WO2008136314A9 - 高分子複合材料、その製造装置及びその製造方法 - Google Patents

高分子複合材料、その製造装置及びその製造方法 Download PDF

Info

Publication number
WO2008136314A9
WO2008136314A9 PCT/JP2008/057775 JP2008057775W WO2008136314A9 WO 2008136314 A9 WO2008136314 A9 WO 2008136314A9 JP 2008057775 W JP2008057775 W JP 2008057775W WO 2008136314 A9 WO2008136314 A9 WO 2008136314A9
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
composite material
polymer composite
kneading
synthetic polymer
Prior art date
Application number
PCT/JP2008/057775
Other languages
English (en)
French (fr)
Other versions
WO2008136314A1 (ja
Inventor
孝 大野
信夫 白石
Original Assignee
アグリフューチャー・じょうえつ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007263879A external-priority patent/JP4660528B2/ja
Priority claimed from JP2007263880A external-priority patent/JP4638903B2/ja
Application filed by アグリフューチャー・じょうえつ株式会社 filed Critical アグリフューチャー・じょうえつ株式会社
Priority to EP08740765A priority Critical patent/EP2153963A1/en
Priority to US12/598,555 priority patent/US20100136324A1/en
Priority to CN200880014294A priority patent/CN101678564A/zh
Publication of WO2008136314A1 publication Critical patent/WO2008136314A1/ja
Publication of WO2008136314A9 publication Critical patent/WO2008136314A9/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • B29B7/847Removing of gaseous components before or after mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/484Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with two shafts provided with screws, e.g. one screw being shorter than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/842Removing liquids in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/86Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/397Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • C08L3/06Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/12Amylose; Amylopectin; Degradation products thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2391/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2391/06Waxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/253Cellulosic [e.g., wood, paper, cork, rayon, etc.]

