WO2008148918A1 - Composicion, procedimiento e instalacion para obtener en continuo una plancha espumada de naturaleza polimerica y plancha asi obtenida - Google Patents

Composicion, procedimiento e instalacion para obtener en continuo una plancha espumada de naturaleza polimerica y plancha asi obtenida Download PDF

Info

Publication number
WO2008148918A1
WO2008148918A1 PCT/ES2008/000415 ES2008000415W WO2008148918A1 WO 2008148918 A1 WO2008148918 A1 WO 2008148918A1 ES 2008000415 W ES2008000415 W ES 2008000415W WO 2008148918 A1 WO2008148918 A1 WO 2008148918A1
Authority
WO
WIPO (PCT)
Prior art keywords
foamed
zone
foamed sheet
polymeric
extrusion
Prior art date
Application number
PCT/ES2008/000415
Other languages
English (en)
French (fr)
Inventor
Aitor Fabian Mariezkurrena
Marcelo De Sousa Pais Antunes
Perero José Ignacio VELASCO
Original Assignee
Ulma C Y E, S. Coop
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulma C Y E, S. Coop filed Critical Ulma C Y E, S. Coop
Priority to EP08787596A priority Critical patent/EP2169000A4/en
Priority to CN200880018921A priority patent/CN101730718A/zh
Priority to US12/663,245 priority patent/US20100215934A1/en
Publication of WO2008148918A1 publication Critical patent/WO2008148918A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • B29C44/348Cell or pore nucleation by regulating the temperature and/or the pressure, e.g. suppression of foaming until the pressure is rapidly decreased
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/60Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/60Measuring, controlling or regulating
    • B29C44/605Calibration following a shaping operation, e.g. extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/916Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/905Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using wet calibration, i.e. in a quenching tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/07Long chain branching

