WO2008146866A1 - バルブ - Google Patents

バルブ Download PDF

Info

Publication number
WO2008146866A1
WO2008146866A1 PCT/JP2008/059853 JP2008059853W WO2008146866A1 WO 2008146866 A1 WO2008146866 A1 WO 2008146866A1 JP 2008059853 W JP2008059853 W JP 2008059853W WO 2008146866 A1 WO2008146866 A1 WO 2008146866A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
resin composition
resin
mass
parts
Prior art date
Application number
PCT/JP2008/059853
Other languages
English (en)
French (fr)
Inventor
Hidehiro Kourogi
Takanori Inoue
Original Assignee
Asahi Organic Chemicals Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co., Ltd. filed Critical Asahi Organic Chemicals Industry Co., Ltd.
Priority to US12/601,731 priority Critical patent/US20100171059A1/en
Priority to EP08764822A priority patent/EP2163798B1/en
Priority to CN2008800163849A priority patent/CN101680560B/zh
Publication of WO2008146866A1 publication Critical patent/WO2008146866A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/126Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm the seat being formed on a rib perpendicular to the fluid line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/16Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being mechanically actuated, e.g. by screw-spindle or cam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a valve suitably used for a piping line through which a high temperature fluid of 60 ° C. or more flows, and more particularly, to a valve having a particularly high temperature.
  • valves that can be used favorably for alkaline lines, use the same manufacturing equipment as vinyl chloride resin, and have a good balance of high-temperature creep characteristics and impact strength.
  • chlorinated vinyl chloride resin hereinafter referred to as CPVC
  • polypropylene hereinafter referred to as PP
  • PVDF Polyvinylidene fluoride
  • PPS the fibers
  • PEEK polyether ether ketones
  • the usable temperature range of the valve using these resins is that vinyl chloride resin is not applied. 60 ° C or more is also included.
  • CPVC has a working temperature higher than that of PVC and reaches 90 ° C, but can not be used at temperatures higher than that (especially around 100 ° C).
  • the resistance to alkali is poor, so it is not suitable for the application of alkaline chemicals, and the use is restricted by the fluid.
  • PP can be used up to 90 ° C, the same temperature as CPVC, but can not be used at temperatures higher than that as the resin softens and the valve rigidity decreases.
  • it has better alkali resistance and less restriction of use by fluid.
  • PVDF can be used at temperatures up to 120 ° C, it is not suitable for alkaline line applications due to poor resistance to alkali, and its use is restricted by the fluid.
  • prices are slightly higher than PVC, CPVC and PP.
  • PPS and PEEK have an operating temperature of 150 ° C or higher, but their high molding temperature results in poor dimensional stability in thick molded products.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-5
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11 1 4 3 7 3 Disclosure of the Invention
  • the present invention overcomes the drawbacks of the conventional resin valve as described above, and has rigidity such that there is no breakage or leakage even if a high internal pressure is applied in a short time in a high temperature range (at 60 to 95). It is a valve that can be used suitably for alkaline lines in high temperature range, and is intended to provide a valve that has a good balance between high temperature creep characteristics and impact strength and can use the same manufacturing equipment as vinyl chloride. is there.
  • the inventors of the present invention have conducted intensive studies to develop a valve having properties preferable to an alkaline line in a high temperature range (60 to 95 ° C.). As a result, it is possible to use the polyphenylene ether resin composition to obtain the above object It was found that the present invention was achieved.
  • the present invention comprises: a fluid inlet and a fluid outlet; a flow passage communicating with the inlet and the outlet; and a body having a valve seat formed in the flow passage;
  • the valve has a valve body which is pressed and separated from the valve seat to open and close the flow path, and at least the main body contains a polyethylene ether resin and a polystyrene resin as essential components.
  • the first feature is that it consists of a one-tel resin composition, and the tensile strength is 20 MP a or more and the tensile elastic modulus is 100 0 MP a or more under an atmosphere at 95.degree. And features an atmosphere of 2 3 ° C
  • the third feature that Aizo' preparative notched impact strength is 7.
  • the fourth characteristic is that the valve is fully open under the atmosphere of 95 ° C. and held for 1 minute under pressure of 5.0 MP a.
  • the fifth feature of the present invention is that there is no fifth feature, and the molding shrinkage of a molded article having a thickness of 10 mm is from 0.5 to 0.8%.
  • the sixth feature is that the polyphenylene ether resin composition In particular, 100 parts by mass of polyphenylene ether resin and 50 parts by mass of polystyrene resin are essential components, and the MFR after kneading is 1.0 to 5.0 g / 10 minutes.
  • the seventh feature is that a styrene / butadiene-based rubber having a styrene content of 10 to 40% and a weight average molecular weight of at least 200,000 is compared with 100 parts by mass of a polyethylene ether resin.
  • the valve contains a diaphragm valve, a pole valve, a cock, a butterfly valve, a gate valve, a stop valve, a needle valve, a pinch valve, a check valve, etc.
  • the ninth feature is that it is either. Brief description of the drawings
  • FIG. 1 is a longitudinal sectional view showing a diaphragm valve fully opened according to an embodiment of the present invention. Detailed Description of the Invention
  • the tensile strength of the polyphenylene ether resin composition used in the valve of the present invention under an atmosphere at 95 ° C. is preferably 2 O MP a or more, more preferably 20 to 40 MP a.
  • the tensile modulus of elasticity in an atmosphere at 95 ° C. is preferably at least 10 0 OMP a, and more preferably at 100 0 to 2 0 0 0 Pa.
  • tensile modulus is a guideline to show rigidity at high temperature, has rigidity at high temperature, and in order to suppress deformation due to valve swelling to internal pressure and maintain sealing performance, tensile modulus is 100 It is preferable that it is 0 MP a or more, and in order to maintain the flexibility of the valve against impact, 200 0 MP a or less is preferable.
  • the polyolefin ether resin composition used for the valve of the present invention preferably has a notched Izod impact strength of at least 7.0 kJ / m 2 in a 23 ° C. atmosphere, 7. 0 to 15 ⁇ O k J / m 2 is more preferable. Since the valve is provided with a thick wall, it can not be used as a general valve (1. OMP a specification) even if the impact impact strength is somewhat low (about 5. O k J / m 2 ). However, in high-pressure applications (assuming long-term use at around 1.5 to 2.0 MP a), the impact of a war-shaped hammer etc. increases according to the pressure.
  • the tensile strength is maintained at 7. O k J Zm 2 or better.
  • Mom shock for maintaining the resistance to cracking due is 1 5. 0 k J Zm 2 or less.
  • the linear expansion coefficient of the valve body of the present invention 5. 0 X 1 0- 5 / ⁇ 8. It is desirable that 0 X 1 0 _ 5 / in. This is because when the valve is fixedly installed and the high temperature fluid flows, the expansion in the longitudinal direction accompanying the thermal expansion occurs, the valve is deformed and the seal part of the valve body and the valve seat, the pipe and the joint Distortion at the connection part with the This is to prevent the long-term life from being lost due to the occurrence of cracking or distortion in each part of the valve.
  • valves made of thermoplastic resin composition do not have the rigidity of the valve when high water pressure of 5.0 MP a is applied at normal temperature (23 ° C), and leakage occurs. It is likely to occur, and measures for high-pressure specifications are required.
  • Equation 1 can also be applied to the case of a valve, and in the case of a valve, calculation of internal pressure and conversion of retention time can be performed by replacing it with a pipe of the smallest thickness from the relation between the inner diameter and the smallest thickness. Can.
  • the valve Since the pressure is 20 M Pa, at an internal pressure of 1.2 M Pa under a 95 ° C. atmosphere, the valve has a life of 10 years.
  • the minimum thickness portion of the valve having a port diameter of 25 mm is 6.25 mm.
  • Applying an internal pressure of 8 3 MP a leads to destruction in about 10 hours, and trying to maintain it for 10 0 0 hours or more lowers to an internal pressure of 0.8 OMP a in a 95 ° C atmosphere. There is a need.
  • the internal pressure is 0. If this is converted so that the holding time is 10 years under a 95 X atmosphere.
  • the allowable pressure of the valve made of polyphenylene ether resin composition is 1.5 times that of the valve made of polypropylene resin composition, and it can be used for higher pressure applications.
  • the polypropylene resin composition may be said to be near the softening temperature, and the resin composition may be at 100 ° C. atmosphere.
  • the polyethylene ether resin composition Since it is softened and the strength as a high temperature valve can not be maintained sufficiently, the polyethylene ether resin composition does not soften, so the working pressure can be reduced by converting the temperature, tensile load and holding time ( In the case of the inner diameter 25 mm, the lowest wall thickness 6.5 mm, replace it with the pipe outer diameter 37.5 mm, pipe thickness 6.25 mm, and calculate at 100 ° C. In order to set the holding time to 10 years under the atmosphere, the internal pressure is set to 0.60 MP a)), which can be used without any problem.
  • piping members made of other existing resin compositions can not be covered sufficiently and have chemical resistance, and they can be used at around 100 ° C as well as high temperature range (60 to 95 ° C)
  • the piping member made of a polypropylene resin composition is most suitable as a piping member in high temperature applications.
  • the molding shrinkage of the valve of the present invention is preferably 0.5 to 0.8%, and more specifically, the molding shrinkage in the flow direction of a molded article having a thickness of 10 mm is 0. It is preferably 6 to 0.8%, and the shaping shrinkage in the perpendicular direction is preferably 0.5 to 0.5%.
  • the molding shrinkage of the resin composition changes depending on the type of resin and the amount of the blended resin, a polyvinyl ether resin composition having a molding shrinkage of 0.5 to 0.8% has chloride content.
  • a polyvinyl chloride resin composition is injection molded using a mold for a valve made of a vinyl chloride resin
  • the molded valve is molded with a vinyl chloride resin because it has almost the same molding shrinkage rate as a vinyl resin. It is possible to obtain a valve of almost the same size as the valve. Therefore, it is possible to share the same manufacturing equipment as the conventional vinyl chloride resin, and it is not necessary to expand the manufacturing equipment for the polycarbonate resin composition in order to align the product lineup, and it is unnecessary.
  • W 200 No cost, and no installation space for manufacturing facilities.
  • the polyphenylene ether resin has high mechanical strength and elastic modulus, but it has poor fluidity, so it can not be molded alone, and it is necessary to blend it with other resins to improve its fluidity.
  • Resins used in this formulation include polystyrene resins, polyamide resins, polypropylene resins, etc., but the properties required for valves (high temperature creep characteristics, molding shrinkage, chemical resistance, price etc.) In consideration of this, polystyrene resins have well-balanced properties required.
  • the blending ratio of the polyphenylene ether-based resin and the polystyrene-based resin in a range that satisfies the characteristics required for the above-described high-temperature valve.
  • the compounding quantity of a polystyrene-type resin is 50-100 mass parts with respect to a mass part.
  • at least 50 parts by mass is preferable, which has good high-temperature creep characteristics, suppresses the decrease in mechanical strength, and improves heat resistance.
  • the amount is 120 parts by mass or less.
  • the blending amount of the polystyrene based resin is 50 to 120 parts by mass with respect to 100 parts by mass of the polyethylene ether based resin.
  • a polyester resin-polyester resin composition and a polystyrene resin-blended resin may be used as the polyolefin resin composition, both of them may be graft-copolymerized, a graft copolymer may be used. By copolymerizing, good processability and long-term physical properties can be obtained, and in particular, high temperature creep characteristics become good.
  • the MFR of the polyphenylene ether based resin composition needs to be 1.0 to 5.0 g Z 10 minutes. It has the fluidity of the resin composition necessary for injection molding, in particular for molding thick-walled valves. In order to obtain good productivity, it is preferable to use not less than 1.0 g Z 10 minutes, and the polyphenylene ether resin composition used for the valve of the present invention can be commonly used for pipe extrusion, and good high temperature creep In order to obtain the properties and to suppress the drawdown of the resin composition in pipe extrusion, it is preferable that the amount is less than 5.0 g / 10 min.
  • the MFR of the polyphenylene ether resin composition is measured under the conditions of a test temperature of 250 ° C. and a test load of 10 kg in accordance with JIS K 720.
  • the polyphenylene ether-based resin composition of the present invention may contain another polymer in the polycarbonate-based resin composition as long as it is within the allowable range of the properties required as a valve.
  • the other polymer is not particularly limited as long as it does not deteriorate the valve characteristics, but styrene / butadiene rubber is particularly preferable, and high temperature creep characteristics can be obtained by blending styrene / butadiene rubber. Impact strength can be improved while maintaining it.
