WO2008140685A1 - Robot system that operates through a network firewall - Google Patents
Robot system that operates through a network firewall Download PDFInfo
- Publication number
- WO2008140685A1 WO2008140685A1 PCT/US2008/005572 US2008005572W WO2008140685A1 WO 2008140685 A1 WO2008140685 A1 WO 2008140685A1 US 2008005572 W US2008005572 W US 2008005572W WO 2008140685 A1 WO2008140685 A1 WO 2008140685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- robot
- remote control
- communication
- control station
- communication server
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1689—Teleoperation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/02—Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
- H04L63/029—Firewall traversal, e.g. tunnelling or, creating pinholes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/02—Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
- H04L63/0209—Architectural arrangements, e.g. perimeter networks or demilitarized zones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
- H04L67/025—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
- H04L67/125—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
Definitions
- the subject matter disclosed generally relates to the field of mobile two-way teleconferencing.
- Robots have been used in a variety of applications ranging from remote control of hazardous material to assisting in the performance of surgery.
- U.S. Patent No. 5,762,458 issued to Wang et al. discloses a system that allows a surgeon to perform minimally invasive medical procedures through the use of robotically controlled instruments.
- One of the robotic arms in the Wang system moves an endoscope that has a camera. The camera allows a surgeon to view a surgical area of a patient.
- Tele-robots such as hazardous waste handlers and bomb detectors may contain a camera that allows the operator to view the remote site.
- Canadian Pat. No. 2289697 issued to Treviranus, et al. discloses a teleconferencing platform that has both a camera and a monitor. The platform includes mechanisms to both pivot and raise the camera and monitor.
- the Treviranus patent also discloses embodiments with a mobile platform, and different mechanisms to move the camera and the monitor.
- the InTouch robot is controlled by a user at a remote station.
- the remote station may be a personal computer with a joystick that allows the user to remotely control the movement of the robot.
- Both the robot and remote station have cameras, monitors, speakers and microphones to allow for two-way video/audio communication.
- the robot camera provides video images to a screen at the remote station so that the user can view the robot's surroundings and move the robot accordingly.
- the InTouch robot system typically utilizes a broadband network such as the Internet to establish a communication channel between the remote station and the robot.
- the robot can be located at a facility which has a firewall between the facility local network and the Internet.
- the firewall can inhibit remote access to the robot through the broadband network. It would be desirable to provide a system that would allow access to a remote robot that is protected by a local area network firewall.
- a remote controlled robot system that includes a robot and a remote control station that communicate through a communication network.
- the robot moves in response to robot control commands transmitted by the remote control station.
- the robot may be coupled to the communication network by a firewall.
- a communication server establishes communication between the robot and the remote control station.
- Figure 1 is an illustration of a robotic system
- Figure 2 is a schematic of an electrical system of a communication server
- Figure 3 is a schematic of an electrical system of a robot
- Figure 4 is a further schematic of the electrical system of the robot
- Figure 5 is an illustration of a robot
- Figure 6 is a graphical user interface of a remote station.
- a remote controlled robot system that includes a robot and a remote control station that communicate through a communication network. Communication with the robot is limited by a firewall coupled to the communication network. A communication server establishes communication between the robot and the remote control station so that the station can send commands to the robot through the firewall.
- Figure 1 shows a robotic system 10 that can be used to conduct a remote visit.
- the robotic system 10 includes a robot 12, a base station 14 and a remote control station 16.
- the remote control station 16 may be coupled to the base station 14 through a network 18.
- the network 18 may be either a packet switched network such as the Internet, or a circuit switched network such has a Public Switched Telephone Network (PSTN) or other broadband system.
- PSTN Public Switched Telephone Network
- the base station 14 may be coupled to the network 18 by a modem (not shown) or other broadband network interface device.
- the base station 14 may be a wireless router.
- the robot 12 may have a direct connection to the network thru for example a satellite.
- the remote control station 16 may include a computer 22 that has a monitor 24, a camera 26, a microphone 28 and a speaker 30.
- the computer 22 may also contain an input device 32 such as a joystick or a mouse.
- the control station 16 is typically located in a place that is remote from the robot 12. Although only one remote control station 16 is shown, the system 10 may include a plurality of remote stations, hi general any number of robots 12 may be controlled by any number of remote stations 16 or other robots 12.
- one remote station 16 may be coupled to a plurality of robots 12, or one robot 12 may be coupled to a plurality of remote stations 16, or a plurality of robots 12.
- Each robot 12 includes a movement platform 34 that is attached to a robot housing 36.
- a camera 38 Also attached to the robot housing 36 is a camera 38, a monitor 40, a microphone(s) 42 and a speaker(s) 44.
- the microphone 42 and speaker 30 may create a stereophonic sound.
- the robot 12 may also have an antenna 46 that is wirelessly coupled to an antenna 48 of the base station 14.
- the system 10 allows a user at the remote control station 16 to move the robot 12 through operation of the input device 32.
- the robot camera 38 is coupled to the remote monitor 24 so that a user at the remote station 16 can view a subject such as a patient.
- the robot monitor 40 is coupled to the remote camera 26 so that the patient can view the user.
- the microphones 28 and 42, and speakers 30 and 44 allow for audible communication between the patient and the user.
- the remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX.
- the remote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver.
- the video images may be transmitted and received with compression software such as MPEG CODEC.
- the flow of information between the robot 12 and the control station 16 may be limited by a firewall 50 on the robot side of the system and/or a firewall 51 on the control station side of the system.
- the robot 12 and/or control station 16 may be located at a facility that contains one or more firewalls that control communication between the facility local area network and the network 18.
- the system 10 includes a communication server 52 that can establish communication between the robot 12 and the remote control station 16.
- the system may have the following hierarchy to establish communication between the robot 12 and the remote control station 16.
- the remote control station 16 may transmit an initial request to access a robot 12 by transmitting one or more packets to an internal IP address of the robot 12. It being understood that each robot may have a unique IP address. If the robot 12 is not on the same network as the remote station 16, this communication will fail.
- the remote control station 16 may transmit a request to the robot's external IP address. This may be done in either TCP or UDP protocol. If this attempt is unsuccessful, for example if the firewall prevents access to the robot, the remote control station may send a query to the communication server 52 which can then establish communication between the remote station 16 and the robot 12.
- firewalls employ port address translation ("PAT") to disguise an outgoing message. For example, if a device such as the robot sends a message with a source port number of 9000 the firewall 50/51 can change the source port number to 47501. The firewall 50/51 will then only allow incoming messages to pass through if addressed to the translated port (e.g., 47501). Additionally, the firewall 50/51 may also only allow incoming messages if the message packet came from a source port recently communicated to by the robot, and the destination port of the packet matches the source port of a packet recently received from the source.
- PAT port address translation
- Each robot 12 may establish a constant link with a communication port of the server 52. Alternatively, each robot may periodically poll the server 52. With either method the server knows the last known IP address of robots and control stations, as well as the peer to peer UDP ports open on each. Upon receiving a query from a remote control station 16, the server 52 can forward both IP and port information on both the robot 12 and the remote station, so that both the remote station 16 and robot 12 can simultaneously send to peer to peer packets to each other, bypassing problems caused by PAT tables.
- the last known IP address may be the PAT address provided by the firewall 50.
- the server 52 can forward the PAT address to the remote station 16, so that the station 16 can establish a peer to peer communication with the robot 12.
- the server 52 can provide a conduit for communication between the remote control station 16 and the robot 12. For example, packets directed to the communication server 52, which then can be retransmits the packets to the robot 12 using the last known IP address. In this mode, the server 52 can establish UDP connectivity with both the remote control station 16 and the robot 12. The server 52 instructs the robot 12 and the remote station 16 to open a UDP socket and transmit UDP packets to a specified server port.
- the server 52 provides a conduit to allow communication between a plurality of control stations and a single robot, a single control station and a plurality of robots, or a plurality of control stations with a plurality of robots.
- FIG. 2 shows an embodiment of a communication server 52.
- the server may include one or more processors 60 connected to one or more memory devices 62.
- the memory device 62 may include both volatile and non-volatile memory such as read only memory (ROM) or random access memory (RAM).
- the processor 60 is capable of operating software programs in accordance with instructions and data stored within the memory device 62.
- the processor 60 may be coupled to a communication port 64, a mass storage device 66, a monitor 68 and a keyboard 70 through a system bus 72.
- the communication port 64 may include an ETHERNET interface that allows data to be transmitted and received in TCP/IP or UDP format.
- the system bus 72 may be PCI or another conventional computer bus.
- the mass storage device 66 may include one or more disk drives such as magnetic or optical drives.
- the term computer readable medium may include the memory device 42 and/or the mass storage device 46.
- the computer readable medium will contain software programs in binary form that can be read and interpreted by the computer.
- computer readable medium may also include a diskette, a compact disc, an integrated circuit, a cartridge, or even a remote communication of the software program.
- the server 52 may contain a number of graphical user interfaces that allow a user to control communication between the remote station and the robot.
- the server 52 can control robot access for a designated time period. For example, the server can limit the time a particular remote station can control a robot to two hours of access time.
- the server allows a system operator to charge a robot access fee or other form of compensation that is divisible by units of time.
- the server 52 may also be a network appliance rather than a full computer with an operating system.
- the server 52 may in fact be a distributed network of physical servers or network devices, each at different IP addresses, for which a given robot 12 and remote station 16 may be connected to different physical devices, and those physical devices share data about the systems connected to the devices.
- a server 52 is used as a data conduit, one of the following may occur: (a) either the robot 12 or remote station 16 is instructed to disconnect from one physical device and re-connect to the same physical device to which the other device is connected, or (b) the data within the server network is transmitted from one server to another as necessary.
- the server 52 may have a router, firewall or similar device, with sufficient port forwarding and/or packet management to effect the same behavior as if residing on the public internet, for purposes of communication with the robots 12 and remote stations 16.
- FIGS 3 and 4 show an embodiment of a robot 12.
- Each robot 12 may include a high level control system 150 and a low level control system 152.
- the high level control system 150 may include a processor 154 that is connected to a bus 156.
- the bus 156 is coupled to the camera 38 by an input/output (I/O) port 158.
- the monitor 40 is coupled to the bus 156 by a serial output port 160 and a VGA driver 162.
- the monitor 40 may include a touchscreen function that allows the patient to enter input by touching the monitor screen.
- the speaker 44 is coupled to the bus 156 by a digital to analog converter 164.
- the microphone 42 is coupled to the bus 156 by an analog to digital converter 166.
- the high level controller 150 may also contain random access memory (RAM) device 168, a non- volatile RAM device 170 and a mass storage device 172 that are all coupled to the bus 156.
- the mass storage device 172 may contain medical files of the patient that can be accessed by the user at the remote control station 16.
- the mass storage device 172 may contain a picture of the patient.
- the user particularly a health care provider, can recall the old picture and make a side by side comparison on the monitor 24 with a present video image of the patient provided by the camera 38.
- the robot antennae 46 may be coupled to a wireless transceiver 174.
- the transceiver 174 may transmit and receive information in accordance with IEEE 802.11b.
- the controller 154 may operate with a LINUX OS operating system.
- the controller 154 may also operate MS WINDOWS along with video, camera and audio drivers for communication with the remote control station 16.
- Video information may be transceived using MPEG CODEC compression techniques.
- the software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet.
- the high level controller 150 operates to control communication between the robot 12 and the remote control station 16.
- the remote control station 16 may include a computer that is similar to the high level controller 150.
- the computer would have a processor, memory, I/O, software, firmware, etc. for generating, transmitting, receiving and processing information.
- the high level controller 150 may be linked to the low level controller 152 by serial ports 176 and 178.
- the low level controller 152 includes a processor 180 that is coupled to a RAM device 182 and non- volatile RAM device 184 by a bus 186.
- Each robot 12 contains a plurality of motors 188 and motor encoders 190.
- the motors 188 can actuate the movement platform and move other parts of the robot such as the monitor and camera.
- the encoders 190 provide feedback information regarding the output of the motors 188.
- the motors 188 can be coupled to the bus 186 by a digital to analog converter 192 and a driver amplifier 194.
- the encoders 190 can be coupled to the bus 186 by a decoder 196.
- Each robot 12 also has a number of proximity sensors 198 (see also Fig. 1).
- the sensors 198 can be coupled to the bus 186 by a signal conditioning circuit 200 and an analog to digital converter 202.
- the low level controller 152 runs software routines that mechanically actuate the robot 12. For example, the low level controller 152 provides instructions to actuate the movement platform to move the robot 12. The low level controller 152 may receive movement instructions from the high level controller 150. The movement instructions may be received as movement commands from the remote control station or another robot. Although two controllers are shown, it is to be understood that each robot 12 may have one controller, or more than two controllers, controlling the high and low level functions.
- the various electrical devices of each robot 12 may be powered by a battery(ies) 204.
- the battery 204 may be recharged by a battery recharger station 206 (see also Fig. 1).
- the low level controller 152 may include a battery control circuit 208 that senses the power level of the battery 204. The low level controller 152 can sense when the power falls below a threshold and then send a message to the high level controller 150.
- FIG. 5 shows an embodiment of the robot 12.
- the robot 12 may include a holonomic platform 250 that is attached to a robot housing 250.
- the holonomic platform 250 provides three degrees of freedom to allow the robot 12 to move in any direction.
- the robot 12 may have a pedestal assembly 254 that supports the camera 38 and the monitor 40.
- the pedestal assembly 254 may have two degrees of freedom so that the camera 38 and monitor 40 can together be swiveled and pivoted as indicated by the arrows.
- the camera 38 and monitor 40 may. in accordance with a closed loop control system.
- the platform 250 is located within a platform reference coordinate system that may have axes Xp, Yp and Zp.
- the y-axis Y p may extend from a nose of the platform 250.
- the camera 38 is fixed to a camera reference coordinate system that may have axes X 0 , Y c and Z c .
- the y-axis Y c may extend perpendicular from the camera lens.
- the y-axis Y c of the camera coordinate system may be aligned with the y-axis Y p of the platform coordinate system.
- a forward pivoting of the joystick 32 (shown in Fig. 1) may cause a corresponding movement of the platform 250 in the direction of the y-axis Y p in the platform coordinate system.
- the robot may have a drive vector that may have axes X d , Y d , and Z d that is mapped to the camera coordinate system, the platform coordinate system or some other system.
- the y-axis Y p may extend in the direction of forward motion.
- Mapping includes the process of transforming an input command into a directional movement relative to one or more coordinate systems.
- the robot controller may perform certain algorithms to translate input commands to platform movement in accordance with a specified mapping scheme. For example, when the drive vector is mapped to the camera coordinate system the controller computes the drive vector of the input command relative to the camera coordinate system. In a platform mapping scheme the input drive vector is computed relative to the platform coordinate system.
- the drive vector can be computed relative to another coordinate system, such as a world coordinate system (eg. coordinate system relative to the ground) that is independent of the camera or platform coordinate systems. Mapping the drive vector to the camera coordinate system may be desirable because all movement would be relative to the image viewed by the user, providing a system that is intuitive to use.
- a world coordinate system eg. coordinate system relative to the ground
- Mapping the drive vector to the camera coordinate system may be desirable because all movement would be relative to the image viewed by the user, providing a system that is intuitive to use.
- a twisting of the joystick 32 may cause the camera 38 to swivel as indicated by arrows 4. For example, if the joystick 32 is twisted +45 degrees the camera 38 will pivot +45 degrees. Swiveling the camera 38 also moves the y-axis Y c of the camera coordinate system, because the y-axis Y 0 is fixed to the camera. This may be different than the drive direction.
- the remote station computer may operate a program to generate a command that will automatically rotate the platform 250 to realign the y-axis Y p of the platform coordinate system with the y-axis Y c of the camera coordinate system. For the above example, the platform 250 is rotated +45 degrees.
- the computer may generate trajectory planning for the platform coordinate system to move into alignment with the head coordinate system over a period of time or distance traveled, with or without an initial delay in time or some distance.
- the system may be configured so that pivotal movement of the joystick 32 may be mapped to a corresponding directional movement of the robot. For example, pivoting the joystick along a +45 degree may cause the robot to move in a +45 degree direction relative to the y-axis Y c of the camera coordinate frame.
- the camera may pan +45 degrees and the platform 250 may rotate +45 degrees before forward movement by the robot.
- the automatic panning and platform rotation causes the robot to move in a forward direction as depicted by the image provided by the camera.
- the robot may have a mode wherein the user can twist the joystick to pan the camera during robot movement such that the movement is not in the direction the camera is pointing. This allows the user to visually pan while moving the robot.
- the joystick may have a spring return that automatically returns the position of the stick when released by the user. This causes the camera to be aligned with the direction of movement.
- the robot may have a number of different mapping schemes and relative, dependent or independent, movement between the camera, the platform and drive direction. Relative movement between the camera and platform may occur in a camera based mapping scheme, a platform based mapping scheme, or some other scheme.
- the robot 12 may determine the commands and signals necessary to re-orient the platform 250 and/or the camera 38.
- the robot 12 may include a potentiometer (not shown) that tracks the position of the camera and provides feedback to the low level controller 180.
- the low level controller 180 may automatically rotate the platform to align the y-axes Y c and Y p or otherwise compensate for camera movement.
- a mode button (not shown) may allow the operator to place the system in either a tracking mode or a normal mode, hi the tracking mode the robot moves relative to the camera coordinate system so that movement is intuitive relative to the screen even when the camera is panned, hi normal mode the robot moves within the platform coordinate system.
- the system may be the same or similar to a robotic system provided by the assignee InTouch-Health, Inc. of Santa Barbara, California under the name RP-7.
- the system may also be the same or similar to the system disclosed in U.S. Patent No. 6,925,357 issued August 2, 2005, which is hereby incorporated by reference.
- Figure 6 shows a display user interface (“DUI") 300 that can be displayed at the remote station 16.
- the DUI 300 may include a robot view field 302 that displays a video image provided by the camera of the robot.
