WO2008149964A1 - 車両の電源装置 - Google Patents

車両の電源装置 Download PDF

Info

Publication number
WO2008149964A1
WO2008149964A1 PCT/JP2008/060410 JP2008060410W WO2008149964A1 WO 2008149964 A1 WO2008149964 A1 WO 2008149964A1 JP 2008060410 W JP2008060410 W JP 2008060410W WO 2008149964 A1 WO2008149964 A1 WO 2008149964A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
current
power storage
converter
charging
Prior art date
Application number
PCT/JP2008/060410
Other languages
English (en)
French (fr)
Inventor
Takahide Iida
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Jidoshokki filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP08765223.6A priority Critical patent/EP2154764B1/en
Priority to CN2008800186874A priority patent/CN101682202B/zh
Priority to US12/451,163 priority patent/US8143859B2/en
Publication of WO2008149964A1 publication Critical patent/WO2008149964A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power supply device for a vehicle, and more particularly to a power supply device for a vehicle on which a plurality of power storage devices are mounted.
  • Japanese Patent Application Laid-Open No. 2 00 2-1 0 5 0 2 discloses a storage battery charging / discharging device capable of simultaneously charging and discharging a plurality of storage batteries.
  • the distance that can be traveled by one charge is long. Even in a hybrid vehicle equipped with an internal combustion engine, storage battery, and motor, when adopting a configuration that allows the storage battery to be charged from the outside, the distance that can be traveled without using the internal combustion engine is also long per charge. desired.
  • the above method 1) has an upper limit in view of the strength of the battery cell case and the like, and it is difficult to ensure the desired capacity.
  • the number of cells can be increased in series or in parallel.
  • a catcher battery for driving an auxiliary machine load is usually installed in addition to a high voltage battery for driving a motor of several hundred volts.
  • the voltage of the high-voltage battery is stepped down by the DC / DC converter, and the reduced voltage is used.
  • An object of the present invention is to provide a power supply device for a vehicle in which a plurality of power storage devices are mounted, and the bias of charge / discharge with respect to the plurality of power storage devices is reduced.
  • the present invention is a power supply device for a vehicle, and is provided between a first power storage device and a main load that are electrically parallel to the main load, and between the first power storage device and the main load.
  • a path connecting the first power converter provided, the second power converter provided between the second power storage device and the main load, and the first power converter and the first power storage device Controls the third power converter that receives the current branched from above, the auxiliary load driven by the power from the third power converter, and the first to third power converters And a control device.
  • the control device determines the charging current or discharging current for the first and second power storage devices reflecting the current fluctuation flowing in the trap load, and charges and discharges the determined current. Control the transducer.
  • the power supply device for the vehicle further includes a charger for charging the first and second power storage devices with electric power supplied from outside the vehicle.
  • the charger is connected to the first power storage device.
  • the first and second power converters operate as other chargers that branch a part of the current supplied from the charger and charge the second power storage device.
  • the power supply device of the vehicle further includes a current sensor that detects a charge / discharge current to the first power storage device.
  • the control device temporarily stops the third power converter, and toward the third power converter based on the difference in charge / discharge current to the first power storage device before and after the stop. Calculate the branched current and correct the operation of the first and second power converters based on the branched current.
  • the first power converter performs a boosting operation from the first power storage device side toward the main load side.
  • the second power converter operates so that a constant current flows from the main load side to the second power storage device side.
  • control device is directed to the third power converter from a path connecting the first power converter and the first power storage device when it is estimated that there is a variation in power consumption in the auxiliary load.
  • the branching current is calculated.
  • control device estimates that the power consumption fluctuates in the auxiliary load every time a predetermined time elapses.
  • control device estimates that there is a variation in power consumption in the auxiliary load when the difference between the charging states of the first and second power storage devices exceeds a predetermined value.
  • control device calculates a charging state of the first power storage device and a charging state of the second power storage device, and prevents the first to second charging states from increasing so as not to increase a difference between the charging states of the first and second power storage devices. Controls the third power converter.
  • FIG. 1 is a diagram showing a main configuration of a vehicle 1 according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a detailed configuration of inverters 14 and 2 2 of FIG.
  • FIG. 3 is a circuit diagram showing a detailed configuration of boost converters 12 A and 12 B in FIG.
  • FIG. 4 is a schematic diagram for explaining the state of the power supply apparatus for a vehicle during charging t
  • FIG. 5 is a flowchart for explaining the charging control executed by the control device 30 of FIG.
  • FIG. 6 is a diagram for explaining the change in the charging current before and after the DC / DC converter 33 is stopped.
  • FIG. 7 is an operation waveform diagram showing an example when control is performed based on the flowchart of FIG.
  • FIG. 8 is a flowchart for illustrating charging control executed by control device 30 of FIG. 1 in the second embodiment.
  • FIG. 9 is an operation waveform diagram showing an example when control is performed based on the flowchart of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing a main configuration of a vehicle 1 according to an embodiment of the present invention.
  • vehicle 1 includes batteries B 1 and B 2 that are power storage devices, boost converters 12 A and 12 B that are power converters, a smoothing capacitor CH, and voltage sensors 10 A and 10 B, 13, inverters 14 and 22, engine 4, motor generators MG 1 and MG 2, power split mechanism 3, and control device 30.
  • the power storage device mounted on the vehicle can be charged from the outside.
  • the vehicle 1 further includes a charger 6 for connecting the battery B 1 to, for example, a commercial power source 8 of AC 100V.
  • the charger 6 converts alternating current into direct current, regulates the voltage, and supplies it to the battery.
  • other methods such as connecting the neutral point of the stator coil of motor generators MG 1 and MG 2 to an AC power source and AC / DC conversion by combining boost converters 12A and 12B are also available. A method of functioning as a device may be used.
  • Smoothing capacitor CH smoothes the voltage boosted by boost converters 12A and 12B.
  • Voltage sensor 1 3 is the smoothing capacitor CH terminal voltage VH Is output to the control device 30.
  • Inverter 14 converts the DC voltage applied from boost converter 12 B or 12 A into a three-phase AC voltage and outputs the same to motor generator MG 1.
  • Inverter 22 converts the DC voltage applied from boost converter 1 2 B or 1 2 A into a three-phase AC voltage and outputs it to motor generator MG 2.
  • the power split mechanism 3 is a mechanism that is coupled to the engine 4 and the motor generators MG 1 and MG 2 and distributes the power between them.
  • the power split mechanism 3 can be a planetary gear mechanism having three rotating shafts: a sun gear, a planetary carrier, and a ring gear.
  • the planetary gear mechanism if the rotation of two of the three rotating shafts is determined, the rotation of the other rotating shaft is forcibly determined.
  • These three rotary shafts are connected to the rotary shafts of engine 4 and motor generators MG 1 and MG 2, respectively.
  • the rotating shaft of motor generator MG2 is coupled to the wheels by a reduction gear and a differential gear (not shown). Further, a reduction gear for the rotating shaft of motor generator MG 2 may be further incorporated in power split device 3.
  • Voltage sensor 1 0 A measures the voltage V 1 across the battery B 1 terminals.
  • a current sensor 1 1 A for detecting a current I 1 flowing through the battery B 1 is provided.
  • a SOC detection unit 37 that detects the state of charge (SOC) of the battery B1 is provided.
  • 5 0 0 detector 3 7 calculates the state of charge based on the open-circuit voltage of battery B 1 and the integration of current I 1 flowing through battery B 1, and outputs it to control device 30.
  • the battery B1 for example, a secondary battery such as a lead storage battery, a nickel metal hydride battery, or a lithium ion battery, or a large capacity capacitor such as an electric double layer capacitor can be used.
  • Voltage sensor 1 0 B measures the voltage V 2 across the battery B 2 terminals. Voltage sensor 1 0 B measures the voltage V 2 across battery B 2 terminals. In order to monitor the charging state of the battery B 2 together with the voltage sensor 10 0 B, a current sensor 11 B that detects a current I 2 flowing through the battery B 2 is provided. Also, a SOC detection unit 39 for detecting the charging state SOC 2 of the battery B 2 is provided. SOC detection unit 39 is charged based on the open circuit voltage of battery B 2 and the integration of current I 2 flowing through battery B 2. Calculate the power status and output it to the controller 30. As the battery B2, for example, a secondary battery such as a lead storage battery, a nickel metal hydride battery, or a lithium ion battery, or a large-capacity capacitor such as an electric double layer capacitor can be used.
  • a secondary battery such as a lead storage battery, a nickel metal hydride battery, or a lithium ion battery, or a large-capacity capacitor such as
  • battery B 2 and battery B 1 can output the maximum power allowed to the electrical load (inverter 2 2 and motor generator MG 2) connected to the power line by using them simultaneously. Is set to the chargeable capacity. As a result, maximum EV traveling is possible in EV (Electric Vehicle) traveling without using the engine.
  • the engine 4 can be used without using the battery B 2 by using the engine 4 in addition to the battery B 1.
  • Inverter 14 is connected to power line P L 2 and ground line S L 2. Inverter 14 receives the boosted voltages from boost converters 1 2 A and 1 2 B, and drives motor generator MG 1 to start engine 4, for example. Inverter 14 returns the electric power generated by motor generator MG 1 by the power transmitted from engine 4 to boost converters 1 2 A and 1 2 B. At this time, boost converters 12 A and 12 B are controlled by control device 30 so as to operate as a step-down circuit.
  • Inverter 2 2 is connected in parallel to inverter 14 to power supply line P L 2 and ground line S L 2.
  • Inverter 22 converts the DC voltage output from step-up converters 12 A and 12 B into a three-phase AC voltage and outputs it to motor generator MG 2 that drives the wheels.
  • Inverter 22 also returns the electric power generated in motor generator MG 2 to boost converters 1 2 A and 1 2 B along with regenerative braking.
  • boost converters 12 A and 12 B are controlled by control device 30 so as to operate as a step-down circuit.
  • Control device 30 receives motor generators MG1, MG2 torque command values, motor current values and rotational speeds, voltages VI, V2, VH, and a start signal. Control device 30 then outputs a boost instruction, a step-down instruction, and an operation prohibition instruction to boost converter 12 B. Furthermore, control device 30 provides a drive instruction for converting the DC voltage output from boost converters 12 A, 1 • 2 B to inverter 14 into an AC voltage for driving motor generator MG 1, and motor generator MG. It outputs a regeneration instruction that converts the AC voltage generated in 1 into a DC voltage and returns it to the boost converters 12A and 12B.
  • control device 30 converts inverter 22 to a drive instruction for converting a DC voltage into an AC voltage for driving motor generator MG 2, and converts an AC voltage generated by motor generator MG 2 into a DC voltage.
  • a regeneration instruction to return to the boost converters 12A, 12B is output.
  • auxiliary battery B 3 and a DCZDC comparator 33 for driving the auxiliary load 35 are provided.
  • DC / DC converter 33 is connected to power supply line PL 1 A and ground line S L 2. During charging, a part of the charging current I c g is branched and the current I 3 is supplied to the DC / DC converter 33.
  • the auxiliary load 35 includes, for example, various ECU power supplies, headlights, room lamps, power windows, horns, blinkers, and the like. These auxiliary loads must be actuated when requested to drive, so it is not usually considered to limit the operation of the auxiliary load by monitoring the current I3. There are often no current sensors to measure.
  • FIG. 2 is a circuit diagram showing a detailed configuration of inverters 14 and 22 in FIG. Referring to Fig. 1 and Fig. 2, inverter 14 includes U-phase arm 15 and V-phase arm 1
  • U-phase arm 15, V-phase arm 16, and W-phase arm 17 are connected in parallel between power supply line P L 2 and ground line S L 2.
  • U-phase arm 15 consists of I GBT elements Q3 and Q4 connected in series between power line PL 2 and ground line SL 2, and diodes D 3 connected in parallel with 108 elements ⁇ 33 and Q 4 respectively. , D 4 and including.
  • the power sword of diode D3 is connected to the collector of I GBT element Q 3, and the anode of diode D 3 is connected to the emitter of I GBT element Q 3.
  • the power sword of diode D 4 is connected to the I 08 element (34 collectors, and the anode of diode D 4 is connected to the emitter of I GBT element Q 4 ′.
  • the V-phase arm 16 includes I GBT elements Q5 and Q6 connected in series between the power line PL 2 and the ground line SL 2, and diodes D 5 and Q 6 connected in parallel with the 108 elements 05 and Q 6, respectively. Including D 6.
  • the power sword of diode D 5 is connected to the collector of I GBT element Q 5, and the anode of diode D 5 is connected to the emitter of I 08 element 05.
  • the power sword of diode D6 is connected to the collector of I GBT element Q6, and the anode of diode D6 is connected to the emitter of I GBT element Q6.