  • the blending ratio of the styrene / butadiene-based rubber is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polyethylene terephthalate-based resin. This is preferably 1 part by mass or more in order to obtain good high temperature creep characteristics and impact strength, and 15 parts by mass or less in order to obtain good heat resistance and rigidity.
  • the total amount of the other polymers should be 1 to 15 parts by mass with respect to 100 parts by mass of the polyphenylene ether resin.
  • the styrene content of the styrene / butadiene rubber is preferably 10 to 40%, more preferably 15 to 35%. If the styrene content of the styrene / butadiene rubber is too small, the change in physical properties is small, and if too large, the modulus of elasticity is lowered and the mechanical strength is weakened, but the flowability is improved and the moldability of the valve is improved. It is in the relationship of. Therefore, good high temperature creep characteristics and impact strength required for valves Styrene content of 10% or more is good to satisfy the balance well
  • the styrene content is preferably 40% or less in order to achieve good high temperature creep characteristics and well-balanced impact strength in order to obtain good compatibility.
  • the weight average molecular weight of the styrene / butadiene rubber of the present invention needs to be at least 200,000.
  • a styrene butadiene rubber having a weight average molecular weight of 200,000 or less is mixed with a polyphenylene ether resin composition, the impact strength is improved but the high temperature creep property is significantly impaired. Therefore, good high temperature creep characteristics, impact resistance 2 million or more is good to obtain strength.
  • the weight average molecular weight of the styrene butadiene rubber is made higher, the high temperature creep property is improved, so the upper limit of the weight average molecular weight is not particularly limited, but the weight average molecular weight becomes high, so the styrene butadiene rubber In order not to make the production difficult, it is practically preferable that the order is several millions, specifically, 200,000 to 300,000. In addition, it is desirable that MFR after kneading of polyphenylene ether resin and polystyrene resin and styrene butadiene rubber does not change or is lower than that before kneading, in order not to increase MFR after kneading.
  • the styrene / butadiene rubber has a high molecular weight so that the MFR can not be measured, and the MFR after kneading can be rather lowered (see Example 5 and Example 6 in Table 1) Styrene 'Molecular Weight of Butadiene Rubber
  • the MFR after kneading in the case of the molecular weight of Example 5 is smaller than that after kneading in the case of the molecular weight of 100,000 in Example 6 due to the difference in
  • the weight average molecular weight it is also necessary for the weight average molecular weight to be at least 200,000.
  • any method and catalyst may be used for the polymerization method and polymerization catalyst of the styrene / butadiene rubber of the present invention.
  • Styrene / butadiene-based rubber is used as a polyphenylene ether-based resin and polystyrene-based resin.
  • the hydrogen addition ratio be close to 100%, and the specific hydrogen addition ratio is from the viewpoints of weather resistance, heat resistance and chemical resistance.
  • the content is preferably 5% or more, more preferably 90% or more, and still more preferably 95% or more.
  • the blending ratio of the styrene / butadiene rubber needs to be 1 to 15 parts by mass with respect to 100 parts by mass of the polyethylene ether resin. This is preferably 1 part by mass or more in order to obtain good high temperature creep properties and impact strength, have rigidity at high temperature, and 15 parts by mass or less in order to maintain sealing performance.
  • polyphenylene ether resin of the present invention known resins can be used without particular restriction, and may be homopolymers or copolymers, and poly (2,6-dimethyl-1,4-diacetal) may be used.
  • Polystyrene-based resins used in the polyphenylene ether-based resin composition of the present invention are homopolymers of styrene and styrene derivatives, for example, polystyrene, rubber-modified polystyrene (high impact polystyrene), syndiotactic polystyrene, etc. And styrene-based copolymers such as styrene-acrylonitrile copolymer (AS resin) and styrene / acrylonitrile / butadiene copolymer (ABS resin). Among these, high impact polystyrene is preferable from the viewpoint of good compatibility and improvement in impact strength.
  • the polyphenylene ether-based resin composition of the present invention may, if necessary, be blended with a stabilizer such as an antioxidant, a UV absorber, or a light stabilizer. Thermal stability and light resistance can be improved.
  • a stabilizer such as an antioxidant, a UV absorber, or a light stabilizer. Thermal stability and light resistance can be improved.
  • antioxidants examples include 2, 6-di-t-peptyl 4-methylphenol, n-octadecyl- 3-(4, hydroxy- 1 3 ', 5,-di-t-butylphenyl) propionate, 2, 2, -Methylene bis (4 monomethyl-6-t-butyl phenol), 2, 2 '-methylene bis (4-ethyl 6-t-peptyphenol), 2-4 bis [(active cutylthio) methyl] 1 0-Creso Mono-, 2-t-butyl-6-(3- t-butyl-2-hydroxy-5-methyl benzyl) 1-4-methylphenylacrylate, 2, 4-di-t 1-amilu 6-[1 1 (3, 5—Di-t—Amylou 2—Hydroxyv Hinder) heptyl] phenyl acrylate, 2- (1-hydroxy 3,5-di-tert-pentylphenyl)] hindered phenol type antioxidant such as acrylate; dil
  • UV absorbers and light stabilizers include, for example, 2- (2'-hydroxy-5, monomethylphenyl) benzotriazole and 2-mono (2'-hydroxy-3 ', 5'-t-butylphenyl) benzotriazole. , 2-(2-Hydroxide-3, 5, 5-Dibutyl phenyl 1-5-Benzotriazole-based UV absorbers such as black hole benzotriazole or 2-Hydroxide 4- Mention may be made of benzophenone-based ultraviolet light absorbers such as methoxybenzophenone, triazine-based ultraviolet light absorbers and Hindamine-based light stabilizers.
  • inorganic fillers such as spherical filler, plate-like filler, fibrous filler and the like may be used if necessary. These may be used alone or in combination of two or more.
  • the spherical filler include garcium carbonate, myotropium, barium sulfate, calcium sulfate, clay, pearlite, shirasu balloon, diatomaceous earth, calcined alumina, calcium silicate and the like.
  • plate-like fillers include talc and My strength.
  • fibrous fibers include glass fibers, carbon fibers, boron fibers, silicon carbide fibers, potassium titanate fibers, polyamide fibers, polyester fibers, polyaryl fibers, polyimide fibers and the like.
  • flame retardants chlorinated polyethylene, deca Halogenated compounds such as promodiphenyl ether, phosphorus compounds such as tricresyl phosphate, inorganic compounds such as aluminum hydroxide
  • lubricants hydrocarbons such as liquid paraffin, fatty acids such as stearic acid, Higher alcohols such as stearyl alcohol, amides such as stearic acid amide, metals such as calcium stearate, etc.
  • antistatic agents polyalkylene glycol, compounds containing sulfonic acid group, etc.
  • antibacterial agents zeorite Inorganics such as, organics such as 2- (4-thiazolyl) benzimidazole, etc.
  • colorants inorganics such as titanium oxide, organics such as carbon black and the like
  • the blending amount thereof varies depending on the type of the additive, it is preferable to blend an amount such that the effect of the additive is sufficiently exhibited without reducing the physical properties of the composition.
  • a polyphenylene ether system in which each component is uniformly dispersed by using a single-screw extruder, a twin-screw extruder, a double-header, etc.
  • a resin composition can be obtained.
  • the polyphenylene ether resin composition of the present invention can be used for various valves, including diaphragm valves, ball valves, cocks, butterfly valves, gate valves, stop valves, needle valves, pinch valves, check valves, etc. It is listed as a suitable one.
  • the above valve may have a functional configuration as long as the configuration of the valve is the same, a configuration for adjusting the flow rate of fluid, and a constant flow rate One configuration, one that keeps the pressure constant, and one that prevents the backflow of fluid may be included.
  • the molding method of the valve using the polyphenylene ether resin composition of the present invention is preferably exemplified by a valve formed by injection molding, but the molding method is not particularly limited.
  • Polyphenylene ether resin A round rod made of a fat composition may be formed by cutting.
  • the valve produced using the polyurethane resin composition of the present invention has the following excellent properties.
  • a polyphenylene ether resin composition for the main body of the valve, it can be used for liquid lines such as acids and alkalis in high temperature range (60 to 95 ° C). It can be used even in the vicinity of ° C.
  • linear expansion coefficient of 5 is 0 X 1 0- 5 / ° C ⁇ 8. 0 X 1 0 "5 / ° C, by suppressing dimensional changes due to expansion at high temperature, high sealing performance Can be maintained.
  • the valve does not leak from the valve even if it is held for 1 minute under pressure of 5.0MPa under the atmosphere of 95 ° C. It can be used at temperatures around 0 ° C to 95 ° C) or above.
  • the same molding equipment as vinyl chloride resin can be used because the molding shrinkage ratio is 0.5 to 0.8%.
  • FIG. 1 is a longitudinal sectional view showing a fully open state of the resin diaphragm valve of the present invention.
  • a valve body 1 is made of a polyphenylene ether resin composition, and has a flow passage 2 communicating with the fluid inflow port 1 1 and the fluid flow outlet 12 in the inside, and a flow path in the middle of the flow path 2 There is provided a dividing wall 3 having a curved and gently curved curved surface.
  • a valve seat surface 4 is formed on the upper surface of the partition wall 3.
  • Reference numeral 5 denotes a bonnet made of a polyphenylene ether resin composition fixed to the upper portion of the valve body 1, and a sleeve 6 made of a copper alloy is supported at the upper central opening of the bonnet 5.
  • Reference numeral 7 is a stainless steel spindle screwed with an external thread provided inside the sleeve 6.
  • a PVDF compressor 8 is fixed to the lower end of the spindle 7.
  • 9 is a diamond valve It is a flam, fixed to the compressor 8, its peripheral edge is held between the valve body 1 and the bonnet 5, and comes in contact with the upper end surface of the partition wall 3 by the vertical movement of the spindle 7.
  • Reference numeral 10 is a handle made of PP, which is fitted to the upper outer periphery of the sleeve 6 and arranged at the upper end of the bonnet 5.
  • valve main body 1 is made of a polyphenylene ether resin composition, it can be used not only in a high temperature range (60 to 90 ° C.) but also at around 100 ° C., and has chemical resistance As it is superior to acids and aluminum, it can be suitably used particularly for alkali lines around 100 ° C. Further, by having various physical strengths in the atmosphere of 95 ° C. of the present invention, it can be used for a long time even for a high temperature / high pressure line.
  • polyphenylene ether-based resin compositions have resin prices of PP and PV Since it is slightly higher than PP between DF and the mold temperature is formed at 40 to 80, it can be coped with the normal temperature control of the mold by water, and the temperature control of the mold by oil etc. It does not have to be done, and molding can be performed without taking time and effort for mold temperature control and mold temperature rise during mold switching like valves made of PPS or PEEK.
  • a diaphragm valve having a bore diameter of 25 mm shown in FIG. 1 was molded, and its performance was evaluated by the following test method.
  • the diaphragm valve which is molded using polyphenylene ether resin, is kept fully open with warm water at 95 ° C for 60 minutes, then the water pressure is gradually raised, and the pressure of the 5.0 MP a is increased.
  • test piece is immersed in a special container containing a 30% Na OH solution in a special container in accordance with DIN 1 6 8 8 8 and placed in an oven maintained at 95 ° C.
  • the tensile test of the test piece after it was done was done.
  • the tensile elongation retention rate shall be 50% or higher, and the tensile elongation retention rate shall be disqualified if it is less than 50%.
  • the tensile test was carried out at 23 3 ⁇ 1 ° C and 95 ⁇ 1 ° C using test pieces molded by injection molding in accordance with JIS K 7113, and the tensile strength and the tensile strength were measured respectively. The modulus of elasticity was measured.
  • Test pieces were cut out from the main body of a diaphragm valve molded by injection molding in accordance with J I S K 7 1 9.7, and the linear expansion coefficient was measured in the range of 23 ° C to 95 ° C.
  • Pipe internal pressure (2 X pipe thickness X test stress) / (pipe outer diameter-pipe thickness) ⁇ ⁇ ⁇ Formula 1
  • Injection molding machine is used to mold the diaphragm valve body (vinyl chloride resin mold, standard dimension: outer diameter of flange part (D in Fig. 1) 125 mm, width between faces (W in Fig. 1 130 mm)
  • the dimensions of the flange outer diameter two points measured at right angles to each end of the valve
  • the width between two surfaces two points
  • 10 test pieces were measured, and the average value of the flange outer diameter D and the inter-surface width W was calculated, and the molding shrinkage ratio of each was calculated from Equation 2 from the average of the flange outer surface and the inter-surface width. .
  • a vinyl chloride resin (the same resin as Comparative Example 1) was similarly molded, and the dimensions were measured to calculate the molding shrinkage.
  • the standard dimensions are the dimensions targeted by molded products, and are the product dimensions.
  • the mold for vinyl chloride resin used has a dimensional tolerance with respect to the standard dimensions of ⁇ 0.2 mm or less in the flange outer diameter and ⁇ 0.2 mm or less in the face-to-face width when molded with vinyl chloride resin. It is adjusted to be within the range.