- the DUI 300 may also include a station view field 304 that displays a video image provided by the camera of the remote station 16.
- the DUI 300 may be part of an application program stored and operated by the computer 22 of the remote station 16.
- the display user interface and the various features and functions provided by the interface may be the same or similar as the DUI provided by the RP-7 system.
- the robot 12 may be placed in a home or a facility where one or more patients are to be monitored and/or assisted.
- the facility may be a hospital or a residential care facility.
- the robot 12 may be placed in a home where a health care provider may monitor and/or assist the patient. Likewise, a friend or family member may communicate with the patient.
- the cameras and monitors at both the robot and remote control stations allow for teleconferencing between the patient and the person at the remote station(s).
- the robot 12 can be maneuvered through the home or a facility by manipulating the input device 32 at a remote station 16.
- the robot 10 may be controlled by a number of different users.
- the robot may have an arbitration system.
- the arbitration system may be integrated into the operating system of the robot 12.
- the arbitration technique may be embedded into the operating system of the high-level controller 150.
- the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider.
- the robot 12 may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall.
- a local user is a person who is physically present with the robot.
- the robot could have an input device that allows local operation.
- the robot may incorporate a voice recognition system that receives and interprets audible commands.
- a caregiver is someone who remotely monitors the patient.
- a doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory.
- the family and service users remotely access the robot.
- the service user may service the system such as by upgrading software, or setting operational parameters.
- the robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode.
- an exclusive mode only one user has access control of the robot.
- the exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user.
- the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous tele-conference with the patient.
- the system 10 can be used for doctor proctoring where a doctor at the remote station provides instructions and feedback to a doctor located in the vicinity of the robot.
- a doctor at the remote location can view a patient and assist a doctor at the patient location in a diagnosis.
- the remote doctor can assist in the performance of a medical procedure at the robot location.
- the arbitration scheme may have one of four mechanisms; notification, timeouts, queue and call back.
- the notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot.
- the timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot.
- the queue mechanism is an orderly waiting list for access to the robot.
- the call back mechanism informs a user that the robot can be accessed.
- a family user may receive an e-mail message that the robot is free for usage. Tables I and II, show how the mechanisms resolve access request from the various users.
- the information transmitted between the station 16 and the robot 12 may be encrypted. Additionally, the user may have to enter a password to enter the system 10. A selected robot is then given an electronic key by the station 16. The robot 12 validates the key and returns another key to the station 16. The keys are used to encrypt information transmitted in the session.
- the robot 12 and remote station 16 transmit commands through the broadband network 18.
- the commands can be generated by the user in a variety of ways.
- commands to move the robot may be generated by moving the joystick 32 (see Fig. 1).
- Table III provides a list of control commands that are generated at the remote station and transmitted to the robot through the network.
- Table IV provides a list of reporting commands that are generated by the robot and transmitted to the remote station through the network.
- the processor 154 of the robot high level controller 150 may operate a program that determines whether the robot 12 has received a robot control command within a time interval. For example, if the robot 12 does not receive a control command within 2 seconds then the processor 154 provides instructions to the low level controller 150 to stop the robot 12.
- the control command monitoring feature could be implemented with hardware, or a combination of hardware and software.
- the hardware may include a timer that is reset each time a control command is received and generates, or terminates, a command or signal, to stop the robot.
- the remote station computer 22 may monitor the receipt of video images provided by the robot camera.
- the computer 22 may generate and transmit a STOP command to the robot if the remote station does not receive or transmit an updated video image within a time interval.
- the STOP command causes the robot to stop.
- the computer 22 may generate a STOP command if the remote control station does not receive a new video image within 2 seconds.
- the hardware may include a timer that is reset each time a new video image is received and generates, or terminates, a command or signal, to generate the robot STOP command.
- the robot may also have internal safety failure features.
- the robot may monitor communication between the robot controller and the robot servo used to operate the platform motors.
- the robot monitor may switch a relay to terminate power to the platform motors if the monitor detects a lack of communication between the robot controller and the motor servo.
- the remote station may also have a safety feature for the input device 32. For example, if there is no input from the joystick for a certain time interval (eg. 10 seconds) the computer 22 may not relay subsequent input unless the user presses a button for another time interval (eg. 2 seconds), which reactivates the input device.
- a certain time interval eg. 10 seconds
- the computer 22 may not relay subsequent input unless the user presses a button for another time interval (eg. 2 seconds), which reactivates the input device.
- Figure 7 shows another embodiment of the robot as a robot head 350 that can both pivot and spin the camera 38 and the monitor 40.
- the robot head 350 can be similar to the robot 12 but without the platform 250.
- the robot head 350 may have actuators 352 and linkages 354 to pivot the camera 38 and monitor 40 about a pivot axis 4, and spin the camera 38 and monitor 40 about a spin axis 5.
- the pivot axis may intersect the spin axis.
- the robot head 350 may be in the system either with or instead of the mobile robot 12.
- the robot head can be particularly useful for doctor proctoring.
- the head can be located at a medical facility such as an emergency room or a doctor's office.
- a doctor at the remote location can assist in the diagnosis and medical treatment of a patient located at the robot location.
- the doctor can move the head to view the patient through control commands from the remote control station.
- Doctor proctoring can also be performed with a mobile robot 12.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Manipulator (AREA)
- Selective Calling Equipment (AREA)
- Telephonic Communication Services (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010507404A JP2010532109A (en) | 2007-05-09 | 2008-04-30 | Robot system operating through a network firewall |
CN200880023915A CN101730894A (en) | 2007-05-09 | 2008-04-30 | Robot system that operates through a network firewall |
EP08767464A EP2145274A1 (en) | 2007-05-09 | 2008-04-30 | Robot system that operates through a network firewall |
IN7383DEN2009 IN2009DN07383A (en) | 2007-05-09 | 2009-11-13 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/801,491 US9160783B2 (en) | 2007-05-09 | 2007-05-09 | Robot system that operates through a network firewall |
US11/801,491 | 2007-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008140685A1 true WO2008140685A1 (en) | 2008-11-20 |
Family
ID=39970269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/005572 WO2008140685A1 (en) | 2007-05-09 | 2008-04-30 | Robot system that operates through a network firewall |
Country Status (7)
Country | Link |
---|---|
US (3) | US9160783B2 (en) |
EP (1) | EP2145274A1 (en) |
JP (1) | JP2010532109A (en) |
KR (1) | KR20100019479A (en) |
CN (1) | CN101730894A (en) |
IN (1) | IN2009DN07383A (en) |
WO (1) | WO2008140685A1 (en) |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040162637A1 (en) | 2002-07-25 | 2004-08-19 | Yulun Wang | Medical tele-robotic system with a master remote station with an arbitrator |
US6925357B2 (en) | 2002-07-25 | 2005-08-02 | Intouch Health, Inc. | Medical tele-robotic system |
US7813836B2 (en) | 2003-12-09 | 2010-10-12 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
US8077963B2 (en) | 2004-07-13 | 2011-12-13 | Yulun Wang | Mobile robot with a head-based movement mapping scheme |
US9198728B2 (en) | 2005-09-30 | 2015-12-01 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
IL174723A (en) * | 2006-04-02 | 2011-09-27 | Rafael Advanced Defense Sys | Restricting unsupervised activity of unmanned vessels |
US8849679B2 (en) | 2006-06-15 | 2014-09-30 | Intouch Technologies, Inc. | Remote controlled robot system that provides medical images |
US8265793B2 (en) | 2007-03-20 | 2012-09-11 | Irobot Corporation | Mobile robot for telecommunication |
WO2008156910A2 (en) * | 2007-04-20 | 2008-12-24 | Innovation First, Inc. | Managing communications between robots and controllers |
US9160783B2 (en) | 2007-05-09 | 2015-10-13 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
US20090248200A1 (en) * | 2007-10-22 | 2009-10-01 | North End Technologies | Method & apparatus for remotely operating a robotic device linked to a communications network |
US10875182B2 (en) | 2008-03-20 | 2020-12-29 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
US8179418B2 (en) | 2008-04-14 | 2012-05-15 | Intouch Technologies, Inc. | Robotic based health care system |
US8170241B2 (en) | 2008-04-17 | 2012-05-01 | Intouch Technologies, Inc. | Mobile tele-presence system with a microphone system |
US9193065B2 (en) | 2008-07-10 | 2015-11-24 | Intouch Technologies, Inc. | Docking system for a tele-presence robot |
US9842192B2 (en) | 2008-07-11 | 2017-12-12 | Intouch Technologies, Inc. | Tele-presence robot system with multi-cast features |
US8340819B2 (en) | 2008-09-18 | 2012-12-25 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
US8996165B2 (en) | 2008-10-21 | 2015-03-31 | Intouch Technologies, Inc. | Telepresence robot with a camera boom |
US9138891B2 (en) | 2008-11-25 | 2015-09-22 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US8463435B2 (en) | 2008-11-25 | 2013-06-11 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US8849680B2 (en) * | 2009-01-29 | 2014-09-30 | Intouch Technologies, Inc. | Documentation through a remote presence robot |
US8345004B1 (en) * | 2009-03-06 | 2013-01-01 | Pixar | Methods and apparatus for differentially controlling degrees of freedom of an object |
US8897920B2 (en) | 2009-04-17 | 2014-11-25 | Intouch Technologies, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
US8473101B2 (en) * | 2009-08-21 | 2013-06-25 | Harris Corporation | Coordinated action robotic system and related methods |
US11399153B2 (en) | 2009-08-26 | 2022-07-26 | Teladoc Health, Inc. | Portable telepresence apparatus |
US8384755B2 (en) | 2009-08-26 | 2013-02-26 | Intouch Technologies, Inc. | Portable remote presence robot |
US11154981B2 (en) | 2010-02-04 | 2021-10-26 | Teladoc Health, Inc. | Robot user interface for telepresence robot system |
US8670017B2 (en) | 2010-03-04 | 2014-03-11 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US9014848B2 (en) | 2010-05-20 | 2015-04-21 | Irobot Corporation | Mobile robot system |
US8935005B2 (en) | 2010-05-20 | 2015-01-13 | Irobot Corporation | Operating a mobile robot |
US8918213B2 (en) | 2010-05-20 | 2014-12-23 | Irobot Corporation | Mobile human interface robot |
US10343283B2 (en) | 2010-05-24 | 2019-07-09 | Intouch Technologies, Inc. | Telepresence robot system that can be accessed by a cellular phone |
US10808882B2 (en) | 2010-05-26 | 2020-10-20 | Intouch Technologies, Inc. | Tele-robotic system with a robot face placed on a chair |
US20110298885A1 (en) * | 2010-06-03 | 2011-12-08 | VGO Communications, Inc. | Remote presence robotic apparatus |
US9264664B2 (en) | 2010-12-03 | 2016-02-16 | Intouch Technologies, Inc. | Systems and methods for dynamic bandwidth allocation |
US8930019B2 (en) | 2010-12-30 | 2015-01-06 | Irobot Corporation | Mobile human interface robot |
US12093036B2 (en) | 2011-01-21 | 2024-09-17 | Teladoc Health, Inc. | Telerobotic system with a dual application screen presentation |
US9323250B2 (en) | 2011-01-28 | 2016-04-26 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
EP2668008A4 (en) | 2011-01-28 | 2018-01-24 | Intouch Technologies, Inc. | Interfacing with a mobile telepresence robot |
US10769739B2 (en) | 2011-04-25 | 2020-09-08 | Intouch Technologies, Inc. | Systems and methods for management of information among medical providers and facilities |
US20140139616A1 (en) | 2012-01-27 | 2014-05-22 | Intouch Technologies, Inc. | Enhanced Diagnostics for a Telepresence Robot |
US9098611B2 (en) | 2012-11-26 | 2015-08-04 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
DE102011109678A1 (en) * | 2011-08-08 | 2013-02-14 | Rwe Effizienz Gmbh | COMMUNICATION SYSTEM |
US8836751B2 (en) | 2011-11-08 | 2014-09-16 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
WO2013132501A1 (en) * | 2012-03-07 | 2013-09-12 | M.S.T. Medical Surgery Technologies Ltd. | Overall endoscopic control system |
US9251313B2 (en) | 2012-04-11 | 2016-02-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US8902278B2 (en) | 2012-04-11 | 2014-12-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
JP5901753B2 (en) * | 2012-05-18 | 2016-04-13 | 株式会社日立製作所 | Autonomous mobile device, control device, and autonomous mobile method |
US9361021B2 (en) | 2012-05-22 | 2016-06-07 | Irobot Corporation | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
WO2013176758A1 (en) | 2012-05-22 | 2013-11-28 | Intouch Technologies, Inc. | Clinical workflows utilizing autonomous and semi-autonomous telemedicine devices |
JP5993650B2 (en) * | 2012-07-31 | 2016-09-14 | 古野電気株式会社 | Satellite communication apparatus, remote operation method, and remote operation program |
KR101951908B1 (en) * | 2012-10-18 | 2019-04-25 | 한국전자통신연구원 | Apparatus and method for sharing devices for robot software components |
AU2013204965B2 (en) * | 2012-11-12 | 2016-07-28 | C2 Systems Limited | A system, method, computer program and data signal for the registration, monitoring and control of machines and devices |
US10016897B2 (en) * | 2015-09-14 | 2018-07-10 | OneMarket Network LLC | Robotic systems and methods in prediction and presentation of resource availability |
JP6340147B2 (en) * | 2015-09-30 | 2018-06-06 | 富士フイルム株式会社 | Imaging system, field angle adjustment method, and field angle adjustment program |
US20170316705A1 (en) | 2016-04-27 | 2017-11-02 | David Paul Schultz | System, Apparatus and Methods for Telesurgical Mentoring Platform |
US9674435B1 (en) * | 2016-07-06 | 2017-06-06 | Lawrence Maxwell Monari | Virtual reality platforms for capturing content for virtual reality displays |
JP6888342B2 (en) | 2017-03-14 | 2021-06-16 | 富士フイルムビジネスイノベーション株式会社 | Information providing device and information providing system |
US10949940B2 (en) * | 2017-04-19 | 2021-03-16 | Global Tel*Link Corporation | Mobile correctional facility robots |
US11862302B2 (en) | 2017-04-24 | 2024-01-02 | Teladoc Health, Inc. | Automated transcription and documentation of tele-health encounters |
US10483007B2 (en) | 2017-07-25 | 2019-11-19 | Intouch Technologies, Inc. | Modular telehealth cart with thermal imaging and touch screen user interface |
US10632933B2 (en) * | 2017-07-27 | 2020-04-28 | Ford Global Technologies, Llc | Flexible motor vehicle work surface for laptops and tablets |
US11636944B2 (en) | 2017-08-25 | 2023-04-25 | Teladoc Health, Inc. | Connectivity infrastructure for a telehealth platform |
US11518036B2 (en) * | 2017-09-29 | 2022-12-06 | Honda Motor Co., Ltd. | Service providing system, service providing method and management apparatus for service providing system |
US10617299B2 (en) | 2018-04-27 | 2020-04-14 | Intouch Technologies, Inc. | Telehealth cart that supports a removable tablet with seamless audio/video switching |