Definitions

  • the present invention relates to an installation for the production of thermoplastic foamed sheets of polymeric nature, to the manufacturing process of said plates, as well as to the development of a new formulation based on polypropylene for the production of foamed sheets by continuous extrusion, being such application plates in various fields and especially in the manufacture of sandwich form panels, in which the plates constitute the core of the panel.
  • Foamed polymeric panels have been used in recent years in various structural applications, as described below:
  • wood formwork panels In what refers to the formwork panels, the use of wood formwork panels has always been very widespread in the construction sector, which provide multiple advantages and among them is to provide good clavability.
  • wood formwork panels have a short life due to the environment in which their activity takes place, since they are generally exposed to water, moisture, abrasive materials (cement, lime, concrete, etc.), which shortens their useful life.
  • the wooden panel is complemented with edges and edges of plastic materials, opportunely assembled or fixed to the wood core.
  • the present invention in addition to considering a new installation and method for the continuous obtaining of foamed sheets of thermoplastic material for structural applications, has as its object the development of new compositions in polypropylene base of higher melt strength, in particular mixtures of polypropylenes Branched (PP-ram) and linear polypropylenes (PP-linear), enabling the continuous production of the said foamed plates on a low density PP base (> 250 kg / m 3 and in particular, regulating the formulation, between 250-500 kg / m 3 ).
  • these foamed plates of reduced density will have use in structural applications, for example as foamed cores of sandwich panels for formwork boards.
  • branched polypropylenes (PP-ram) used in the present invention are chemically modified linear polymers with long branches in their chain, prepared by known chemical methods from a linear polypropylene as described for example in US 3,542,702 or in US 6,875,826, being already commercially available (for example there are grades of branched polypropylenes from companies such as Borealis or Basell Polyolefins). Its particular structure also allows its recyclability.
  • linear structure polypropylene (PP-linear) used in the present invention can be any degree of conventional virgin extrusion, recycling or a mixture of both.
  • the PP-ram has higher extensional viscosity and shear in the molten state than the PP-linear. This is particularly important during the obtaining of the foamed plate, since it allows the polymer to support the global cellular structure of the foam during the expansion stage of the gas bubbles due to decompression effect, reducing the problems associated with the coalescence of cells previously indicated and observed in the case of the use of linear polypropylenes for foaming applications, and ultimately allowing to achieve considerably lower density values.
  • the particular rheology of the PP-ram allows a stable growth of the gas bubbles during the foam expansion stage.
  • the PP-ram is mixed in the present composition with PP-linear in different proportions, depending on the degree of expansion and the desired mechanical properties for the cellular material, being reprocessable due to its uncrosslinked structure.
  • an object of the present invention relates to an installation for the continuous production of foamed sheets of thermoplastic polymeric nature, in particular of PP, by extrusion foaming.
  • Another object of the invention relates to a process for obtaining said foamed plate.
  • the method comprises: placing a polymeric mass (A), previously melted and homogenized, in contact with a foaming agent (B); continuous obtaining of the plate foamed by extrusion; calibration and cooling of the foamed plate; and collecting and cutting said foamed iron.
  • Another object of the present invention relates to a new composition for the preparation of said foamed plate based on polypropylene (PP), and comprising the following essential components: a polymeric mass (A), formed by branched polypropylene (PP-ram) and linear polypropylene (PP-linear).
  • the composition further comprises a foaming agent (B).
  • Another aspect of the invention refers to the foamed plate itself.
  • the present invention relates in one aspect to an installation and respective process for the production of foamed sheets of polymeric nature, in particular polypropylene, produced continuously by extrusion foaming.
  • the present invention relates in another aspect to a new composition formed by a polymeric mass (A), comprising: branched polypropylene (PP-ram) and linear polypropylene (PP-linear), for the preparation of foamed sheets with a structure of closed cell using a foaming agent.
  • A polymeric mass
  • PP-ram branched polypropylene
  • PP-linear linear polypropylene
  • foamed panels are in turn useful in various structural applications such as in cores used in the manufacture of sandwich panels, in particular for formwork.
  • composition of the invention for the preparation of said foamed plates includes: (A) a polymeric mass comprising:
  • nucleating agent and / or secondary foaming agent not H 2 O
  • organophilic ceramic particles with a water percentage of less than 0.02%; - 0.1-1% by weight of other process additives, and
  • (B) a foaming agent that does not water (H 2 O), physical or chemical, in an amount between 0.5 and 5% by weight.
  • the composition of the invention also comprises the possibility of incorporating between 0.5-3% by weight of a nucleating agent and / or secondary foaming agent that does not H 2 O, facilitating the growth of gas bubbles and the crystallization process of The matrix of PP.
  • the nucleating agent employed is talc.
  • the talc acts as a nucleating agent for the gas bubbles during the decompression stage of the gas dispersed in the molten polymer mass (A), in addition to acting as a nucleating agent in the PP crystallization process.
  • the percentage of talc used may vary depending on the type of cell morphology and the desired final mechanical properties. The higher the percentage of talc used, the more effective the process of nucleating the gas bubbles will be, resulting in foamed materials with smaller and more uniform cell sizes.
  • the foamed plate obtained is characterized by presenting a closed cell structure with a maximum open cell content of 15%, in particular less than 10%, with cells of maximum size 0.5 mm in unimodal distribution, important for structural applications, enabling having a specific stiffness value higher than that of foamed sheets with open cell structure.
  • the composition of the invention contemplates between 1-10% by weight of organophilic ceramic particles, which are characterized by having one in their composition a percentage of water lower than 0.02%, which act by increasing the mechanical properties, in particular their rigidity, of the foamed panel.
  • the stiffness of the foamed core can be increased using nanoparticle precursors, in particular modified clays with an organophilic surface treatment of lamectite type laminar structure, such as montmorillonite and / or hectorite.
  • These clays designated cationic clays, have a crystalline structure formed by sheets of aluminum octahedra comprised between two sheets formed by silica tetrahedra with some silanol groups in space interlaminar, in which there are interchangeable cations. These sheets have nominal thicknesses close to 1 nm and lengths of up to 1 ⁇ m. The aspect ratio is between 100 and 1000, with a high surface area (700-800 m 2 / g).
  • the ceramic particles employed in 1 to 10% by weight in the composition of the invention presented previously, are cationic clays of the smectite type, such as montmorillonite and / or Ia hectorite, superficially modified with a quaternary cation of tetra-alkyl-ammonium (referred to in the present patent as "organophilic ceramic particles"), thus organophilizing its surface, making it more compatible with low polar polymers such as polyolefins, in particular polypropylene, considered in the composition of the present invention .
  • organic ceramic particles cationic clays of the smectite type, such as montmorillonite and / or Ia hectorite, superficially modified with a quaternary cation of tetra-alkyl-ammonium
  • the procedure for obtaining the foamed plate which is described more Further, it is an extrusion foaming process, in which the molten polymeric mass (A) and the foaming agent (B) are mixed.
  • the organophilic ceramic particles can act together with the talc as a nucleating agent for generating gas bubbles during the stage of initiation of cell growth, in addition to the crystallization nucleation process of the PP matrix.
  • These organophilic ceramic particles, dispersed and intercalated / exfoliated during mixing can also stiffen the cell walls during the cell growth stage, helping to locally increase the melt strength of the polymer mass and thereby limiting the possible breakage thereof. .
  • foamed sheets with specific elastic modules can be obtained, that is, modules relative to the density of the material, greater than 1.2 GPa.cm 3 / g , in particular between 1, 4 and 1, 5 GPa.cm 3 / g.
  • organophilized clay nanoparticles are used to regulate the stiffness of the designated foamed plates of low (100-200 kg / m 3 ) and intermediate density (200-400 kg / m 3 ).
  • the organophilic ceramic particles used to increase the stiffness of the foamed plate are double laminar hydroxides (LDH) of the modified hydrotalcite type.
  • LDH also known as anionic clays, are laminar compounds with anions in the interlaminar spacing. Its structure consists of sheets of brucite type positively charged due to the partial replacement of divalent cations with other trivalent ones, the load being offset by anions located between the sheets.
  • the hydrotalcite a type of LDH considered in the composition of the present invention in a percentage comprised between 1 and 10% by weight, has a structure formed by octahedral sheets of double magnesium / aluminum hydroxides coordinated by OH groups " sharing vertices with three contiguous octahedra.
  • the divalent ions of the sheets can be replaced by other trivalent ones (Fe 3+ , Al 3+ , etc.), generating an excess of positive charge that has to be counteracted by the presence of anions ( CO 3 2 " , Cl “ , OH “ , etc.) between its sheets.
  • This type of ceramic particles presents a difficulty of dispersion by extrusion due to the stability provided by the presence of these interlaminar anions, especially carbonates (CO 3 2 " ).
  • Organophilic ceramic particles are obtained by chemical modification consisting of an anion exchange that replaces the original carbonate anions with others of higher volume, thereby increasing interlaminar spacing and, ultimately, facilitating the dispersion of particles within the matrix. polymer by extrusion.
  • organophilic glass fibers are used as ceramic particles, that is, superficially modified with coupling agents of the organofunctional silane type. These fibers increase the stiffness, toughness and impact resistance of the foamed iron comparatively with that provided by the organophilic clays indicated previously.
  • a fiberglass of a length between 0.5-10 mm, (designated short fiber) or> 10 mm (designated long fiber) is used.
  • foamed panels with specific elastic modules> 1, 2 GPa.cm 3 / g are achieved, in particular between 1, 2-1, 5 GPa.cm 3 / g.
  • the organophilic fibers are used as reinforcement material in the designated foamed plates of high density (400-500 kg / m 3 ) allowing a slight increase in stiffness with respect to the respective plates without fiber (1, 1-1, 3 GPa .cm 3 / g).
  • the organophilic glass fiber previously defined as long fiber is used in particular cases of production of high density foamed sheets (400-500 kg / m 3 ) with special properties of high tenacity combined with stiffness, due to the difficulty inherent in the extrusion foaming process, in which successive mixing stages can partially break the fibers.
  • the composition of the invention also contemplates between 0.1 and 1% by weight of process additives.
  • Said additives are selected from colorants, lubricants and mixtures thereof.
  • the internal lubricants reduce the effort developed by the machine during processing. This is particularly convenient when high percentages of loads or reinforcements (> 10% by weight) are used, and especially in the case of using long fiberglass; In the latter case, 1% lubricant is typically used.
  • the composition of the invention also comprises between 0.5-5% by weight of a foaming agent (B) of physical or chemical type.
  • the physical foaming agent is a gas, which is selected from carbon dioxide, nitrogen, n-butane, n-heptane and mixtures thereof, depending on the desired final properties for the foamed plate.
  • the gas is introduced as will be discussed later, during the process of obtaining the foamed sheet by extrusion, under pressure and in supercritical conditions in the corresponding gas inlet zones in the extruder.
  • Chemical foaming agents are characterized in that, unlike physical ones, they thermally decompose inside the extruder releasing gas (s).
  • the present invention contemplates the use of chemical foaming agents (0.5 to 5% by weight) both exothermic, such as azodicarbonamide, which at a certain temperature and for a certain time, thermally decomposes releasing N 2 and other gases ; as endothermic, such as those of the sodium bicarbonate type.
  • exothermic such as azodicarbonamide
  • endothermic such as those of the sodium bicarbonate type.
  • foamed sheets of intermediate and high density between 300 and 500 kg / m 3 can be achieved.
  • the present invention also contemplates the possibility of using expandable microspheres of polymeric nature, formed by a wall of a thermoplastic material and in its interior by a gas.
  • the present invention contemplates the use of 3-5% by weight of this type of foaming agent, allowing final densities of 300-500 kg / m 3 to be reached for the foamed plates exempted.
