG Labtech) にて測定した。 そ の結果、 BMP- 2の有無に関わらず、 ペプチド Dおよび RANKL抗体 Bはマウス骨芽 細胞の増殖を促進した (図 4 4 ) 。 但し、 ペプチド Dの効果は弱く、 他の RANKL 抗体 (#22, #36, A) では増殖促進効果は認められなかった。
以上から、 RANKLに対するモノクローナル抗体は認識するェピトープの違いに よりマウス骨芽細胞を増殖促進するものとそうでないものがあることが分かった。 一方、 実施例 1 9において示したように、 マウス骨芽細胞を増殖促進しない抗 RANKLモノクローナル抗体でもマウス骨芽細胞の ALP活性亢進作用、 即ち分化促 進作用を示すことが分かった。 まとめると、 認識するェピトープの違う抗 RANKL モノクローナル抗体を使い分けることにより、 骨芽細胞を増殖または分化させる ことが可能であった。 実施例 2 2 ぺプチド Dの MC3T3- E1細胞に対する作用メカニズムの解析(DNAマ イクロアレイ)
MC3T3-E1細胞を 10%FBS+ a MEM (SIGMA)を用いて 10 cmディッシュに 2 X 105
/ゥエルにて播種した。 12時間後に培地を除去し、 200 ペプチド D (酢酸塩) または 150 ng/ralの BMP-2 (R&D社、 大腸菌製)を含む培地を添加した。 12及び 96 時間後に培地を除去し、 各ゥエルに 3 mLの TRIZ0L液 (Invitrogen) を添加して 細胞を溶解させ、 実施例 15の方法に従い total RNAを抽出した。 抽出した total
RNAは 2 gを用いて DNAマイクロアレイ解析(Mouse Genomu 430 2. 0 Affymetrix) を行った。 なおスキャンは GeneChip Scanner 3000 (Affyraetrix 690036)により 行レヽ、 数値ィ匕は Gene Chip Operating Software verl. 4にて行った。
その結果、 ぺプチド D添加後 12時間で、 IRS- 1、 IGF- 1、 FGF レセプター 2、 PDGF レセプター i3、 PDGFレセプター α、 CTGF、 I型コラーゲン α 1及び α 2鎖の各遺伝 子発現が顕著に増加した (図 4 5 ) 。 96時間後ではさらに IGF_2、 ALP、 BMP-4、 OC (ォステオカルシン) 、 FGF2、 PDGFc、 PDGF a及び PDGF 0の各遺伝子発現が顕 著に増加した (図 4 6 ) 。 I型コラーゲン、 ALP、 ォステオカルシンは骨芽細胞の マーカーとして知られている。 実施例 7ではペプチド Dによるヒ ト間葉系幹細胞 での I型コラーゲン、 ALP各遺伝子の発現上昇を示したが、 MC3T3- E1細胞におい てもこの二つの遺伝子発現の上昇が認められ、 さらに骨芽細胞の後期分化マーカ 一として知られるォステオカルシン(0C)遺伝子の発現も非常に上昇したことから、 ぺプチド Dは MC3T3-E1細胞を骨芽細胞へと分化させたと考えられる。 実施例 2 3 DNAァレイ解析の RT- PCRによる検証
DNAマイクロアレイにおいて発現シグナルの増加が確認された遺伝子の中で、 骨芽細胞のマーカーとして知られているアル力リフォスファターゼ(ALP)、 I型コ ラーゲン(Col l)、 ォステオカルシン(0C)について、 確認の為 RT-PCRを行った。 実 施例 22で採取した total RNA各々 2 gを RT-PCRに供した。RT - PCRは ThermoScript RT-PCR Systenuinvitrogen)および: random primer■¾:用レヽ 行つに。
cDNA合成後に、マウスのアル力リフォスファターゼ(mALP)およびマウスの I型 コラーゲン α 1 (mCol I )およびマウスォステオカルシン(mOC)特異的なプライマ一 を用いて PCRを行った。標準化用にマウス GAPDH特異的なプライマーを用いて PCR を行った。用いた PCRプライマー配列は下に記載した。 Ex TaqTM Hot Start Version
(Takara Bio Inc. , Shiga, Japan)を用いて以下の条件で PCRを行った。 アルカリ フォスファターゼ(mALP)は 95°Cで 3分初期熱変性を行つた後、 95°Cで 10秒、 60°C で 15秒、 68°Cで 1分を 28サイクル行い、 68°Cで 10分間伸長反応を行った。 I型 コラーゲン α 1 (mCol I )は、 93°Cで 3分初期熱変性を行った後、 94°Cで 30秒、 58°C で 30秒、 72°Cで 15秒を 20サイクル行い 72°Cで 10分間伸長反応を行った。 ォス テオカルシン (mOC) は、 95°Cで 3分初期熱変性を行った後、 94°Cで 30秒、 58°C で 30秒、 72 :で 15秒を 28および 30サイクル行い 72°Cで 10分間伸長反応を行 つた。 GAPDHは、 95°Cで 3分初期熱変性を行つた後、 94°Cで 10秒、 58°Cで 15秒、 68°Cで 1分を 20サイクル行い、 68°Cで 10分間伸長反応を行った。
PCRプライマー配列
mALP-F : 5 ' - CCAAGCAGGCTCTGCATGAA- 3 ' (配列番号 2 1 )
raALP- R : 5, - GCCAGACCAAAGATGGAGTT-3, (配列番号 2 2 )
mOC-F : 5, - TCTGACAAAGCCTTCATGTCC- 3, (配列番号 2 3 )
mOC-R : 5 ' -AAATAGTGATACCATAGATGCG-3 ' (配列番号 2 4 )
mCol l-F : 5 ' -CCTGGTAAAGATGGTGCC-3 ' (配列番号 2 5 )
raCol l-R : 5, - CACCAGGTTCACCTTTCGCACC- 3, (配列番号 2 6 )
mGAPDH-F : 5 ' - CACCATGGAGAAGGCCGGGG- 3, (配列番号 1 9 )
mGAPDH-R : 5 ' - GACGGACACATTGGGGGTAG- 3 ' (配列番号 2 0 )
反応液の一部をァガロースゲルにて電気泳動し、 ェチジゥムブ口マイ ド液にて 染色した。 その結果、 DNAマイクロアレイ解析の結果と同様にペプチド Dおよび BMP-2により ALP, Col l, 0Cそれぞれの遺伝子発現が顕著に上昇していることが 確認できた (図 4 7 A) 。 発現強度を数値化し、 コントロールにおけるそれぞれの 遺伝子発現量を 1としてグラフ化したところ、 DNAマイクロアレイ解析よりもさ らに顕著にこれらの遺伝子発現上昇が認められた (図 4 7 B) 。
以上から、 ぺプチド Dによって MC3T3 - E1細胞が骨芽細胞へ分化したことが RT-PCRによる遺伝子発現レベルの変化でも確認できた。 実施例 2 4 合成べプチド投与による生体内における骨形成マーカーの解析 試薬
本実験では合成べプチド Dは酢酸塩置換品を使用した。 PBSに 1 mg/mLの濃度 で溶解させた。 対照群には PBSを投与した。
実験動物
C57BL/6Crjマウスは㈱北山ラベスから購入した。 C57BL/6Cr jマゥス近交系マゥ スであり、 老化による細胞性免疫能の低下が少ないという特徴を有するマウスで ある。 温度 23°C ± 3°C、 湿度 50% ± 30%の環境下で 1週間予備飼育した。 照明時 間は 8 : 00〜20 : 00とした。
実験期間中は全数 MF (オリエンタル酵母工業) を給餌した。