  • the mold dimensions (measured values) are designed with an outer diameter of 1 2 5.9 5 mm and an inter-face width 1 3 0. 8 7 mm.
  • the mold shrinkage ratio is in the range of 0.5 to 0.8%, within ⁇ 0.2 mm of the flange part of the dimensional tolerance of the reference dimension, and ⁇ 0.2 on the inter-plane width. Pass within the range of mm.
  • the molding shrinkage ratio of the resin of each Example and Comparative Example in Table 1 the molding shrinkage ratio of the width between the faces is described (because the flange portion has a thick thickness and the dispersion of dimensions is large, Based on the surface width with less variation in dimensions).
  • Mold shrinkage ratio ⁇ (Dimension of mold / one test piece) / Dimension of mold ⁇ X I 0 0
  • Example 4 100 parts by mass of polyethylene terephthalate resin and 60 parts by mass of high-impact polystyrene were blended, kneaded and pelletized in the same manner as in Example 1, and a polycarbonate ether having a MFR of 3.6 2 after kneading. A resin based composition was produced. The obtained resin composition was dried to reduce the water content to less than 250 ppm, and the pellet was used to form a diaphragm valve and various test pieces. The results of various evaluation tests are shown in Table 1 Show. Also, Table 2 shows detailed results of measurement of the molding shrinkage rate. Example 4
  • Example 5 100 parts by mass of polyethylene ether resin and 100 parts by mass of high impact polystyrene are blended, and the mixture is kneaded and pelletized in the same manner as in Example 1 and a polycarbonate having MFR of 4.5 after kneading. A direne ether resin composition was produced. The resulting resin composition is dried to After making it less than 250 ppm, the diaphragm valve and various test pieces were molded using the pellet, and various evaluation tests were conducted. The results are shown in Table 1. Also, Table 2 shows detailed results of measurement of the molding shrinkage rate. Example 5
  • a polyethylene terephthalate resin composition was produced.
  • the obtained resin composition was dried to make the water content less than 250 ppm, and then the diaphragm valve and various test pieces were molded using the pellet, and various evaluation tests were conducted. Show.
  • the mass part was kneaded and pelletized in the same manner as in Example 1 to prepare a polyphenylene ether resin composition having a MFR of 4.23 after kneading.
  • the obtained resin composition was dried to make the water content less than 250 ppm, and then the diaphragm valve and various test pieces were molded using the pellet, and various evaluation tests were conducted. Show.
  • Example 1 100 parts by weight of a polyphenylene ether resin and 80 parts by weight of high impact polystyrene are blended, kneaded and pelletized in the same manner as in Example 1, and a polyethylene having a MFR of 6.2 after kneading. An ether resin composition was produced. The resulting resin composition is dried to a water content of less than 250 pm, and then the pellet is used to Lube and various test pieces were molded, and the results of various evaluation tests are shown in Table 1.
  • Example 1 2 100 parts by weight of a polyphenylene ether resin and 40 parts by weight of high impact polystyrene are blended, and the mixture is kneaded and pelletized in the same manner as in Example 1, and a polycarbonate having an MFR of 2.92 after kneading. An ether resin composition was produced. The obtained resin composition was dried to reduce the water content to less than 250 ppm, and the pellet was used to form a diaphragm valve and various test pieces. The results of various evaluation tests are shown in Table 1 Show. Also, Table 2 shows detailed results of measurement of the molding shrinkage rate. Example 1 2
  • a diaphragm valve and various test pieces were molded using a resin composition of 100 parts by mass of a chlorinated vinyl chloride resin, and the results of various evaluation tests are shown in Table 1.
  • Comparative example 3 A diaphragm valve and various test pieces were molded using 100 parts by mass of a polypropylene resin component, and various evaluation tests were conducted. The results are shown in Table 1.
  • Table 1 shows the results of various evaluation tests in which a diaphragm valve and various test pieces were molded using polyvinylidene fluoride 100 parts by weight of the resin composition.
  • Example 1 to Example 2 and Comparative Example 3 have high tensile elongation retention ratio of 50% or higher because they are immersed in 30% Na OH at 95 by 95%. It can be suitably used on alkaline lines in the In Comparative Example 1 and Comparative Example 2 and Comparative Example 4, the tensile elongation retention rate is 50% or less, which is unsuitable for use in an alkaline line in a high temperature range.
  • the valve made of the polyethylene resin resin composition of the present invention is such that there is no damage or leakage even if the internal pressure is high in a short time in a high temperature range (60 to 95 ° C.).
  • PVC, CPVC that has passed the water pressure resistance test and the water resistance test which are the lowest-accepted lines as a valve that has rigidity and can be suitably used for Al-Fi relining at high temperatures, and has not cleared both tests.
  • Example 1 to Example 1 have high tensile strength and tensile elastic modulus at 23 ° C. and 95, and have high rigidity suitable as a valve for high temperature. .
  • Example 1 2 The tensile strength in Example 1 2 is also slightly lower in 9 5.
  • the tensile strength at 23.degree. C. of Comparative Example 1 and Comparative Example 2 is about the same as that of Example 1, and the tensile modulus is about 1.5 times as high as that of Example 1, but the resin softens at 95.degree. could not be measured.
  • the resin was softened at around 60 ° C. in Comparative Example 1 and at 90 ° C. in Comparative Example 2.
  • Comparative Example 3 has a tensile strength of 2 3 and 95 ° C., which is about 12 of Example 1, a tensile elastic modulus of 2 3 5 C, about 35 of Example 1, and about 14 at 95 ° C.
  • the Comparative Example 4 was similar to Comparative Example 3 and slightly higher in numerical value.
  • Example 11 Comparative Example 1, and Comparative Example 2. There is no problem in using it as a general valve, but it is not suitable for long-term use under high pressure (It can be coped with the thickness and structure).
  • Example 1 to Example 12 and Comparative Example 1 and Comparative Example 2 are comparable, but both Comparative Example 3 and Comparative Example 4 are about 1.5 times as large as Example 1.
  • Example 1 to Example 10 and Comparative Example 1 and Comparative Example 2 are comparable, but in Example 11, the shrinkage rates of these Examples are slightly larger. In both of Comparative Example 3 and Comparative Example 4, the shrinkage rate of Example 1 is doubled or more.
  • Example 12 The high temperature creep characteristics of Example 12 are low in the high temperature creep characteristics and unsuitable for long-term use, and Comparative Example 1 and Comparative Example 2 can not be tested because the resin is softened.
  • Examples 1 and 3 Example 4 obtains good high temperature creep characteristics. From the above, PVC valves can not be used after being softened in high temperature range (60 to 95 ° C), and CPVC valves can soften the resin if it exceeds 90 °. Although it can be used, it is unsuitable for use at too high temperature. At high temperatures, if the coefficient of linear expansion is large, the valve may expand at high temperatures, or if the tensile modulus is low. In particular, if high water pressure is applied, the valve body will expand due to water pressure, and the sealability of the seal portion will be reduced due to changes in dimensions.
  • PP valves and PVDF valves are not suitable for high-temperature and high-pressure valves. Therefore, it is understood that a valve made of a polyethylene ether resin composition is most suitable as a valve for high temperature and high pressure.
  • Example 2 Compared Example 2 and Example 10, although the blend ratio of the polyethylene ether resin and the polystyrene resin is the same, the high temperature creep characteristics are changed due to the difference in MFR after kneading. Know that Furthermore, when the difference in MFR after kneading is compared by adding Example 4 and Example 12, no change in high temperature creep characteristics is observed between the MFRs of Example 1 and Example 2. As MFR increases, the high temperature creep characteristics decrease to about 4 Z 5 in Example 1. In Example 12, M F R is further increased, and the high temperature creep characteristics are lowered to about 2 5 5 of Example 1.
  • Example 1 Example 3, Example 4, Example 1 1, Example 1 2
  • the physical properties such as high-temperature creep properties and impact strength change depending on the blending ratio of the polystyrene resin to the polyphenylene ether resin.
  • the blending ratio of the polystyrene based resin to the 100 parts by mass of the polyphenylene ether based resin is smaller than the 80 parts by mass of the example 1, the 60 parts by mass of the example 3 has high temperature creep characteristics and impact strength. There is no change both, and at 40 parts by mass of Example 1 1, the high temperature creep property does not change but the impact strength decreases.
  • high temperature creep properties meet impact strength of 7.0 k J / m 2 or more, and long-term valve In order to maintain the performance, the high temperature creep characteristic is more than 600 hours (The pipe has a life of about 5 years when the internal pressure is 0.6 MP a under the atmosphere of 95), the impact strength 7. O It is necessary to have k J / m 2 or more (to suppress cracking due to pipe deterioration in long-term use and have resistance to impact such as water hammer at high pressure).
  • Example 1 Compared Example 1 with Example 5, the impact strength can be improved while maintaining the high-temperature creep characteristics by blending an appropriate amount of styrene butadiene rubber. Also, comparing Example 5 to Example 9, the optimum conditions of the styrene / butadiene rubber are: It can be seen that the weight average molecular weight is determined by the weight-average molecular weight of styrene, the styrene content, and the amount of styrene butadiene rubber with respect to 100 parts by mass of the polyethylene ether resin.
  • the weight average molecular weight of styrene is lower than that of the styrene butadiene rubber of Example 5 because the weight average molecular weight of the styrene butadiene rubber of Example 6 is as low as 10,000, The high temperature creep properties of Example 6 are degraded.
  • the styrene content in Example 7 is less than the styrene content of 30% in Example 5 with 5% of styrene content, so that the compatibility with the polyethylene terephthalate resin is deteriorated.
  • the high temperature creep property is reduced and the impact strength is not improved.
  • Example 8 since the styrene content is as high as 50%, the compatibility with the polyethylene ether resin is improved and the impact strength is improved, but the high temperature creep characteristics are slightly deteriorated.
  • the amount of styrene butadiene rubber relative to 100 parts by mass of polyurethane ether resin is 18% by mass of Example 9 as compared with 13 parts by mass of Example 5, and the impact strength is Is improved, but the high temperature creep characteristics are degraded.
  • styrene butadiene rubber having a styrene content of 10 to 40% and a weight average molecular weight of 2,000,000 or more per 100 parts by mass of polyethylene ether resin is By blending 15 parts by mass, the impact strength can be improved while maintaining the high-temperature creep characteristics. Furthermore, in high temperature and high pressure applications, the blending amount of the polystyrene-based resin is 50 to 105 parts by mass with respect to 100 parts by mass of the polyethylene ether-based resin, and the MF after kneading is 1.5 to 4 More preferably, it is 5 g / 10 minutes.
  • the molding shrinkage ratio of Example 1, Example 3, Example 4, Example 12 is in the range of 0.5 to 0.5%, and the range of the tolerance of the reference dimension. It is within the limits. Among these, since Example 2 is just within the tolerance range, Example 1, Example 3, and Example 4 are preferable, and it is possible to obtain a molded article equivalent to a molded article made of vinyl chloride resin. The same mold as vinyl chloride resin can be used. In addition, if it is a polystyrene resin 50 to 120 mass parts with respect to 100 mass parts of polyethylene resin type resin, it can be within the range of a molding shrinkage ratio substantially the same as a vinyl chloride resin.
  • the valve made of the polyphenylene ether resin composition of the present invention is excellent in high-temperature creep characteristics and impact strength in a well-balanced manner, and it is necessary to secure fluidity during molding to obtain a good molded product. You can Therefore, it can be used for a long time even if a chemical solution such as acid or alkali in a high temperature range (60 to 95 ° C) is used, and it can be used at around 100 ° C.
  • a styrene / butadiene rubber can improve the impact strength without deteriorating the high temperature creep characteristics. Effect of the invention
  • the valve made of the polyphenylene ether resin composition of the present invention is excellent in high-temperature creep characteristics and impact strength in a well-balanced manner, and it is possible to secure the flowability at the time of molding and obtain good moldability. Therefore, the valve of the present invention can be used for a long time by flowing a chemical solution such as acid or alkali at a high temperature range (60 to 95 ° C.). C can also be used in high pressure (60 ⁇ 95 ° C) in the state of high pressure applied to the deformation or swelling of the valve even if you use more than 100 ° C It is possible to maintain high sealing performance and to further reduce high temperature creep properties by adding styrene butadiene rubber. It is possible to obtain the effect that the impact strength can be improved. '