CN108858213B (en) * | 2018-06-07 | 2022-04-01 | 科沃斯商用机器人有限公司 | Robot, travel motion control method, and robot operation method |
WO2020129310A1 (en) * | 2018-12-19 | 2020-06-25 | 本田技研工業株式会社 | Guide robot control device, guidance system using same, and guide robot control method |
US11837363B2 (en) | 2020-11-04 | 2023-12-05 | Hill-Rom Services, Inc. | Remote management of patient environment |
CN115225303B (en) * | 2021-06-28 | 2023-06-30 | 达闼机器人股份有限公司 | Robot network route setting method and device, storage medium and electronic equipment |
US11669087B2 (en) | 2021-07-15 | 2023-06-06 | Howe & Howe Inc. | Controlling and monitoring remote robotic vehicles |
KR102699306B1 (en) * | 2021-11-09 | 2024-08-27 | 주식회사 테솔로 | Bus arbitration system and method for using colsed loop |
US12089906B1 (en) | 2023-09-27 | 2024-09-17 | Sovato Health, Inc. | Systems and methods for remotely controlling robotic surgery |
US12064202B1 (en) | 2023-11-15 | 2024-08-20 | Sovato Health, Inc. | Systems and methods for allowing remote robotic surgery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6289263B1 (en) * | 1997-12-16 | 2001-09-11 | Board Of Trustees Operating Michigan State University | Spherical mobile robot |
US20060293788A1 (en) * | 2005-06-26 | 2006-12-28 | Pavel Pogodin | Robotic floor care appliance with improved remote management |
US20070021871A1 (en) * | 2002-07-25 | 2007-01-25 | Yulun Wang | Medical tele-robotic system |
US20070046237A1 (en) * | 2005-04-25 | 2007-03-01 | Sridhar Lakshmanan | Miniature surveillance robot |
Family Cites Families (740)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3821995A (en) | 1971-10-15 | 1974-07-02 | E Aghnides | Vehicle with composite wheel |
US4107689A (en) | 1976-06-07 | 1978-08-15 | Rca Corporation | System for automatic vehicle location |
US4213182A (en) * | 1978-12-06 | 1980-07-15 | General Electric Company | Programmable energy load controller system and methods |
US4413693A (en) | 1981-03-27 | 1983-11-08 | Derby Sherwin L | Mobile chair |
US6317953B1 (en) | 1981-05-11 | 2001-11-20 | Lmi-Diffracto | Vision target based assembly |
US5148591A (en) | 1981-05-11 | 1992-09-22 | Sensor Adaptive Machines, Inc. | Vision target based assembly |
US4471354A (en) | 1981-11-23 | 1984-09-11 | Marathon Medical Equipment Corporation | Apparatus and method for remotely measuring temperature |
US4519466A (en) | 1982-03-30 | 1985-05-28 | Eiko Shiraishi | Omnidirectional drive system |
EP0108657B1 (en) | 1982-09-25 | 1987-08-12 | Fujitsu Limited | A multi-articulated robot |
US4625274A (en) | 1983-12-05 | 1986-11-25 | Motorola, Inc. | Microprocessor reset system |
US4572594A (en) * | 1984-02-08 | 1986-02-25 | Schwartz C Bruce | Arthroscopy support stand |
US4638445A (en) * | 1984-06-08 | 1987-01-20 | Mattaboni Paul J | Autonomous mobile robot |
US4766581A (en) | 1984-08-07 | 1988-08-23 | Justin Korn | Information retrieval system and method using independent user stations |
US4553309A (en) | 1984-09-26 | 1985-11-19 | General Motors Corporation | Robotic assembly of vehicle headliners |
JPS6180410A (en) | 1984-09-28 | 1986-04-24 | Yutaka Kanayama | Drive command system of mobile robot |
JPS61111863A (en) | 1984-11-05 | 1986-05-29 | Nissan Motor Co Ltd | Assembling work by using robots |
US4679152A (en) | 1985-02-20 | 1987-07-07 | Heath Company | Navigation system and method for a mobile robot |
US4697278A (en) | 1985-03-01 | 1987-09-29 | Veeder Industries Inc. | Electronic hub odometer |
US4652204A (en) * | 1985-08-02 | 1987-03-24 | Arnett Edward M | Apparatus for handling hazardous materials |
US4733737A (en) * | 1985-08-29 | 1988-03-29 | Reza Falamak | Drivable steerable platform for industrial, domestic, entertainment and like uses |
US4709265A (en) | 1985-10-15 | 1987-11-24 | Advanced Resource Development Corporation | Remote control mobile surveillance system |
US4777416A (en) | 1986-05-16 | 1988-10-11 | Denning Mobile Robotics, Inc. | Recharge docking system for mobile robot |
US4751658A (en) | 1986-05-16 | 1988-06-14 | Denning Mobile Robotics, Inc. | Obstacle avoidance system |
SE455539B (en) * | 1986-05-23 | 1988-07-18 | Electrolux Ab | ELECTROOPTIC POSITION KNOWLEDGE SYSTEM FOR A PLAN REALLY FORMULA, PREFERRED A MOBILE ROBOT |
US4803625A (en) * | 1986-06-30 | 1989-02-07 | Buddy Systems, Inc. | Personal health monitor |
US4878501A (en) | 1986-09-24 | 1989-11-07 | Shue Ming Jeng | Electronic stethoscopic apparatus |
JPS63289607A (en) | 1987-05-21 | 1988-11-28 | Toshiba Corp | Inter-module communication control system for intelligent robot |
US4847764C1 (en) | 1987-05-21 | 2001-09-11 | Meditrol Inc | System for dispensing drugs in health care instituions |
JPH0191834A (en) | 1987-08-20 | 1989-04-11 | Tsuruta Hiroko | Abnormal data detection and information method in individual medical data central control system |
US4942538A (en) | 1988-01-05 | 1990-07-17 | Spar Aerospace Limited | Telerobotic tracker |
US5193143A (en) * | 1988-01-12 | 1993-03-09 | Honeywell Inc. | Problem state monitoring |
US4979949A (en) | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US5142484A (en) | 1988-05-12 | 1992-08-25 | Health Tech Services Corporation | An interactive patient assistance device for storing and dispensing prescribed medication and physical device |
US5008804A (en) | 1988-06-23 | 1991-04-16 | Total Spectrum Manufacturing Inc. | Robotic television-camera dolly system |
US5040116A (en) | 1988-09-06 | 1991-08-13 | Transitions Research Corporation | Visual navigation and obstacle avoidance structured light system |
US5157491A (en) | 1988-10-17 | 1992-10-20 | Kassatly L Samuel A | Method and apparatus for video broadcasting and teleconferencing |
US5155684A (en) | 1988-10-25 | 1992-10-13 | Tennant Company | Guiding an unmanned vehicle by reference to overhead features |
US4953159A (en) | 1989-01-03 | 1990-08-28 | American Telephone And Telegraph Company | Audiographics conferencing arrangement |
US5016173A (en) | 1989-04-13 | 1991-05-14 | Vanguard Imaging Ltd. | Apparatus and method for monitoring visually accessible surfaces of the body |
US5006988A (en) | 1989-04-28 | 1991-04-09 | University Of Michigan | Obstacle-avoiding navigation system |
US4977971A (en) | 1989-05-17 | 1990-12-18 | University Of Florida | Hybrid robotic vehicle |
US5224157A (en) | 1989-05-22 | 1993-06-29 | Minolta Camera Kabushiki Kaisha | Management system for managing maintenance information of image forming apparatus |
US5051906A (en) | 1989-06-07 | 1991-09-24 | Transitions Research Corporation | Mobile robot navigation employing retroreflective ceiling features |
JP3002206B2 (en) | 1989-06-22 | 2000-01-24 | 神鋼電機株式会社 | Travel control method for mobile robot |
US5341854A (en) | 1989-09-28 | 1994-08-30 | Alberta Research Council | Robotic drug dispensing system |
US5084828A (en) * | 1989-09-29 | 1992-01-28 | Healthtech Services Corp. | Interactive medication delivery system |
JP2964518B2 (en) | 1990-01-30 | 1999-10-18 | 日本電気株式会社 | Voice control method |
JP2679346B2 (en) | 1990-03-28 | 1997-11-19 | 神鋼電機株式会社 | Charging control method for mobile robot system |
US5130794A (en) | 1990-03-29 | 1992-07-14 | Ritchey Kurtis J | Panoramic display system |
JP2921936B2 (en) | 1990-07-13 | 1999-07-19 | 株式会社東芝 | Image monitoring device |
US6958706B2 (en) | 1990-07-27 | 2005-10-25 | Hill-Rom Services, Inc. | Patient care and communication system |
JP2541353B2 (en) | 1990-09-18 | 1996-10-09 | 三菱自動車工業株式会社 | Active suspension system for vehicles |
US5563998A (en) | 1990-10-19 | 1996-10-08 | Moore Business Forms, Inc. | Forms automation system implementation |
US5276445A (en) | 1990-11-30 | 1994-01-04 | Sony Corporation | Polling control system for switching units in a plural stage switching matrix |
US5310464A (en) | 1991-01-04 | 1994-05-10 | Redepenning Jody G | Electrocrystallization of strongly adherent brushite coatings on prosthetic alloys |
JPH0530502A (en) | 1991-07-24 | 1993-02-05 | Hitachi Ltd | Integrated video telephone set |
US5217453A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
WO1992018971A1 (en) | 1991-04-22 | 1992-10-29 | Evans & Sutherland Computer Corp. | Head-mounted projection display system featuring beam splitter |
US5341459A (en) | 1991-05-09 | 1994-08-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Generalized compliant motion primitive |
US5231693A (en) | 1991-05-09 | 1993-07-27 | The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration | Telerobot control system |
US7382399B1 (en) | 1991-05-13 | 2008-06-03 | Sony Coporation | Omniview motionless camera orientation system |
JP3173042B2 (en) | 1991-05-21 | 2001-06-04 | ソニー株式会社 | Robot numerical controller |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5182641A (en) * | 1991-06-17 | 1993-01-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Composite video and graphics display for camera viewing systems in robotics and teleoperation |
US5366896A (en) | 1991-07-30 | 1994-11-22 | University Of Virginia Alumni Patents Foundation | Robotically operated laboratory system |
US5441042A (en) | 1991-08-05 | 1995-08-15 | Putman; John M. | Endoscope instrument holder |
IL99420A (en) | 1991-09-05 | 2000-12-06 | Elbit Systems Ltd | Helmet mounted display |
WO1993006690A1 (en) | 1991-09-17 | 1993-04-01 | Radamec Epo Limited | Setting-up system for remotely controlled cameras |
US5419008A (en) | 1991-10-24 | 1995-05-30 | West; Mark | Ball joint |
US5186270A (en) * | 1991-10-24 | 1993-02-16 | Massachusetts Institute Of Technology | Omnidirectional vehicle |
JP3583777B2 (en) | 1992-01-21 | 2004-11-04 | エス・アール・アイ・インターナシヨナル | Teleoperator system and telepresence method |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
EP0559348A3 (en) | 1992-03-02 | 1993-11-03 | AT&T Corp. | Rate control loop processor for perceptual encoder/decoder |
US5544649A (en) | 1992-03-25 | 1996-08-13 | Cardiomedix, Inc. | Ambulatory patient health monitoring techniques utilizing interactive visual communication |
US5441047A (en) | 1992-03-25 | 1995-08-15 | David; Daniel | Ambulatory patient health monitoring techniques utilizing interactive visual communication |
US5262944A (en) | 1992-05-15 | 1993-11-16 | Hewlett-Packard Company | Method for use of color and selective highlighting to indicate patient critical events in a centralized patient monitoring system |
US5594859A (en) * | 1992-06-03 | 1997-01-14 | Digital Equipment Corporation | Graphical user interface for video teleconferencing |
US5375195A (en) | 1992-06-29 | 1994-12-20 | Johnston; Victor S. | Method and apparatus for generating composites of human faces |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5374879A (en) | 1992-11-04 | 1994-12-20 | Martin Marietta Energy Systems, Inc. | Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom |
US5600573A (en) * | 1992-12-09 | 1997-02-04 | Discovery Communications, Inc. | Operations center with video storage for a television program packaging and delivery system |
US5315287A (en) | 1993-01-13 | 1994-05-24 | David Sol | Energy monitoring system for recreational vehicles and marine vessels |
US5319611A (en) | 1993-03-31 | 1994-06-07 | National Research Council Of Canada | Method of determining range data in a time-of-flight ranging system |
DE69413585T2 (en) * | 1993-03-31 | 1999-04-29 | Siemens Medical Systems, Inc., Iselin, N.J. | Apparatus and method for providing dual output signals in a telemetry transmitter |
US5350033A (en) | 1993-04-26 | 1994-09-27 | Kraft Brett W | Robotic inspection vehicle |
DE69317267T2 (en) | 1993-05-19 | 1998-06-25 | Alsthom Cge Alcatel | Network for video on request |
EP0644694B1 (en) | 1993-09-20 | 2000-04-26 | Canon Kabushiki Kaisha | Video System |
US6594688B2 (en) | 1993-10-01 | 2003-07-15 | Collaboration Properties, Inc. | Dedicated echo canceler for a workstation |
US5689641A (en) | 1993-10-01 | 1997-11-18 | Vicor, Inc. | Multimedia collaboration system arrangement for routing compressed AV signal through a participant site without decompressing the AV signal |
WO1995011566A1 (en) | 1993-10-20 | 1995-04-27 | Videoconferencing Systems, Inc. | Adaptive videoconferencing system |
US5876325A (en) * | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
US5623679A (en) | 1993-11-19 | 1997-04-22 | Waverley Holdings, Inc. | System and method for creating and manipulating notes each containing multiple sub-notes, and linking the sub-notes to portions of data objects |
US5510832A (en) | 1993-12-01 | 1996-04-23 | Medi-Vision Technologies, Inc. | Synthesized stereoscopic imaging system and method |
US5347306A (en) | 1993-12-17 | 1994-09-13 | Mitsubishi Electric Research Laboratories, Inc. | Animated electronic meeting place |
GB2284968A (en) | 1993-12-18 | 1995-06-21 | Ibm | Audio conferencing system |
JP3339953B2 (en) | 1993-12-29 | 2002-10-28 | オリンパス光学工業株式会社 | Medical master-slave manipulator |
US5511147A (en) | 1994-01-12 | 1996-04-23 | Uti Corporation | Graphical interface for robot |
US5436542A (en) | 1994-01-28 | 1995-07-25 | Surgix, Inc. | Telescopic camera mount with remotely controlled positioning |
JPH07213753A (en) | 1994-02-02 | 1995-08-15 | Hitachi Ltd | Personal robot device |
JPH07248823A (en) | 1994-03-11 | 1995-09-26 | Hitachi Ltd | Personal robot device |
DE4408329C2 (en) | 1994-03-11 | 1996-04-18 | Siemens Ag | Method for building up a cellular structured environment map of a self-moving mobile unit, which is oriented with the help of sensors based on wave reflection |
JPH07257422A (en) | 1994-03-19 | 1995-10-09 | Hideaki Maehara | Omnidirectional drive wheel and omnidirectional traveling vehicle providing the same |
US5659779A (en) | 1994-04-25 | 1997-08-19 | The United States Of America As Represented By The Secretary Of The Navy | System for assigning computer resources to control multiple computer directed devices |
US5784546A (en) | 1994-05-12 | 1998-07-21 | Integrated Virtual Networks | Integrated virtual networks |
US5734805A (en) | 1994-06-17 | 1998-03-31 | International Business Machines Corporation | Apparatus and method for controlling navigation in 3-D space |
CA2148631C (en) | 1994-06-20 | 2000-06-13 | John J. Hildin | Voice-following video system |
JPH0811074A (en) | 1994-06-29 | 1996-01-16 | Fanuc Ltd | Robot system |
BE1008470A3 (en) | 1994-07-04 | 1996-05-07 | Colens Andre | Device and automatic system and equipment dedusting sol y adapted. |
US5462051A (en) | 1994-08-31 | 1995-10-31 | Colin Corporation | Medical communication system |
JP3302188B2 (en) | 1994-09-13 | 2002-07-15 | 日本電信電話株式会社 | Telexistence-type video phone |
US5675229A (en) | 1994-09-21 | 1997-10-07 | Abb Robotics Inc. | Apparatus and method for adjusting robot positioning |
US6463361B1 (en) | 1994-09-22 | 2002-10-08 | Computer Motion, Inc. | Speech interface for an automated endoscopic system |
US5764731A (en) | 1994-10-13 | 1998-06-09 | Yablon; Jay R. | Enhanced system for transferring, storing and using signaling information in a switched telephone network |
US5767897A (en) | 1994-10-31 | 1998-06-16 | Picturetel Corporation | Video conferencing system |
JPH08139900A (en) | 1994-11-14 | 1996-05-31 | Canon Inc | Image communication equipment |
JP2726630B2 (en) | 1994-12-07 | 1998-03-11 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Gateway device and gateway method |
US5486853A (en) * | 1994-12-13 | 1996-01-23 | Picturetel Corporation | Electrical cable interface for electronic camera |
US5553609A (en) | 1995-02-09 | 1996-09-10 | Visiting Nurse Service, Inc. | Intelligent remote visual monitoring system for home health care service |
US5619341A (en) | 1995-02-23 | 1997-04-08 | Motorola, Inc. | Method and apparatus for preventing overflow and underflow of an encoder buffer in a video compression system |
US5973724A (en) | 1995-02-24 | 1999-10-26 | Apple Computer, Inc. | Merging multiple teleconferences |
US5854898A (en) | 1995-02-24 | 1998-12-29 | Apple Computer, Inc. | System for automatically adding additional data stream to existing media connection between two end points upon exchange of notifying and confirmation messages therebetween |
US5657246A (en) | 1995-03-07 | 1997-08-12 | Vtel Corporation | Method and apparatus for a video conference user interface |
JP2947113B2 (en) | 1995-03-09 | 1999-09-13 | 日本電気株式会社 | User interface device for image communication terminal |
US5652849A (en) | 1995-03-16 | 1997-07-29 | Regents Of The University Of Michigan | Apparatus and method for remote control using a visual information stream |
US5673082A (en) | 1995-04-10 | 1997-09-30 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Light-directed ranging system implementing single camera system for telerobotics applications |