コント口ール群を n=6でぺプチド D投与群を n=7で各々をケージ飼育した。 投与方法及び期間
酢酸塩合成ペプチド Dは 10 rag/kgの用量で 8 : 00、 14 : 00及び 20 : 00の 1 日 3 回、 5 日間皮下投与を行った。 コントロール群には PBSを投与した。 5 日の投与期 間終了後 12時間後に剖検を行い、全血採血後に大腿骨及び脛骨を採取した。全血 は 1時間室温で放置後、 5000 rpm、 4°C、 5 minの条件で遠心分離を行い、 血清を 新しいチューブに回収した。 大腿骨は冷 70%エタノールで固定させた。 脛骨は筋 肉等を丁寧に除去後、 PBSにて洗浄し、 ハサミで 1匪断片にした後に液体窒素に て凍結させた。 凍結させた脛骨に TRIZ0L液 (Invitrogen) を lmL添加し、 ポリ ト ロンにてホモジナイズした。 実施例 7の方法に従い total RNA抽出を行った後、 50 /z Lの DEPC水に溶解させた。 個体別に抽出した total RNA 500 ngを実施例 7 の方法に従い RT-PCRに供した。 RT- PCRは ThermoScript RT-PCR
System (invitrogen)およひ random primerを用レ、 if丁った。
cDNA合成後、実施例 2 3と同様にマウスのアル力リフォスファタ一ゼ(mALP)お よびマウスの I型コラーゲン α ΐ鎖(mCol lagen c I )およびマウスォステオカル シン(mOC)特異的なプライマーを用いて PCRを行った。 標準化用にマウス GAPDH 特異的なプライマーを用いて PCRを行った。 PCR条件は実施例 2 3に従い、 各々 のサイクル数は mOCが 23サイクル、 mCol lagen ct Iが 20サイクル、 mALPが 28サ ィクル、 最後に mGAPDHが 23サイクルのデータを用いた。- PCR反応後得られたサ ンプルは、 1%ァガロースゲルを用いて電気泳動を行い、 ェチジゥムブ口マイ ドを 用いて、 UV下で特異的なバンドが形成されていることを確認した。 得られた画像 は CSAnalyzerを用いて解析し、 GAPDHの発現量で標準化した。 その結果、 各因子 共にペプチド D投与群にて発現増加を示した (図 4 8 ) 。 以上から、 マウスの骨 組織においてもぺプチド D投与による骨芽細胞分化マーカー遺伝子の発現が確認 できた。 実施例 2 5 ペプチド Dのマウス脛骨に対する作用メカニズムの解析 (DNAマイ クロアレイ)
DNA マイクロアレイには実施例 2 4に記載したマウス脛骨から個体別に抽出し た total RNA 2 gを用いた。 各群 n=2とした。 定法に従い、 DNAマイクロアレイ 解析 (Mouse Genome 430 2. 0 Affymetrix) を行った。 なおスキャンは GeneChip Scanner 3000 (Affymetrix 690036)により行レヽ、 数値ィ匕は Gene Chip Operat ing Software verl. 4にて行った。その結果、ぺプチド D投与群マウス脛骨において、 0C、 ALP、 I型コラーゲン α 2鎖(CoLl a 2)、血小板由来増殖因子 cペプチド(PDGFc)、 血小板由来増殖因子レセプター (PDGFR jS ) およびインスリン様増殖因子 (IGF-1) が標準サンプルに対し、 有意に高いシグナルを示した (図 4 9 )。 ペプチド Dを添 加したマウス骨芽前駆細胞だけでなく、 ぺプチド Dを投与したマウスの脛骨から も 0Cや ALPといった骨形成因子の増加が確認でき、 in vivoにおいてもぺプチド Dが骨形成を行っていることが示された。 実施例 2 6 DNAアレイ解析の RT- PCRによる検証 2
実施例 2 3において ALP、 CoLlおよび 0Cについて RT- PCRを行い、 DNAマイク ロアレイの検証データを得た。 さらなる検証データを得る為に、 実施例 2 3にお いて MC3T3-E1細胞から得られた各群の cDNAを用いて、 DNAマイクロアレイにて シグナルの増強が見られた各種増殖因子およびそのレセプターについて確認の RT-PCRを行った。
各 cDNAは実施例 2 3に記載した方法にて合成した。合成後に、マウス骨形成因 子 4 (mBMP-4)、 マウス結合組織増殖因子 (raCTGF) マウスの血小板由来増殖因子
(mPDGFc pept ide) とそのレセプター(mPDGFR ;3 )、 マウスの繊維芽細胞増殖因子
2 (mFGF2) とそのレセプター (mFGFR2) 、 インスリン様増殖因子 2 (raIGF-2) お よびインスリンレセプターサブス トレート (mIRS_l) 特異的なプライマーを甩ぃ て PCRを行った。 標準化用にマウス GAPDH特異的なプライマーを用いて PCRを行 つた。 用いた PCRプライマー配列は下に記載した。 Ex TaqTM Hot Start Vers ion
(Takara Bio Inc. , Shiga, Japan)を用いて以下の条件で PCRを行った。 BMP- 4は
95°Cで 3分初期熱変性を行った後、 95°Cで 10秒、 58°Cで 15秒、 72°Cで 30秒を
31サイクル行い、 68°Cで 10分間伸長反応を行った。 CTGFは 95°Cで 3分初期熱変 性を行った後、 95°Cで 10秒、 58°Cで 15秒、 72°Cで 30秒を 31サイクル行い、 72°C で 10分間伸長反応を行った。 FGF2は 95°Cで 3分初期熱変性を行った後、 95°Cで 10秒、 58°Cで 15秒、 72°Cで 30秒を 34サイクル行い、 72°Cで 10分間伸長反応を 行った。 FGFR2は 95°Cで 10秒、 58°Cで 15秒、 72°Cで 30秒を 25サイクル行い、 72°Cで 10分間伸長反応を行った。 IGF-2は 95°Cで 10秒、 58°Cで 15秒、 72°Cで 30秒を 31サイクル行い、 72°Cで 10分間伸長反応を行った。 PDGFc peptide, PDGFR i3および IRS-1は 95°Cで 10秒、 58°Cで 15秒、 72°Cで 30秒を 23サイクル行い、 72°Cで 10分間伸長反応を行った。 GAPDHは、 95°Cで 3分初期熱変性を行った後、 94°Cで 10秒、 58°Cで 15秒、 68°Cで 1分を 20サイクル行い、 68°Cで 10分間伸長 反応を行った。 反応液の一部を 2%ァガロースゲルにて電気泳動し、 ェチジゥム ブロマイ ド液にて染色した。
その結果、 MC3T3- E1細胞を用いた DNAマイクロアレイ解析の結果の中で、 0C、 ALPおよび Col 1の他に IRS1、 PDGFR β , PDGFc, FGFR2, FGF2、 CTGF、 BMP- 4およ び IGF-2についてそれぞれの遺伝子発現がぺプチド D添加により顕著に上昇して いることが確認できた (図 5 O A) 。 発現強度を数値化し、 コントロールにおけ るそれぞれの遺伝子発現量を 1としてグラフ化したところ、 IRS- 1および PDGFR βに関しては DNAマイクロアレイ解析よりもさらに顕著にこれらの遺伝子発現上 昇が認められた (図 5 0 Β) 。 その他の因子については DNAマイクロアレイとほ ぼ同様の結果が得られた。