Definitions

  • the present invention belongs to a technical field related to a polymer composite material obtained by mixing a synthetic polymer and a biomass-derived component, and particularly relates to a manufacturing apparatus for manufacturing such a polymer composite material and a manufacturing method thereof.
  • the biomass refers to an organic resource that can be regenerated among animals and plants that grow by solar energy.
  • lignocellulose or plant-based biomass mainly composed of cellulose (such as thinning and building demolition materials such as wood industry and pulp industry) , Etc.), starchy biomass mainly composed of amylose or amylopectin (rice, wheat, corn, potato, sweet potato, tapioca, etc.), chitin (or chitosan) based biomass derived from crustacean animals Gala etc.).
  • biomass-derived components by combining these biomass-derived components and synthetic polymers, the amount of synthetic polymers produced from fossil resources can be reduced, contributing to the preservation of the global environment, Research is underway to create polymer composite materials that can be expressed.
  • a polymer composite material how to disperse the biomass-derived component finely and uniformly in the matrix of the synthetic polymer is an important study subject.
  • biomass has high crystallinity based on strong hydrogen bonds between molecules and has a higher-order structure such as three-dimensional crosslinking.
  • the biomass powder even when mechanically pulverized, the biomass powder has a property of easily agglomerating. For this reason, it is generally not easy to finely and uniformly disperse the biomass-derived component in the matrix of the synthetic polymer.
  • the starchy biomass is subjected to a hydrous treatment and then heated and kneaded with a synthetic polymer main ingredient to gelatinize ( ⁇ -form) the starchy material, thereby making the mother
  • a technique for finely and uniformly dispersing a phase is known (for example, Patent Document 1).
  • a high-pressure homogenizer or the like is used to refine these biomasses in an aqueous solvent to produce a homogeneous suspension.
  • distributes a biomass origin component finely and uniformly to a parent phase by heat-kneading this suspension with the main ingredient of a synthetic polymer is well-known (for example, patent document 2).
  • the conventional technology described above has a problem in which the phenomenon that the biomass-derived components finely and uniformly dispersed during the kneading process partially re-aggregate in the dehydration process that is abruptly performed by releasing the atmospheric pressure is unavoidable. It was. For this reason, it can be said that the polymer composite material manufactured by the above-described conventional technology has an insufficient degree of achievement of the refinement and uniformization of the dispersed phase with respect to the matrix phase.
  • An object of the present invention is to provide a technique for manufacturing a polymer composite material in which a dispersed phase of a biomass-derived component in a matrix phase of a synthetic polymer is highly refined and homogenized in order to solve the above-described problems. Objective.
  • the present invention sets a kneaded material containing at least an excess water-containing material of the biomass-derived component in a production apparatus for producing a polymer composite material obtained by mixing a synthetic polymer and a biomass-derived component. Kneading means for kneading at the kneading temperature, dehydrating means for dehydrating the kneaded material containing the main agent and the excess hydrous material at a set pressure lower than the saturated vapor pressure at the kneading temperature and higher than atmospheric pressure, and dehydrating And a take-out means for taking out the kneaded product.
  • the present invention provides a technique for producing a polymer composite material in which a dispersed phase of biomass-derived components in a matrix phase of a synthetic polymer is highly refined and homogenized.
  • (A) is the longitudinal cross-sectional view which follows the rotating shaft which shows 1st Embodiment of the manufacturing apparatus of the polymer composite material which concerns on this invention
  • (b) is a fragmentary sectional view which expands and shows the part of the dehydration means.
  • (C) is a state diagram of water used for explaining the function of the dehydrating means.
  • (A) is a longitudinal cross-sectional view along the rotating shaft which shows 2nd Embodiment of the manufacturing apparatus of the polymeric composite material which concerns on this invention
  • (b) is a longitudinal cross-sectional view along the rotating shaft which shows 3rd Embodiment. is there.
  • (A)-(c) is a longitudinal cross-sectional view orthogonal to the rotating shaft of the manufacturing apparatus of the polymeric composite material which shows 4th Embodiment.
  • FIG. 1A is a longitudinal sectional view showing a first embodiment of a polymer composite material manufacturing apparatus 10 (hereinafter simply referred to as “manufacturing apparatus”) according to the present invention.
  • the manufacturing apparatus 10 includes an input unit 12 (hopper), a kneading unit 50, a dehydrating unit 40, and a forced pressure reducing device 30.
  • the kneading means 50 includes a driving means 11, a cylinder 13, and a screw 15.
  • the manufacturing apparatus 10 is configured as described above, when the raw material of the polymer composite material is input by the input means 12, the raw material is kneaded by the screw 15 rotating in the cylinder 13 and dehydrated. It is dehydrated by the means 40 and the forced decompression device 30 and is taken out from the take-out means 17 as a polymer composite material melt.
  • the polymer composite melt is discharged in a bundle through a die (not shown) provided in the take-out means 17 and having dozens of small holes. Further, after solidifying through the cooling bath, it is drawn into a pelletizer (not shown) and cut into rice granular pellets.
  • the driving means 11 is connected to one end of the screw 15 to rotate the screw 15 and is a power source for kneading the raw material of the polymer composite material.
  • FIG. 1 only one screw 15 is shown, but the manufacturing apparatus 10 is not limited to such a single-shaft type, and a plurality of screws 15 are configured in parallel. The case of an axis is also included. Thus, in the manufacturing apparatus 10 configured with multiple axes, the drive unit 11 rotates each of the plurality of installed screws 15. In this case, the direction and speed of each of the plurality of screws 15 are arbitrarily set.
  • the charging means 12 is for charging the main component of the synthetic polymer, which is the raw material of the polymer composite material, and the excess hydrated material of the biomass-derived component into the cylinder 13.
  • the amount and the mixing ratio of the charged material can be arbitrarily set by the supply units 12a and 12b that supply the synthetic polymer and the excess hydrated biomass-derived component, respectively.
  • the charging means 12 is filled with water necessary for gelatinizing the biomass-derived component, as will be described later, to become an excess water content. There are cases where water injection means are provided.
  • thermoplastic resin that melts by heating or a thermosetting resin that cures by heating
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • PP polypropylene
  • EVA ethylene-vinyl acetate copolymer
  • PC polycarbonate resin
  • PET polyethylene terephthalate resin
  • ABS acrylic / butylene / styrene
  • these thermoplastic resins may be used as a mixture of two or more.
  • thermoplastic polymers such as polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL) are used, all of them are reduced to soil.
  • PLA polylactic acid
  • PBS polybutylene succinate
  • PCL polycaprolactone
  • a polymer composite material having properties and suitable from the viewpoint of environmental protection can be obtained.
  • polyolefin resins to which additives that impart biodegradability such as Tegranobon (trademark) and ECM Masterbatch (trade name) of Macrotech Research (USA) are added. To preferred.
  • thermosetting polymers examples include various known thermosetting resins such as epoxy resins, phenol resins, unsaturated polyester resins, urea resins, melamine resins, polyimides, diallyl phthalates, and alkyds. .
  • thermosetting polymers can be formed into molded articles by adding a known curing agent to the main agent, maintaining a predetermined shape, and setting the curing temperature to a polymerization reaction.
  • the main component of these thermosetting polymers can be liquid, solid, or semi-solid because the monomer before the polymerization reaction is a low molecular weight compound, but it exhibits a fluid state at least when the temperature is raised. Is. Therefore, the main component of the thermosetting polymer and the biomass-derived component are kneaded at a kneading temperature set to a temperature lower than the curing temperature.
  • the alkyd resin is a synthetic polymer formed by condensation polymerization of a polyhydric alcohol and a polybasic acid, and this polybasic acid is formed on the surface of the biomass-derived component during kneading. An ester bond is also formed with a hydroxy group (—OH). For this reason, since the affinity of the interface between the synthetic polymer and the biomass-derived component becomes good, a fine and uniform dispersion structure can be obtained.
  • polyhydric alcohols include propylene glycol, glycerin, trimethylolpropane, pentaerythritol and the like.
  • the polybasic acid include phthalic anhydride, maleic anhydride, and adipic acid.
  • the curing agent include organic peroxides (benzoyl peroxide, dicumyl peroxide, etc.).
  • epoxides may be employed instead of the polyhydric alcohols described above.
  • the three-membered ring is cleaved and surrounding water molecules are added to form a divalent polyhydric alcohol, and the same alkyd resin as described above is synthesized.
  • the unreacted epoxide at the time of kneading is then subjected to ring-opening polymerization of the three-membered ring to become an epoxy resin when the molding temperature is set to a curing temperature.
  • the timing of adding the polybasic acid in the kneading step it is preferable to prioritize the chemical reaction (esterification) with the surface of the biomass-derived component prior to the addition of the polyhydric alcohol (or epoxide). This is because the surface of the biomass-derived component is modified, and further improvement in affinity for the synthetic polymer can be expected. In this way, after the surface modification by chemically reacting the excess water content of the biomass-derived component and a part of the polybasic acid in the previous stage of the kneading process, the remainder of the polybasic acid and the polyhydric alcohol (or epoxide) And knead.
  • the timing for adding the curing agent may be in the first half or the second half of the kneading step and before or after the dehydration step, but the optimum condition is experimentally derived.
  • the wax is an organic compound that is solid at room temperature, melts at a lower temperature than the main component of the synthetic polymer, and has a low viscosity when heated.
  • the wax (C) is extracted from a natural product or is industrially synthesized, but the main chain of the chain hydrocarbon in the organic compound has 10 to 100 carbon atoms. It is desirable to be included in the range.
  • the wax is melted prior to the main component of the synthetic polymer to form a mixed liquid phase with water. For this reason, the viscosity of the kneaded product is reduced, the burden on the kneading means 50 is reduced, and the kneadability is improved. Further, the previously melted wax is adsorbed on the biomass-derived component and promotes the diffusion of the biomass-derived component into the main polymer melt.
  • saturated waxes those extracted from natural products include saturated fatty acids.
  • the saturated fatty acid is a monovalent carboxylic acid of a chain hydrocarbon, and is a compound represented by the formula of CH3 (CH2) nCOOH, and n is 9 or more to be applied to the present invention. Those are preferred.
  • the carboxyl group (COOH) located at the terminal is a hydrophilic group
  • the chain hydrocarbon portion (CH3 (CH2) n) is a hydrophobic group (lipophilic group).
  • the melted saturated fatty acid tends to form a mixed liquid phase with water because its hydrophobic group is the center and the hydrophilic group faces outward to form an interface with water.
  • the saturated fatty acid forms spherical micelles, and thus has a characteristic that it is difficult to be discharged outside along with water in the dehydration step.
  • the spherical micelles of saturated fatty acids in the mixed liquid phase with water are refined by kneading and uniformly diffused throughout the kneaded product.
  • carboxyl group (COOH) of the saturated fatty acid located on the surface of the spherical micelle comes into contact with the biomass-derived component, it chemically bonds (chemically adsorbs) with the hydrosyl group (OH) on the surface through an ester reaction.
  • the surface of the biomass-derived component is chemically modified with a saturated fatty acid, the hydrophilicity is eliminated, and the lipophilicity is improved.
  • the biomass-derived component has an advantageous property that it is easy to diffuse into the continuous phase of the main component of the synthetic polymer.
  • industrially synthesized waxes include olefin resins (particularly propylene-based and ethylene-based) polymerized by a single site catalyst typified by a metallocene catalyst.
  • specific examples include homopolymers of propylene or ethylene monomers, and copolymers of these monomers with ⁇ -olefins.
  • the ⁇ -olefin include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene and the like
  • the copolymer is a block copolymer. Any of a random copolymer and a random block copolymer may be used.
  • the wax may be used by mixing two or more kinds of the above-mentioned organic compounds.
  • the olefin resin wax polymerized by the single-site catalyst has a uniform distribution of side chain branching, molecular weight, and crystal grain size compared to the case of a multi-site catalyst typified by a Ziegler-Natta catalyst.
  • Olefin resin wax polymerized with a single-site catalyst has a lower melt viscosity despite its higher molecular weight than natural wax, thus maintaining good kneadability and efficiently draining water during the dehydration process To contribute.
  • the blending amount of these waxes is preferably in the range of 1 to 20 parts by weight with respect to 100 parts by weight of the total amount of the synthetic polymer and the biomass-derived component.
  • the blending amount of the wax is less than 1 part by weight, the effect of improving kneadability is not recognized, and the efficient draining effect of water in the dehydration process is not recognized.
  • the blending amount of the wax is more than 20 parts by weight, the average molecular weight of the produced polymer composite material is lowered, and the mechanical properties of the molded product are lowered.
  • these starch-based grains are thrown into the manufacturing apparatus 10 and at the same time water pouring to supply water necessary for gelatinizing the starch is appropriately performed. In some cases, excess water content may be adjusted.
  • lignocellulose or plant-based biomass mainly composed of cellulose, chitin-based biomass such as straw moth and straw moth, etc. are finely submerged in water.
  • Suspensions obtained by the conversion are mentioned.
  • Such a suspension may be formed by performing chemical treatment in addition to physically pulverizing biomass in water using a high-pressure homogenizer as described in Patent Document 2 described above.
  • the excess water-containing material here refers to the biomass itself that inherently contains moisture in addition to the one that is formed by artificially adding moisture to the biomass as described above, and moisture that is finally dehydrated in the kneading process. Anything that contains is eligible.
  • a pretreatment for mechanically pulverizing the wood may be performed to form a granular or chip shape having a maximum diameter of several millimeters.
  • wood can be appropriately adopted even if it is an aggregate of fine particles having a size smaller than that.
  • the aggregate of such fine particles includes a fibrous body extracted from biomass through a chemical process.
  • These fine powders of wood can be said to be an excess water-containing material containing moisture of several tens wt% to several tens wt% due to the hygroscopic action without artificially adding water.
  • Such a fine powder of wood (or rice bran etc.) can be put into the production apparatus 10 as it is without passing through a special process such as a drying process.
  • the effect that the biomass has the maximum diameter of about several mm is that when the biomass material is input from the input means 12 to the manufacturing apparatus 10 even when the water content is large. , Clogging is avoided.
  • the biomass is an aggregate of fine particles having a size smaller than that and the water content due to moisture absorption is large and the charging means 12 is clogged
  • the aggregate is artificially impregnated with water and contained.
  • This clogging can be avoided by further increasing the amount of water.
  • the handling of aggregates of fine particles that are likely to be scattered is simplified and produced in addition to the effect of avoiding clogging as described above.
  • the effect of improving efficiency is obtained.
  • the aggregate of fine particles is kneaded with the synthetic polymer after the air contained therein is replaced with water. As a result, the produced polymer composite material has the effect that the remaining bubbles are reduced and the number of defects is reduced.
  • a compatibilizing agent that improves the compatibility between the synthetic polymer and the biomass-derived component may be further fed into the charging means 12.
  • a compatibilizer for example, a saturated carboxylic acid, an unsaturated carboxylic acid, or a derivative thereof is used.
  • a synthetic polymer modified with an unsaturated carboxylic acid or a derivative thereof can also be used.
  • silica or a fibrous substance regardless of inorganic or organic substances, and finely disperse these additive components in the polymer composite material.
  • the cylinder 13 has the raw material charging section A including the charging means 12 as the uppermost stream and the portion including the take-out means 17 as the most downstream. C2, C3) and re-pressurization section D.
  • a heater (not shown) is provided around the cylinder 13 for setting the interior thereof to the kneading temperature Tz (see FIG. 1C).
  • the kneading section B is a section in which the synthetic polymer main ingredient, the biomass-derived excess water content, and the compatibilizing agent, which are input from the input means 12, are kneaded at a predetermined pressure and a kneading temperature Tz.
  • the biomass-derived component is refined in the kneaded product, and chemically reacted with the compatibilizer as appropriate, thereby giving affinity to the synthetic polymer and being uniformly dispersed in the kneaded product.
  • the dewatering section C can be further classified into a pressure dewatering section C1, a normal pressure dewatering section C2, and a vacuum dewatering section C3, each of which includes at least one dehydrating means 40 (see FIG. 1B).
  • a pressure dewatering section C1 as shown in FIG. 1 (c)
  • the moisture contained in the kneaded material is lower than the saturated vapor pressure Pz at the kneading temperature Tz and higher than the atmospheric pressure P0. It is a part which dehydrates with Pa and Pb.
  • the kneaded product is further kneaded while gradually reducing the water content rather than abruptly.
  • the biomass-derived components that are refined and dispersed in the kneaded product are further refined and dispersed while suppressing reaggregation.
  • the atmospheric pressure dewatering section C2 is a portion that dehydrates the moisture contained in the kneaded material that has passed through the pressure dewatering section C1 with set pressures Pc and Pd close to the atmospheric pressure P0, as shown in FIG. 1 (c). .
  • the kneaded material having a reduced water content is further kneaded while gradually reducing the water content.
  • the biomass-derived components that are refined and dispersed in the kneaded product are further refined and dispersed while suppressing reaggregation.
  • the water contained in the kneaded material that has passed through the normal pressure dewatering section C2 is dehydrated at a set pressure Pe lower than the atmospheric pressure P0 by the forced pressure reducing device 30 as shown in FIG. 1 (c). Part.
  • the vacuum trap 31 connected to the decompression dewatering section C3 cools the vaporized vapor back to a liquid, prevents high-temperature saturated steam from entering the forced decompression device 30 and suppresses deterioration thereof. Is.
  • the pressure applied to the kneaded product is stepped down from the saturated vapor pressure Pz at the kneading temperature Tz in steps to dehydrate, thereby suppressing the re-aggregation of biomass-derived components while maintaining the fineness. And dispersion can be promoted.
  • the re-pressurization section D is a part for continuously kneading the kneaded product after the dehydration treatment and applying a pressure necessary for re-pressurization and taking out from the take-out means 17. Thereby, the polymer composite material melt in which the biomass-derived component is finely dispersed is taken out from the take-out means 17.
  • the screw 15 is formed with a spiral flight 16 around its axis. By rotating the shaft 15, the flight 16 applies pressure to move the kneaded material from the upstream side to the downstream side of the cylinder 13. Extrude.
  • the dehydrating means 40 includes a filter plate 41, a blocking wall 42, and a pressure adjusting means 45, as shown in the partial cross-sectional view of FIG.
  • e is applied to the kneaded material in the cylinder 13.
  • the dehydrating means 40 can dehydrate the water contained in the kneaded material gradually rather than suddenly.
  • the filter plate 41 is disposed so as to close the opening provided on the wall surface of the cylinder 13, separates the inside of the cylinder 13 and the outside thereof, and selectively filters the moisture contained in the kneaded material.