  • W-phase arm 17 includes diodes D 7 and Q 8 connected in series with power line PL 2 and ground line SL 2 and diodes D 7 and Q 8 connected in parallel with 108 elements 07 and Q 8, respectively. Including D 8.
  • the power sword of diode D 7 is connected to the collector of I GB T element Q 7, and the anode of diode D 7 is connected to the emitter of I GBT element Q 7.
  • the power sword of the diode D 8 is connected to the collector of the I 08 element 08, and the anode of the diode D 8 is connected to the emitter of the I GBT element Q 8.
  • each phase arm is connected to each phase end of each phase coil of motor generator MG1. That is, the motor generator MG 1 is a three-phase permanent magnet synchronous motor, and one end of each of the three coils of the U, V, and W phases is connected to the midpoint.
  • the other end of the U-phase coil is connected to the line UL drawn from the connection node of the IGBT elements Q3 and Q4.
  • the other end of the V-phase coil is connected to the line VL drawn from the connection node of I 08 element ⁇ 35, Q6.
  • the other end of the W-phase coil is connected to the line WL drawn from the connection node of the IGBT elements Q7 and Q8.
  • Inverter 22 in FIG. 1 is also different in that it is connected to motor generator MG2, but the internal circuit configuration is the same as that of inverter 14, and detailed description thereof will not be repeated.
  • FIG. 2 shows that control signals PWM I and PWM C are given to the inverter, which are signals corresponding to the drive instruction and the regeneration instruction.
  • FIG. 3 is a circuit diagram showing a detailed configuration of boost converters 12 A and 12 B of FIG. Referring to Fig. 1 and Fig. 3, boost converter 12A is connected in series between reactor 1 whose one end is connected to power line PL 1 A and power line PL 2 and ground line SL 2 IGBT elements Q1, Q2 and diodes D1, D2 connected in parallel to 108 elements ⁇ 31, Q2, respectively.
  • reactor L 1 The other end of reactor L 1 is the emitter of I 08 element 01 and I 08 element (3
  • the cathode of diode D 1 is connected to the I 08 element (31 collector, the anode of diode D 1 is connected to the emitter of I & 8 element 01.
  • the power sword of diode D 2 is the I GBT element Q 2 Connected to the collector, the anode of diode D 2 is connected to the emitter of I GBT element Q 2.
  • boost converter 12 B in Fig. 1 is connected to power line PL 1 B instead of power line PL 1 A.
  • the power supply device for the vehicle includes first and second power storage devices (B1, B2) provided in parallel with the main load (14, 22), and the first power storage device (B1).
  • the auxiliary power storage device (B 3), and a third power conversion that charges the auxiliary power storage device with a current I 3 branched from a path connecting the first power converter and the first power storage device Device (33), auxiliary power storage device (B 3) or auxiliary load 35 driven by power from third power converter (33), and first to third power converters (12 A, 12B, 33) is provided with a control device 30.
  • the control device 30 reflects the fluctuation of the current flowing through the auxiliary load 35, and the charging current for the first and second power storage devices (B1, B2). Or discharge current Mel.
  • the power supply device for the vehicle further includes a charger 6 for charging the first and second power storage devices (B1, B2) with electric power supplied from the outside of the vehicle.
  • the charger 6 is connected to the first power storage device (B 1).
  • First and second power converters (12 A, 12B) operates as another charger that branches a part of the current supplied from the charger 6 and charges the second power storage device (12B).
  • the power supply device of the vehicle further includes a current sensor 11 A that detects a charge / discharge current to the first power storage device (B 1).
  • the control device 30 temporarily stops the third power converter (33), and based on the charge / discharge current difference to the first power storage device (B 1) before the stop and after the stop,
  • the current (1 3) branched toward the power converter (33) is calculated, and the operations of the first and second power converters are corrected based on the branched current.
  • the first power converter (12 A) performs a step-up operation from the first power storage device (B 1) side toward the main load (14, 22) side.
  • the second power converter (12 B) has a constant current (I const2) flowing from the main load side (14, 22) toward the second power storage device (B 2) side. The operation is performed as follows.
  • control device 30 is configured to connect the first power converter (12A) and the first power storage device (B 1) when it is estimated that the power consumption in auxiliary load 35 has changed.
  • the current I 3 branched from the top toward the third power converter (33) is calculated.
  • FIG. 4 is a schematic diagram for explaining the state of the power supply device of the vehicle at the time of charging.
  • the current is imitated by the flow of water.
  • a charging current I c g flows from the charger 6 into a tank corresponding to the battery B 1.
  • Boost converters 12 A and 12 B together operate as a charger for battery B 2, and supply current I 2 from battery B 1 side power to battery B 2 side.
  • the current I 3 to the auxiliary load further flows out.
  • the current I 3 is supplied to the battery B 3 by the flow regulating valve corresponding to the DC / DC converter 33, and the same amount of current I 3 is supplied from the battery B 3 to the auxiliary load.
  • the power used by the auxiliary load is such that the headlight, horn, etc. are compared to the reference current determined based on the current consumption of the various ECUs activated during charging and the loss of the DCZDC converter 33. operation Depending on the demand of the person, the current for the load that operates may increase. Therefore, the current I 3 can fluctuate.
  • the battery B 1 B 2 will be charged unevenly. In such a case, if the battery that has been fully charged first is stopped, the remaining batteries are fully charged, and finally both batteries B 1 and B 2 are fully charged, the state of the process is uneven. Some people think that it is okay. However, the charging time for the battery may be short for the convenience of the user, and the charging time is not necessarily given until both the batteries B 1 and B 2 are fully charged. If external charging is repeated for a short time, charging and discharging of the batteries B 1 and B 2 can be biased, and the battery life may be shortened.
  • the batteries B 1 and B 2 are charged evenly even during charging.
  • the charging current I cg is constant
  • the battery B 2 is charged according to the change of the current I 3 supplied to the auxiliary load side.
  • the current I 2 must also be varied.
  • FIG. 5 is a flow chart for explaining the charging control executed by the control device 30 of FIG. The processing of this flowchart is called and executed from a predetermined main routine at regular time intervals or every time a predetermined condition is satisfied.
  • step S1 when the processing of this flowchart is started, it is determined whether or not a predetermined time T has elapsed in step S1. If the predetermined time T has elapsed and V, if not, the process proceeds to step S8, and control is transferred to the main routine.
  • step S 2 If it is determined in step S 1 that the predetermined time has elapsed, in step S 2, the current I 1 detected at that time by the current sensor 11 A is used as the current value I 1 A to control the controller 30 Store in memory 2 7 Thereafter, the process proceeds to step S3.
  • step S 3 the control device 30 temporarily stops the D CZD C converter 33.
  • the DC / DC converter 3 3 is used to supply the charging voltage to the auxiliary battery B 3 that supplies the voltage of the battery B 1 (for example, 2 0 0 V) to the auxiliary load 3 5.
  • Control is performed to convert to a constant output voltage (eg, 14 V).
  • the current I 3 supplied to the DC / DC converter 33 is a value reflecting the consumption current of the auxiliary load. Therefore, if the change in the charging current before and after the DC / DC converter 33 is stopped is observed, the current I 3 can be obtained without providing a current sensor for measuring the current I 3.
  • FIG. 6 is a diagram for explaining the change in the charging current before and after the DC / DC converter 33 is stopped.
  • the charging current I c g from the charger is a value (constant value Iconstl) determined by the limit of the capability of the charger 6 in principle.
  • the charging current I 2 for the battery B 2 is a current controlled by the charger 12 for the battery B 2 constituted by the boost converters 12 A and 12 B.
  • boost converter 12 A boosts, for example, the voltage of power supply line P L 1 A, for example, 200 V, and outputs the boosted voltage to power supply line P L 2.
  • the voltage of the power line PL 2 is 600 V, for example.
  • step-up converter 12 B operates as a step-down circuit that steps down the voltage of power supply line PL 2 (eg, 600 V) to the voltage of power supply line P L 1 B (eg, 200 V).
  • a constant current control command is sent to the boost converter 12B operating as the step-down circuit, and the charging current is controlled to be a constant value I const2.
  • I c g I 1+ I 2+ I 3
  • step S3 the DCZDC converter 33 is connected.
  • the current value I 1 measured by the current sensor 11 A in step S 4 is stored in the memory 27 as the current value I 1 B.
  • step S6 the charge command value for battery B2 is
  • I const2 (Iconstl— ⁇ 1) / 2 ⁇ ⁇ ⁇ (5)
  • FIG. 7 is an operation waveform diagram showing an example when control is performed based on the flow chart of FIG.
  • the control device 30 estimates that the power consumption fluctuates in the auxiliary load 35 every time the predetermined time T elapses. Then, the DCZDC converter 33 is temporarily stopped to measure the current consumption of the auxiliary load 35.
  • the auxiliary battery B 3 When the D C ZD C converter 3 3 is stopped, the auxiliary battery B 3 is discharged in order to supply the consumption current of the auxiliary load 3 5. However, since the auxiliary battery B 3 is in a state close to ⁇ charging again after a certain time T has elapsed, the current I 3 is measured when the DC CZD C converter 3 3 is stopped next time. I 3 does not include a charging current for charging the battery B 3.
  • the current I 3 is measured every certain period of time.
  • the current I 3 is measured when the difference between the charging states of the batteries B 1 and B 2 exceeds a predetermined value. To correct the charging current of batteries B 1 and B 2. Since the configuration of the vehicle is as shown in Fig. 1, the description will not be repeated.
  • FIG. 8 is a flowchart for illustrating charging control executed by control device 30 of FIG. 1 in the second embodiment. The process of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
  • steps S 1 A and S 1 B are executed instead of step S 1 of the processing of the flowchart of FIG.
  • step S 1 A the absolute value of the difference between the charging state SOC (B 1) of battery B 1 and the charging state SOC (B 2) of battery B 2 is obtained as ⁇ SOC. Then, in step S 1 B, it is determined whether ⁇ SOOC is greater than a predetermined threshold value K (%).
  • step S8 If ⁇ SOC> K is not satisfied, the process proceeds to step S8, and control is transferred to the main routine. On the other hand, if ⁇ SOC> K is established, the processes of steps S 2 to S 7 are sequentially executed. Since the processing of steps S 2 to S 7 is the same as that in FIG. 5 of Embodiment 1, the description thereof will not be repeated.
  • FIG. 9 is an operation waveform diagram showing an example when control is performed based on the flowchart of FIG.
  • the DCZDC converter 33 Since the difference ⁇ SOC between (B 1) and the charge state SOC (B 2) of the battery B 2 does not exceed the threshold value K, the DCZDC converter 33 is set to the on state and is operating normally.
  • control device 30 temporarily stops DC / DC converter 33 from time t 11 to time t 12. During this time, the charging current balance of the batteries B 1 and B 2 is corrected. In addition, the charging state difference ASO is prevented from being expanded beyond the threshold value K.
  • the rate of increase in the state of charge changes between before time t12 and after time t12.
  • ⁇ SOC again exceeds the threshold value K, so control device 30 temporarily stops DC / DC converter 33 until time t 13 and time t 14. During this time, the balance of the charging currents of the batteries B1 and B2 is corrected. In addition, the charging current difference ⁇ SO0 is prevented from expanding beyond the threshold value K.
  • the rate of increase in the state of charge changes between before time t14 and after time t14.
  • control device 30 includes the first power storage device (B
  • Step S 1A and the first to third power converters (1 2A, 12 B, 33 so that the difference S SOC between the charge states of the first and second power storage devices does not increase. ) I will do it.
  • the control device 30 detects the auxiliary machine when the difference ⁇ SOC between the charge states of the first and second power storage devices (B1, B2) exceeds a predetermined value K (%). It is estimated that there was a change in power consumption at loads 35. Then, change in power consumption is detected, and the command value for charging current is reset according to the result. As a result, the uneven charging of the battery can be eliminated, and the shortening of the life of only one battery can be prevented.
  • a current sensor that directly measures the current I 3 may be added to the vehicle 1 in FIG. Even in this case, if the charging current is corrected every time a certain time elapses or a predetermined condition is satisfied so as to eliminate the charging current difference for the batteries B 1 and B 2, the batteries B 1 and B 2 can be charged uniformly.
  • the charging current I const2 for charging the battery B 2 is corrected. Instead, the charging current I constl from the charger 6 is compensated while maintaining I const2 constant. It can be modified to increase or decrease according to fluctuations in power consumption of the machine load.
  • the charging current is corrected during charging from the external power source.
  • the charging current is corrected by turning the generator while driving or when charging by power generation during regenerative braking.
  • the charging current may be corrected.
  • a hybrid vehicle is illustrated.
  • the present invention can be applied to various types of hybrid vehicles, electric vehicles, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