以上のことからぺプチド!)による作用は、 ぺプチド Dの刺激を受けた骨芽細胞 が PDGFR i3、 PDGFc、 IGF- 1、 IGF- 2、 FGF2、 CTGF、 および BMP-4などのサイ トカイ ン、 増殖因子群を自ら産生し、 また PDGFR ]3、 FGFR2などのサイ トカイン、 増殖 因子の受容体群をも産生させ、 オートクライン的に骨芽細胞分化、 増殖、 骨形成 を促進しているものと考えられる。 生理的には、 破骨細胞に接触している骨芽細 胞に RANKから RANKLを介して逆シグナルが伝わり、 オートクライン、 パラクラ ィン的に連鎖反応を引き起こし、 破骨細胞に接触している骨芽細胞だけでなく、 その近傍に位置する骨芽細胞が分化、 増殖、 骨形成を促進すると考えられる。
PCRプライマー配列 mBMP-4-F 5, -ATGAGGGATCTTTACCGGCT-3 ' (配列番号 2 7 )
mBMP-4-R: 5' -TTTATACGGTGGAAGCCCTG-3 ' (配列番号 2 8)
mCTGF-F : 5 ' -AGTGTGCACTGCCAAAGATG-3 ' (配列番号 2 9 )
mCTGF-R: 5' -GGCCAAATGTGTCTTCCAGT-3 ' (配列番号 3 0 )
mFGF2-F: 5' -AAGCGGCTCTACTGCAAGAA-3 ' (配列番号 3 1 )
mFGF2-R: 5' -TCGTTTCAGTGCCACATACC-3 ' (配列番号 3 2 )
mFGFR2- F: : 5 ' -CTTTGGCCTGGCCAGGGATATCAAC -3' (配列番号 3 3)
mFGFR2-R: : 5 ' -CCAACTGCTTGAATGTGGGTCTCT -3' (配列番号 34)
mIGF2-F: 5, -CCCGCTGTTCGGTTTGCATAC-3 ' (配列番号 3 5)
mIGF2-R: 5' -ACGGTTGGCACGGCTTGAAG-3 ' (配列番号 3 6 )
mIRSl-F: 5, -AGCGTAACTGGACATCACAGCAG-3 ' (配列番号 3 7)
mIRSl-R: 5' -CGGTGTCACAGTGCTTTCTTGTTG-3 ' (配列番号 3 8)
mPDGFR - -F: 5' - GTCTGGTCTTTTGGGATCCTACTCT- 3, (配列番号 3 9 )
mPDGFR β - R: 5' -CTCCTCATCTACCTGCTGGTACT-3 ' (配列番号 4 0)
mPDGFc - F: 5 ' -CTGATTCGGTACCTAGAGCCAGAT-3 ' (配列番号 41)
mPDGFc-R: 5 ' - CTGTCCTCTTTAGCTCTTCCCGT- 3, (配列番号 42)
mGAPDH-F: 5 ' -CACCATGGAGAAGGCCGGGG-3 ' (配列番号 1 9 )
mGAPDH-R: 5 ' -GACGGACACATTGGGGGTAG-3 ' (配列番号 2 0) 実施例 2 7 Fc融合べプチドの作製
発現ベクター pFUSE- hlgGl- Fc2 (Invivogen) を EcoRVおよび Bglll (TOYOBO) にて制限酵素処理した。 1%ァガロースゲル (Wako) を用いて電気泳動を行い、 必 要な断片をゲルから切り出し Mag Extractor (TOYOBO) にて断片の精製を行った。 一方、 インサート部分は PDF1- F (配列番号 4 3) と PDF1- R (配列番号 44) およ び PAF1-F (配列番号 4 5) と PAF1- R (配列番号 4 6) のオリゴヌクレオチドを用 いて 95°C5分後、 1サイクル 1 °C下降の条件で 25°Cになるまでァニーリングを行 い、 2種類の二本鎖 DNA (PDF1および PAF1) を合成した。 ペプチド Dを含むイン サ一ト DNAである PDF1に対し、ネガティブコントロールとして配列番号 4 7のァ ミノ酸配列からなるぺプチド Aを含むインサート DNAである PAF1を作製した。制 限酵素処理したベクターおよび 2 種類のィンサー トを Ligation Mighty Mix (TAKARA)を用いて、 16°Cにて 1時間ライゲーシヨンを行った。 このうち 5 L を DH5 o; (Invitrogen)にトランスフォ一メーションした。ゼォシン(Invitrogen) を含む LB培地にてスクリ一二ングを行レ、、得られたコロニーをミニプレップキッ ト (BioRad) を用いて精製した。 各プラスミ ドは制限酵素処理およびシークェン ス解析を行い、 目的とするプラスミ ドを確認した。 配列番号 5 0及び 5 1にそれ ぞれ、 ペプチド!)と Fcの融合タンパク質である Fc融合ペプチド Dの塩基配列及 びァミノ酸配列を示し、配列番号 5 2及び 5 3にぺプチド Aと Fcの融合タンパク 質である Fc融合べプチド Dの塩基配列及びァミノ酸配列を示す。
PDF1-F: CTACTGCTGGAGCCAGTACCTGTGCTACGGTGGAGGTGGTAGCG (配列番号 4 3 ) PDF1-R: GATCCGCTACCACCTCCACCGTAGCACAGGTACTGGCTCCAGCAGTAG (配列番号 4 4 ) PAF1-F: CTACTGCGCTGCAGCTGCAGCTTGCTACGGTGGAGGTGGTAGCG (配列番号 4 5 ) PAF1-R: GATCCGCTACCACCTCCACCGTAGCAAGCTGCAGCTGCAGCGCAGTAG (配列番号 4 6 ) YCAAAAACY (配列番号 4 7 ) 実施例 2 8 Fc融合べプチド Dの ALP活性亢進能
COS- 1細胞を 10cmディッシュに 2xl06個ずつ播種した。 FuGENE HD (Roche)を用 いて、 実施例 2 7にて作製した Fc融合ペプチド!)発現プラスミ ド、 Fc融合ぺプ チド A発現プラスミ ド、 さらにベクターである PFUSE-hIgGl-Fc2を各々 5 // gずつ C0S-1細胞にトランスフエクションした。 8時間後に培地を 0ptiMEM (GIBC0) 10m Lと交換し、 72時間培養を行った。 培養上清を回収し、 2000rpra、 4°C、 5分の条 件で遠心を行い死細胞等の不純物を除去した後、 濃縮フィルター (Amicori) を用 いて、培養上清中に産生された Fc融合べプチドを濃縮した。培養上清中に産生さ れた Fc融合ペプチド D (配列番号 5 0 )、 Fc融合ペプチド A (配列番号 5 2 )およ び Fcの産生は SDS-PAGEにて当該サイズ (約 30KDa) のバンドの検出により確認 した。
得られた Fc融合べプチド D、Fc融合べプチド Aおよび Fcコント口ールは α MEM で希釈を行い、 MC3T3-E1細胞を 2xl04個/ゥエルずつ播種した 96ゥエルプレート (Nunc)に添加し培養を行った。 培養 5 日目に実施例 1に記載した方法で ALP活性 測定を行った。その結果、 Fc融合ぺプチド Dにより MC3T3- E1細胞にて有意な ALP 活性亢進が認められた (図 5 1 ) ό —方、 Fc融合ペプチド Αおよび Fcコントロー ル添加群には ALP活性亢進作用は認められなかった。以上より、ペプチド D を Fc に融合させた Fc融合ぺプチド Dは、 ぺプチド Dと同様に MC3T3-E1細胞からの骨 芽細胞分化誘導を促進させた。 実施例 2 9 合成べプチド Dの精製方法による TRAP活性への影響
実施例 1 8で作製したぺプチド!)の塩置換品について TRAP活性に対する影響に ついて検討を行った。