  • Both the amount of the physical and chemical foaming agent are regulated according to the final characteristics that the foamed panel is desired, mainly according to the density to be obtained. In this sense, and for low density foamed cores (100-200 kg / m 3 ), percentages between 3 and 5% are typically used; for intermediate density foamed cores (200-400 kg / m 3 ), percentages between 1 and 3%; and for high density cores (400-500 kg / m 3 ), percentages between 0.5-1%.
  • the mechanical and thermal properties of the foamed plate can be regulated by varying the relative amounts of the components of the composition of the invention indicated above, as well as its particular nature and the parameters of the process of obtaining. Said properties can be regulated, for example, by varying the type and proportion of foaming agent, which largely determines the final density of the panel.
  • the foamed plate obtained from the composition of the invention typically has a specific elastic modulus between 0.8 and 1.2 GPa.cm 3 / g, and with a shear modulus of about 40-100 MPa.
  • the mechanical properties are increased with micrometric and nanometric reinforcements reaching specific elastic modules greater than 1.2 GPa.cm 3 / g.
  • the foamed panel must have at all times characteristics that allow its use in structural applications, in particular in formwork panels, which includes a closed cell cellular structure, with a maximum open cell content of 15%, in particular less than 10%, with micrometric size cells (typical size less than 500 microns) in unimodal distribution.
  • This structure is achieved by properly regulating the parameters of the extrusion foaming process, in combination with the specific composition of the material of each plate.
  • the foamed plate obtained can have varying densities, and therefore different degrees of expansion (ER), defined as the ratio between the density of the polymer and that of the final foamed plate.
  • the plate has a width between 250 and 2400 mm, preferably between 1000 and 1400. It also has a thickness between 5 and 35 mm, in particular between 15 and 35 mm, and its length is variable.
  • the plate has a width between 250 and 2400 mm, preferably between 1000 and 1400. It can also have a thickness between 5 and 35 mm, in particular between 10 and 30 mm, and its length is variable.
  • the plate has a width between 250 and 2400 mm, preferably between 1000 and 1400. It can also have a thickness between 5 and 35 mm, in particular between 5 and 25 mm, and its length is variable.
  • Example 2 uses as a foaming agent expandable microspheres of polymeric nature, allowing to reach, without the need for branched polypropylenes, foamed plates of density between 300-500 kg / m 3 , with specific elastic modules slightly lower, between 0.7-1.0 GPa.cm 3 / g, to those achieved with both physical foaming agents of type CO 2 and chemical foaming agents.
  • the extruder constitutes the first stage of the installation and it has to prepare the material for the following stages of calibration and refrigeration and the final stages of collection and cutting, necessary to obtain the product according to the invention.
  • the extruder used is a single-spindle type, 120 mm in diameter and with an L / D ratio (length / diameter) of 48, the spindle being located inside a chamber designated cylinder or sleeve;
  • the spindle fulfills three basic functions:
  • the materials involved in the process are initially placed in a hopper and introduced into the extruder through the feed throat, which is refrigerated to avoid the possible formation of plastic plugs.
  • the jacket is heated by electric resistors and the cooling is carried out by a water circuit.
  • the spindle is designed to produce the compression of the molten plastic material, subsequently passing to a gasification zone where a gas is injected through pressure nozzles, which is mixed with the molten plastic material. Then the spindle has a third stage through which and once the plastic material has been mixed with the gas introduced under pressure, the compression of the molten plastic mass and gas is carried out again, together with a homogenization and product mixing at a later stage. Furthermore, the possibility of using both chemical foaming agents of the azodicarbonamide type and foaming agents formed by expandable microspheres of polymeric nature is contemplated.
  • the foaming agent is introduced in the form of a process additive together with the polymeric materials to be processed (in the hopper), in a proportion comprised between 0.5 and 5% by weight, melted and mixed in the extruder together with polypropylenes and other additives, the foaming being regulated by the temperatures of the different zones of the extruder.
  • the foaming is achieved by sudden heating just in the last zones of the extruder.
  • the present invention intends to use in the first instance a foaming agent of physical type (CO 2 , N 2 , ...), introduced into the extruder through pressure cylinders, the subsequent description of the installation of foamed plates production Of a polymeric nature by direct extrusion, it considers the particularities of this type of process, although in no case should it be considered a limitation of its scope.
  • a foaming agent of physical type CO 2 , N 2 , ...)
  • Decompressions are usually associated with increases in the section of the cylinder of the extruder or the extrusion head, resulting in the total or partial growth of the gas bubbles dispersed within the molten polymer.
  • This total or partial foaming inside the machine normally causes the breakage and collapse of cells due to stretching, since in these areas the mixture is at a higher temperature and usually does not have a sufficient melt strength to simultaneously withstand the bubble growth and material stretching.
  • the head that the invention proposes has the most relevant feature of having a T-shaped distributor channel adapted to the aforementioned process of the invention and also including restricting bar and flexible opening lips.
  • the extrusion head has different electrical resistors that ensure the heating of all the material that passes through it.
  • the head of the invention guarantees the gradual increase of the pressure of the melt and in this way allows an adequate control of the first stages of the expansion or foaming process of the gas dissolved in the melt by decompression just at the exit of the lips.
  • the lips, together with the restricting bar located before them, are adjustable and allow controlling the pressure exerted on the melt and, as such, regulating the density of the final plate with the amount of foaming agent.
  • this head design novel in terms of material flow distribution, guarantees that the polymer mass melted with the gas or dissolved gases, previously homogenized by the action of the extruder, reach the outlet thereof, that is, to the area of the lips, without foaming.
  • the controlled foaming, achieved just at the exit of the lips of the extrusion head guarantees that the plate has a unimodal distribution of cell sizes, both in width and thickness of the panel, as well as the adequate stabilization by action of the contact calibrators of the cellular structure of the panel, which is intended as a closed cell.
  • the calibration system serves to regulate, not only the degree of final expansion of the foam, but also the surface finish of the foamed panel, necessary for the placement of structural skins for its application as a foamed core of sandwich panels in formwork applications . It also consists of a calibrator formed by two sets of parallel horizontal metal plates, each with a length between 500 and 1000 mm, a width between 300 and 3000 mm, in particular between 800-2500 mm, between which the contact occurs of the exempted foamed iron. These plates have an internal coolant circuit. The separation between the plates of this calibration system is regulated between 5 and 35 mm. It also has a bathtub where there is a vacuum between the plates and the foamed iron. The presence of these calibrators constitutes one of the main novelties of the present patent, being simultaneously responsible for the cooling of the surface of the foamed panel and, as such, for the stabilization of the cellular structure of the foam, as well as for the good surface finish of it.
  • This system also consists of a traction system of the caterpillar type, which conveys at a constant speed the foamed sheet to the final cutting system, which defines the dimensions of the foamed plate in width and length.
  • Figure 1 represents a diagram of the iron production line foamed in PP base.
  • Figure 2 represents a scheme of the design of the screw and the cooling tube.
  • Figure 3 represents in detail the gasification zone and the respective gas inlets in the extruder.
  • Figure 4 represents a foamed iron according to the invention.
  • Figure 1 shows a diagram of the production line of the foamed plate in PP base in which the following five systems are observed:
  • the extruder (1) is a single spindle type, the spindle (10) being 120 mm in diameter, located inside a cylinder (11) with heating controlled by electric resistors (13) and cooled by an internal water circuit. Inside the spindle the following three basic functions are developed:
  • the materials involved in the process are initially introduced into a feed hopper (12).
  • gear pump (14) Next to the spindle (10) and the cylinder (11) is a gear pump (14) and then the extrusion head (15). This gear pump allows to regulate the production, eliminating possible pressure fluctuations in the extrusion head.
  • the foaming agent is either introduced as a process additive together with the polymeric materials in the feed hopper (in the case of chemical foaming agents or formed by expandable microspheres of polymeric nature) or it is introduced into the extruder from pressure cylinders ( 16), in the case of physical foaming agents of the type CO 2 or N 2 , thus guaranteeing a supercritical fluid state and therefore the maximum solubility with the molten plastic mass.
  • the machine preferably has four gas inlets (17) located at different points of the gasification zone along the cylinder (11), allowing to regulate the level of mixing with the molten polymer mass.
  • the calibration system (2) serves to regulate, not only the degree of final expansion of the foam, but also the surface finish of the foamed panel, particularly in applications where it is necessary to place structural skins on the foamed plate. A very rough final surface of the foamed panel is essential for the proper assembly of said structural skins.
  • the system preferably consists of four flat calipers (18), (19), (20) and (21) in line and with the ability to apply the vacuum, with adjustable opening from 5 to 35 mm, the first (18) being say the closest to the extrusion head (15), together with the proportion of foaming agent used, which regulates the final thickness of the foamed panel while the other three (19), (20) Y (21) regulate the surface finish final. Together with the calibrators, this area consists of a cooling bath (3) that allows the panel to cool down (5) by direct contact with chilled water.
  • the traction system (4) of the foamed panel is of the caterpillar type, transporting the foamed plate to the cutting system at a constant speed of 1-10 m / min.
  • the cutting system (5) is responsible for cutting the foamed panel in width and length according to the required and previously indicated dimensions.
  • Figure 2 shows a diagram of the design of the screw and the cooling tube (34). This figure shows the spindle (10) and the sleeve (11), as well as the four possible gas inlets (17) in the extruder. To make a description of a practical embodiment of the spindle the measurements of the various zones will be given with respect to the diameter thereof.
  • the spindle is subdivided into four distinct zones:
  • the feeding zone (30) is the one in charge of transporting the softened material coming from the feeding hopper (12) and can have a length that oscillates approximately between 6 and 10 times the diameter of the spindle.
  • the compression zone (31), where the fusion and compression of the material is carried out, has a length between 6 and 10 times the diameter of the spindle, and in which one of the sections is double fillet to increase the fusion efficiency .
  • the gasification zone (32) is the spindle area where the different gas inlets (17) are located in the jacket of the extruder (11).
  • the length of this zone also ranges between 10 and 14 times the diameter of the spindle and has special areas of dispersive and distributive mixing of the molten material with the dispersed gas or gases, interspersed with transport zones.
  • the dosing zone (33) where the homogenization and mixing of the molten material with the gas is carried out has a length between 4 and 8 times the spindle diameter
  • Figure 3 shows an enlarged detail of the gasification zone (32).
  • the smaller diameter of the spindle axis compares with the previous area, creating a greater spacing with respect to the walls of the jacket (11), thus facilitating the mixing of the gas with the plastic;
  • the head that the invention proposes has the most relevant feature of having a T-shaped distributor channel adapted to the aforementioned process of the invention that includes an adapter located in the final area of the lips, with the possibility of internal cooling through a circuit of water and that allows stabilizing the overall structure of the foam during the beginning of the stage of expansion thereof at the exit of the lips by decompression.
  • the lips together with the restriction bar located before them, are adjustable and allow controlling the pressure exerted on the melt mixture and, as such, regulate the density of the final plate together with the amount of foaming agent.
  • the controlled foaming achieved just at the exit of the lips of the extrusion head, guarantees that the plate has a unimodal distribution of cell sizes, both in width and thickness of the panel, as well as adequate stabilization by the action of the calibrators of contact of the global cell structure thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