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Valve Housings (AREA)

Abstract

流体流入口と流体流出口を有し内部に該流入口及び該流出口に連通する流路と該流路内に弁座が形成された本体と、回動又は上下動することで該弁座に圧接離間されて該流路の開閉を行う弁体とを有するバルブにおいて、少なくとも該本体がポリフェニレンエーテル系樹脂とポリスチレン系樹脂を必須成分としたポリフェニレンエーテル系樹脂組成物からなることを特徴とするバルブ。他の特徴として、前記ポリフェニレンエーテル系樹脂組成物が、95℃雰囲気下での引張強度が20MPa以上、引張弾性率が1000MPa以上であることなど。

Description

バルブ
技術分野
本発明は、 6 0 °C以上の高温流体が流れる配管ラインに好適に使 用されるバルブに関するものであり、 さらに詳しくは、 特に高温の 明
アルカリラインに好的に使用でき、 塩化ビニル樹脂と同じ製造設備 を使用でき、 高温クリープ特性と衝撃強度のバランスの良いバルブ に関するものである。 書
背景技術
従来、 樹脂製バルブは各種あるが、 その一例として樹脂製のダイ ャフラムバルブがあった (特許文献 1参照) 。 このダイヤフラムバ ルブのバルブ本体の材質は、 塩化ビニル樹脂 (以下、 P V Cと記す ) が用いられていた。 また、 他の一例として樹脂製のポールバルブ (特許文献 2参照) があった。 このポールバルブのバルブ本体の材 質も、 P V Cが用いられていた。 これらのように P V Cは、 加工性 ゃ耐薬性が良好で材料が安価に製造できることからバルブ本体の材 質として好適に用いられてきた。
しかしながら、 P V Cは熱変形温度が 7 0 °C程度であるため、 前 記従来の P V C製バルブの使用温度は 6 0 °Cまでが限界であり、 高 温流体が流れる配管ラインには適していないという問題があった。
また、 他の樹脂を用いた樹脂製バルブとしては、 前記従来の樹脂 製バルブ(特許文献 1 、 2 )において、 塩素化塩化ビニル樹脂 (以下 、 C P V Cと記す) 、 ポリプロピレン (以下、 P Pと記す) 、 ポリ フッ化ビニリデン (以下、 P V D Fと記す) 、 ポリフエ二レンサル ファイ ド (以下、 P P Sと記す) 、 ポリエーテルエ一テルケトン ( 以下、 P E E Kと記す) などが挙げられており、 これらの樹脂を用 いたバルブの使用可能な温度範囲は、 塩化ビニル樹脂が適用してい ない 6 0 °C以上も含まれている。
しかしながら、 上記樹脂にはそれぞれ長所と短所があり、 使用す るにはそれぞれ制限がある。 C P V Cは、 使用温度が P V Cより高 くなり 9 0 °Cまでとなるが、 それ以上の温度 (特に 1 0 0 °C付近) では使用できない。 また、 アルカリに対する耐性が劣るため、 アル カリ性の薬液の用途には適しておらず、 流体によって使用が制限さ れる。 P Pは、 使用温度が C P V Cと同じ 9 0 °Cまでとなるが、 そ れ以上の温度では樹脂が軟化してバルブの剛性が低下するため使用 できない。 しかし、 C P V Cに比べて耐アルカリ性は良好であり、 流体による使用制限が少ない。 P VD Fは、 使用温度が 1 2 0 °Cま でとなるが、 アルカリに対する耐性が劣るため、 アルカリラインの 用途には適しておらず、 流体によって使用が制限される。 加えて、 価格が P V C、 C P V C , P Pに比べてやや高くなる。 P P S、 P E E Kは、 共に使用温度が 1 5 0 °C以上となるが、 成形温度が高い ために厚肉な成形品においては寸法安定性が劣る。 また、 P P Sや P E E Kを射出成形するには金型温度を P P Sで 1 2 0〜 1 5 0 °C 、 P E E Kで 1 3 0〜 1 7 0 °Cに温調する必要があり、 通常の水に よる金型温調では対応できず、 油などによる金型温調を行わなけれ ばならないため、 成形現場において金型切替での油による金型温調 の準備や金型の昇温に手間や時間がかかる。 加えて双方とも価格が 非常に高く、 P P Sや P E E K製のバルブを製造するにはランニン グコス トが多く掛かり、 特に大口径のバルブには不向きである。 そ のため、 従来の P P Sや P E E K製のパルプは非常に限定された用 途にしか用いられていない。 以上のように、 耐熱性、 耐薬品性、 成 形性、 経済性等を考えて用途によつて樹脂製バルブを使い分けてい たが、 上記の樹脂製バルブでは 9 0でを超えて特に 1 0 0 付近の アルカリラインに好的に使用できる樹脂製バルブがなく、 バルブの 使用温度や使用圧力を使用可能な値まで落として用いるか、 非常に 高価となるバルブを使用するしかないという問題があつた。
特許文献 1 : 特開平 8 — 1 5 2 0 7 3
特許文献 2 : 特開平 1 1一 4 4 3 7 3 発明の開示
本発明は以上のような従来の樹脂製バルブが有する欠点を克服し 、 高温域( 6 0〜 9 5で)において短期的に高い内圧がかかっても破 損や漏れのない程の剛性を有し、 高温域でアルカリラインに好適に 使用できるバルブであり、 さらには高温クリープ特性と衝撃強度の バランスが良く、 塩化ビニルと同じ製造設備を使用できるバルブを 提供することを目的としてなされたものである。
本発明者らは高温域(6 0〜 9 5 °C )のアルカリラインに好ましい 性質を有するバルブを開発すべく鋭意研究を重ねた結果、 ポリフエ 二レンエーテル系樹脂組成物を用いることによって上記目的が達成 されることを見出し、 本発明を完成するに至った。
すなわち本発明は、 流体流入口と流体流出口を有し内部に該流入 口及び該流出口に連通する流路と該流路内に弁座が形成された本体 と、 回動又は上下動することで該弁座に圧接離間されて該流路の開 閉を行う弁体とを有するバルブにおいて、 少なく とも該本体がポリ フエ二レンエーテル系樹脂とポリスチレン系樹脂を必須成分とした ポリフエ二レンェ一テル系樹脂組成物からなることを第 1の特徴と し、 9 5 °C雰囲気下で引張強度が 2 0 M P a以上、 引張弾性率が 1 0 0 0 M P a以上であることを第 2の特徴とし、 2 3 °C雰囲気下の ノッチ付きアイゾッ ト衝撃強度が 7. O k J /m2 以上であること 第 3の特徴とし、 線膨張係数が 5. 0 X 1 0 — 5 Z :〜 8. 0 X 1 0一 5 Z°Cであること第 4の特徴とし、 9 5 °C雰囲気下で前記バル ブを全開にして、 5. 0 M P aの水圧をかけた状態で 1分間保持し たときに、 該バルブから水漏れがないことを第 5の特徴とし、 成形 した肉厚 1 0 mmの成形品の成形収縮率が 0. 5〜 0. 8 %である こと第 6の特徴とし、 ポリフエ二レンエーテル系樹脂組成物におい て、 ポリフエ二レンエーテル系樹脂 1 0 0質量部とポリスチレン系 樹脂 5 0〜 1 2 0質量部を必須成分とし、 混練後の M F Rが 1. 0 〜 5. 0 g / 1 0分であることを第 7の特徴とし、 スチレン含有量 1 0〜 4 0 %及び重量平均分子量 2 0万以上のスチレン · ブタジェ ン系ゴムをポリフエ二レンエーテル系樹脂 1 0 0質量部に対し、 1 . 0〜 1 5質量部含有することを第 8の特徴とし、 バルブが、 ダイ ャフラムバルブ、 ポールバルブ、 コック、 バタフライバルブ、 ゲー トバルブ、 ス トップバルブ、 ニードルバルブ、 ピンチバルブ、 チェ ックバルブ等のいずれかであることを第 9の特徴とする。 図面の簡単な説明
図 1 は、 本発明の一実施例を示すダイヤフラムバルブの全開状態を 示す縦断面図である。 発明の詳細な説明
本発明のバルブに用いられるポリフエ二レンエーテル系樹脂組成 物は、 9 5 °C雰囲気下での引張強度は 2 O MP a以上が好ましく、 2 0〜 4 0 M P aがより好ましい。 また 9 5 °C雰囲気下での引張弾 性率は 1 0 0 O M P a以上であることが好ましく、 1 0 0 0〜 2 0 0 0 P aが好ましい。 高温域 ( 6 0〜 9 5 °C) での剛性と、 高温 域のバルブの長期寿命に必要な特性である高温クリープ特性を有し 、 バルブの弁座面の強度を保持して高いシール性能を維持するため には引張強度が 2 0 M P a以上であることが好ましく、 ウォー夕一 ハンマーなどの衝撃に対するバルブの柔軟性を保っためには 4 0 M P a以下であることが好ましい'。 また、 引張弾性率は高温時の剛性 を示す指針であり、 高温時の剛性を有し、 内圧に対するバルブの膨 らみによる変形を抑えシール性能を維持するためには引張弾性率は 1 0 0 0 M P a以上であることが好ましく、 衝撃に対するバルブの 柔軟性を保っためには 2 0 0 0 M P a以下が好ましい。
また、 本発明のバルブに用いられるポリフエ二レンエーテル系樹 脂組成物は、 2 3 °C雰囲気下でのノツチ付きアイゾッ ト衝撃強度が 7. 0 k J /m2 以上であることが好ましく、 7. 0〜 1 5 · O k J /m2 がより好ましい。 バルブは肉厚に設けられているため、 ァ ィゾッ ト衝撃強度が多少低くても ( 5. O k J /m2程度) 、 一般 的なバルブ ( 1. O M P a仕様) として使用するには問題ないが、 高圧の用途 ( 1 . 5〜2. 0 M P a程度での長期使用を想定) にお いては圧力に応じてウォー夕一ハンマーなどによる衝撃も上昇する ため、 これに対する充分な耐性を有すると共に、 バルブの長期間使 用による材質の劣化や、 薬液等による劣化が起こつてもバルブの耐 性を保持するためには 7. O k J Zm2 以上が良く、 引張強度を保 持したまま衝撃による割れ等に対する耐性を保っためには 1 5. 0 k J Zm2 以下が好ましい。
また、 本発明のバルブ本体の線膨張係数は、 5. 0 X 1 0— 5 / 〜 8. 0 X 1 0 _ 5 /でであることが望ましい。 これはバルブを 固定施工して高温流体を流す際に、 熱膨張に伴う長手方向への伸び が生じてしまうことにより、 バルブが変形して弁体と弁座部のシー ル部分やパイプと継手等との接続部分などに歪みが生じて流体の漏 れが発生することや、 バルブの各部に歪みが生じることで長期寿命 が損なわれることを防止するためである。
また、 本発明のバルブを 9 5 °C雰囲気下でバルブを全開にして、 5 . 0 M P aの水圧をかけた状態で 1分間保持したときに、 バルブ から水漏れがないことが好ましい。 なお、 ここでの 9 5 °C雰囲気下 とは、 周囲の温度を 9 5 °Cにした状態で内圧をかけても良く、 9 5 °Cの流体を流して内圧をかけても良い。 一般的に熱可塑性樹脂組成 物製バルブ ( 1 . 0 M P a仕様のもの) は、 常温 ( 2 3 °C ) で 5 . 0 M P aの高い水圧がかかるとバルブの剛性が持たずに漏れが発生 する可能性が高く、 高圧仕様の対策が必要となる。 さらに 9 5 °Cま で高温となると、 バルブが膨張すると共にバルブの剛性が低下して 、 バルブの剛性が低下した状態で 5 . 0 M P aの高い水圧がかかる とバルブが水圧で膨らんだ状態となる。 このようなバルブの膨張と 膨らみにより、 バルブが変形して各部の寸法が変化することでバル ブのシール部分のシール性は低下する。 そのため、 9 5 °C雰囲気下 で 5 . 0 M P aの水圧をかけた状態で 1分間保持してもバルブから 水漏れがないことにより、 高い圧力がかかった状態で高温域 ( 6 0 〜 9 5 °C ) やそれ以上の 1 0 0 °C付近で使用するための高温用バル ブとして好適に用いることができる。
ここでパイプの場合では、 高温クリープ試験における温度、 引張 荷重、 保持時間の関係から、 同じ温度で引張荷重を変化させたとき の保持時間を、 D I N 8 0 7 8 を参照して N a d a yの式と周応力 一時間特性グラフから換算することができる。 引張荷重をかけるこ ととは、 パイプではパイプ内圧がかかることとして考えることがで き、 引張荷重に相当するパイプ内圧はパイプ肉厚とパイプ外径によ つて変化し、 式 1の N a d a yの式から算出される。 なお、 式 1 に おける試験応力が引張荷重となる。 パイプ内圧 = ( 2 Xパイプ肉厚 X試験応力) / (パイプ外径ーパ ィプ肉厚) · · · 式 1
この式 1は、 バルブの場合にも応用することができ、 バルブにおい ては内径と最小肉厚の関係から、 最小肉厚のパイプに置き換えるこ とで内圧の計算や保持時間の換算を行うことができる。
本発明におけるバルブは、 9 5 雰囲気下で 5. 0 M P aの引張 荷重をかけた高温クリープ特性において、 破壊に至るまでの時間が
1 0 0 0時間以上であることが好ましい。 これは口径 2 5 mm (内 径 2 5 mm) のバルブの最低肉厚部分が 6. 2 5 mmの場合、 パイ プ外径 3 7. 5 mm, パイプ肉厚 6. 2 5 mmのパイプの場合に置 き換えて計算すると式 1より引張荷重 5. O MP aは内圧 1. 8 3 M P aとなり、 9 5 雰囲気下で 1. 8 3 ¾^卩 &の内圧をかけで 1 0 0 0時間以上保持することになる。 これを 9 5 °C雰囲気下で保持 時間が 1 0年になるようにする場合、 D I N 8 0 7 8 を参照して N a d a yの式と周応力一時間特性グラフから換算すると内圧は 1.
2 0 M P aとなるため、 9 5 °C雰囲気下で内圧 1. 2 0 M P aのと きバルブは 1 0年の寿命を有することとなる。 これに対し、 例えば 他の材料のポリプロピレン系樹脂組成物製バルブの場合、 同様に口 径 2 5 m mのバルブの最低肉厚部分が 6. 2 5 m mの場合、 9 5 °C 雰囲気下で 1. 8 3 M P aの内圧をかけると約 1 0時間程度で破壊 に至るものであり、 1 0 0 0時間以上保持しょうとすると 9 5 °C雰 囲気下で 0. 8 O M P aの内圧まで下げる必要がある。 これを 9 5 X 雰囲気下で保持時間が 1 0年になるように換算すると内圧は 0.
8 0 M P aとなる。 このことから、 ポリフエ二レンエーテル系樹脂 組成物製のバルブの許容圧力は、 ポリプロピレン系樹脂組成物製の バルブの 1. 5倍となり、 より高圧の用途で使用することができる また、 バルブを 9 5 以上で使用する場合、 例えば温度を 1 0 0 °Cとした時では、 ポリプロピレン系樹脂組成物では軟化温度付近と いうこともあり 1 0 0 °C雰囲気下では樹脂組成物が軟化して高温用 バルブとしての強度を十分保持できないのに対し、 ポリフエ二レン エーテル系樹脂組成物は軟化することがないので、 温度、 引張荷重 、 保持時間を換算すると使用圧力を低下させる (内径 2 5 m m、 最 低肉厚 6 . 2 5 m mバルブの場合、 パイプ外径 3 7 . 5 m m , パイ プ肉厚 6 . 2 5 m mのパイプの場合に置き換えて計算すると 1 0 0 °C雰囲気下で保持時間が 1 0年とするには内圧は 0 . 6 0 M P aと なる) という制限はあるものの問題なく使用することができる。 つ まり、 既存の他の樹脂組成物製の配管部材では十分網羅できなかつ た耐薬品性を有し、 高温域 ( 6 0〜 9 5 °C ) はもとより、 1 0 0 °C 付近で使用可能であり、 ポリプロピレン系樹脂組成物製配管部材ょ りも高温の用途における配管部材として最適である。