RAW264細胞を 10%FBS+ a MEM (SIGMA)を用いて 96ゥエルプレートに 2 X 103個/ ゥヱルにて播種した。 細胞接着後に 5 nM GST-RANKL (オリエンタル酵母工業) を 含む 10%FBS+ o; MEMに置換した。 そこに 25及び 100 の濃度の TFA塩ぺプチド
D、 酢酸塩べプチド D及び塩酸塩ぺプチド Dを添加し、 4 日間培養を行った。 培養 終了後に 100 /x Lのァセトン /エタノールを各ゥエルに加え細胞を固定し、 ドラフ ト内で 30min乾燥させた。実施例 1 6に記載した方法にて TRAP活性測定を行った。 その結果、 TFA塩ぺプチド Dは 25 Mにおいて有意な TRAP活性抑制作用が確認さ れたが、酢酸塩および塩酸塩置換したペプチド Dには抑制効果は見られなかった。 また、 ΙΟΟ μ Μの濃度においても TFA塩ペプチド D抑制効果は著しく高く、 一方で 酢酸塩ペプチド Dにより有意な抑制は認められたが、 TFA塩に比して弱い抑制効 果しか認められなかった (図 5 2 )。 また、 塩酸塩ペプチド Dは ΙΟΟ μ Μの濃度に おいても TRAP活性抑制作用は認められなかった。実施例 1 8の図 3 9 Aで示した ように、 同じアミノ酸配列でも用いる塩によって活性に影響が出ることが、 破骨 細胞形成抑制活性においても認められた。 ペプチド Dの場合、 塩酸塩には骨芽細 胞分化活性も、 破骨細胞形成抑制活性も認められないが、 酢酸塩は TFA塩に比し て骨芽細胞分化活性は高く、 破骨細胞形成抑制活性は低かった。 このことはぺプ チド Dが有する 2つの活性、 即ち、 骨芽細胞分化活性と破骨細胞形成抑制活性を 塩置換などの修飾により、 独立に調節することが可能であることを示す。 骨芽細 胞分化活性だけを有する修飾ペプチド D、 あるいは、 破骨細胞形成抑制活性だけ を有する修飾ぺプチド Dも作製可能である 実施例 3 0 各種 RANKL抗体の中和能の検討
ALP活性亢進能を示す RANKL抗体の機能を検討するために、 RANKLによる破骨細 胞形成活性に対する各種 RANKL抗体の中和能を調べた。 抗体はマウスモノクロ一 ナル RANKL抗体 (#22、 #36、 Aおよび B) を使用した。 RAW264細胞を 10%FBS+ α MEM (SIGMA)を用いて 96 ゥエルプレートに 2 X 103個/ゥヱルにて播種した。 細胞 接着後に 5 nMマウス sRANKL (ぺプロテック社) を含む 10%FBS+ α MEMに置換し た。 そこに 1 /z g/mLの各種 RANKL抗体を添加し、 4 日間培養を行った。 培養終了 後に 100 Lのァセ トン/エタノールを各ゥエルに加え細胞を固定し、 ドラフト内 で 30min乾燥させた。実施例 1 6に記載した方法にて TRAP活性測定を行った。 そ の結果、 1*22および B抗体については TRAP活性抑制作用が見られたが、 #36およ び A抗体は中和活性を持たないことが示された (図 5 3 )。 #36および A抗体は逆 に RANKL の破骨細胞形成活性を有意に促進した。 これはこれらの抗体が sRANKL に結合することにより、 sRANKL が 3量体になるなどの構造的変化を起こし、 RAW26 細胞上の RANKに結合する際に RANKのクラスター化を促進し、破骨細胞形 成を促進したものと考えられる。 実施例 3 1 GST融合べプチドの作製
実施例 2 7と同様にべプチド Dをコードする配列にリンカー配列及び EcoRI、
BamHI制限酵素サイ ト両端に付加したインサート DNA部分は、 GPD1-F (配列番号
4 8 ) と GPD1-R (配列番号 4 9 ) のオリゴヌクレオチドを用いて作製し、 これら のエンドヌクレア一ゼを用レヽて pGEX-4T-2 (GE healthcare ; Genbank Accession
Number U13854) の Glutathione S— transferaseの下流 ίこ定法 {こよりクローニング した。 配列番号 5 4及び 5 5に、 それぞれペプチド Dと GSTの融合タンパク質で ある GST融合べプチド Dの塩基配列どアミノ酸配列を示す。 トランスフォーメー シヨンには DH5 ct (Invitrogen) を用いた。 得られた陽性クローンを定法により 培養し、 IPTG (終濃度: 0. 5 mM) でタンパク質発現の誘導後、 菌体を抽出バッフ ァー (50 raM Tris- HC1、 H 8. 0、 100 mM NaCl、 1 mM EDTA、 1 mM DTT、 l%(v/v)TritonX-100)にて懸濁し、氷上にてソニケ一ターを用いて破砕した。 18000 Xg, 15 minで遠心後、 上清を回収し Glutathione Sepharoseカラムにかけた。 続いて洗浄バッファー (50 niM Tris- HC1、 pH 8·0、 100 mM NaCl、 1 raM DTT、 0. l%(v/v)TritonX-100) にて洗浄し、 その後、 Glutathione 溶液 (12 mM 還元型 グルタチオン、 50 mM Tris-HCl, pH 8.0)で溶出した。溶出後リン酸バッファー(PBS) にて透析を行った。精製した GST融合べプチド Dを SDS- PAGEにて分子量を確認し たところ、 約 27 kDaであった。 0·22μπιのフィルター (ポ一ノレ) ろ過により滅菌 し、 以下の実験に用いた。 実施例 3 2 抗ヒ ト RANKLモノクローナル抗体の調製
ヒ ト RANKLの細胞外ドメイン(aal40 - 317)を含む GST - RANKL (オリエンタル酵母 工業) をマウスに免疫し、 定法によりハイプリ ドーマを作製した。 作製したハイ ブリ ドーマは細胞培養用の培地である DMEM(4.5g/L glucose, L-グルタミン含 有) + 10% FBSにて培養を行レ、、限界希釈によるクローン化の後に 6種類を選び、 培養上清をそれぞれ回収した。 回収した培養上清は、 0.22//ra フィルター (ポー ル) によりろ過を行レ、、 protein Gセファロースカラム (GEヘルスケア) に力 け た。 続いて PBSにて洗浄し、 溶出バッファー (0.1M グリシン- HC1, pH2.7) にて 抗体を溶出した。 また溶出した抗体は即座に中和バッファ一にて (lMTris-HCl, pH 9.0) 中和し、 PBSにて透析の後に 0.22 xmフィルターによりろ過滅菌を行な つた。 SDS- PAGEにて抗体の L鎖 H鎖のバンドを確認後、 分光光度計にて A280の 吸光度より濃度を算出した。 実施例 3 3 抗ヒ ト RANKLモノクローナル抗体の中和能の検討
ALP活性亢進能と RANKL抗体の中和能の因果関係を検討するために、 実施例 3
2にて作製した抗ヒ ト RANKLモノクローナル抗体を用いて RANKLの破骨細胞形成 能に及ぼす中和活性を調べた。 クローンは 4G4、 7H12および 10C11を使用した。
RAW264細胞を 10%FBS+aMEM (SIGMA)を用いて 96ゥエルプレートに 2X103個/ゥ エルにて播種した。細胞接着後に 5nMヒ ト sRANKL (ぺプロテック社) を含む 10%