  • a configuration of the filter plate 41 there can be cited a configuration in which a large number of holes are provided on the plate surface and the plate surface is fixed along the inner wall surface of the cylinder 13.
  • the blocking wall 42 forms a vaporized space V for vaporizing the water filtered by the filter plate 41 and blocks the vaporized space V from the atmosphere.
  • the bottomed container is fixed so that the opening and the opening provided in the cylinder 13 substantially coincide with each other, and further, the filter plate 41 is contacted so as to be fixed. Things.
  • the pressure adjusting means 45 is a pressure gauge 43 that measures the atmospheric pressure of the vaporization space V, and a throttle that variably applies a flow resistance to gas (water vapor) that is released from the vaporization space V through the blocking wall 42 to the atmosphere side.
  • the throttle valve 44 can connect with the correction pressure reduction apparatus 30, and can set the atmospheric pressure of the vaporization space V to atmospheric pressure P0 or less.
  • the pressure adjusting means 45 is such that the set pressure Px of the plurality of dehydrating means 40 provided in the cylinder 13 is set so small that it approaches the take-out means 17 (Pa>Pb> Pc). As described above, it is desirable to suppress the reaggregation of biomass-derived components.
  • the set pressure Px is appropriately set so that moisture is preferentially discharged so that the charged liquid reagent is not vaporized and discharged. And the kneaded material extruded from the taking-out means 17 by making the thing located in the most downstream among the dehydrating means 40 provided in the cylinder 13 into the set pressure Pe (P0> Pe) lower than the atmospheric pressure P0. The dehydration of can be made more complete.
  • the melted wax forms a low-viscosity mixed liquid phase, lowers the viscosity of the entire kneaded product, improves the kneadability, and is adsorbed on the surface of the biomass-derived component.
  • other compounds having a carboxyl group (compatibilizer, fatty acid, polybasic acid, etc.) are converted into hydrosil groups (R ′) on the surface of the biomass-derived component (R ′) by a dehydration reaction (ester reaction) shown in the following formula (3).
  • OH is substituted with a substituent having an ester bond.
  • the kneaded material that has reached the dehydrating means 40a located at the uppermost stream among those provided in the cylinder 13 is pressed against the filter plate 41 by the pressure applied from the screw 15, and the contained water is selectively contained in the filter plate. It passes through 41 and accumulates in the vaporization space V.
  • the moisture accumulated in the vaporization space V is at the kneading temperature Tz, and the accumulated moisture is vaporized in the vaporization space V set to a pressure Pa lower than the saturated vapor pressure Pz.
  • the vaporized water (water vapor) passes through the throttle valve 44 of the pressure adjusting means 45 and is released to the atmosphere.
  • the water accumulated in the vaporization space V set to a pressure Pb lower than the saturated vapor pressure Pz is vaporized and released to the atmosphere.
  • the same operation is repeated in the dewatering means 40 (40c, 40d, 40e) provided on the downstream side in this way, and the kneaded material is kneaded while gradually dewatering step by step. Reaggregation of biomass-derived components will be suppressed.
  • the kneaded product that has been dehydrated is taken out from the take-out means 17 as a polymer composite material in which the biomass-derived components are dispersed, and is also granulated with rice pellets (polymer composite material) by a pelletizer (not shown). Composition). These pellets are reheated and melted, and then poured into a mold to form a bulk molded product, or stretched (for example, inflation method, calendering method, T-die method, blowing method, etc.) It can be used as a raw material for producing a general polymer processed molded product by forming a foamed molded product by foaming or forming a foamed molded product. In this manner, such a molded product may be directly manufactured from a polymer composite material extruded from the take-out means 17 without going through pellet molding.
  • the manufacturing apparatus 10 may not particularly need to provide the normal pressure dewatering section C2 and the vacuum dewatering section C3 as long as the pressure dewatering section C1 is provided. This is because it can be sufficiently confirmed that the water can be sufficiently dehydrated (vaporized) at a kneading temperature Tz at a pressure higher than the atmospheric pressure P0 from the water phase diagram of FIG. It is.
  • the illustrated sections (A, B, C1, C2, C3, D) of the cylinder 13 are examples, and other sections are provided between these sections (for example, the atmospheric pressure dehydration section C2 and the section). It is possible to appropriately provide a kneading zone B between the vacuum dewatering zone C3 and a plurality of raw material charging zones A). Such other specific application examples will be exemplified.
  • biomass pulverized wood or untreated raw material such as straw
  • a compatibilizing agent are charged and kneaded in the first raw material charging section A.
  • the biomass is further pulverized to form fine particles, and a compatibilizing agent is adsorbed on the surface thereof, thereby improving the affinity for a synthetic polymer to be charged later.
  • a synthetic polymer main ingredient and other necessary reagents are charged and kneaded with biomass.
  • the biomass-derived component is finely and uniformly dispersed in the continuous phase of the synthetic polymer.
  • the production apparatus 10 ′ of the second embodiment is used when an excessively hydrated biomass-derived component used as a raw material for the polymer composite material has a high water content such as a suspension and a high fluidity.
  • a characteristic configuration in such a manufacturing apparatus 10 ′ is to employ a press-fitting means 20 for press-fitting the excess water-containing material of biomass-derived components into the cylinder 13 and a screw 15 ′ whose shaft diameter is changed. It is in.
  • the main agent charging section A1 In the section in which the raw material of the polymer composite material is charged, the main agent charging section A1 in which the synthetic polymer main agent is charged and the suspension of the excess hydrous material of biomass-derived components provided downstream thereof are charged.
  • the suspension is divided into suspension input sections A2.
  • the press-fitting means 20 is connected through the inlet 14 provided in the suspension charging section A2 of the cylinder 13, and includes a liquid reservoir 21 filled with an excess water-containing material derived from biomass, A motor 22 that provides a driving force for injecting the excess water content of the biomass-derived component from the liquid reservoir 21 into the cylinder 13, a check valve 24 for preventing the backflow of the excess water content of the biomass-derived component to be injected, and the cylinder 13 And a throttle valve 25 for adjusting the injection amount of the excess hydrated biomass-derived component to be injected into the tank.
  • the inside of the cylinder 13 in the vicinity of the inlet 14 is in a state where the kneaded product of the synthetic polymer is pressurized, so that the press-fitting means 20 removes the excess water content of the biomass-derived component at a pressure higher than that. It is necessary to press fit. Further, the press-fitting means 20 may be appropriately provided with a heating means for heating the excess water-containing material so that the press-fitted excessive water-containing material does not lower the temperature of the kneaded product.
  • press-fitted from the press-fitting means 20 is not limited to the above-mentioned excess hydrous material of biomass-derived components, for example, as described above, kneading such as polybasic acid, polyhydric alcohol, organic peroxide Various liquid reagents to be blended in the process may be injected.
  • the press-fitting means 20 is not limited to a single arrangement as shown in FIG. 2, and a plurality of press-fitting means 20 may be arranged depending on the purpose, and the arrangement position is also arranged upstream of the dehydrating means 40. It is not limited to this, and it may be arranged downstream thereof. This is because it may be desirable to press the liquid reagent as described above into the kneaded product after sufficient dehydration.
  • the screw 15 ' has a shaft diameter larger than that of the upstream side at the installation site of the dehydrating means 40 (40a, 40b, 40c, 40d) provided in the pressure dewatering section C1 or the normal pressure dewatering section C2. It is formed in the diameter.
  • the screw 15 ' has a shaft diameter that is smaller than that of the upstream side at the installation site of the dewatering means 40 (40e) provided in the vacuum dewatering section C3.
  • the screw 15 ' is formed such that its shaft diameter is larger than that of the upstream side in the re-pressurization section D that has passed through the dewatering sections C1, C2, and C3.
  • the synthetic polymer main agent is introduced into the cylinder 13 from the introduction means 12, and the suspension containing the biomass-derived component is introduced into the cylinder 13 from the injection means 20.
  • An example of input is shown.
  • the main component of the synthetic polymer and the starchy biomass (raw rice etc.) are thrown into the cylinder 13 from the throwing means 12, and the press-fitting means 20 is used as the water pouring means.
  • water is poured into the cylinder 13.
  • the press-fitting means 20 can be a general hot water supply means having a function of adjusting the flow rate and temperature.
  • starchy biomass (raw rice etc.) gelatinizes, after knead
  • FIG. 2B the same or corresponding parts as those in FIGS. 1 and 2A are denoted by the same reference numerals, and the detailed description is omitted by using the already described description.
  • the production apparatus 10 ′′ of the third embodiment has a high water content as a suspension as an excess hydrated biomass-derived component used as a raw material for the polymer composite material. It is appropriate when adopting a highly specific one.
  • a characteristic configuration of the manufacturing apparatus 10 ′′ is that a screw 15 ′′ whose pitch of the flight 16 is changed is employed.
  • the pressure applied to the kneaded product increases as the pitch of the flight 16 changes narrowly toward the downstream of the screw 15, and conversely, the pressure applied to the kneaded product decreases as the pitch changes widely.
  • the screw 15 ′′ is formed so that the pitch of the flights 16 is narrower than that of the upstream side at the installation site of the dehydrating means 40 (40a, 40b, 40c, 40d) provided in the pressure dewatering section C1 or the normal pressure dewatering section C2.
  • the screw 15 ′′ is formed so that the pitch of the flights 16 is wider than that of the upstream side at the installation site of the dewatering means 40 (40e) provided in the vacuum dewatering section C3.
  • the manufacturing apparatus 10 shown in FIGS. 1 and 2 is a continuous type in which the raw material charging process, the kneading process, and the kneaded product taking process proceed simultaneously without being cut off, and continuously produce a polymer composite material. Met.
  • the manufacturing apparatus 60 according to the fourth embodiment is of a batch type in which the raw material charging step, the kneading step, and the kneaded material taking-out step are repeated in order and the polymer composite material is intermittently manufactured. .
  • the manufacturing apparatus 60 includes an input unit 12 (hopper), a kneading unit 62, and a dehydrating unit 40.
  • the kneading means 62 includes a driving means (not shown), a casing 63, and a rotor 65.
  • 3A to 3C are cross-sectional views orthogonal to the rotation axis of the rotor 65, and differ along the longitudinal direction (including the input unit 12, the dehydrating unit 40, and the extraction unit 67, respectively).
  • 60 is a cross-sectional view. 3 that are the same as or correspond to those in FIG. 1 are denoted by the same reference numerals, and the detailed description is omitted with the aid of the above description.
  • the kneading means 62 includes a casing 63 and a rotor 65, and is stirred and kneaded at a kneading temperature at which a synthetic polymer main ingredient, an excess water content of biomass-derived components and others are set, and finely mixed. And a uniform polymer composite material.
  • the casing 63 is provided with a charging means 12 for charging a synthetic polymer main ingredient and an excessively hydrated biomass-derived component, and a take-out means 67 for taking out the kneaded material to the outside.
  • the charging means 12 communicates with the kneading space W inside the casing 63 via the first opening / closing means 61, and when the first opening / closing means 61 is set to the “open state”, the charging height from the charging means 12 to the kneading space W is increased. Excessive water content of molecular base and biomass-derived components can be introduced. On the other hand, when the first opening / closing means 61 is in the “closed state”, the flow of gas flowing between the kneading space W and the charging means 12 is also blocked.
  • the take-out means 67 communicates with the kneading space W of the casing 63 through the second opening / closing means 68, and the kneaded material in the kneading space W can be taken out when the 21 opening / closing means 61 is in the “open state”. It has become.
  • the second opening / closing means 68 is set to the “closed state”, the flow of gas flowing between the kneading space W and the take-out means 67 is also blocked.
  • the kneading space W becomes a sealed space, and the kneading space W is saturated vapor pressure Pz (> P0) at the set kneading temperature Tz. : Atmospheric pressure) (see FIG. 1C).
  • the rotor 65 rotates in the kneading space W of the casing 63 set in a sealed space and set at the kneading temperature, and kneads the kneaded material.
  • This rotor 65 is illustrated in FIG. 3 in which two rotating bodies whose rotation directions are opposite to each other rotate so as to entrain the input material from the input means 12 and to push out the kneaded material to the extraction means 67.
  • the present invention is not limited to such an embodiment, and known ones can be applied.
  • the dehydrating means 40 is provided at the opening of the kneading space W formed in the casing 63, and adjusts the pressure of the sealed space, and the kneaded material is dehydrated by the adjusted pressure. Is to execute.
  • the filter plate 41 separates the kneading space W of the casing 63 from the outside and selectively filters moisture contained in the kneaded product.
  • the blocking wall 42 is formed with a vaporizing space V communicating with the kneading space W through the filter plate 41 and provided with a pressure adjusting means 45.
  • the pressure adjusting means 45 adjusts the atmospheric pressure of the kneading space W that is a sealed space and sets it to a set pressure, and includes a pressure gauge 43 and a throttle valve 44.
  • the dehydrating means 40 in FIG. 3B is the same as that in FIG. 1B.
  • the vaporization space V that communicates with the upper portion of the kneading space W is also provided. Plays the same role. For this reason, the structure which provides the pressure regulation means 45 directly in the casing 63, without providing the filter plate 41 and the interruption
  • a configuration in which the press-fitting means 20 (see FIG. 2) is provided in the manufacturing apparatus 60 can be taken.
  • the first opening / closing means 61 is set to the “open state”
  • the second opening / closing means 68 is set to the “closed state”
  • the synthetic polymer main component, the excess water content of biomass-derived components and other necessary components (waxes) are placed inside the manufacturing apparatus 60.
  • Etc. are introduced through the introduction means 12.
  • the first opening / closing means 61 is set to the “closed state”
  • the charged material is set to the kneading temperature and kneaded by the kneading means 62.
  • the pressure adjusting means 45 is operated to release the water in the kneading space W into water vapor, or to discharge the liquid reagent from the press-fitting means 20 (see FIG. 2) (not shown). Further, if necessary, the kneading space W is depressurized from the atmospheric pressure by the forced depressurization apparatus 30 (see FIG. 1A), and the dehydration is completed. Next, the second opening / closing means 68 is set to the “open state”, and the kneaded material in the kneading space W is taken out from the take-out means 67. The polymer composite material is mass-produced by repeating the above steps.
  • thermoplastic polymer As the main component of the synthetic polymer kneaded by the polymer composite material manufacturing apparatus 10, 10 ′, 10 ′′, 60 described above, either a thermoplastic polymer or a thermosetting polymer can be applied.
  • reagents including thermosetting polymer curing agents
  • those known in terms of type, properties, and addition method can be employed.
  • the means for mixing such a reagent with the main agent is not limited to the illustrated embodiment, and an optimum means is adopted depending on the case.
  • the order of the synthetic polymer main component, biomass-derived excess water content and other necessary components (wax, compatibilizer, etc.) being charged from the charging means 12 and the timing and frequency of dehydration are also arbitrary.
  • an excess water content of a biomass-derived component and a compatibilizer are added in advance, kneaded and dehydrated, and then synthesized. It is also possible to take out the kneaded product by adding a polymer main ingredient and kneading.
  • ⁇ About biomass concentrate of polymer composite material If a biomass concentrate of a polymer composite material containing a high proportion of biomass-derived components is prepared in advance, this is kneaded with a synthetic polymer, and the concentration of biomass-derived components is arbitrarily diluted to form a resin molded product Can be manufactured. Moreover, according to such a manufacturing method, a composite material in which biomass-derived components are uniformly dispersed can be mass-produced without interposing moisture. Furthermore, the biomass composite material can be easily mass-produced with a general molding apparatus without requiring the special manufacturing apparatus 10 including the dehydrating means 40 as described above.
  • a biomass concentrated body (hereinafter simply referred to as “concentrated body”) of a polymer composite material that is optimal for such dilution will be described.
  • the synthetic polymer contained in the biomass concentrate is defined as the first synthetic polymer, and the synthetic polymer used for subsequent dilution is defined as the second synthetic polymer.
  • the synthetic resin that can be employed as the first synthetic polymer is not particularly limited, but propylene-based resins and ethylene-based olefin resins are preferably used.
  • the polymerization mode of these propylene-based resins and ethylene-based resins is not particularly limited, and the degree of polymerization includes both oligomers (waxes) having a number of monomer bonds of 10 to less than 100 and polymers exceeding 100.
  • the first synthetic polymer employs a single-site catalyst polymerization method with a high degree of freedom in molecular design to produce a composite material in which biomass-derived components form a uniform and fine dispersed phase. It is desirable to synthesize with a degree of polymerization having temperature characteristics.
  • One of the characteristics that the first synthetic polymer constituting the concentrated body should have is that it has good flow characteristics at the kneading temperature for producing the concentrated body.
  • thermoplastic resins that can be employed for the first synthetic polymer those that are crystalline polymers are evaluated for flow characteristics, melting temperatures measured by differential scanning calorimetry (DSC). It can be an indicator.
  • the temperature of the crystalline polymer is continuously changed, and the heat of transition when the crystal melts and changes from solid to liquid is detected by DSC, so that the solid of the first synthetic polymer at an arbitrary temperature—
  • the liquid ratio can be known. And it can generally be said that the higher the liquid ratio at any temperature, the lower the melting peak in the case of all liquids, the lower the viscosity and the better the fluidity.
  • the glass transition temperature measured by DSC can be used as an index for evaluating flow characteristics.
  • the melting temperature measured by DSC is in the range of 50 ° C to 150 ° C.
  • the melting temperature measured by DSC is in the range of 50 ° C to 120 ° C.
  • the melting temperature refers to a temperature range from the melting start temperature Tim determined by JISK7121 to the melting end temperature Tem. Assuming that the melting start temperature Tim of the first synthetic polymer is less than the lower limit (50 ° C.) of the temperature range specified, the first synthetic polymer is partially melted at a general use temperature (normal temperature). Therefore, the surface of the biomass composite material that is the final product may have a sticky feeling. Further, if the melting end temperature Tem of the first synthetic polymer is higher than the upper limit of the temperature range specified, an unmelted part may remain at the general kneading temperature of the same type of synthetic resin. The biomass composite material that is the final product may contain internal defects.
  • the first synthetic polymer is preferably an olefin resin (propylene resin or ethylene resin) polymerized by the single site catalyst described above in order to have a melting temperature in the temperature range specified in this way. Because the melting temperature of these crystalline polymers is closely related to the primary structure of the polymer, it is advantageous to polymerize with a single site catalyst that can precisely control the primary structure. It is. The reason why such a precisely-controlled primary structure can be realized is that this single-site catalyst has a single property related to the polymerization reaction, so that the polymerization reaction becomes uniform. .