また、 本発明のバルブの成形収縮率が 0 . 5〜 0 . 8 %であるこ とが好ましく、 より具体的には、 肉厚 1 0 m mの成形品における流 動方向の成形収縮率が 0 . 6〜0 . 8 %であり、 直角方向の成形収 縮率が 0 . 5〜0 . 7 %であることが好ましい。 樹脂の種類や配合 する樹脂の量の違いによって樹脂組成物の成形収縮率は変化するが 、 成形収縮率が 0 . 5〜0 . 8 %のポリフエ二レンエーテル系樹脂 組成物であれば、 塩化ビニル樹脂の成形収縮率とほぼ同等のため、 例えば塩化ビニル樹脂製バルブ用の金型を用いてポリフエ二レンェ 一テル系樹脂組成物を射出成形すると、 成形したバルブは塩化ビニ ル樹脂で成形したバルブとほぼ同じ寸法のバルブを得ることができ る。 そのため、 従来の塩化ビニル樹脂と同一の製造設備を共有する ことができ、 製品のラインナップを揃えるためにポリフエ二レンェ 一テル系樹脂組成物用の製造設備を増設する必要がなくなり、 余計 W 200 な費用が掛からず、 製造設備の設置スペースも新たに設けなくて済 む。
ここで、 ポリフエ二レンエーテル系樹脂は機械強度、 弾性率が大 きいが、 流動性が悪いため、 単独では成形することができずに他の 樹脂を配合して流動性をあげて成形する必要がある。 この配合に用 いる樹脂はポリスチレン系樹脂、 ポリアミ ド系樹脂、 ポリプロピレ ン系樹脂等が挙げられるが、 バルブとして要求される特性 (高温ク リーブ特性、 成形収縮率、 耐薬品性、 価格等) を考慮すると、 ポリ スチレン系樹脂が要求される特性をバランス良く有している。
本発明において、 ポリフエ二レンエーテル系樹 .旨とポリスチレン 系樹脂の配合割合は、 上記の高温用バルブに要求される特性を満足 させる範囲にする必要があり、 ポリフエ二レンエーテル系樹脂 1 0 0質量部に対してポリスチレン系樹脂の配合量は 5 0〜 1 2 0質量 部であることが好ましい。 これは、 衝撃強度を向上させると共に、 流動性を向上させて成形性を良くするためには 5 0質量部以上がよ く、 良好な高温クリープ特性を有し、 機械強度の低下を抑え、 耐熱 性を維持するためには 1 2 0質量部以下がよい。 また、 塩化ピニル 樹脂と同等の成形収縮率を得るためにもポリフエ二レンエーテル系 樹脂 1 0 0質量部に対してポリスチレン系樹脂の配合量は 5 0〜 1 2 0質量部であるとよい。 なお、 ポリフエ二レンェ一テル系樹脂組 成物は、 ポリフエ二レンエーテル系樹脂とポリスチレン系樹脂をブ レンドしたものを用いても良いが、 両者をグラフ ト共重合しても良 く、 グラフ ト共重合することによって良好な加工性と長期物性を得 ることができ、 特に高温クリーブ特性が良好となる。
また本発明において、 ポリフエ二レンエーデル系樹脂組成物の M F Rは 1 . 0〜 5 . 0 g Z 1 0分である必要がある。 射出成形に必 要な樹脂組成物の流動性を有し、 特に厚肉のバルブを成形するのに 良好な生産性を得るためには 1 . 0 g Z 1 0分以上が良く、 本発明 のバルブに用いられるポリフエ二レンエーテル系樹脂組成物をパイ プの押出成形に共用でき、 良好な高温クリープ特性を得ると共に、 パィプ押出成形における樹脂組成物のドローダウンを抑えるために は 5 . 0 g / 1 0分以下が良い。 なお、 ポリフエ二レンエーテル系 樹脂組成物の M F Rは、 J I S K 7 2 1 0に準拠し、 試験温度 2 5 0 °C、 試験荷重 1 0 k gの条件で測定したものである。
また、 本発明のポリフエ二レンエーテル系樹脂組成物は、 バルブ として要求される特性の許容範囲内であればポリフエ二レンェ一テ ル系樹脂組成物に他のポリマーを含んでも良い。 他のポリマーとし ては、 バルブの特性を低下させないものであれば特に限定されない が、 スチレン · ブタジエン系ゴムが特に好適なものとして挙げられ 、 スチレン · ブタジエン系ゴムを配合することで高温クリープ特性 を維持したまま衝撃強度を向上させることができる。
ここで、 ポリフエ二レンェ一テル系樹脂 1 0 0質量部に対し、 ス チレン · ブタジエン系ゴムの配合割合は 1 〜 1 5質量部が好ましい 。 これは良好な高温クリープ特性、 衝撃強度を得るためには 1質量 部以上が良く、 良好な耐熱性と剛性を得るために 1 5質量部以下が 良い。 なお、 他のポリマ一については、 その合計量がポリフエニレ ンエーテル系樹脂 1 0 0質量部に対して 1 〜 1 5質量部になるよう にする必要がある。
また、 スチレン · ブタジエン系ゴムのスチレン含有量は 1 0〜 4 0 %が良く、 1 5〜 3 5 %であることがより望ましい。 スチレン · ブタジエン系ゴムのスチレン含有量は、 少なすぎると物性の変化は 小さく、 逆に多すぎると弾性率が低くなり機械強度が弱くなるもの の流動性は良くなるのでバルブの成形性は向上するという関係にあ る。 そのためバルブに必要である良好な高温クリ一プ特性や衝撃強 度をバランスよく満たすためにはスチレン含有量 1 0 %以上が良く
、 良好な相溶性を得た上で良好な高温クリープ特性、 衝撃強度をバ ランスよく満たすためにはスチレン含有量 4 0 %以下が良い。
また、 本発明のスチレン · ブタジエン系ゴムの重量平均分子量は 2 0万以上である必要がある。 ポリフエ二レンエーテル系樹脂組成 物に重量平均分子量 2 0万以下のスチレン · ブタジエン系ゴムを配 合すると、 衝撃強度は向上するが高温クリーブ特性が著しく損なわ れることから、 良好な高温クリープ特性、 衝撃強度を得るためには 2 0万以上が良い。 ここでスチレン · ブタジエン系ゴムの重量平均 分子量をより高分子量にすると高温クリープ特性が向上するため、 重量平均分子量の上限は特に限定しないが、 重量平均分子量が高く なることでスチレン · ブタジエン系ゴムの製造が困難とならないよ うに、 実用的には数百万程度が良く、 具体的には 2 0万〜 3 0 0万 であることが好適である。 また、 ポリフエ二レンエーテル系樹脂と ポリスチレン系樹脂、 スチレン · ブタジエン系ゴムの混練後の M F Rは混練前と変化しないか混練前より低下していることが望ましく 、 混練後の M F Rを上昇させないためにはスチレン · ブタジエン系 ゴムは M F Rが測定できない程の高分子量であれば混練後の M F R はむしろ低下させることができるため (表 1 の実施例 5 と実施例 6 参照。 スチレン ' ブタジエン系ゴムの分子量の違いにより、 実施例 6の分子量 1 0万の場合の混練後の M F Rに対して、 実施例 5の分 子量 2 8万の場合の混練後の M F Rは低下している) 、 スチレン , ブタジエン系ゴムを M F Rが測定できない程の高分子量にするため にも重量平均分子量が 2 0万以上であることが必要である。
本発明のスチレン · ブタジエン系ゴムの重合方法や重合触媒は、 いかなる方法、 触媒を用いても良い。 なお、 スチレン · ブタジエン 系ゴムをポリフエ二レンエーテル系樹脂、 ポリスチレン系樹脂に配 合した時の耐薬品性ゃ耐候性の点から、 水素添加率は 1 0 0 %に近 い方が望ましく、 具体的な水素添加率は、 耐候性や耐熱性、 耐薬品 性の点から 8 5 %以上、 より好ましくは 9 0 %以上、 さらには 9 5 %以上であることが好ましい。
ここで、 ポリフエ二レンエーテル系樹脂 1 0 0質量部に対し、 ス チレン · ブタジエン系ゴムの配合割合は 1〜 1 5質量部である必要 がある。 これは良好な高温クリープ特性、 衝撃強度を得るためには 1質量部以上が良く、 高温時の剛性を有し、 シール性能を保持する ために 1 5質量部以下が良い。 発明を実施するための最良の形態
本発明のポリフエ二レンエーテル系樹脂としては、 公知のものを 特に制限無く使用でき、 単独重合体であっても共重合体であっても 良く、 ポリ ( 2, 6—ジメチルー 1, 4一フエ二レン) エーテル、 ポリ ( 2—メチルー 6—ェチル— 1, 4一フエ二レン) エーテル、 ポリ ( 2 , 6 —ジェチルー 1, 4—フエ二レン) エーテル、 ポリ
( 2—ェチル— 6— n—プロピル一 1 , 4一フエ二レン) エーテル 、 ポリ ( 2 , 6 —ジー n—プロピル一 1, 4一フエ二レン) エーテ ル、 ポリ ( 2 —メチルー 6— n—ブチルー 1 , 4 _フエ二レン) ェ 一テル、 ポリ ( 2—ェチル— 6 —イソプロピル一 1 , 4—フエニレ ン) エーテル、 ポリ ( 2—メチルー 6 —クロロェチルー 1, 4ーフ ェニレン) エーテル、 ポリ ( 2 —メチルー 6 —ヒ ドロキシェチルー 1 , 4一フエ二レン) エーテル、 ポリ ( 2—メチル— 6 —クロロェ チル一 1 , 4—フエ二レン) エーテル、 ポリ ( 2 , 6—ジメ トキシ — 1, 4—フエ二レン) ェ一テル、 ポリ ( 2, ' 6 —ジクロロメチル - 1 , 4一フエ二レン) エーテル、 ポリ ( 2 , 6 —ジブロモメチル — 1, 4—フエ二レン) エーテル、 ポリ ( 2, 6—ジフエ二ルー 1 , 4 一フエ二レン) エーテル、 ポリ ( 2 , 6 —ジトリル— 1 , 4 一 フエ二レン) ェ一テル、 ポリ ( 2 6 —ジクロロー 1, 4 —フエニレ ン) エーテル、 ポリ ( 2 , 6 ージベンジル— 1, 4 —フエ二レン) エーテル、 ポリ ( 2, 5 —ジメチルー 1, 4 —フエ二レン) エーテ ルなどが挙げられる。
本発明のポリフエ二レンエーテル系樹脂組成物で用いられるポリ スチレン系樹脂は、 スチレン及びスチレン誘導体の単独重合体、 例 えば、 ポリスチレン、 ゴム変性ポリスチレン (ハイインパク トポリ スチレン) 、 シンジオタクチックポリスチレン等が挙げられ、 さら にはスチレン系共重合体、 例えば、 スチレン—アクリロニトリル共 重合体 (A S樹脂) やスチレン一アクリロニトリル一ブタジエン共 重合体 (A B S樹脂) 等が挙げられる。 このうち相溶性が良好で衝 撃強度を向上させる点でハイインパク トポリスチレンを用いること が好ましい。
また、 本発明のポリフエ二レンエーテル系樹脂組成物は、 必要に より応じて、 酸化防止剤、 紫外線吸収剤、 光安定剤などの安定剤を 配合しても良く、 これらの配合により組成物の熱安定性や耐光性を 向上させることができる。
酸化防止剤としては、 例えば 2, 6 —ジ一 t 一プチルー 4ーメチ ルフエノール、 n —ォクタデシルー 3 — ( 4, ーヒ ドロキシ一 3 ' , 5, —ジ— t 一ブチルフエニル) プロピオネート、 2 , 2, ーメ チレンビス ( 4 一メチル— 6— t —ブチルフエノール) 、 2 , 2 ' —メチレンビス ( 4—ェチルー 6— t —プチルフエノール) 、 2 , 4 一 ビス 〔 ( 才クチルチオ) メチル〕 一 0 —クレゾ一ル、 2 ― t 一ブチル _ 6— ( 3 — t ーブチルー 2—ヒ ドロキシ— 5 —メチル ベンジル) 一 4—メチルフエニルァクリ レート、 2, 4—ジ一 t 一 アミルー 6 — 〔 1 一 ( 3, 5—ジ一 t —アミルー 2 —ヒ ドロキシフ ェニル) ェチル〕 フエ二ルァクリ レート、 2— 1 一 ( 2—ヒドロキ シー 3, 5—ジー t e r t —ペンチルフエ二ル) ] ァクリ レートな どのヒンダードフエノール系酸化防止剤 ; ジラウリルチオジプロビ ォネート、 ラウリルステアリルチオジプロピオネートペン夕エリス リ トールーテトラキス ( ]8—ラウリルチオプロピオネート) などの ィォゥ系酸化防止剤 ; 卜リス (ノニルフエニル) ホスファイ ト、 トリス ( 2, 4ージ _ t 一ブチルフエニル) ホスフアイ 卜などの リン系酸化防止剤などを挙げることができる。
紫外線吸収剤、 光安定剤としては、 例えば 2— ( 2 ' ーヒドロキ シ一 5 , 一メチルフエニル) ベンゾトリアゾ一ル、 2 一 ( 2 ' ーヒ ドロキシ _ 3 ' , 5 ' — t —ブチルフエニル) ベンゾトリアゾ一ル 、 2 — ( 2 , ーヒ ドロキシ— 3, , 5 , —ジー t 一ブチルフエニル 一 5 —クロ口べンゾ卜リアゾ一ルなどのべンゾトリアゾール系紫外 線吸収剤や 2 —ヒ ドロキシー 4ーメ トキシベンゾフエノンなどのべ ンゾフエノン系紫外線吸収剤、 トリアジン系紫外線吸収剤あるいは ヒンダ一.ドアミン系光安定剤などを挙げることができる。
本発明のポリフヱニレンエーテル系樹脂組成物は必要に応じて、 球状フイ ラ一、 板状フイ ラ一、 繊維状フイ ラ一等の無機充填材を使 用してもよい。 これらは単独でも、 2種類以上組み合わせて用いて も良い。 球状フイ ラ一としては、 炭酸ガルシゥム、 マイ力、 硫酸バ リウム.、 硫酸カルシウム、 クレー、 パーライ ト、 シラスバルーン、 珪藻土、 焼成アルミナ、 ケィ酸カルシウム等が挙げられる。 板状フ イ ラ一としては、 タルク、 マイ力等が挙げられる。 繊維状フイ ラ一 としてはガラス繊維、 炭素繊維、 ホウ素繊維、 炭化ケィ素繊維、 チ タン酸カリウム繊維、 ポリアミ ド繊維、 ポリエステル繊維、 ポリア リレート繊維、 ポリイミ ド繊維等が挙げられる。
また、 その他必要に応じて、 難燃剤 (塩素化ポリエチレン、 デカ プロモジフエ二ルェ一テル等のハロゲン系、 トリクレジルホスフエ 一卜等のリン系、 水酸化アルミニウム等の無機系等) 、'滑剤 (流動 パラフィ ン等の炭化水素系、 ステアリン酸等の脂肪酸、 ステアリル アルコール等の高級アルコール系、 ステアリン酸アミ ド等のアミ ド 系、 ステアリン酸カルシウム等の金属せつけん系等) 、 帯電防止剤 (ポリアルキレングリコール、 スルホン酸基含有化合物等) 、 抗菌 剤 (ゼオライ ト等の無機系、 2— ( 4—チアゾリル) ベンツイミダ ゾール等の有機系等) 、 着色剤 (酸化チタン等の無機系、 力一ボン ブラック等の有機系等) 等を配合してもよい。 それらの配合量は添 加剤の種類によって変化するため、 組成物の物性を低下させずに添 加剤の効果が十分発揮される量を配合することが好ましい。 以上の ごとく配合した後、 溶融混練する方法には特に制限はなく、 単軸押 出機や二軸押出機、 二一ダーなどを用いることで各成分が均一に分 散したポリフエ二レンエーテル系樹脂組成物を得ることができる。
さらに本発明のポリフェニレンエーテル系樹脂組成物の成形前の 含水量は 2 5 0 p p m未満 (カールフィ ッシャ一法により測定が) 望ましい。 なお、 1 0 0 p p m = 0 . 0 1 %である。 外観不良 (シ ルバース トリークなど) や内部に気泡を発生させないためには 2 5 0 p p m未満が良く、 理想としては 0 p p mであることが好ましい 。 特に厚肉となるバルブの場合は含水量によって外観不良や気泡が 発生し易くなるため、 不良率を低下させるために好適である。
本発明のポリフエ二レンエーテル系樹脂組成物は種々のバルブに 用いることができ、 ダイヤフラムバルブ、 ボールバルブ、 コック、 バタフライバルブ、 ゲートバルブ、 ス トップバルブ、 ニードルバル ブ、 ピンチバルブ、 チェックバルブ等が好適なものとして挙げられ る。 上記バルブは、 バルブの構成が同じものであれば機能的な構成 を有していても良く、 流体の流量を調節する構成、 流量を一定に保 つ構成、 圧力を一定に保つ構成、 流体の逆流を防止する構成等を有 していても良い。
本発明のポリフエ二レンエーテル系樹脂組成物を用いたバルブの 成形方法は、 射出成形されてなるバルブが好適なものとして挙げら れるが、 成形方法は特に限定されず、 ポリフエ二レンエーテル系樹 脂組成物製の丸棒を切削加工によって成形しても良い。