La presente invención describe un procedimiento y respectiva instalación para Ia producción en continuo de planchas de naturaleza polimérica espumadas por extrusión, siendo otro objeto de Ia invención el desarrollo y empleo de formulaciones en base polipropileno, que comprenden polipropilenos lineales y polipropilenos ramificados. La instalación incluye cuatro etapas: una primera etapa de espumación por extrusión, donde se mezcla un agente espumante, bien de naturaleza química, o bien físico, en este último caso introducido en condiciones supercríticas con Ia masa polimérica previamente fundida en las primeras etapas de Ia extrusora, produciéndose Ia expansión del material justo a Ia salida de los labios del cabezal plano de extrusión; una segunda etapa de calibrado y refrigeración de Ia plancha espumada, donde el material plástico expandido es enfriado por contacto en un sistema de calibradores de vacío y por contacto con agua en una bañera de refrigeración; una etapa de recogida del panel espumado; y una etapa final de corte de Ia plancha espumada, definiendo las dimensiones finales de Ia misma.

Description

COMPOSICIÓN. PROCEDIMIENTO E INSTALACIÓN PARA OBTENER EN CONTINUO UNA PLANCHA ESPUMADA DE NATURALEZA POLIMÉRICA Y
PLANCHA ASÍ OBTENIDA
CAMPO DE LA INVENCIÓN La presente invención se refiere a una instalación para Ia producción de planchas termoplásticas espumadas de naturaleza polimérica, al procedimiento de fabricación de dichas planchas, así como al desarrollo de una nueva formulación en base polipropileno para Ia producción de las planchas espumadas por extrusión en continuo, siendo tales planchas de aplicación en diversos campos y muy especialmente en Ia fabricación de paneles para encofrados tipo sandwich, en los que las planchas constituyen el núcleo del panel.
ANTECEDENTES DE LA INVENCIÓN
Los paneles espumados de naturaleza polimérica se han venido empleando en los últimos años en diversas aplicaciones estructurales, tal como se describe a continuación:
En las patentes US 7,048,879 y US 6,399,189 se desarrolla un proceso de producción de paneles espumados de naturaleza polimérica por procesos discontinuos por expansión como alternativa a los clásicos paneles de madera. Sin embargo, y a pesar de Ia sencillez de los métodos presentados en las patentes anteriores, estos se encuentran limitados a pequeñas producciones de paneles plásticos espumados para aplicaciones estructurales.
En las patentes US 6,521 ,675, US 6,383,425 y US 6,231 ,942 se desarrollan procesos de producción en continuo de planchas espumadas de polipropileno con un acabado superficial mejorado. Sin embargo, las planchas así producidas presentan limitaciones en Io que toca a densidad final del material y morfología del mismo, debido a Ia elevada coalescencia celular asociada a Ia espumación de polipropilenos lineales. En particular, Ia patente US 6,770,697 considera Ia incorporación de cargas nanométricas para incremento de Ia resistencia en fundido de Ia masa polimérica y mejora de las propiedades finales de Ia plancha espumada. Sin embargo, las planchas así obtenidas siguen presentando valores finales de densidad considerados elevados (> 250 kg/m3) para este tipo de materiales y para aplicaciones estructurales.
En Io que se refiere a los paneles de encofrado, desde siempre han estado muy extendidos en el sector de Ia construcción el uso de paneles de madera para encofrados, que aportan múltiples ventajas y entre ellas Ia de proporcionar una buena clavabilidad. Sin embargo, los paneles para encofrado de madera tienen una vida corta por el ambiente en que se desarrolla su actividad, ya que generalmente están expuestos al agua, humedades, materiales abrasivos (cemento, cal, hormigón, etc.), Io que acorta su vida útil.
Por otro lado, una vez deteriorados, necesariamente deben retirarse y sus posibilidades de reparación y reciclado son complicadas y, en cualquier caso, limitadas.
No es desdeñable también, como sucede con todos los productos que se obtienen de Ia madera, el impacto ecológico que supone obtener millones de metros cuadrados de panel para encofrado a partir de madera de los bosques.
Con vistas a Ia durabilidad del panel, se vienen desarrollando desde hace tiempo paneles para encofrado que combinan madera y materiales plásticos. Este tipo de paneles se describen en las Patentes DE 19611413, DE 19611382 y EP 1 426 525.
Generalmente el panel de madera se complementa con bordes y cantos de materiales plásticos, oportunamente ensamblados o fijados al núcleo de madera.
Asimismo, se vienen investigando y desarrollando procedimientos y formulaciones para Ia obtención de paneles compuestos únicamente de materiales plásticos, caucho reciclado o combinaciones de materiales plásticos diversos. Generalmente, esta tecnología trata de cumplir un doble objetivo, por una parte dar salida a Ia inmensa cantidad de residuos plásticos que genera Ia industria del automóvil y buscar una utilización para los mismos a través de su reciclado para Ia obtención de paneles para Ia construcción.
Un procedimiento para Ia obtención de paneles de materiales reciclados está descrito en Ia Patente WO 2004/111368, que permite Ia obtención de un tablero de composite a base de plástico y caucho de neumáticos triturados. Se obtiene un núcleo al que se Ie añaden pieles estructurales para completar el tablero de encofrado. El tablero obtenido por este procedimiento es bastante denso y no aporta todas las características mecánicas requeridas.
Por otra parte, también se vienen utilizando desde hace años paneles estructurales aislados tipo sandwich, tal y como se describe en las Patentes US 3.305.991 , US 3.555.131 , US 3.838.241 y US 4.120.330. En estas, se desarrolla el proceso de conformación de espumas soldadas térmicamente, elaborando Ia espuma dentro de un molde. Existen muchas Patentes relacionadas con el proceso de espumado para alineaciones estructurales como núcleo de paneles sandwich por extrusión directa continua, empleando un agente espumante de tipo físico. Sin embargo, muchas de ellas se limitan a Ia maquinaría necesaria para producir el panel espumado, olvidándose de Ia formulación del material empleado.
OBJETO DE LA INVENCIÓN
La presente invención, además de considerar una nueva instalación y procedimiento para Ia obtención en continuo de planchas espumadas de material termoplástico para aplicaciones estructurales, tiene por objeto el desarrollo de nuevas composiciones en base polipropileno de superior resistencia en fundido, en particular de mezclas de polipropilenos ramificados (PP-ram) y polipropilenos lineales (PP- lineal), posibilitando Ia producción en continuo de las referidas planchas espumadas en base PP de reducida densidad (> 250 kg/m3 y en particular, regulando Ia formulación, entre 250-500 kg/m3). En particular, estas planchas espumadas de reducida densidad tendrán uso en aplicaciones estructurales, por ejemplo como núcleos espumados de paneles sandwich para tableros de encofrado.
Los polipropilenos ramificados (PP-ram) empleados en Ia presente invención son polímeros lineales químicamente modificados con largas ramificaciones en su cadena, preparados por métodos químicos conocidos a partir de un polipropileno lineal como se describe por ejemplo en US 3,542,702 o en US 6,875,826, siendo que ya se encuentran disponibles comercialmente (por ejemplo existen grados de polipropilenos ramificados de empresas como Borealis o Basell Polyolefins). Su particular estructura permite además su reciclabilidad.
Con respecto al polipropileno de estructura lineal (PP-lineal) utilizado en Ia presente invención, puede ser cualquier grado de extrusión convencional virgen, reciclado o una mezcla de ambos.
El PP-ram presenta superior viscosidad extensional y a cizalla en estado fundido que el PP-lineal. Esto es particularmente importante durante Ia obtención de Ia plancha espumada, ya que permite que el polímero soporte Ia estructura celular global de Ia espuma durante Ia etapa de expansión de las burbujas de gas por efecto de descompresión, reduciendo los problemas asociados a Ia coalescencia de celdas indicado previamente y observado en el caso del empleo de polipropilenos lineales para aplicaciones de espumación, y en último caso posibilitando alcanzar valores de densidad considerablemente más reducidos. La particular reología del PP-ram permite un crecimiento estable de las burbujas de gas durante Ia etapa de expansión de Ia espuma.
El PP-ram se mezcla en Ia presente composición con PP-lineal en diferentes proporciones, dependiendo del grado de expansión y de las propiedades mecánicas deseadas para el material celular, siendo reprocesable debido a su estructura no entrecruzada.
Así, pues, un objeto de Ia presente invención se refiere a una instalación para Ia producción en continuo de planchas espumadas de naturaleza polimérica termoplástica, en particular de PP, por espumación por extrusión.
Otro objeto de Ia invención se refiere a un procedimiento para Ia obtención de dicha plancha espumada. El procedimiento comprende: colocar en contacto en el interior de una extrusora una masa polimérica (A), previamente fundida y homogeneizada, con un agente espumante (B); obtención en continuo de Ia plancha espumada por extrusión; calibrado y refrigeración de Ia plancha espumada; y recogida y corte de dicha plancha espumada.
Otro objeto de Ia presente invención se refiere a una nueva composición para Ia preparación de dicha plancha espumada en base polipropileno (PP), y que comprende los siguientes componentes esenciales: una masa polimérica (A), formada por polipropileno ramificado (PP-ram) y polipropileno lineal (PP-lineal). La composición comprende además un agente espumante (B).
Finalmente, otro aspecto Ia invención se refiere a Ia propia plancha espumada.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere en un aspecto a una instalación y respectivo procedimiento para Ia producción de planchas espumadas de naturaleza polimérica, en particular de polipropileno, producidas en continuo por espumación por extrusión.
La presente invención se refiere en otro aspecto a una nueva composición formada por una masa polimérica (A), que comprende: polipropileno ramificado (PP- ram) y polipropileno lineal (PP-lineal), para Ia preparación de planchas espumadas con una estructura de celda cerrada empleando un agente espumante. Estos paneles espumados resultan a su vez útiles en diversas aplicaciones estructurales tales como en núcleos empleados en Ia fabricación de paneles de tipo sandwich, en particular para encofrado.
La nueva composición, en adelante composición de Ia invención, para Ia preparación de dichas planchas espumadas incluye: (A) una masa polímérica que comprende:
- 0-70% en peso de PP-ram; - 30-98% en peso de PP-lineal, virgen, reciclado o una mezcla de ambos;
- 0,5-3% en peso de un agente nucleante y/o agente espumante secundario, que no H2O;
- 1-10% en peso de partículas cerámicas organofílicas, con un porcentaje de agua inferior al 0,02 %; - 0,1-1% en peso de otros aditivos de proceso, y
(B) un agente espumante que no agua (H2O), físico o químico, en una cantidad comprendida entre 0,5 y 5% en peso.
La composición de Ia invención comprende además Ia posibilidad de incorporar entre 0,5-3% en peso de un agente nucleante y/o agente espumante secundario que no H2O, facilitando el crecimiento de las burbujas de gas y el proceso de cristalización de Ia matriz de PP. En una realización particular el agente nucleante empleado es talco. El talco actúa como agente de nucleación de las burbujas de gas durante Ia etapa de descompresión del gas dispersado en Ia masa polimérica fundida (A), además de actuar como nucleante en el proceso de cristalización del PP. El porcentaje utilizado de talco puede variar dependiendo del tipo de morfología celular y de las propiedades mecánicas finales deseadas. Cuanto más elevado sea el porcentaje de talco utilizado más efectivo será el proceso de nucleación de las burbujas de gas, resultando en materiales espumados con tamaños de celda más reducidos y uniformes.
La plancha espumada obtenida se caracteriza por presentar una estructura de celda cerrada con un contenido máximo de celdas abiertas del 15 %, en particular inferior al 10 %, con celdas de tamaño máximo 0,5 mm en distribución unimodal, importante para aplicaciones estructurales, posibilitando que tenga un valor de rigidez específica superior que el de planchas espumadas con estructura de celda abierta.
Asimismo, Ia composición de Ia invención contempla entre 1-10% en peso de partículas cerámicas organofílicas, que se caracterizan por presentar una en su composición un porcentaje de agua inferior al 0,02 %, que actúan incrementando las propiedades mecánicas, en particular su rigidez, del panel espumado. En una realización particular, Ia rigidez del núcleo espumado puede incrementarse utilizando precursores de nanopartículas, en particular arcillas modificadas con un tratamiento superficial organofílico de estructura laminar de tipo esmectita, como Ia montmorillonita y/o Ia hectorita. Estas arcillas, designadas arcillas catiónicas, presentan una estructura cristalina formada por láminas de octaedros de aluminio comprendidas entre dos láminas formadas por tetraedros de sílice con algunos grupos silanol en el espacio interlaminar, en el cual existen cationes intercambiables. Estas láminas presentan espesores nominales próximos a 1 nm y longitudes de hasta 1 μm. La relación de aspecto se encuentra entre 100 y 1000, con una elevada área superficial (700-800 m2/g). En una realización particular, las partículas cerámicas, empleadas en un 1 a 10 % en peso en Ia composición de Ia invención presentada previamente, son arcillas catiónicas de tipo esmectita, como Ia montmorillonita y/o Ia hectorita, modificadas superficialmente con un catión cuaternario de tetra-alquil-amonio (referidas en Ia presente patente como "partículas cerámicas organofílicas"), de esta manera organofilizando su superficie, haciéndola más compatible con polímeros poco polares como las poliolefinas, en particular el polipropileno, considerado en Ia composición de Ia presente invención. Incrementando químicamente Ia compatibilidad entre Ia superficie de las láminas de las arcillas y las cadenas de polímero facilita Ia dispersión de las mismas en el seno de Ia matriz polimérica por procesos de mezclado en fundido como el de extrusión.