  • an olefin resin with less equilateral chain branching and a uniform molecular weight and crystal grain size distribution is obtained compared to a multi-site catalyst typified by a Ziegler-Natta catalyst. Polymerized. For this reason, an olefin resin (first synthetic polymer) having a sharp melting peak shape in an arbitrary temperature range included in the range in which the melting temperature by DSC measurement is defined is obtained.
  • the first synthetic polymer contains a wax having a main chain of chain hydrocarbons in the range of 10 to 100 carbon atoms.
  • This wax is a synthetic resin that is industrially synthesized or a natural resin extracted from natural products, both of which are solid at room temperature and have a lower viscosity than the second synthetic polymer when heated and melted. Is shown. For this reason, when the concentrated body in which this wax is blended and the second synthetic polymer are mixed and kneaded, the wax component is melted in advance.
  • the viscosity of the kneaded product is reduced, the burden on the kneading apparatus is reduced, the kneadability is improved, and the biomass-derived component is uniformly and finely dispersed in the continuous phase of the second synthetic polymer.
  • the melting point of the wax becomes low temperature, showing liquid at room temperature, and the surface of the produced biomass resin has a sticky feeling.
  • the carbon number of the main chain of the wax is larger than 100, the melting point of the wax becomes high and the melt viscosity becomes large. Then, the dispersibility of the biomass origin component with respect to the continuous phase of a 2nd synthetic polymer will fall.
  • waxes include natural fatty acids and saturated fatty acids.
  • the saturated fatty acid is a monovalent carboxylic acid of a chain hydrocarbon, and is a compound represented by the formula of CH3 (CH2) nCOOH, and n is 9 or more to be applied to the present invention. Those are preferred.
  • the carboxyl group (COOH) located at the terminal is a hydrophilic group, and the chain hydrocarbon portion (CH3 (CH2) n) is a hydrophobic group (lipophilic group).
  • the terminal fatty acid group (COOH) of the saturated fatty acid is chemically bonded (chemically adsorbed) to the hydrosil group (OH) on the surface of the biomass-derived component (R) by the dehydration reaction (ester reaction) shown in the following formula. It will be.
  • the biomass-derived component has its surface hydrosyl group (OH) chemically modified with a saturated fatty acid, thereby eliminating hydrophilicity and improving lipophilicity.
  • the dispersed phase of the biomass-derived component has an advantageous property that it is easy to diffuse into the continuous phase of the second synthetic polymer.
  • an olefin resin polymerized by the single-site catalyst described above is suitable. According to this, when compared with a wax of a natural resin having a similar melting point (or melt viscosity), since it has a characteristic of high hardness because it is a long chain, a composite material of biomass resin having excellent mechanical properties can be obtained. Obtainable.
  • olefin resin wax polymerized by a single site catalyst has a low melting point and low viscosity when compared with other synthetic waxes having the same degree of hardness (Zigler-Natta catalyst method, high pressure method, etc.) It has.
  • amylose in which glucose is linearly bonded by ⁇ -1,4 glucoside bonds, or both linear chains of ⁇ -1,4 glucoside bonds and ⁇ -1,6 glucoside bonds are used.
  • Starch-based biomass mainly composed of amylopectin in branches plant-based biomass mainly composed of lignocellulose or cellulose, chitin (or chitosan) -based biomass derived from crustaceans (eg, moths, moths, etc.) Is mentioned.
  • these starchy biomass pre-treatments are as simple as removing the core and epidermis and chopping them to the appropriate size and adding water necessary for gelatinization. Is enough.
  • the starch-based biomass and the first synthetic polymer thus processed are kneaded together, the starch is gelatinized by the moisture contained in the process and is finely dispersed and uniformly dispersed in the first synthetic polymer. Will go.
  • the contained water is discharged from the dehydrating means provided in the kneading apparatus in the subsequent step of the kneading step for producing the concentrated body.
  • starchy biomass applied as a raw material for concentrated materials is not limited to grains that have been subjected to such a simple pretreatment, but are grains that have been gelatinized by a known method in advance (starch having an amorphous structure). ) Or amylose or amylopectin extracted from these grains by a known method may be used as a raw material.
  • amylase may be added during the production of a concentrated body in order to promote the refinement.
  • This amylase is an enzyme having a molecular weight of about 55,000 and includes ⁇ -amylase, ⁇ -amylase and glucoamylase, all of which are industrially mass-produced.
  • ⁇ -Amylase cleaves ⁇ -1,4 glucoside bond of starch irregularly and hydrolyzes it to polysaccharides or oligosaccharides.
  • ⁇ -Amylase cleaves starch from the end in units of 2 glucoses and decomposes into maltose
  • the glucoamylase cleaves the ⁇ -1,4 glucoside bond at the non-reducing end of the sugar chain and breaks it down into glucose.
  • isoamylase and pullulanase selectively cleave the ⁇ -1,4 glucoside bond, which is a saccharide branch.
  • ⁇ -amylase is preferable from the viewpoint of promoting the refinement of starch-derived biomass-derived components.
  • isoamylase and pullulanase are suitable for preventing a low molecular weight of the biomass-derived component.
  • the enzyme activity of ⁇ -amylase is kept high in the range of hydrogen ion exponent pH 5 to pH 7 and temperature 40 ° C. to 80 ° C. Therefore, in producing the concentrated product, the timing at which amylase is added to the starchy biomass can be taken before, simultaneously with, or after the starchy biomass is added to the kneading apparatus. It is necessary to maintain conditions where activity is not lost.
  • the kneading temperature when amylase is introduced at the same time or after the starchy biomass is introduced into the kneading apparatus, it is necessary to set the kneading temperature within a range where the enzyme activity is not lost.
  • the first synthetic polymer to be added has a melting temperature low enough to flow sufficiently in a temperature range in which the enzyme activity is not lost.
  • the amylase activity is out of the range, the amylase enzyme is denatured and deactivated, and particularly at high temperatures, the rate of decrease of amylase activity increases rapidly.
  • the residual activity when left at 70 ° C. for 20 minutes is 90%, whereas the residual activity when left at 75 ° C. for 20 minutes is reduced to 50%.
  • the amount of amylase added is preferably 0.001 to 5 parts by weight per 100 parts by weight of starchy biomass.
  • the addition amount of amylase is less than 0.001 part by weight, the degradation rate of starch is slow, and when it is more than 5 parts by weight, the degradation of starch is promoted so that the biomass-derived component has a low molecular weight. This is not preferable.
  • starchy biomass is decomposed by the enzyme activity of amylase, the gelatinization reaction is also promoted, and the biomass-derived components are finely and uniformly dispersed in the first synthetic polymer that is kneaded together.
  • ⁇ -amylase after enzymatic degradation of starch is unnecessary, but there is no means for selectively removing it, so it can be mixed in the concentrated body as it is, or the kneading temperature can be raised. It may be mixed with heat denatured and killed.
  • vegetative biomass concretely, thinning and building demolition materials such as wood industry and pulp industry waste, rice straw and pods that are agricultural waste, waste paper, Examples include crushed wood pieces, wood flour, sawdust, canna waste, bamboo flour, bagasse, fruit shell flour, cotton, and human silk (rayon).
  • wood industry and pulp industry waste such as wood industry and pulp industry waste, rice straw and pods that are agricultural waste, waste paper
  • examples include crushed wood pieces, wood flour, sawdust, canna waste, bamboo flour, bagasse, fruit shell flour, cotton, and human silk (rayon).
  • a fibrous form and a powder form can be used.
  • these vegetative biomass and chitin biomass can be used as appropriate in the form of a suspension obtained by physically pulverizing them in water using a high-pressure homogenizer or by refining them in water by chemical treatment. Can do.
  • an alkali metal salt may be added at the time of manufacture of a concentrated body.
  • the type of alkali metal salt is not particularly limited, but alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, and alkaline earth metal salts such as barium carbonate, calcium carbonate and strontium carbonate. Is mentioned.
  • the cohesive force between the biomass-derived components is weakened due to the affinity between the alkali metal ions and the biomass-derived component during the production of the concentrate, and the dispersibility of the biomass-derived component in the first synthetic polymer is reduced. Will increase.
  • the refined biomass origin component reaggregates during storage.
  • the concentrated body and the second synthetic polymer are mixed, the fluidity of the concentrated body in the second synthetic polymer is improved and is easily dispersed.
  • the addition amount of the alkali metal salt is desirably 0.001 to 5 parts by weight with respect to 100 parts by weight of the biomass-derived component.
  • the addition amount of the alkali metal salt is less than 0.001 part by weight, the cohesive force of the biomass-derived component is not weakened, and when it is more than 5 parts by weight, the viscosity of the biomass-derived component is too low. This is not preferable because the kneading property with the first synthetic polymer is lowered.
  • the biomass kneaded with the first synthetic resin is not limited to the starchy type, even if it is a vegetative or chitinous type.
  • the dispersion in the continuous phase is promoted.
  • moisture may be added to the biomass as a raw material and charged into the kneading apparatus.
  • compatibilizers such as saturated carboxylic acid, unsaturated carboxylic acid, or these derivatives, may be knead
  • saturated carboxylic acids include succinic anhydride, succinic acid, phthalic anhydride, phthalic acid, tetrahydrophthalic anhydride, and adipic anhydride.
  • unsaturated carboxylic acid include maleic acid, maleic anhydride, nadic anhydride, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, sorbic acid, acrylic acid and the like.
  • a metal salt, amide, imide, ester or the like of the unsaturated carboxylic acid can be used as the derivative of the unsaturated carboxylic acid.
  • the timing for introducing these compatibilizers is when the biomass-derived component and the first synthetic polymer are introduced into the kneading apparatus almost simultaneously, or the biomass-derived components are esterified with the compatibilizer in advance before being introduced into the kneading apparatus.
  • a pretreatment is performed, or in some cases, the first synthetic polymer is preliminarily modified with an unsaturated carboxylic acid or a derivative thereof before being introduced into the kneading apparatus.
  • the hydroxyl group on the surface thereof is replaced with an ester group (esterification), so that the biomass-derived component generally showing hydrophilicity and the synthetic resin generally showing hydrophobicity Low affinity at the interface is improved.
  • the biomass-derived component is not aggregated in the dense body because the affinity with the first synthetic polymer is improved, and the affinity with the second synthetic polymer to be blended later is also improved.
  • Biomass-derived components are finely and uniformly dispersed at high speed in the kneaded composite material. Further, the flow characteristics of the kneaded body are improved, and various properties of the composite material are improved.
  • the mixing ratio of the biomass-derived component and the first synthetic polymer is preferably 5 to 100 parts by weight of the first synthetic polymer with respect to 100 parts by weight of the biomass-derived component. If the first synthetic polymer is less than 5 parts by weight, the entire surface of the refined biomass-derived component cannot be wetted with the first synthetic polymer. Then, when the second synthetic polymer is blended and kneaded into the concentrated body, the compatibility between the biomass-derived component and the second synthetic polymer may be reduced, and the uniform dispersion of the biomass-derived component in the composite material may occur. Will be disturbed. When there are more 1st synthetic polymers than 100 weight part, the quantity of the 2nd synthetic polymer mix
  • the second synthetic polymer which has a relatively higher viscosity than the first synthetic polymer and has a low space occupancy, has a slow diffusion of biomass-derived components, and the uniform dispersion of biomass-derived components is inhibited. become.
  • Examples of the production apparatus for producing the dense body by heating and kneading include a kneader, a Banbury mixer, a monoaxial or biaxial extruder, and the like. These manufacturing apparatuses need to be provided with a dehydrating means for dehydrating moisture contained in the kneaded body in addition to the configuration generally provided. Since the inside of the manufacturing apparatus in which the kneaded body is kneaded is in a sealed state at a high temperature and high pressure, this dehydrating means can be used as such a dehydrating means by providing an openable openable air passage communicating with the inside. Will work. Furthermore, if a forced depressurization device that can depressurize the interior of the production apparatus from the atmospheric pressure can be further provided as a dehydrating means, dehydration of water contained in the kneaded body is more efficiently performed.
  • the biomass, the first synthetic polymer, the appropriate compatibilizer, the alkali metal salt, and the water, which have been subjected to the predetermined pretreatment, are directly charged into the raw material inlet of the concentrated body manufacturing apparatus.
  • the raw material biomass is derived from starch
  • amylase is also added as appropriate. And it sets so that a kneading zone may become predetermined temperature, and it kneads over predetermined time, and forms the state in which the biomass origin component is disperse
  • biomass is crushed and refined by mechanical energy imparted by kneading.
  • the melted first synthetic polymer (wax) forms a mixed liquid phase with water and is adsorbed on the surface of the biomass to improve the lipophilicity of the biomass.
  • the atmosphere open path of a dehydrating means is opened from this state, the water
  • the forced decompression device may be operated to ensure dehydration.
  • the kneaded body of the concentrated body taken out from the outlet of the concentrated body manufacturing apparatus is passed through a known granulator and granulated (pelletized).
  • the biomass concentrated pellets of the polymer composite material produced in this way are those in which the refined biomass-derived components are blended in a high ratio with respect to the first synthetic polymer.
  • the concentrated body in which the biomass-derived component is blended in a high ratio as described above can be produced by reducing the amount of moisture that functions as a dispersion accelerator in the first synthetic polymer. Thereby, only a small amount of water is discharged by the dehydrating means, and the productivity of the concentrated body is not lowered.
  • the second synthetic polymer blended in the dense body can be a thermoplastic resin or a thermosetting resin, and is not particularly limited as long as it has good affinity with the first synthetic polymer.
  • the concentrated body and the second synthetic polymer are kneaded into a biomass composite material, in order to ensure good dispersibility of biomass-derived components and other characteristics in the composite material, It is desirable that the molecule and the second synthetic polymer have the following relationship (provided that both are crystalline polymers). T1 ⁇ T2 (2)
  • T1 represents the melting peak temperature Tpm by DSC measurement of the first synthetic polymer
  • T2 represents the melting peak temperature Tpm of the second synthetic polymer blended in the dense body.
  • the melting peak temperature Tpm refers to the temperature at the top of the melting peak by DSC measurement (see JISK7121).
  • the melting peak of a synthetic resin, which is a crystalline polymer, as measured by DSC measurement is not generally symmetrical about the temperature Tpm at the apex.
  • the kneading temperature is set to a temperature at which the second synthetic polymer is sufficiently melted. If the concentrated body and the second synthetic polymer are kneaded at this set temperature, the second synthetic polymer is used. Before the first synthetic polymer is melted from the solid, the first synthetic polymer is melted in advance to form a melt, which is uniformly distributed throughout the kneaded body.
  • the first synthetic polymer having a melting peak temperature Tpm lower than that of the second synthetic polymer (T1 ⁇ T2) generally has flow characteristics such that the viscosity at the kneading temperature is small. For this reason, at the initial stage of kneading, the melt of the low-viscosity concentrated material is filled in the gaps between the pellets of the solid second synthetic polymer in advance, so that the effect of reducing the internal flow resistance of the kneading device is also obtained. And contributes to improving the moldability and productivity of composite materials.
  • the second synthetic polymer which is a thermoplastic resin
  • the second synthetic polymer is blended into the dense pellets produced by the above-described dense body production method, and both are kneaded by a kneading apparatus.
  • the kneading apparatus to be used include general-purpose kneaders, mixing rolls, Banbury mixers, uniaxial or biaxial extruders, and the like.
  • the weight occupation ratio of the wax with respect to the total weight of the composite material to be finally produced is included in the range of 0.5 to 30% by weight. So that you may add this wax.
  • the viscosity of the kneaded material is reduced, the burden on the kneading apparatus is reduced, the kneading property is improved, and the biomass-derived component is uniformly and finely dispersed in the continuous phase of the second synthetic polymer. .
  • the weight occupation ratio of the wax is less than 0.5% by weight, the surface of the refined biomass-derived component cannot be wetted with the wax. If it does so, it will become difficult to diffuse uniformly the dispersed phase of biomass which is hydrophilic to the continuous phase of synthetic resin which is hydrophobic.
  • the blending amount of the wax is more than 30% by weight, the average molecular weight of the synthetic resin component constituting the composite material to be produced is lowered, and the mechanical properties thereof are lowered.
  • thermoplastic resin molding devices such as injection molding, extrusion molding, blow molding, inflation molding, etc.
  • various types of processing that have been conventionally performed using thermoplastic resins.
  • Products, various products intended to be returned to the soil by landfill such as household appliances, materials for agriculture, forestry and fisheries, civil engineering and construction materials, disposable products for outdoor leisure, packaging films, garbage bags, deserts and wasteland Sanitary products such as planting materials, fishing lines, fish nets, packaging films, and paper diapers, stationery, containers, trays, miscellaneous goods, etc. can be manufactured.
  • the concentrated body manufactured by the above-described manufacturing method of the concentrated body and the second synthetic polymer, which is a thermosetting resin are mixed and put into a generally used thermosetting resin molding apparatus, and a biomass composite material Can be manufactured.
  • the molding apparatus used include compression molding machines, injection molding machines, transfer molding machines, etc., and various products, car parts, electrical parts, electronic parts, etc. that have been conventionally manufactured using thermosetting resins. Can be manufactured.
  • a composite material When a composite material is manufactured using a compression molding machine, a mixture of a dense body and a thermosetting resin (second synthetic polymer) is placed in a concave portion (cavity) of a mold set at a curing temperature, and then pressed. And let it harden.
  • the biomass concentrate of the polymer composite material is fluidized by heating, and fills the gaps between the particles of the second synthetic polymer. Thereafter, the curing reaction of the second synthetic polymer proceeds, and a biomass composite material in which biomass-derived components are uniformly and finely dispersed is obtained.
  • the mixture of the dense body and the thermosetting resin (second synthetic polymer) is set to a flow temperature that is lower than the curing temperature, Fluidize. Then, the fluidized mixture (concentrated body + second synthetic polymer) is pressed into a mold set at a curing temperature and cured. In order to make the dispersed phase of biomass-derived components finer and more uniform, it is desirable to sufficiently stir the mixture in a fluid state.
  • the concentrated pellets may be pulverized using a mixer or the like before being mixed with the second synthetic polymer.
  • the surface of the pulverized biomass-derived component is a new surface, the affinity with the thermosetting resin is high, and a uniform dispersed phase is easily obtained.
  • the dense pellets are molded so as to reduce the surface area in contact with the outside air at a predetermined size (usually from rice grains to bean grains) on the assumption that the pellets are made into fine particles by pulverization during the molding of the composite material. That is why.
  • the dispersed phase of the biomass-derived component can be finely and uniformly dispersed in the continuous phase of the synthetic resin using a general kneading apparatus, and the biomass composite material can be easily Can be mass-produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