本発明のポリフエ二レンェ一テル系樹脂組成物を用いて製造され るバルブは、 以下のような優れた特性を有する。
( 1 ) バルブの本体にポリフェニレンエーテル系樹脂組成物を用い ることにより、 高温域 ( 6 0〜 9 5 °C ) での酸 · アルカリなどの薬 液ラインに使用することができ、 1 0 0 °C付近でも使用することが できる。
( 2 ) 9 5 °C雰囲気下での引張強度が 2 O M P a以上、 引張弾性率 が 1 0 0 0 M P a以上であるため高温時にかかる水圧に対してバル ブの変形や膨らみを抑えて、 高いシール性能を維持することができ る。
( 3 ) 2 3 °C雰囲気下でのノッチ付きアイゾッ ト衝撃強度が 7. 0 k J /m 2 以上であるため、 バルブの長期間使用による材質の劣化 や、 薬液等による劣化が起こってもバルブの耐性を保持することが できる。
( 4 ) 線膨張係数が 5. 0 X 1 0— 5 /°C〜 8. 0 X 1 0 " 5 /°C であるため、 高温時の膨張による寸法の変化を抑えて、 高いシール 性能を維持することができる。
( 5 ) 9 5 °C雰囲気下で 5. 0 M P aの水圧をかけた状態で 1分間 保持してもバルブから水漏れがないことにより'、 高い圧力がかかつ た状態で高温域 ( 6 0〜 9 5 °C) やそれ以上の 1 0 0 °C付近で使用 することができる。 ( 6 ) 成形収縮率が 0 . 5〜 0 . 8 %であることで塩化ビニル樹脂 と同一の製造設備を使用することができる。 '
( 7 ) ポリフエ二レンエーテル系樹脂 1 0 0質量部に対し、 ポリス チレン系樹脂 5 0〜 1 2 0質量部を必須成分とすることで、 高温ク リーブ特性と衝撃強度のバランスが良い配管部材を得ることができ る。
( 8 ) ポリフエ二レンェ一テル系樹脂組成物の M F Rを 1 . 0〜 5 . 0 g Z 1 0分と限定することで、 成形時における流動性を確保し 反りのない良好な成形品を得ることができ、 高温クリープ特性を保 持することができる。
( 9 ) 重量平均分子量 2 0万以上のスチレン · ブタジエン系ゴムの 配合により、 高温クリーブ特性を低下させずに衝撃強度を高めるこ とができる。
以下、 本発明における実施形態について図面を参照して説明する が、 本発明が本実施形態に限定されないことは言うまでもない。 図 1 は、 本発明の樹脂製ダイヤフラムバルブの全開状態を示す縦断面 図である。
1 はポリフエ二レンエーテル系樹脂組成物製のバルブ本体であり 、 内部に流体流入口 1 1 と流体流出口 1 2に各々連通する流路 2を 有し、 流路 2の中間に流路を湾曲させたなだらかな円弧状の曲面を 有する仕切壁 3が設けられている。 仕切壁 3の上面に弁座面 4が形 成されている。 5はバルブ本体 1の上部に固定されているポリフエ 二レンエーテル系樹脂組成物製のボンネッ トであり、 ボンネッ ト 5 の上部中央開口部には、 銅合金製のスリーブ 6が支承されている。 7はスリーブ 6の内部に設けられた雄ネジ部と螺合しているステン レス製のスピンドルである。 8は P V D F製のコンプレッサーであ りスピンドル 7の下端部に固定されている。 9は弁体であるダイヤ フラムであり、 コンプレッサー 8に固定され、 周縁部はバルブ本体 1 とボンネッ ト 5の間に挟持され、 スピンドル— 7の上下運動により 仕切壁 3の上端面に接離する。 1 0は P P製のハンドルであり、 ス リーブ 6の上部外周に嵌合され、 ボンネッ ト 5の上端部に配置され ている。
次に、 本発明のダイヤフラムバルブに流体を流した際の作用を説 明する。
ダイヤフラムバルブが全開 (図 1の状態) の時、 ハンドル 1 0 を 閉の方向へ回転させる。 ハンドル 1 0の回転によってスピンドル 7 が下降すると共に、 コンプレッサー 8が下降する。 コンプレッサー 8が下降すると、 コンプレッサー 8がダイャフラム 9を下方へ押圧 する。 さらにハンドル 1 0 を閉方向へ回転させると、 ダイヤフラム 9は仕切壁 3上面の弁座面 4に押圧され、 流路 2が遮断されてバル ブは全閉となる。 次に、 ダイヤフラムバルブが全閉の時にハンドル 1 0 を開方向に回転すると、 ハンドル 1 0 の回転によってスピンド ル 7が上昇すると共に、 コンプレッサー 8が上昇する。 コンプレツ サー 8が上昇すると、 ダイヤフラム 9は弁座面 4から離間し、 流路 2が開放されダイヤフラムバルブは開となり、 ダイヤフラム 9は開 限度位置まで上昇して流路 2が開放されダイヤフラムバルブは全開 (図 1 の状態) となる。
このとき、 バルブ本体 1はポリフエ二レンエーテル系樹脂組成物 製であるため、 高温域 ( 6 0〜 9 0 °C ) はもとより、 1 0 0 °C付近 で使用可能であり、 耐薬品性が酸やアル力リに対して優れているた め、 特に 1 0 0 °C付近のアルカリラインに好適に使用できる。 また 、 本発明の 9 5 °C雰囲気下での各種物性強度を有することにより、 高温 ' 高圧のラインに対しても長期間使用することができる。 また 、 ポリフエ二レンエーテル系樹脂組成物は樹脂の価格が P Pと P V D Fの間で P Pより若干高い程度であり、 さらに金型温度が 4 0〜 8 0 で成形されるので通常の水による金型温調で対応することが でき、 油による金型温調などを行わなくて良く、 成形現場におい P P Sや P E E K製のバルブのように金型切替での金型温調や金型の 昇温に手間や時間をかけることなく成形することができる。
次に、 本発明のポリフエ二レンエーテル系樹脂組成物製バルブに ついて図 1 に示す口径が 2 5 mmのダイヤフラムバルブを成形し、 その性能を以下に示す試験方法で評価した。
( 1 ) バルブの耐水圧試験
ポリフエ二レンエーテル系樹脂を用いて成形したダイヤフラムバ ルブを全開状態で 9 5 °Cの温水を通水した状態で 6 0分間保持し、 その後徐々に水圧を上昇させ、 5. 0 M P aの水圧をかけた状態で 1分間保持したときに、 バルブの破損の有無やシール部からの流体 漏れの有無を目視にて確認した。 1分間保持して流体漏れがなけれ ば合格とする。 また、 5. 0 M P aに至る前にバルブの破損や流体 漏れがした場合は、 破損や液体漏れ時の水圧を測定した。
( 2 ) 耐アルカリ性試験
D I N 1 6 8 8 8に準拠して、 3 0 % N a OH溶液を専用容器に 入れたものに試験片を浸漬させ、 これを 9 5 °Cに保ったオーブンに 入れ、 1 1 2 日経過した後の試験片の引張試験を行った。 引張伸び の保持率が 5 0 %以上で合格とし、 引張伸びの保持率が 5 0 %未満 で不合格とする。
( 3 ) 引張試験
J I S K 7 1 1 3に準拠して、 射出成形にて成形した試験片を 用いて、 2 3 ± 1 °C及び 9 5 ± 1 °Cの雰囲気中'で引張試験を行い、 各々引張強度及び引張弾性率を測定した。
( 4 ) ノッチ付きアイゾッ ト衝撃試験 J I S K 7 1 1 0に準拠して、 射出成形にて成形した試験片を 用いて、 2 3 ± 1 °Cの雰囲気中でアイゾッ ト衝撃強度を測定した。
( 5 ) 線膨張係数
J I S K 7 1 9 7に準拠して、 射出成形にて成形したダイヤフ ラムバルブの本体から試験片を切削加工で切り出し、 2 3 °C〜 9 5 °Cの範囲で線膨張係数を測定した。
( 6 ) 高温クリープ試験
D I N 8 0 7 8に準拠して、 ポリフエ二レンエーテル系樹脂組成 物製バルブ (内径 2 5 mm、 最低肉厚 6. 0 mm) に対し、 9 5土 1 °C内圧 1. 9 3 MP a (バルブの内径と最低肉厚からパイプ外径 3 7. 0 mm、 パイプ肉厚 6. 0 mmのパイプの場合に置き換えて 、 試験応力で 5. O M P aに相当する内圧を式 1の N a d a yの式 から算出) をかけ、 破壊に至るまでの時間を測定した。 なお、 高温 時にポルトの緩みがある場合には、 増し締めを行った。
パイプ内圧 = ( 2 Xパイプ肉厚 X試験応力) / (パイプ外径ーパ イブ肉厚) · · · 式 1
( 7 ) 成形収縮率
射出成形機にてダイヤフラムバルブ本体 (塩化ビニル樹脂用金型 、 基準寸法 : フランジ部外径 (図 1の D) 1 2 5 mm、 面間幅 (図 1の W) 1 3 0 mm) を成形し、 2 3 °C雰囲気中で 2日間放置した 後、 フランジ部外径 (バルブの両端各々直角方向で 2点測定) と面 間幅 ( 2点測定) の寸法値を測定した。 測定は試験片 1 0個を測定 し、 フランジ部外形 Dと面間幅 Wの平均値を算出し、 フランジ部外 形と面間幅の平均値から各々の成形収縮率を式 2より算出した。 比 較対象として同様に塩化ビニル樹脂 (比較例 1 と同じ樹脂) を成形 して寸法を測定し成形収縮率を算出した。 なお、 基準寸法とは、 成 形品が狙う寸法であり、 製品寸法のことである。 また、 本試験で使 用した塩化ビニル樹脂用金型は、 塩化ビニル樹脂で成形したときに 基準寸法に対する寸法許容差が、 フランジ部外径で ± 0. 2 mm以 内、 面間幅で ± 0. 2 mm以内の範囲内になるように調整されてい る。 この金型寸法 (実測値) はフランジ部外径 1 2 5. 9 5 mm、 面間幅 1 3 0. 8 7 mmで設計されている。 本試験では、 成形収縮 率が 0. 5〜 0. 8 %の範囲内であり、 基準寸法の寸法許容差のフ ランジ部外径で ± 0. 2 mm以内、 面間幅で ± 0. 2 mm以内の範 囲内であることを合格とする。 なお、 表 1 における各実施例及び比 較例の樹脂の成形収縮率の比較では、 面間幅の成形収縮率を記載す る (フランジ部外形は肉厚であり、 寸法のばらつきが大きいため、 寸法のばらつきの少ない面間幅を基準とする) 。
成形収縮率 = { (金型寸法一試験片寸法) /金型寸法 } X I 0 0
• · · 式 2
( 8 ) M F R測定
J I S K 7 2 1 0に準拠し、 試験温度 2 5 0で、 試験荷重 1 0· k gの条件で測定した。 実施例
まず、 図 1のダイヤフラムバルブを用いて、 本体 1 とボンネッ ト 5を異なる配合のボリフエ二レンエーテル系樹脂組成物で成形され たバルブと他の樹脂で成形されたバルブの物性と、 各々のバルブに 用いられた樹脂の物性を比較した。
実施例 1
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ポリスチレン系樹 脂のハイインパク トポリスチレン 8 0質量部を配合し、 二軸押出機 にて混練してペレッ ト化し、 混練後の M F Rが 3. 6 2のポリフエ 二レンエーテル系樹脂組成物を製造した。 得られた樹脂組成物を乾 燥させ、 含水量を 2 5 0 p p m未満にしたのち、 射出成形機を用い てシリンダー温度 2 5 0でにてポリフエ二レンエーテル系樹脂製ダ ィャフラムバルブ及び各種試験片を成形し、 バルブ耐水圧試験、 耐 アルカリ性試験、 高温クリープ試験、 引張試験、 線膨張係数と成形 収縮率の測定試験を行った結果を表 1 に示す。 また、 成形収縮率の 測定結果の詳細な結果を表 2に示す。
実施例 2
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ハイインパク トポ リスチレン 8 0質量部を配合し、 実施例 1と同様に混練してペレツ ト化し、 混練後の M F Rが 1 . 5 7のポリフエ二レンエーテル系樹 脂組成物を製造した。 得られた樹脂組成物を乾燥させ、 含水量を 2 5 0 p p m未満にしたのち、 そのペレツ トを用いてダイヤフラムバ ルブ及び各種試験片を成形し、 各種評価試験を行った結果を表 1 に 示す。
実施例 3
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ハイィンパク トポ リスチレン 6 0質量部を配合し、 実施例 1と同様に混練してペレツ 卜化し、 混練後の M F Rが 3 . 6 2のポリフエ二レンエーテル系樹 脂組成物を製造した。 得られた樹脂組成物を乾燥させ、 含水量を 2 5 0 p p m未満にしたのち、 そのペレツ トを用いてダイヤフラムバ ルブ及び各種試験片を成形し、 各種評価試験を行った結果を表 1 に 示す。 また、 成形収縮率の測定結果の詳細な結果を表 2に示す。 実施例 4
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ハイインパク トポ リスチレン 1 1 0質量部を配合し、 実施例 1と同様に混練してペレ ッ ト化し、 混練後の M F Rが 4 . 5 0のポリフエ二レンエーテル系 樹脂組成物を製造した。 得られた樹脂組成物を乾燥させ、 含水量を 2 5 0 p p m未満にしたのち、 そのペレッ トを用いてダイヤフラム バルブ及び各種試験片を成形し、 各種評価試験を行つだ結果を表 1 に示す。 また、 成形収縮率の測定結果の詳細な結果を表 2に示す。 実施例 5
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ハイインパク トポ リスチレン 8 0質量部を配合し、 水素添加したスチレン · ブ夕ジェ ン系ゴム (スチレン含有量 3 0 %、 重量平均分子量 2 3万) 1 3質 量部を実施例 1と同様に混練してペレツ ト化し、 混練後の M F Rが
3 . 6 0のポリフエ二レンエーテル系樹脂組成物を製造した。 得ら れた樹脂組成物を乾燥させ、 含水量を 2 5 0 p p m未満にしたのち 、 そのペレツ トを用いてダイヤフラムバルブ及び各種試験片を成形 し、 各種評価試験を行った結果を表 1 に示す。
実施例 6
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ハイインパク トポ リスチレン 8 0質量部を配合し、 水素添加したスチレン · ブタジェ ン系ゴム (スチレン含有量 3 0 %、 重量平均分子量 1 0万) 1 3質 量部を実施例 1と同様に混練してペレツ ト化し、 混練後の M F Rが 4 . 2 3のポリフエ二レンエーテル系樹脂組成物を製造した。 得ら れた樹脂組成物を乾燥させ、 含水量を 2 5 0 p p m未満にしたのち 、 そのペレツ トを用いてダイヤフラムバルブ及び各種試験片を成形 し、 各種評価試験を行った結果を表 1 に示す。
実施例 7
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ハイインパク トポ リスチレン 8 0質量部、 水素添加したスチレン · ブタジエン系ゴム (スチレン含有量 5 %、 重量平均分子量 2 3万) 1 3質量部を配合 し、 実施例 1と同様に混練してペレッ ト化し、 混練後の M F Rが 3 . 0 2のポリフエ二レンエーテル系樹脂組成物を製造した。 得られ た樹脂組成物を乾燥させ、 含水量を 2 5 0 p p m未満にしたのち、 そのペレッ トを用いてダイヤフラムバルブ及び各種試験片を成形し 、 各種評価試験を行った結果を表 1 に示す。
実施例 8
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ハイインパク トポ リスチレン 8 0質量部を配合し、 水素添加したスチレン · ブ夕ジェ ン系ゴム (スチレン含有量 5 0 %、 重量平均分子量 2 3万) 1 3質 量部を実施例 1と同様に混練してペレツ ト化し、 混練後の M F尺が 4 . 1 5のポリフエ二レンエーテル系樹脂組成物を製造した。 得ら れた樹脂組成物を乾燥させ、 含水量を 2 5 0 p ρ ΐϊΐ程度にしたのち 、 そのペレツ トを用いてダイヤフラムバルブ及び各種試験片を成形 し、 各種評価試験を行った結果を表 1 に示す。