FBS+ a MEMに置換した。 そこに 0.0625、 0.25および 1 /z g/mLの抗ヒ ト RANKLモノ クローナル抗体を添加し、 4 日間培養を行った。 培養終了後に 100 // Lのァセ トン /エタノールを各ゥ; ルに加え細胞を固定し、 ドラフト内で 30min乾燥させた。実 施例 1 6に記載した方法にて TRAP活性測定を行った。 その結果、 10C11には l / g/mLで有意な TRAP活性抑制作用が認められたが、 0. 25および 0. 0625 g/mLの濃 度では抑制作用は見られなかった (図 5 4 )。 一方で 7H12には各濃度で強い中和 能が確認されたが、 4G4は全く中和作用を示さなかった。 実施例 3 4 ヒ ト間葉系幹細胞の分化誘導における GST融合ペプチド Dおよび抗 ヒ ト RANKLモノクローナル抗体の効果
ヒ ト間葉系幹細胞 (hMS (:、 Lonza社) を 2 X 103個/ゥヱルずつ 96 ゥヱルプレー ト(Nunc)に播種した。 細胞接着後に、 専用維持培地 (Lonza社) に 100 nMデキサ メサゾン (SIGMA)、 10 mM BGP (SIGMA)および 50 μ g/mLァスコルビン酸を添加して 作製した分化誘導培地に切換え、 10 nMの GST融合ペプチド Dおよび GST 、 ある いは 0. 3および 3 μ g/mLの濃度で 3種類の抗ヒ ト RANKLモノクローナル抗体を添 加し培養を行った。 培養 5 日目に実施例 1に記載した方法で ALP活性測定を行つ た。 その結果、 hMSCにおいて GST融合ペプチド Dにより有意な ALP活性の上昇が 確認された (図 5 5 )。 GSTだけでは ALP活性に変化は認められなかった。 一方、 実施例 3 3にて用いた 3種類の抗ヒ ト RANKLモノクローナル抗体を hMSCに添加す ると、 10C11 抗体により ALP活性が有意に亢進した (図 5 6 )。 4G4および 7H12 には ALP活性亢進作用が認められなかった。
以上より、 ぺプチド Dを GSTに融合させた GST融合べプチド Dは、 ベプチド D と同様にヒ ト間葉系幹細胞からの骨芽細胞分化誘導を促進させた。 実施例 2 8の
Fc融合ぺプチド Dによる骨芽細胞分化誘導を促進と合わせて考えると、ぺプチド
Dを何らかの蛋白質と融合させてもペプチド D と同様の作用を発揮させることが 可能であることが明らかとなった。 また、 上記の実験から抗ヒ ト RANKLモノクロ ーナル抗体の中にはヒ ト間葉系幹細胞からの骨芽細胞分化誘導を促進させる作用 を有するものがあることが分かった。 つまり、 RANKL のある特定の部分をェピト ープとして抗体が認識することにより、 RANKL に作用して骨芽細胞分化シグナル を伝えることが示された。 このことを利用して効果的に骨芽細胞分化シグナルを 伝える抗 RANKLモノクローナル抗体をデザイン、 スクリーニング、 作製すること が可能である。 実施例 2 1の抗マウス RANKLモノクローナル抗体 Bのように、 抗 RANKLモノクローナル抗体の中には RANKLに作用して骨芽細胞増殖シグナルを伝 えるものも存在するので、 RANKL のある特定の部分をェピトープとして抗体が認 識することにより、 RANKL に作用して骨芽細胞増殖シグナルを伝えることが示さ れている。 このように多くの抗 RANKLモノクロ一ナル抗体をスクリーニングし、 最適化することにより、 骨芽細胞増殖または分化シグナルを効率よく伝える抗体 を見つけることが可能である。
また、 実施例 1 9および 3 0に示されているように、 RANKL の破骨細胞分化作 用を中和する抗マウス RANKLモノクローナル抗体 (#22および B抗体) の中にも 骨芽細胞増殖作用を有するもの (B抗体) と有しないもの (#22) があること、 中 和抗体であってもなくても骨芽細胞分化作用を示す抗体 (#22、 #36、 Aおよび B) があることが示された。 さらに、 RANKL の破骨細胞分化作用を中和する抗ヒ ト RANKLモノクローナル抗体 (7H12および 10C11) の中にも、 骨芽細胞分化作用を 有するもの (10C11) と有しないもの (7H12) があることが示された。 一方、 どち らの作用も示さない抗体(4G4)もあった。以上の事実は、抗 RANKLモノクローナル 抗体が示し得る 3つの作用、 即ち、 破骨細胞分化作用の中和、 骨芽細胞増殖、 お よび骨芽細胞分化は、 それぞれ独立に別々の抗 RANKLモノクローナル抗体によつ て実現させることができることを示す。 また、 B 抗体のように破骨細胞分化作用 の中和と骨芽細胞増殖、 および骨芽細胞分化の 3つの作用を一つの抗体に持たせ ることも可能である。 さらに、 #22抗体や 10C11抗体のように、 これら 3つの作 用の内、 任意の 2つの作用を一つの抗体に持たせることも可能である。 産業上の利用可能性
本発明では、リガンドである RANKLからその受容体である RANKに順方向のシグ ナルが入るだけでなく、 RANKから RANKLに逆方向のシグナルが骨芽細胞又は骨芽 細胞に分化し得る細胞に入ることを見出しだ。 また、 この RANKLと RANKの間の双 方向性シグナルが、 骨吸収と骨形成のカップリングを司ることを見出した。 破骨 細胞上の膜型 RANKから骨芽細胞上の膜型 RANKLへの逆シグナルは、生理的骨代謝 において骨吸収と骨形成の力ップリングを司ると考えられる。 この逆シグナルを 利用することにより、 骨量を増加させる薬剤の開発が可能である。 具体的には膜 型 RANK、 RANK類似べプチド、 抗 RANKL抗体、 可溶型 RANK、 OPG及びそれらの変異 体、 類似物などの RANKLに作用する分子による膜型 RANKLへの作用による逆シグ ナルにより、 骨芽細胞分化 ·成熟が亢進し、 骨量を増加させることができる。 膜型 RANK、 RANK類似べプチド、 抗 RANKL抗体、 可溶型 RANK、 OPG及びそれらの 変異体、 類似物、 さらに天然あるいは合成の低分子化合物などの骨芽細胞又は骨 芽細胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物、 例え ば RANKL作用分子により、 骨芽細胞分化 ·成熟が亢進し、 骨量を増加させること に利用できる。 即ち、 医薬品及び体外診断薬などへの利用が可能である。 また、 骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進す る化合物、 例えば RANKL作用分子をスクリーニングすることにより、 新しい骨形 成促進薬を探索、 開発することに利用できる。 また、 骨芽細胞又は骨芽細胞に分 化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物、 例えば RANKL作 用分子は骨芽細胞又は骨芽細胞に分化し得る細胞にシグナルを伝達し、 分化 ·成 熟させるための試薬としても利用できる。 RANKL を発現する細胞は骨芽細胞又は 骨芽細胞に分化し得る細胞以外には T細胞、 B細胞、 滑膜細胞など様々な細胞が. 知られているが、 骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟又 は石灰化を促進する化合物、 例えば RANKL作用分子はこれらの細胞にも同様にシ グナルを伝達し、 分化 ·成熟 ·活性化を引き起こす物質として、 医薬品、 体外診 断薬、 研究用試薬など様々な用途に利用できる。 配列表フリーテキスト
配列番号 7、 1 6 合成、 2番目の Cysは 8番目の Cys とジスルフイ ド結合によ り結ばれている
配列番号 8〜: 1 3、 1 7〜4 6、 4 8、 4 9 プライマー 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。