車両の電源装置は、主負荷(14,22)に対して電気的に並列に設けられた第1、第2のバッテリ(B1,B2)と、第1のバッテリ(B1)と主負荷との間に設けられた昇圧コンバータ(12A)と、第2のバッテリ(B2)と主負荷との間に設けられた昇圧コンバータ(12B)と、補機バッテリ(B3)と、DC/DCコンバータ(33)と、補機バッテリ(B3)またはDC/DCコンバータ(33)からの電力によって駆動される補機負荷(35)とを備える。制御装置(30)は、補機負荷(35)に流れる電流変動を反映させてバッテリ(B1,B2)に対する充電電流または放電電流を定める。これにより、複数の蓄電装置に対する充放電の偏りが低減された車両の電源装置を提供することができる。

Description

明細書 車両の電源装置 技術分野
この発明は、 車両の電源装置に関し、 特に複数の蓄電装置を搭載する車両の電 源装置に関する。 背景技術
近年、 環境にやさしい車両として、 電気自動車、 ハイブリッド自動車および燃 料電池自動車等が開発され、 実用化されている。 これらの車両には、 モータとそ れを駆動するための電源装置が搭載されている。
このような車両において、 バッテリのみで走行可能な距離を伸ばすために、 複 数のバッテリを搭載することも検討されている。
特開 2 0 0 2— 1 0 5 0 2号公報は、 複数の蓄電池の充電と放電を同時に行な うことができる蓄電池用充放電装置を開示する。
電気自動車では、 1回の充電で走行可能な距離が長いことが望まれる。 内燃機 関と蓄電池およびモータを搭載するハイプリッド自動車でも、 外部から蓄電池に 充電可能にする構成を採用する場合には、 同様に内燃機関を使わずに走行可能な 距離が 1回の充電あたり長いことが望まれる。
1回の充電で走行可能な距離を長くするためには、 車両に搭載する電池のエネ ルギー量を増やす必要がある。 このエネルギー量を増やす方法として、 1 ) 電池 セルあたりのエネルギー容量を増やす、 2 ) 搭載電池セル数を増やす、 という方 法がある。
しかし上記 1 ) の方法は、 電池セルのケースの強度等に鑑み上限があるので所 望の容量を確保するのが困難である。 一方、 上記 2 ) の方法では、 直列または並 列にセル数を増やすことが考えられる。
直列で電池セル数を増やすのは、 電圧が高くなる。 しかし、 電気負荷であるィ ンバータゃモータの耐圧があるので、 直列つなぎで電池セル数を增やすのはこの 耐圧による上限で限界がある。 一方、 電池セルを並列つなぎにすれば、 必要な容 量は確保できるが、 電力調整装置無しで並列接続すると、 一部の電池のみが劣化 し、 持っている電池の性能を使い切れない。
さらに、 車輪駆動用モータを搭載する車両の場合、 数百ボルトのモータ駆動用 高圧バッテリとは別に、 補機負荷を駆動するための捕機用バッテリが搭載されて いるのが普通である。
そして、 補機用バッテリの充電や補機負荷に対する電力供給は、 高圧バッテリ の電圧を D C/D Cコンバータで降圧し、 降圧した電圧によって行なわれる場合 力 Sある。
しかし、 この場合、 走行可能距離を伸ばすために複数の高圧バッテリを搭載す ると、 高圧バッテリの一部が補機側に供給する電力も負担する必要があるので、 複数の高圧バッテリを均等に充電するには注意が必要となる。 発明の開示
この発明の目的は、 複数の蓄電装置を搭載し、 複数の蓄電装置に対する充放電 の偏りが低減された車両の電源装置を提供することである。
この発明は、 要約すると、 車両の電源装置であって、 主負荷に対して電気的に 並列に設けられた第 1および第 2の蓄電装置と、 第 1の蓄電装置と主負荷との間 に設けられた第 1の電力変換器と、 第 2の蓄電装置と主負荷との間に設けられた 第 2の電力変換器と、 第 1の電力変換器と第 1の蓄電装置とを結ぶ経路上から分 岐される電流を受ける第 3の電力変換器と、 第 3の電力変換器からの電力によつ て駆動される補機負荷と、 第 1〜第 3の電力変換器を制御する制御装置とを備え る。 制御装置は、 捕機負荷に流れる電流変動を反映させて第 1および第 2の蓄電 装置に対する充電電流または放電電流を定め、 定めた電流を充放電させるように 第 1およびノまたは第 2の電力変換器を制御する。
好ましくは、 車両の電源装置は、 車両外部から与えられる電力により第 1およ び第 2の蓄電装置を充電するための充電器をさらに備える。 充電器は、 第 1の蓄 電装置に接続される。 第 1および第 2の電力変換器は、 充電器から与えられる電 流の一部を分岐して第 2の蓄電装置を充電する他の充電器として動作する。 より好ましくは、 車両の電源装置は、 第 1の蓄電装置への充放電電流を検出す る電流センサをさらに備える。 制御装置は、 第 3の電力変換器を一時的に停止さ せ、 停止前と停止後の第 1の蓄電装置への充放電電流の差に基づいて、 第 3の電 力変換器に向けて分岐される電流を算出し、 分岐される電流に基づいて第 1, 第 2の電力変換器の動作を補正する。
さらに好ましくは、 車両外部からの充電時において、 第 1の電力変換器は、 第 1の蓄電装置側から主負荷側に向けて昇圧動作を行なう。 車両外部からの充電時 において、 第 2の電力変換器は、 主負荷側から第 2の蓄電装置側に向けて定電流 が流れるように動作を行なう。
好ましくは、 制御装置は、 補機負荷における電力消費の変動があつたと推定さ れる場合に、 第 1の電力変換器と第 1の蓄電装置とを結ぶ経路上から第 3の電力 変換器に向けて分岐される電流の算出を行なう。
より好ましくは、 制御装置は、 所定時間が経過するごとに補機負荷における電 力消費の変動があつたと推定する。
より好ましくは、 制御装置は、 第 1、 第 2の蓄電装置の充電状態の差が所定値 を超えた場合に補機負荷における電力消費の変動があつたと推定する。
好ましくは、 制御装置は、 第 1の蓄電装置の充電状態と第 2の蓄電装置の充電 状態とを算出し、 第 1、 第 2の蓄電装置の充電状態の差が拡大しないように第 1 〜第 3の電力変換器を制御する。
この発明によれば、 複数の蓄電装置を搭載する場合において、 充放電の偏りが 低減される。 その結果、.複数の蓄電装置のうち一部だけ寿命が短くなるような事 態が回避される。 図面の簡単な説明
図 1は、 本発明の実施の形態に係る車両 1の主たる構成を示す図である。
図 2は、 図 1のインバータ 1 4および 2 2の詳細な構成を示す回路図である。 図 3は、 図 1の昇圧コンバータ 1 2 Aおよび 1 2 Bの詳細な構成を示す回路図 である。
図 4は、 充電時の車両の電源装置の状態について説明するための模式図である t 図 5は、 図 1の制御装置 30が実行する充電の制御を説明するためのフローチ ヤートである。
図 6は、 D C/D Cコンバータ 33の停止前後での充電電流の変化を説明する ための図である。
図 7は、 図 5のフローチャートに基づいて制御が行なわれた場合の一例を示す 動作波形図である。
図 8は、 実施の形態 2において図 1の制御装置 30が実行する充電の制御を説 明するためのフローチャートである。
図 9は、 図 8のフローチャートに基づいて制御が行なわれた場合の一例を示す 動作波形図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について図面を参照しながら詳細に説明する。 なお、 図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態 1 ]
図 1は、 本発明の実施の形態に係る車両 1の主たる構成を示す図である。
図 1を参照して、 車両 1は、 蓄電装置であるバッテリ B 1, B 2と、 電力変換 器である昇圧コンバータ 12 A, 12Bと、 平滑用コンデンサ CHと、 電圧セン サ 10A, 10 B, 13と、 インバータ 14, 22と、 エンジン 4と、 モータジ エネレータ MG 1 , MG 2と、 動力分割機構 3と、 制御装置 30とを含む。
この車両に搭載される蓄電装置は外部から充電が可能である。 このために、 車 両 1は、 さらに、 たとえば AC 100Vの商用電源 8にバッテリ B 1を接続する ための充電器 6を含む。 充電器 6は、 交流を直流に変換するとともに電圧を調圧 してバッテリに与える。 なお、 外部充電可能とするために、 他にも、 モータジェ ネレ一タ MG 1, MG 2のステータコイルの中性点を交流電源に接続する方式や 昇圧コンバータ 12A, 12 Bを合わせて交流直流変換装置として機能させる方 式を用いても良い。
平滑用コンデンサ CHは、 昇圧コンバータ 1 2A, 1 2 Bによって昇圧された 電圧を平滑化する。 電圧センサ 1 3は、 平滑用コンデンサ CHの端子間電圧 VH を検知して制御装置 3 0に出力する。
インバータ 1 4は、 昇圧コンバータ 1 2 Bまたは 1 2 Aから与えられる直流電 圧を三相交流電圧に変換してモータジェネレータ MG 1に出力する。 インバータ 2 2は、 昇圧コンバータ 1 2 Bまたは 1 2 Aから与えられる直流電圧を三相交流 電圧に変換してモータジェネレータ MG 2に出力する。
動力分割機構 3は、 エンジン 4とモータジェネレータ MG 1 , MG 2に結合さ れてこれらの間で動力を分配する機構である。 たとえば動力分割機構 3としては サンギヤ、 プラネタリキヤリャ、 リングギヤの 3つの回転軸を有する遊星歯車機 構を用いることができる。 遊星歯車機構は、 3つの回転軸のうち 2つの回転軸の 回転が定まれば、 他の 1つの回転軸の回転は強制的に定まる。 この 3つの回転軸 がエンジン 4、 モータジェネレータ MG 1 , MG 2の各回転軸にそれぞれ接続さ れる。 なおモータジェネレータ MG 2の回転軸は、 図示しない減速ギヤや差動ギ ャによって車輪に結合されている。 また動力分割機構 3の内部にモータジエネレ ータ MG 2の回転軸に対する減速機をさらに組み込んでもよい。