Además, en las condiciones particulares de mezclado de los componentes de Ia composición de Ia invención, y debido a las débiles fuerzas de cohesión que mantienen las láminas de las partículas cerámicas organofílicas unidas, se consigue una intercalación de las cadenas poliméricas entre las láminas y en condiciones de mezclado muy intenso una exfoliación parcial de las mismas en el seno de Ia masa polimérica (A). Esta intercalación/exfoliación parcial de las láminas de arcilla modificada en Ia masa polimérica permite que se obtengan nanocompuestos poliméricos, esto es, un compuesto en el que al menos una de las dimensiones de las partículas dispersadas en Ia matriz polimérica se encuentra en el rango nanométrico (en este caso el espesor). Esta situación particular permite una elevada área superficial de contacto entre las láminas de arcilla y las cadenas poliméricas, rigidizando localmente las mismas, resultando en una mejora generalizada de las propiedades mecánicas a nivel macroscópico (como el módulo elástico y Ia resistencia), permitiendo además mantener Ia densidad final del núcleo espumado, debido al hecho de que elevadas áreas de contacto polímero-arcilla posibilitan el empleo de porcentajes másicos considerablemente reducidos de arcilla (< 10 % en peso) cuando se comparan con otros refuerzos o cargas más convencionales.
El procedimiento de obtención de Ia plancha espumada, que se describe más adelante, es un proceso de espumación por extrusión, en el que se mezclan Ia masa polimérica fundida (A) y el agente espumante (B). En este proceso las partículas cerámicas organofílicas pueden actuar junto con el talco como agente nucleante de generación de las burbujas de gas durante Ia etapa de inicio del crecimiento celular, además del proceso de nucleación de cristalización de Ia matriz de PP. Estas partículas cerámicas organofícilas, dispersadas e intercaladas/exfoliadas durante el mezclado, pueden igualmente rigidizar las paredes celulares durante Ia etapa de crecimiento celular, ayudando a incrementar localmente Ia resistencia en fundido de Ia masa polimérica y de esa manera limitando Ia posible rotura de las mismas. Con Ia composición de Ia invención que comprende entre 1 y 10 % en peso de arcilla modificada se pueden obtener planchas espumadas con módulos elásticos específicos, esto es, módulos relativos a Ia densidad del material, superiores a 1 ,2 GPa.cm3/g, en particular entre 1 ,4 y 1 ,5 GPa.cm3/g.
Las nanopartículas de tipo arcilla previamente organofilizada ("partículas cerámicas organofílicas") son empleadas para regular Ia rigidez de las planchas espumadas designadas de baja (100-200 kg/m3) e intermedia densidad (200-400 kg/m3).
En otra realización particular, las partículas cerámicas organofílicas empleadas para incrementar Ia rigidez de Ia plancha espumada, son hidróxidos dobles laminares (LDH) de tipo hidrotalcita modificada. Los LDH, también conocidos como arcillas aniónicas, son compuestos laminares con aniones en el espaciado interlaminar. Su estructura consiste en láminas de tipo brucita cargadas positivamente debido a Ia sustitución parcial de cationes divalentes por otros trivalentes, siendo Ia carga contrarrestada por aniones situados entre las láminas. En particular, Ia hidrotalcita, un tipo de LDH considerado en Ia composición de Ia presente invención en un porcentaje comprendido entre el 1 y el 10 % en peso, presenta una estructura formada por láminas octaédricas de hidróxidos dobles de magnesio/aluminio coordinadas por grupos OH" compartiendo vértices con tres octaedros contiguos. Los iones divalentes de las láminas pueden ser sustituidos por otros trivalentes (Fe3+, Al3+, etc.), generando un exceso de carga positiva que ha de ser contrarrestada por Ia presencia de aniones (CO3 2", Cl", OH", etc.) entre sus láminas. Este tipo de partículas cerámicas presenta una dificultad de dispersión por extrusión debida a Ia estabilidad aportada por Ia presencia de estos aniones interlaminares, sobre todo carbonatos (CO3 2"). Estas partículas cerámicas organofílicas se obtienen por modificación química consistente en un intercambio aniónico que reemplaza los aniones carbonato originales por otros de superior volumen, incrementando de esta forma el espaciado interlaminar y, en último instancia, facilitando Ia dispersión de las partículas en el seno de Ia matriz polimérica por extrusión.
En otra realización particular, para rigidizar Ia plancha espumada, se utilizan como partículas cerámicas fibras de vidrio organofílicas, esto es, modificadas superficialmente con agentes de acoplamiento de tipo silano organofuncional. Estas fibras incrementan Ia rigidez, tenacidad y Ia resistencia al impacto de Ia plancha espumada comparativamente con Ia que proporcionan las arcillas organofílicas indicadas previamente. Típicamente se utiliza una fibra de vidrio de una longitud comprendida entre 0,5-10 mm, (designada fibra corta) o > 10 mm (designada fibra larga). De este modo se consiguen paneles espumados con módulos elásticos específicos > 1 ,2 GPa.cm3/g, en particular entre 1 ,2-1 ,5 GPa.cm3/g. Las fibras organofílicas son empleadas como material de refuerzo en las planchas espumadas designadas de elevada densidad (400-500 kg/m3) permitiendo un ligero aumento de Ia rigidez con respecto a las respectivas planchas sin fibra (1 ,1-1 ,3 GPa.cm3/g).
En una realización particular, Ia fibra de vidrio organofílica definida previamente como fibra larga se utiliza en casos particulares de producción de planchas espumadas de elevada densidad (400-500 kg/m3) con propiedades especiales de elevada tenacidad combinada con rigidez, debido a Ia dificultad inherente al proceso de espumación por extrusión, en que sucesivas etapas de mezclado pueden llegar a parcialmente romper las fibras.
La composición de Ia invención contempla además entre 0,1 y 1 % en peso de aditivos de proceso. Dichos aditivos se seleccionan entre colorantes, lubricantes y sus mezclas. Los lubricantes internos reducen el esfuerzo desarrollado por Ia máquina durante el procesado. Esto es particularmente conveniente cuando se utilizan elevados porcentajes de cargas o refuerzos (> 10% en peso), y sobre todo en el caso de empleo de fibra de vidrio larga; en este último caso particular se utiliza típicamente un 1 % de lubricante. La composición de Ia invención comprende asimismo entre 0,5-5 % en peso de un agente espumante (B) de tipo físico o químico.
En una realización particular el espumante físico es un gas, que se selecciona de entre dióxido de carbono, nitrógeno, n-butano, n-heptano y sus mezclas, dependiendo de las propiedades finales deseadas para Ia plancha espumada. El gas se introduce tal y como se comentará más adelante, durante el procedimiento de obtención de Ia plancha espumada por extrusión, a presión y en condiciones supercríticas en las zonas correspondientes de entrada de gas en Ia extrusora.
Los agentes espumantes químicos se caracterizan porque, a diferencia de los físicos, se descomponen térmicamente en el interior de Ia extrusora liberando gas(es). La presente invención contempla el empleo de agentes espumantes químicos (de 0,5 a un 5% en peso) tanto exotérmicos, como por ejemplo Ia azodicarbonamida, que a una determinada temperatura y durante cierto tiempo, se descompone térmicamente liberando N2 y otros gases; como endotérmicos, como por ejemplo los del tipo bicarbonato sódico. Dependiendo del porcentaje de agente espumante químico empleado se pueden conseguir planchas espumadas de densidad intermedia y elevada comprendida entre los 300 y los 500 kg/m3. Además, Ia presente invención contempla igualmente Ia posibilidad de empleo de microesferas expandibles de naturaleza polimérica, formadas por una pared de un material termoplástico y en su interior por un gas. Cuando calentadas, Ia presión del gas presente en su interior se ve incrementada, al mismo tiempo que Ia pared polimérica se reblandece, promoviendo Ia expansión de las mismas. En estos casos, Ia presente invención contempla el empleo de un 3-5 % en peso de este tipo de agente espumante, permitiendo alcanzar densidades finales de 300-500 kg/m3 para las planchas espumadas eximidas.
Tanto Ia cantidad del espumante físico como del químico se regulan de acuerdo con las características finales que se desee tenga el panel espumado, fundamentalmente según Ia densidad a obtener. En este sentido, y para núcleos espumados de baja densidad (100-200 kg/m3), se utilizan típicamente porcentajes comprendidos entre 3 y 5 %; para núcleos espumados de densidad intermedia (200- 400 kg/m3), porcentajes entre 1 y 3 %; y para núcleos de elevada densidad (400-500 kg/m3), porcentajes comprendidos entre 0,5-1 %.
Las propiedades mecánicas y térmicas de Ia plancha espumada pueden regularse variando las cantidades relativas de los componentes de Ia composición de Ia invención previamente indicados, así como su naturaleza particular y los parámetros del procedimiento de obtención. Dichas propiedades pueden regularse por ejemplo variando el tipo y Ia proporción de agente espumante, que en gran parte determina Ia densidad final del panel. En general Ia plancha espumada obtenida a partir de Ia composición de Ia invención presenta típicamente un módulo elástico específico entre 0,8 y 1 ,2 GPa.cm3/g, y con un módulo a cizalla de unos 40-100 MPa. Las propiedades mecánicas se incrementan con refuerzos micrométricos y nanométricos alcanzándose módulos elásticos específicos superiores a 1 ,2 GPa.cm3/g. Hay que considerar que el panel espumado debe presentar en todo momento unas características que permitan su empleo en aplicaciones estructurales, en particular en paneles para encofrado, Io que incuye una estructura celular de celda cerrada, con un contenido máximo de celdas abiertas del 15 %, en particular inferior al 10 %, con celdas de tamaño micrométrico (tamaño típico inferior a 500 mieras) en distribución unimodal. Esta estructura se consigue regulando de forma adecuada los parámetros del proceso de espumación por extrusión, en combinación con Ia composición específica del material de cada plancha.
La plancha espumada obtenida puede presentar densidades variables, y por tanto distintos grados de expansión (ER), definido como el cociente entre Ia densidad del polímero y Ia de Ia plancha final espumada. La densidad de Ia plancha espumada se encuentra típicamente comprendida entre 100-500 kg/m3 (ER = 1 ,8-9). En una realización particular de Ia invención Ia plancha espumada, designada de baja densidad, presenta una densidad comprendida entre 100-200 kg/m3 (ER = 4,5-9). La plancha presenta una anchura comprendida entre 250 y 2400 mm, preferiblemente entre 1000 y 1400. Asimismo presenta un espesor comprendido entre 5 y 35 mm, en particular entre 15 y 35 mm, y su longitud es variable. En otra realización particular de Ia invención Ia plancha espumada, designada de densidad intermedia, presenta una densidad comprendida entre 200-400 kg/m3 (ER = 2,25-4,5). La plancha presenta una anchura comprendida entre 250 y 2400 mm, preferiblemente entre 1000 y 1400. Asimismo puede presentar un espesor comprendido entre 5 y 35 mm, en particular entre 10 y 30 mm, y su longitud es variable.
En otra realización particular de Ia invención Ia plancha espumada, designada de densidad elevada, presenta una densidad comprendida entre 400-500 kg/m3 (ER = 1 ,8 - 2,25). La plancha presenta una anchura comprendida entre 250 y 2400 mm, preferiblemente entre 1000 y 1400. Asimismo puede presentar un espesor comprendido ente 5 y 35 mm, en particular entre 5 y 25 mm, y su longitud es variable.
A continuación se presenta un ejemplo ilustrativo de Ia composición de Ia invención, que se expone para una mejor comprensión de Ia invención y en ningún caso debe considerarse una limitación del alcance de Ia misma.
Ejemplos: Composición de Ia invención
Ejemplo 1 :
- 65% de un PP ramificado (PP-ram) de nombre comercial Daploy WB130HMS, de Borealis;
- 30% de un PP lineal (PP-lineal) indicado para aplicaciones de extrusión, de nombre comercial PP Isplen 050 G1 E, de Repsol-YPF; - 2% en peso de un masterbatch de talco en base PP al 40% de talco, de nombre comercial Isplen PM-440, de Repsol-YPF; y
- 3% de dióxido de carbono como espumante físico que se introduce en Ia extrusora a un caudal constante de 5 kg/h.
Ejemplo 2:
- 98% de un PP lineal (PP-lineal) indicado para aplicaciones de extrusión, de nombre comercial PP Isplen 050 G1 E, de Repsol-YPF;
- 2% de un agente espumante formado por microesferas expandibles de naturaleza polimérica, de nombre comercial Expancel 950 MB 120, de Akzo Nobel. Con la formulación presentada en el ejemplo 1 se obtiene un núcleo de densidad comprendida entre 200 y 500 kg/m3, un módulo elástico específico entre 1 ,0 y 1 ,2 GPa.cm3/g y un módulo a cizalla entre 40 y 100 MPa.
La formulación presentada en el ejemplo 2 emplea como agente espumante microesferas expandibles de naturaleza polimérica, permitiendo alcanzar, sin necesidad de empleo de polipropilenos ramificados, planchas espumadas de densidad comprendida entre 300-500 kg/m3, con módulos elásticos específicos ligeramente inferiores, entre 0,7-1 ,0 GPa.cm3/g, a los alcanzados tanto con agentes espumantes físicos del tipo CO2 como con agentes espumantes químicos.
Es objeto de Ia presente invención, Ia instalación y respectivo procedimiento para Ia producción de paneles espumados de naturaleza polimérica en base PP de celda cerrada para aplicaciones estructurales. Esta instalación consta de las siguientes zonas claramente diferenciadas:
- Zona de espumación por extrusión
- Zona de calibrado y refrigeración - Zona de recogida
- Zona de corte
La extrusora constituye Ia primera etapa de Ia instalación y en ella ha de prepararse el material para las siguientes etapas de calibración y refrigeración y las etapas finales de recogida y corte, necesarias para obtener el producto acorde con Ia invención.
La extrusora que se emplea es de tipo monohusillo, de diámetro 120 mm y con una relación L/D (longitud/diámetro) de 48, estando el husillo situado en el interior de una cámara designada cilindro o camisa; el husillo cumple tres funciones básicas:
- Transporte del material alimentado en estado parcialmente sólido o reblandecido
- Fusión del material alimentado y compresión del mismo
- Mezclado, homogeneización y dosificación al cabezal de extrusión para Ia producción de planchas espumadas de densidad y espesor variable.
Los materiales que intervienen en el proceso son inicialmente colocados en una tolva e introducidos en Ia extrusora a través de Ia garganta de alimentación, que se encuentra refrigerada para evitar Ia posible formación de tapones de plástico.