JP3241564B2 (en) | 1995-05-10 | 2001-12-25 | 富士通株式会社 | Control device and method for motion control of normal wheel type omnidirectional mobile robot |
JPH08320727A (en) | 1995-05-24 | 1996-12-03 | Shinko Electric Co Ltd | Moving device |
US5630566A (en) | 1995-05-30 | 1997-05-20 | Case; Laura | Portable ergonomic work station |
JPH08335112A (en) | 1995-06-08 | 1996-12-17 | Minolta Co Ltd | Mobile working robot system |
US5905729A (en) | 1995-07-19 | 1999-05-18 | Fujitsu Network Communications, Inc. | Mapping a data cell in a communication switch |
US5825982A (en) | 1995-09-15 | 1998-10-20 | Wright; James | Head cursor control interface for an automated endoscope system for optimal positioning |
US6710797B1 (en) * | 1995-09-20 | 2004-03-23 | Videotronic Systems | Adaptable teleconferencing eye contact terminal |
US5961446A (en) | 1995-10-06 | 1999-10-05 | Tevital Incorporated | Patient terminal for home health care system |
US5797515A (en) | 1995-10-18 | 1998-08-25 | Adds, Inc. | Method for controlling a drug dispensing system |
US20010034475A1 (en) | 1995-11-13 | 2001-10-25 | Flach Terry E. | Wireless lan system with cellular architecture |
EP0804028B1 (en) | 1995-11-13 | 2008-01-23 | Sony Corporation | Near video on-demand system and televising method of the same |
US6219032B1 (en) | 1995-12-01 | 2001-04-17 | Immersion Corporation | Method for providing force feedback to a user of an interface device based on interactions of a controlled cursor with graphical elements in a graphical user interface |
US5838575A (en) | 1995-12-14 | 1998-11-17 | Rx Excell Inc. | System for dispensing drugs |
US6133944A (en) | 1995-12-18 | 2000-10-17 | Telcordia Technologies, Inc. | Head mounted displays linked to networked electronic panning cameras |
US5793365A (en) | 1996-01-02 | 1998-08-11 | Sun Microsystems, Inc. | System and method providing a computer user interface enabling access to distributed workgroup members |
US5701904A (en) | 1996-01-11 | 1997-12-30 | Krug International | Telemedicine instrumentation pack |
US5624398A (en) | 1996-02-08 | 1997-04-29 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
CA2249260C (en) | 1996-03-18 | 2002-12-10 | General Instrument Corporation | Dynamic bandwidth allocation for a communication network |
US5682199A (en) | 1996-03-28 | 1997-10-28 | Jedmed Instrument Company | Video endoscope with interchangeable endoscope heads |
JP3601737B2 (en) | 1996-03-30 | 2004-12-15 | 技術研究組合医療福祉機器研究所 | Transfer robot system |
US5801755A (en) | 1996-04-09 | 1998-09-01 | Echerer; Scott J. | Interactive communciation system for medical treatment of remotely located patients |
US5867653A (en) * | 1996-04-18 | 1999-02-02 | International Business Machines Corporation | Method and apparatus for multi-cast based video conferencing |
WO1997039715A1 (en) | 1996-04-25 | 1997-10-30 | Massachusetts Institute Of Technology | Human transport system with dead reckoning facilitating docking |
AU2829697A (en) | 1996-05-06 | 1997-11-26 | Camelot Corporation, The | Videophone system |
US6189034B1 (en) | 1996-05-08 | 2001-02-13 | Apple Computer, Inc. | Method and apparatus for dynamic launching of a teleconferencing application upon receipt of a call |
US6006191A (en) | 1996-05-13 | 1999-12-21 | Dirienzo; Andrew L. | Remote access medical image exchange system and methods of operation therefor |
US6496099B2 (en) | 1996-06-24 | 2002-12-17 | Computer Motion, Inc. | General purpose distributed operating room control system |
US5949758A (en) | 1996-06-27 | 1999-09-07 | International Business Machines Corporation | Bandwidth reservation for multiple file transfer in a high speed communication network |
JPH1079097A (en) | 1996-09-04 | 1998-03-24 | Toyota Motor Corp | Mobile object communication method |
US6195357B1 (en) | 1996-09-24 | 2001-02-27 | Intervoice Limited Partnership | Interactive information transaction processing system with universal telephony gateway capabilities |
US5754631A (en) | 1996-09-30 | 1998-05-19 | Intervoice Limited Partnership | Voice response unit having robot conference capability on ports |
US5974446A (en) | 1996-10-24 | 1999-10-26 | Academy Of Applied Science | Internet based distance learning system for communicating between server and clients wherein clients communicate with each other or with teacher using different communication techniques via common user interface |
US6646677B2 (en) | 1996-10-25 | 2003-11-11 | Canon Kabushiki Kaisha | Image sensing control method and apparatus, image transmission control method, apparatus, and system, and storage means storing program that implements the method |
US5917958A (en) | 1996-10-31 | 1999-06-29 | Sensormatic Electronics Corporation | Distributed video data base with remote searching for image data features |
US5867494A (en) | 1996-11-18 | 1999-02-02 | Mci Communication Corporation | System, method and article of manufacture with integrated video conferencing billing in a communication system architecture |
US8182469B2 (en) | 1997-11-21 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Surgical accessory clamp and method |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US6113343A (en) | 1996-12-16 | 2000-09-05 | Goldenberg; Andrew | Explosives disposal robot |
US6148100A (en) | 1996-12-20 | 2000-11-14 | Bechtel Bwxt Idaho, Llc | 3-dimensional telepresence system for a robotic environment |
US5886735A (en) | 1997-01-14 | 1999-03-23 | Bullister; Edward T | Video telephone headset |
US5927423A (en) | 1997-03-05 | 1999-07-27 | Massachusetts Institute Of Technology | Reconfigurable footprint mechanism for omnidirectional vehicles |
US5995884A (en) | 1997-03-07 | 1999-11-30 | Allen; Timothy P. | Computer peripheral floor cleaning system and navigation method |
US6501740B1 (en) | 1997-03-07 | 2002-12-31 | At&T Corp. | System and method for teleconferencing on an internetwork comprising connection-oriented and connectionless networks |
WO1998042407A1 (en) | 1997-03-27 | 1998-10-01 | Medtronic, Inc. | Concepts to implement medconnect |
JPH10288689A (en) | 1997-04-14 | 1998-10-27 | Hitachi Ltd | Remote monitoring system |
US20040157612A1 (en) | 1997-04-25 | 2004-08-12 | Minerva Industries, Inc. | Mobile communication and stethoscope system |
US6914622B1 (en) | 1997-05-07 | 2005-07-05 | Telbotics Inc. | Teleconferencing robot with swiveling video monitor |
WO1998051078A1 (en) | 1997-05-07 | 1998-11-12 | Telbotics Inc. | Teleconferencing robot with swiveling video monitor |
GB2325376B (en) | 1997-05-14 | 2001-09-19 | Dsc Telecom Lp | Allocation of bandwidth to calls in a wireless telecommunications system |
US5857534A (en) * | 1997-06-05 | 1999-01-12 | Kansas State University Research Foundation | Robotic inspection apparatus and method |
US5995119A (en) | 1997-06-06 | 1999-11-30 | At&T Corp. | Method for generating photo-realistic animated characters |
EP0991529B1 (en) | 1997-07-02 | 2002-04-24 | Borringia Industrie AG | Drive wheel |
US6330486B1 (en) | 1997-07-16 | 2001-12-11 | Silicon Graphics, Inc. | Acoustic perspective in a virtual three-dimensional environment |
US6445964B1 (en) | 1997-08-04 | 2002-09-03 | Harris Corporation | Virtual reality simulation-based training of telekinegenesis system for training sequential kinematic behavior of automated kinematic machine |
JPH11126017A (en) | 1997-08-22 | 1999-05-11 | Sony Corp | Storage medium, robot, information processing device and electronic pet system |
JP2001515236A (en) | 1997-09-04 | 2001-09-18 | ダイナログ インコーポレイテッド | Method for calibrating a robot inspection system |
US6714839B2 (en) * | 1998-12-08 | 2004-03-30 | Intuitive Surgical, Inc. | Master having redundant degrees of freedom |
US6400378B1 (en) | 1997-09-26 | 2002-06-04 | Sony Corporation | Home movie maker |
JPH11175118A (en) | 1997-10-08 | 1999-07-02 | Denso Corp | Robot controller |
US6597392B1 (en) | 1997-10-14 | 2003-07-22 | Healthcare Vision, Inc. | Apparatus and method for computerized multi-media data organization and transmission |
US7956894B2 (en) | 1997-10-14 | 2011-06-07 | William Rex Akers | Apparatus and method for computerized multi-media medical and pharmaceutical data organization and transmission |
US7885822B2 (en) | 2001-05-09 | 2011-02-08 | William Rex Akers | System and method for electronic medical file management |
US6209018B1 (en) | 1997-11-13 | 2001-03-27 | Sun Microsystems, Inc. | Service framework for a distributed object network system |
CN1183427C (en) | 1997-11-27 | 2005-01-05 | 阳光及自动化公司 | Improvements to mobile robots and their control system |
US6532404B2 (en) * | 1997-11-27 | 2003-03-11 | Colens Andre | Mobile robots and their control system |
JP3919040B2 (en) | 1997-11-30 | 2007-05-23 | ソニー株式会社 | Robot equipment |
US6006946A (en) | 1997-12-05 | 1999-12-28 | Automated Prescriptions System, Inc. | Pill dispensing system |
US6036812A (en) * | 1997-12-05 | 2000-03-14 | Automated Prescription Systems, Inc. | Pill dispensing system |
US6047259A (en) | 1997-12-30 | 2000-04-04 | Medical Management International, Inc. | Interactive method and system for managing physical exams, diagnosis and treatment protocols in a health care practice |
US5983263A (en) | 1998-01-02 | 1999-11-09 | Intel Corporation | Method and apparatus for transmitting images during a multimedia teleconference |
US6380968B1 (en) | 1998-01-06 | 2002-04-30 | Intel Corporation | Method and apparatus for controlling a remote video camera in a video conferencing system |
US6563533B1 (en) | 1998-01-06 | 2003-05-13 | Sony Corporation | Ergonomically designed apparatus for selectively actuating remote robotics cameras |
DE19803494A1 (en) | 1998-01-29 | 1999-08-05 | Berchtold Gmbh & Co Geb | Procedure for manipulating an operating light |
JPH11220706A (en) | 1998-02-03 | 1999-08-10 | Nikon Corp | Video telephone system |
JPH11249725A (en) | 1998-02-26 | 1999-09-17 | Fanuc Ltd | Robot controller |
US6346962B1 (en) | 1998-02-27 | 2002-02-12 | International Business Machines Corporation | Control of video conferencing system with pointing device |
US6373855B1 (en) | 1998-03-05 | 2002-04-16 | Intel Corporation | System and method for using audio performance to control video bandwidth |
US6643496B1 (en) | 1998-03-31 | 2003-11-04 | Canon Kabushiki Kaisha | System, method, and apparatus for adjusting packet transmission rates based on dynamic evaluation of network characteristics |
GB9807540D0 (en) | 1998-04-09 | 1998-06-10 | Orad Hi Tec Systems Ltd | Tracking system for sports |
US6650748B1 (en) | 1998-04-13 | 2003-11-18 | Avaya Technology Corp. | Multiple call handling in a call center |
US6233504B1 (en) | 1998-04-16 | 2001-05-15 | California Institute Of Technology | Tool actuation and force feedback on robot-assisted microsurgery system |
US6529765B1 (en) * | 1998-04-21 | 2003-03-04 | Neutar L.L.C. | Instrumented and actuated guidance fixture for sterotactic surgery |
US20020151514A1 (en) | 1998-05-11 | 2002-10-17 | Paz Einat | Genes associated with mechanical stress, expression products therefrom, and uses thereof |
US6219587B1 (en) | 1998-05-27 | 2001-04-17 | Nextrx Corporation | Automated pharmaceutical management and dispensing system |
US6250928B1 (en) | 1998-06-22 | 2001-06-26 | Massachusetts Institute Of Technology | Talking facial display method and apparatus |
KR100617525B1 (en) * | 1998-06-23 | 2006-09-04 | 소니 가부시끼 가이샤 | Robot and information processing system |
JP3792901B2 (en) | 1998-07-08 | 2006-07-05 | キヤノン株式会社 | Camera control system and control method thereof |
US6452915B1 (en) | 1998-07-10 | 2002-09-17 | Malibu Networks, Inc. | IP-flow classification in a wireless point to multi-point (PTMP) transmission system |
US6266577B1 (en) | 1998-07-13 | 2001-07-24 | Gte Internetworking Incorporated | System for dynamically reconfigure wireless robot network |
JP3487186B2 (en) | 1998-07-28 | 2004-01-13 | 日本ビクター株式会社 | Network remote control system |
JP4100773B2 (en) | 1998-09-04 | 2008-06-11 | 富士通株式会社 | Robot remote control method and system |
JP2000153476A (en) | 1998-09-14 | 2000-06-06 | Honda Motor Co Ltd | Leg type movable robot |
US6594527B2 (en) | 1998-09-18 | 2003-07-15 | Nexmed Holdings, Inc. | Electrical stimulation apparatus and method |
US6175779B1 (en) * | 1998-09-29 | 2001-01-16 | J. Todd Barrett | Computerized unit dose medication dispensing cart |
US6457043B1 (en) | 1998-10-23 | 2002-09-24 | Verizon Laboratories Inc. | Speaker identifier for multi-party conference |
WO2000025516A1 (en) | 1998-10-24 | 2000-05-04 | Vtel Corporation | Graphical menu items for a user interface menu of a video teleconferencing system |
US6602469B1 (en) | 1998-11-09 | 2003-08-05 | Lifestream Technologies, Inc. | Health monitoring and diagnostic device and network-based health assessment and medical records maintenance system |
US6951535B2 (en) * | 2002-01-16 | 2005-10-04 | Intuitive Surgical, Inc. | Tele-medicine system that transmits an entire state of a subsystem |
US6852107B2 (en) * | 2002-01-16 | 2005-02-08 | Computer Motion, Inc. | Minimally invasive surgical training using robotics and tele-collaboration |
US8527094B2 (en) | 1998-11-20 | 2013-09-03 | Intuitive Surgical Operations, Inc. | Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures |
US6468265B1 (en) | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US6232735B1 (en) | 1998-11-24 | 2001-05-15 | Thames Co., Ltd. | Robot remote control system and robot image remote control processing system |
JP2000196876A (en) | 1998-12-28 | 2000-07-14 | Canon Inc | Image processing system, image forming controller, image forming device, control method for image processing system, control method for the image forming controller, and control method for the image forming device |
US6170929B1 (en) * | 1998-12-02 | 2001-01-09 | Ronald H. Wilson | Automated medication-dispensing cart |
US6535182B2 (en) * | 1998-12-07 | 2003-03-18 | Koninklijke Philips Electronics N.V. | Head-mounted projection display system |
US6522906B1 (en) | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
US6799065B1 (en) | 1998-12-08 | 2004-09-28 | Intuitive Surgical, Inc. | Image shifting apparatus and method for a telerobotic system |
EP1148807B1 (en) | 1998-12-08 | 2010-03-10 | Intuitive Surgical, Inc. | Image shifting telerobotic system |
JP3980205B2 (en) | 1998-12-17 | 2007-09-26 | コニカミノルタホールディングス株式会社 | Work robot |
US6259956B1 (en) | 1999-01-14 | 2001-07-10 | Rawl & Winstead, Inc. | Method and apparatus for site management |
US6463352B1 (en) | 1999-01-21 | 2002-10-08 | Amada Cutting Technologies, Inc. | System for management of cutting machines |
JP4366617B2 (en) | 1999-01-25 | 2009-11-18 | ソニー株式会社 | Robot device |
US6338013B1 (en) | 1999-03-19 | 2002-01-08 | Bryan John Ruffner | Multifunctional mobile appliance |
AU4185600A (en) | 1999-04-01 | 2000-10-23 | Acist Medical Systems, Inc. | An integrated medical information management and medical device control system and method |
US7007235B1 (en) | 1999-04-02 | 2006-02-28 | Massachusetts Institute Of Technology | Collaborative agent interaction control and synchronization system |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
US6788651B1 (en) | 1999-04-21 | 2004-09-07 | Mindspeed Technologies, Inc. | Methods and apparatus for data communications on packet networks |
US6292713B1 (en) | 1999-05-20 | 2001-09-18 | Compaq Computer Corporation | Robotic telepresence system |
US6346950B1 (en) * | 1999-05-20 | 2002-02-12 | Compaq Computer Corporation | System and method for display images using anamorphic video |
US6781606B2 (en) | 1999-05-20 | 2004-08-24 | Hewlett-Packard Development Company, L.P. | System and method for displaying images using foveal video |
US6523629B1 (en) * | 1999-06-07 | 2003-02-25 | Sandia Corporation | Tandem mobile robot system |
US6804656B1 (en) | 1999-06-23 | 2004-10-12 | Visicu, Inc. | System and method for providing continuous, expert network critical care services from a remote location(s) |
US7256708B2 (en) | 1999-06-23 | 2007-08-14 | Visicu, Inc. | Telecommunications network for remote patient monitoring |
US6304050B1 (en) | 1999-07-19 | 2001-10-16 | Steven B. Skaar | Means and method of robot control relative to an arbitrary surface using camera-space manipulation |
US7606164B2 (en) | 1999-12-14 | 2009-10-20 | Texas Instruments Incorporated | Process of increasing source rate on acceptable side of threshold |
US6540039B1 (en) | 1999-08-19 | 2003-04-01 | Massachusetts Institute Of Technology | Omnidirectional vehicle with offset wheel pairs |
DE69927590T2 (en) | 1999-08-31 | 2006-07-06 | Swisscom Ag | Mobile robot and control method for a mobile robot |