電圧センサ 1 0 Aは、 バッテリ B 1の端子間の電圧 V 1を測定する。 電圧セン サ 1 O Aとともにバッテリ B 1の充電状態を監視するために、 バッテリ B 1に流 れる電流 I 1を検知する電流センサ 1 1 Aが設けられている。 また、 バッテリ B 1の充電状態 ( S O C : State Of Charge) S O C 1を検出する S O C検出部 3 7が設けられている。 5 0〇検出部3 7は、 バッテリ B 1の開放電圧とバッテリ B 1に流れる電流 I 1の積算とに基づいて充電状態を算出し、 制御装置 3 0に出 力する。 ノくッテリ B 1としては、 たとえば、 鉛蓄電池、 ニッケル水素電池、 リチ ゥムイオン電池等の二次電池や、 電気二重層コンデンサ等の大容量キャパシタな どを用いることができる。
電圧センサ 1 0 Bは、 バッテリ B 2の端子間の電圧 V 2を測定する。 電圧セン サ 1 0 Bは、 バッテリ B 2の端子間の電圧 V 2を測定する。 電圧センサ 1 0 Bと ともにバッテリ B 2の充電状態を監視するために、 バッテリ B 2に流れる電流 I 2を検知する電流センサ 1 1 Bが設けられている。 また、 バッテリ B 2の充電状 態 S O C 2を検出する S O C検出部 3 9が設けられている。 S O C検出部 3 9は、 バッテリ B 2の開放電圧とバッテリ B 2に流れる電流 I 2の積算とに基づいて充 電状態を算出し、 制御装置 3 0に出力する。 バッテリ B 2としては、 たとえば、 鉛蓄電池、 ニッケル水素電池、 リチウムイオン電池等の二次電池や、 電気二重層 コンデンサ等の大容量キャパシタなどを用いることができる。
バッテリ B 2とバッテリ B 1とは、 たとえば、 同時使用することにより電源ラ インに接続される電気負荷 (インバ一タ 2 2およびモータジェネレータ MG 2 ) に許容された最大パワーを出力可能であるように蓄電可能容量が設定される。 こ れによりエンジンを使用しない E V (Electric Vehicle) 走行において最大パヮ 一の走行が可能である。
そしてバッテリ B 2の電力が消費されてしまったら、 バッテリ B 1に加えてェ ンジン 4を使用することによって、 バッテリ B 2を使用しないでも最大パワーの 走行を可能とすることができる。
インバータ 1 4は、 電源ライン P L 2と接地ライン S L 2に接続されている。 ィンバータ 1 4は、 昇圧コンバータ 1 2 Aおよび 1 2 Bから昇圧された電圧を受 けて、 たとえばエンジン 4を始動させるために、 モータジェネレータ MG 1を駆 動する。 また、 インバータ 1 4は、 エンジン 4から伝達される動力によってモ一 タジェネレータ MG 1で発電された電力を昇圧コンバータ 1 2 Aおよび 1 2 Bに 戻す。 このとき昇圧コンバータ 1 2 Aおよび 1 2 Bは、 降圧回路として動作する ように制御装置 3 0によって制御される。
インバータ 2 2は、 インバータ 1 4と並列的に、 電源ライン P L 2と接地ライ ン S L 2に接続されている。 インバータ 2 2は車輪を駆動するモータジエネレー タ MG 2に対して昇圧コンバータ 1 2 Aおよび 1 2 Bの出力する直流電圧を三相 交流電圧に変換して出力する。 またインバータ 2 2は、 回生制動に伴い、 モータ ジェネレータ MG 2において発電された電力を昇圧コンバータ 1 2 Aおよび 1 2 Bに戻す。 このとき昇圧コンバータ 1 2 Aおよび 1 2 Bは、 降圧回路として動作 するように制御装置 3 0によって制御される。
制御装置 3 0は、 モータジェネレータ MG 1, MG 2の各トルク指令値、 モー タ電流値および回転速度、 電圧 V I, V 2 , V Hの各値、 および起動信号を受け る。 そして制御装置 3 0は、 昇圧コンバータ 1 2 Bに対して昇圧指示と降圧指示 と動作禁止指示とを出力する。 さらに、 制御装置 30は、 インバータ 14に対して昇圧コンバータ 12 A, 1 •2 Bの出力である直流電圧を、 モータジェネレータ MG 1を駆動するための交流 電圧に変換する駆動指示と、 モータジェネレータ MG 1で発電された交流電圧を 直流電圧に変換して昇圧コンバータ 12A, 12 B側に戻す回生指示とを出力す る。
同様に制御装置 30は、 インバータ 22に対してモータジェネレータ MG 2を 駆動するための交流電圧に直流電圧を変換する駆動指示と、 モータジェネレータ MG 2で発電された交流電圧を直流電圧に変換して昇圧コンバータ 12A, 12 B側に戻す回生指示とを出力する。
さらに、 補機負荷 35を駆動する補機バッテリ B 3および DCZDCコンパ一 タ 33が設けられている。 DC/DCコンバータ 33は電源ライン PL 1 Aと接 地ライン S L 2とに接続されている。 充電時には、 充電電流 I c gの一部が分岐 され電流 I 3が DC/DCコンバータ 33に供給される。
補機負荷 35は、 例えば各種の ECUの電源や、 へッドライ ト、 ルームランプ、 パワーウィンドウ、 ホーン、 ウィンカーなどを含む。 これらの補機負荷は、 駆動 要求があれば作動させざるを得ないので、 電流 I 3を監視して補機負荷の動作を 制限するようなことは通常は考えられておらず電流 I 3を測定する電流センサは 設けられていない場合が多い。
図 2は、 図 1のインバータ 14および 22の詳細な構成を示す回路図である。 図 1、 図 2を参照して、 ィンバータ 14は、 U相アーム 15と、 V相アーム 1
6と、 W相アーム 1 7とを含む。 U相アーム 15, V相アーム 16, および W相 アーム 17は、 電源ライン P L 2と接地ライン S L 2との間に並列に接続される。
U相アーム 15は、 電源ライン P L 2と接地ライン S L 2との間に直列接続さ れた I GBT素子 Q3, Q4と、 108丁素子<33, Q 4とそれぞれ並列に接続 されるダイオード D 3, D 4とを含む。 ダイオード D3の力ソードは I GBT素 子 Q 3のコレクタと接続され、 ダイォード D 3のアノードは I GBT素子 Q 3の エミッタと接続される。 ダイオード D 4の力ソードは I 08丁素子(34のコレク タと接続され、 ダイォ一ド D4のアノードは I GBT素子 Q4のエミッタと接続 'される。 V相アーム 16は、 電源ライン P L 2と接地ライン S L 2との間に直列接続さ れた I GBT素子 Q5, Q6と、 108丁素子05, Q 6とそれぞれ並列に接続 されるダイオード D 5, D 6とを含む。 ダイオード D 5の力ソードは I GBT素 子 Q 5のコレクタと接続され、 ダイオード D 5のアノードは I 08丁素子05の ェミッタと接続される。 ダイオード D6の力ソードは I GBT素子 Q6のコレク タと接続され、 ダイオード D 6のアノードは I GBT素子 Q6のエミッタと接続 される。
W相アーム 17は、 電源ライン PL 2と接地ライン S L 2との間に直列接続さ れた I GBT素子 Q7, Q8と、 108丁素子07, Q 8とそれぞれ並列に接続 されるダイオード D 7, D 8とを含む。 ダイオード D 7の力ソードは I GB T素 子 Q 7のコレクタと接続され、 ダイォ一ド D 7のアノードは I GBT素子 Q 7の ェミッタと接続される。 ダイオード D 8の力ソードは I 08丁素子08のコレク タと接続され、 ダイォード D 8のアノードは I GBT素子 Q 8のエミッタと接続 される。
各相アームの中間点は、 モータジェネレータ MG 1の各相コイルの各相端に接 続されている。 すなわち、 モータジェネレータ MG 1は、 三相の永久磁石同期モ ータであり、 U, V, W相の 3つのコイルは各々一方端が中点に共に接続されて いる。 そして、 U相コイルの他方端が I GBT素子 Q 3, Q 4の接続ノードから 引出されたライン ULに接続される。 また V相コイルの他方端が I 08丁素子<3 5, Q6の接続ノードから引出されたライン VLに接続される。 また W相コイル の他方端が I GBT素子 Q 7, Q8の接続ノードから引出されたライン WLに接 続される。
なお、 図 1のインバータ 22についても、 モータジェネレータ MG 2に接続さ れる点が異なるが、 内部の回路構成についてはインバータ 14と同様であるので 詳細な説明は繰返さない。 また、 図 2には、 インバータに制御信号 PWM I , P WM Cが与えられることが記載されているがこれは、 駆動指示と回生指示に対応 する信号である。
図 3は、 図 1の昇圧コンバータ 12 Aおよび 1 2 Bの詳細な構成を示す回路図 である。 図 1、 図 3を参照して、 昇圧コンバータ 12 Aは、 一方端が電源ライン PL 1 Aに接続されるリアク トルし 1と、 電源ライン P L 2と接地ライン S L 2との間 に直列に接続される I GBT素子 Q 1, Q2と、 108丁素子<31, Q 2にそれ ぞれ並列に接続されるダイォード D 1 , D 2とを含む。