La camisa se encuentra calefactada mediante resistencias eléctricas y Ia refrigeración se efectúa por un circuito de agua.
Inicialmente el husillo se encuentra diseñado para producir Ia compresión del material plástico en estado fundido, pasando posteriormente a una zona de gasificación donde se inyecta un gas a través de boquillas a presión, que se mezcla con el material plástico fundido. A continuación el husillo posee una tercera etapa a través de Ia cual y una vez mezclado el material plástico con el gas introducido a presión en su seno se procede a efectuar nuevamente Ia compresión de Ia masa de plástico fundido y gas, juntamente con una homogeneización y mezclado del producto en una etapa posterior. Además se contempla Ia posibilidad de empleo tanto de agentes espumantes químicos del tipo azodicarbonamida como de agentes espumantes formados por microesferas expandibles de naturaleza polimérica. En ambos casos, el agente espumante es introducido en forma de aditivo de proceso junto con los materiales poliméricos a procesar (en Ia tolva), en una proporción comprendida entre 0,5 y 5% en peso, fundido y mezclado en Ia extrusora junto con los polipropilenos y demás aditivos, siendo Ia espumación regulada por las temperaturas de las distintas zonas de Ia extrusora. En el caso de empleo de agentes espumantes formados por microesferas expandibles de naturaleza polimérica, Ia espumación se consigue por calentamiento brusco justo en las últimas zonas de Ia extrusora.
Como Ia presente invención pretende emplear en primera instancia un agente espumante de tipo físico (CO2, N2,...), introducido en Ia extrusora a través de bombonas a presión, Ia posterior descripción de Ia instalación de producción de las planchas espumadas de naturaleza polimérica por extrusión directa considera las particularidades de este tipo de proceso, aunque en ningún caso debe considerarse una limitación del alcance de Ia misma. A continuación del husillo se encuentra el cabezal de extrusión. El cabezal tiene una geometría plana, adecuada para Ia obtención de planchas eximidas y con un diseño que garantiza Ia buena homogeneización de Ia mezcla del polímero fundido con el gas, siendo que se debe evitar Ia presencia de zonas de descompresión antes de que Ia mezcla alcance los labios del cabezal, Ia zona situada justo al final del mismo.
Las descompresiones suelen estar asociadas a incrementos de Ia sección del cilindro de Ia extrusora o del cabezal de extrusión, resultando en el crecimiento total o parcial de las burbujas de gas dispersadas en el seno del polímero fundido. Esta espumación total o parcial en el interior de Ia máquina origina normalmente Ia rotura y colapso de celdas por efecto de estirado, ya que en esas zonas Ia mezcla se encuentra a más temperatura y normalmente no posee una resistencia en fundido suficiente como para soportar simultáneamente el crecimiento de las burbujas y el estirado del material.
El cabezal que Ia invención propone tiene como característica mas relevante el tener un canal distribuidor en forma de T adaptado al citado proceso de Ia invención y además incluyendo barra restrictora y labios flexibles de apertura. El cabezal de extrusión lleva acopladas diferentes resistencias eléctricas que aseguran el calentamiento de todo el material que Io atraviesa.
El cabezal de Ia invención garantiza el incremento gradual de Ia presión del fundido y de esta manera posibilita un control adecuado de las primeras etapas del proceso de expansión o espumación del gas disuelto en Ia masa fundida por descompresión justo a Ia salida de los labios. Los labios, juntamente con Ia barra restrictora situada antes de los mismos, son regulables y permiten controlar Ia presión ejercida sobre Ia masa fundida y, como tal, regular junto con Ia cantidad de agente espumante Ia densidad de Ia plancha final.
Aunque el proceso de enfriamiento y estabilización final de Ia plancha espumada sea conseguido fundamentalmente por acción de los calibradores de contacto por vacío, este diseño de cabezal, novedoso en cuanto a Ia distribución de flujo de material, garantiza que Ia masa polimérica fundida con el gas o gases disueltos, previamente homogeneizada por acción de Ia extrusora, llegue a Ia salida del mismo, es decir, a Ia zona de los labios, sin haber espumado. La espumación controlada, conseguida justo a Ia salida de los labios del cabezal de extrusión garantiza que Ia plancha presente una distribución unimodal de tamaños de celda, tanto en anchura como en espesor del panel, así como Ia estabilización adecuada por acción de los calibradores de contacto de Ia estructura celular del panel, que se pretende de celda cerrada.
El sistema de calibrado sirve para regular, no sólo el grado de expansión final de Ia espuma, como también el acabado superficial del panel espumado, necesario para Ia colocación de pieles estructurales de cara a su aplicación como núcleo espumado de paneles sandwich en aplicaciones de encofrado. Consta además de un calibrador formado por dos conjuntos de placas horizontales paralelas metálicas, cada una con una longitud comprendida 500 y 1000 mm, una anchura entre 300 y 3000 mm, en particular entre 800-2500 mm, entre entre las que se produce el contacto de Ia plancha espumada eximida. Dichas placas disponen de un circuito interno de líquido refrigerante. La separación entre las placas de este sistema de calibración se regula entre 5 y 35 mm. Dispone asimismo de una bañera donde se produce el vacío entre las placas y Ia plancha espumada. La presencia de estos calibradores constituye una de las principales novedades de Ia presente patente, siendo simultáneamente los responsables del enfriamiento de Ia superficie del panel espumado y, como tal, de Ia estabilización de Ia estructura celular de Ia espuma, así como del buen acabado superficial de Ia misma.
Este sistema consta asimismo de un sistema de tracción de tipo oruga, que transporta a una velocidad constante Ia lámina espumada hasta el sistema final de corte, que define las dimensiones de Ia plancha espumada en anchura y longitud.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Para completar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, acompaña a Ia presente memoria descriptiva, como parte integrante de Ia misma, un juego de dibujos en donde con carácter ilustrativo y no limitativo se ha representado Io siguiente:
La Figura 1 representa un esquema de Ia línea de producción de Ia plancha espumada en base PP.
La Figura 2 representa un esquema del diseño del tornillo y del tubo de enfriamiento. La Figura 3 representa en detalle Ia zona de gasificación y de las respectivas entradas de gas en Ia extrusora.
La Figura 4 representa una plancha espumada según Ia invención.
DESCRIPCIÓN DETALLADA DE UN MODO PREFERIDO DE REALIZACIÓN
En Ia figura 1 se representa un esquema de Ia línea de producción de Ia plancha espumada en base PP en Ia que se observan los cinco siguientes sistemas:
- Extrusora (1)
- Sistema de calibrado y bañera de refrigeración (2 y 3)
- Sistema de tracción (4) - Sistema de corte (5)
La extrusora (1) es de tipo monohusillo, estando el husillo (10), de diámetro 120 mm, situado en el interior de un cilindro (11) con calefacción controlada por resistencias eléctricas (13) y refrigerado por un circuito interno de agua. En el interior del husillo se desarrollan las siguientes tres funciones básicas:
- Transporte del material inicialmente en estado parcialmente sólido o reblandecido.
- Fusión del material alimentado y compresión del mismo.
- Mezclado, homogeneización y dosificación al cabezal de extrusión plano para Ia producción de planchas espumadas de densidad y espesor variable.
Los materiales que intervienen en el proceso son inicialmente introducidos en una tolva de alimentación (12).
A continuación del husillo (10) y del cilindro (11) se encuentra una bomba de engranajes (14) y a continuación de esta el cabezal de extrusión (15). Esta bomba de engranajes permite regular Ia producción, eliminando posibles fluctuaciones de presión en el cabezal de extrusión.
HOJA DE SUSTITUCIÓN (REGLA 26) El agente espumante o bien es introducido como aditivo de proceso junto con los materiales poliméricos en Ia tolva de alimentación (caso de los espumantes químicos o formados por microesferas expandibles de naturaleza polimérica) o bien es introducido en Ia extrusora a partir de bombonas a presión (16), caso de los espumantes físicos del tipo CO2 o N2, de esta manera garantizando un estado de fluido supercrítico y por tanto Ia máxima solubilidad con Ia masa de plástico fundido. La máquina dispone preferentemente de cuatro entradas de gas (17) situadas en distintos puntos de Ia zona de gasificación a Io largo del cilindro (11), permitiendo regular el nivel de mezclado con Ia masa polimérica fundida.
El sistema de calibrado (2) sirve para regular, no sólo el grado de expansión final de Ia espuma, sino también el acabado superficial del panel espumado, en particular en aplicaciones en que sea necesario colocar pieles estructurales a Ia plancha espumada. Una superficie final muy poco rugosa del panel espumado resulta esencial para el ensamble adecuado de las referidas pieles estructurales. El sistema consta de preferentemente cuatro calibradores planos (18), (19), (20) Y (21) en línea y con capacidad de aplicar el vacío, con apertura regulable de 5 a 35 mm, siendo el primero (18), es decir el más próximo al cabezal de extrusión (15), junto con Ia proporción empleada de agente espumante, el que regula el espesor final del panel espumado mientras que los otros tres (19), (20) Y (21) regulan el acabado superficial final. Junto con los calibradores, esta zona consta de una bañera de refrigeración (3) que permite el enfriamiento adecuado del panel (5) por contacto directo con agua refrigerada.
El sistema de tracción (4) del panel espumado es de tipo oruga, transportando a una velocidad constante de 1-10 m/min Ia plancha espumada hasta el sistema de corte.
Por último, el sistema de corte (5) se encarga de cortar en anchura y longitud el panel espumado de acuerdo con las dimensiones requeridas y previamente indicadas.
En Ia figura 2 se representa un esquema del diseño del tornillo y del tubo de enfriamiento (34). En esta figura se observa el husillo (10) y Ia camisa (11), así como las cuatro posibles entradas de gas (17) en Ia extrusora. Para efectuar una descripción de una realización práctica del husillo las medidas de las diversas zonas estarán dadas respecto al diámetro del mismo. Así de un modo particular Ia longitud del husillo representado en (35) oscila entre 36 y 42 veces el diámetro del mismo (D = 120 mm), con una relación de compresión comprendida entre 2 y 3 y con un tubo de enfriamiento (34), situado justo después del husillo de extrusión, con medidas que oscilan entre 10 y 14 veces el diámetro, siendo Ia zona donde se bombea y enfría Ia mezcla de polímero y gas; esta zona es necesaria para eliminar por efecto de Ia bomba de engranajes (14) las posibles fluctuaciones de presión originadas en el cabezal y enfriar progresivamente Ia masa de material procesada.
EL husillo se encuentra subdividido en cuatro zonas diferenciadas:
- Zona de alimentación (30) - Zona de compresión (31)
- zona de gasificación (32)
- Zona de dosificación (33)
La zona de alimentación (30) es Ia encargada de transportar el material reblandecido proveniente de Ia tolva de alimentación (12) y puede tener una longitud que oscila aproximadamente entre 6 y 10 veces el diámetro del husillo.
La zona de compresión (31), donde se efectúa Ia fusión y compresión del material, posee una longitud entre 6 y 10 veces el diámetro del husillo, y en el que una de las secciones es de doble filete para incremento de Ia eficacia de fusión.
La zona de gasificación (32) es Ia zona del husillo donde se encuentran las distintas entradas de gas (17) en Ia camisa de Ia extrusora (11). La longitud de esta zona también oscila entre 10 y 14 veces el diámetro del husillo y presenta zonas especiales de mezclado dispersivo y distributivo del material fundido con el gas o gases dispersados, intercaladas con zonas de transporte.
Por último Ia zona de dosificación (33) donde se realiza Ia homogeneización y mezclado del material fundido con el gas posee una longitud entre 4 y 8 veces el diámetro del husillo.
En Ia figura 3 se muestra un detalle ampliado de Ia zona de gasificación (32). De esta figura destacan además de las entradas de gas (17), el menor diámetro del eje del husillo comparativamente con Ia zona anterior, creando un espaciado superior respecto a las paredes de Ia camisa (11), de esa manera facilitando el mezclado del gas con el plástico; en segundo lugar Ia presencia de zonas especiales (36) de mezclado del material fundido con el gas o gases dispersados, intercaladas con zonas de transporte (37).
El cabezal que Ia invención propone tiene como característica mas relevante el tener un canal distribuidor en forma de T adaptado al citado proceso de Ia invención que incluye un adaptador situado en Ia zona final de los labios, con posibilidad de refrigeración interna a través de un circuito de agua y que permite estabilizar Ia estructura global de Ia espuma durante el inicio de Ia etapa de expansión de Ia misma a Ia salida de los labios por descompresión.
Los labios, juntamente con Ia barra restrictora situada antes de los mismos, son regulables y permiten controlar Ia presión ejercida sobre Ia mezcla en fundido y, como tal, regular junto con Ia cantidad de agente espumante Ia densidad de Ia plancha final.
Aunque el proceso de enfriamiento y estabilización final de Ia plancha espumada sea conseguido fundamentalmente por acción de los calibradores de contacto por vacío, este diseño de cabezal, novedoso en cuanto a Ia distribución de flujo de material, garantiza que Ia masa polimérica fundida con el gas o gases disueltos, previamente homogeneizada por acción de Ia extrusora, llegue a Ia salida del mismo, es decir a Ia zona de los labios sin haber espumado.
La espumación controlada, conseguida justo a Ia salida de los labios del cabezal de extrusión, garantiza que Ia plancha presente una distribución unimodal de tamaños de celda, tanto en anchura como en espesor del panel, así como Ia estabilización adecuada por acción de los calibradores de contacto de Ia estructura celular global del mismo.