Claims

請求の範囲
1 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物を有効成分と して含む、 骨量減少を伴う骨代謝疾患の治療又は予防のための医薬組成物。
2 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が、 骨芽細胞 又は骨芽細胞に分化し得る細胞上の RANKLに作用する、 請求項 1記載の骨量減少 を伴う骨代謝疾患の治療又は予防のための医薬組成物。
3 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が RANK、 RANK の変異体若しくは断片ぺプチド、 RANKに構造が類似したぺプチド、 RANKの断片べ プチドに構造が類似したぺプチド、 RANKに構造が類似した化学物質、 RANKの断片 ペプチドに構造が類似した化学物質、 0PG、 0PG の変異体若しくは断片ペプチド、 0PGに構造が類似したぺプチド、 0PGの断片べプチドに構造が類似したべプチド、 0PGに構造が類似した化学物質、 並びに 0PGの断片べプチドに構造が類似した化 学物質からなる群から選択される化合物である、 請求項 1記載の骨量減少を伴う 骨代謝疾患の治療又は予防のための医薬組成物。 .
4 . 骨芽細胞又は骨芽細胞に分化し得る細胞上の RANKしに作用し、 骨芽細胞又 は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が
RANK, RANKLに作用し得る RANKの変異体若しくは断片べプチド、 RANKに構造が類 似し RANKLに作用し得るぺプチド、 RANKの断片べプチドに構造が類似し RANKLに 作用し得るぺプチド、 RANKに構造が類似し RANKLに作用し得る化学物質、 RANKL に作用し得る RANKの断片べプチドに構造が類似した化学物質、 0PG、 RANKLに作 用し得る 0PGの変異体若しくは断片べプチド、 0PGに構造が類似し RANKLに作用 し得るぺプチド、 0PGの断片べプチドに構造が類似し RANKLに作用し得るぺプチ ド、 0PGに構造が類似し RANKLに作用し得る化学物質、 並びに RANKLに作用し得 る 0PGの断片べプチドに構造が類似した化学物質からなる群から選択される化合 物である、 請求項 2記載の骨量減少を伴う骨代謝疾患の治療又は予防のための医 薬組成物。
5 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が配列番号 7 又は配列番号 1 6で表されるアミノ酸配列からなるぺプチドである、 請求項 1又 は 2に記載の骨量減少を伴う骨代謝疾患の治療又は予防のための医薬組成物。
6 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が配列番号 7 又は配列番号 1 6で表されるアミノ酸配列からなるぺプチドと GST又は IgGtの Fc 領域との融合タンパク質である、 請求項 1又は 2に記載の骨量減少を伴う骨代謝 疾患の治療又は予防のための医薬組成物。
7 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞 に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が抗 RANKL抗 体又はその機能的断片である、 請求項 1又は 2に記載の骨量減少を伴う骨代謝疾 患の治療又は予防のための医薬組成物。
8 . 骨量減少を伴う骨代謝疾患が、 骨粗鬆症、 若年性骨粗鬆症、 骨形成不全、 高カルシウム血症、 上皮小体機能亢進症、 骨軟化症、 骨石灰脱失症、 骨溶解性骨 疾患、 骨壊死、 パジェッ ト病、 関節リウマチ、 変形性関節症による骨の低下、 炎 症性関節炎、 骨髄炎、 ダルココルチコィ ド処置、 転移性の骨疾患、 歯周の骨の喪 失、 癌による骨の喪失、 及び加齢による骨の喪失からなる群から選択される、 請 求項 1〜 7のいずれか 1項に記載の骨量減少を伴う骨代謝疾患の治療又は予防の ための医薬組成物。
9 . さらに、 BMP ファミリーメンバーを有効成分として含む、 請求項 1〜8の いずれか 1項に記載の骨量減少を伴う骨代謝疾患の治療又は予防のための医薬組 成物。
1 0 . 骨芽細胞に分化し得る細胞が、 骨芽前駆細胞、 間葉系幹細胞、 間質細胞 及び筋芽細胞からなる群から選択される、 請求項 1〜9のいずれか 1項に記載の 骨量減少を伴う骨代謝疾患の治療又は予防のための医薬組成物。
1 1 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞にシグナルを伝達し、 前記細胞の分化、 増殖、 成熟又は石灰 化を促進する化合物をスク リーニングする方法であって、 候補化合物を、 RANKL を発現している骨芽細胞又は骨芽細胞に分化し得る細胞と接触させ、 候補化合物 が該骨芽細胞又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促 進した場合に、 候補化合物が骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細胞に分化し得る細胞にシグナルを伝達し、 前記細胞の分化、 増殖、 成熟又は石灰化を促進する化合物であると判断することを含む、 スクリー ニング方法。
1 2 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が、 骨芽細 胞又は骨芽細胞に分化し得る細胞上の RANKLに作用する、 請求項 1 1記載のスク リ一二ング方法。
1 3 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞にシグナルを伝達し、 前記細胞の分化、 増殖、 成熟又は石灰 化を促進する化合物をスク リーニングする方法であって、 候補化合物を、 マウス に投与し、 該マウスにおいて、 骨密度の増加、 骨塩量の増加、 骨面積の増加、 単 位骨量の増加、 骨梁幅の増加、 骨梁数の増加からなる群から選択される少なくと も 1つの現象が認められた場合に、 候補化合物が骨芽細胞又は骨芽細胞に分化し 得る細胞に作用し、骨芽細胞又は骨芽細胞に分化し得る細胞にシグナルを伝達し、 前記細胞の分化、 増殖、 成熟又は石灰化を促進する化合物であると判断すること を含む、 スクリーニング方法。
1 4 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が、 骨芽細 胞又は骨芽細胞に分化し得る細胞上の RANKLに作用する、 請求項 1 3記載のスク リ一二ング方法。
1 5 . 骨芽細胞に分化し得る細胞が、 骨芽前駆細胞、 間葉系幹細胞、 間質細胞 及び筋芽細胞からなる群から選択される、 請求項 1 1〜1 4のいずれか 1項に記 載のスクリ一二ング方法。
1 6 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物を有効成分 として含む、 骨芽細胞分化 ·成熟剤。
1 7 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が、 骨芽細 胞又は骨芽細胞に分化し得る細胞上の RANKLに作用する、 請求項 1 6記載の骨芽 細胞分化 ·成熟剤。
1 8 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、増殖、成熟又は石灰化を促進する化合物が RANK、RANK の変異体若しくは断片べプチド、 RANKに構造が類似したぺプチド、 RANKの断片ぺ プチドに構造が類似したぺプチド、 RANKに構造が類似した化学物質、 RANKの断片 ペプチドに構造が類似した化学物質、 0PG、 0PG の変異体若しくは断片ペプチド、 0PGに構造が類似したべプチド、 0PGの断片ぺプチドに構造が類似したべプチド、 0PGに構造が類似した化学物質、 並びに 0PGの断片べプチドに構造が類似した化 学物質からなる群から選択される化合物である、 請求項 1 6記載の骨芽細胞分 化 ·成熟剤。
1 9 . 骨芽細胞又は骨芽細胞に分化し得る細胞上の RANKLに作用し、 骨芽細胞 又は骨芽細胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物 が RANK、 RANKLに作用し得る RANKの変異体若しくは断片ぺプチド、 RANKに構造 が類似し RANKLに作用し得るぺプチド、 RANKの断片べプチドに構造が類似し RANKL に作用し得るペプチド、 RANKに構造が類似し RANKLに作用し得る化学物質、 RANKL に作用し得る RANKの断片べプチドに構造が類似した化学物質、 0PG、 RANKLに作 用し得る 0PGの変異体若しくは断片べプチド、 0PGに構造が類似し RANKLに作用 し得るぺプチド、 0PGの断片べプチドに構造が類似し RANKLに作用し得るぺプチ ド、 0PGに構造が類似し RANKLに作用し得る化学物質、 並びに RANKLに作用し得 る 0PGの断片べプチドに構造が類似した化学物質からなる群から選択される化合 物である、 請求項 1 7記載の骨芽細胞分化 ·成熟剤。
2 0 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が配列番号
7又は配列番号 1 6で表されるアミノ酸配列からなるぺプチドである、 請求項 1
6〜 1 9のいずれか 1項に記載の骨芽細胞分化 ·成熟剤。
2 1 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が配列番号
7又は配列番号 1 6で表されるァミノ酸配列からなるペプチドと GST又は IgG,の Fc領域との融合タンパク質である、請求項 1 6〜 1 9のいずれか 1項に記載の骨 芽細胞分化 ·成熟剤。
2 2 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が配列番号
7又は配列番号 1 6で表されるアミノ酸配列からなるペプチドの酢酸塩である、 請求項 2 0記載の骨芽細胞分化 ·成熟剤。
2 3 . 骨芽細胞又は骨芽細胞に分化し得る細胞に作用し、 骨芽細胞又は骨芽細 胞に分化し得る細胞の分化、 増殖、 成熟又は石灰化を促進する化合物が抗 RANKL 抗体又はその機能的断片である、 請求項 1 9記載の骨芽細胞分化 ·成熟剤。
2 4 . 骨芽細胞に分化し得る細胞が、 骨芽前駆細胞、 間葉系幹細胞、 間質細胞 及び筋芽細胞からなる群から選択される、 請求項 1 6〜2 3のいずれか 1項に記 載の骨芽細胞分化 ·成熟剤。
2 5 . 配列番号 7又は配列番号 1 6で表されるアミノ酸配列からなるペプチド を有効成分として含む、 骨量減少を伴う骨代謝疾患の治療又は予防のための医薬 組成物。
2 6 . 配列番号 7又は配列番号 1 6で表されるアミノ酸配列からなるペプチド と GST又は IgGiの Fc領域との融合タンパク質を有効成分として含む、 骨量減少 を伴う骨代謝疾患の治療又は予防のための医薬組成物。
2 7 . 有効成分が配列番号 7又は配列番号 1 6で表されるアミノ酸配列からな るペプチドの酢酸塩である、 請求項 2 5記載の骨量減少を伴う骨代謝疾患の治療 又は予防のための医薬組成物。
2 8 . 骨量減少を伴う骨代謝疾患が、骨粗鬆症、若年性骨粗鬆症、骨形成不全、 高カルシウム血症、 上皮小体機能亢進症、 骨軟化症、 骨石灰脱失症、 骨溶解性骨 疾患、 骨壊死、 パジェット病、 関節リウマチ、 変形性関節症による骨の低下、 炎 症性関節炎、 骨髄炎、 ダルココルチコィ ド処置、 転移性の骨疾患、 歯周の骨の喪 失、 癌による骨の喪失、 及び加齢による骨の喪失からなる群から選択される、 請 求項 2 5〜 2 7のいずれか 1項に記載の骨量減少を伴う骨代謝疾患の治療又は予 防のための医薬組成物。
2 9 . さらに、 BMP ファミリーメンバーを有効成分として含む、 請求項 2 5〜 2 8のいずれか 1項に記載の骨量減少を伴う骨代謝疾患の治療又は予防のための 医薬組成物。
PCT/JP2008/060731 2007-06-05 2008-06-05 新しい骨量増加薬 WO2008150025A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002689518A CA2689518A1 (en) 2007-06-05 2008-06-05 A novel bone mass increasing agent
JP2009517928A JP5191487B2 (ja) 2007-06-05 2008-06-05 新しい骨量増加薬
US12/663,202 US20100260680A1 (en) 2007-06-05 2008-06-05 Novel bone mass increasing agent
EP08765502.3A EP2165716B1 (en) 2007-06-05 2008-06-05 Novel bone mass increasing agent
CN2008801013270A CN101772351B (zh) 2007-06-05 2008-06-05 新的骨量增加药

