WO2008133337A1 - 一方向性電磁鋼板の製造方法 - Google Patents

一方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2008133337A1
WO2008133337A1 PCT/JP2008/058229 JP2008058229W WO2008133337A1 WO 2008133337 A1 WO2008133337 A1 WO 2008133337A1 JP 2008058229 W JP2008058229 W JP 2008058229W WO 2008133337 A1 WO2008133337 A1 WO 2008133337A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter
rolling
work roll
steel sheet
cold rolling
Prior art date
Application number
PCT/JP2008/058229
Other languages
English (en)
French (fr)
Inventor
Takao Mukai
Shinya Hayashi
Atsushi Tanaka
Hiroyuki Mimura
Hisataka Uto
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US12/450,996 priority Critical patent/US8236110B2/en
Priority to EP08740914.0A priority patent/EP2140949B1/en
Priority to PL08740914T priority patent/PL2140949T3/pl
Priority to KR1020097017729A priority patent/KR101120125B1/ko
Priority to JP2009511922A priority patent/JP5392076B2/ja
Priority to CN2008800133947A priority patent/CN101668596B/zh
Priority to BRPI0810570-7A priority patent/BRPI0810570A2/pt
Publication of WO2008133337A1 publication Critical patent/WO2008133337A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • B21B13/147Cluster mills, e.g. Sendzimir mills, Rohn mills, i.e. each work roll being supported by two rolls only arranged symmetrically with respect to the plane passing through the working rolls
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • H01F41/024Manufacturing of magnetic circuits made from deformed sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • B21B1/32Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
    • B21B1/36Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/021Rolls for sheets or strips

Definitions

  • the present invention relates to a method for producing a unidirectional electrical steel sheet used for an iron core of an electrical device such as a transformer / generator.
  • the secondary recrystallized grains In order to produce such a unidirectional electrical steel sheet with excellent magnetic properties, the secondary recrystallized grains have ⁇ 1 1 0 ⁇ ⁇ 0 0 1> orientation (Goth orientation) during final finish annealing. It is necessary to form a secondary recrystallization texture that is highly integrated.
  • Inhibitors generally have A 1 N, M n (S, Se), Cu 2 Use precipitates such as (S, S e), and additionally use grain boundary segregation-type elements such as Sn and S b (for example, Japanese Examined Patent Publication No. 4 6-2 3 8 2 0)
  • Sn and S b for example, Japanese Examined Patent Publication No. 4 6-2 3 8 2 0
  • Zenjima rolling mills represented by 21 type and 2 type 2 are the mainstream, and from the viewpoint of securing the rolling properties of thin steel sheets, 9 Small diameter work rolls with a diameter of 5 mm or less are used.
  • Patent Document 8 describes an example using rolls of 80 m m ⁇ i and 90 m m ⁇ .
  • Zenzimer rolling mills represented by 2 1 and 2 2 types are incorporated in a monoblock housing.
  • the space inside the housing is fixed, so the roll diameter that can be inserted is limited when the roll is replaced.
  • the space in the housing can be adjusted by moving the housing up and down.
  • the diameter of the work roll can be changed according to the steel type and thickness of the steel plate and the rolling conditions. Recently, it is possible to use a single chrome of 95 mm ⁇ or more due to technological progress in equipment and operation and development of NMS mill.
  • the technique proposed by the present applicant in Japanese Patent Application Laid-Open No. 2 0 0 1 — 1 9 2 7 3 2 is a unidirectional electrical steel sheet using a single crawler having a diameter of 9 5 to 1 7 ⁇ .
  • the aim is to improve the magnetic properties of the steel, and it is not intended to improve productivity by taking advantage of the advantages of using a small-diameter crawl, that is, the properties under high pressure.
  • Japanese Patent Application Laid-Open No. 2 0 2-1 2 9 2 3 4 discloses that the division is based on the “metallurgical discovery that the large diameter work roll effect of the class evening mill is effective in the first stage of the rolling pass”
  • Disclosed is a technology for producing grain-oriented electrical steel sheets by rolling a former stage pass of rolling with a large-diameter work roll using a cluster mill composed of a mold housing, and then rearranging the latter stage pass into a small-diameter work roll and rolling. Therefore, a method of using a Otsuchi work roll in the first pass of pre-rolling is disclosed.
  • the first pass which is intended to have a large thickness, is cold-rolled using a large-diameter roll, so that there are difficulties in rolling restrictions such as stagnation in the first pass.
  • this invention manufactures the unidirectional electrical steel sheet which solves the said subject. It aims to provide a method.
  • the present inventor has paid attention to the fact that, in a Zenzimer rolling mill configured with a split housing, the steel roll can be exchanged depending on the steel type, the steel plate condition of the plate thickness, and the rolling condition.
  • the grain size of the grains is uniform, and the Goss-oriented crystal grains and the oriented crystal grains corresponding to the Goss orientation are rolled. We found that primary recrystallized structures aligned in the direction can be formed.
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
  • the first cold rolling or the first and second cold rolling is performed using a small diameter work roll having a diameter of 55 to 105 mm,
  • the diameter of the small diameter single crawl used in the final cold rolling is 55 ⁇ : L 0 5 mm or less, wherein one of the above (1) to (3) A method for producing grain-oriented electrical steel sheets.
  • aging treatment is carried out at 100 to 35 ° C. for 1 minute or more between rollings.
  • the manufacturing method of the unidirectional electromagnetic steel plate in any one of (4).
  • Fig. 1 is a diagram showing the structure of a Sendzima rolling mill.
  • A shows the structure built into a monoblock housing
  • (b) shows the structure built into a split housing.
  • FIG. 2 shows the relationship between the diameter of a single crawl and the rolling load.
  • FIG. 3 is a diagram showing a change in rolling reaction force when a small-diameter work piece is used in one pass and a large-diameter work roll is used in an intermediate pass of 2 to 5 passes.
  • Figure 4 shows the relationship between work roll diameter (mm) and magnetic flux density B8. It is a figure.
  • Fig. 5 is a graph showing the relationship between the rotation angle around the ND axis, the Goth azimuth strength (IN), and the ⁇ 9 corresponding orientation strength (Ic ⁇ 9).
  • Figure 6 shows the relationship between the work roll diameter (mm) and the magnetic flux density B8.
  • the present inventor by mass%, C: 0.05%, Si: 3.3%, Mn: 0.1%, S: 0.07%, A1: 0.02 8
  • An electromagnetic steel slab containing 2%, N: 0.0 0 70% and Sn: 0.07% was heated to 1 15 ° C. and hot rolled 1.
  • An 8 mm thick hot-rolled sheet was annealed at 1 100 and then cold-rolled with a split housing type cluster one-type reverse rolling mill at a rolling count of 6 and a total rolling reduction of 90%. 0.1 8 mm steel plate was produced. Note that an aging treatment at 20 ° C. for 5 minutes was appropriately performed between the rollings.
  • the diameter of the work roll used in the first cold rolling (hereinafter sometimes referred to as “one pass”) and the final cold rolling (hereinafter sometimes referred to as “final pass”) is 6 5 to 9
  • the rolling load was measured in the range of 7 mm.
  • measure the rolling load by changing the diameter of the work roll used in the second and subsequent cold rolling (except for the final pass) (hereinafter sometimes referred to as “intermediate pass”) in the range of 95 to 180 mm. did.
  • the pass schedule was the same. The results are shown in Figure 2.
  • the critical rolling reduction is defined for each condition such as the plate thickness and plate temperature of each pass.
  • a small-diameter work roll with a diameter of 65 mm is used in one pass, and a large-diameter work roll with a diameter of 100 mm is used in an intermediate pass of 2 to 5 passes.
  • the final pass (6 passes) the change in rolling reaction force when using a small diameter work roll with a diameter of 60 mm is shown.