US6810411B1 (en) | 1999-09-13 | 2004-10-26 | Intel Corporation | Method and system for selecting a host in a communications network |
EP1090722B1 (en) | 1999-09-16 | 2007-07-25 | Fanuc Ltd | Control system for synchronously cooperative operation of a plurality of robots |
JP2001094989A (en) | 1999-09-20 | 2001-04-06 | Toshiba Corp | Dynamic image transmitter and dynamic image communications equipment |
US6480762B1 (en) | 1999-09-27 | 2002-11-12 | Olympus Optical Co., Ltd. | Medical apparatus supporting system |
US6449762B1 (en) | 1999-10-07 | 2002-09-10 | Synplicity, Inc. | Maintaining correspondence between text and schematic representations of circuit elements in circuit synthesis |
US6798753B1 (en) | 1999-10-14 | 2004-09-28 | International Business Machines Corporation | Automatically establishing conferences from desktop applications over the Internet |
US7467211B1 (en) | 1999-10-18 | 2008-12-16 | Cisco Technology Inc. | Remote computer system management through an FTP internet connection |
ES2320724T3 (en) | 1999-10-22 | 2009-05-28 | Nomadix, Inc. | SYSTEMS AND PROCEDURES FOR THE DYNAMIC MANAGEMENT OF THE BANDWIDTH BY PAYABLE IN A COMMUNICATIONS NETWORK. |
JP4207336B2 (en) | 1999-10-29 | 2009-01-14 | ソニー株式会社 | Charging system for mobile robot, method for searching for charging station, mobile robot, connector, and electrical connection structure |
AT409238B (en) | 1999-11-05 | 2002-06-25 | Fronius Schweissmasch Prod | DETERMINING AND / OR DETERMINING USER AUTHORIZATIONS BY MEANS OF A TRANSPONDER, A FINGERPRINT IDENTIFIER OR THE LIKE |
JP2001134309A (en) | 1999-11-09 | 2001-05-18 | Mitsubishi Electric Corp | Robot operation terminal and remote control system for robot |
JP2001142512A (en) | 1999-11-16 | 2001-05-25 | Mitsubishi Electric Corp | Remote operation system for robot |
US6459955B1 (en) | 1999-11-18 | 2002-10-01 | The Procter & Gamble Company | Home cleaning robot |
JP2001147718A (en) | 1999-11-19 | 2001-05-29 | Sony Corp | Information communication robot device, information communication method and information communication robot system |
US6374155B1 (en) | 1999-11-24 | 2002-04-16 | Personal Robotics, Inc. | Autonomous multi-platform robot system |
US6443359B1 (en) | 1999-12-03 | 2002-09-03 | Diebold, Incorporated | Automated transaction system and method |
US7156809B2 (en) * | 1999-12-17 | 2007-01-02 | Q-Tec Systems Llc | Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity |
US20010051881A1 (en) | 1999-12-22 | 2001-12-13 | Aaron G. Filler | System, method and article of manufacture for managing a medical services network |
WO2001045627A1 (en) | 1999-12-23 | 2001-06-28 | Hill-Rom Services, Inc. | Surgical theater system |
JP2001179663A (en) | 1999-12-24 | 2001-07-03 | Sony Corp | Leg type mobile robot, its control method and charging station |
JP2001188124A (en) | 1999-12-27 | 2001-07-10 | Ge Toshiba Silicones Co Ltd | Saponified cellulose acetate composite polarizing base plate, its manufacturing method and liquid crystal display device |
US7389252B2 (en) | 2000-01-06 | 2008-06-17 | Anne E. Robb | Recursive method and system for accessing classification information |
JP3791663B2 (en) | 2000-01-17 | 2006-06-28 | 富士電機ホールディングス株式会社 | Omnidirectional moving vehicle and its control method |
JP2001198868A (en) | 2000-01-17 | 2001-07-24 | Atr Media Integration & Communications Res Lab | Robot for cyber two man comic dialogue and support device |
JP2001198865A (en) | 2000-01-20 | 2001-07-24 | Toshiba Corp | Bipedal robot device and its operating method |
JP2001222309A (en) * | 2000-02-10 | 2001-08-17 | Yaskawa Electric Corp | Robot controller |
JP2001252884A (en) | 2000-03-06 | 2001-09-18 | Matsushita Electric Ind Co Ltd | Robot, robot system, and method of controlling robot |
US20010054071A1 (en) | 2000-03-10 | 2001-12-20 | Loeb Gerald E. | Audio/video conference system for electronic caregiving |
FR2806561B1 (en) | 2000-03-16 | 2002-08-09 | France Telecom | HOME TELE ASSISTANCE SYSTEM |
US6369847B1 (en) | 2000-03-17 | 2002-04-09 | Emtel, Inc. | Emergency facility video-conferencing system |
KR100351816B1 (en) | 2000-03-24 | 2002-09-11 | 엘지전자 주식회사 | Apparatus for conversing format |
US6880089B1 (en) * | 2000-03-31 | 2005-04-12 | Avaya Technology Corp. | Firewall clustering for multiple network servers |
US6590604B1 (en) | 2000-04-07 | 2003-07-08 | Polycom, Inc. | Personal videoconferencing system having distributed processing architecture |
US20010048464A1 (en) | 2000-04-07 | 2001-12-06 | Barnett Howard S. | Portable videoconferencing system |
JP3511088B2 (en) | 2000-04-10 | 2004-03-29 | 独立行政法人航空宇宙技術研究所 | Pressure distribution sensor for multi-joint care robot control |
US6845297B2 (en) * | 2000-05-01 | 2005-01-18 | Irobot Corporation | Method and system for remote control of mobile robot |
EP1279081B1 (en) * | 2000-05-01 | 2012-01-04 | iRobot Corporation | Method and system for remote control of mobile robot |
US6349962B1 (en) * | 2000-05-11 | 2002-02-26 | Gaviota Cart Llc | Collapsible domestic cart |
US6292714B1 (en) | 2000-05-12 | 2001-09-18 | Fujitsu Limited | Robot cooperation device, and robot cooperation program storage medium |
EP1364302A2 (en) | 2000-05-24 | 2003-11-26 | Virtual Clinic, Inc. | Method and apparatus for providing personalized services |
DE60141403D1 (en) | 2000-06-09 | 2010-04-08 | Japan Science & Tech Agency | Hearing device for a robot |
JP2001353678A (en) | 2000-06-12 | 2001-12-25 | Sony Corp | Authoring system and method and storage medium |
JP3513084B2 (en) | 2000-06-14 | 2004-03-31 | 株式会社東芝 | Information processing system, information equipment and information processing method |
JP2002000574A (en) | 2000-06-22 | 2002-01-08 | Matsushita Electric Ind Co Ltd | Robot for nursing care support and nursing care support system |
US7782363B2 (en) | 2000-06-27 | 2010-08-24 | Front Row Technologies, Llc | Providing multiple video perspectives of activities through a data network to a remote multimedia server for selective display by remote viewing audiences |
US6629028B2 (en) | 2000-06-29 | 2003-09-30 | Riken | Method and system of optical guidance of mobile body |
US6746443B1 (en) | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
AU2001278953A1 (en) | 2000-07-28 | 2002-02-13 | American Calcar, Inc. | Technique for effective organization and communication of information |
US8751248B2 (en) | 2000-07-28 | 2014-06-10 | Visual Telecommunications Network, Inc. | Method, apparatus, and medium using a master control file for computer software interoperability between disparate operating systems |
US7886054B1 (en) | 2000-10-11 | 2011-02-08 | Siddhartha Nag | Graphical user interface (GUI) for administering a network implementing media aggregation |
US6738076B1 (en) | 2000-07-31 | 2004-05-18 | Hewlett-Packard Development Company, L.P. | Method and system for maintaining persistance of graphical markups in a collaborative graphical viewing system |
JP2002046088A (en) | 2000-08-03 | 2002-02-12 | Matsushita Electric Ind Co Ltd | Robot device |
US20020027597A1 (en) * | 2000-09-05 | 2002-03-07 | John Sachau | System for mobile videoconferencing |
US20070273751A1 (en) | 2000-09-05 | 2007-11-29 | Sachau John A | System and methods for mobile videoconferencing |
EP1189169A1 (en) | 2000-09-07 | 2002-03-20 | STMicroelectronics S.r.l. | A VLSI architecture, particularly for motion estimation applications |
US6529620B2 (en) | 2000-09-11 | 2003-03-04 | Pinotage, L.L.C. | System and method for obtaining and utilizing maintenance information |
KR100373323B1 (en) | 2000-09-19 | 2003-02-25 | 한국전자통신연구원 | Method of multipoint video conference in video conferencing system |
US6741911B2 (en) * | 2000-09-20 | 2004-05-25 | John Castle Simmons | Natural robot control |
JP2002101333A (en) | 2000-09-26 | 2002-04-05 | Casio Comput Co Ltd | Remote controller and remote control service system, and recording medium for recording program for them |
AU2001296925A1 (en) * | 2000-09-28 | 2002-04-08 | Vigilos, Inc. | Method and process for configuring a premises for monitoring |
US20030060808A1 (en) * | 2000-10-04 | 2003-03-27 | Wilk Peter J. | Telemedical method and system |
WO2002029700A2 (en) | 2000-10-05 | 2002-04-11 | Siemens Corporate Research, Inc. | Intra-operative image-guided neurosurgery with augmented reality visualization |
US20050149364A1 (en) | 2000-10-06 | 2005-07-07 | Ombrellaro Mark P. | Multifunction telemedicine software with integrated electronic medical record |
US6674259B1 (en) | 2000-10-06 | 2004-01-06 | Innovation First, Inc. | System and method for managing and controlling a robot competition |
JP2002112970A (en) | 2000-10-10 | 2002-04-16 | Daito Seiki Co Ltd | Device and method for observing surface of skin |
JP2002113675A (en) * | 2000-10-11 | 2002-04-16 | Sony Corp | Robot control system and introducing method for robot controlling software |
WO2002033641A2 (en) | 2000-10-16 | 2002-04-25 | Cardionow, Inc. | Medical image capture system and method |
US8348675B2 (en) | 2000-10-19 | 2013-01-08 | Life Success Academy | Apparatus and method for delivery of instructional information |
US6636780B1 (en) | 2000-11-07 | 2003-10-21 | Mdg Medical Inc. | Medication dispensing system including medicine cabinet and tray therefor |
JP4310916B2 (en) | 2000-11-08 | 2009-08-12 | コニカミノルタホールディングス株式会社 | Video display device |
US7219364B2 (en) | 2000-11-22 | 2007-05-15 | International Business Machines Corporation | System and method for selectable semantic codec pairs for very low data-rate video transmission |
US20020104094A1 (en) | 2000-12-01 | 2002-08-01 | Bruce Alexander | System and method for processing video data utilizing motion detection and subdivided video fields |
US6543899B2 (en) | 2000-12-05 | 2003-04-08 | Eastman Kodak Company | Auto-stereoscopic viewing system using mounted projection |
US6411209B1 (en) | 2000-12-06 | 2002-06-25 | Koninklijke Philips Electronics N.V. | Method and apparatus to select the best video frame to transmit to a remote station for CCTV based residential security monitoring |
EP1350157A4 (en) | 2000-12-06 | 2005-08-10 | Vigilos Inc | System and method for implementing open-protocol remote device control |
US6791550B2 (en) | 2000-12-12 | 2004-09-14 | Enounce, Inc. | Management of presentation time in a digital media presentation system with variable rate presentation capability |
US20040260790A1 (en) | 2000-12-21 | 2004-12-23 | Ge Medical System Global Technology Company, Llc | Method and apparatus for remote or collaborative control of an imaging system |
US7339605B2 (en) | 2004-04-16 | 2008-03-04 | Polycom, Inc. | Conference link between a speakerphone and a video conference unit |
US6442451B1 (en) | 2000-12-28 | 2002-08-27 | Robotic Workspace Technologies, Inc. | Versatile robot control system |
US20020085030A1 (en) | 2000-12-29 | 2002-07-04 | Jamal Ghani | Graphical user interface for an interactive collaboration system |
KR20020061961A (en) | 2001-01-19 | 2002-07-25 | 사성동 | Intelligent pet robot |
JP2002342759A (en) | 2001-01-30 | 2002-11-29 | Nec Corp | System and method for providing information and its program |
US20020106998A1 (en) | 2001-02-05 | 2002-08-08 | Presley Herbert L. | Wireless rich media conferencing |
JP3736358B2 (en) | 2001-02-08 | 2006-01-18 | 株式会社チューオー | Wall material |
JP4182464B2 (en) | 2001-02-09 | 2008-11-19 | 富士フイルム株式会社 | Video conferencing system |
US20020109775A1 (en) | 2001-02-09 | 2002-08-15 | Excellon Automation Co. | Back-lighted fiducial recognition system and method of use |
US7184559B2 (en) * | 2001-02-23 | 2007-02-27 | Hewlett-Packard Development Company, L.P. | System and method for audio telepresence |
JP2005500912A (en) | 2001-02-27 | 2005-01-13 | アンソロトロニックス インコーポレイテッド | Robot apparatus and wireless communication system |
US20020128985A1 (en) | 2001-03-09 | 2002-09-12 | Brad Greenwald | Vehicle value appraisal system |
US20020133062A1 (en) | 2001-03-15 | 2002-09-19 | Arling Robert Stanley | Embedded measurement values in medical reports |
JP4739556B2 (en) | 2001-03-27 | 2011-08-03 | 株式会社安川電機 | Remote adjustment and abnormality judgment device for control target |
US6965394B2 (en) | 2001-03-30 | 2005-11-15 | Koninklijke Philips Electronics N.V. | Remote camera control device |
WO2002082301A1 (en) | 2001-04-03 | 2002-10-17 | Vigilos, Inc. | System and method for managing a device network |
JP2002305743A (en) | 2001-04-04 | 2002-10-18 | Rita Security Engineering:Kk | Remote moving picture transmission system compatible with adsl |
US20030199000A1 (en) | 2001-08-20 | 2003-10-23 | Valkirs Gunars E. | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
US6920373B2 (en) | 2001-04-13 | 2005-07-19 | Board Of Trusstees Operating Michigan State University | Synchronization and task control of real-time internet based super-media |
KR100437372B1 (en) | 2001-04-18 | 2004-06-25 | 삼성광주전자 주식회사 | Robot cleaning System using by mobile communication network |
AU767561B2 (en) | 2001-04-18 | 2003-11-13 | Samsung Kwangju Electronics Co., Ltd. | Robot cleaner, system employing the same and method for reconnecting to external recharging device |
JP2002321180A (en) | 2001-04-24 | 2002-11-05 | Matsushita Electric Ind Co Ltd | Robot control system |
WO2002088908A2 (en) | 2001-05-02 | 2002-11-07 | Bitstream Inc. | Methods, systems, and programming for producing and displaying subpixel-optimized font bitmaps using non-linear color balancing |
US7202851B2 (en) | 2001-05-04 | 2007-04-10 | Immersion Medical Inc. | Haptic interface for palpation simulation |
US6723086B2 (en) | 2001-05-07 | 2004-04-20 | Logiq Wireless Solutions, Inc. | Remote controlled transdermal medication delivery device |
US7242306B2 (en) * | 2001-05-08 | 2007-07-10 | Hill-Rom Services, Inc. | Article locating and tracking apparatus and method |
JP2002354551A (en) | 2001-05-25 | 2002-12-06 | Mitsubishi Heavy Ind Ltd | Robot service providing method and system thereof |
CA2448389A1 (en) | 2001-05-25 | 2002-11-28 | Mike Dooley | Toy robot programming |
JP2002352354A (en) | 2001-05-30 | 2002-12-06 | Denso Corp | Remote care method |
JP2002355779A (en) | 2001-06-01 | 2002-12-10 | Sharp Corp | Robot type interface device and control method for the same |
US6763282B2 (en) | 2001-06-04 | 2004-07-13 | Time Domain Corp. | Method and system for controlling a robot |
US20020186243A1 (en) | 2001-06-06 | 2002-12-12 | Robert Ellis | Method and system for providing combined video and physiological data over a communication network for patient monitoring |
US6507773B2 (en) * | 2001-06-14 | 2003-01-14 | Sharper Image Corporation | Multi-functional robot with remote and video system |
US6995664B1 (en) * | 2001-06-20 | 2006-02-07 | Jeffrey Darling | Remote supervision system and method |
US6604021B2 (en) | 2001-06-21 | 2003-08-05 | Advanced Telecommunications Research Institute International | Communication robot |
WO2003000015A2 (en) | 2001-06-25 | 2003-01-03 | Science Applications International Corporation | Identification by analysis of physiometric variation |
US7483867B2 (en) | 2001-06-26 | 2009-01-27 | Intuition Intelligence, Inc. | Processing device with intuitive learning capability |
GB2377117B (en) | 2001-06-27 | 2004-08-18 | Cambridge Broadband Ltd | Method and apparatus for providing communications bandwidth |
NO20013450L (en) | 2001-07-11 | 2003-01-13 | Simsurgery As | Systems and methods for interactive training of procedures |
CN1554193A (en) | 2001-07-25 | 2004-12-08 | �����J��ʷ����ɭ | A camera control apparatus and method |
US7831575B2 (en) | 2001-08-02 | 2010-11-09 | Bridge Works, Ltd | Library virtualisation module |
US6667592B2 (en) | 2001-08-13 | 2003-12-23 | Intellibot, L.L.C. | Mapped robot system |
US6580246B2 (en) | 2001-08-13 | 2003-06-17 | Steven Jacobs | Robot touch shield |
JP4689107B2 (en) | 2001-08-22 | 2011-05-25 | 本田技研工業株式会社 | Autonomous robot |
US6952470B1 (en) | 2001-08-23 | 2005-10-04 | Bellsouth Intellectual Property Corp. | Apparatus and method for managing a call center |
AU2002322930A1 (en) | 2001-08-24 | 2003-03-10 | March Networks Corporation | Remote health-monitoring system and method |
JP2003070804A (en) | 2001-09-05 | 2003-03-11 | Olympus Optical Co Ltd | Remote medical support system |
US6728599B2 (en) * | 2001-09-07 | 2004-04-27 | Computer Motion, Inc. | Modularity system for computer assisted surgery |
JP4378072B2 (en) * | 2001-09-07 | 2009-12-02 | キヤノン株式会社 | Electronic device, imaging device, portable communication device, video display control method and program |
CN1555244A (en) | 2001-09-13 | 2004-12-15 | Method for transmitting vital health statistics to a remote location form an aircraft | |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