 合成高分子の母相にバイオマス由来成分の分散相が形成されている高分子複合材料において、前記分散相を高度に微細化、均一化させる技術を提供する。  高分子複合材料の製造装置(10)において、前記合成高分子の主剤及び前記バイオマス由来成分の過剰含水物を投入する投入区間(A)が上流側に設けられ取出手段(17)が下流側に設けられているシリンダ(13)と、合成高分子が溶融する混練温度(Tz)に設定されているシリンダ(13)の内部で軸回転し前記主剤及び前記過剰含水物の混練物を取出手段(17)に向かって押し出すスクリュー(15)と、シリンダ(13)に設けられ混練温度(Tz)における飽和蒸気圧(Pz)よりも低くかつ大気圧よりも高い設定圧力(Pa,Pb,Pc)で混練物に含まれる水分を脱水する脱水手段(40)とを、備えることを特徴とする。

Description

高分子複合材料、その製造装置及びその製造方法
 本発明は、合成高分子及びバイオマス由来成分が混合してなる高分子複合材料に関連する技術分野に属し、特にそのような高分子複合材料を製造する製造装置及びその製造方法に関するものである。
 ここで、バイオマス(生物資源)とは、太陽のエネルギーによって、成長する動物や植物のうち再生可能な有機性資源を指す。
 具体的には、リグノセルロース又はセルロースを主成分とする草木質系バイオマス(木材工業およびパルプ工業等の廃棄物である間伐材・建築解体材等、農業廃棄物である稲ワラ・さやガラ・籾ガラ等)、アミロース又はアミロペクチンを主成分とするデンプン質系バイオマス(米、小麦、とうもろこし、馬鈴薯、甘藷、タピオカ等)、甲殻類動物に由来するキチン(又はキトサン)質系バイオマス(蟹ガラ、蝦ガラ等)が挙げられる。
 現在、これらバイオマスに由来する成分と合成高分子とを複合化させることにより、化石資源から生産される合成高分子の使用量を低減させ地球環境の保全に貢献したり、従来にない新機能を発現したりする高分子複合材料を創出する研究が進められている。そのような高分子複合材料にあっては、合成高分子の母相にバイオマス由来成分をいかにして微細にかつ均一に分散させるかが重要な検討課題となっている。
 しかし、バイオマスは、分子間の強固な水素結合に基づく高い結晶性を有するとともに三次元架橋等の高次構造を有している。また機械的に粉砕された場合であってもバイオマスの粉末は凝集しやすい性質を有している。このため、バイオマス由来成分を合成高分子の母相に微細にかつ均一に分散させることは一般に容易でない。
 前記した課題に対する従来技術として、前記デンプン質系バイオマスにあっては、これに含水処理を行った後に、合成高分子の主剤とともに加熱混練することにより、デンプン質を糊化(α化)させ母相に微細に均一に分散させる技術が公知となっている(例えば、特許文献1)。
 また、草木質系バイオマスやキチン質系バイオマスにあっては、高圧ホモゲナイザー等を用いて、これらバイオマスを水溶媒中で微細化し均質な懸濁液を作製する。そして、この懸濁液を、合成高分子の主剤とともに加熱混練することにより、バイオマス由来成分を母相に微細に均一に分散させる技術が公知となっている(例えば、特許文献2)。
特開2006-21502号公報 特開2006-289164号公報
 しかし、以上述べた従来技術では、混練処理中に微細に均一に分散したバイオマス由来成分が、大気圧開放により急激になされる脱水工程において、部分的に再凝集する現象が避けられない問題があった。このため、前記した従来技術により製造された高分子複合材料は、母相に対する分散相の微細化・均一化の達成度が不十分であるといえる。
 本発明は、前記した問題を解決することを課題とし、合成高分子の母相におけるバイオマス由来成分の分散相を高度に微細化、均一化した高分子複合材料を製造する技術を提供することを目的とする。
 前記課題を解決するために本発明は、合成高分子及びバイオマス由来成分が混合してなる高分子複合材料を製造する製造装置において、前記バイオマス由来成分の過剰含水物が少なくとも含まれる混練物を設定された混練温度で混練する混練手段と、前記混練温度における飽和蒸気圧よりも低くかつ大気圧よりも高い設定圧力で前記主剤及び前記過剰含水物を含む混練物を脱水する脱水手段と、脱水された前記混練物を取り出す取出手段とを、含むことを特徴とする。
 本発明により、合成高分子の母相におけるバイオマス由来成分の分散相を高度に微細化、均一化した高分子複合材料を製造する技術が提供される。
(a)は本発明に係る高分子複合材料の製造装置の第1実施形態を示す回転軸に沿う縦断面図であり、(b)はその脱水手段の部分を拡大して示す部分断面図であり、(c)はこの脱水手段の機能説明をするのに利用する水の状態図である。 (a)は本発明に係る高分子複合材料の製造装置の第2実施形態を示す回転軸に沿う縦断面図であり、(b)は第3実施形態を示す回転軸に沿う縦断面図である。 (a)から(c)は第4実施形態を示す高分子複合材料の製造装置の回転軸に直交する縦断面図である。
符号の説明
 10,10’,10”,60 製造装置
 12  ホッパ(投入手段)
 13  シリンダ
 14  注入口
 15,15’,15” スクリュー
 16  フライト
 17  取出手段
 20  圧入手段
 30  強制減圧装置
 40(40a,40b,40c,40d,40e) 脱水手段
 41  濾過板
 42  遮断壁
 45  調圧手段
 50,62 混練手段
 63  ケーシング
 65  ロータ
 67  取出手段
 61,68 開閉手段
 A   原料投入区間
 B   混練区間
 C1  加圧脱水区間(脱水区間)
 C2  常圧脱水区間(脱水区間)
 C3  減圧脱水区間(脱水区間)
 D   再加圧区間
 P0  大気圧
 Pz  混練温度における飽和蒸気圧
 Px(Pa,Pb,Pc,Pd,Pe) 設定圧力
 Tz  混練温度
 V   気化空間
 W   混練空間(密閉空間)
 以下本発明の実施の形態について図面を参照しつつ説明する。
(第1実施形態)
 図1(a)は本発明に係る高分子複合材料の製造装置10(以下、単に「製造装置」という)の第1実施形態を示す縦断面図である。
 この製造装置10は、投入手段12(ホッパ)と、混練手段50と、脱水手段40と、強制減圧装置30とを、含んで構成されている。ここで混練手段50は、駆動手段11と、シリンダ13と、スクリュー15とを含んだ構成である。
 このように製造装置10が構成されたことにより、投入手段12により高分子複合材料の原材料が投入されると、この原材料は、シリンダ13の内部で軸回転するスクリュー15により混練されるとともに、脱水手段40及び強制減圧装置30により脱水処理されて、取出手段17から高分子複合材料の溶融体となって取り出されることになる。
 なお、この高分子複合材料の溶融体は、取出手段17に設けられ小さな穴が十数ヶ所空いているダイ(図示略)を通って、束状に放出される。さらに、冷却バスを通過して凝固した後にペレタイザー(図示略)に引込まれ米粒状のペレットにカットされる。
 駆動手段11は、スクリュー15の一端に接続して、このスクリュー15を軸回転させるものであって、高分子複合材料の原材料を混練する動力源である。なお図1においてスクリュー15は、一本のみ表示されているが、製造装置10は、このような一軸のものに限定されるものではなく、二本以上のスクリュー15が並列して構成される多軸のものである場合も含まれる。
 このように、多軸で構成される製造装置10にあって駆動手段11は、設置される複数のスクリュー15のそれぞれを軸回転させる。なおこの場合、複数のスクリュー15のそれぞれの軸回転の方向及び速度については任意設定事項である。
 投入手段12は、高分子複合材料の原材料である合成高分子の主剤及びバイオマス由来成分の過剰含水物を、シリンダ13の内部に投入するものである。この投入されるものの分量並びに配合率は、合成高分子とバイオマス由来成分の過剰含水物とをそれぞれ供給する供給部12a,12bによって任意に設定することができる。
 さらに、この投入手段12には、バイオマス由来成分がデンプン質系バイオマスに由来するものである場合、このバイオマス由来成分が後記するように糊化するのに必要な水分が注水され過剰含水物になるための注水手段が設けられている場合がある。
 ここで合成高分子として製造装置10に投入されるものとして、加熱により溶融する熱可塑性樹脂や、加熱により硬化する熱硬化性樹脂のいずれも採用することができる。
 熱可塑性高分子の主剤として採用することができるものとしては、ペレット状に成形された、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、ポリプロピレン(PP)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸エチル共重合体(EEA)等のポリオレフィン系の樹脂が好適である。
 またこれらに限定されることなく、その他、ポリカーボネート樹脂(PC)、ポリエチレンテレフタレート樹脂(PET)、アクリル・ブチレン・スチレン(ABS)等、加熱により熱流動する性質を有し一般に押出成形が可能なものであれば、特に制限無く用いることができる。さらに、これら熱可塑性樹脂は、二種以上混合して使用してもよい。
 一方、熱可塑性高分子の主剤として、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリカプロラクトン(PCL)等の生分解性を具備したものを用いれば、その全てが土に還元される性質を有し、環境保全の観点から好適な高分子複合材料が得られる。また、テグラノボン(商標)や、マクロテク・リサーチ社(米国)のECMマスターバッチ(商品名)等の生分解性を付与する添加剤が付与されているポリオレフィン樹脂を用いても同様に環境保全の観点から好適である。
 熱硬化性高分子として採用することができるものとしては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ユリア樹脂、メラミン樹脂、ポリイミド、ジアリルフタレート、アルキド等の各種公知の熱硬化性樹脂が挙げられる。
 これら熱硬化性高分子は、公知の硬化剤を主剤に添加して、所定の形状を保持して、硬化温度に設定して重合反応させることにより成形品にすることができるものである。なお、これら熱硬化性高分子の主剤は、重合反応前の単量体が低分子量化合物であるために、液体、固体、半固体の性状を取り得るが、少なくとも温度を上げれば流動状態を示すものである。
 よって、硬化温度よりも低い温度に設定された混練温度で、熱硬化性高分子の主剤とバイオマス由来成分とが混練されることになる。
 これら熱硬化性高分子のなかでも、アルキド樹脂は、多価アルコールと多塩基酸とが縮合重合してなる合成高分子であって、この多塩基酸は、混練中にバイオマス由来成分の表面のヒドロキシ基(-OH)ともエステル結合する。このために、合成高分子とバイオマス由来成分とは界面の親和性が良好になるので、微細でかつ均一な分散構造が得られる。
 このような多価アルコールとして、プロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリトリトール等が挙げられる。
 多塩基酸としては無水フタル酸、無水マレイン酸、アジピン酸等が挙げられる。
 また硬化剤として、有機過酸化物(ベンゾイールペルオキシド、ジクミルペルオキシド等)が挙げられる。
 また、前記した多価アルコールに代えてエポキシドを採用してもよい。この場合、エポキシドが混練されるとその3員環が開裂して周囲の水分子が付加して二価の多価アルコールとなり、前記した場合と同様のアルキド樹脂が合成される。また混練時に未反応のエポキシドは、その後、硬化温度に設定して成形品にする際に、3員環が開環重合してエポキシ樹脂になる。
 混練工程における多塩基酸を投入するタイミングとしては、多価アルコール(又はエポキシド)の投入よりも先行させて、バイオマス由来成分の表面と化学反応(エステル化)させることを優先させることが望ましい。これにより、バイオマス由来成分の表面が改質されて、合成高分子に対する親和性の向上がさらに期待できるからである。このように、混練工程の前段階でバイオマス由来成分の過剰含水物と多塩基酸の一部とを化学反応させて表面改質してから、多塩基酸の残部と多価アルコール(又はエポキシド)を投入して混練する。
 なお、硬化剤を投入するタイミングは、混練工程の前半・後半及び脱水工程の前後いずれの場合もありうるが実験的に最適条件が導かれる。
 ワックスとして採用することができるものとしては、常温で固体であり、加熱すると合成高分子の主剤よりも低温で溶融しかつ低粘度である有機化合物である。このワックス(C)は、天然物から抽出されるものであったり、工業的に合成されるものであったりするが、有機化合物中の鎖状炭化水素の主鎖の炭素数が10から100の範囲に含まれるものであることが望ましい。
 ワックスは、混練工程において合成高分子の主剤よりも先行して溶融し、水と混合液相を形成する。このため、混練物の粘性が低下し、混練手段50の負担が軽減するとともに混練性が向上する。さらに先行して溶融したワックスは、バイオマス由来成分に吸着し、このバイオマス由来成分が、合成高分子の主剤の溶融体中に拡散するのを促進する。
 この炭素数が10よりも小さいと、溶融したワックスは混練温度で気化しやすくなり、脱水工程において水とともに外部に排出されてしまう。
 また炭素数が100よりも大きいと、溶融したワックスの粘度が大きくなり、水との混合液相が形成されにくくなり、混練性の向上に貢献できない。
 ワックスのうち天然物から抽出されるものとしては、飽和脂肪酸が挙げられる。飽和脂肪酸とは、鎖状炭化水素の1価のカルボン酸であって、CH3(CH2)nCOOHの示性式で示される化合物であって、本発明に適用されるものはnが9以上であるものが好ましい。
 この飽和脂肪酸は、その末端に位置するカルボキシル基(COOH)が親水基であって、鎖状炭化水素の部分(CH3(CH2)n)が疎水基(親油基)となっている。
 このために溶融した飽和脂肪酸は、その疎水基が中心になり親水基が外側を向いて水と界面を成し、水との混合液相を形成しやすい。また水との混合液相中、飽和脂肪酸は、球状ミセルを形成しているので、脱水工程において水に付随して外部に排出されにくい特徴を有している。
 そして、水との混合液相における飽和脂肪酸の球状ミセルは、混練により微細化して混練物の全体に一様に拡散するととになる。球状ミセルの表面に位置する飽和脂肪酸のカルボキシル基(COOH)は、バイオマス由来成分に接触すると、その表面のヒドロシル基(OH)と、エステル反応して化学結合する(化学吸着する)。
 このような化学反応により、バイオマス由来成分は、その表面が飽和脂肪酸によって化学修飾されて、親水性が解消し親油性が向上することとなる。これにより、バイオマス由来成分が合成高分子の主剤の連続相中に拡散しやすい好都合な性質を備えることになる。
 一方、ワックスのうち工業的に合成されるものとしては、メタロセン触媒に代表されるシングルサイト触媒により重合されたオレフィン樹脂(特にプロピレン系、エチレン系)が挙げられる。
 具体例としては、プロピレン又はエチレンのモノマーの単独重合体、これらモノマーとα-オレフィンとの共重合体が挙げられる。なお、α-オレフィンとしては、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテンなどが挙げられ、共重合体はブロック共重合体、ランダム共重合体、ランダムブロック共重合体の何れであってもよい。
 なお、ワックスは、二種以上の前記した有機化合物を混合して使用してもよい。
 シングルサイト触媒により重合されたオレフィン樹脂のワックスは、チグラー・ナッタ触媒に代表されるマルチサイト触媒による場合と比較して、側鎖の分岐、分子量、結晶粒径の分布が均一化している。
 シングルサイト触媒により重合されたオレフィン樹脂のワックスによれば、天然ワックスよりも分子量が大きいにもかかわらず溶融粘度が低いために、良好な混練性を維持して脱水工程で水の効率的な排出に貢献する。
 これらワックスの配合量は、前記合成高分子及び前記バイオマス由来成分の合計量100重量部に対し、1から20重量部の範囲に含まれるのが望ましい。
 ワックスの配合量が1重量部よりも少ない場合、混練性の向上効果が認められなく、脱水工程における水の効率的な排出効果も認められない。
 一方、ワックスの配合量が20重量部よりも多い場合、製造される高分子複合材料の平均分子量が低下することとなり成形品の機械的性質が低下することになる。
 バイオマス由来成分の過剰含水物として採用することができるものとしては、水に所定時間浸漬させた後に水切りした生米、芯や表皮を取り除き大きさを適当に揃えて刻む程度の簡単な処理を行ったトウモロコシ、馬鈴薯、甘藷等のデンプン系の穀物が挙げられる。
 これらデンプン系の穀物は、所定量以上の水分の存在下で一般的な混練温度Tz(100~200℃)に置かれると、水分子が入り込んで結晶構造が崩れる糊化が起こる。このように糊化したデンプン(バイオマス由来成分)は、分子鎖相互間の水素結合の束縛から解放されているので、溶融している熱可塑性高分子中に微細に均一に分散されやすい性質を備えることとなる。
 また、前記したように投入手段12に注水手段が設けられていれば、これらのデンプン系の穀物を製造装置10に投入すると同時に、デンプンを糊化させるのに必要な水分を補給する注水を適宜行って、過剰含水物を調整する場合もある。
 次に、バイオマス由来成分の過剰含水物として採用することができるものとして、リグノセルロース又はセルロースを主成分とする草木質系バイオマスや、蟹ガラ及び蝦ガラ等のキチン質系バイオマス等を水中で微細化させてなる懸濁液が挙げられる。このような懸濁液は、前記した特許文献2に挙げられるような高圧ホモゲナイザーを用いてバイオマスを水中で物理的に粉砕させる場合の他、化学的な処理を行うことにより形成させる方法もとり得る。なおここで過剰含水物とは、前記した通りバイオマスに水分が人為的に加えられて構成されるもののほか、元来水分を固有に含むバイオマスそのものも指し、混練工程で最終的に脱水される水分が含有されるものであれば全て対象になる。
 例えば、バイオマスとして木材を採用する場合は、この木材を機械的に粉砕する前処理を施して、最大径が数mm程度のサイズの粒状又はチップ状にする場合がある。もちろん、木材をそれ以下のサイズの微粒子の集合体にしても適宜採用される。なお、そのような微粒子の集合体として、バイオマスから化学的工程を経て抽出される繊維質体も含まれることとする。
 これら、木材の微粉末体は、人為的に水分を加えなくても吸湿作用により、十数wt%から数十wt%の水分を含有する過剰含水物であるといえる。このような木材の微粉末体(または籾ガラ等)は、乾燥処理等の特別な工程を経ることなくそのまま製造装置10に投入することができる。
 このように、バイオマスが、数mm程度の最大径のサイズを有していることの効果は、その含水量が多い場合であっても、投入手段12からバイオマス原料を製造装置10に投入するに際し、目詰まりが回避されることが挙げられる。
 一方、バイオマスのサイズがそれ以下の微粒子の集合体であって、吸湿による含水量が多くて投入手段12が目詰まりする場合は、逆に、その集合体に水を人為的に含浸させて含水量をさらに増加させることによりこの目詰まりを回避することができる。
 このように、水分が元来含有されているバイオマスの過剰含水物に水をさらに含浸させることにより、前記した目詰まりを回避させる効果以外に、飛散しやすい微粒子の集合体の取り扱いが簡便化し生産効率が向上する効果が得られる。
 さらに、微粒子の集合体は、内包する空気が水に置換された後に、合成高分子と混練されることになる。これにより、製造される高分子複合材料は、残留する気泡が減少し欠陥が少なくなる効果が得られる。
 なお、投入手段12に対し、合成高分子とバイオマス由来成分との相溶性を向上させる相溶化剤をさらに送入させる場合もある。この相溶化剤は、例えば、飽和カルボン酸、不飽和カルボン酸またはその誘導体が用いられる。また、合成高分子を不飽和カルボン酸またはその誘導体で変性させたものを使用することもできる。
 このほか、無機・有機物質を問わず、シリカや繊維状の物質等を添加し、これら添加剤成分を高分子複合材料中に微分散させることも可能である。
 シリンダ13は、投入手段12を備える原料投入区間Aを最上流とし取出手段17を備える部分を最下流として、この最上流と最下流との間が、少なくとも混練区間B、脱水区間C(C1,C2,C3)、再加圧区間Dに分類されるよう構成されている。また、シリンダ13の周囲には、その内部を混練温度Tz(図1(c)参照)に設定するためのヒータ(図示せず)が設けられている。
 混練区間Bは、投入手段12から投入された、合成高分子の主剤、バイオマス由来成分の過剰含水物、及び相溶化剤を、所定の圧力と混練温度Tzとで混練する区間である。これによりバイオマス由来成分は、混練物中で微細化し、適宜相溶化剤と化学反応することによって合成高分子との親和性が付与され、混練物中に均一に分散することになる。
 脱水区間Cは、さらに加圧脱水区間C1、常圧脱水区間C2、減圧脱水区間C3に分類することができ、これらにはそれぞれ少なくとも1つ以上の脱水手段40(図1(b)参照)が設けられている。
 ここで、加圧脱水区間C1は、混練物に含まれる水分を、図1(c)に示されるように、その混練温度Tzにおける飽和蒸気圧Pzよりも低くかつ大気圧P0よりも高い設定圧力Pa,Pbで脱水する部分である。
 このような設定圧力Pa,Pbで脱水処理されることにより、混練物は、含水量を急激ではなく徐々に低減させながら、さらに混練されることになる。これにより、混練物中で微細化して分散したバイオマス由来成分は、再凝集することが抑制されつつさらに、微細化、分散化が進行することとなる。
 常圧脱水区間C2は、加圧脱水区間C1を通過した混練物に含まれる水分を、図1(c)に示されるように、大気圧P0に近い設定圧力Pc,Pdで脱水する部分である。このような設定圧力Pc,Pdで脱水処理されることにより、含水量が低減した混練物は、さらに含水量を徐々に低減しつつさらに混練されることになる。これにより、混練物中で微細化して分散したバイオマス由来成分は、再凝集することが抑制されつつさらに、微細化、分散化が進行することとなる。
 減圧脱水区間C3は、常圧脱水区間C2を通過した混練物に含まれる水分を、図1(c)に示されるように、強制減圧装置30によって大気圧P0よりも低い設定圧力Peで脱水する部分である。このような設定圧力Peで脱水処理されることにより、混練物に含まれる水分はほとんど除去されることになる。
 なお減圧脱水区間C3が接続する真空トラップ31は、気化した蒸気を冷却して液体に戻し、強制減圧装置30に高温の飽和水蒸気が強制減圧装置30に入るのを防止してその劣化を抑制するものである。
 このように、混練物に付与される圧力を、脱水区間Cにおいて、混練温度Tzにおける飽和蒸気圧Pzから段階的に引き下げて脱水することにより、バイオマス由来成分の再凝集を抑制しつつ、その微細化、分散化を促進させることができる。