  • This allowable rolling load differs depending on the diameter of the work roll, but as shown in Fig. 3, the allowable rolling load can be greatly reduced by selecting the diameter of the small diameter work roll and the large diameter work roll as appropriate. . As a result, the number of passes required for rolling to the required plate thickness can be reduced, and the steel plate can be prevented from breaking, so that productivity can be significantly increased.
  • Fig. 4 shows the magnetic flux density B8 [T] of a 0.23 mm thick magnetic steel sheet rolled by a small diameter work roll with a diameter of 50-60 mm and a diameter of 110 mm to 120 mm.
  • the magnetic flux density B 8 [T] is shown for a 0.23 mm thick magnetic steel sheet produced by rolling with a large diameter work roll.
  • the top is the magnetic flux density when high-temperature rolling is performed using processing heat generation, and the bottom is the magnetic flux density when normal rolling without aging treatment is performed.
  • the magnetic flux density B 8 [T] does not improve even if the small diameter work roll is replaced with the large diameter work roll. However, if high temperature rolling is performed using the large diameter work roll, the magnetic flux density B 8 [T] It can be seen that it improves. In the initial rolling pass (1 pass, 2 passes), the steel sheet temperature is not sufficiently raised, so the effect of improving the magnetic flux density obtained by using a large diameter work roll cannot be expected.
  • a small diameter work roll is used in the initial pass of rolling, and rolling is performed under high pressure under a low rolling load, and a large diameter work roll is used in the intermediate pass as appropriate.
  • the basic idea is to improve the magnetic flux density by combining the effects of aging treatment due to processing heat generation.
  • the final pass of cold rolling the cold rolled steel sheet is further reduced by using a small diameter single crawl to obtain the required product thickness.
  • the rolling pass schedule is configured by using the small-diameter work roll and the large-diameter work mouth separately on the basis of the effects of the small-diameter single crawl and the large-diameter work roll. This is a feature of the present invention.
  • the present inventor has confirmed that the magnetic flux density is improved by employing a large-diameter monochromal in the intermediate pass, as follows, histologically as follows: Thickness after primary recrystallization annealing 50 Specimens were taken from the thickness 1 / 5t (t: thickness) of the steel plate of mm and 110 mm, and analyzed by X-ray analysis.
  • the SGH method Harasei et al .: The Japan Institute of Metals, Vol. 29, Volume 9 According to the 7th issue P 5 5 2 2
  • the strength of Goss azimuth around ND axis (IN) and the strength of ⁇ 9 corresponding azimuth (Ic ⁇ 9) were analyzed. The results are shown in Fig. 5.
  • the conditions that the primary recrystallization texture should have are (i) a large number of Goth orientations, and (ii) a preferential growth of the Goth orientation. 9
  • the corresponding orientation is sharp. Therefore, it can be seen from FIG. 5 that a primary recrystallization texture suitable for increasing the goss accumulation degree of secondary recrystallization is sufficiently formed by using a large-diameter soot crawl in the intermediate pass. I understand.
  • a 1 N has a strong inhibitory action and is thermally stable compared to M n S (n Se), so even if hot rolling using a large diameter single crawl is performed in the intermediate pass It is presumed that the primary recrystallization texture effectively exhibits the effect of improving the magnetic flux density.
  • Sharpening this texture is effective in increasing the magnetic flux density. Therefore, from the viewpoint of improving productivity, in the present invention in which a small diameter single crawl is used in the initial rolling pass (1 pass, or 1 pass and 2 passes), a large diameter work roll is used in the intermediate pass,
  • the texture after the primary recrystallization is a sharp texture preferable for improving the magnetic flux density.
  • a 1 is an essential element as an inhibitor component. In order to secure the required amount of inhibitor and obtain a high magnetic flux density, 0.07% or more is necessary. On the other hand, if the amount is too large, the slab heating time required for the solution treatment becomes longer and the productivity decreases, so the upper limit is set to 0.040%.
  • the electromagnetic steel slab is heated at a high temperature, it is necessary to perform annealing before the final cold rolling to form A 1 N. It is necessary to contain about 0.03 to 0.020%.
  • the content of N in the electromagnetic steel slab is not particularly limited.
  • C is an important element for forming austenite, and is required to be 0.025% or more. However, if too much, decarburization becomes difficult, so the upper limit is set to 0.1%.
  • S i needs to be 2.5% or more in order to secure a predetermined electric resistance and obtain good iron loss characteristics.
  • the upper limit is set to 4.5%.
  • M n is an element mixed as an inevitable component, but has the effect of increasing toughness, so is added in an amount of 0.03% or more. On the other hand, if too much, A large amount of MnS or MnSe is generated, and it is difficult to form a solution even with high-temperature slab heating.
  • S, S e combine with M n to form M n S or M n Se for use as an inhibitor, so depending on the type of inhibitor used, , Added.
  • the addition amount is preferably 0.01 to 0.04% in both cases of single use and combined use.
  • Sn, Sb, Cu, Ni, Cr, P, V, B, Bi, Mo, Nb, and Ge may be added in an appropriate amount as long as the mechanical properties and surface properties of the steel sheet are not impaired.
  • the electromagnetic steel slab of the present invention may be manufactured by a known manufacturing method.
  • the size and shape of the electromagnetic steel slab are adjusted as necessary, and then heated in a heating furnace at 1100 to 1450 ° C for hot rolling.
  • the heating furnace may be a normal gas heating furnace, an induction furnace, or an electric heating furnace.
  • cold rolling After hot rolling the steel slabs at 1 1 0 0 to 1 4 5 0 to obtain hot-rolled steel sheets of the required thickness, and annealing them, using a split housing type cluster-type levers rolling mill, Multiple cold rolling is applied.
  • an aging treatment may be performed between the rollings.
  • heat generated by processing may be used, or other heating means may be used.
  • the temperature and time of the aging treatment may be appropriately selected within a known temperature and time range. It is preferably 0 to 3500 ° C for 1 minute or longer.
  • the cold-rolled steel sheet may be annealed as necessary under known conditions. If high-temperature slab heating is assumed, this annealing is an essential process for finely depositing a sufficient amount of A 1 N (inhibition) in the steel sheet.
  • annealing for A 1 N precipitation is not required, but carbide precipitation and solid solution C solid solution forms that make the aging treatment appropriately performed between passes more effective. In order to achieve this, annealing may be performed before the final cold rolling.
  • the cold-rolled steel sheet is subjected to cold rolling with a split-type housing-type class evening type revers rolling machine.
  • a split-type housing-type class evening type revers rolling machine In order to finally form a secondary recrystallization texture in which the Goss orientation is highly accumulated and to obtain a high magnetic flux density, it is preferable to perform cold rolling at a total rolling reduction of 81% or more.
  • the present invention is characterized in that the pass schedule is configured by using the small-diameter work roll and the large-diameter work roll separately based on the action effect of the small-diameter steel crawl and the large-diameter steel crawl. That is, the basic technical idea is to incorporate the different effects of the small diameter work roll and the large diameter work roll into the manufacturing process of the electrical steel sheet.
  • the present invention is characterized by using a split type housing type cluster type lever rolling mill (see FIG. 1 (b)).
  • the diameter of the work roll can be changed by exchanging the intermediate port, but the changeable range is as small as about 10 mm. The work required is heavy.
  • the diameter of the work roll can be changed by raising and lowering the upper and lower housings and adjusting the distance between the pores.
  • the work roll can be replaced quickly during rolling, and productivity is not hindered.
  • the split housing type cluster-type levers rolling mill is a 6-fold, 1-double or 20-fold roll from the viewpoint of stably performing high-temperature rolling in the intermediate pass and sheet rolling in the final pass.
  • Machine such as Sendzimir mill and NMS mill.