JP2003110652A (en) | 2001-10-01 | 2003-04-11 | Matsushita Graphic Communication Systems Inc | Method of reinitializing adsl modem and the adsl modem |
US6840904B2 (en) * | 2001-10-11 | 2005-01-11 | Jason Goldberg | Medical monitoring device and system |
US7058689B2 (en) | 2001-10-16 | 2006-06-06 | Sprint Communications Company L.P. | Sharing of still images within a video telephony call |
US7307653B2 (en) | 2001-10-19 | 2007-12-11 | Nokia Corporation | Image stabilizer for a microcamera module of a handheld device, and method for stabilizing a microcamera module of a handheld device |
WO2003036557A1 (en) | 2001-10-22 | 2003-05-01 | Intel Zao | Method and apparatus for background segmentation based on motion localization |
US20030080901A1 (en) | 2001-10-25 | 2003-05-01 | Koninklijke Philips Electronics N.V. | RFID navigation system |
JP2003136450A (en) * | 2001-10-26 | 2003-05-14 | Communication Research Laboratory | Remote control system of robot arm by providing audio information |
JP2003205483A (en) | 2001-11-07 | 2003-07-22 | Sony Corp | Robot system and control method for robot device |
US20030152145A1 (en) | 2001-11-15 | 2003-08-14 | Kevin Kawakita | Crash prevention recorder (CPR)/video-flight data recorder (V-FDR)/cockpit-cabin voice recorder for light aircraft with an add-on option for large commercial jets |
US7317685B1 (en) | 2001-11-26 | 2008-01-08 | Polycom, Inc. | System and method for dynamic bandwidth allocation for videoconferencing in lossy packet switched networks |
US6785589B2 (en) | 2001-11-30 | 2004-08-31 | Mckesson Automation, Inc. | Dispensing cabinet with unit dose dispensing drawer |
US20050101841A9 (en) * | 2001-12-04 | 2005-05-12 | Kimberly-Clark Worldwide, Inc. | Healthcare networks with biosensors |
US7539504B2 (en) | 2001-12-05 | 2009-05-26 | Espre Solutions, Inc. | Wireless telepresence collaboration system |
US6839612B2 (en) * | 2001-12-07 | 2005-01-04 | Institute Surgical, Inc. | Microwrist system for surgical procedures |
JP3709393B2 (en) | 2001-12-14 | 2005-10-26 | 富士ソフトエービーシ株式会社 | Remote control system and remote control method |
US7227864B2 (en) * | 2001-12-17 | 2007-06-05 | Microsoft Corporation | Methods and systems for establishing communications through firewalls and network address translators |
US7305114B2 (en) | 2001-12-26 | 2007-12-04 | Cognex Technology And Investment Corporation | Human/machine interface for a machine vision sensor and method for installing and operating the same |
US7082497B2 (en) | 2001-12-28 | 2006-07-25 | Hewlett-Packard Development Company, L.P. | System and method for managing a moveable media library with library partitions |
US7647320B2 (en) | 2002-01-18 | 2010-01-12 | Peoplechart Corporation | Patient directed system and method for managing medical information |
US7167448B2 (en) | 2002-02-04 | 2007-01-23 | Sun Microsystems, Inc. | Prioritization of remote services messages within a low bandwidth environment |
US6693585B1 (en) | 2002-02-07 | 2004-02-17 | Aradiant Corporation | Self-contained selectively activated mobile object position reporting device with reduced power consumption and minimized wireless service fees. |
US6784916B2 (en) | 2002-02-11 | 2004-08-31 | Telbotics Inc. | Video conferencing apparatus |
WO2003068461A1 (en) | 2002-02-13 | 2003-08-21 | Toudai Tlo, Ltd. | Robot-phone |
JP2003241807A (en) * | 2002-02-19 | 2003-08-29 | Yaskawa Electric Corp | Robot control unit |
JP4100934B2 (en) | 2002-02-28 | 2008-06-11 | シャープ株式会社 | Composite camera system, zoom camera control method, and zoom camera control program |
US7206626B2 (en) | 2002-03-06 | 2007-04-17 | Z-Kat, Inc. | System and method for haptic sculpting of physical objects |
US7860680B2 (en) | 2002-03-07 | 2010-12-28 | Microstrain, Inc. | Robotic system for powering and interrogating sensors |
US6915871B2 (en) | 2002-03-12 | 2005-07-12 | Dan Gavish | Method and apparatus for improving child safety and adult convenience while using a mobile ride-on toy |
US6769771B2 (en) | 2002-03-14 | 2004-08-03 | Entertainment Design Workshop, Llc | Method and apparatus for producing dynamic imagery in a visual medium |
JP3945279B2 (en) * | 2002-03-15 | 2007-07-18 | ソニー株式会社 | Obstacle recognition apparatus, obstacle recognition method, obstacle recognition program, and mobile robot apparatus |
WO2003077745A1 (en) | 2002-03-18 | 2003-09-25 | Medic4All Ag | Monitoring method and monitoring system for assessing physiological parameters of a subject |
KR100483790B1 (en) | 2002-03-22 | 2005-04-20 | 한국과학기술연구원 | Multi-degree of freedom telerobotic system for micro assembly |
JP4032793B2 (en) * | 2002-03-27 | 2008-01-16 | ソニー株式会社 | Charging system, charging control method, robot apparatus, charging control program, and recording medium |
US7117067B2 (en) * | 2002-04-16 | 2006-10-03 | Irobot Corporation | System and methods for adaptive control of robotic devices |
US20030231244A1 (en) | 2002-04-22 | 2003-12-18 | Bonilla Victor G. | Method and system for manipulating a field of view of a video image from a remote vehicle |
US20040172301A1 (en) | 2002-04-30 | 2004-09-02 | Mihai Dan M. | Remote multi-purpose user interface for a healthcare system |
US6898484B2 (en) | 2002-05-01 | 2005-05-24 | Dorothy Lemelson | Robotic manufacturing and assembly with relative radio positioning using radio based location determination |
AU2003234910B2 (en) | 2002-05-07 | 2008-07-17 | Kyoto University | Medical cockpit system |
US6836701B2 (en) | 2002-05-10 | 2004-12-28 | Royal Appliance Mfg. Co. | Autonomous multi-platform robotic system |
JP4081747B2 (en) | 2002-05-17 | 2008-04-30 | 技研株式会社 | Robot drive control method and apparatus |
AU2003239555A1 (en) | 2002-05-20 | 2003-12-12 | Vigilos, Inc. | System and method for providing data communication in a device network |
US6807461B2 (en) | 2002-05-22 | 2004-10-19 | Kuka Roboter Gmbh | Coordinated robot control from multiple remote instruction sources |
US6743721B2 (en) | 2002-06-10 | 2004-06-01 | United Microelectronics Corp. | Method and system for making cobalt silicide |
KR100478452B1 (en) | 2002-06-12 | 2005-03-23 | 삼성전자주식회사 | Localization apparatus and method for mobile robot |
US20030232649A1 (en) | 2002-06-18 | 2003-12-18 | Gizis Alexander C.M. | Gaming system and method |
JP3910112B2 (en) | 2002-06-21 | 2007-04-25 | シャープ株式会社 | Camera phone |
US7181455B2 (en) | 2002-06-27 | 2007-02-20 | Sun Microsystems, Inc. | Bandwidth management for remote services system |
US6752539B2 (en) | 2002-06-28 | 2004-06-22 | International Buisness Machines Corporation | Apparatus and system for providing optical bus interprocessor interconnection |
KR100556612B1 (en) | 2002-06-29 | 2006-03-06 | 삼성전자주식회사 | Apparatus and method of localization using laser |
DE10231388A1 (en) | 2002-07-08 | 2004-02-05 | Alfred Kärcher Gmbh & Co. Kg | Tillage system |
DE10231391A1 (en) | 2002-07-08 | 2004-02-12 | Alfred Kärcher Gmbh & Co. Kg | Tillage system |
FR2842320A1 (en) | 2002-07-12 | 2004-01-16 | Thomson Licensing Sa | MULTIMEDIA DATA PROCESSING DEVICE |
US7084809B2 (en) | 2002-07-15 | 2006-08-01 | Qualcomm, Incorporated | Apparatus and method of position determination using shared information |
JP2004042230A (en) * | 2002-07-15 | 2004-02-12 | Kawasaki Heavy Ind Ltd | Remote control method and remote control system of robot controller |
US7593030B2 (en) | 2002-07-25 | 2009-09-22 | Intouch Technologies, Inc. | Tele-robotic videoconferencing in a corporate environment |
US20040162637A1 (en) * | 2002-07-25 | 2004-08-19 | Yulun Wang | Medical tele-robotic system with a master remote station with an arbitrator |
US20120072024A1 (en) | 2002-07-25 | 2012-03-22 | Yulun Wang | Telerobotic system with dual application screen presentation |
DE10234233A1 (en) | 2002-07-27 | 2004-02-05 | Kuka Roboter Gmbh | Process for the exchange of data between controls of machines, in particular robots |
EP1388813A2 (en) * | 2002-08-09 | 2004-02-11 | Matsushita Electric Industrial Co., Ltd. | Apparatus and method for image watermarking |
US7523505B2 (en) | 2002-08-16 | 2009-04-21 | Hx Technologies, Inc. | Methods and systems for managing distributed digital medical data |
US20050288571A1 (en) | 2002-08-20 | 2005-12-29 | Welch Allyn, Inc. | Mobile medical workstation |
US6753899B2 (en) | 2002-09-03 | 2004-06-22 | Audisoft | Method and apparatus for telepresence |
EP3043544B1 (en) * | 2002-09-13 | 2018-03-28 | iRobot Corporation | A navigational control system for a robotic device |
US20040065073A1 (en) | 2002-10-08 | 2004-04-08 | Ingersoll-Rand Energy Systems Corporation | Flexible recuperator mounting system |
US7881658B2 (en) | 2002-10-10 | 2011-02-01 | Znl Enterprises, Llc | Method and apparatus for entertainment and information services delivered via mobile telecommunication devices |
WO2004036371A2 (en) | 2002-10-16 | 2004-04-29 | Rocksteady Networks, Inc. | System and method for dynamic bandwidth provisioning |
US6804579B1 (en) * | 2002-10-16 | 2004-10-12 | Abb, Inc. | Robotic wash cell using recycled pure water |
EP2713292A3 (en) | 2002-10-28 | 2014-05-07 | The General Hospital Corporation | Tissue disorder imaging analysis |
US6920376B2 (en) | 2002-10-31 | 2005-07-19 | Hewlett-Packard Development Company, L.P. | Mutually-immersive mobile telepresence system with user rotation and surrogate translation |
US6879879B2 (en) | 2002-10-31 | 2005-04-12 | Hewlett-Packard Development Company, L.P. | Telepresence system with automatic user-surrogate height matching |
US20040093409A1 (en) | 2002-11-07 | 2004-05-13 | Vigilos, Inc. | System and method for external event determination utilizing an integrated information system |
US8073304B2 (en) | 2002-11-16 | 2011-12-06 | Gregory Karel Rohlicek | Portable recorded television viewer |
KR100542340B1 (en) * | 2002-11-18 | 2006-01-11 | 삼성전자주식회사 | home network system and method for controlling home network system |
US7123974B1 (en) | 2002-11-19 | 2006-10-17 | Rockwell Software Inc. | System and methodology providing audit recording and tracking in real time industrial controller environment |
JP2004181229A (en) | 2002-11-20 | 2004-07-02 | Olympus Corp | System and method for supporting remote operation |
KR20040046071A (en) | 2002-11-26 | 2004-06-05 | 삼성전자주식회사 | Method for displaying antenna-ba of terminal |
JP3885019B2 (en) | 2002-11-29 | 2007-02-21 | 株式会社東芝 | Security system and mobile robot |
US20040172306A1 (en) | 2002-12-02 | 2004-09-02 | Recare, Inc. | Medical data entry interface |
US6889120B2 (en) | 2002-12-14 | 2005-05-03 | Hewlett-Packard Development Company, L.P. | Mutually-immersive mobile telepresence with gaze and eye contact preservation |
US20090030552A1 (en) * | 2002-12-17 | 2009-01-29 | Japan Science And Technology Agency | Robotics visual and auditory system |
US7145478B2 (en) * | 2002-12-17 | 2006-12-05 | Evolution Robotics, Inc. | Systems and methods for controlling a density of visual landmarks in a visual simultaneous localization and mapping system |
US6938167B2 (en) | 2002-12-18 | 2005-08-30 | America Online, Inc. | Using trusted communication channel to combat user name/password theft |
US7584019B2 (en) * | 2003-12-15 | 2009-09-01 | Dako Denmark A/S | Systems and methods for the automated pre-treatment and processing of biological samples |
US20040135879A1 (en) | 2003-01-03 | 2004-07-15 | Stacy Marco A. | Portable wireless indoor/outdoor camera |
US6745115B1 (en) | 2003-01-07 | 2004-06-01 | Garmin Ltd. | System, method and apparatus for searching geographic area using prioritized spacial order |
US7158859B2 (en) * | 2003-01-15 | 2007-01-02 | Intouch Technologies, Inc. | 5 degrees of freedom mobile robot |
CN101390098A (en) | 2003-01-15 | 2009-03-18 | 英塔茨科技公司 | 5 degress of freedom mobile robot |
ITMI20030121A1 (en) * | 2003-01-27 | 2004-07-28 | Giuseppe Donato | MODULAR SURVEILLANCE SYSTEM FOR MONITORING OF CRITICAL ENVIRONMENTS. |
US7404140B2 (en) | 2003-01-31 | 2008-07-22 | Siemens Medical Solutions Usa, Inc. | System for managing form information for use by portable devices |
US7158860B2 (en) | 2003-02-24 | 2007-01-02 | Intouch Technologies, Inc. | Healthcare tele-robotic system which allows parallel remote station observation |
US7171286B2 (en) | 2003-02-24 | 2007-01-30 | Intouch Technologies, Inc. | Healthcare tele-robotic system with a robot that also functions as a remote station |
US7388981B2 (en) | 2003-02-27 | 2008-06-17 | Hewlett-Packard Development Company, L.P. | Telepresence system with automatic preservation of user head size |
JP2004261941A (en) | 2003-03-04 | 2004-09-24 | Sharp Corp | Communication robot and communication system |
US7262573B2 (en) | 2003-03-06 | 2007-08-28 | Intouch Technologies, Inc. | Medical tele-robotic system with a head worn device |
US7593546B2 (en) | 2003-03-11 | 2009-09-22 | Hewlett-Packard Development Company, L.P. | Telepresence system with simultaneous automatic preservation of user height, perspective, and vertical gaze |
US20050065813A1 (en) * | 2003-03-11 | 2005-03-24 | Mishelevich David J. | Online medical evaluation system |
JP4124682B2 (en) | 2003-03-20 | 2008-07-23 | 日本放送協会 | Camera control device |
US7995652B2 (en) | 2003-03-20 | 2011-08-09 | Utc Fire & Security Americas Corporation, Inc. | Systems and methods for multi-stream image processing |
US20040205664A1 (en) | 2003-03-25 | 2004-10-14 | Prendergast Thomas V. | Claim data and document processing system |
JP2004298977A (en) | 2003-03-28 | 2004-10-28 | Sony Corp | Action control device, action control method, action control program and mobile robot device |
US6804580B1 (en) | 2003-04-03 | 2004-10-12 | Kuka Roboter Gmbh | Method and control system for controlling a plurality of robots |
US20040201602A1 (en) | 2003-04-14 | 2004-10-14 | Invensys Systems, Inc. | Tablet computer system for industrial process design, supervisory control, and data management |
US7346429B2 (en) | 2003-05-05 | 2008-03-18 | Engineering Services, Inc. | Mobile robot hybrid communication link |
WO2005008804A2 (en) | 2003-05-08 | 2005-01-27 | Power Estimate Company | Apparatus and method for providing electrical energy generated from motion to an electrically powered device |
GB2391361B (en) | 2003-05-23 | 2005-09-21 | Bridgeworks Ltd | Library element management |
US20040240981A1 (en) | 2003-05-29 | 2004-12-02 | I-Scan Robotics | Robot stacking system for flat glass |
US6905941B2 (en) | 2003-06-02 | 2005-06-14 | International Business Machines Corporation | Structure and method to fabricate ultra-thin Si channel devices |
US7664096B2 (en) * | 2003-06-25 | 2010-02-16 | At&T Intellectual Property I, Lp | Remote location VOIP roaming behind firewalls |
US20050003330A1 (en) | 2003-07-02 | 2005-01-06 | Mehdi Asgarinejad | Interactive virtual classroom |
US6888333B2 (en) | 2003-07-02 | 2005-05-03 | Intouch Health, Inc. | Holonomic platform for a robot |
JP2005028066A (en) | 2003-07-08 | 2005-02-03 | Kikuta Sogo Kikaku:Kk | Remote cleaning management system |
US7154526B2 (en) * | 2003-07-11 | 2006-12-26 | Fuji Xerox Co., Ltd. | Telepresence system and method for video teleconferencing |
US20050065435A1 (en) * | 2003-07-22 | 2005-03-24 | John Rauch | User interface for remote control of medical devices |
US7995090B2 (en) * | 2003-07-28 | 2011-08-09 | Fuji Xerox Co., Ltd. | Video enabled tele-presence control host |
US20050027567A1 (en) | 2003-07-29 | 2005-02-03 | Taha Amer Jamil | System and method for health care data collection and management |
US7395126B2 (en) * | 2003-07-29 | 2008-07-01 | Far Touch, Inc. | Remote control of wireless electromechanical device using a web browser |
US7133062B2 (en) * | 2003-07-31 | 2006-11-07 | Polycom, Inc. | Graphical user interface for video feed on videoconference terminal |
DE20312211U1 (en) | 2003-08-07 | 2003-10-30 | Yueh, Wen Hsiang, Hsinchuang, Taipeh | Swiveling USB plug |
US7413040B2 (en) * | 2003-08-12 | 2008-08-19 | White Box Robotics, Inc. | Robot with removable mounting elements |
JP2005059170A (en) | 2003-08-18 | 2005-03-10 | Honda Motor Co Ltd | Information collecting robot |
US7432949B2 (en) * | 2003-08-20 | 2008-10-07 | Christophe Remy | Mobile videoimaging, videocommunication, video production (VCVP) system |
US7982763B2 (en) | 2003-08-20 | 2011-07-19 | King Simon P | Portable pan-tilt camera and lighting unit for videoimaging, videoconferencing, production and recording |
US8135602B2 (en) | 2003-08-28 | 2012-03-13 | University Of Maryland, Baltimore | Techniques for delivering coordination data for a shared facility |
US20050049898A1 (en) | 2003-09-01 | 2005-03-03 | Maiko Hirakawa | Telemedicine system using the internet |
US7174238B1 (en) * | 2003-09-02 | 2007-02-06 | Stephen Eliot Zweig | Mobile robotic system with web server and digital radio links |