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2007-149799 2007-06-05
JP2007149799 2007-06-05
JP2007313822 2007-12-04
JP2007-313822 2007-12-04
JP2008060145 2008-03-10
JP2008-060145 2008-03-10
JP2008-131572 2008-05-20
JP2008131572 2008-05-20

Publications (1)

Publication Number Publication Date
WO2008150025A1 true WO2008150025A1 (ja) 2008-12-11

Family

ID=40093822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060731 WO2008150025A1 (ja) 2007-06-05 2008-06-05 新しい骨量増加薬

Country Status (6)

Country Link
US (1) US20100260680A1 (ja)
EP (1) EP2165716B1 (ja)
JP (2) JP5191487B2 (ja)
CN (1) CN101772351B (ja)
CA (1) CA2689518A1 (ja)
WO (1) WO2008150025A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271181A (ja) * 2009-05-21 2010-12-02 Kenji Yamamoto Ccr5を標的とする阻害剤の疾病治療効果、予防効果及び副作用を評価する方法
EP2343087A1 (en) * 2008-09-30 2011-07-13 Oriental Yeast Co., Ltd. Novel cartilage cell proliferation and differentiation inducer
JP2012533537A (ja) * 2009-07-17 2012-12-27 コリア リサーチ インスティテュート オブ バイオサイエンス アンド バイオテクノロジー コルホルシンダロパートを含む骨疾患の予防または治療用組成物
JP2015508392A (ja) * 2011-12-23 2015-03-19 ユニベルシテ ド ナント 核内因子κB活性化受容体(RANK)をターゲティングするペプチドおよびそれらの適用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150025A1 (ja) * 2007-06-05 2008-12-11 Oriental Yeast Co., Ltd. 新しい骨量増加薬
JP2011213654A (ja) * 2010-03-31 2011-10-27 Oriental Yeast Co Ltd 骨芽細胞分化促進活性を有する抗体
EP2692359B1 (en) 2011-03-31 2017-06-07 Oriental Yeast Co., Ltd. Cancer immunopotienting agent containing rankl antagonist
JP2014198686A (ja) * 2013-03-29 2014-10-23 オリエンタル酵母工業株式会社 脂肪分化を抑制する方法
CN104293735A (zh) * 2013-07-18 2015-01-21 北京大学第一医院 用于制备Col17-IgG1Fc融合蛋白的细胞系及其应用
WO2015091593A1 (en) * 2013-12-18 2015-06-25 Cytoo Device and method for standardizing myoblast differentiation into myotubes
KR101632948B1 (ko) * 2014-05-13 2016-06-27 (주)케어젠 항염증, 골 형성 및 발모 촉진 활성을 갖는 펩타이드 및 이의 용도
CN112457371B (zh) * 2020-11-29 2021-12-10 北京泽勤生物医药有限公司 一种促骨形成多肽及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046644A1 (en) 1997-04-15 1998-10-22 Snow Brand Milk Products Co., Ltd. Novel protein and process for producing the same
WO2001008677A1 (en) 1999-07-28 2001-02-08 The Trustees Of The University Of Pennsylvania Methods of inhibiting osteoclast activity
WO2001083525A2 (en) 2000-05-03 2001-11-08 Amgen Inc. Modified peptides, comprising an fc domain, as therapeutic agents
JP2002509430A (ja) 1996-12-23 2002-03-26 イミュネックス・コーポレーション Tnfスーパーファミリーのメンバーであるnf−kappa bの受容体アクティベーターに対するリガンド
JP2003512011A (ja) * 1998-10-23 2003-04-02 アムジエン・インコーポレーテツド 治療薬としての修飾ペプチド