リアク トル L 1の他方端は I 08丁素子01のエミッタおよび I 08丁素子(3
2のコレクタに接続される。 ダイォード D 1のカソードは I 08丁素子(31のコ レクタと接続され、 ダイオード D 1のアノードは I &8丁素子01のェミッタと 接続される。 ダイオード D 2の力ソードは I GBT素子 Q 2のコレクタと接続さ れ、 ダイォード D 2のアノードは I GBT素子 Q 2のエミッタと接続される。 なお、 図 1の昇圧コンバータ 12 Bについても、 電源ライン P L 1 Aに代えて 電源ライン P L 1 Bに接続される点が昇圧コンバータ 12 Aと異なるが、 内部の 回路構成については昇圧コンバータ 1 2 Aと同様であるので詳細な説明は繰返さ ない。 また、 図 3には、 昇圧コンバータに制御信号 PWU, PWDが与えられる ことが記載されているが、 それぞれ昇圧指示、 降圧指示に対応する信号である。 再び、 図 1を参照して、 本実施の形態の車両の電源装置の動作を説明する。 図 1に開示される車両の電源装置は、 主負荷 (14, 22) に対して電気的に 並列に設けられた第 1および第 2の蓄電装置 (B l, B 2) と、 第 1の蓄電装置 (B 1) と主負荷との間に設けられた第 1の電力変換器 (1 2A) と、 第 2の蓄 電装置 (B 2) と主負荷との間に設けられた第 2の電力変換器 (12B) と、 補 機蓄電装置 (B 3) と、 第 1の電力変換器と第 1の蓄電装置とを結ぶ経路上から 分岐される電流 I 3によって補機蓄電装置を充電する第 3の電力変換器 (33) と、 補機蓄電装置 (B 3) または第 3の電力変換器 (33) からの電力によって 駆動される補機負荷 35と、 第 1〜第 3の電力変換器 (12 A, 12B, 33) を制御する制御装置 30とを備える。 制御装置 30は、 補機負荷 35に流れる電 流変動を反映させて第 1および第 2の蓄電装置 (B l, B 2) に対する充電電流 または放電電流を定める。
好ましくは、 車両の電源装置は、 車両外部から与えられる電力により第 1およ び第 2の蓄電装置 (B l, B 2) を充電するための充電器 6をさらに備える。 充 電器 6は、 第 1の蓄電装置 (B 1) に接続される。 第 1および第 2の電力変換器 (12 A, 12B) は、 充電器 6から与えられる電流の一部を分岐して第 2の蓄 電装置 (1 2B) を充電する他の充電器として動作する。
より好ましくは、 車両の電源装置は、 第 1の蓄電装置 (B 1) への充放電電流 を検出する電流センサ 1 1 Aをさらに備える。 制御装置 30は、 第 3の電力変換 器 (33) を一時的に停止させ、 停止前と停止後の第 1の蓄電装置 (B 1) への 充放電電流の差に基づいて、 第 3の電力変換器 (33) に向けて分岐される電流 (1 3) を算出し、 分岐される電流に基づいて第 1, 第 2の電力変換器の動作を 補正する。
さらに好ましくは、 車両外部からの充電時において、 第 1の電力変換器 (12 A) は、 第 1の蓄電装置 (B 1) 側から主負荷 (14, 22) 側に向けて昇圧動 作を行なう。 車両外部からの充電時において、 第 2の電力変換器 (12 B) は、 主負荷側 (14, 22) から第 2の蓄電装置 (B 2) 側に向けて定電流 ( I const2) が流れるように動作を行なう。
好ましくは、 制御装置 30は、 補機負荷 35における電力消費の変動があった と推定される場合に、 第 1の電力変換器 (12A) と第 1の蓄電装置 (B 1) と を結ぶ経路上から第 3の電力変換器 (33) に向けて分岐される電流 I 3の算出 を行なう。
図 4は、 充電時の車両の電源装置の状態について説明するための模式図である。 図 4においては、 電流を水の流れに模してある。 充電器 6からは充電電流 I c gがバッテリ B 1に相当するタンクに流入している。 昇圧コンバータ 12 A, 1 2Bは、 合わせてバッテリ B 2のための充電器として動作し、 ノ ッテリ B 1側力 らバッテリ B 2側に電流 I 2を供給する。
バッテリ B 1側からは、 補機負荷に対する電流 I 3もさらに流出する。 電流 I 3は、 DC/DCコンバータ 33に対応する流量調整弁によってバッテリ B 3に 供給され、 バッテリ B 3からは補機負荷に対して同量の電流 I 3が供給される。 このような系において、 バッテリ B 1および B 2の充電状態 SO Cを同じよう に増加させていく充電を行なうことを考える。 し力 し、 補機負荷で使用される電 力は、 充電時に起動されている各種 ECUの消費電流と DCZDCコンバータ 3 3の損失に基づいて決定される基準電流に対して、 ヘッドライ ト、 ホーン等運転 者の要求によって作動する負荷分の電流が増加する場合がある。 したがって、 電 流 I 3は変動する可能性がある。
このような変動が起こったときに電流 I 2を一定にしていると、 バッテリ B 1 B 2に対して充電が不均一になってしまう。 このような場合、 先に満充電になつ たバッテリの充電を止めて残りのバッテリを最後まで充電し最終的にバッテリ B 1 , B 2ともに満充電になれば、 途中の状態は不均一であってもよいという考え 方もある。 しかし、 バッテリへの充電時間は使用者の都合で短時間であることも 考えられ、 バッテリ B l , B 2ともに満充電となるまで充電時間が与えられると は限らない。 短時間の外部充電を繰返すとバッテリ B 1 , B 2の充放電に偏りが でき、 バッテリの寿命が短くなる可能性がある。
したがって、 バッテリ B l , B 2への充電は、 充電中であってもなるベく均一 に行なわれることが望ましい。 バッテリ B l , B 2への充電を均一に行なうため には、 充電電流 I c gが一定である場合は補機負荷側に供給される電流 I 3の変 動に応じてバッテリ B 2に充電する電流 I 2も変動させる必要がある。
図 5は、 図 1の制御装置 3 0が実行する充電の制御を説明するためのフローチ ヤートである。 このフローチャートの処理は、 所定のメインルーチンから一定時 間ごとまたは所定の条件が成立するごとに呼び出されて実行される。
図 1、 図 5を参照して、 このフローチャートの処理が開始されると、 ステップ S 1において所定時間 Tが経過したか否かが判断される。 所定時間 Tが経過して V、なければ処理はステップ S 8に進み制御はメインルーチンに移される。
ステップ S 1において所定時間が経過したと判断された場合には、 ステップ S 2において、 電流センサ 1 1 Aでそのとき検出された電流 I 1を電流値 I 1 Aと して制御装置 3 0内部のメモリ 2 7に記憶する。 その後処理はステップ S 3に進 む。
ステップ S 3では、 制御装置 3 0は、 D CZD Cコンバータ 3 3を一旦停止さ せる。 それまでは、 D C/D Cコンバータ 3 3は、 バッテリ B 1の電圧 (たとえ ば 2 0 0 V) を補機負荷 3 5に電源電圧を供給する補機バッテリ B 3に充電電圧 を供給するために一定出力電圧 (たとえば 1 4 V) に変換するように制御が行な われている。 このような制御下において、 補機バッテリ B 3が十分な充電状態であれば、 D C/DCコンバータ 33に供給される電流 I 3は、 補機負荷の消費電流を反映し た値となる。 したがって、 DC/DCコンバータ 33を停止させた前後の充電電 流の変化を観測すれば電流 I 3を測定するための電流センサを設けていなくても 電流 I 3を知ることができる。
図 6は、 D C/D Cコンバータ 33の停止前後での充電電流の変化を説明する ための図である。
図 6において、 充電器からの充電電流 I c gは、 原則として充電器 6の能力の 限界によって定まる値 (一定値 Iconstl) である。 また、 バッテリ B 2に対する 充電電流 I 2は、 昇圧コンバータ 12 A, 12 Bによって構成されるバッテリ B 2に対する充電器 12によって制御される電流である。
ここで、 昇圧コンバータ 12 Aは、 たとえば電源ライン P L 1 Aの電圧、 たと えば 200Vを昇圧して電源ライン P L 2に出力する。 電源ライン PL 2の電圧 は、 たとえば 600 Vである。 そして昇圧コンバータ 12 Bは、 このとき電源ラ イン PL 2の電圧 (たとえば 600V) を電源ライン P L 1 Bの電圧 (たとえば 200 V) に降圧する降圧回路として動作する。 そしてこの降圧回路として動作 する昇圧コンバータ 12Bには、 定電流制御指令が送られて充電電流が一定値 I const2になるように制御されている。
図 6において、 バッテリ B l, B 2の電圧はほぼ等しく制御されているとする と、 以下の式 (1) が成立する。
I c g= I 1+ I 2+ I 3 · ■ · (1)
I c gが Iconstl、 I 2が Iconst2 に定電流制御されているので、 DC/DC コンバータの停止前の電流値 I 1を I 1A、 停止後 (I 3 = 0) の電流値 I 1を I 1 Bとすると以下の式 (2) 、 (3) が成立する。
I constl= I 1 A+ I const2+ I 3 · · · (2)
I constl= I 1 B + I const2 · · ■ (3)
式 (2) 、 (3) より、 次式 (4) が成立することがわかる。
I 3= 1 1 B- I 1 A · · · (4)