Claims

REIVINDICACIONES
1. Composición para Ia obtención por extrusión de una plancha espumada con estructura celular cerrada con un contenido máximo de celdas abiertas del 15 %, en particular inferior al 10 %, determinado de acuerdo con Ia norma UNE-EN ISO 4590, con celdas de tamaño máximo 0,5 mm en distribución unimodal, que comprende:
- Una masa polímérica seca (A), formada por:
- 0-70 % en peso de PP-ram;
30-98 % en peso de PP-lineal;
0,5-3 % en peso de un agente nucleante y/o un agente espumante secundario, que no agua;
1-10 % en peso de partículas cerámicas organofílicas, con un porcentaje de agua inferior al 0,02 %;
0,1-1 % en peso de aditivos de proceso, seleccionados entre colorantes, lubricantes internos y sus mezclas, y en donde los porcentajes en peso señalados se refieren al peso con respecto al peso total de Ia mezcla; y
- Un agente espumante (B) que no agua (H2O), en una cantidad comprendida entre 0,5 y 5 % en peso.
2. Composición según Ia reivindicación 1 , en Ia que el PP-lineal es virgen, reciclado o una mezcla de ambos.
3. Composición según Ia reivindicación 1 , en Ia que el agente nucleante es talco.
4. Composición según Ia reivindicación 1 , en Ia que las partículas cerámicas organofílicas son arcillas de estructura laminar del tipo esmectita, seleccionadas entre montmorillonita y/o hectorita y en donde éstas presentan un porcentaje de humedad (H2O) inferior al 0,02 %.
5. Composición según Ia reivindicación 1 , en Ia que las partículas cerámicas organofílicas son hidróxidos dobles laminares (LDH) de tipo hidrotalcita modificada.
6. Composición según Ia reivindicación 1 , en Ia que las partículas cerámicas organofílicas de refuerzo son fibras de vidrio.
7. Composición según Ia reivindicación 6, en Ia que las fibras de vidrio presentan una longitud comprendida entre 0,5 y 10 mm (fibras cortas) o superior a 10 mm (fibras largas).
8. Composición según Ia reivindicación 1 , en Ia que el agente espumante (B) es de tipo físico, en particular un gas seleccionado de entre dióxido de carbono, nitrógeno, n-butano, n-heptano y sus mezclas, o químico, en particular de tipo azodicarbonamida.
9. Composición según Ia reivindicación 1 , en Ia que el agente espumante (B) está formado por microesferas expandibles de naturaleza polimérica, en particular por microesferas huecas en que un gas se encuentra encapsulado por una pared de naturaleza polimérica.
10. Empleo de Ia composición según cualquiera de las reivindicaciones 1 a 9 en Ia preparación de una plancha espumada por extrusión directa y procedimiento para obtener dicha plancha que comprende las siguientes etapas:
- Poner en contacto en una extrusora Ia masa polimérica (A) previamente fundida con el agente espumante (B) y demás componentes de Ia formulación; obtención de Ia plancha espumada por extrusión; calibrado de Ia plancha espumada; refrigeración de Ia plancha espumada; y estirado de Ia plancha espumada.
11. Procedimiento según Ia reivindicación 10, en Ia que Ia etapa de extrusión comprende:
a) Alimentación de los componentes de Ia masa polimérica (A) y los demás componentes de Ia mezcla a una extrusora; b) Fusión y compresión de Ia masa polimérica (A); c) Introducción del agente espumante físico y mezclado con Ia masa polimérica fundida obtenida en Ia etapa anterior b); d) Compresión y homogeneización de Ia mezcla de Ia masa polimérica y gas disuelto obtenida en Ia etapa anterior c); e) Dosificación de Ia masa obtenida d) a un cabezal de extrusión con una boquilla plana que conforma Ia plancha; f) Espumación del material procesado justo a Ia salida de los labios del cabezal de extrusión.
12. Instalación para obtener en continuo una plancha espumada de naturaleza polimérica con Ia composición presentada según cualquiera de las reivindicaciones 1 a 9 que comprende las siguientes zonas:
- Una zona de extrusión (1), que comprende una extrusora con un único husillo
(10) situado en el interior de una camisa (11), siendo que además comprende una bomba de engranajes (14), que regula Ia producción, eliminando posibles fluctuaciones de presión y un cabezal de extrusión (15). La zona de extrusión (1) consta a su vez de cuatro zonas en su zona definida por el husillo: - zona de alimentación (30) zona de compresión (31) zona de gasificación (32) zona de dosificación (33) Una zona de calibrado (2) - Una zona de refrigeración (3)
Una zona de estirado (4)
13. Instalación para obtener en continuo una plancha espumada de naturaleza polimérica según Ia reivindicación 12, caracterizada porque Ia zona de alimentación (30) es Ia de transporte del material reblandecido proveniente de una tolva de alimentación, teniendo una longitud comprendida entre 6 y 10 veces el diámetro del husillo.
14. Instalación para obtener en continuo una plancha espumada de naturaleza polimérica según Ia reivindicación 12, caracterizada porque Ia zona de compresión
(31) encargada de Ia fusión del material proveniente de Ia zona de alimentación (30), presenta doble filete y una longitud comprendida entre 6 y 10 veces el diámetro del husillo.
15. Instalación para obtener en continuo una plancha espumada de naturaleza polimérica según Ia reivindicación 12, caracterizada porque Ia zona de gasificación
(32) comprende diferentes entradas de gas (17) y teniendo una longitud comprendida entre 10 y 14 veces el diámetro del husillo.
16. Instalación para obtener en continuo una plancha espumada de naturaleza polimérica según las reivindicaciones 12 y 15, caracterizada porque el husillo en Ia zona de gasificación presenta intercaladas zonas de mezclado distributivo y dispersivo y zonas de transporte del material.
17. Instalación para obtener en continuo una plancha espumada de naturaleza polimérica según Ia reivindicación 12, caracterizada porque Ia zona de dosificación (33), donde se efectúa el mezclado del material polimérico fundido con el(los) gas(es) disueltos, posee una longitud entre 4 y 8 veces el diámetro del husillo.
18. Instalación para obtener en continuo una plancha espumada de naturaleza polimérica según Ia reivindicación 12, caracterizada porque el cabezal de extrusión (15) es un cabezal con un canal distribuidor en forma de T que garantiza un buen reparto del flujo de material y un incremento creciente de Ia presión en el interior de Ia extrusora.
19. Instalación para obtener en continuo una plancha espumada de naturaleza polimérica según las reivindicaciones 12 y 18, caracterizada porque el cabezal distribuidor a su salida incluye barra restrictora (42) y labios flexibles de apertura (43) que regulan Ia presión ejercida sobre Ia mezcla y por tanto Ia densidad de Ia mezcla final.
20. Instalación para obtener en continuo una plancha espumada de naturaleza polimérica según Ia reivindicación 12, caracterizada porque Ia zona de calibrado (2) incluye medios que regulan el acabado superficial del panel comprendiendo cuatro calibradores planos en línea con capacidad de aplicar el vacío.
21. Instalación para obtener en continuo una plancha espumada de naturaleza polimérica según Ia reivindicación 12, caracterizada porque Ia primera unidad del sistema de calibrado (2) incluye medios que regulan el espesor final del panel mientras que los tres posteriores regulan su acabado superficial final.
22. Plancha espumada con Ia composición presentada en cualquiera de las reivindicaciones 1 a 9 y obtenida por el procedimiento según las reivindicaciones 10 y 11 , caracterizada por presentar un módulo elástico específico comprendido entre 0,8 y 1 ,5 GPa.cm3/g, un módulo a cizalla entre 40 y 100 MPa y un espesor final entre 5 y 35 mm.
23. Plancha espumada con Ia composición presentada en cualquiera de las reivindicaciones 1 a 9, designada de baja densidad, obtenida según las reivindicaciones 10 y 11 , de densidad comprendida entre 100-200 kg/m3, anchura comprendida entre 250 y 2400 mm y espesor comprendido entre 6 y 35 mm, en particular entre 15 y 35 mm.
24. Plancha espumada con Ia composición presentada en cualquiera de las reivindicaciones 1 a 9, designada de densidad intermedia, obtenida según las reivindicaciones 10 y 11 , de densidad comprendida entre 200-400 kg/m3, anchura comprendida entre 250 y 2400 mm y espesor comprendido entre 6 y 35 mm, en particular entre 10 y 30 mm.
25. Plancha espumada con Ia composición presentada en cualquiera de las reivindicaciones 1 a 9, designada de elevada densidad, obtenida según las reivindicaciones 10 y 11 , de densidad comprendida entre 400-500 kg/m3, anchura comprendida entre 250 y 2400 mm y espesor comprendido entre 6 y 35 mm, en particular entre 5 y 25 mm.
PCT/ES2008/000415 2007-06-07 2008-06-06 Composicion, procedimiento e instalacion para obtener en continuo una plancha espumada de naturaleza polimerica y plancha asi obtenida WO2008148918A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08787596A EP2169000A4 (en) 2007-06-07 2008-06-06 COMPOSITION, METHOD AND UNIT FOR CONTINUOUS MANUFACTURE OF A POLLED FOIL AND RESULTING FOIL
CN200880018921A CN101730718A (zh) 2007-06-07 2008-06-06 连续生产发泡聚合物片材用组合物、方法和设备及所得片材
US12/663,245 US20100215934A1 (en) 2007-06-07 2008-06-06 Composition, process and installation for the continuous production of a foamed polymeric sheet and sheet thus produced

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/ES2007/000334 WO2008148898A1 (es) 2007-06-07 2007-06-07 Composición, procedimiento e instalación para obtener en continuo una plancha espumada de naturaleza polimérica y plancha así obtenida
ESPCT/ES/07/00034 2007-06-07

Publications (1)

Publication Number Publication Date
WO2008148918A1 true WO2008148918A1 (es) 2008-12-11

Family

ID=40093216

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/ES2007/000334 WO2008148898A1 (es) 2007-06-07 2007-06-07 Composición, procedimiento e instalación para obtener en continuo una plancha espumada de naturaleza polimérica y plancha así obtenida
PCT/ES2008/000415 WO2008148918A1 (es) 2007-06-07 2008-06-06 Composicion, procedimiento e instalacion para obtener en continuo una plancha espumada de naturaleza polimerica y plancha asi obtenida

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000334 WO2008148898A1 (es) 2007-06-07 2007-06-07 Composición, procedimiento e instalación para obtener en continuo una plancha espumada de naturaleza polimérica y plancha así obtenida

Country Status (7)

Country Link
US (1) US20100215934A1 (es)
EP (1) EP2169000A4 (es)
CN (1) CN101730718A (es)
CL (2) CL2008001642A1 (es)
PA (2) PA8782801A1 (es)
PE (2) PE20090530A1 (es)
WO (2) WO2008148898A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492547B (zh) * 2009-03-05 2011-07-27 中国科学院长春应用化学研究所 一种水作为发泡剂制备聚丙烯泡沫材料的方法
WO2012100880A1 (de) 2011-01-28 2012-08-02 Benecke-Kaliko Ag Verfahren zur herstellung einer mehrschichtigen kunststofffolie
WO2014071641A1 (zh) * 2012-11-08 2014-05-15 江苏微赛新材料科技有限公司 一种聚丙烯微孔发泡厚板的生产方法
DE102014222958A1 (de) 2014-11-11 2016-05-12 Benecke-Kaliko Aktiengesellschaft Verfahren zur Herstellung eines Schaumfolienlaminats und dessen Verwendung