US20050065438A1 (en) | 2003-09-08 | 2005-03-24 | Miller Landon C.G. | System and method of capturing and managing information during a medical diagnostic imaging procedure |
JP2005103680A (en) * | 2003-09-29 | 2005-04-21 | Toshiba Corp | Monitoring system and monitoring robot |
IL158276A (en) | 2003-10-02 | 2010-04-29 | Radvision Ltd | Method for dynamically optimizing bandwidth allocation in variable bitrate (multi-rate) conferences |
EP1671480B1 (en) | 2003-10-07 | 2019-05-08 | Librestream Technologies Inc. | Camera for communication of streaming media to a remote client |
JP2005111083A (en) | 2003-10-09 | 2005-04-28 | Olympus Corp | Medical integrated system |
US7307651B2 (en) | 2003-10-16 | 2007-12-11 | Mark A. Chew | Two-way mobile video/audio/data interactive companion (MVIC) system |
KR100820743B1 (en) | 2003-10-21 | 2008-04-10 | 삼성전자주식회사 | Charging Apparatus For Mobile Robot |
JP4325853B2 (en) | 2003-10-31 | 2009-09-02 | 富士通株式会社 | Communication adapter device |
US7096090B1 (en) | 2003-11-03 | 2006-08-22 | Stephen Eliot Zweig | Mobile robotic router with web server and digital radio links |
US20050125083A1 (en) | 2003-11-10 | 2005-06-09 | Kiko Frederick J. | Automation apparatus and methods |
US20060010028A1 (en) | 2003-11-14 | 2006-01-12 | Herb Sorensen | Video shopper tracking system and method |
US7115102B2 (en) | 2003-11-17 | 2006-10-03 | Abbruscato Charles R | Electronic stethoscope system |
US7161322B2 (en) * | 2003-11-18 | 2007-01-09 | Intouch Technologies, Inc. | Robot with a manipulator arm |
US7092001B2 (en) | 2003-11-26 | 2006-08-15 | Sap Aktiengesellschaft | Video conferencing system with physical cues |
GB2408655B (en) | 2003-11-27 | 2007-02-28 | Motorola Inc | Communication system, communication units and method of ambience listening thereto |
US7624166B2 (en) | 2003-12-02 | 2009-11-24 | Fuji Xerox Co., Ltd. | System and methods for remote control of multiple display and devices |
US7292912B2 (en) | 2003-12-05 | 2007-11-06 | Lntouch Technologies, Inc. | Door knocker control system for a remote controlled teleconferencing robot |
US7813836B2 (en) | 2003-12-09 | 2010-10-12 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
EP1704710A4 (en) | 2003-12-24 | 2007-09-19 | Walker Digital Llc | Method and apparatus for automatically capturing and managing images |
US7613313B2 (en) | 2004-01-09 | 2009-11-03 | Hewlett-Packard Development Company, L.P. | System and method for control of audio field based on position of user |
US8824730B2 (en) | 2004-01-09 | 2014-09-02 | Hewlett-Packard Development Company, L.P. | System and method for control of video bandwidth based on pose of a person |
US20050154265A1 (en) | 2004-01-12 | 2005-07-14 | Miro Xavier A. | Intelligent nurse robot |
WO2005069890A2 (en) | 2004-01-15 | 2005-08-04 | Mega Robot, Inc. | System and method for reconfiguring an autonomous robot |
EP1709589B1 (en) | 2004-01-15 | 2013-01-16 | Algotec Systems Ltd. | Vessel centerline determination |
AU2004313840A1 (en) * | 2004-01-16 | 2005-07-28 | Yoshiaki Takida | Robot arm type automatic car washing device |
US7332890B2 (en) | 2004-01-21 | 2008-02-19 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
EP2073088B1 (en) | 2004-02-03 | 2011-06-15 | F. Robotics Aquisitions Ltd. | Robot docking station and robot for use therewith |
US7079173B2 (en) | 2004-02-04 | 2006-07-18 | Hewlett-Packard Development Company, L.P. | Displaying a wide field of view video image |
US20050182322A1 (en) | 2004-02-17 | 2005-08-18 | Liebel-Flarsheim Company | Injector auto purge |
US20050204438A1 (en) | 2004-02-26 | 2005-09-15 | Yulun Wang | Graphical interface for a remote presence system |
US7756614B2 (en) | 2004-02-27 | 2010-07-13 | Hewlett-Packard Development Company, L.P. | Mobile device control system |
CN1259891C (en) | 2004-03-17 | 2006-06-21 | 哈尔滨工业大学 | Robot assisted bone setting operation medical system with lock marrow internal nail |
JP2005270430A (en) | 2004-03-25 | 2005-10-06 | Funai Electric Co Ltd | Station for mobile robot |
KR20060131929A (en) | 2004-03-29 | 2006-12-20 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | A method for driving multiple applications by a common dialog management system |
US20050264649A1 (en) | 2004-03-29 | 2005-12-01 | Calvin Chang | Mobile video-interpreting mounting system |
US20050225634A1 (en) | 2004-04-05 | 2005-10-13 | Sam Brunetti | Closed circuit TV security system |
JP2005312096A (en) | 2004-04-16 | 2005-11-04 | Funai Electric Co Ltd | Electric apparatus |
TWI258259B (en) | 2004-04-20 | 2006-07-11 | Jason Yan | Automatic charging system of mobile robotic electronic device |
CA2563909A1 (en) | 2004-04-22 | 2005-11-03 | Albert Den Haan | Open control system architecture for mobile autonomous systems |
US7769705B1 (en) | 2004-05-21 | 2010-08-03 | Ray Anthony Luechtefeld | Method, artificially intelligent system and networked complex for facilitating group interactions |
US7949616B2 (en) | 2004-06-01 | 2011-05-24 | George Samuel Levy | Telepresence by human-assisted remote controlled devices and robots |
US7011538B2 (en) | 2004-06-02 | 2006-03-14 | Elementech International Co., Ltd. | Dual input charger with cable storing mechanism |
CN100461212C (en) | 2004-06-04 | 2009-02-11 | 松下电器产业株式会社 | Display control device, display control method, program, and portable apparatus |
US20050283414A1 (en) | 2004-06-17 | 2005-12-22 | Fernandes Curtis T | Remote system management |
JP4479372B2 (en) | 2004-06-25 | 2010-06-09 | ソニー株式会社 | Environmental map creation method, environmental map creation device, and mobile robot device |
US7292257B2 (en) | 2004-06-28 | 2007-11-06 | Microsoft Corporation | Interactive viewpoint video system and process |
US7539187B2 (en) * | 2004-07-07 | 2009-05-26 | Qvidium Technologies, Inc. | System and method for low-latency content-sensitive forward error correction |
US20060007943A1 (en) | 2004-07-07 | 2006-01-12 | Fellman Ronald D | Method and system for providing site independent real-time multimedia transport over packet-switched networks |
US8503340B1 (en) | 2004-07-11 | 2013-08-06 | Yongyong Xu | WiFi phone system |
US8077963B2 (en) | 2004-07-13 | 2011-12-13 | Yulun Wang | Mobile robot with a head-based movement mapping scheme |
US7551647B2 (en) * | 2004-07-19 | 2009-06-23 | Qvidium Technologies, Inc. | System and method for clock synchronization over packet-switched networks |
US7979157B2 (en) | 2004-07-23 | 2011-07-12 | Mcmaster University | Multi-purpose robotic operating system and method |
US7319469B2 (en) | 2004-07-26 | 2008-01-15 | Sony Corporation | Copy protection arrangement |
CN100394897C (en) | 2004-08-03 | 2008-06-18 | 张毓笠 | Compound vibrated ultrasonic bone surgery apparatus |
JP4912577B2 (en) | 2004-09-01 | 2012-04-11 | 本田技研工業株式会社 | Biped walking robot charging system |
US20060052676A1 (en) | 2004-09-07 | 2006-03-09 | Yulun Wang | Tele-presence system that allows for remote monitoring/observation and review of a patient and their medical records |
US7502498B2 (en) | 2004-09-10 | 2009-03-10 | Available For Licensing | Patient monitoring apparatus |
FI116749B (en) | 2004-09-14 | 2006-02-15 | Nokia Corp | A device comprising camera elements |
US20060064212A1 (en) * | 2004-09-22 | 2006-03-23 | Cycle Time Corporation | Reactive automated guided vehicle vision guidance system |
US20060066609A1 (en) | 2004-09-28 | 2006-03-30 | Iodice Arthur P | Methods and systems for viewing geometry of an object model generated by a CAD tool |
US8060376B2 (en) | 2004-10-01 | 2011-11-15 | Nomoreclipboard, Llc | System and method for collection of community health and administrative data |
US7720570B2 (en) | 2004-10-01 | 2010-05-18 | Redzone Robotics, Inc. | Network architecture for remote robot with interchangeable tools |
JP2006109094A (en) | 2004-10-05 | 2006-04-20 | Nec Software Kyushu Ltd | Remote controller, remote control system, and remote control method |
WO2006042211A2 (en) | 2004-10-07 | 2006-04-20 | University Of Florida Research Foundation, Inc. | Radiographic medical imaging system using robot mounted source and sensor for dynamic image capture and tomography |
US20060087746A1 (en) | 2004-10-22 | 2006-04-27 | Kenneth Lipow | Remote augmented motor-sensory interface for surgery |
KR100645379B1 (en) | 2004-10-29 | 2006-11-15 | 삼성광주전자 주식회사 | A robot controlling system and a robot control method |
KR100703692B1 (en) | 2004-11-03 | 2007-04-05 | 삼성전자주식회사 | System, apparatus and method for improving readability of a map representing objects in space |
US20060098573A1 (en) | 2004-11-08 | 2006-05-11 | Beer John C | System and method for the virtual aggregation of network links |
US20060173712A1 (en) | 2004-11-12 | 2006-08-03 | Dirk Joubert | Portable medical information system |
US8725990B1 (en) | 2004-11-15 | 2014-05-13 | Nvidia Corporation | Configurable SIMD engine with high, low and mixed precision modes |
US7522528B2 (en) | 2004-11-18 | 2009-04-21 | Qvidium Technologies, Inc. | Low-latency automatic repeat request packet recovery mechanism for media streams |
US20060122482A1 (en) | 2004-11-22 | 2006-06-08 | Foresight Imaging Inc. | Medical image acquisition system for receiving and transmitting medical images instantaneously and method of using the same |
CA2589122C (en) | 2004-12-03 | 2015-07-21 | Mckesson Automation Inc. | Mobile point of care system and associated method and computer program product |
US7400578B2 (en) | 2004-12-16 | 2008-07-15 | International Business Machines Corporation | Method and system for throttling network transmissions using per-receiver bandwidth control at the application layer of the transmitting server |
KR100499770B1 (en) | 2004-12-30 | 2005-07-07 | 주식회사 아이오. 테크 | Network based robot control system |
KR100497310B1 (en) | 2005-01-10 | 2005-06-23 | 주식회사 아이오. 테크 | Selection and playback method of multimedia content having motion information in network based robot system |
US7395508B2 (en) | 2005-01-14 | 2008-07-01 | International Business Machines Corporation | Method and apparatus for providing an interactive presentation environment |
US7222000B2 (en) | 2005-01-18 | 2007-05-22 | Intouch Technologies, Inc. | Mobile videoconferencing platform with automatic shut-off features |
JP2006203821A (en) | 2005-01-24 | 2006-08-03 | Sony Corp | Automatic transmission system |
US20060173708A1 (en) | 2005-01-28 | 2006-08-03 | Circle Of Care, Inc. | System and method for providing health care |
KR100636270B1 (en) | 2005-02-04 | 2006-10-19 | 삼성전자주식회사 | Home network system and control method thereof |
US20060176832A1 (en) | 2005-02-04 | 2006-08-10 | Sean Miceli | Adaptive bit-rate adjustment of multimedia communications channels using transport control protocol |
US7944469B2 (en) | 2005-02-14 | 2011-05-17 | Vigilos, Llc | System and method for using self-learning rules to enable adaptive security monitoring |
US20060189393A1 (en) * | 2005-02-22 | 2006-08-24 | Albert Edery | Real action network gaming system |
US20060224781A1 (en) | 2005-03-10 | 2006-10-05 | Jen-Ming Tsao | Method and apparatus for controlling a user interface of a consumer electronic device |
US7644898B2 (en) | 2005-03-28 | 2010-01-12 | Compview Medical, Llc | Medical boom with articulated arms and a base with preconfigured removable modular racks used for storing electronic and utility equipment |
KR100964513B1 (en) | 2005-04-15 | 2010-06-21 | 뉴저지 인스티튜트 오브 테크놀로지 | Dynamic bandwidth allocation and service differentiation for broadband passive optical networks |
US7680038B1 (en) | 2005-04-25 | 2010-03-16 | Electronic Arts, Inc. | Dynamic bandwidth detection and response for online games |
US7864209B2 (en) | 2005-04-28 | 2011-01-04 | Apple Inc. | Audio processing in a multi-participant conference |
CA2605239A1 (en) | 2005-05-02 | 2006-11-09 | University Of Virginia Patent Foundation | Systems, devices, and methods for interpreting movement |
EP1910956A2 (en) | 2005-05-04 | 2008-04-16 | Board of Regents, The University of Texas System | System, method and program product for delivering medical services from a remote location |
US7240879B1 (en) | 2005-05-06 | 2007-07-10 | United States of America as represented by the Administration of the National Aeronautics and Space Administration | Method and associated apparatus for capturing, servicing and de-orbiting earth satellites using robotics |
US20060259193A1 (en) | 2005-05-12 | 2006-11-16 | Yulun Wang | Telerobotic system with a dual application screen presentation |
KR100594165B1 (en) | 2005-05-24 | 2006-06-28 | 삼성전자주식회사 | Robot controlling system based on network and method for controlling velocity of robot in the robot controlling system |
JP2007007040A (en) | 2005-06-29 | 2007-01-18 | Hitachi Medical Corp | Surgery support system |
CN1730894A (en) | 2005-07-06 | 2006-02-08 | 洪敏斐 | Adjustable ladder for passenger transfer demand |
GB2428110A (en) | 2005-07-06 | 2007-01-17 | Armstrong Healthcare Ltd | A robot and method of registering a robot. |
US7379664B2 (en) | 2005-07-26 | 2008-05-27 | Tinkers & Chance | Remote view and controller for a camera |
US7903671B2 (en) * | 2005-08-04 | 2011-03-08 | Cisco Technology, Inc. | Service for NAT traversal using IPSEC |
WO2007016741A1 (en) | 2005-08-11 | 2007-02-15 | Beon Light Corporation Pty Ltd | A sensor with selectable sensing orientation used for controlling an electrical device |
KR100749579B1 (en) * | 2005-09-05 | 2007-08-16 | 삼성광주전자 주식회사 | Moving Robot having a plurality of changeable work module and Control Method for the same |
US7643051B2 (en) | 2005-09-09 | 2010-01-05 | Roy Benjamin Sandberg | Mobile video teleconferencing system and control method |
EP1763243A3 (en) | 2005-09-09 | 2008-03-26 | LG Electronics Inc. | Image capturing and displaying method and system |
JP2007081646A (en) | 2005-09-13 | 2007-03-29 | Toshiba Corp | Transmitting/receiving device |
CN1743144A (en) | 2005-09-29 | 2006-03-08 | 天津理工大学 | Internet-based robot long-distance control method |
WO2007041295A2 (en) | 2005-09-30 | 2007-04-12 | Irobot Corporation | Companion robot for personal interaction |
US9198728B2 (en) | 2005-09-30 | 2015-12-01 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
US8098603B2 (en) | 2005-09-30 | 2012-01-17 | Intel Corporation | Bandwidth adaptation in a wireless network |
AU2006347947A1 (en) | 2005-10-07 | 2008-03-13 | Intensive Care On-Line | On-line healthcare consultation services system and method of using same |
GB0520576D0 (en) | 2005-10-10 | 2005-11-16 | Applied Generics Ltd | Using traffic monitoring information to provide better driver route planning |
US20070093279A1 (en) | 2005-10-12 | 2007-04-26 | Craig Janik | Wireless headset system for the automobile |
US7733224B2 (en) | 2006-06-30 | 2010-06-08 | Bao Tran | Mesh network personal emergency response appliance |
ES2726017T3 (en) | 2005-10-28 | 2019-10-01 | Viasat Inc | Adaptive coding and modulation for broadband data transmission |
US7751780B2 (en) | 2005-11-23 | 2010-07-06 | Qualcomm Incorporated | Method and apparatus for collecting information from a wireless device |
US20070120965A1 (en) | 2005-11-25 | 2007-05-31 | Sandberg Roy B | Mobile video teleconferencing authentication and management system and method |
EP2544065B1 (en) | 2005-12-02 | 2017-02-08 | iRobot Corporation | Robot system |
US7843832B2 (en) | 2005-12-08 | 2010-11-30 | Electronics And Telecommunications Research Institute | Dynamic bandwidth allocation apparatus and method |
US20070135967A1 (en) | 2005-12-08 | 2007-06-14 | Jung Seung W | Apparatus and method of controlling network-based robot |
US8190238B2 (en) | 2005-12-09 | 2012-05-29 | Hansen Medical, Inc. | Robotic catheter system and methods |
US7480870B2 (en) | 2005-12-23 | 2009-01-20 | Apple Inc. | Indication of progress towards satisfaction of a user input condition |
US8577538B2 (en) | 2006-07-14 | 2013-11-05 | Irobot Corporation | Method and system for controlling a remote vehicle |
JP2007232208A (en) | 2006-01-31 | 2007-09-13 | Mitsuboshi Belting Ltd | Toothed belt and tooth cloth used therefor |
US7719229B2 (en) | 2006-02-14 | 2010-05-18 | Honda Motor Co., Ltd. | Charging system for legged mobile robot |
US7769492B2 (en) | 2006-02-22 | 2010-08-03 | Intouch Technologies, Inc. | Graphical interface for a remote presence system |
JP4728860B2 (en) | 2006-03-29 | 2011-07-20 | 株式会社東芝 | Information retrieval device |
EP2027806A1 (en) | 2006-04-04 | 2009-02-25 | Samsung Electronics Co., Ltd. | Robot cleaner system having robot cleaner and docking station |
US20100171826A1 (en) | 2006-04-12 | 2010-07-08 | Store Eyes, Inc. | Method for measuring retail display and compliance |
US7539533B2 (en) | 2006-05-16 | 2009-05-26 | Bao Tran | Mesh network monitoring appliance |