実施例 9
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ハイインパク トポ リスチレン 8 0質量部を配合し、 水素添加したスチレン · ブ夕ジェ ン系ゴム (スチレン含有量 3 0 %、 重量平均分子量 2 3万) 1 8質 量部を実施例 1と同様に混練してペレツ ト化し、 混練後の M F が 3 . 5 5のポリフエ二レンエーテル系樹脂組成物を製造した。 得ら れた樹脂組成物を乾燥させ、 含水量を 2 5 0 p p m未満にしたのち 、 そのペレッ トを甩いてダイヤフラムバルブ及び各種試験片を成形 し、 各種評価試験を行った結果を表 1 に示す。
実施例 1 0
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ハイインパク トポ リスチレン 8 0質量部を配合し、 実施例 1と同様に混練してペレツ ト化し、 混練後の M F Rが 6 . 2 0のポリフ 二レンエーテル系樹 脂組成物を製造した。 得られた樹脂組成物を乾燥させ、 含水量を 2 5 0 p m未満にしたのち、 そのペレッ トを用いてダイャフラムバ ルブ及び各種試験片を成形し、 各種評価試験を行った結果を表 1 に 示す。
実施例 1 1
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ハイインパク トポ リスチレン 4 0質量部を配合し、 実施例 1と同様に混練してペレツ ト化し、 混練後の M F Rが 2 . 9 2のポリフエ二レンエーテル系樹 脂組成物を製造した。 得られた樹脂組成物を乾燥させ、 含水量を 2 5 0 p p m未満にしたのち、 そのペレツ トを用いてダイヤフラムバ ルブ及び各種試験片を成形し、 各種評価試験を行った結果を表 1 に 示す。 また、 成形収縮率の測定結果の詳細な結果を表 2に示す。 実施例 1 2
ポリフエ二レンエーテル系樹脂 1 0 0質量部、 ハイインパク トポ リスチレン 1 3 0質量部を配合し、 実施例 1と同様に混練してペレ ッ ト化し、 混練後の M F Rが 4 . 5 8のポリフエ二レンエーテル系 樹脂組成物を製造した。 得られた樹脂組成物を乾燥させ、 含水量を 2 5 0 p p m未満にしたのち、 そのペレツ トを用いてダイヤフラム バルブ及び各種試験片を成形し、 各種評価試験を行った結果を表 1 に示す。 また、 成形収縮率の測定結果の詳細な結果を表 2に示す。 比較例 1
塩化ビニル系樹脂 1 0 0質量部の樹脂組成物を用いてダイヤフラ ムバルブ及び各種試験片を成形し、 各種評価試験を行った結果を表 1 に示す。
比較例 2
塩素化塩化ビニル系樹脂 1 0 0質量部の樹脂組成物を用いてダイ ャフラムバルブ及び各種試験片を成形し、 各種評価試験を行った結 果を表 1に示す。
比較例 3 ポリプロピレン 1 0 0質量部の樹脂組成物を用いてダイヤフラム バルブ及び各種試験片を成形し、 各種評価試験を行つだ結果を表 1 に示す。
比較例 4
ポリフッ化ビニリデン 1 0 0質量部の樹脂組成物を用いてダイヤ フラムバルブ及び各種試験片を成形し、 各種評価試験を行った結果 を表 1 に示す。
表 1
Figure imgf000029_0001
表 2
Figure imgf000030_0001
表 1 よりバルブ耐水圧試験では、 実施例 1〜実施例 1 2は 2 3 °C と 9 5 で共に 5. 0 M P aの水圧で破損や漏れはなかった。 なお 、 表 1 のバルブ耐水圧試験の数値は流体漏れが発生したときの圧力 を示している。 比較例 1は 2 3 °Cでは 5. 0 M P aの水圧で破損や 漏れはないが、 9 5 °Cでは樹脂が軟化して試験はできなかった。 比 較例 2は 2 3 °Cでは 5. 0 M P aに満たずに流体漏れが発生し、 9 5 °Cでは樹脂が軟化して試験はできなかった。 比較例 3、 比較例 4 では 9 5 °Cで軟化することはないが、 2 3 °Cの段階で 5. 0 M P a に満たずに流体漏れが発生し、 9 5 では流体漏れが発生する圧力 が低下した。 また耐アルカリ性試験では、 実施例 1〜実施例 1 2、 比較例 3は、 9 5でで 3 0 %のN a O Hに浸漬して引張伸びの保持 率が 5 0 %以上であるため、 高温域のアルカリラインで好適に使用 できる。 比較例 1、 比較例 2、 比較例 4では、 引張伸びの保持率が 5 0 %以下であるために高温域のアルカリラインでの使用に不向き である。 このことから、 本発明のポリフエ二レンェ一テル系樹脂組 成物製バルブは、 高温域 ( 6 0〜 9 5 °C) において短期的に高い内 圧がかかっても破損や漏れのない程の剛性を有し、 高温域でアル力 リラインに好適に使用できるバルブとして最低合格ラインであるバ ルブ耐水圧試験と耐ァルカリ性試験をクリアしており、 両試験をク リアしてない P V C、 C P V C、 P P、 P VD F製バルブに対して 優位性を有している。 また引張試験では、 実施例 1〜実施例 1 1は 2 3 °Cと 9 5ででの 引張強度、 引張弾性率が共に高い数値であり高温用バルブとして好 適な高い剛性を有している。 実施例 1 2 も 9 5ででの引張強度が僅 かに低い程度である。 比較例 1 と比較例 2は 2 3 °Cの引張強度は実 施例 1 と同程度で引張弾性率は実施例 1の約 1 . 5倍程度高いが、 9 5 °Cでは樹脂が軟化して測定できなかった。 なお、 比較例 1は 6 0 °C、 比較例 2は 9 0 °Cを超えた辺りから樹脂が軟化した。 比較例 3は 2 3 と 9 5 °Cの引張強度で実施例 1の 1 2程度、 引張弾性 率は 2 3 °Cで実施例 1の 3 5程度、 9 5 °Cで 1 4程度であった 。 比較例 4は比較例 3 と同程度で僅かに数値が高かった。 アイゾッ ト衝撃強度では、 実施例 1 1、 比較例 1、 比較例 2で数値が低かつ た。 一般的なバルブとして使用するには問題ないが、 高圧で長期間 使用するには不向きである (肉厚や構造の検討により対応は可能) 。 また線膨張係数では、 実施例 1〜実施例 1 2 と比較例 1 と比較例 2は同程度だが、 比較例 3 と比較例 4では共に実施例 1の約 1 . 5 倍程度となった。 また成形収縮率では、 実施例 1〜実施例 1 0、 実 施例 1 2 と比較例 1、 比較例 2は同程度だが、 実施例 1 1ではこれ らの実施例の収縮率より若干大きくなり、 比較例 3 と比較例 4では 共に実施例 1の収縮率も倍以上大きくなつている。 高温クリープ特 性は、 実施例 1 2は高温クリーブ特性が低く長期使用には不向きで あり、 比較例 1 と比較例 2は樹脂が軟化して試験ができず、 実施例 1 と実施例 3 と実施例 4は良好な高温クリープ特性を得ている。 以上のことから、 P V C製バルブは高温域 ( 6 0〜 9 5 °C ) では 軟化して使用することができず、 C P V C製バルブは 9 0 を超え ると樹脂が軟化するため 9 0 ¾まで使用できるもののあまり高い温 度で使用するには不向きである。 また高温時において、 線膨張係数 が大きい場合に高温時のバルブが膨張したり、 引張弾性率が低い場 合に高い水圧がかかるとバルブ本体が水圧によつて膨らみが発生し たり して、 寸法の変化によりシール部分のシール性が低下するため
、 P P製バルブや P V D F製バルブは高温高圧用バルブの用途にお いては不向きである。 よって、 高温高圧用バルブとしてポリフエ二 レンエーテル系樹脂組成物製であるバルブが最も適していることが わかる。
次に、 実施例 実施例 2、 実施例 1 0 を比較すると、 ポリフエ 二レンエーテル系樹脂とポリスチレン系樹脂の配合割合は同じだが 、 混練後の M F Rが異なっていることにより高温クリープ特性が変 わっていることが分かる。 さらに実施例 4、 実施例 1 2を加えて混 練後の M F Rの違いを比較すると、 実施例 1 と実施例 2の M F Rで は高温クリープ特性に変化はみられないが、 実施例 1 0で M F Rが 大きくなると高温クリープ特性が実施例 1 の 4 Z 5程度に低下して いる。 実施例 1 2では M F Rがさらに大きくなり高温クリープ特性 が実施例 1の 2ノ 5程度に低下している。 これは M F Rが小さくな るとポリフエ二レンエーテル系樹脂の分子量が小さくなり、 分子量 が小さいと高温クリープ特性が低下するためである。 また、 M F R が大きくなると樹脂の流動性は良くなるが、 バルブのように厚肉成 形品では樹脂の流動性が良すぎると気泡やボイ ドが発生しやすくな り、 バルブの強度の低下にも繋がる。 M F Rの値が 1 . 0 g _ 1 0 分より小さくなると樹脂組成物が、 流動が悪くなり成形品の外観不 良や反りなどが起こりやすくなり、 M F Rが小さくなりすぎると樹 脂組成物が流動できずにバルブが成形できないため、 高温クリープ 特性とバルブの良好な成形性を得るためには実施例 1、 実施例 2 、 実施例 4がより好適な範囲となり、 樹脂組成物の M F Rは 1 . 0 〜
5 . 0 g Z 1 0分であることが望ましい。
また、 実施例 1、 実施例 3、 実施例 4、 実施例 1 1、 実施例 1 2 より、 ポリフエ二レンエーテル系樹脂に対するポリスチレン系樹脂 の配合割合によつて高温クリーブ特性と衝撃強度等の物性が変化す ることが分かる。 ポリフエ二レンエーテル系樹脂 1 0 0質量部に対 するポリスチレン系樹脂の配合割合が実施例 1の 8 0質量部と比べ て少ない場合、 実施例 3 の 6 0質量部では高温クリープ特性、 衝撃 強度共に変化はなく、 実施例 1 1 の 4 0質量部では高温クリープ特 性に変化はないが、 衝撃強度が低下する。 また、 ポリフエ二レンェ 一テル系樹脂 1 0 0質量部に対するポリスチレン系樹脂の配合割合 が実施例 1の 8 0質量部と比べて多い場合、 実施例 4の 1 1 0質量 部では衝撃強度は向上するものの、 高温クリ一プ特性は僅かに低下 し、 実施例 1 2の 1 3 0質量部では衝撃強度がより向上し、 高温ク リーブ特性が低下する。 このことから、 ポリフエ二レンエーテル系 樹脂 1 0 0質量部に対し、 ポリスチレン系樹脂を 5 0〜 1 2 0質量 部の範囲内で配合するからこそバルブとして必要な高温クリープ特 性、 衝撃強度等の物性がバランス良く得ることができる。 ここで高 温クリープ特性、 衝撃強度等のバランスが良いとは、 高温クリープ 特性が 6 0 0時間以上、 衝撃強度 7 . 0 k J / m 2以上を満たすこ とを言い、 長期的なバルブの性能を維持するためには高温クリ一プ 特性が 6 0 0時間以上 ( 9 5 雰囲気下で内圧が 0 . 6 M P aのと きパイプが 5年程度の寿命を有する) 、 衝撃強度 7 . O k J / m 2 以上 (長期間使用においてパイプ劣化による割れを抑え、 高圧にお けるウォーターハンマーなどの衝撃への耐性を有する) である必要 がある。
また、 実施例 1 と実施例 5を比較すると、 スチレン · ブタジエン 系ゴムを適量配合することにより高温クリープ特性を維持したまま 、 衝撃強度を向上させることができる。 また実施例 5〜実施例 9 を 比較すると、 スチレン · ブタジエン系ゴムの最適条件は、 スチレン の重量平均分子量と、 スチレン含有量と、 ポリフエ二レンエーテル 系樹脂 1 0 0質量部に対するスチレン · ブタジエン系ゴムの量で決 まることが分かる。 スチレンの重量平均分子量は、 実施例 5のスチ レン · ブタジエン系ゴムの重量平均分子量が 2 3万に比べて実施例 6のスチレン · ブタジエン系ゴムの重量平均分子量が 1 0万と小さ いため、 実施例 6の高温クリープ特性は低下する。 またスチレン含 有量は、 実施例 5のスチレン含有量 3 0 %に比べて実施例 7はスチ レン含有量が 5 %と少ないためにポリフエ二レンェ一テル系樹脂と の相溶性が悪くなり、 高温クリーブ特性が低下して衝撃強度も向上 しない。 実施例 8はスチレン含有量が 5 0 %と多いためにポリフエ 二レンエーテル系樹脂との相溶性が向上して衝撃強度は向上するも のの、 高温クリープ特性が若干低下する。 またポリフエ二レンエー テル系樹脂 1 0 0質量部に対するスチレン · ブタジエン系ゴムの量 は、 実施例 5の 1 3質量部に比べて実施例 9の 1 8質量部と配合量 が多くなると、 衝撃強度は向上するものの、 高温クリープ特性が低 下している。 これらのことから、 ポリフエ二レンエーテル系樹脂 1 0 0質量部に対して、 スチレン含有量が 1 0〜 4 0 %、 重量平均分 子量が 2 0万以上のスチレン · ブタジエン系ゴムを 1〜 1 5質量部 を配合することにより、 高温クリープ特性を維持したまま、 衝撃強 度を向上させることができる。 さらに高温 · 高圧の用途においては 、 ポリフエ二レンエーテル系樹脂 1 0 0質量部に対するポリスチレ ン系樹脂の配合量は 5 0〜 1 0 5質量部であり、 混練後の M F が 1 . 5〜 4 . 5 g / 1 0分であることがより好適である。
表 2より、 ポリフエ二レンエーテル系樹脂 1 0 0質量部に対する ポリスチレン系樹脂の配合割合によつて成形収縮率は変化すること が分かる。 実施例 1、 実施例 3、 実施例 4、 実施例 1 2 の成形収縮 率は 0 . 5〜 0 . 8 %の範囲内であり、 また基準寸法の許容差の範 囲内である。 このうち、. 実施例 2は許容差の範囲内ギリギリである ため、 実施例 1、 実施例 3、 実施例 4が好適であり、 塩化ビニル樹 脂による成形品と同等の成形品を得ることができ、 塩化ビニル樹脂 と同じ金型を使用することができる。 また、 ポリフエ二レンエーテ ル系樹脂 1 0 0質量部に対し、 ポリスチレン系樹脂 5 0〜 1 2 0質 量部であれば塩化ビニル樹脂とほぼ同じ成形収縮率の範囲内にする ことができる。
以上のことから、 本発明のポリフエ二レンエーテル系樹脂組成物 製バルブは、 高温クリープ特性と衝撃強度がバランス良く優れてお り、 また成形時における流動性を確保し良好な成形品を得ることが できる。 そのため、 高温域 ( 6 0〜 9 5 °C ) での酸 · アルカリなど の薬液を流しても長期間使用することができ、 1 0 0 °C付近での使 用も可能である。 また、 スチレン · ブタジエン系ゴムを加えること によって、 高温クリープ特性を低下させることなく衝撃強度を向上 させることができる。 発明の効果
以上の構成により、 本発明のポリフエ二レンエーテル系樹脂組成 物製バルブは、 高温クリープ特性と衝撃強度がバランス良く優れて おり、 また成形時における流動性を確保し良好な成形性を得ること ができるという作用効果を奏することができ、 そのため、 本発明の バルブを高温域 ( 6 0〜 9 5 °C ) で酸 · アルカリなどの薬液を流し て長期間使用することができ、 1 0 0 °C付近での使用も可能となり 、 また、 高い圧力がかかった状態で高温域 ( 6 0〜 9 5 °C ) やそれ 以上の 1 0 0 °C付近で使用してもバルブの変形や膨らみを抑えて高 いシール性能を維持することができ、 さらにスチレン · ブタジエン 系ゴムを加えることによって、 高温クリープ特性を低下させること なく衝撃強度を向上させることができるという作用効果を得ること ができる。 '