再び図 1、 図 5を参照して、 ステップ S 3で、 DCZDCコンバータ 33を一 旦停止させた後には、 ステップ S 4において電流センサ 1 1 Aで測定した電流値 I 1を電流値 I 1 Bとしてメモリ 27に記憶する。 さらにステップ S 5において、 ステップ S 2で記憶しておいた電流値 I 1 Aとステップ S 4で記憶しておいた電 流値 I 1 Bの差分 Δ 1 = 1 1 B— I 1 Aを算出する。 この差分は、 上記の式
(4) でわかるように DCZDCコンバータ 33に供給されていた電流 I 3に等 しい。
その後、 ステップ S 6において、 バッテリ B 2に対する充電指令値が次式
(5) にしたがって算出され、 ステップ S 7で更新される。
I const2= (Iconstl—厶 1) / 2 ■ · · (5)
このように昇圧コンバータ 1 2 Bに対する指令値を更新することで、 補機負荷 の消費電流が変動した後においても、 バッテリ B 1に充電される電流 I 1とバッ テリ B 2に充電される電流 I 2とが等しく設定される。
図 7は、 図 5のフローチヤ一卜に基づいて制御が行なわれた場合の一例を示す 動作波形図である。
図 1、 図 7を参照して、 時刻 t 0〜t 3の間は、 補機負荷の一部 (たとえばへ ッドライトなど) がオン状態にあり、 電流 I 3が標準値よりも大きくなつている。 したがって、 充電指令 Iconst2 は、 電流 I 3の標準値に基づいて設定されて いたため、 時刻 t 0〜 t 1ではバッテリ B 2の充電状態 SOC (B 2) に対して バッテリ B 1の充電状態 SOC (B 1) の上昇率が少ない。 このままでは破線で 示すようにバッテリ B 1, B 2の充電状態の差はどんどん開いてしまう。
そこで、 図 7に示すように、 制御装置 30は、 所定時間 Tが経過するごとに補 機負荷 35における電力消費の変動があつたと推定する。 そして、 補機負荷 35 の消費電流を測定するために一時的に DCZDCコンバータ 33を停止する。
—定時間 Tが経過した時刻 t 1から時刻 t 2までの間、 一時的に DCZDCコ ンバータ 33が動作停止される。 この間は、 補機負荷 35には、 補機バッテリ B 3から電流が供給される。 そして、 図 5のフローチャートのステップ S 2〜S 7 の処理が実行され充電指令値が変更された結果、 時刻 t 2~t 3は、 実線で示す ように充電状態 SO Cの差が開かないようになる。
ここで、 時刻 t 3において、 補機負荷の一部がオフ状態に設定されるとその分 電流 I 3が減少する。 すると、 バッテリ B 1に対する充電電流が増えてしまうの で、 充電状態 S〇C ( B 1 ) の上昇率が充電状態 S O C ( B 2 ) の上昇率よりも 大きくなり、 このままでは、 破線で示すようにバッテリ B 1の充電状態がバッテ リ B 2の充電状態を上回り、 差が開いてしまう。
しカゝし、 時刻 t 2から一定時間 T経過した時刻 t 4から時刻 t 5までの間再び
D CZD Cコンバータ 3 3が停止されこのとき電流 I 3が検出されてその結果に 基づいて充電指令値が更新される。 すると時刻 t 5以降再びバッテリ B 1, B 2 の充電状態 S O Cの差が拡大しないように充電が進むようになる。
D C ZD Cコンバータ 3 3を停止させると、 その間補機負荷 3 5の消費電流を 供給するために、 補機バッテリ B 3の放電が進む。 しかし、 一定時間 Tが経過す る間に補機バッテリ B 3は再び满充電に近い状態となるので、 次回に D CZD C コンバータ 3 3を停止させて電流 I 3を測定する際には、 電流 I 3にはバッテリ B 3を充電するための充電電流は含まれないようになっている。
このように、 D C/D Cコンバータ 3 3を一時的に停止させてそのときのバッ テリ B 1 , B 2の充電電流の変化から電流 I 3を測定すれば、 電流 I 3を測定す るための追加の電流センサを設けなくてもよいので、 製造コストの上昇を抑える ことができる。
[実施の形態 2 ]
実施の形態 1では、 一定時間経過ごとに電流 I 3の測定を行なったが、 実施の 形態 2においてはバッテリ B 1 , B 2の充電状態の差が所定値を超えた場合に電 流 I 3の測定を行なって、 バッテリ B 1 , B 2の充電電流の補正を行なう。 車両 の構成については、 図 1で示したとおりであるので、 説明は繰返さない。
図 8は、 実施の形態 2において図 1の制御装置 3 0が実行する充電の制御を説 明するためのフローチャートである。 このフローチャートの処理は、 所定のメイ ンルーチンから一定時間ごとまたは所定の条件が成立するごとに呼び出されて実 行される。
図 8のフローチャートの処理は、 図 5のフローチャートの処理のステップ S 1 に代えてステップ S 1 A, S 1 Bが実行される点が異なる。
図 1、 図 8を参照して、 このフローチャートの処理が開始されると、 ステップ S 1 Aにおいてバッテリ B 1の充電状態 SOC (B 1) とバッテリ B 2の充電状 態 SOC (B 2) の差の絶対値を Δ SOCとして求める。 そして、 ステップ S 1 Bにおいて Δ SOCが所定のしきい値 K (%) より大きいか否かが判断される。
Δ SOC〉Kが成立しなければ、 ステップ S 8に処理が進み、 制御はメインル 一チンに移される。 一方、 Δ SOC>Kが成立すれば、 以降ステップ S 2〜S 7 の処理が順次実行される。 なお、 ステップ S 2~S 7の処理については実施の形 態 1の図 5と同様であるので説明は繰返さない。
図 9は、 図 8のフローチャートに基づいて制御が行なわれた場合の一例を示す 動作波形図である。
図 1、 図 9を参照して、 時刻 t 1 1までは、 バッテリ B 1の充電状態 SO C
(B 1 ) とバッテリ B 2の充電状態 SOC (B 2) との差 Δ S O Cはしきい値 K を超えないので、 DCZDCコンバータ 33はオン状態に設定され通常動作を行 なっている。
時刻 t 1 1では、 A SOCがしきい値 K (%) を超えたので、 制御装置 30は、 DC/DCコンバータ 33を時刻 t 1 1から時刻 t 12まで一時的に停止させる。 この間に、 バッテリ B l、 B 2の充電電流のバランスが補正される。 そして、 充 電状態の差 A S〇Cがしきい値 Kより拡大されることが防止される。
捕正によつて、 充電状態の増加率 (グラフの傾き) は、 時刻 t 12以前と時刻 t 1 2以後とで変化している。
時刻 t 1 3において、 再び Δ SOCがしきい値 Kを超えたので、 制御装置 30 は、 DC/DCコンバータ 33を時刻 t 13力、ら時刻 t 14まで一時的に停止さ せる。 この間に、 バッテリ B l, B 2の充電電流のバランスが補正される。 そし て、 充電電流の差 Δ SOCがしきい値 Kより拡大されることが防止される。
補正によって、 充電状態の増加率 (グラフの傾き) は、 時刻 t 14以前と時刻 t 14以後とで変化している。
このように、 実施の形態 2においては、 制御装置 30は、 第 1の蓄電装置 (B
1) の充電状態 SOC (B 1) と第 2の蓄電装置 (B 2) の充電状態 SO C (B
2) とを算出し (ステップ S 1A) 、 第 1、 第 2の蓄電装置の充電状態の差厶 S OCが拡大しないように第 1〜第 3の電力変換器 (1 2A, 12 B, 33) を制 御する。
そして図 9に示すように、 制御装置 3 0は、 第 1、 第 2の蓄電装置 (B l, B 2 ) の充電状態の差 Δ S O Cが所定値 K (%) を超えた場合に補機負荷 3 5にお ける電力消費の変動があつたと推定する。 そして、 電力消費の変化を検出しその 結果に合わせて、 充電電流の指令値を設定しなおす。 これにより、 バッテリへの 充電の不均一を解消することができ、 一方のバッテリの寿命のみが短くなるのを 防止することができる。
なお、 実施の形態 1, 2において、 図 1の車両 1に電流 I 3を直接的に計測す る電流センサを追加してもよい。 この場合においても、 バッテリ B 1, B 2に対 する充電電流の差を無くすように一定時間経過ごと、 または所定の条件が成立す るごとに充電電流の補正を行なえば、 バッテリ B l, B 2を均一に充電すること ができる。
また、 実施の形態 1 , 2では、 バッテリ B 2を充電する充電電流 I const2 を 補正したが、 これに代えて I const2 を一定に制御したまま、 充電器 6からの充 電電流 I constl を補機負荷の消費電力の変動に合わせて増減させるように変形 することも可能である。
なお、 本実施の形態では、 外部電源からの充電中に充電電流を補正する例を示 したが、 走行中に発電機を回して充電する場合や、 回生制動中の発電により充電 する場合にも同様に充電電流の補正を行なっても良い。
さらに、 充電時以外であっても、 複数のバッテリから放電する場合においても 補機での消費電流を反映させて同様に放電電流の補正を行なえば、 放電時におい ても複数のバッテリの充電状態 S O Cの偏りを軽減することができる。
また、 本発明の実施の形態には、 ハイブリッド自動車を例示したが、 複数のバ ッテリを搭載するものであれば、 種々の形式のハイプリッド自動車や電気自動車 等にも適用することが可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれ ることが意図される。