US10028789B2 (en) | 2006-05-19 | 2018-07-24 | Mako Surgical Corp. | Method and apparatus for controlling a haptic device |
JP2007316966A (en) | 2006-05-26 | 2007-12-06 | Fujitsu Ltd | Mobile robot, control method thereof and program |
US8849679B2 (en) | 2006-06-15 | 2014-09-30 | Intouch Technologies, Inc. | Remote controlled robot system that provides medical images |
US20070291128A1 (en) | 2006-06-15 | 2007-12-20 | Yulun Wang | Mobile teleconferencing system that projects an image provided by a mobile robot |
US7920962B2 (en) | 2006-06-19 | 2011-04-05 | Kiva Systems, Inc. | System and method for coordinating movement of mobile drive units |
US8649899B2 (en) | 2006-06-19 | 2014-02-11 | Amazon Technologies, Inc. | System and method for maneuvering a mobile drive unit |
US7587260B2 (en) | 2006-07-05 | 2009-09-08 | Battelle Energy Alliance, Llc | Autonomous navigation system and method |
US8073564B2 (en) | 2006-07-05 | 2011-12-06 | Battelle Energy Alliance, Llc | Multi-robot control interface |
US8843244B2 (en) | 2006-10-06 | 2014-09-23 | Irobot Corporation | Autonomous behaviors for a remove vehicle |
US20080033641A1 (en) | 2006-07-25 | 2008-02-07 | Medalia Michael J | Method of generating a three-dimensional interactive tour of a geographic location |
US7599290B2 (en) | 2006-08-11 | 2009-10-06 | Latitude Broadband, Inc. | Methods and systems for providing quality of service in packet-based core transport networks |
US8564544B2 (en) | 2006-09-06 | 2013-10-22 | Apple Inc. | Touch screen device, method, and graphical user interface for customizing display of content category icons |
US7693757B2 (en) | 2006-09-21 | 2010-04-06 | International Business Machines Corporation | System and method for performing inventory using a mobile inventory robot |
US8180486B2 (en) | 2006-10-02 | 2012-05-15 | Honda Motor Co., Ltd. | Mobile robot and controller for same |
US20070170886A1 (en) | 2006-10-03 | 2007-07-26 | Plishner Paul J | Vehicle equipped for providing solar electric power for off-vehicle use and systems in support thereof |
US7761185B2 (en) | 2006-10-03 | 2010-07-20 | Intouch Technologies, Inc. | Remote presence display through remotely controlled robot |
US7654348B2 (en) | 2006-10-06 | 2010-02-02 | Irobot Corporation | Maneuvering robotic vehicles having a positionable sensor head |
US20080126132A1 (en) | 2006-11-28 | 2008-05-29 | General Electric Company | Smart bed system |
US8095238B2 (en) | 2006-11-29 | 2012-01-10 | Irobot Corporation | Robot development platform |
US7630314B2 (en) | 2006-12-05 | 2009-12-08 | Latitue Broadband, Inc. | Methods and systems for dynamic bandwidth management for quality of service in IP Core and access networks |
TWI330305B (en) | 2006-12-28 | 2010-09-11 | Ind Tech Res Inst | Method for routing a robotic apparatus to a service station and robotic apparatus service system using thereof |
US7557758B2 (en) | 2007-03-26 | 2009-07-07 | Broadcom Corporation | Very high frequency dielectric substrate wave guide |
US20080232763A1 (en) | 2007-03-15 | 2008-09-25 | Colin Brady | System and method for adjustment of video playback resolution |
US8265793B2 (en) | 2007-03-20 | 2012-09-11 | Irobot Corporation | Mobile robot for telecommunication |
WO2008156910A2 (en) | 2007-04-20 | 2008-12-24 | Innovation First, Inc. | Managing communications between robots and controllers |
US8305914B2 (en) | 2007-04-30 | 2012-11-06 | Hewlett-Packard Development Company, L.P. | Method for signal adjustment through latency control |
KR101168481B1 (en) | 2007-05-09 | 2012-07-26 | 아이로보트 코퍼레이션 | Autonomous coverage robot |
US9160783B2 (en) | 2007-05-09 | 2015-10-13 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
US8175677B2 (en) | 2007-06-07 | 2012-05-08 | MRI Interventions, Inc. | MRI-guided medical interventional systems and methods |
US8199641B1 (en) | 2007-07-25 | 2012-06-12 | Xangati, Inc. | Parallel distributed network monitoring |
KR20090012542A (en) | 2007-07-30 | 2009-02-04 | 주식회사 마이크로로봇 | System for home monitoring using robot |
US8400491B1 (en) | 2007-08-01 | 2013-03-19 | Sprint Communications Company L.P. | Use-based adaptive video client for a bandwidth-constrained network |
US7631833B1 (en) | 2007-08-03 | 2009-12-15 | The United States Of America As Represented By The Secretary Of The Navy | Smart counter asymmetric threat micromunition with autonomous target selection and homing |
US8639797B1 (en) | 2007-08-03 | 2014-01-28 | Xangati, Inc. | Network monitoring of behavior probability density |
US20090044334A1 (en) | 2007-08-13 | 2009-02-19 | Valence Broadband, Inc. | Automatically adjusting patient platform support height in response to patient related events |
US8116910B2 (en) * | 2007-08-23 | 2012-02-14 | Intouch Technologies, Inc. | Telepresence robot with a printer |
KR101330734B1 (en) | 2007-08-24 | 2013-11-20 | 삼성전자주식회사 | Robot cleaner system having robot cleaner and docking station |
US20090070135A1 (en) * | 2007-09-10 | 2009-03-12 | General Electric Company | System and method for improving claims processing in the healthcare industry |
US9060094B2 (en) | 2007-09-30 | 2015-06-16 | Optical Fusion, Inc. | Individual adjustment of audio and video properties in network conferencing |
US20090248200A1 (en) | 2007-10-22 | 2009-10-01 | North End Technologies | Method & apparatus for remotely operating a robotic device linked to a communications network |
US8045458B2 (en) | 2007-11-08 | 2011-10-25 | Mcafee, Inc. | Prioritizing network traffic |
US7987069B2 (en) | 2007-11-12 | 2011-07-26 | Bee Cave, Llc | Monitoring patient support exiting and initiating response |
JP2009125133A (en) | 2007-11-20 | 2009-06-11 | Asano Dental Inc | Dental treatment support system and x-ray sensor for the same |
US7908393B2 (en) | 2007-12-04 | 2011-03-15 | Sony Computer Entertainment Inc. | Network bandwidth detection, distribution and traffic prioritization |
US20090164657A1 (en) | 2007-12-20 | 2009-06-25 | Microsoft Corporation | Application aware rate control |
US20090171170A1 (en) | 2007-12-28 | 2009-07-02 | Nellcor Puritan Bennett Llc | Medical Monitoring With Portable Electronic Device System And Method |
US20090102919A1 (en) | 2007-12-31 | 2009-04-23 | Zamierowski David S | Audio-video system and method for telecommunications |
US20090177641A1 (en) | 2008-01-03 | 2009-07-09 | General Electric Company | Patient monitoring network and method of using the patient monitoring network |
KR100971609B1 (en) | 2008-03-05 | 2010-07-20 | 주식회사 팬택 | Method and system for improving performance of connection to receiver |
US8374171B2 (en) | 2008-03-06 | 2013-02-12 | Pantech Co., Ltd. | Method for reducing the risk of call connection failure and system to perform the method |
US8244469B2 (en) | 2008-03-16 | 2012-08-14 | Irobot Corporation | Collaborative engagement for target identification and tracking |
US10875182B2 (en) | 2008-03-20 | 2020-12-29 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
CA2659698C (en) | 2008-03-21 | 2020-06-16 | Dressbot Inc. | System and method for collaborative shopping, business and entertainment |
US20100088232A1 (en) | 2008-03-21 | 2010-04-08 | Brian Gale | Verification monitor for critical test result delivery systems |
US8179418B2 (en) | 2008-04-14 | 2012-05-15 | Intouch Technologies, Inc. | Robotic based health care system |
US8170241B2 (en) * | 2008-04-17 | 2012-05-01 | Intouch Technologies, Inc. | Mobile tele-presence system with a microphone system |
US9193065B2 (en) * | 2008-07-10 | 2015-11-24 | Intouch Technologies, Inc. | Docking system for a tele-presence robot |
US9842192B2 (en) | 2008-07-11 | 2017-12-12 | Intouch Technologies, Inc. | Tele-presence robot system with multi-cast features |
CN101640295A (en) | 2008-07-31 | 2010-02-03 | 鸿富锦精密工业(深圳)有限公司 | Charging device |
US8036915B2 (en) * | 2008-07-31 | 2011-10-11 | Cosortium of Rheumatology Researchers of North America, Inc. | System and method for collecting and managing patient data |
US8476555B2 (en) | 2008-08-29 | 2013-07-02 | Illinois Tool Works Inc. | Portable welding wire feed system and method |
JP5040865B2 (en) | 2008-09-08 | 2012-10-03 | 日本電気株式会社 | Robot control system, remote management device, remote management method and program |
US8144182B2 (en) | 2008-09-16 | 2012-03-27 | Biscotti Inc. | Real time video communications system |
US8340819B2 (en) | 2008-09-18 | 2012-12-25 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
US8180712B2 (en) | 2008-09-30 | 2012-05-15 | The Nielsen Company (Us), Llc | Methods and apparatus for determining whether a media presentation device is in an on state or an off state |
US8000235B2 (en) | 2008-10-05 | 2011-08-16 | Contextream Ltd. | Bandwidth allocation method and apparatus |
US20100145479A1 (en) | 2008-10-09 | 2010-06-10 | G2 Software Systems, Inc. | Wireless Portable Sensor Monitoring System |
US8996165B2 (en) | 2008-10-21 | 2015-03-31 | Intouch Technologies, Inc. | Telepresence robot with a camera boom |
EP2359598A1 (en) | 2008-11-21 | 2011-08-24 | Stryker Corporation | Wireless operating room communication system including video output device and video display |
US8463435B2 (en) | 2008-11-25 | 2013-06-11 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US7995493B2 (en) | 2008-12-23 | 2011-08-09 | Airvana, Corp. | Estimating bandwidth in communication networks |
US8462681B2 (en) | 2009-01-15 | 2013-06-11 | The Trustees Of Stevens Institute Of Technology | Method and apparatus for adaptive transmission of sensor data with latency controls |
US8849680B2 (en) | 2009-01-29 | 2014-09-30 | Intouch Technologies, Inc. | Documentation through a remote presence robot |
US8418073B2 (en) | 2009-03-09 | 2013-04-09 | Intuitive Surgical Operations, Inc. | User interfaces for electrosurgical tools in robotic surgical systems |
US8423284B2 (en) | 2009-04-15 | 2013-04-16 | Abalta Technologies, Inc. | Monitoring, recording and testing of navigation systems |
US8897920B2 (en) | 2009-04-17 | 2014-11-25 | Intouch Technologies, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
US8340654B2 (en) | 2009-05-26 | 2012-12-25 | Lextech Labs Llc | Apparatus and method for video display and control for portable device |
JP5430246B2 (en) | 2009-06-23 | 2014-02-26 | 任天堂株式会社 | GAME DEVICE AND GAME PROGRAM |
US8626499B2 (en) | 2009-07-21 | 2014-01-07 | Vivu, Inc. | Multimedia signal latency management by skipping |
KR20120068879A (en) | 2009-08-26 | 2012-06-27 | 인터치 테크놀로지스 인코퍼레이티드 | Portable telepresence apparatus |
US11399153B2 (en) | 2009-08-26 | 2022-07-26 | Teladoc Health, Inc. | Portable telepresence apparatus |
US8384755B2 (en) | 2009-08-26 | 2013-02-26 | Intouch Technologies, Inc. | Portable remote presence robot |
US8244402B2 (en) | 2009-09-22 | 2012-08-14 | GM Global Technology Operations LLC | Visual perception system and method for a humanoid robot |
CA2715362A1 (en) | 2009-09-22 | 2011-03-22 | Thwapr, Inc. | Interoperable mobile media sharing |
US9626826B2 (en) | 2010-06-10 | 2017-04-18 | Nguyen Gaming Llc | Location-based real-time casino data |
US20110153198A1 (en) | 2009-12-21 | 2011-06-23 | Navisus LLC | Method for the display of navigation instructions using an augmented-reality concept |
US8212533B2 (en) | 2009-12-23 | 2012-07-03 | Toyota Motor Engineering & Manufacturing North America, Inc. | Robot battery charging apparatuses and methods |
US20110187875A1 (en) | 2010-02-04 | 2011-08-04 | Intouch Technologies, Inc. | Robot face used in a sterile environment |
US11154981B2 (en) | 2010-02-04 | 2021-10-26 | Teladoc Health, Inc. | Robot user interface for telepresence robot system |
US9823342B2 (en) | 2010-02-09 | 2017-11-21 | Aeroscout, Ltd. | System and method for mobile monitoring of non-associated tags |
US8670017B2 (en) | 2010-03-04 | 2014-03-11 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US8837900B2 (en) | 2010-05-11 | 2014-09-16 | Cisco Technology, Inc. | Unintended video recording detection in a video recording device |
US10343283B2 (en) | 2010-05-24 | 2019-07-09 | Intouch Technologies, Inc. | Telepresence robot system that can be accessed by a cellular phone |
US10808882B2 (en) | 2010-05-26 | 2020-10-20 | Intouch Technologies, Inc. | Tele-robotic system with a robot face placed on a chair |
US8429674B2 (en) * | 2010-07-20 | 2013-04-23 | Apple Inc. | Maintaining data states upon forced exit |
US8522167B2 (en) | 2010-08-09 | 2013-08-27 | Microsoft Corporation | Relationship visualization and graphical interaction model in it client management |
US8832293B2 (en) | 2010-09-03 | 2014-09-09 | Hulu, LLC | Bandwidth allocation with modified seek function |
US8781629B2 (en) | 2010-09-22 | 2014-07-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Human-robot interface apparatuses and methods of controlling robots |
EP2820995B1 (en) | 2011-01-07 | 2016-07-06 | iRobot Corporation | Evacuation station system |
US12093036B2 (en) | 2011-01-21 | 2024-09-17 | Teladoc Health, Inc. | Telerobotic system with a dual application screen presentation |
US8532860B2 (en) | 2011-02-25 | 2013-09-10 | Intellibot Robotics Llc | Methods and systems for automatically yielding to high-priority traffic |
US20140139616A1 (en) | 2012-01-27 | 2014-05-22 | Intouch Technologies, Inc. | Enhanced Diagnostics for a Telepresence Robot |
US8836751B2 (en) | 2011-11-08 | 2014-09-16 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
US9258459B2 (en) | 2012-01-24 | 2016-02-09 | Radical Switchcam Llc | System and method for compiling and playing a multi-channel video |
US8902278B2 (en) | 2012-04-11 | 2014-12-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US10152467B2 (en) | 2012-08-13 | 2018-12-11 | Google Llc | Managing a sharing of media content among client computers |
-
2007
- 2007-05-09 US US11/801,491 patent/US9160783B2/en active Active
-
2008
- 2008-04-30 EP EP08767464A patent/EP2145274A1/en not_active Withdrawn
- 2008-04-30 CN CN200880023915A patent/CN101730894A/en active Pending
- 2008-04-30 WO PCT/US2008/005572 patent/WO2008140685A1/en active Application Filing
- 2008-04-30 JP JP2010507404A patent/JP2010532109A/en active Pending
- 2008-04-30 KR KR1020097025363A patent/KR20100019479A/en not_active Application Discontinuation
-
2009
- 2009-11-13 IN IN7383DEN2009 patent/IN2009DN07383A/en unknown
-
2015
- 2015-10-09 US US14/879,762 patent/US10682763B2/en active Active
-
2020
- 2020-06-15 US US16/902,079 patent/US20210178597A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6289263B1 (en) * | 1997-12-16 | 2001-09-11 | Board Of Trustees Operating Michigan State University | Spherical mobile robot |
US20070021871A1 (en) * | 2002-07-25 | 2007-01-25 | Yulun Wang | Medical tele-robotic system |
US20070046237A1 (en) * | 2005-04-25 | 2007-03-01 | Sridhar Lakshmanan | Miniature surveillance robot |
US20060293788A1 (en) * | 2005-06-26 | 2006-12-28 | Pavel Pogodin | Robotic floor care appliance with improved remote management |
Also Published As
Publication number | Publication date |
---|---|
KR20100019479A (en) | 2010-02-18 |
US20080281467A1 (en) | 2008-11-13 |
US10682763B2 (en) | 2020-06-16 |
CN101730894A (en) | 2010-06-09 |
JP2010532109A (en) | 2010-09-30 |
US9160783B2 (en) | 2015-10-13 |
IN2009DN07383A (en) | 2015-07-24 |
US20160031085A1 (en) | 2016-02-04 |
US20210178597A1 (en) | 2021-06-17 |
EP2145274A1 (en) | 2010-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210178597A1 (en) | Robot system that operates through a network firewall | |
US10889000B2 (en) | Medical tele-robotic system with a master remote station with an arbitrator | |
US8116910B2 (en) | Telepresence robot with a printer | |
US10241507B2 (en) | Mobile robot with a head-based movement mapping scheme | |
US20190088364A1 (en) | Telepresence robot with a camera boom | |
US9616576B2 (en) | Mobile tele-presence system with a microphone system | |
EP1928310B1 (en) | A multi-camera mobile teleconferencing platform | |
US7289883B2 (en) | Apparatus and method for patient rounding with a remote controlled robot | |
WO2006078611A2 (en) | A mobile videoconferencing platform with automatic shut-off features | |
WO2010065257A1 (en) | A remote controlled robot system that provides medical images | |
EP2027716A2 (en) | Mobile teleconferencing system that projects an image provided by a mobile robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880023915.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08767464 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008767464 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010507404 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7383/DELNP/2009 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20097025363 Country of ref document: KR Kind code of ref document: A |