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010026272A1 (de) * 2010-07-06 2012-01-12 Rehau Ag + Co. Kunststoffprofil, insbesondere Kunststoff-Extrusionsprofil sowie Verfahren zur Herstellung eines Kunststoffprofils
SG10201604897XA (en) 2011-06-17 2016-08-30 Berry Plastics Corp Insulated Container
MX2013014905A (es) 2011-06-17 2014-11-14 Berry Plastics Corp Manguito aislante para taza.
DE202012013192U1 (de) 2011-08-31 2015-05-20 Berry Plastics Corporation Polymermaterial für einen isolierten Behälter
DE102011117760A1 (de) * 2011-11-07 2013-05-08 Hans-Joachim Brauer Thermoplastischer Werkstoff enthaltend Recycling-Polyolefin und Glasfasern
US9382156B2 (en) * 2011-11-30 2016-07-05 James Hardie Technology Limited Lightweight extruded cementitious material and method of making the same
US20140091489A1 (en) * 2012-10-03 2014-04-03 Trexel, Inc. Blowing agent introduction in polymer foam processing
AU2014239318A1 (en) 2013-03-14 2015-10-15 Berry Plastics Corporation Container
US9562140B2 (en) 2013-08-16 2017-02-07 Berry Plastics Corporation Polymeric material for an insulated container
NL1040475C2 (en) * 2013-10-29 2015-04-30 Fits Holding B V Method and device for manufacturing a sandwich structure comprising a thermoplastic foam layer.
EP2883781A1 (en) 2013-12-13 2015-06-17 Sika Technology AG Lightweight baffle or reinforcement element and method for producing such a lightweight baffle or reinforcement element
WO2016118838A1 (en) 2015-01-23 2016-07-28 Berry Plastics Corporation Polymeric material for an insulated container
JP6385855B2 (ja) * 2015-02-26 2018-09-05 住友重機械工業株式会社 射出装置
US10933572B2 (en) * 2015-07-29 2021-03-02 The Boeing Company 2-stage extrusion apparatus and method of extrusion
CN105437448B (zh) * 2015-12-25 2018-11-06 嘉兴市大塑机械有限公司 一种箱包用pc发泡板材的生产装置
US11738492B2 (en) 2016-03-31 2023-08-29 Toray Plastics (America), Inc. Methods of producing polyolefin foam sheets and articles made thereof
DE102016222392B4 (de) * 2016-11-15 2021-04-08 Ideal Automotive Gmbh Verfahren zum Herstellen einer Verbundplatte, Verfahren zur Herstellung eines Verkleidungsteils, Verbundplatte und Verkleidungsteil
US10443232B2 (en) * 2017-04-27 2019-10-15 2 Hands Insulation Inc. Insulating panels for framed cavities in buildings
CA3013576A1 (en) 2017-08-08 2019-02-08 Berry Global, Inc. Insulated multi-layer sheet and method of making the same
CN109705465B (zh) * 2018-12-29 2021-03-05 中国科学院宁波材料技术与工程研究所 一种中空聚烯烃发泡材料及其制备方法
CN111073023B (zh) * 2019-11-26 2020-12-08 福建兴迅新材料科技有限公司 一种低温超临界发泡工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180751A (en) * 1990-03-14 1993-01-19 James River Corporation Of Virginia Polypropylene foam sheets
US6541105B1 (en) * 1999-09-16 2003-04-01 Dow Global Technologies Inc. Acoustical open-cell polylefins and process for making
WO2003059997A1 (en) * 2002-01-04 2003-07-24 Dow Global Technologies Inc. Multimodal polymeric foam containing an absorbent clay
US20050165165A1 (en) * 2004-01-28 2005-07-28 Zwynenburg James L. Foamable composition using recycled or offgrade polypropylene
WO2006047060A1 (en) * 2004-10-22 2006-05-04 Dow Global Technologies, Inc. Inherently open-celled polypropylene foam with large cell size
US20070100014A1 (en) * 2005-10-27 2007-05-03 Sumitomo Chemical Company, Limited Polypropylene, polypropylene resin composition and foamed article

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3555131A (en) * 1964-12-14 1971-01-12 Victor P Weismann Method for making reinforced modular foam panels
BE885615Q (fr) * 1964-12-14 1981-02-02 Cs & M Inc Panneaux de matiere expansee modulaires renforces
US3542702A (en) * 1967-12-28 1970-11-24 Toray Industries Method of making cross-linked polypropylene resin foams
BE885596Q (fr) * 1972-03-22 1981-02-02 Cs & M Inc Procede de fabrication de matrices
BE885563Q (fr) * 1976-01-05 1981-02-02 Cs & M Inc Treillis de fils metallique et appareil pour sa fabrication
US6005013A (en) * 1995-08-14 1999-12-21 Massachusetts Institute Of Technology Gear throttle as a nucleation device in a continuous microcellular extrusion system
WO1998029228A1 (fr) * 1996-12-26 1998-07-09 Sekisui Chemical Co., Ltd. Resine synthetique, thermoplastique, expansible, de type feuille, resine expansee thermoplastique et procede de fabrication correspondant
FI973816A0 (fi) * 1997-09-26 1997-09-26 Borealis As Polypropen med hoeg smaeltstyrka
US6231942B1 (en) * 1998-01-21 2001-05-15 Trexel, Inc. Method and apparatus for microcellular polypropylene extrusion, and polypropylene articles produced thereby
JP3581025B2 (ja) * 1998-08-03 2004-10-27 住友化学工業株式会社 無架橋ポリプロピレン系樹脂発泡シートの製造方法及び無架橋ポリプロピレン系樹脂発泡シート
US6521675B1 (en) * 1998-09-03 2003-02-18 Bp Corporation North America Inc. Foamed polypropylene sheet having improved appearance and a foamable polypropylene composition therefor
US6495206B1 (en) * 2000-01-14 2002-12-17 Morbern, Inc. Method of making an expaned extruded polymeric textile
US6770697B2 (en) * 2001-02-20 2004-08-03 Solvay Engineered Polymers High melt-strength polyolefin composites and methods for making and using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180751A (en) * 1990-03-14 1993-01-19 James River Corporation Of Virginia Polypropylene foam sheets
US5180751B1 (en) * 1990-03-14 1999-09-28 James River Corp Polypropylene foam sheets
US6541105B1 (en) * 1999-09-16 2003-04-01 Dow Global Technologies Inc. Acoustical open-cell polylefins and process for making
WO2003059997A1 (en) * 2002-01-04 2003-07-24 Dow Global Technologies Inc. Multimodal polymeric foam containing an absorbent clay
US20050165165A1 (en) * 2004-01-28 2005-07-28 Zwynenburg James L. Foamable composition using recycled or offgrade polypropylene
WO2006047060A1 (en) * 2004-10-22 2006-05-04 Dow Global Technologies, Inc. Inherently open-celled polypropylene foam with large cell size
US20070100014A1 (en) * 2005-10-27 2007-05-03 Sumitomo Chemical Company, Limited Polypropylene, polypropylene resin composition and foamed article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2169000A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492547B (zh) * 2009-03-05 2011-07-27 中国科学院长春应用化学研究所 一种水作为发泡剂制备聚丙烯泡沫材料的方法
WO2012100880A1 (de) 2011-01-28 2012-08-02 Benecke-Kaliko Ag Verfahren zur herstellung einer mehrschichtigen kunststofffolie
WO2014071641A1 (zh) * 2012-11-08 2014-05-15 江苏微赛新材料科技有限公司 一种聚丙烯微孔发泡厚板的生产方法
US9458630B2 (en) 2012-11-08 2016-10-04 Microcell Technology Co., Ltd. Method for producing microcellular foam polypropylene thick board
DE102014222958A1 (de) 2014-11-11 2016-05-12 Benecke-Kaliko Aktiengesellschaft Verfahren zur Herstellung eines Schaumfolienlaminats und dessen Verwendung
WO2016074811A1 (de) 2014-11-11 2016-05-19 Benecke-Kaliko Ag Verfahren zur herstellung eines schaumfolienlaminats und dessen verwendung

Also Published As

Publication number Publication date
WO2008148898A1 (es) 2008-12-11
CL2008001663A1 (es) 2008-12-19
EP2169000A1 (en) 2010-03-31
CL2008001642A1 (es) 2008-09-26
PE20090530A1 (es) 2009-05-24
EP2169000A4 (en) 2012-03-21
PE20090349A1 (es) 2009-04-18
PA8782801A1 (es) 2009-01-23
PA8783301A1 (es) 2010-02-12
US20100215934A1 (en) 2010-08-26
CN101730718A (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
WO2008148918A1 (es) Composicion, procedimiento e instalacion para obtener en continuo una plancha espumada de naturaleza polimerica y plancha asi obtenida
JP5796072B2 (ja) ポリマー複合体フォーム
WO2009027548A1 (es) Procedimiento e instalación para la producción de paneles reciclables rígidos tipo sandwich de naturaleza polimérica, sin el empleo de adhesivos, y panel obtenido
Altan Thermoplastic foams: Processing, manufacturing, and characterization
US7169467B2 (en) Structural foam composite having nano-particle reinforcement and method of making the same
US9873772B2 (en) Polymer foams
ES2426997T3 (es) Procedimiento para la producción de granulado de plástico de estireno expansible
US20110021651A1 (en) Fireproof foam compositions
CN106883490A (zh) 微发泡母粒及其制备方法以及冰箱发泡板
RU2018112282A (ru) Частицы вспениваемого полистирола, предварительно вспененные частицы полистирола, формованное изделие из пенополистирола и способ изготовления частиц вспениваемой смолы
AU2001264643B2 (en) Extruded vinyl aromatic foam with 134A and alcohol as blowing agent
ES2861976T3 (es) Artículo de PVC plastificado expandido para protección contra rocas
CN101687361A (zh) 聚烯烃类树脂的发泡板及其制造方法
JPWO2007004524A1 (ja) 断熱建材用発泡ボードおよびその製造方法
CN1157437C (zh) 合成热塑性树脂挤出泡沫体和它的生产方法
Guo et al. Wood–polymer composite foams
JP4235768B2 (ja) 発泡押出成形のサイジング装置及び板状発泡成形体の発泡押出成形方法
ES2273261T3 (es) Procedimiento para la produccion continua de perfiles macizos, huecos o abiertos.
DE19610330A1 (de) Herstellung von Kunststoffschaum
KR100764900B1 (ko) 냉각성능을 향상시킨 다이를 이용한 미세발포체의 제조방법
ES2276145T3 (es) Espumas a base de poliolefinas.
BR112020003876A2 (pt) método para produção de espuma de poliéster de baixa densidade e artigos da mesma utilizando uma carga de poliéster de baixa i.v.
DE10039340A1 (de) Verfahren zur Herstellung geschäumter thermoplastischer Formteile und thermoplastische Formteile
AU771136B2 (en) Method for forming an article comprising closed-cell microfoam from thermoplastic
WO2014009579A1 (es) Procedimiento de fabricación materiales celulares de matriz termoplástica

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880018921.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787596

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008787596

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12663245

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0811375

Country of ref document: BR

Free format text: IDENTIFIQUE O SIGNATARIO DA PETICAO 018090054234 DE 04/12/2009 E COMPROVE QUE O MESMO TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) ?OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS.,COM ASSINATURA LEGIVEL E CARIMBO DO MESMO.?.

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0811375

Country of ref document: BR

Free format text: PEDIDO CONSIDERADO RETIRADO EM RELACAO AO BRASIL ( CODIGO 1.2), POR NAO CUMPRIR A EXIGENCIA FEITA NA RPI NO 2587 DE 04/08/2020, NAO ATENDENDO DESTA FORMA AS DETERMINACOES REFERENTES A ENTRADA DO PEDIDO DA FASE NACIONAL.