Claims

請求の範囲
1 . 主負荷 (1 4 , 2 2 ) に対して電気的に並列に設けられた第 1および第 2の蓄電装置 (B 1, B 2 ) と、
前記第 1の蓄電装置と前記主負荷との間に設けられた第 1の'電力変換器 (1 2
A) と、
前記第 2の蓄電装置と前記主負荷との間に設けられた第 2の電力変換器 (1 2
B ) と、
前記第 1の電力変換器と前記第 1の蓄電装置とを結ぶ経路上から分岐される電 流を受ける第 3の電力変換器 (3 3 ) と、
前記第 3の電力変換器からの電力によって駆動される補機負荷 (3 5 ) と、 前記第 1〜第 3の電力変換器を制御する制御装置 (3 0 ) とを備え、 前記制御装置は、 前記補機負荷に流れる電流変動を反映させて前記第 1および 第 2の蓄電装置に対する充電電流または放電電流を定め、 定めた電流を充放電さ せるように第 1および Zまたは第 2の電力変換器を制御する、 車両の電源装置。
2 . 車両外部から与えられる電力により前記第 1および第 2の蓄電装置を充 電するための充電器 (6 ) をさらに備え、
前記充電器は、 前記第 1の蓄電装置に接続され、
前記第 1および第 2の電力変換器は、 前記充電器から与えられる電流の一部を 分岐して前記第 2の蓄電装置を充電する他の充電器として動作する、 請求の範囲 第 1項に記載の車両の電源装置。
3 . 前記第 1の蓄電装置への充放電電流を検出する電流センサ (1 1 A) を さらに備え、
前記制御装置は、 前記第 3の電力変換器を一時的に停止させ、 停止前と停止後 の前記第 1の蓄電装置への充放電電流の差に基づいて、 前記第 3の電力変換器に 向けて分岐される電流を算出し、 前記分岐される電流に基づいて前記第 1, 第 2 の電力変換器の動作を補正する、 請求の範囲第 2項に記載の車両の電源装置。
4 . 車両外部からの充電時において、 前記第 1の電力変換器は、 前記第 1の 蓄電装置側から前記主負荷側に向けて昇圧動作を行ない、 車両外部からの充電時において、 前記第 2の電力変換器は、 前記主負荷側から 前記第 2の蓄電装置側に向けて定電流が流れるように動作を行なう、 請求の範囲 第 3項に記載の車両の電源装置。
5 . 前記制御装置は、 補機負荷における電力消費の変動があつたと推定され る場合に、 前記第 1の電力変換器と前記第 1の蓄電装置とを結ぶ経路上から第 3 の電力変換器に向けて分岐される電流の算出を行なう、 請求の範囲第 1項に記載 の車両の電源装置。
6 . 前記制御装置は、 所定時間が経過するごとに前記補機負荷における電力 消費の変動があつたと推定する、 請求の範囲第 5項に記載の車両の電源装置。
7 . 前記制御装置は、 前記第 1、 第 2の蓄電装置の充電状態の差が所定値を 超えた場合に前記捕機負荷における電力消費の変動があつたと推定する、 請求の 範囲第 5項に記載の車両の電源装置。
8 . 前記制御装置は、 前記第 1の蓄電装置の充電状態と前記第 2の蓄電装置 の充電状態とを算出し、 前記第 1、 第 2の蓄電装置の充電状態の差が拡大しない ように前記第 1〜第 3の電力変換器を制御する、 請求の範囲第 1項に記載の車両 の電源装置。
PCT/JP2008/060410 2007-06-06 2008-05-30 車両の電源装置 WO2008149964A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08765223.6A EP2154764B1 (en) 2007-06-06 2008-05-30 Power supply unit of vehicle
CN2008800186874A CN101682202B (zh) 2007-06-06 2008-05-30 车辆的电源装置
US12/451,163 US8143859B2 (en) 2007-06-06 2008-05-30 Power supply apparatus for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-150720 2007-06-06
JP2007150720A JP4874874B2 (ja) 2007-06-06 2007-06-06 車両の電源装置

Publications (1)

Publication Number Publication Date
WO2008149964A1 true WO2008149964A1 (ja) 2008-12-11

Family

ID=40093768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060410 WO2008149964A1 (ja) 2007-06-06 2008-05-30 車両の電源装置

Country Status (6)

Country Link
US (1) US8143859B2 (ja)
EP (1) EP2154764B1 (ja)
JP (1) JP4874874B2 (ja)
CN (1) CN101682202B (ja)
RU (1) RU2413352C1 (ja)
WO (1) WO2008149964A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035240A (zh) * 2009-09-24 2011-04-27 丰田自动车株式会社 车辆用电源系统,具有该电源系统的电动车辆以及控制车辆用电源系统的方法
EP2431215A4 (en) * 2009-05-14 2016-11-02 Toyota Motor Co Ltd ELECTRIC CAR AND ITS CONTROL METHOD