 再加圧区間Dは、脱水処理の終了した混練物を継続して混練するとともに、再加圧して取出手段17から取り出されるに必要な圧力を付与する部位である。これにより、バイオマス由来成分が微細に分散している高分子複合材料の溶融体が取出手段17から取り出されることになる。
 スクリュー15は、その軸周りに螺旋状のフライト16が形成されているものであって、軸回転することにより、フライト16が圧力を付与して混練物を、シリンダ13の上流から下流に向けて押し出すものである。
 脱水手段40は、図1(b)の部分断面図で示されるように、濾過板41と、遮断壁42と、調圧手段45とを、含んで構成されるものである。
 このように構成される脱水手段40は、調圧手段45により混練温度Tzにおける飽和蒸気圧Pzよりも低くかつ大気圧P0よりも高い任意の設定圧力Px(x=a,b,c,d,e)を、シリンダ13内の混練物に付与するものである。これにより脱水手段40は、混練物に含まれる水分を、急激ではなく徐々に脱水していくことが可能になる。
 濾過板41は、シリンダ13の壁面に設けられた開口を閉じるように配置され、シリンダ13の内部及びその外部を隔てるとともに混練物のうち含まれる水分を選択的に濾過するものである。このような濾過板41の構成としては、板面に多数の孔を設けられ、その板面がシリンダ13の内壁面に沿って固定されるものが挙げられる。
 遮断壁42は、濾過板41により濾過された水分を気化させる気化空間Vを形成するとともにこの気化空間Vを大気から遮断するものである。このような遮断壁42の構成としては、有底の容体がその開口とシリンダ13に設けた開口とを略一致するように固定され、さらに濾過板41を当接してこれが固定されるようにするものが挙げられる。
 調圧手段45は、気化空間Vの気圧を計測する圧力計43と、気化空間Vから遮断壁42を通過して大気側に放出される気体(水蒸気)に流動抵抗を可変して付与する絞り弁44とから構成され、気化空間Vの気圧を所定の設定圧力Px(x=a,b,c,d,e)に設定するものである。
 この絞り弁44の絞り量を適宜調節することにより、気化空間Vの気圧を、混練温度Tzにおける飽和蒸気圧Pzから大気圧P0までの間の任意の値に設定することができる。つまり、絞り弁44を完全に閉塞すれば気化空間Vの気圧は、この飽和蒸気圧Pzに設定され、絞り弁44を完全に開放すればから大気圧P0に設定されることになる。さらに矯正減圧装置30に接続して気化空間Vの気圧を大気圧P0以下に設定することができる。
 なお、この調圧手段45は、シリンダ13に設けられている複数個の脱水手段40においてその設定圧力Pxが取出手段17に近くなる程小さく設定されていること(Pa>Pb>Pc)が、バイオマス由来成分の再凝集が抑制する上で望ましいことはすでに述べたとおりである。
 また設定圧力Pxは、投入された液状試薬が気化して排出されないように、水分が優先的に排出されるように適宜設定される。
 そして、シリンダ13に複数設けられている脱水手段40のうち最下流に位置するものを大気圧P0よりも低圧な設定圧力Pe(P0>Pe)にすることで、取出手段17から押し出される混練物の脱水をより完全にすることができる。
(製造装置の動作説明)
 次に図1(a)並びに図1(b)及び水の状態図である図1(c)を参照して製造装置10の動作並びに脱水手段40の機能説明を行う。
 製造装置10の内部に、合成高分子の主剤、バイオマス由来成分の過剰含水物及びその他必要な成分(ワックス、相溶化剤等)が、投入手段12を通じて投入され、設定された混練温度で混練手段50により混練される。すると、活性化した水がバイオマスの分子鎖間に侵入してその分子間結合を緩くする。さらに、混練で付与される機械エネルギーにより、バイオマスが開裂して微細化が進行する。
 さらに、溶融したワックスは、水と低粘度の混合液相を形成し混練物全体の粘性を低下させ混練性を向上させるとともにバイオマス由来成分の表面に吸着する。またカルボキシル基を有するその他の化合物(相溶化剤、脂肪酸、多塩基酸等)は、下記式(3)に示す脱水反応(エステル反応)によって、バイオマス由来成分の表面(R´)のヒドロシル基(OH)をエステル結合を有する置換基に置換する。これにより、バイオマス由来成分の親水性が低下して水分との結びつきが弱まり、次の脱水工程において効率の良い脱水が実現される。
Figure JPOXMLDOC01-appb-C000001
 シリンダ13に設けられたもののうち最上流に位置する脱水手段40aに到達した混練物は、スクリュー15から付与される圧力により、濾過板41に押し付けられて、含まれる水分が選択的にこの濾過板41を通過して気化空間Vに溜まる。この気化空間Vに溜まった水分は混練温度Tzであるところ、その飽和蒸気圧Pzより低い圧力Paに設定されている気化空間Vにおいて、この溜まった水分は気化することになる。この気化した水分(水蒸気)は調圧手段45の絞り弁44を通過して大気に放出されることになる。
 この脱水手段40aでは、設定圧力Paと大気圧P0との差圧が小さいために、混練物の脱水が急激にされることはなく、含水量が低減した状態となって混練されながら下流の脱水手段40bに押し出される。
 次の脱水手段40bにおいても、同様に、飽和蒸気圧Pzより低い圧力Pbに設定されている気化空間Vにおいて溜まった水分は気化して大気に放出されることになる。
 以下、このように、下流側に設けられている脱水手段40(40c,40d,40e)において同様の動作が繰り返されて、混練物は段階的に徐々に脱水を実行しつつ混練されるためにバイオマス由来成分の再凝集が抑制されることになる。
 そして、脱水が完了した混練物は、バイオマス由来成分が分散した高分子複合材料の溶融体として、取出手段17から取り出されるとともに、ペレタイザー(図示略)等により米粒状のペレット等(高分子複合材料組成物)に成形される。
 このペレットは、再加熱して溶融させてから、金型に注入してバルク状の成形品としたり、延伸加工(例えばインフレーション法、カレンダー加工法、T-ダイ法、吹き込み法等)してフィルム状の成形品としたり、発泡させて発泡成形品としたりして、一般的な高分子加工成形品を製造するための原料として適用することができる。
 なおこのように、ペレットの成形を経由せずに、取出手段17から押し出される高分子複合材料の溶融体からそのような成形品を直接製造してもよい。
 以上の実施形態は本発明を説明するための一例であり、本発明は前記した実施形態に限定されるものでなく、発明の要旨の範囲内で種々の変形が可能である。例えば、製造装置10は、加圧脱水区間C1が少なくとも設けられていれば、特に常圧脱水区間C2及び減圧脱水区間C3を設ける必要が無い場合がある。これは、混練温度Tzにおいては、大気圧P0よりも高い圧力で充分に脱水する(水分を気化させる)ことが可能であることが図1(c)の水の状態図から充分に裏付けられるからである。
 また、図示されているシリンダ13の区分(A,B,C1,C2,C3,D)は例示であって、これらの区分の間に他の区分を設けること(例えば、常圧脱水区間C2と減圧脱水区間C3との間に混練区間Bを設けること、原料投入区間Aを複数設けること等)は適宜可能である。
 そのような、他の具体的な適用例について例示する。投入手段12からは、バイオマス(木材の粉砕物又は籾ガラの未処理物等)と、相溶化剤とを、投入して第1の原料投入区間Aで両者を混練する。この原料投入区間Aで、バイオマスは、さらに粉砕されて微粒子化するとともにその表面に相溶化剤を吸着させて、後に投入される合成高分子に対する親和性を向上させる。
 次に、第2の原料投入区間(図示せず)において、合成高分子の主剤及びその他必要な試薬を投入し、バイオマスと共に混練する。これにより、バイオマス由来成分が合成高分子の連続相に微細にかつ均一に分散していくこととなる。
 なお製造装置10の構成として、脱水区間C1,C2,C3は、第1の原料投入区間Aと第2の原料投入区間(図示せず)との中間工程に位置する場合、第2の原料投入区間(図示せず)の後工程に位置する場合の、いずれの場合も取り得る。さらに、混練区間Bが、任意区間の中間に追加される場合も取り得る。
(第2実施形態)
 次に図2(a)に示す縦断面図を参照して、本発明に係る高分子複合材料の製造装置の第2実施形態を説明する。なお、図2(a)において図1と同一又は相当する部分は、同一符号で示し、すでにした記載を援用して、詳細な説明を省略する。
 第2実施形態の製造装置10’は、高分子複合材料の原料として用いられるバイオマス由来成分の過剰含水物として、懸濁液のような含水量が多く流動性の高いものが採用される場合に適切なものである。
 そのような製造装置10’において特徴的な構成は、このバイオマス由来成分の過剰含水物をシリンダ13の内部に圧入する圧入手段20と、軸径が変化しているスクリュー15’とを採用する点にある。そして、高分子複合材料の原料が投入される区間は、合成高分子の主剤が投入される主剤投入区間A1と、その下流に設けられバイオマス由来成分の過剰含水物の懸濁液が投入される懸濁液投入区間A2とに分割して構成される。
 圧入手段20は、シリンダ13の懸濁液投入区間A2に設けられている注入口14を介して接続されるものであって、バイオマス由来成分の過剰含水物が充填されている液溜21と、この液溜21からバイオマス由来成分の過剰含水物をシリンダ13に注入する駆動力を与えるモータ22と、この注入されるバイオマス由来成分の過剰含水物の逆流を防止する逆止弁24と、シリンダ13に注入されるバイオマス由来成分の過剰含水物の注入量を調節する絞り弁25とを含んで構成されている。
 なお、この注入口14の近傍のシリンダ13の内部は、合成高分子の混練物が加圧された状態にあるので、圧入手段20は、それよりも大きな圧力でバイオマス由来成分の過剰含水物を圧入させる必要がある。また、圧入された過剰含水物が混練物の温度を下げないように、圧入手段20には、過剰含水物を加熱する加熱手段を適宜設けてもよい。
 仮に、このような流動性の高いバイオマス由来成分の過剰含水物を、第1実施形態の製造装置10のように合成高分子と混合してシリンダ13に投入するとなると、投入手段12の内部で両者が分離して、バイオマス由来成分の配合比率が変動して混練物に配合比率のむらが生じることが懸念される。しかし、第2実施形態の製造装置10’のように、流動性の高いバイオマス由来成分の過剰含水物を下流側に設けた注入口14から圧入することにより、常に一定比率でむらなくバイオマス由来成分を混練物に投入することが可能になる。
 そして圧入手段20から圧入されるものは、前記したバイオマス由来成分の過剰含水物に限定されるものではなく、例えば前記したような、多塩基酸、多価アルコール、有機過酸化物のような混練工程において配合される種々の液状試薬が圧入される場合もある。
 また圧入手段20は、図2に示されるように単数配置に限定されるものでなく目的に応じて複数配置される場合があり、また配置される位置も脱水手段40の上流に配置されることに限定されるものでなく、その下流に配置される場合もある。前記したような液状試薬は、脱水が充分に行われた後に、混練物に圧入されることが望ましい場合があるからである。
 次に、スクリュー15’は、加圧脱水区間C1又は常圧脱水区間C2に設けられている脱水手段40(40a,40b,40c,40d)の設置部位において、その軸径が上流側よりも太径に形成されている。このようにスクリュー15’が構成されることにより、混練物は上流側よりもさらに加圧されることとなり、含有する水分が除去されて混練物の容積が減少してもこの混練物に付与される圧力は少なくとも維持されることになる。
 さらにスクリュー15’は、減圧脱水区間C3に設けられている脱水手段40(40e)の設置部位において、その軸径が上流側よりも細径に形成されている。このようにスクリュー15’が構成されることにより、混練物はこの区間においてスクリュー15’から混練物に付与されている圧力は解除(減圧)されることになり、さらに混練物は大気圧P0より低圧にさらされて脱水が促進されることになる。
 さらにスクリュー15’は、脱水区間C1,C2,C3を通過した再加圧区間Dにおいて、その軸径が上流側よりも太径に形成されている。このようにスクリュー15’が構成されることにより、脱水された混練物はこの区間において再加圧されて取出手段17から取り出されることになる。
 また、前記した第2実施形態の説明においては、投入手段12からシリンダ13の内部には合成高分子の主剤が投入され、圧入手段20からシリンダ13の内部にバイオマス由来成分を含む懸濁液が投入される例を示した。
 第2実施形態における他の適用例として、投入手段12からは合成高分子の主剤及びデンプン質系バイオマス(生米等)がシリンダ13の内部に投入されることとして、圧入手段20を注水手段としてシリンダ13の内部に水を注水する場合もある。
 この場合、圧入手段20は、流量並びに温度の調節機能を有する一般的な給湯手段を用いることができる。そして、デンプン質系バイオマス(生米等)は、合成高分子の主剤とともに混練されつつ、注水された水を吸水して過剰含水物になってから糊化する。
(第3実施形態)
 次に図2(b)に示す縦断面図を参照して、本発明に係る高分子複合材料の製造装置の第3実施形態を説明する。なお、図2(b)において図1及び図2(a)と同一又は相当する部分は、同一符号で示し、すでにした記載を援用して、詳細な説明を省略する。
 第3実施形態の製造装置10”は、第2実施形態の場合と同様に、高分子複合材料の原料として用いられるバイオマス由来成分の過剰含水物として、懸濁液のように含水量が多く流動性の高いものを採用する場合に適切なものである。
 そして製造装置10”において特徴的な構成は、フライト16のピッチが変化しているスクリュー15”を採用する点にある。
 このようにスクリュー15の下流に向うに従いフライト16のピッチが狭く変化すると混練物に付与される圧力は増大し、逆にピッチが広く変化すると混練物に付与される圧力は減少することになる。
 そこでスクリュー15”は、加圧脱水区間C1又は常圧脱水区間C2に設けられている脱水手段40(40a,40b,40c,40d)の設置部位において、フライト16のピッチが上流側よりも狭く形成することにする。そしてスクリュー15”は、減圧脱水区間C3に設けられている脱水手段40(40e)の設置部位において、フライト16のピッチが上流側よりも広く形成されている。
 このようにスクリュー15”が構成されることにより、混練物は、第2実施形態の場合と同じ要領で、脱水手段40が設けられている位置で加圧又は減圧されることになり、その脱水が段階的に促進されることになる。
(第4実施形態)
 次に図3に示す断面図を参照して、本発明に係る高分子複合材料の製造装置の第4実施形態を説明する。前記した図1及び図2の製造装置10は、原料の投入工程、混練工程、混練物の取出工程がそれぞれ寸断されることなく同時に進行し連続的に高分子複合材料を製造する連続式のものであった。これに対し、第4実施形態に係る製造装置60は、原料の投入工程、混練工程、混練物の取出工程がそれぞれ順繰りに繰り返され断続的に高分子複合材料を製造するバッチ式のものである。
 この製造装置60は、投入手段12(ホッパ)と、混練手段62と、脱水手段40とを、含んで構成されている。ここで混練手段62は、駆動手段(図示せず)と、ケーシング63と、ロータ65とを含んだ構成である。
 また図3(a)~(c)は、ロータ65の回転軸に直交する断面であって、その長手方向に沿って異なる(それぞれ投入手段12、脱水手段40、取出手段67を含む)製造装置60の断面図を示している。
 なお、図3において図1と同一又は相当する部分は、同一符号で示し、すでにした記載を援用して、詳細な説明を省略する。
 混練手段62は、ケーシング63と、ロータ65とを構成に含み、投入された合成高分子の主剤、バイオマス由来成分の過剰含水物及びその他のものを設定した混練温度で撹拌して混練し、微細にかつ均一な高分子複合材料にするものである。
 ケーシング63は、合成高分子の主剤及びバイオマス由来成分の過剰含水物を投入する投入手段12並びに混練物を外部に取り出す取出手段67が設けられている。
 この投入手段12は、第1開閉手段61を介してケーシング63内部の混練空間Wと連通しており、この第1開閉手段61を「開状態」にすると投入手段12から混練空間Wに合成高分子の主剤やバイオマス由来成分の過剰含水物を投入することができるようになっている。一方、第1開閉手段61を「閉状態」にすると混練空間Wと投入手段12との間を行き交う気体の流れも遮断される。
 取出手段67は、第2開閉手段68を介してケーシング63の混練空間Wと連通しており、この21開閉手段61を「開状態」にすると混練空間Wにある混練物が取り出せることができるようになっている。一方、第2開閉手段68を「閉状態」にすると混練空間Wと取出手段67との間を行き交う気体の流れも遮断される。
 このように、第1開閉手段61及び第2開閉手段68を「閉状態」にすると混練空間Wは密閉空間になり、混練空間Wは、設定された混練温度Tzにおける飽和蒸気圧Pz(>P0:大気圧)に保持されることになる(図1(c)参照)。
 ロータ65は、密閉空間にされ混練温度に設定されたケーシング63の混練空間Wで回転し混練物を混練するものである。このロータ65は、図3中、互いに回転方向が逆方向である二つの回転体が、投入手段12からの投入物を巻き込むようにかつ取出手段67へ混練物を押し出すように回転するものが例示されているが、このような実施形態に限定されるものでなく公知のものを適用することができる。
 脱水手段40は、図3(b)に示されるように、ケーシング63に穿設された混練空間Wの開口に設けられ、密閉空間の圧力を調節し、この調節された圧力により混練物の脱水を実行するものである。
 濾過板41は、ケーシング63の混練空間W及び外部を隔てるとともに混練物のうち含まれる水分を選択的に濾過するものである。
 遮断壁42は、濾過板41を介して混練空間Wに連通する気化空間Vが形成されるとともに調圧手段45が設けられている。
 調圧手段45は、密閉空間にされた混練空間Wの気圧を調節して設定圧力に設定するものであって、圧力計43及び絞り弁44を備える。
 なお図3(b)の脱水手段40は、図1(b)と同じものが示されているが、本実施形態の製造装置60おいては、混練空間Wの上部も連通する気化空間Vと同じ役割を果たしている。このために、濾過板41及び遮断壁42を設けずに、ケーシング63に直接調圧手段45を設ける構成も取り得る。
 また、図3で図示されていないが、製造装置60において、圧入手段20(図2参照)が設けられる構成も取り得る。
(製造装置の動作説明)
 次に図3を参照して製造装置60の動作説明を行う。
 第1開閉手段61を「開状態」とし第2開閉手段68を「閉状態」とし、製造装置60の内部に、合成高分子の主剤、バイオマス由来成分の過剰含水物及びその他必要な成分(ワックス、相溶化剤等)を、投入手段12を通じて投入する。そして、第1開閉手段61を「閉状態」にして投入物を混練温度に設定し混練手段62により混練する。
 そして、適時、調圧手段45を動作させて混練空間Wにある水分を水蒸気にして外部に放出させたり、図示しない圧入手段20(図2参照)から必要な液状試薬を投入したりする。また必要に応じて強制減圧装置30(図1(a)参照)により、混練空間Wを大気圧よりも減圧し、脱水を完全にする。
 次に第2開閉手段68を「開状態」とし混練空間W内の混練物を取出手段67から取り出す。以上の工程を繰り返すことにより、高分子複合材料を量産する。
 以上述べた高分子複合材料の製造装置10,10’,10”,60で混練される合成高分子の主剤としては、熱可塑性高分子及び熱硬化性高分子のいずれも適用することができるものである。また、これら合成高分子の主剤に適宜添加される試薬(熱硬化性高分子の硬化剤を含む)については、その種類、性状、添加方法について公知のものを採用することができる。さらにそのような試薬を主剤に混合する手段は、例示した実施形態に限定されるものでなく、事例に応じて最適な手段が採用される。
 また合成高分子の主剤、バイオマス由来成分の過剰含水物及びその他必要な成分(ワックス、相溶化剤等)が、投入手段12から投入される順番並びに脱水を実施するタイミング及び回数についても任意である。
 つまり、前記した成分を全て一機に投入して混練・脱水して取り出す場合の他、例えば、バイオマス由来成分の過剰含水物及び相溶化剤を、先行して投入し混練・脱水した後に、合成高分子の主剤を投入して混練して混練物を取り出す場合も取り得る。
<高分子複合材料のバイオマス濃厚体について>
 バイオマス由来成分が高比率に配合されている高分子複合材料のバイオマス濃厚体が予め用意されていれば、これを合成高分子と共に混練し、バイオマス由来成分の濃度を任意に希釈して樹脂成形品を製造することができる。
 またこのような製造方法によれによれば、水分を介在させずにバイオマス由来成分が均一分散した複合材料を量産することができる。さらに、前記したような脱水手段40を備えた特殊な製造装置10を必要とせずに、一般的な成形装置でバイオマス複合材料を簡便に量産することができる。
 また、バイオマス由来成分は単体で放置すると、表面酸化により、合成高分子との親和性が低下するが、この濃厚物に成形しておけば、バイオマス由来成分の粒子は、合成高分子に被覆されているので、酸化等の材質劣化が進行しにくい。
 以下、そのように希釈して使用するのに最適な高分子複合材料のバイオマス濃厚体(以下、単に「濃厚体」という)について説明を行う。なお、このバイオマス濃厚体に含まれる合成高分子を第1合成高分子とし、後で希釈するのに用いる合成高分子を第2合成高分子と定義する。
 第1合成高分子として採用することができる合成樹脂としては、特に限定はないが、プロピレン系樹脂及びエチレン系樹脂のオレフィン樹脂が好適に用いられる。
 これらプロピレン系樹脂及びエチレン系樹脂の重合様式は、特に限定されるものでなく、重合度も、モノマーの結合数が10から100未満のオリゴマー(ワックス)、100を超えるポリマーの両方を含むこととする。
 そして、第1合成高分子は、バイオマス由来成分が均一かつ微細な分散相を形成する複合材料を製造するために、分子設計の自由度が高いシングルサイト触媒による重合様式を採用し、後記する融解温度特性を有する重合度で合成されることが望ましい。
 この濃厚体を構成する第1合成高分子が具備すべき特性の一つとして、濃厚体を製造する混練温度において、良好な流動特性を備えていること挙げられる。
 第1合成高分子に採用され得る前記した熱可塑性樹脂のうち結晶性高分子であるものについては、示差走査熱量計(DSC;Differential Scanning Calorimetry)により測定される融解温度を、流動特性を評価する指標にすることができる。
 つまり、結晶性高分子の温度を連続的に変化させるとともに、結晶が融解して固体から液体に変化する際の転移熱をDSCにより検出することにより、任意温度における第1合成高分子の固体-液体比率を知ることができる。