  • the diameter of the small diameter work roll used for rolling under high pressure with a low rolling load at the initial stage of rolling, and the small diameter single crawl used for further reducing the cold-rolled steel sheet in the final pass is the large diameter used in the intermediate pass. Although it must be smaller than the diameter of a single crawl, the diameter of the small diameter work roll should be less than 55 to 105 mm in consideration of the knowledge shown in Fig. 2 and Fig. 3.
  • the diameter of the small diameter work roll should be at least 55 mm.
  • the diameter is 105 mm or more, the effect of improving the critical reduction is reduced, and the advantage of using a small-diameter nozzle is lost, so the diameter of the first crawl in the first and final cold rolling
  • the upper limit of the workpiece is less than 105 mm.
  • the diameter of the work roll in the first and final cold rolling should be 70 to 95 mm is preferable.
  • the diameter of a single crawl used in the second pass or the intermediate pass after 3 passes is In order to ensure excellent magnetic properties, it must be larger than the diameter of the work roll in the first and final cold rolling. Therefore, the diameter of the work roll should be 10 mm or more.
  • Figure 6 shows the relationship between the diameter of the single crawl used in the intermediate path and the magnetic flux density B8 [T].
  • the diameter of the work roll used in the second pass or the intermediate pass after the third pass is 105 mm or more, effective high-temperature rolling can be performed, and a high magnetic flux density directional current can be obtained.
  • Magnetic flux density of 1.93 T or more required for magnetic steel sheets can be secured.
  • the magnetic flux density tends to saturate at a diameter of 150 mm or more.
  • the upper limit of the diameter of the single crawl used in the second pass or the intermediate pass after the third pass should be less than 150 mm.
  • the diameter of the work roll used in the second pass or the intermediate pass after the third pass should be less than 105-150 mm.
  • the magnetic flux density of 1.93 is surely obtained, and the handling characteristics of the rolling mill From the viewpoint, it is preferably less than 1 15 to 1550 mm.
  • a cold-rolled steel sheet is further rolled to the required product plate thickness using a small-diameter work roll, but by selecting the diameter of the small-diameter work hole, 0.18 mm Product thickness can be reduced to:
  • the diameter of the small diameter work roll used in the final pass should be smaller than the diameter of the work roll used in the intermediate pass after the second pass or the third pass.
  • 5 5 to less than 10 5 mm is preferable.
  • the number of passes in cold rolling is small from the viewpoint of productivity.
  • the number of passes is preferably 3 or more and 7 or less.
  • the steel sheet after final rolling is degreased and then annealed for both decarburization and primary recrystallization.
  • the temperature at which the electrical steel slab is heated is below 1250 ° C (low temperature slab heating)
  • nitriding is performed between the primary recrystallization and the secondary recrystallization to form A 1 N that functions as an inhibitor .
  • the nitriding treatment is performed in the middle of finish annealing (refer to Japanese Patent Application Laid-Open No. Sho 60-0 1 79 8 85) or by annealing in a mixed gas of “hydrogen + nitrogen + ammonia” while running the steel plate. (See Japanese Laid-Open Patent Publication No. 8 2 3 93).
  • the amount of nitrogen is required to be 120 ppm or more, preferably 1550 ppm or more. Further, controlling the primary recrystallized grain size further improves the magnetic properties (see Japanese Patent Application Laid-Open No. 1 8 2 9 39).
  • an annealing separator mainly composed of MgO slurry is applied to the steel sheet, and then it is wound into a coil and subjected to final finishing annealing. After that, if necessary, an insulating coating is applied. However, if the magnetic domain fragmentation is performed by laser, plasma, mechanical method, etching, or other methods, the magnetic properties are improved.
  • the conditions of the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • Electromagnetic steel slabs with composition shown in Table 1 a ⁇ : f is heated at the slab heating temperature shown in Table 2 and hot-rolled to a hot rolled sheet with a thickness of 2.0 ⁇ 2.8 mm It was.
  • Table 2 a, b, and c are for high-temperature slab heating, and d, e, and: f are for low-temperature slab heating.
  • the hot-rolled sheets shown in Table 2 were cold-rolled under the rolling conditions shown in Table 3 using a split housing cluster-type lever rolling mill.
  • an aging treatment was performed for 1 minute or more between 20 00 and 3500 using processing heat generated between passes.
  • the obtained cold-rolled sheet is decarburized and annealed by the usual method, and magnesia is applied by the usual method, and finish annealing, insulation coating, shape correction and baking annealing are performed to obtain a product steel plate.
  • B 8 was measured.
  • magnetic domain control was performed on the product steel plate by a mechanical method, and the iron loss (W17 / 50) was measured. The results are also shown in Table 3.
  • the comparative example of category a is an example in which the diameter of the small diameter work roll is 50 mm and the lower limit specified by the present invention is 55 mm or less, and rolling was not possible.
  • the diameter of the small work roll is 54 mm and the lower limit specified by the present invention is 55 mm or less, and the diameter of the large work roll is 95 mm, specified by the present invention. This is an example of a lower limit of 105 mm or less.
  • the diameter of the small-diameter work roll is 110 mm, which exceeds the upper limit of less than 105 mm specified in the present invention, and the diameter of the large-diameter work piece is 150 mm. This is an example exceeding the upper limit of less than 1550 mm specified in the present invention. Since both crawls have a large diameter, it takes time to handle the rolling mill and this is an example of reduced productivity.
  • the diameter of the small diameter work roll is 109 mm, which exceeds the upper limit of less than 105 mm specified in the present invention. As a result, the number of passes increases, resulting in decreased productivity. It is. 08058229 Table 1
  • the plate thickness can be reduced without reducing the productivity.