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852644B2 (ja) * 2007-03-13 2012-01-11 株式会社小松製作所 発電電動機駆動装置および発電電動機駆動装置のキャパシタの電荷の放電方法
US8288885B2 (en) * 2008-06-03 2012-10-16 Honeywell International Inc. Method and system for improving electrical load regeneration management of an aircraft
US8274173B2 (en) 2008-12-02 2012-09-25 General Electric Company Auxiliary drive apparatus and method of manufacturing same
US8806271B2 (en) * 2008-12-09 2014-08-12 Samsung Electronics Co., Ltd. Auxiliary power supply and user device including the same
EP2395624B1 (en) * 2009-02-03 2018-06-13 Toyota Jidosha Kabushiki Kaisha Charging system for vehicle
JP5299097B2 (ja) * 2009-06-05 2013-09-25 トヨタ自動車株式会社 電源装置およびその制御方法並びに動力出力装置、ハイブリッド自動車
WO2011043172A1 (ja) * 2009-10-05 2011-04-14 日本碍子株式会社 制御装置、制御装置網及び制御方法
CN102511118B (zh) * 2009-10-05 2014-08-06 日本碍子株式会社 控制装置、控制装置网以及控制方法
JP2011097721A (ja) * 2009-10-29 2011-05-12 Mitsubishi Electric Corp 車載用回転電機の駆動装置
JP5168308B2 (ja) * 2010-04-14 2013-03-21 トヨタ自動車株式会社 電源システムおよびそれを搭載する車両
JP5479291B2 (ja) * 2010-09-30 2014-04-23 本田技研工業株式会社 電動補助自転車の制御装置
US8532854B2 (en) * 2010-10-01 2013-09-10 GM Global Technology Operations LLC Method and apparatus for managing multiple battery packs in a hybrid or electric vehicle
WO2012047118A1 (en) * 2010-10-05 2012-04-12 Taing Foung Phan Battery augmentation system and method
WO2012081330A1 (ja) * 2010-12-14 2012-06-21 本田技研工業株式会社 車両
JP2012152021A (ja) * 2011-01-19 2012-08-09 Mitsubishi Heavy Ind Ltd 電池システム
JP5344047B2 (ja) * 2011-02-03 2013-11-20 トヨタ自動車株式会社 二次電池の出力制御装置
JP5725544B2 (ja) * 2011-03-01 2015-05-27 オムロンオートモーティブエレクトロニクス株式会社 電力変換装置および電力制御方法
US20140084828A1 (en) * 2011-05-13 2014-03-27 Toyota Jidosha Kabushiki Kaisha Power supply system for vehicle
JP5605320B2 (ja) * 2011-06-28 2014-10-15 株式会社オートネットワーク技術研究所 車両用電源装置
JP5742524B2 (ja) * 2011-07-08 2015-07-01 ソニー株式会社 制御装置、蓄電システム、電子機器、電動車両および電力システム
CN102904290B (zh) * 2011-07-25 2015-02-04 国基电子(上海)有限公司 电子装置及其判断电池充满的方法
US8917004B2 (en) 2011-12-07 2014-12-23 Rotonix Hong Kong Limited Homopolar motor-generator
FR2986917B1 (fr) * 2012-02-13 2014-02-21 Converteam Technology Ltd Systeme d'alimentation electrique d'une charge, et centrale de production d'energie electrique comprenant un tel systeme
JP5577367B2 (ja) 2012-03-19 2014-08-20 本田技研工業株式会社 電動車両の制御装置
RU2498476C1 (ru) * 2012-05-03 2013-11-10 Закрытое акционерное общество "ИРИС" Зарядно-разрядное устройство с рекуперацией электроэнергии в корабельную сеть
JP5345263B1 (ja) * 2012-05-18 2013-11-20 三菱電機株式会社 インバータ装置
CN102785563B (zh) * 2012-08-23 2015-06-03 浙江吉利汽车研究院有限公司杭州分公司 混合动力电动汽车动力系统
GB201216127D0 (en) 2012-09-11 2012-10-24 Jaguar Cars A method for determining the change in a vehicle battery
GB2505707B (en) * 2012-09-11 2015-04-15 Jaguar Land Rover Ltd A method for controlling an electrical system in a vehicle
US9381826B2 (en) 2012-10-19 2016-07-05 Gogoro Inc. Battery configuration for an electric vehicle
JP5744072B2 (ja) * 2013-01-10 2015-07-01 三菱電機株式会社 車載用回転電機の駆動装置
JP2014143817A (ja) * 2013-01-23 2014-08-07 Toyota Motor Corp 車両の電源システム
CN103287281B (zh) * 2013-05-21 2016-06-08 潍柴动力股份有限公司 一种汽车驱动系统及其电能控制方法
US20140375066A1 (en) * 2013-06-19 2014-12-25 Tai-Her Yang Combustion and emergency start controlling device having auxiliary power source and system thereof
CN103439599A (zh) * 2013-08-07 2013-12-11 扬州亚星客车股份有限公司 一种电动车实时测量系统
US9969276B2 (en) * 2013-10-09 2018-05-15 Ford Global Technologies, Llc Plug-in vehicle with secondary DC-DC converter
US10286800B2 (en) 2013-10-09 2019-05-14 Ford Global Technologies, Llc Control pilot latch-out mechanism to reduce off-board energy consumption
TWI629184B (zh) * 2013-10-18 2018-07-11 睿能創意公司 用於一車輛之電力輸送系統及其操作方法
WO2015071970A1 (ja) * 2013-11-13 2015-05-21 ボルボ ラストバグナー アクチエボラグ 充放電システム
GB201320375D0 (en) * 2013-11-19 2014-01-01 Shelton Christopher Charging bus
KR101592650B1 (ko) * 2013-12-26 2016-02-11 현대모비스 주식회사 친환경 차량의 저전압 직류 변환 장치를 위한 멀티 전압 출력 제공 장치 및 방법
US9701264B2 (en) * 2014-06-20 2017-07-11 Andrew Aboudaoud Systems and methods for coupling a power converter to a fuse tap
JP6384412B2 (ja) * 2014-07-10 2018-09-05 株式会社デンソー 電源装置
JP6769046B2 (ja) * 2016-03-01 2020-10-14 株式会社Gsユアサ 蓄電素子の監視装置、蓄電素子モジュール、socの推定方法
EP3863145A1 (en) * 2016-06-15 2021-08-11 Katlego Systems, LLC Power supply system
CN106160113B (zh) * 2016-08-18 2018-10-30 特变电工西安电气科技有限公司 一种充电机电源模块智能功率分配控制方法
CN108400580B (zh) * 2017-02-04 2023-04-18 中兴通讯股份有限公司 通信供电系统及通信供电系统供电控制方法
JP6693446B2 (ja) * 2017-03-10 2020-05-13 トヨタ自動車株式会社 駆動装置
US20180312075A1 (en) * 2017-04-28 2018-11-01 GM Global Technology Operations LLC High voltage bus system for electrified vehicles
US10862148B2 (en) * 2017-08-14 2020-12-08 Nissan Motor Co., Ltd. Vehicle power source system
JP6671402B2 (ja) * 2018-02-22 2020-03-25 本田技研工業株式会社 車両用電源装置
KR102532312B1 (ko) * 2018-03-06 2023-05-16 현대자동차주식회사 차량의 전원 공급 시스템 및 이를 제어하는 방법
JP7176852B2 (ja) * 2018-03-30 2022-11-22 本田技研工業株式会社 車両電源システム
JP2020043708A (ja) * 2018-09-12 2020-03-19 本田技研工業株式会社 電源装置
JP6979395B2 (ja) * 2018-10-09 2021-12-15 本田技研工業株式会社 電動車両
US10661679B2 (en) * 2018-10-26 2020-05-26 Premergy, Inc. Multiple chemistry battery systems for electric vehicles
JP7428631B2 (ja) * 2020-12-10 2024-02-06 本田技研工業株式会社 電源システム
KR102619173B1 (ko) * 2020-12-21 2024-01-03 현대모비스 주식회사 양방향 절연형 대용량 dc-dc 컨버터 및 그 제어방법
JP7420125B2 (ja) * 2021-09-27 2024-01-23 トヨタ自動車株式会社 電源システム
CN114498866B (zh) * 2022-04-19 2022-07-29 伏达半导体(合肥)有限公司 双电池充电装置、方法及其控制器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010502A (ja) 2000-06-16 2002-01-11 Sansha Electric Mfg Co Ltd 蓄電池用充放電装置
JP2004025979A (ja) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd 走行車両用電源システム
JP2004320877A (ja) * 2003-04-15 2004-11-11 Toyota Motor Corp 駆動装置用の電力装置およびこれを備える自動車並びに電力装置の制御方法
JP2004320872A (ja) * 2003-04-15 2004-11-11 Isuzu Motors Ltd 車両用電源装置
JP2005033898A (ja) * 2003-07-10 2005-02-03 Toyota Motor Corp 車両の電源装置
JP2005080318A (ja) * 2003-08-29 2005-03-24 Fuji Electric Holdings Co Ltd 電池の充放電制御方法および充電制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2025862C1 (ru) 1992-01-30 1994-12-30 Юлий Иосифович Майзенберг Устройство управления зарядом аккумуляторной батареи транспортного средства
KR100387483B1 (ko) * 2000-12-30 2003-06-18 현대자동차주식회사 전기 자동차용 배터리의 충전상태 제어방법
US6608396B2 (en) 2001-12-06 2003-08-19 General Motors Corporation Electrical motor power management system
JP3969165B2 (ja) 2002-04-16 2007-09-05 トヨタ自動車株式会社 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP4184879B2 (ja) * 2003-07-03 2008-11-19 株式会社日立製作所 鉄道車両駆動システム
JP4140552B2 (ja) 2004-04-28 2008-08-27 トヨタ自動車株式会社 自動車用電源装置およびそれを備える自動車
JP4254714B2 (ja) 2005-01-12 2009-04-15 トヨタ自動車株式会社 駆動装置用の電力装置およびこれを搭載する自動車並びに電力装置の制御方法
JP4222337B2 (ja) * 2005-04-04 2009-02-12 トヨタ自動車株式会社 複数の電源を備えた電源システム及びそれを備えた車両
US7557464B2 (en) * 2006-05-23 2009-07-07 Continental Automotive Systems Us, Inc. System and method for isolating sources and loads of a power system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010502A (ja) 2000-06-16 2002-01-11 Sansha Electric Mfg Co Ltd 蓄電池用充放電装置
JP2004025979A (ja) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd 走行車両用電源システム
JP2004320877A (ja) * 2003-04-15 2004-11-11 Toyota Motor Corp 駆動装置用の電力装置およびこれを備える自動車並びに電力装置の制御方法
JP2004320872A (ja) * 2003-04-15 2004-11-11 Isuzu Motors Ltd 車両用電源装置
JP2005033898A (ja) * 2003-07-10 2005-02-03 Toyota Motor Corp 車両の電源装置
JP2005080318A (ja) * 2003-08-29 2005-03-24 Fuji Electric Holdings Co Ltd 電池の充放電制御方法および充電制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2154764A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431215A4 (en) * 2009-05-14 2016-11-02 Toyota Motor Co Ltd ELECTRIC CAR AND ITS CONTROL METHOD
CN102035240A (zh) * 2009-09-24 2011-04-27 丰田自动车株式会社 车辆用电源系统,具有该电源系统的电动车辆以及控制车辆用电源系统的方法

Also Published As

Publication number Publication date
US8143859B2 (en) 2012-03-27
CN101682202A (zh) 2010-03-24
CN101682202B (zh) 2012-08-08
US20100141213A1 (en) 2010-06-10
EP2154764A4 (en) 2017-06-14
RU2413352C1 (ru) 2011-02-27
EP2154764A1 (en) 2010-02-17
EP2154764B1 (en) 2019-06-26
JP4874874B2 (ja) 2012-02-15
JP2008306823A (ja) 2008-12-18

Similar Documents

Publication Publication Date Title
WO2008149964A1 (ja) 車両の電源装置
US7898103B2 (en) Power supply apparatus for vehicle and vehicle incorporating the same
US8035247B2 (en) Power supply device for vehicle
US8256547B2 (en) Hybrid vehicle
US8340932B2 (en) Vehicle power supply device and method of estimating state of charge of power storage device in vehicle power supply device
US8306692B2 (en) Input/output control device for secondary battery and vehicle
JP5099230B2 (ja) 電動車両の電源システムおよびその制御方法
US8509975B2 (en) Vehicle, method of estimating state of charge of secondary battery, and method of controlling vehicle
RU2414036C1 (ru) Установка энергопитания транспортного средства и транспортное средство
JP5333348B2 (ja) 車両の電力変換装置およびそれを備える車両
US8571734B2 (en) Power supply system for electrically powered vehicle and method for controlling the same
US7847521B2 (en) Power supply system for vehicle
WO2009011444A1 (ja) 車両
WO2010050038A1 (ja) 電動車両の電源システムおよびその制御方法
US20090315518A1 (en) Power supply device and vehicle
US20120022738A1 (en) Electric powered vehicle and control method for the same
WO2008004464A1 (fr) Convertisseur de tension et véhicule équipé du convertisseur de tension
US20110068740A1 (en) Power supply system for vehicle, electric vehicle having the same, and method of controlling power supply system for vehicle
WO2008004440A1 (fr) Système d&#39;alimentation électrique, véhicule l&#39;utilisant, procédé de commande de système d&#39;alimentation électrique, et support d&#39;enregistrement apte à être lu par ordinateur contenant un programme pour amener un ordinateur a commander le système d&#39;alimentation électrique
WO2008018250A1 (fr) Système de génération d&#39;électricité photovoltaïque solaire, véhicule, procédé de commande de système de génération d&#39;électricité photovoltaïque solaire, et support d&#39;enregistrement lisible par ordinateur doté d&#39;un programme pour amener l&#39;ord
KR20090117835A (ko) 전동차량, 충전상태 추정방법 및 충전상태 추정방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록매체
WO2009011322A1 (ja) 車両
JP6135409B2 (ja) 電流センサの異常検出方法、及び車両
JP2007274785A (ja) 車両駆動用電源システム
JP2010115050A (ja) 車両の電源システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880018687.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12451163

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 7001/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008765223

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009149698

Country of ref document: RU