Claims

請 求 の 範 囲
1. 流体流入口と流体流出口を有し内部に該流入口及び該流出口 に連通する流路と該流路内に弁座が形成された本体と、 回動又は上 下動することで該弁座に圧接離間されて該流路の開閉を行う弁体と を有するバルブにおいて、 少なく とも該本体がポリフエ二レンェ一 テル系樹脂とポリスチレン系樹脂を必須成分としたポリフエ二レン エーテル系樹脂組成物からなることを特徴とするバルブ。
2. 前記ポリフエ二レンエーテル系樹脂組成物が、 9 5 °C雰囲気 下での引張強度が 2 0 M P a以上、 引張弾性率が 1 0 0 0 M P a以 上であることを特徴とする請求項 1 に記載のバルブ。
3. 前記ポリフエ二レンエーテル系樹脂組成物の 2 3 °C雰囲気下 でのノッチ付きアイゾッ 卜衝撃強度が 7. O k J /m2 以上である ことを特徴とする請求項 1 または請求項 2に記載のバルブ。
4. 前記ポリフエ二レンエーテル系樹脂組成物の線膨張係数が 5 • 0 X 1 0— 5 /。C〜 8. 0 X 1 0— 5 /°Cであることを特徴とす る請求項 1乃至請求項 3のいずれか 1項に記載のバルブ。
5. 9 5 °C雰囲気下で前記バルブを全開にして、 5. O M P aの 水圧をかけた状態で 1分間保持したときに、 該バルブから水漏れが ないことを特徴とする請求項 1乃至請求項 4のいずれか 1項に記載 のバルブ。
6. 前記ポリフエ二レンエーテル系樹脂組成物の成形収縮率が 0 . 5〜 0. 8 %であることを特徴とする請求項 1乃至請求項 5のい ずれか 1項に記載のバルブ。
7. 前記ポリフエ二レンェ一テル系樹脂組成物が、 ポリフエニレ ンエーテル系樹脂 1 0 0質量部に対し、 ポリスチレン系樹脂 5 0〜 1 2 0質量部を必須成分とし、 混練後のメルトフ口一レートが 1 . 0〜 5. 0 g / 1 0分の樹脂組成物であることを特徴とする請求項 1乃至請求項 6のいずれか 1項に記載のバルブ。
8. 前記ポリフエ二レンエーテル系樹脂 1 0 0質量部に対して、 スチレン含有量が 1 0〜 4 0 %であり、 重量平均分子量が 2 0万以 上のスチレン · ブタジエン系ゴム 1〜 1 5質量部をさらに配合して なることを特徴とする請求項 7記載のバルブ。
9. 請求項 1乃至請求項 8記載のバルブが、 ダイヤフラムバルブ 、 ポールバルブ、 コック、 バタフライパルブ、 ゲートバルブ、 ス ト ップバルブ、 ニードルバルブ、 ピンチバルブ、 チェックバルブ等の いずれかであることを特徴とするバルブ。
PCT/JP2008/059853 2007-05-28 2008-05-22 バルブ WO2008146866A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/601,731 US20100171059A1 (en) 2007-05-28 2008-05-22 Valve
EP08764822A EP2163798B1 (en) 2007-05-28 2008-05-22 Valve
CN2008800163849A CN101680560B (zh) 2007-05-28 2008-05-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007140752A JP5137465B2 (ja) 2007-05-28 2007-05-28 バルブ
JP2007-140752 2007-05-28

Publications (1)

Publication Number Publication Date
WO2008146866A1 true WO2008146866A1 (ja) 2008-12-04

Family

ID=40075101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/059853 WO2008146866A1 (ja) 2007-05-28 2008-05-22 バルブ

Country Status (7)

Country Link
US (1) US20100171059A1 (ja)
EP (1) EP2163798B1 (ja)
JP (1) JP5137465B2 (ja)
KR (1) KR20100023814A (ja)
CN (1) CN101680560B (ja)
TW (1) TW200912167A (ja)
WO (1) WO2008146866A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891536B2 (ja) 2013-11-11 2016-03-23 Smc株式会社 弁装置
CN104004289B (zh) * 2014-05-27 2016-05-25 安徽金大仪器有限公司 一种尺寸稳定不收缩的塑料阀芯及其制备方法
EP3346170A4 (en) * 2015-09-03 2019-01-09 Fluonics Corp. VALVE FOR PREVENTING VORTEX AND CORE USED THEREFROM
CN106252453A (zh) * 2016-09-13 2016-12-21 南昌大学 基于一维纳米半导体结构表面态调控的自供能光电探测器及制备方法
CN107401622A (zh) * 2017-05-22 2017-11-28 宁波凯鑫泵阀制造有限公司 隔膜阀
JP6866042B2 (ja) * 2017-09-27 2021-04-28 信越化学工業株式会社 液体の吐出方法
RU207724U1 (ru) * 2021-02-04 2021-11-12 Закрытое акционерное общество "Производственное объединение "Спецавтоматика" Седло для клапана сигнального с дисковым затвором
KR20240019587A (ko) * 2022-08-04 2024-02-14 코오롱인더스트리 주식회사 중공사막 카트리지, 연료전지용 가습기 및 이를 포함하는 연료전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021760A (ja) * 1988-03-10 1990-01-08 Mitsubishi Rayon Co Ltd ポリフエニレンエーテル樹脂組成物
JPH08152073A (ja) 1994-11-29 1996-06-11 Sekisui Chem Co Ltd ダイヤフラムバルブ
JPH1144373A (ja) 1996-11-19 1999-02-16 Sekisui Chem Co Ltd バルブ及びその製造方法
JPH11181195A (ja) * 1997-12-25 1999-07-06 Asahi Chem Ind Co Ltd 耐熱性に優れた樹脂組成物及びそれからなるポンプ部品
JP2001192518A (ja) * 1999-10-27 2001-07-17 Toray Ind Inc 熱可塑性樹脂組成物および成形品
JP2001220781A (ja) * 2000-02-07 2001-08-17 Toto Ltd 樹脂水栓
JP2002217506A (ja) * 2001-01-18 2002-08-02 Matsushita Electric Works Ltd 回路用成形基板
JP2006188628A (ja) * 2005-01-07 2006-07-20 Mitsubishi Engineering Plastics Corp 強化熱可塑性樹脂組成物

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1125620A (en) * 1965-01-06 1968-08-28 Gen Electric Improvements in polymeric blends
FR1600172A (ja) * 1968-01-18 1970-07-20
US3750708A (en) * 1969-02-10 1973-08-07 A Staat Mixing valve structure
US3780758A (en) * 1972-11-15 1973-12-25 Wolverine Brass Works Ind Inc Non-metallic cartridge valve
US3872890A (en) * 1973-10-25 1975-03-25 Masco Corp Single handle faucet valve
US4008732A (en) * 1975-09-23 1977-02-22 American Standard, Inc. Diverter valve
US4172583A (en) * 1975-11-25 1979-10-30 Wrasman Thomas J Molded valve
US4176689A (en) * 1977-10-05 1979-12-04 Wrasman Thomas J Fluid control valve with stem seal
US4285361A (en) * 1978-08-03 1981-08-25 Sloan Valve Company Slow closing faucet
US4331176A (en) * 1980-03-03 1982-05-25 American Standard Inc. Replaceable cartridge valve assembly
US4619434A (en) * 1981-02-17 1986-10-28 Axelson, Inc. Heat sensitive motor valve jack
AU2906784A (en) * 1983-06-22 1985-01-03 General Electric Company Polyphenylene ether composition
US4777977A (en) * 1984-12-31 1988-10-18 Itt Corporation Composite butterfly valve housing
US5728321A (en) * 1988-09-30 1998-03-17 Nitto Denko Corporation Organic polymer, conducting organic polymer, production methods and uses of the same
US5226454A (en) * 1992-05-21 1993-07-13 Hydrotech Chemical Corporation DC motor actuated flow diversion valve
US6354567B1 (en) * 1999-06-29 2002-03-12 Siemens Canada Limited Throttle shaft and butterfly construction
JP3935292B2 (ja) * 1999-09-16 2007-06-20 テルモ株式会社 コネクタ
US6916527B2 (en) * 2001-01-18 2005-07-12 Matsushita Electric Works, Ltd. Resin moldings
US7122591B2 (en) * 2001-01-24 2006-10-17 Asahi Kasei Kabushiki Kaisha Polyphenylene ether-based resin composition containing silicon compound
JP2003049065A (ja) * 2001-08-07 2003-02-21 Ge Plastics Japan Ltd ポリフェニレンエーテル系樹脂組成物
US6793199B2 (en) * 2001-08-13 2004-09-21 Robertshaw Controls Company Encased gas valve control housing having a plastic body and an over-molded seal
JP2005194291A (ja) * 2001-12-04 2005-07-21 Asahi Kasei Corp ポリフェニレンエーテル樹脂組成物
US6834677B2 (en) * 2002-04-30 2004-12-28 Hewlett-Packard Development Company, L.P. Over-molded check valves for fluid delivery systems
JP4731136B2 (ja) * 2004-07-05 2011-07-20 株式会社ニックス 液体送受用ジョイント装置
CN105540763A (zh) * 2005-10-06 2016-05-04 派克逖克斯公司 流体的电化学离子交换处理
CN2895932Y (zh) * 2006-05-19 2007-05-02 唐纯 高压聚乙烯装置用高压安全阀

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021760A (ja) * 1988-03-10 1990-01-08 Mitsubishi Rayon Co Ltd ポリフエニレンエーテル樹脂組成物
JPH08152073A (ja) 1994-11-29 1996-06-11 Sekisui Chem Co Ltd ダイヤフラムバルブ
JPH1144373A (ja) 1996-11-19 1999-02-16 Sekisui Chem Co Ltd バルブ及びその製造方法
JPH11181195A (ja) * 1997-12-25 1999-07-06 Asahi Chem Ind Co Ltd 耐熱性に優れた樹脂組成物及びそれからなるポンプ部品
JP2001192518A (ja) * 1999-10-27 2001-07-17 Toray Ind Inc 熱可塑性樹脂組成物および成形品
JP2001220781A (ja) * 2000-02-07 2001-08-17 Toto Ltd 樹脂水栓
JP2002217506A (ja) * 2001-01-18 2002-08-02 Matsushita Electric Works Ltd 回路用成形基板
JP2006188628A (ja) * 2005-01-07 2006-07-20 Mitsubishi Engineering Plastics Corp 強化熱可塑性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2163798A4

Also Published As

Publication number Publication date
KR20100023814A (ko) 2010-03-04
JP5137465B2 (ja) 2013-02-06
EP2163798A1 (en) 2010-03-17
CN101680560B (zh) 2011-06-01
EP2163798A4 (en) 2011-06-29
US20100171059A1 (en) 2010-07-08
EP2163798B1 (en) 2013-03-13
CN101680560A (zh) 2010-03-24
JP2008291976A (ja) 2008-12-04
TW200912167A (en) 2009-03-16

Similar Documents

Publication Publication Date Title
WO2008146866A1 (ja) バルブ
US7902296B2 (en) Poly(arylene ether) composition and article
US20090192250A1 (en) Thermoplastic elastomer composition and composite molding
KR20140105514A (ko) 폴리(페닐렌 에테르) 물품 및 조성물
EP3180189B1 (en) Lined pipes and fittings, associated forming method, and method of improving the chlorine resistance of high density polyethylene pipes
US20030100677A1 (en) Heat resistant pipe and method of manufacture thereof
CN111073154B (zh) 一种具有防异响功能的树脂复合材料及其制备方法
EP3737718B1 (en) Polyphenylene ether composition, method for the manufacture thereof, and articles comprising the composition
EP2154200A1 (en) Piping member
KR101066534B1 (ko) 프로필렌계 수지조성물을 이용하여 성형한 배관부재
KR101437731B1 (ko) 성형성 및 인장강도가 우수한 열가소성 고무 조성물
CN101307178A (zh) 氯醇橡胶组合物及其硫化成型制品
KR20120046715A (ko) 폴리페닐술폰-폴리테트라플루오로에틸렌 조성물 및 그의 용도
JPWO2006078078A1 (ja) プロピレン系樹脂製配管部材
WO2017170189A1 (ja) ゴム組成物およびそれを用いた高圧水素機器用シール部品
JP6838439B2 (ja) 熱可塑性エラストマー組成物
JP2023171463A (ja) スチレン系熱可塑性エラストマー組成物と食品用ボトルの弁体
CN112080125A (zh) 移动体用电池组的保护壳体部件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880016384.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764822

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20097024476

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12601731

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008764822

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)