  • the present invention greatly contributes to low iron loss, miniaturization, and weight reduction of electrical equipment such as transformers and generators, and is highly applicable in the electrical equipment manufacturing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Metal Rolling (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本発明は、ゴス方位粒とゴス方位と対応関係にある方位の結晶粒が圧延方向に揃った一次再結晶組織を有する一方向性電磁鋼板を製造するもので、質量%で、C:0.025~0.10%、Si:2.5~4.5%、及び、Mn:0.03~0.55%、Al:0.007~0.040%を含有する電磁鋼スラブを1100~1450℃以上に加熱し、熱間圧延を施して熱延板とした後、熱延板焼鈍を施し、次いで、分割型ハウジング式クラスター型レバース圧延機で、複数回の冷間圧延を施し、その後、一次再結晶焼鈍、次いで、二次再結晶焼鈍を施して一方向性電磁鋼板を製造する方法において、(a)1回目の冷間圧延、又は、1回目と2回目の冷間圧延を、直径55~105mm未満の小径ワークロールを用いて行い、(b)2回目又は3回目以降、最終前までの冷間圧延を、直径105~150mm未満の大径ワークロールを用いて行い、(c)最終の冷間圧延を、上記大径ワークロールの直径より小さい直径の小径ワークロールを用いて行うことを特徴とする。

Description

明 細 書 一方向性電磁鋼板の製造方法 技術分野
本発明は、 変圧器 · 発電機等の電気機器の鉄心に使用する一方向 性電磁鋼板の製造方法に関するものである。 背景技術
近年、 省エネルギーの観点から、 変圧器 · 発電機等の電気機器に は、 低鉄損化や、 小型化、 軽量化が強く求められているが、 それを 実現するためには、 薄くて磁束密度が高い一方向性電磁鋼板を開発 する必要がある。
現在、 製造技術の著しい進歩により、 例えば、 板厚 0. 2 3mm 、 磁束密度 B8 (磁化力 8 0 0 Α/Π1における値) 1. 9 2 T、 鉄 損 W17/50 ( 5 O Hz、 1. 7 Tでの最大磁化の値) 0. 8 5 WZkg の一方向性電磁鋼板を製造することが可能である。 '
このような、 優れた磁気特性を備える一方向性電磁鋼板を製造す るためには、 最終仕上げ焼鈍の際に、 二次再結晶粒が { 1 1 0 } < 0 0 1 >方位 (ゴス方位) に高度に集積した二次再結晶集合組織を 形成することが必要である。
ゴス方位に高度に集積した二次再結晶集合組織を形成するために は、 ( i ) ゴス方位の二次再結晶粒が優先的に発達し易い一次再結 晶組織を形成することと、 (H) 二次再結晶過程において、 ゴス方 位以外の好ましくない方位の結晶粒の成長を、 インヒビターで抑制 することが不可欠である。
インヒビ夕一としては、 一般に、 A 1 N、 M n (S, S e )、 C u 2 (S, S e )等の析出物を利用し、 さらに、 補助的に、 S n、 S b 等の粒界偏析型元素を利用する (例えば、 特公昭 4 6— 2 3 8 2 0 号公報および特開昭 6 2— 4 0 3 1 5号公報参照) が、 インヒビ夕 一を用いる製造方法においては、 適正な一次再結晶組織を形成しな ければ、 高い磁束密度を得ることができない。
適正な一次再結晶組織を形成するためには、 結晶粒の粒径を均一 化するとともに、 ゴス方位の結晶粒とゴス方位と対応関係にある方 位の結晶粒を圧延方向に揃えることが重要であるが、 これらのこと は、 冷間圧延の条件に大きく影響される。 それ故、 これまで、 冷間 圧延に関する技術が数多く提案されている (例えば、 特公昭 5 4— 1 3 8 4 6号公報、 特公昭 5 4— 2 9 1 8 2号公報および特開平 4
- 2 8 9 1 2 1号公報参照) 。
冷間圧延には、 レバ一ス圧延 (特公昭 5 4— 1 3 8 4 6号公報参 照) とタンデム圧延 (特公昭 5 4 - 2 9 1 8 2号公報参照) の二つ があるが、 現在、 加工発熱を利用して高温圧延を行うとともに、 圧 延と圧延の間でのリ一ル卷取り後の時効効果を利用するレバ一ス圧 延が主に用いられている。
多量の S i を含有する鋼板は変形抵抗が高いので、 レバース圧延 する場合、 大径ワークロールを使用すると、 圧延反力が大きくなり 、 限界圧下量が制限されるが、 小径ワークロールを使用すると、 鋼 板との接触面積が小さくなり、 同じ圧下量でも、 圧延反力が小さく なるので、 限界圧下量が向上する。 このため、 高圧下率の圧延を行 う際には、 小径ワークロールを使用する方が有利である (特公昭 5 0 — 3 7 1 3 0号公報、 特開平 2 — 2 8 2 4 2 2号公報、 特開平 5
- 3 3 0 5 6号公報および特開平 9一 2 8 7 0 2 5号公報参照) 。 通常、 ワークロールの直径を小さくすると、 ロール変形が生じ易 くなり、 鋼板形状や、 磁気特性の点で好ましくないが、 6重、 1 2 重、 2 0重のロールをクラスター状に配置したゼンジミアミルや N M Sミルは、 該ロールがヮ一クロールを多角的にバックアップする 構造であるので、 口一ル変形が抑制されて、 小径ワークロールの使 用が可能である。 それ故、 一方向性電磁鋼板の製造においては、 主 に、 クラスター型レバース圧延機が使用されている。
クラスター型レバ一ス圧延機としては、 2 1型や 2 2型に代表さ れるゼンジマ一圧延機が主流であり、 該圧延機においては、 薄鋼板 の圧延性を確保する観点から、 主に、 9 5 m m φ以下の小径ワーク ロールが用いられている。 例えば、 特許文献 8には、 8 0 m m <i と 9 0 m m φのロールを用いた実施例が記載されている。
2 1型と 2 2型に代表されるゼンジマー圧延機は、 図 1 ( a ) に 示すように、 モノブロック型ハウジングに組み込まれている。 モノ ブロック型ハウジングの場合、 ハウジング内のスペースが固定され ているので、 ロールの交換の際、 挿入できるロールの直径が制限さ れることになる。
これに対し、 図 1 ( b ) に示すように、 分割型ハウジングに組み 込んだゼンジマー圧延機においては、 ハウジングを上下に移送させ ることにより、 ハウジング内のスペースを調整することができるの で、 鋼種や板厚の鋼板条件、 及び、 圧延条件に応じてワークロール の径を変えることができる。 最近では、 設備的及び操業的な技術進 歩や、 N M Sミルの開発により、 9 5 m m φ以上のヮ一クロ一ルを 使用することが可能である。
そこで、 本出願人は、 このことを踏まえ、 磁気特性に及ぼすヮー クロールの直径の影響を検討した。
その結果、 ワークロール直径を 9 5〜: L 7 O m m d)にすると、 磁 気特性が向上するとの知見を得、 ワークロールの直径が 9 5〜 1 Ί O m m のクラスター型レバ一ス圧延機を用いて、 磁気特性の優れ た一方向性電磁鋼板を製造する技術を提案した (特開 2 0 0 1 — 1 9 2 7 3 2号公報および特開 2 0 0 2— 1 2 9 2 3 4号公報参照)
発明の開示
本出願人が、 特開 2 0 0 1 — 1 9 2 7 3 2号公報で提案した技術 は、 直径 9 5〜 1 7 Ο πιπιφのヮ一クロ一ルを用いて、 一方向性電 磁鋼板の磁気特性の向上を目指すものであり、 小径ヮ一クロールを 用いることの利点、 即ち、 高圧下特性を生かし、 生産性の向上を目 指したものではない。