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1226552B (it) * 1988-07-29 1991-01-24 Ellem Ind Farmaceutica Peptidi immunostimolanti.
US5674844A (en) * 1991-03-11 1997-10-07 Creative Biomolecules, Inc. Treatment to prevent loss of and/or increase bone mass in metabolic bone diseases
US6316408B1 (en) * 1997-04-16 2001-11-13 Amgen Inc. Methods of use for osetoprotegerin binding protein receptors
AU762574B2 (en) * 1998-05-14 2003-06-26 Immunex Corporation Method of inhibiting osteoclast activity
US6682739B1 (en) * 1999-07-28 2004-01-27 The Trustees Of The University Of Pennsylvania Methods of inhibiting osteoclastogenesis
WO2008150025A1 (ja) * 2007-06-05 2008-12-11 Oriental Yeast Co., Ltd. 新しい骨量増加薬

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509430A (ja) 1996-12-23 2002-03-26 イミュネックス・コーポレーション Tnfスーパーファミリーのメンバーであるnf−kappa bの受容体アクティベーターに対するリガンド
WO1998046644A1 (en) 1997-04-15 1998-10-22 Snow Brand Milk Products Co., Ltd. Novel protein and process for producing the same
JP3523650B2 (ja) 1997-04-15 2004-04-26 三共株式会社 新規蛋白質及びその製造方法
JP2003512011A (ja) * 1998-10-23 2003-04-02 アムジエン・インコーポレーテツド 治療薬としての修飾ペプチド
WO2001008677A1 (en) 1999-07-28 2001-02-08 The Trustees Of The University Of Pennsylvania Methods of inhibiting osteoclast activity
WO2001083525A2 (en) 2000-05-03 2001-11-08 Amgen Inc. Modified peptides, comprising an fc domain, as therapeutic agents
JP2003533187A (ja) * 2000-05-03 2003-11-11 アムジエン・インコーポレーテツド 治療薬としてのFcドメインを含む修飾ペプチド

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
AOKI ET AL., J CLIN INVEST, vol. 116, 2006, pages 1525
AOKI K. ET AL.: "A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss", THE JOURNAL OF CLINICAL INVESTIGATION, vol. 116, no. 6, 2006, pages 1525 - 1534, XP008126832 *
CHENG ET AL., J BIOL CHEM, vol. 279, 2004, pages 8269
HIGUCHI C. ET AL.: "Hone Keisei Inshi (BMP)", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 62, no. SUPPL. 2, 2004, pages 52 - 56 *
HODA N.: "OPG Seizai. Ko-RANKL Kotai", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 63, no. 9, 2005, pages 1647 - 1653 *
HODA N.: "OPG", JOURNAL OF OSTEOPOROTIC MEDICINE, vol. 2, no. 3, 2003, pages 213 - 218 *
KOSTENUIK PJ, CURRENT OPINION IN PHARMACOLOGY, vol. 5, 2005, pages 618 - 625
LACEY ET AL., CELL, vol. 93, 1998, pages 165
LUCKMAN ET AL., J BONE MINER RES, vol. 13, 1998, pages 581
MARTIN ET AL., TRENDS MOL MED, vol. 11, 2005, pages 76
MCLNTYRE JA; MARTIN L, DRUGS OF THE FUTURE, vol. 30, no. 3, 2005, pages 237 - 239
ODVINA ET AL., J CLIN ENDOCRINOL METAB, vol. 90, 2005, pages 1294
SAMBOOK ET AL., N ENGL J MED, vol. 328, 1993, pages 1747
See also references of EP2165716A4
SUDA ET AL., ENDOCR REV, vol. 13, 1992, pages 66
SUDA ET AL., ENDOCR REV, vol. 20, 1999, pages 345
TAKASAKI ET AL., NAT BIOTEC, vol. 15, 1997, pages 1266
WHYTE ET AL., N ENGL J MED, vol. 349, 2003, pages 457
YASUDA ET AL., PROC NATL ACAD SCI USA, vol. 95, 1998, pages 3597

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2343087A1 (en) * 2008-09-30 2011-07-13 Oriental Yeast Co., Ltd. Novel cartilage cell proliferation and differentiation inducer
EP2343087A4 (en) * 2008-09-30 2012-08-01 Oriental Yeast Co Ltd NEW INDUCER FOR THE DIFFERENTIATION AND PROLIFERATION OF CARTILAGE CELLS
US9435811B2 (en) 2008-09-30 2016-09-06 Oriental Yeast Co., Ltd Inducer of chondrocyte proliferation and differentiation
JP2010271181A (ja) * 2009-05-21 2010-12-02 Kenji Yamamoto Ccr5を標的とする阻害剤の疾病治療効果、予防効果及び副作用を評価する方法
JP2012533537A (ja) * 2009-07-17 2012-12-27 コリア リサーチ インスティテュート オブ バイオサイエンス アンド バイオテクノロジー コルホルシンダロパートを含む骨疾患の予防または治療用組成物
JP2015508392A (ja) * 2011-12-23 2015-03-19 ユニベルシテ ド ナント 核内因子κB活性化受容体(RANK)をターゲティングするペプチドおよびそれらの適用

Also Published As

Publication number Publication date
US20100260680A1 (en) 2010-10-14
CN101772351A (zh) 2010-07-07
CN101772351B (zh) 2013-01-02
EP2165716A4 (en) 2010-11-17
JP2013032385A (ja) 2013-02-14
JPWO2008150025A1 (ja) 2010-08-26
CA2689518A1 (en) 2008-12-11
JP5191487B2 (ja) 2013-05-08
EP2165716B1 (en) 2014-11-12
EP2165716A1 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP5191487B2 (ja) 新しい骨量増加薬
AU2016201712B2 (en) ActRIIb antagonists and dosing and uses thereof
JP6116652B2 (ja) 破骨細胞関連蛋白質Siglec−15を標的とした抗体
TWI636994B (zh) Dkk1抗體及使用方法
JP2021050226A (ja) 最適な骨形成のための血清リンの効果的かつ効率的な制御
KR20090054968A (ko) Prlr 특이적 항체 및 그 용도
JP2015096510A (ja) 抗Siglec−15抗体
KR20090114360A (ko) Ephb3에 대한 길항제 항체
US20180256710A1 (en) Anti-s100a8 for treating leukemia
US20190092848A1 (en) Methods of treating bone diseases, disorders and/or injuries and reagents therefor
US20240199755A1 (en) Antagonists and agonists of the transferrin receptor-2 for use in the treatment of diseases of the bone
JP5878897B2 (ja) 新しい軟骨細胞増殖及び分化誘導剤
US11136383B2 (en) Methods and compositions for modulaton of transforming growth factor beta-regulated functions
Li et al. Administration of a mutated myostatin propeptide to neonatal mice significantly enhances skeletal muscle growth
EP1517703B1 (en) Placental growth factor as a target for the treatment of osteoporosis
US20220048974A1 (en) Novel igfr-like 2 receptor and uses thereof
Chen et al. Galectin‐1 deletion in mice causes bone loss via impaired osteogenic differentiation potential of BMSCs
JP2011213654A (ja) 骨芽細胞分化促進活性を有する抗体
US20220363748A1 (en) Anti il-33 therapeutic agent for treating renal disorders
JP2010138106A (ja) 新規な細胞分化促進薬
KR101695099B1 (ko) 신규한 골아세포 분화마커 및 이의 용도
JP6714263B2 (ja) 免疫調節剤及びスクリーニング方法
WO2019004444A1 (ja) 骨形成促進剤及び促進方法
NZ612783A (en) Stem cell factor inhibitor
KR20240093956A (ko) 최적의 골 형성을 위한 혈청 포스페이트의 효과적이고 효율적인 조절

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880101327.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009517928

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2689518

Country of ref document: CA

Ref document number: 12663202

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008765502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7697/CHENP/2009

Country of ref document: IN