 そして、任意温度において、液体比率が高い程、全部液体の場合は融解ピークが低温にあるものほど、低粘性で流動性に優れると一般にいえる。
 なお、熱可塑性樹脂のうち非晶性高分子については、結晶性高分子のような融解現象は観測されないので、DSCにより測定されるガラス転移温度が流動特性を評価する指標として用い得る。
 結晶性高分子であるプロピレン系樹脂を主成分にする第1合成高分子においては、DSCで測定される融解温度が50℃から150℃の範囲に含まれることが望ましい。
 結晶性高分子であるエチレン系樹脂を主成分にする第1合成高分子においては、DSCで測定される融解温度が50℃から120℃の範囲に含まれることが望ましい。
 ここで、融解温度とは、JISK7121で定められる融解開始温度Timから融解終了温度Temまでの温度範囲を指す。
 この第1合成高分子の融解開始温度Timが規定した前記温度範囲の下限(50℃)未満であるとすると、第1合成高分子は一般的使用温度(常温)において部分的に融解することになり、最終製品であるバイオマス複合材料の表面がべたつき感を有する場合がある。
 また第1合成高分子の融解終了温度Temが規定した前記温度範囲の上限よりも高温であるとすると、一般的な同系統の合成樹脂の混練温度において、未融解な部分が残存する場合があり、最終製品であるバイオマス複合材料が内部欠陥を包含する場合がある。
 このように規定された温度範囲の融解温度を有するために第1合成高分子は、前記したシングルサイト触媒により重合されたオレフィン樹脂(プロピレン系樹脂、エチレン系樹脂)であることが望ましい。
 なぜならば、これら結晶性高分子の融解温度は、その高分子の一次構造と密接な関係を有している為、一次構造を精密に制御することができるシングルサイト触媒による重合は好都合であるからである。そのような、精密制御された一次構造を実現することができるのは、このシングルサイト触媒が、重合反応に関わる部分が単一の性質を有するため重合反応が均一化する為と考えられている。
 シングルサイト触媒により合成される場合は、チグラー・ナッタ触媒に代表されるマルチサイト触媒による場合と比較して、等側鎖の分岐が少なく、分子量、結晶粒径の分布が均一化したオレフィン樹脂が重合される。このため、DSC測定による融解温度が規定した範囲に含まれる任意の温度範囲であって融解ピークの形状がシャープであるオレフィン樹脂(第1合成高分子)が得られる。
 ここで、第1合成高分子が、鎖状炭化水素の主鎖の炭素数10から100の範囲に含まれるワックスを含む場合について考察する。このワックスは、工業的に合成される合成樹脂であったり、天然物から抽出される天然樹脂であったりし、いずれも常温で固体であり加熱して溶融すると第2合成高分子よりも低粘度を示すものである。このため、このワックスが配合されている濃厚体と第2合成高分子とを混合して混練すると、ワックス成分が先行して溶融することになる。すると、混練物の粘性が低下して混練装置の負担が低減するとともに混練性が向上しバイオマス由来成分が第2合成高分子の連続相中に均一でかつ微細に分散していくことになる。
 ここで、ワックスの主鎖の炭素数が10よりも小さいと、ワックスの融点が低温となり常温で液体を示し、製造されるバイオマス樹脂の表面がべたつき感を有することになる。
 またワックスの主鎖の炭素数が100よりも大きいと、ワックスの融点が高温となり溶融粘度が大きくなる。すると、第2合成高分子の連続相に対するバイオマス由来成分の分散性が低下することになる。
 ワックスとして、天然樹脂のものとしては飽和脂肪酸が挙げられる。
 飽和脂肪酸とは、鎖状炭化水素の1価のカルボン酸であって、CH3(CH2)nCOOHの示性式で示される化合物であって、本発明に適用されるものはnが9以上であるものが好ましい。
 この飽和脂肪酸は、その末端に位置するカルボキシル基(COOH)が親水基であって、鎖状炭化水素の部分(CH3(CH2)n)が疎水基(親油基)となっている。
 このために飽和脂肪酸は、末端のカルボキシル基(COOH)が、バイオマス由来成分(R)の表面のヒドロシル基(OH)と、下記式に示す脱水反応(エステル反応)により化学結合(化学吸着)することになる。
Figure JPOXMLDOC01-appb-C000002
 このような化学反応により、バイオマス由来成分は、その表面のヒドロシル基(OH)が飽和脂肪酸によって化学修飾されて、親水性が解消し親油性が向上することとなる。これにより、バイオマス由来成分の分散相が第2合成高分子の連続相中に拡散しやすい好都合な性質を備えることになる。
 合成樹脂のワックスとしては、前記したシングルサイト触媒により重合されたオレフィン樹脂が好適である。これによれば、同様の融点(又は溶融粘度)を有する天然樹脂のワックスと対比した場合、長鎖であるがゆえに硬度が高い特徴を有するため、機械的特性の優れたバイオマス樹脂の複合材料を得ることができる。
 また、シングルサイト触媒により重合されたオレフィン樹脂のワックスは、同程度の硬度を有する他の合成ワックス(チグラー・ナッタ触媒法、高圧法等)と対比した場合、低融点でかつ低粘度である特徴を具備している。
 濃厚体を構成するバイオマス由来成分としては、グルコースがα-1,4グルコシド結合によって直鎖状に結合したアミロース又はα-1,4グルコシド結合とα-1,6グルコシド結合の両者の直鎖を枝に持つアミロペクチンを主成分とするデンプン質系バイオマス、リグノセルロース又はセルロースを主成分とする草木質系バイオマス、甲殻類動物に由来するキチン(又はキトサン)質系バイオマス(蟹ガラ、蝦ガラ等)が挙げられる。
 濃厚体を製造するにあたり、これらデンプン質系バイオマスの前処理としては、芯や表皮を取り除き大きさを適当に揃えて刻んだり、糊化に必要な水分の追加をしたりする程度の簡単な処理で十分である。このような簡単な処理をしたデンプン質系バイオマスと、第1合成高分子とを共に混練すると、その過程において含有する水分によりデンプンが糊化し微細化し第1合成高分子中に均一に分散していくことになる。
 なおこの含有する水分は濃厚体を製造する混練工程の後工程において混練装置に設けられている脱水手段から排出されることになる。
 また濃厚体の原料として適用されるデンプン質系バイオマスは、このような簡単な前処理を実施した穀物に限定されるものではなく、予め公知方法で糊化させた穀物(非晶構造を取るデンプン)や、これら穀物からアミロース又はアミロペクチンの成分を公知の方法で抽出させたものを原料としてもよい。
 またデンプン由来のバイオマス由来成分を採用する場合において、その微細化を促進するために、濃厚体の製造時において、アミラーゼを添加する場合がある。
 このアミラーゼは、分子量約55,000の酵素であり、α-アミラーゼ、β-アミラーゼ、グルコアミラーゼがあり、いずれも工業的に大量生産されるものである。
 α-アミラーゼは、デンプンのα-1,4グルコシド結合を不規則に切断して多糖又はオリゴ糖に加水分解し、β-アミラーゼは、デンプンを末端からブドウ糖2個単位で切断し、麦芽糖に分解し、グルコアミラーゼは、糖鎖の非還元末端のα-1,4グルコシド結合を切断してブドウ糖に分解する。
 さらに、イソアミラーゼ、プルラナーゼは、糖類の分岐部分であるα-1,4グルコシド結合を選択的に切断する。
 このなかでα-アミラーゼが、デンプン由来のバイオマス由来成分の微細化を促進させる観点において好適である。また、イソアミラーゼ、プルラナーゼは、バイオマス由来成分の低分子量化を防ぐために好適である。
 ところで、α-アミラーゼの酵素活性は、水素イオン指数pH5~pH7、温度40℃~80℃の範囲で、高く維持されるものである。
 従って、濃厚体を製造するにあたり、アミラーゼがデンプン質系バイオマスに投入されるタイミングは、デンプン質系バイオマスが混練装置に投入される前、同時、後のいずれの場合も取り得るが、アミラーゼの酵素活性が失われない条件が維持されることが必要である。
 特に、デンプン質系バイオマスが混練装置に投入されると同時又は後にアミラーゼが投入される場合は、混練温度が酵素活性が失われない範囲に設定する必要がある。この場合は、投入される第1合成高分子も、酵素活性が失われない温度範囲で充分に流動する程度に融解温度が低いことが望まれる。
 アミラーゼの活性条件の範囲を外れるとアミラーゼの酵素は変性して失活し、特に高温においては、アミラーセの活性の低下速度が急激に早くなる。一例を示すと、70℃で20分放置した場合の残存活性が90%であるのに対し、75℃で20分放置した場合の残存活性が50%まで低下するといった報告例がある。
 なお、アミラーゼの添加量は、デンプン質系バイオマス100重量部に対して、0.001~5重量部であることが望ましい。ここで、アミラーゼの添加量が0.001重量部未満である場合は、デンプンの分解速度が遅くなり、5重量部よりも多い場合は、デンプンの分解が促進されすぎてバイオマス由来成分が低分子量化して好ましくない。
 デンプン質系バイオマスがアミラーゼの酵素活性によって分解されれば、糊化反応も促進されることとなり、共に混練される第1合成高分子中にバイオマス由来成分が微細に均一に分散していくことになる。
 このように、デンプンを酵素分解させた後のα-アミラーゼは、不要なものであるがこれを選択的に取り除く手段がないので、そのまま濃厚体中に混入させておいたり、混練温度を高温にして熱変性させ活性を殺した状態で混入させておいたりしてもよい。
 一方、草木質系バイオマスを原料とするものとして、具体的には、木材工業およびパルプ工業等の廃棄物である間伐材・建築解体材等、農業廃棄物である稲ワラ・さやガラ、故紙、粉砕処理した木片、木粉、鋸屑、カンナ屑、竹粉、バガス、果実殻粉、木綿、人絹(レーヨン)等を挙げることが出来る。また、これらの形状には別に制限なく、繊維状、粉末状のものが使用できる。
 また、これら草木質系バイオマス及びキチン質系バイオマスを、高圧ホモゲナイザーを用いて水中で物理的に粉砕させたり、化学処理により水中で微細化させたりして懸濁液状にしたものも適宜利用することができる。
 また、これらバイオマス由来成分同士の凝集を緩和するために、濃厚体の製造時において、アルカリ金属塩を添加する場合がある。
 アルカリ金属塩の種類は特に限定されるものではないが、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属炭酸塩、さらに、炭酸バリウム、炭酸カルシウム、炭酸ストロンチウム等のアルカリ土類金属塩が挙げられる。
 これらアルカリ金属塩が添加されると、濃厚体の製造時において、アルカリ金属イオンとバイオマス由来成分の親和性によりバイオマス由来成分間の凝集力が弱まり、バイオマス由来成分の第1合成高分子に対する分散性が高まることなる。
 また濃厚体の製造後、貯蔵中に、微細化したバイオマス由来成分が再凝集することが防止される。また、濃厚体と第2合成高分子とを混合させる際に、第2合成高分子中における濃厚体の流動性が向上し分散しやすくなる。
 なお、アルカリ金属塩の添加量は、バイオマス由来成分100重量部に対して、0.001~5重量部であることが望ましい。ここで、アルカリ金属塩の添加量が0.001重量部未満である場合は、バイオマス由来成分の凝集力が弱まることがなく、5重量部よりも多い場合は、バイオマス由来成分の粘度が下がりすぎて第1合成高分子との混練性が低下して好ましくない。
 なお濃厚体の製造時においては、第1合成樹脂と共に混練されるバイオマスは、デンプン質系に限らず草木質系やキチン質系であっても、充分な水分の存在により、第1合成樹脂の連続相中への分散が促進される事は、すでに述べたとおりである。このため、バイオマス由来成分の分散性を向上させる目的で原料となるバイオマスに水分を追加して混練装置に投入する場合がある。
 また濃厚体を製造するにあたり、飽和カルボン酸、不飽和カルボン酸又はこれらの誘導体等の相溶化剤も共に混練させてバイオマス由来成分をエステル化させる場合がある。
 そのような飽和カルボン酸としては、無水コハク酸、コハク酸、無水フタル酸、フタル酸、無水テトラヒドロフタル酸、無水アジピン酸等が挙げられる。不飽和カルボン酸としては、マレイン酸、無水マレイン酸、無水ナジック酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、ソルビン酸、アクリル酸等が挙げられる。
 不飽和カルボン酸の誘導体としては、前記不飽和カルボン酸の金属塩、アミド、イミド、エステル等を使用することができる。
 またこれら相溶化剤を導入するタイミングとしては、バイオマス由来成分と第1合成高分子とほぼ同時に混練装置に投入する場合や、混練装置に投入する前に予めバイオマス由来成分を相溶化剤によりエステル化させておく前処理を実施する場合や、混練装置に投入する前に予め第1合成高分子を不飽和カルボン酸またはその誘導体で変性させておく前処理を実施する場合がある。
 前記した相溶化剤がバイオマス由来成分に作用すると、その表面の水酸基がエステル基に置換されることにより(エステル化)、一般に親水性を示すバイオマス由来成分と、一般に疎水性を示す合成樹脂との界面における低親和性が改善される。これにより、バイオマス由来成分は、第1合成高分子との親和性が向上するために濃厚体内で凝集することがなく、後に配合される第2合成高分子との親和性も向上するために、混練される複合材料にバイオマス由来成分がに高速に微細に均一分散していくことになる。さらに混練体の流動特性も向上し複合材料の諸性質を向上させる。
 濃厚体において、バイオマス由来成分及び第1合成高分子の配合比率としては、バイオマス由来成分100重量部に対して、第1合成高分子が5~100重量部であることが好ましい。
 第1合成高分子が5重量部未満であると、微細化したバイオマス由来成分の表面の全てを第1合成高分子で濡らすことができない。そうすると、濃厚体に第2合成高分子を配合して混練する際に、バイオマス由来成分と第2合成高分子との相溶性が低下する場合があり、複合材料中におけるバイオマス由来成分の均一分散が阻害されることになる。
 第1合成高分子が100重量部よりも多いと、相対的に配合される第2合成高分子の分量が低減する。そうすると、第1合成高分子よりも相対的に高粘性でかつ空間占有率の低い第2合成高分子は、バイオマス由来成分の拡散が鈍いことになり、バイオマス由来成分の均一分散が阻害されることになる。
(濃厚体の製造方法)
 濃厚体を加熱混練して製造する製造装置としては、例えばニーダー、バンバリーミキサー、1軸もしくは2軸の押出機などが挙げられる。これら製造装置には、一般的に具備される構成の他に、混練体に包含される水分を脱水する脱水手段を具備する必要がある。
 この脱水手段は、混練体が混練される製造装置の内部が高温・高圧の密閉状態になっていることから、この内部に連通する開閉自在な大気開放路を設ければそのような脱水手段として機能することになる。
 さらに脱水手段として、製造装置の内部を大気圧よりも減圧することができる強制減圧装置をさらに設けることができれば、混練体に包含される水分の脱水がより効率的に実行される。
 このような濃厚体の製造装置の原材料投入口に、所定の前処理を行ったバイオマス、第1合成高分子、適宜相溶化剤、アルカリ金属塩及び水分を直接投入する。また原料とするバイオマスがデンプン由来のものであれば、適宜アミラーゼも投入する。
 そして、混練ゾーンが所定温度になるように設定し所定時間かけて混練し、第1合成高分子中にバイオマス由来成分が微細に分散している状態を形成する。
 このようにバイオマスと水とが共に混練されると、活性化した水がバイオマスの分子鎖間に侵入してその分子間結合を緩くする。さらに、混練で付与される機械エネルギーにより、バイオマスが破砕して微細化が進行する。さらに、溶融した第1合成高分子(ワックス)は水と混合液相を形成しバイオマスの表面に吸着しバイオマスの親油性が向上する。
 そして、この状態から脱水手段の大気開放路を開けば、混練体に含まれる水分が圧力差により大気中に放出される。さらに、強制減圧装置を動作させて確実に脱水させてもよい。
 最後に、濃厚体の製造装置の取出口から取り出した濃厚体の混練体を、公知の造粒装置に通過させて造粒(ペレット化)する。
 このようにして製造された高分子複合材料のバイオマス濃厚体のペレットは、微細化されたバイオマス由来成分が第1合成高分子に対して高比率で配合されているものである。またこのようにバイオマス由来成分が高比率で配合されている濃厚体は、第1合成高分子中への分散促進剤として機能する水分を減量させて製造することができる。これにより、脱水手段により排出される水分も少量ですみ濃厚体の生産性を低下させることはない。
(第2合成高分子について)
 濃厚体に配合される第2合成高分子については、熱可塑性樹脂又は熱硬化性樹脂である場合も取り得ることとし、第1合成高分子と親和性が良好なものであれば特に限定されない。
 ただし、濃厚体と第2合成高分子とを混練してバイオマス複合材料にした際に、この複合材料におけるバイオマス由来成分の良好な分散性及びその他の諸特性を確保するために、第1合成高分子と第2合成高分子とは次式の関係を有していることが望ましい(但し、共に結晶性高分子である場合に限る)。
 T1≦T2…(2)
 ここでT1は第1合成高分子のDSC測定による融解ピーク温度Tpm、T2は濃厚体に配合される第2合成高分子の融解ピーク温度Tpmを示す。ここで融解ピーク温度Tpmとは、DSC測定による融解ピークの頂点の温度を指す(JISK7121参照)。
 ところで、結晶性高分子である合成樹脂のDSC測定による融解ピークは、一般に、その頂点の温度Tpmを中心として対称形であるわけではない。しかし、混練温度は、第2合成高分子が充分に融解する温度に設定されるものであって、この設定温度で濃厚体と第2合成高分子とが混練されれば、第2合成高分子が固体から溶融体になる前に、第1合成高分子が先行して融解し、溶融体となって、混練体の全体に均一に行き渡ることになる。
 さらに、第2合成高分子よりも融解ピーク温度Tpmが低い第1合成高分子の方が(T1<T2)、一般に、混練温度における粘度が小さいといった流動特性を有するものである。このため、混練初期においては、固体の第2合成高分子のペレットの隙間に低粘度の濃厚体の溶融体が先行して充填されるために、混練装置の内部流動抵抗を低減させる効果も得られ、複合材料の成形性・生産性の向上にも貢献する。
 また、T1=T2である場合は、実質的に第1合成高分子と第2合成高分子とは同じ合成樹脂であることを意味しており、混練される物同士の親和性が極めて良好な状態が実現される。これにより、バイオマス由来成分が複合材料の全体に均一に分散するとともに、複合材料の成形性・生産性が向上する。
(複合材料の製造方法1;第2合成高分子が熱可塑性樹脂である場合)
 前記した濃厚体の製造方法により製造された濃厚体のペレットに、熱可塑性樹脂である第2合成高分子を配合し、共に混練装置により混練する。用いられる混練装置は、汎用のニーダー、ミキシングロール、バンバリーミキサー、1軸もしくは2軸の押出機などが挙げられる。
 熱可塑性樹脂である第2合成高分子と濃厚体とを混練する工程において、最終的に製造される複合材料の総重量に対するワックスの重量占有率が0.5から30重量%の範囲に含まれるようにこのワックスを追加する場合がある。これにより、混練物の粘性が低下して混練装置の負担が低減するとともに混練性が向上しバイオマス由来成分が第2合成高分子の連続相中に均一でかつ微細に分散していくことになる。
 ワックスの重量占有率が0.5重量%よりも少ない場合、微細化したバイオマス由来成分の表面をワックスで濡らすことができない。そうすると、親水性であるバイオマスの分散相を疎水性である合成樹脂の連続相に均一に拡散させることが困難になる。
 一方、ワックスの配合量が30重量%よりも多い場合、製造される複合材料を構成する合成樹脂成分の平均分子量が低下することとなりその機械的性質が低下することになる。
 さらにこれらの混練装置から、複合材料の溶融体を、射出成形、押出成形、ブロー成形、インフレーション成形等の各種熱可塑性樹脂の成形装置に導いて、従来から熱可塑性樹脂を用いて加工される各種製品、埋立により土に還元されることを目的とする各種製品、例えば家電製品、農林水産業用資材、土木・建築資材、野外レジャー用ディスポーザブル製品、包装用フィルム、ゴミ袋、砂漠・荒地などで用いる植林用素材、釣り糸、魚網、包装フィルム、紙おむつ等の衛生製品、文具、容器、トレー、雑貨等を製造することができる。
(複合材料の製造方法2;第2合成高分子が熱硬化性樹脂である場合)
 前記した濃厚体の製造方法により製造された濃厚体と、熱硬化性樹脂である第2合成高分子とを混合し、一般的に用いられる熱硬化性樹脂の成形装置に投入し、バイオマス複合材料を製造することができる。
 用いられる成形装置は、圧縮成形機、射出成形機、トランスファ成形機等が具体的に挙げられ、従来から熱硬化性樹脂を用いて製造される各種製品、車部品、電気部品、電子部品等を製造することができる。
 圧縮成形機を用いて複合材料を製造する場合は、濃厚体と熱硬化性樹脂(第2合成高分子)との混合物を硬化温度に設定された金型の凹部(キャビティ)に入れて、プレスして硬化させる。この場合、加温により高分子複合材料のバイオマス濃厚体が流動化し、第2合成高分子の粒子の隙間を充填する。その後、第2合成高分子の硬化反応が進行することとなり、バイオマス由来成分が均一かつ微細に分散したバイオマス複合材料を得る。
 射出成形機又はトランスファ成形機を用いて複合材料を製造する場合は、濃厚体と熱硬化性樹脂(第2合成高分子)との混合物を、硬化温度よりも低温である流動温度に設定し、流動化させる。そして、この流動化した混合物(濃厚体+第2合成高分子)を硬化温度に設定された金型に圧入し、硬化させる。
 なお、バイオマス由来成分の分散相の微細化・均一化を図るために、流動状態にある混合物を充分に撹拌することが望ましい。
 もしくは、第2合成高分子に混合する前に濃厚体のペレットをミキサー等を用いて粉砕処理してもよい。この場合、粉砕されたバイオマス由来成分の表面は新生面であるので、熱硬化性樹脂との親和性も高く、均一な分散相が得られやすくなる。
 この場合、濃厚体のペレットは、複合材料の成形時に粉砕処理により微粒子化されることを前提に、所定大きさ(通常、米粒から豆粒の大きさ)で外気に接する表面積が小さくなるように成形されるわけである。
 このことは、前記したように粉砕して微粒子化されるバイオマス由来成分の新生面が広く確保されることのみならず、濃厚体の表面酸化による発熱を抑制し、長期保存に耐えうる貯蔵安定性が付与されることになる。
 なお、前記した濃厚体の製造工程又は複合材料の製造工程において、消臭剤として平均粒径50ミクロン以下のシリカパウダーを投入したり、埋立処分する際の分解を促進させる公知の生分解性付与剤を投入したりする場合がある。
 このように、濃厚体を利用することにより、一般的な混練装置を用いて、バイオマス由来成分の分散相を合成樹脂の連続相に微細でかつ均一に分散させることができ、バイオマス複合材料を簡便に量産することができる。