また特開 2 0 0 2 - 1 2 9 2 3 4号公報には、 「クラス夕一ミル の大径ワークロール効果は圧延パスの前段において有効であるとい う冶金的発見」 に基づいて、 分割型のハウジングで構成されたクラ スターミルを用いて圧延の前段パスを大径ワークロールで圧延し、 後段パスを小径ワークロールに組替えて圧延することにより方向性 電磁鋼板を製造する技術が開示されており、 前段圧延の前段パスに おいて大铎ワークロールを用いる方法が開示されている。
しかしこの方法では本来、 厚下量を大きく取りたい初回のパスも 大径ロールを用いて冷間圧延するため、 初回パスにおいて嚙み込み 性等の圧延制約が大きいという難点があつた。
一方向性電磁鋼板の冷間圧延において、 例えば、 9 0 πιπιφ以下 の小径ヮ一クロールを用いると、 磁気特性は、 むしろ劣化するとい われているが、 本発明は、 小径ワークロールの高圧下特性を最大限 に生かすとともに、 結晶粒の粒径が均一で、 かつ、 ゴス方位の結晶 粒と、 ゴス方位と対応関係にある方位の結晶粒が、 圧延方向に揃つ た一次再結晶組織を形成することを課題とする。
そして、 本発明は、 上記課題を解決する一方向性電磁鋼板の製造 方法を提供することを目的とする。
本発明者は、 分割型ハウジングで構成されたゼンジマー圧延機に おいては、 鋼種や板厚の鋼板条件、 及び、 圧延条件に応じて、 ヮー クロールを交換できることに着目した。
そして、 小径ワークロールを用いる圧延に続き、 大径ワークロー ルを用いる圧延を行えば、 結晶粒の粒径が均一で、 ゴス方位の結晶 粒とゴス方位と対応関係にある方位の結晶粒が圧延方向に揃った一 次再結晶組織を形成できることを見いだした。
また、 大径ワークロールを用いる圧延において、 圧延間で時効処 理を施せば、 より好ましい一次再結晶組織を形成できることを見い だした。
本発明は、 上記知見に基づいてなされたもので、 その要旨は以下 のとおりである。
( 1 ) 質量%で、 C : 0. 0 2 5〜0. 1 0 %、 S i : 2. 5 〜4. 5 %、 及び、 M n : 0. 0 3〜0. 5 5 %、 A 1 : 0. 0 0 7〜 0. 0 4 0 %を含有する電磁鋼スラブを 1 1 0 0〜: L 4 5 0 °C 以上に加熱し、 熱間圧延を施して熱延板とした後、 熱延板焼鈍を施 し、 次いで、 分割型ハウジング式クラスター型レバース圧延機で、 複数回の冷間圧延を施し、 その後、 一次再結晶焼鈍、 次いで、 二次 再結晶焼鈍を施して一方向性電磁鋼板を製造する方法において、
( a) 1回目の冷間圧延、 又は、 1回目と 2回目の冷間圧延を、 直径 5 5〜 1 0 5 mm未満の小径ワークロールを用いて行い、
(b ) 2回目又は 3回目以降、 最終前までの冷間圧延を、 直径 1 0 5〜 1 5 0 mm未満の大径ワークロールを用いて行い、
( c ) 最終の冷間圧延を、 上記大径ワークロールの直径より小さ い直径の小径ワークロールを用いて行うことを特徴とする一方向性 電磁鋼板の製造方法。 ( 2 ) 前記小径ワークロールの直径が 7 0〜 9 5 mmであるこ とを特徴とする前記 ( 1 ) に記載の一方向性電磁鋼板の製造方法。
( 3 ) 前記大径ワークロールの直径が 1 1 5〜 1 5 0 mm未満 であることを特徴とする前記 ( 1 ) に記載の一方向性電磁鋼板の製 造方法。
( 4 ) 前記最終の冷間圧延で用いる小径ヮ一クロールの直径が 、 5 5〜: L 0 5 mm未満であることを特徴とする前記 ( 1 ) 〜 ( 3 ) のいずれかに記載の一方向性電磁鋼板の製造方法。
( 5 ) 前記 2回目又は 3回目以降、 最終前の冷間圧延において 、 圧延間で、 1 0 0〜 3 5 0 °C、 1分以上の時効処理を行うことを 特徴とする前記 ( 1 ) 〜 ( 4 ) のいずれかに記載の一方向性電磁鋼 板の製造方法。
( 6 ) 前記時効処理を、 加工発熱を利用して行う ことを特徴と する前記 ( 5 ) に記載の一方向性電磁鋼板の製造方法。
( 7 ) 前記冷間圧延の回数が、 3以上 7以下であることを特徴 とする前記 ( 1 ) 〜 ( 6 ) のいずれかに記載の一方向性電磁鋼板の 製造方法。 図面の簡単な説明
図 1は、 ゼンジマ一圧延機の構造を示す図である。 ( a) は、 モ ノブロック型ハウジングに組み込んだ構造を示し、 (b) は、 分割 型ハウジングに組み込んだ構造を示す。
図 2は、 ヮ一クロールの直径と圧延荷重の関係を示す図である。 図 3は、 1パスで小径ワーク口一ルを用い、 2〜 5パスの中間パ スで大径ワークロールを用いた場合における圧延反力の変化を示す 図である。
図 4は、 ワークロールの直径 (mm) と磁束密度 B8の関係を示 す図である。
図 5は、 ND軸回りの回転角度と、 ゴス方位の強度 ( I N) と∑ 9対応方位の強度 ( I c∑ 9) の関係を示す図である。
図 6は、 ワークロールの直径 (mm) と磁束密度 B8の関係を示 す図である。 発明を実施するための最良の形態
本発明者は、 質量%で、 C : 0. 0 0 5 %、 S i : 3. 3 %、 M n : 0. 1 %、 S : 0. 0 7 %, A 1 : 0. 0 2 8 2 %, N : 0. 0 0 7 0 %、 及び、 S n : 0. 0 7 %を含有する電磁鋼スラブを、 1 1 5 0 °Cに加熱し、 熱間圧延して製造した 1. 8 mm厚の熱延板 を、 1 1 0 0でで焼鈍した後、 分割型ハウジング式クラスタ一型レ バース圧延機で、 圧延回数 6、 全圧下率 9 0 %で冷間圧延し、 板厚 0. 1 8 mmの鋼板を製造した。 なお、 圧延間で、 2 0 0 °Cで 5分 間の時効処理を、 適宜、 行った。
この時、 1回目の冷間圧延 (以下 「 1パス」 ということがある) 及び最終の冷間圧延 (以下 「最終パス」 という ことがある) で用い るワークロールの直径を、 6 5〜 9 7 mmの範囲で変えて、 圧延荷 重を測定した。 また、 2回目以降 (最終パスを除く) の冷間圧延 ( 以下 「中間パス」 ということがある) で用いるワークロールの直径 を、 9 5〜 1 8 0mmの範囲で変えて、 圧延荷重を測定した。 なお 、 パススケジュールは同一とした。 その結果を、 図 2に示す。
図 2から、 直径 6 5〜 9 7 mmのワーク口一ル (以下 「小径ヮー クロール」 という ことがある) の圧延荷重の範囲と、 直径 9 5〜 1 8 0mmのヮ一クロール (以下 「大径ワークロール」 ということが ある) の圧延荷重の範囲は、 ほぼ同じであることが解る。
リバース圧延機ではパス当りの圧下率が高いほど圧延能率が上が るが、 一方で咬み込みが不安定になり破断リスクが高まる傾向にあ る。 従って、 各パスの板厚 · 板温などの条件毎に限界圧下率が規定 される。
各パス最も効率の高い圧下率を実現し、 かつベアリ ング等各種部 品の耐カ範囲内に圧延反力を抑えるためには図 2に示すように 「 1 パス」 で小径ワークロールを用いる必要がある。
このことは、 高圧下を目指す圧延初期のパス ( 1パス、 2パス) 、 及び、 加工硬化した鋼板を圧延する必要がある最終パスにおいて 、 小径ワークロールを使用しても、 中間パスで大径ワークロールを 用いた場合における圧延荷重と同程度の圧延荷重で圧延できること を意味している。
ここで、 図 3 に、 6パスのパススケジュールにおいて、 1パスで 、 直径 6 5 m mの小径ワークロールを用い、 2〜 5パスの中間パス で、 直径 1 0 0 mmの大径ワークロールを用い、 最終パス ( 6パス ) で、 直径 6 0 mmの小径ワークロールを用いた場合における圧延 反力の変化を示す。
図中には、 比較のため、 1パスと最終パスで、 直径 1 0 0 mmの 大径ワークロールを用いた場合 (図中 「△」 参照) と、 中間パス及 び最終パス ( 2パス以降) で直径 6 0 mmの小径ワークロールを用 いた場合 (図中 「◊」 参照) における圧延反力を併せて示した。 小径ヮ一クロールを用いる 1パスでの圧延反力は、 許容圧延荷重 1 2 0 0 t より大幅に低い 9 0 0 tである。 そして、 中間パスで、 直径 1 0 0 mmの大径ロールを用いることにより圧延反力が増大し ても、 約 1 0 0 0 t程度までであり、 また、 最終パスで、 直径 1 0 0 mmの大径ヮ一クロールを用いても、 約 1 1 0 0 t までである。 この場合、 圧延を通じての許容圧延荷重は、 1 1 0 0 tであり、 全パスで、 直径 1 0 0 mmの大径ワークロールを用いた場合の許容 圧延荷重 1 2 0 0 t (= 1パスでの圧延反力) に比べ、 大幅に低減 されている。
この許容圧延荷重は、 ワークロールの直径よつて異なるが、 図 3 に示すように、 小径ワークロールと大径ワークロールの直径を適宜 選択することにより、 許容圧延荷重を大幅に低減することができる 。 その結果、 所要の板厚までに圧延するのに必要なパス数を削減で きるし、 また、 鋼板の破断を防止することができるので、 生産性を 著しく高めることができる。
本出願人の知見 (特開 2 0 0 1 — 1 9 2 7 3 2号公報および特開 2 0 0 2— 1 2 9 2 3 4号公報参照) によれば、 大径ワークロール を用いて圧延し、 併せて、 加工発熱を利用して時効処理を行うと、 電磁鋼板の磁気特性を改善することができる。
図 4に、 直径 5 0〜 6 0 mmの小径ワークロールで圧延して製造 した板厚 0. 2 3 mmの電磁鋼板の磁束密度 B8 [T] と、 直径 1 1 0〜 1 2 0 mmの大径ワークロールで圧延して製造した板厚 0. 2 3 mmの電磁鋼板の磁束密度 B 8 [T] を示す。 上が、 加工発熱 を利用して高温圧延を行った場合に磁束密度であり、 下が、 時効処 理をしない通常圧延を行った場合の磁束密度である。
通常圧延の場合、 小径ワークロールを大径ワークロールに替えて も、 磁束密度 B 8 [T] は向上しないが、 大径ワークロールを用い て高温圧延を行うと、 磁束密度 B8 [T] が向上することが解る。 圧延初期のパス ( 1パス、 2パス) では、 鋼板の温度が充分に上 がりきつていないので、 大径ワークロールを用いることにより得ら れる磁束密度向上効果を期待することはできない。
一般に加工発熱で板温を上げようとした場合、 クーラント油の供 給量を低減する方法がとられる。 しかし、 必要最低限の潤滑性確保 やロール焼付防止を考慮した場合、 圧延初期パス (1パス、 2パス) では大径ワークロール使用による磁束密度改善効果を期待できる温 度域まで到達することは困難である。
そこで、 本発明においては、 圧延初期のパスでは、 小径ワーク口 ールを使用して、 低い圧延荷重のもとで、 高圧下圧延を行い、 中間 パスでは、 大径ワークロールを使用し、 適宜、 加工発熱による時効 処理の効果を併用して、 磁束密度の向上を図ることを基本思想とす る。 そして、 冷間圧延の最終パスでは、 小径ヮ一クロールを使用し て、 冷延鋼板をさらに圧下し、 所要の製品板厚とする。
このように、 本発明においては、 小径ヮ一クロールと大径ワーク ロールの作用効果に基づいて、 小径ワークロールと大径ワーク口一 ルを使い分け、 圧延パススケジュールを構成する。 この点が、 本発 明の特徴である。
本発明者は、 中間パスにおいて、 大径ヮ一クロ一ルを採用すると 、 磁束密度が向上することを、 次のように、 組織学的にも確認した 一次再結晶焼鈍後の板厚 5 0 m mと 1 1 0 m mの鋼板の板厚 1 / 5 t ( t : 板厚) のところから試験片を採取し、 X線分析し、 S G H法 (原勢ら : 日本金属学会会報第 2 9巻第 7号 P 5 5 2 ) により 、 N D軸回りのゴス方位の強度 ( I N ) と∑ 9対応方位の強度 ( I c ∑ 9 ) を解析した。 その結果を、 図 5に示す。
図 5から、 中間パスで用いるワークロールの直径が大きいと (図 中 「点線」 参照) 、 2 5 ° 近傍での I N強度が減少する一方、 N D 軸を中心とする I c ∑ 9が先鋭化していることが解る。
磁束密度が高い一方向性電磁鋼板を製造するうえで、 一次再結晶 集合組織が具備すべき条件は、 ( i ) ゴス方位が多いこと、 及び、 ( i i ) ゴス方位を優先的に成長させる∑ 9対応方位が先鋭であるこ とである。 したがって、 図 5から、 中間パスにおいて、 大径ヮ一クロールを 用いることにより、 二次再結晶のゴス集積度を高めるのに好適な一 次再結晶集合組織が、 充分に形成されていることが解る。
以上は、 A 1 Nをインヒビタ一として用いた低温スラブ加熱法に おける結果である力 S、 本発明者は、 M n S、 A l N + Mn S ( n S e ) をインヒビ夕一として、 また、 S n、 S b、 C u等を補助的 なインヒビターとして用いた高温スラブ加熱法についても、 同様に 調査した。
その結果、 A 1 Nをインヒビタ一として用いる成分系全般で、 中 間パスで大径ワークロールを用いることによる磁束密度向上効果を 確認することができた。 一方、 A 1 Nを含まない成分系では、 上記 効果を確認することができなかった。
A 1 Nは、 M n S ( n S e ) に比較して、 インヒビター作用が 強く、 かつ、 熱的に安定しているので、 中間パスにおいて大径ヮ一 クロールを用いる高温圧延がなされても、 一次再結晶集合組織が、 効果的に、 磁束密度向上効果を発揮するものと推定される。
ワークロールの直径と一次再結晶集合組織の形成との関係に係る メカニズムは、 現在、 明らかでないが、 本出願人が既に提案した仮 説 (特開 2 0 0 1 — 1 9 2 7 3 2号公報および特開 2 0 0 2— 1 2
9 2 3 4号公報参照) は次の通りである。
中間パスで用いるワークロールの直径が小さいと、 圧延中、 鋼鈑 表面部における剪断変形成分が大きくなり、 一次再結晶後に、 ( 1
1 0 ) 面が増加し、 ( 1 1 1 ) 面が減少する (河野ら : 鉄と鋼、 6
8 ( 1 9 8 2 ) , P . 5 8、 参照) 。 この時、 ( 1 1 0 ) 面におい ては、 ゴス方位から ND軸周りに回転した方位群が増加し、 集合組 織は、 好ましくない幅広の集合組織となる。
この集合組織を先鋭にすることが、 磁束密度を高めるうえで有効 であるので、 生産性の向上の観点から圧延初期のパス ( 1パス、 又 は、 1パスと 2パス) で小径ヮ一クロールを用いる本発明において は、 中間パスで大径ワークロールを用い、 一次再結晶後の集合組織 を、 磁束密度の向上に好ましい先鋭的な集合組織とする。
次に、 本発明で用いる電磁鋼スラブ (本発明の電磁鋼スラブ) の 成分組成に係る限定理由、 及び、 好ましい成分組成について説明す る。 なお、 %は質量%を意味する。
A 1 : A 1 は、 インヒビタ一成分として必須の元素である。 所要 量のインヒビタ一を確保し、 高磁束密度を得るため、 0 . 0 0 7 % 以上必要である。 一方、 多過ぎると、 溶体化処理に必要なスラブ加 熱時間が長くなり、 生産性が低下するので、 上限を 0 . 0 4 0 %と する。
なお、 電磁鋼スラブを高温加熱することを前提とする場合は、 最 終の冷間圧延前に焼鈍を施し、 A 1 Nを形成する必要があるので、 電磁鋼スラブは、 Nを、 0 . 0 0 3〜 0 . 0 2 0 %程度含有する必 要がある。 一方、 低温スラブ加熱を前提とする場合は、 一次再結晶 後に、 窒化処理で A 1 Nを形成するので、 電磁鋼スラブ中に Nを含 有させておく必要はない。 それ故、 本発明において、 電磁鋼スラブ 中の Nの含有量は、 特に限定しない。