Claims (18)

  1.  合成高分子及びバイオマス由来成分が混合してなる高分子複合材料の製造装置において、
     前記バイオマス由来成分の過剰含水物が少なくとも含まれる混練物を設定された混練温度で混練する混練手段と、
     前記混練温度における飽和蒸気圧よりも低くかつ大気圧よりも高い設定圧力で前記混練物を脱水する脱水手段と、
     脱水された前記混練物を取り出す取出手段とを、含むことを特徴とする高分子複合材料の製造装置。
  2.  請求項1に記載の高分子複合材料の製造装置において、
     前記混練手段は、
     前記合成高分子の主剤及び前記バイオマス由来成分の過剰含水物を投入する投入手段が上流側に設けられ前記取出手段が下流側に設けられているシリンダと、
     前記混練温度に設定されている前記シリンダの内部で軸回転し前記混練物を前記投入手段から前記取出手段へ向かって押し出すスクリューとを、有し、
     前記脱水手段は、
     前記シリンダの内部及びその外部を隔てるとともに前記混練物のうち含まれる水分を選択的に濾過する濾過板と、
     前記濾過板により濾過された水分を気化させる気化空間を形成するとともに大気を遮断する遮断壁と、
     前記気化空間の気圧を前記設定圧力に設定する調圧手段とを、有することを特徴とする高分子複合材料の製造装置。
  3.  請求項2に記載の高分子複合材料の製造装置において、
     前記過剰含水物、液状試薬又は水が前記投入手段よりも下流側に設けられている圧入手段から圧入されることを特徴とする高分子複合材料の製造装置。
  4.  請求項1に記載の高分子複合材料の製造装置において、
     前記混練手段は、
     前記合成高分子の主剤及び前記バイオマス由来成分の過剰含水物を投入する投入手段並びに前記取出手段が設けられるケーシングと、
     密閉空間にされ前記混練温度に設定された前記ケーシングの内部で回転し前記混練物を混練するローターとを、有し、
     前記脱水手段は、
     前記密閉空間の気圧を前記設定圧力に設定する調圧手段を、有することを特徴とする高分子複合材料の製造装置。
  5.  請求項4に記載の高分子複合材料の製造装置において、
     前記ケーシングの内部及び外部を隔てるとともに前記混練物のうち含まれる水分を選択的に濾過する濾過板と、
     前記濾過板を介して前記密閉空間に連通する気化空間が形成されるとともに前記調圧手段が設けられている遮断壁とを、有することを特徴とする高分子複合材料の製造装置。
  6.  合成高分子及びバイオマス由来成分が混合してなる高分子複合材料の製造方法において、
     前記バイオマス由来成分の過剰含水物が少なくとも含まれる混練物を設定された混練温度で混練する混練工程と、
     前記混練温度における飽和蒸気圧よりも低くかつ大気圧よりも高い設定圧力で混練物を脱水する脱水工程と、
     脱水された混練物を取り出す取出工程とを、含むことを特徴とする高分子複合材料の製造方法。
  7.  請求項6に記載の高分子複合材料の製造方法において、
     前記バイオマス由来成分はデンプン質系バイオマスに由来するものであって、このデンプン質系バイオマスを過剰含水物にする水を注水する注水工程を含むことを特徴とする高分子複合材料の製造方法。
  8.  請求項6に記載の高分子複合材料の製造方法において、
     前記バイオマス由来成分はバイオマスを機械的に微粒子化したものであって、その集合体に水を含浸させて過剰含水物にする含水工程を含むことを特徴とする高分子複合材料の製造方法。
  9.  請求項6に記載の高分子複合材料の製造方法において、
     前記混練工程では前記バイオマス由来成分の過剰含水物及び相溶化剤を混練し、
     前記脱水工程を経てから前記合成高分子の主剤を混合しさらに混練することを特徴とする高分子複合材料の製造方法。
  10.  請求項6に記載の製造方法により得られるバイオマス由来成分が分散した高分子複合材料。
  11.  請求項10に記載のバイオマス由来成分が分散した高分子複合材料を成形して得られる成形品。
  12.  第1合成高分子とバイオマス由来成分とを主構成要素にする高分子複合材料のバイオマス濃厚体であって、第2合成高分子を配合し前記バイオマス由来成分の濃度を希釈して製造される複合材料の原料であることを特徴とする高分子複合材料のバイオマス濃厚体。
  13.  請求項12に記載の高分子複合材料のバイオマス濃厚体において、
     前記第1合成高分子は、鎖状炭化水素の主鎖の炭素数10から100の範囲に含まれるワックスが含まれていることを特徴とする高分子複合材料のバイオマス濃厚体。
  14.  請求項12に記載の高分子複合材料のバイオマス濃厚体において、
     前記第1合成高分子は、シングルサイト触媒により合成されたオレフィン系樹脂を主成分にすることを特徴とする高分子複合材料のバイオマス濃厚体。
  15.  請求項12に記載の高分子複合材料のバイオマス濃厚体において、
     前記バイオマス由来成分はデンプン由来のアミロース、アミロペクチン又はこれらの分解物を主成分とするものであって、
     デンプンを酵素分解したアミラーゼ又はその熱変性物が混入していることを特徴とする高分子複合材料のバイオマス濃厚体。
  16.  請求項12に記載の高分子複合材料のバイオマス濃厚体において、
     アルカリ金属塩が配合されていることを特徴とする高分子複合材料のバイオマス濃厚体。
  17.  請求項12に記載の高分子複合材料のバイオマス濃厚体において、
     前記バイオマス由来成分は、飽和カルボン酸、不飽和カルボン酸又はこれらの誘導体でエステル化されていることを特徴とする高分子複合材料のバイオマス濃厚体。
  18.  請求項12に記載の高分子複合材料のバイオマス濃厚体と、前記第2合成高分子とを混合し、共に混練する工程を含むことを特徴とする高分子複合材料の製造方法。
PCT/JP2008/057775 2007-05-01 2008-04-22 高分子複合材料、その製造装置及びその製造方法 WO2008136314A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08740765A EP2153963A1 (en) 2007-05-01 2008-04-22 Polymer composite material, apparatus for producing the same and method of producing the same
US12/598,555 US20100136324A1 (en) 2007-05-01 2008-04-22 Polymer composite material, apparatus for manufacturing the same and method of manufacturing the same
CN200880014294A CN101678564A (zh) 2007-05-01 2008-04-22 高分子复合材料、其制造装置及其制造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2007-121112 2007-05-01
JP2007121112 2007-05-01
JP2007203021 2007-08-03
JP2007-203021 2007-08-03
JP2007263879A JP4660528B2 (ja) 2007-05-01 2007-10-10 高分子複合材料の製造装置及びその製造方法
JP2007263880A JP4638903B2 (ja) 2007-08-03 2007-10-10 複合材料の製造方法
JP2007-263879 2007-10-10
JP2007-263880 2007-10-10

Publications (2)

Publication Number Publication Date
WO2008136314A1 WO2008136314A1 (ja) 2008-11-13
WO2008136314A9 true WO2008136314A9 (ja) 2009-11-05

Family

ID=41528818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057775 WO2008136314A1 (ja) 2007-05-01 2008-04-22 高分子複合材料、その製造装置及びその製造方法

Country Status (5)

Country Link
US (1) US20100136324A1 (ja)
EP (1) EP2153963A1 (ja)
KR (1) KR20100018504A (ja)
CN (1) CN101678564A (ja)
WO (1) WO2008136314A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI125448B (fi) * 2009-03-11 2015-10-15 Onbone Oy Uudet materiaalit
JP5584807B1 (ja) * 2013-09-20 2014-09-03 孝 大野 高分子複合材料の製造装置及びその製造方法
US9470367B2 (en) * 2013-10-15 2016-10-18 Elwha Llc Systems and methods for fluid containment
KR101487390B1 (ko) * 2014-04-25 2015-01-28 (유) 이성안전건설 이액형 수지의 혼합장치
CN104494261B (zh) * 2014-12-11 2016-08-17 昆山市张浦彩印厂 可降解evoh高阻隔复合薄膜
JP5865539B1 (ja) * 2015-05-21 2016-02-17 株式会社三和商会 微細分散複合化装置及び微細分散複合化方法
EP3345930B1 (en) * 2015-09-30 2024-06-26 The Japan Steel Works, Ltd. Device for continuously producing chemically-modified cellulose and method used in same
CN106839475A (zh) * 2016-12-14 2017-06-13 池州市小康人家科技有限公司 一种太阳能热水器支架用复合板材
JP6339276B1 (ja) * 2017-07-13 2018-06-06 ユア・エネルギー開発株式会社 有機物の多段階利用装置及び有機物の多段階利用方法
KR102254651B1 (ko) * 2019-11-19 2021-05-20 연세대학교 원주산학협력단 핵연료집합체의 방출단층 촬영장치
WO2023286258A1 (ja) * 2021-07-15 2023-01-19 孝 大野 樹脂複合材料の製造方法及び樹脂複合材料
TWI811963B (zh) * 2022-01-20 2023-08-11 楊家彰 熔融點下真空去除水分直接造粒機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH407525A (de) * 1964-01-23 1966-02-15 Buss Ag Knet- und Mischeinrichtung
US4060226A (en) * 1976-07-08 1977-11-29 John Schweller Apparatus for injection molding
JP3045534B2 (ja) * 1990-11-07 2000-05-29 日本石油化学株式会社 生物分解性樹脂組成物およびその製品
FR2693734B1 (fr) * 1992-07-15 1994-10-07 Roquette Freres Composition thermoformable-biodécomposable à base d'un composé amylacé et d'un polyester biodégradable.
JPH07113028A (ja) * 1993-10-18 1995-05-02 Du Pont Mitsui Polychem Co Ltd アイオノマー組成物及びその製法
JP3831687B2 (ja) * 2002-06-13 2006-10-11 株式会社環境経営総合研究所 ペレットおよびその製造方法
JP2005199531A (ja) * 2004-01-14 2005-07-28 Kankyo Keiei Sogo Kenkyusho:Kk ペレット及びその製造方法並びにその成形品
JP4746288B2 (ja) * 2004-07-09 2011-08-10 アグリフューチャー・じょうえつ株式会社 澱粉配合樹脂組成物の製造方法
JP2005255743A (ja) * 2004-03-10 2005-09-22 Agri Future Joetsu Co Ltd ポリオレフィン樹脂組成物、その製造方法、その成形品及びこの成形品の成形方法
EP1724300A1 (en) * 2004-03-10 2006-11-22 Agri Future Joetsu Co., Ltd. Starch-blended resin composition, molding thereof and process for producing the same
TWI248957B (en) * 2004-06-25 2006-02-11 Ming-Tung Chen Composition of biodegradable plastic and production method thereof
JP2006289164A (ja) * 2005-04-06 2006-10-26 Agri Future Joetsu Co Ltd バイオマス由来成分が分散した液状組成物、その製造方法及びこの液状組成物から製造される製品
JP2006328377A (ja) * 2005-04-26 2006-12-07 Mitsubishi Chemicals Corp ポリエステルペレットの貯蔵方法
JP2007169612A (ja) * 2005-11-28 2007-07-05 Japan Polypropylene Corp 木質系材料配合樹脂組成物

Also Published As

Publication number Publication date
EP2153963A1 (en) 2010-02-17
KR20100018504A (ko) 2010-02-17
WO2008136314A1 (ja) 2008-11-13
US20100136324A1 (en) 2010-06-03
CN101678564A (zh) 2010-03-24

Similar Documents

Publication Publication Date Title
WO2008136314A9 (ja) 高分子複合材料、その製造装置及びその製造方法
JP4660528B2 (ja) 高分子複合材料の製造装置及びその製造方法
Yu et al. Research progress of starch-based biodegradable materials: a review
Jayanth et al. A review on biodegradable polymeric materials striving towards the attainment of green environment
Rahman et al. Effect of chemical treatment on rice husk (RH) reinforced polyethylene (PE) composites
Zhao et al. Emerging biodegradable materials: starch-and protein-based bio-nanocomposites
Lai et al. Characterisation of sago pith waste and its composites
US20080036115A1 (en) Starch Resin Composition, Molded Product Using the Same and Method for Producing the Same
CN111100437B (zh) 一种含纳米纤维素的可降解塑料母粒的制备方法
CN104004250A (zh) 用于生物质膜的组合物和使用该组合物的生物质膜
CN102432942A (zh) 一种非淀粉类可生物降解的塑料膜
CN114106541B (zh) 一种环保食品包装材料、制备方法及应用
JP6572235B2 (ja) 湿潤天然繊維およびデンプンを熱可塑性プラスチック中に混入する方法
US20240124659A1 (en) Method for producing resin composite material, and resin composite material
KR20220046912A (ko) 목질계 바이오매스 및 전분계 바이오매스를 함유하는 바이오플라스틱의 제조 방법, 이에 의해 제조된 바이오플라스틱 및 이를 사용한 필름, 쉬트 또는 용기
Satyanarayana et al. Starch‐Based “Green” Composites
Ribba et al. Processing and Properties of Starch-Based Thermoplastic Matrix for Green Composites
JP2009227777A (ja) 生分解性樹脂成形品、その製造方法及びその処分方法
JP4638903B2 (ja) 複合材料の製造方法
Akdoğan et al. Natural fiber thermoplastic composites in terms of new production technologies: A review
JPH08134266A (ja) 植物高分子耐水組成物及び製法
KR102355548B1 (ko) 쌀 분말을 함유한 생분해성 복합수지 조성물 및 이를 이용한 생분해성 복합수지 제조방법
Yu et al. Starch based blends, composites and nanocomposites
CN109370030A (zh) 以车用吸音棉边角废料为原料制备农用地膜的方法
CN108250783A (zh) 一种全生物质纤维素复合塑料及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880014294.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12598555

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20097023372

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7810/DELNP/2009

Country of ref document: IN

Ref document number: 2008740765

Country of ref document: EP