Cは、 オーステナイ トを形成するために重要な元素であり、 0 . 0 2 5 %以上必要である。 しかし、 多過ぎると、 脱炭が困難となる ので、 上限を 0 . 1 0 %とする。
S i は、 所定の電気抵抗を確保し、 良好な鉄損特性を得るため、 2 . 5 %以上必要がある。 一方、 多過ぎると、 鋼板の硬度が増し、 冷間圧延が困難になるので、 上限を 4 . 5 %とする。
M nは、 不可避成分として混入する元素であるが、 靭性を高める 作用を有するので、 0 . 0 3 %以上添加する。 一方、 多過ぎると、 多量の M n S又は M n S eが生成し、 高温スラブ加熱でも溶体化が 困難となるので、 上限を 0. 5 5 %とする。
S、 S e : S、 S eは、 M nと結合して、 インヒビ夕一として作 用する M n S又は M n S eを形成するので、 使用するインヒビ夕一 の種類に応じて、 適宜、 添加する。 添加量は、 単独及び併用のいず れの場合も、 0. 0 1〜 0. 0 4 %が好適である。
ただし、 M n S、 M n S eを微細に析出させるためには、 高温ス ラブ加熱が必要である。 低温スラブ加熱の場合は、 後工程で窒化処 理を行い、 インヒビ夕一として A 1 Nを導入するので、 微細な Mn S、 M n S eは必要がなく、 S、 S eは、 0. 0 1 5 %以下が好ま しい。 それ故、 本発明において、 電磁鋼スラブ中の S、 S eの含有 量は、 特に限定しない。
以上の元素の他、 磁気特性の向上を図るため、 さらに、 S n、 S b、 C u、 N i 、 C r、 P、 V、 B、 B i 、 M o、 N b、 及び、 G e等の 1種又は 2種以上を、 鋼板の機械的特性や表面性状を損なわ ない範囲で、 適宜の量、 添加してもよい。
次に、 製造工程に係る条件ついて説明する。 本発明の電磁鋼スラ ブは、 公知の製造方法で製造したものでよい。 電磁鋼スラブを、 必 要に応じて、 寸法 · 形状を整え、 その後、 加熱炉で、 1 1 0 0〜 1 4 5 0 °Cで加熱し、 熱間圧延に供する。 加熱炉は、 通常のガス加熱 炉ゃ、 誘導炉、 通電加熱炉でよい。
1 1 0 0〜 1 4 5 0での電磁鋼スラブを熱間圧延して、 所要板厚 の熱延鋼板とし、 焼鈍を施した後、 分割型ハウジング式クラスタ一 型レバース圧延機を用いて、 複数回の冷間圧延を施す。 冷間圧延の 際、 圧延間で時効処理を行ってもよい。 時効処理は、 加工発熱を利 用してもよいし、 他の加熱手段を利用してもよい。 時効処理の温度 と時間は、 公知の温度と時間の範囲で、 適宜選択すればよいが、 1 0 0〜 3 5 0 °C、 1分以上が好ましい。
また、 最終の冷間圧延の前に、 公知の条件で、 必要に応じ、 冷延 鋼板に焼鈍を施してもよい。 高温スラブ加熱を前提とする場合、 こ の焼鈍は、 鋼板中に充分な量の A 1 N (イ ンヒビ夕一) を微細に析 出させるために必須の工程である。
一方、 低温スラブ加熱を前提とする場合、 A 1 N析出のための焼 鈍は必要ないが、 パス間で適宜行う時効処理をより有効にする炭化 物の析出態様や固溶 Cの固溶態様を得るために、 最終の冷間圧延の 前に、 焼鈍を行ってもよい。
次に、 冷延鋼板を、 分割型ハウジング式クラス夕一型レバース圧 延機による冷間圧延に供する。 この時、 ゴス方位が高度に集積した 二次再結晶集合組織を最終的に形成し、 高磁束密度を得るために、 全圧下率 8 1 %以上で冷間圧延を行うことが好ましい。
なお、 パス間において時効処理を行なう場合、 冷延鋼板を、 1 0 0〜 3 5 0 °Cで 1分以上保持することが重要である。
本発明においては、 前述したように、 小径ヮ一クロールと大径ヮ —クロールの作用効果に基づいて、 小径ワークロールと大径ワーク ロールを使い分け、 パススケジュールを構成することが特徴である 。 即ち、 小径ワークロールと大径ワークロールの異なる作用効果を 、 電磁鋼板の製造工程に取り込むことが基本的な技術思想である。 そして、 本発明は、 上記技術思想を実現するため、 分割型ハウジ ング式クラスタ一型レバース圧延機を用いることを特徴とする (図 1 ( b ) 、 参照) 。
図 1 ( a ) に示すモノブロック型ハウジングの場合は、 中間口一 ルを交換すると、 ワークロールの直径を変更することができるが、 変更可能範囲は 1 0 m m程度と小さく、 また、 組替えに要する作業 負担が大きい。 これに対し、 図 1 ( b ) に示す分割型ハウジングの場合は、 上下 のハウジングを昇降し、 ポア間距離を調整することにより、 ワーク ロールの直径を変更することが可能であるし、 また、 クラス夕一型 圧延機の場合、 ヮ一クロールにチヨ ックを有しないので、 圧延途中 で、 迅速に、 ワークロールを交換することが可能であり、 生産性を 阻害しない。
分割型ハウジング式クラスター型レバース圧延機は、 中間パスで の高温圧延や、 最終パスでの薄板圧延を安定的に行う観点から、 6 重式、 1 2重式、 又は、 2 0重式の圧延機 (ゼンジミアミルや N M Sミルなど) とする。
圧延初期で、 低い圧延荷重で高圧下圧延を行うために用いる小径 ワークロール、 及び、 最終パスで、 冷延鋼板をさらに圧下するため に用いる小径ヮ一クロールの直径は、 中間パスで用いる大径ヮ一ク ロールの直径より小さくなければならないが、 図 2及び図 3に示す 知見をも考慮し、 小径ワークロールの直径は、 5 5〜 1 0 5 m m未 満とする。
直径が 5 5 m m未満であると、 ロール剛性が不足し、 バックアツ プロールでバックアップしても、 破断することがある。 それ故、 小 径ワークロールの直径は、 5 5 m m以上とする。 一方、 直径が 1 0 5 m m以上であると、 限界圧下量の向上効果が小さくなり、 小径口 —ルを用いることの利点がなくなるので、 1回目および最終の冷間 圧延におけるヮ一クロールの直径の上限は、 1 0 5 m m未満とする ワークロールを破断させることなく、 限界圧下量の向上効果を顕 著に得るためには、 1回目および最終の冷間圧延におけるワーク口 ールの直径は、 7 0〜 9 5 m mが好ましい。
2パス又は 3パス以降の中間パスで用いるヮ一クロールの直径は 、 優れた磁気特性を確保するため、 1回目および最終の冷間圧延に おけるワークロールの直径より大きくなければならない。 それ故、 ワークロールの直径は、 1 0 5mm以上とする。
ここで、 図 6に、 中間パスで用いるヮ一クロールの直径と、 磁束 密度 B8 [T] の関係を示す。 図 6に示すように、 2パス又は 3パ ス以降の中間パスで用いるワークロールの直径が 1 0 5 mm以上で あると、 効果的な高温圧延を行うことができ、 高磁束密度方向性電 磁鋼板として必要な 1. 9 3 T以上の磁束密度を確保することがで きる。 ただし、 直径 1 5 0mm以上では、 磁束密度は飽和する傾向 にある。
ワークロールの直径が大き過ぎると、 磁束密度の上昇は期待でき ず、 また、 圧延機自体が大規模なものになり、 保守 · 管理も含め設 備費が増大し、 かつ、 ロール交換作業の負担も増大するので、 2パ ス又は 3パス以降の中間パスで用いるヮ一クロールの直径の上限は 、 1 5 0 mm未満とする。
2パス又は 3パス以降の中間パスで用いるワークロールの直径は 1 0 5〜 1 5 0 mm未満とするが、 磁束密度 1. 9 3超を確実に得 る点と、 圧延機のハンドリング性の点から、 1 1 5〜 1 5 0 mm未 満が好ましい。
本発明においては、 最終パスで、 小径ワークロールを用いて、 冷 延鋼板を、 さらに、 所要の製品板厚まで圧延するが、 小径ワーク口 —ルの直径を選択することにより、 0. 1 8mm以下にまで、 製品 板厚を減じることが可能である。 最終パスで用いる小径ワークロー ルの直径は、 2パス又は 3パス以降の中間パスで用いるワークロー ルの直径より小さければよいが、 圧延反力の点から、 圧延初期で用 いるワークロールと同様に、 5 5〜 1 0 5 mm未満が好ましい。 本発明において、 冷間圧延におけるパス数は、 生産性の点から少 ない方が好ましいが、 鋼種により、 適切なパス数は異なるので、 特 に限定する必要はない。 なお、 パス数は 3以上 7以下が好ましい。 最終圧延が終了した鋼板には、 脱脂処理を施し、 その後、 脱炭と 一次再結晶を兼ねた焼鈍を施す。 電磁鋼スラブを加熱する温度が 1 2 5 0 °C以下 (低温スラブ加熱) の場合は、 一次再結晶から二次再 結晶の間に窒化処理を行い、 インヒビターとして機能する A 1 Nを 形成する。
窒化処理は、 仕上げ焼鈍の途中で行うか (特開昭 6 0 — 1 7 9 8 8 5号公報参照) 、 鋼板を走行させながら 「水素 +窒素 +アンモニ ァ」 の混合ガス中で焼鈍して行う (特開平 1 一 8 2 3 9 3号公報参 照) 。 良好な二次再結晶粒を安定して発達させるためには、 窒素量 は、 1 2 0 p p m以上、 好ましくは 1 5 0 p p m以上必要である。 また、 一次再結晶粒径を制御すると、 磁気特性はさらに向上する ( 特開昭 1 一 8 2 9 3 9号公報等参照) 。
次いで、 鋼板に、 M g Oスラリーを主成分とする焼鈍分離剤を塗 布し、 その後、 コイル状に巻いて、 最終の仕上げ焼鈍を施す。 その 後、 必要に応じて、 絶縁コーティ ングを施すが、 レーザー、 プラズ マ、 機械的方法、 エッチング、 その他の手法によって、 磁区細分化 処理を施すと、 磁気特性が向上する。 実施例
次に、 本発明の実施例について説明するが、 実施例の条件は、 本 発明の実施可能性及び効果を確認するために採用した一条件例であ り、 本発明は、 この一条件例に限定されるものではない。
(実施例 1 )
表 1 に示す成分組成の電磁鋼スラブ a〜 : f を、 表 2に示すスラブ 加熱温度で加熱し、 熱間圧延し、 板厚 2 . 0〜 2 . 8 m mの熱延板 とした。 表 2において、 a、 b、 及び、 cは、 高温スラブ加熱の場 合であり、 d、 e、 及び、 : f は、 低温スラブ加熱の場合である。
表 2に示す熱延板を、 分割型ハウジング式クラスター型レバース 圧延機で、 表 3に示す圧延条件で冷間圧延した。 なお、 パス間で、 加工発熱を利用し、 2 0 0〜 3 5 0でで 1分以上の時効処理を行つ た。
得られた冷延板に、 通常の方法で脱炭焼鈍を施し、 通常の方法で マグネシア塗布し、 仕上げ焼鈍、 絶縁コーティ ング、 形状矯正 , 焼 付焼鈍を施し、 製品鋼板とし、 その磁束密度 (B 8) を測定した。 また、 製品鋼板に、 機械的方法により磁区制御を施し、 鉄損 (W17/ 50) を測定した。 その結果を、 表 3に、 併せて示す。
区分 aの比較例は、 小径ワークロールの直径が 5 0 mmで、 本発 明で規定する下限 5 5 mm以下であり、 圧延ができなかった例であ る。
区分 bの比較例は、 小径ワークロールの直径が 5 4 mmで、 本発 明で規定する下限 5 5 mm以下であり、 また、 大径ワークロールの 直径が 9 5 mmで、 本発明で規定する下限 1 0 5 mm以下の例であ り、 圧延は可能であつたが、 鉄損特性が悪化した。
区分 cの比較例は、 小径ワークロールの直径が 1 1 0 m mで、 本 発明で規定する上限 1 0 5 mm未満を超え、 また、 大径ワーク口一 ルの直径が 1 5 0 mmで、 本発明で規定する上限 1 5 0 mm未満を 超える例である。 両ヮ一クロールとも、 直径が大きいので、 圧延機 のハンドリ ングに時間を要し、 生産性が低下した例である。
区分 eの比較例は、 小径ワークロールの直径が 1 0 9 mmで、 本 発明で規定する上限 1 0 5 mm未満を超えるので、 結果的に、 パス 数が多くなり、 生産性が低下した例である。 08058229 表 1
Figure imgf000021_0001
表 2
Figure imgf000021_0002
表 3
Figure imgf000022_0001
*本発明の範囲外
産業上の利用可能性
前述したように、 本発明によれば、 生産性を低下させずに、 板厚
0 . 2 3 m m以下で、 磁気特性に優れた一方向性電磁鋼板を製造す ることができる。 それ故、 本発明は、 変圧器 · 発電機等の電気機器 の低鉄損化や、 小型化、 軽量化に大きく貢献するものであり、 電気 機器製造産業において利用可能性が高いものである。

Claims

請 求 の 範 囲
1. 質量%で、 C : 0. 0 2 5〜 0. 1 0 %、 S i : 2. 5 - 4 . 5 %、 及び、 M n : 0. 0 3〜 0. 5 5 %、 A 1 : 0. 0 0 7〜 0. 0 4 0 %を含有する電磁鋼スラブを 1 1 0 0〜 1 4 5 0 °C以上 に加熱し、 熱間圧延を施して熱延板とした後、 熱延板焼鈍を施し、 次いで、 レバ一ス圧延機で、 複数回の冷間圧延を施し、 その後、 一 次再結晶焼鈍、 次いで、 二次再結晶焼鈍を施して一方向性電磁鋼板 を製造する方法において、
( a) 1回目の冷間圧延、 又は、 1回目と 2回目の冷間圧延を、 直径 5 5〜 1 0 5 mm未満のワークロールを用いて行い、
( b ) 2回目又は 3回目以降、 最終から 2回前又は最終前までの 冷間圧延を、 直径 1 0 5〜 1 5 0 mm未満のワークロールを用いて 行い、
( c ) 最終の冷間圧延を、 前記 (b ) における冷間圧延のワーク ロールの直径より小さい直径のヮ一クロールを用いて行う ことを特 徴とする一方向性電磁鋼板の製造方法。
2. 前記 1回目および最終の冷間圧延のワーク口一ルの直径が 7 0〜 9 5 mmであることを特徴とする請求項 1 に記載の一方向性電 磁鋼板の製造方法。
3. 前記 2回目又は 3回目以降、 最終前までの冷間圧延のワーク ロールの直径が 1 1 5〜 1 5 0 mm未満であることを特徴とする請 求項 1 に記載の一方向性電磁鋼板の製造方法。
4. 前記最終の冷間圧延で用いるワークロールの直径が、 5 5〜 1 0 5 mm未満であることを特徴とする請求項 1〜 3のいずれか 1 項に記載の一方向性電磁鋼板の製造方法。
5. 前記 2回目又は 3回目以降、 最終前の冷間圧延において、 圧 延間で、 1 0 0〜 3 5 0 °C、 1分以上の時効処理を行う ことを特徴 とする請求項 1〜 4のいずれか 1項に記載の一方向性電磁鋼板の製 造方法。
6 . 前記時効処理を、 加工発熱を利用して行う ことを特徴とする 請求項 5に記載の一方向性電磁鋼板の製造方法。
7 . 前記冷間圧延の回数が、 3以上 7以下であることを特徴とす る請求項 1〜 6のいずれか 1項に記載の一方向性電磁鋼板の製造方 法。
PCT/JP2008/058229 2007-04-24 2008-04-22 一方向性電磁鋼板の製造方法 WO2008133337A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/450,996 US8236110B2 (en) 2007-04-24 2008-04-22 Method of producing grain-oriented electrical steel sheet
EP08740914.0A EP2140949B1 (en) 2007-04-24 2008-04-22 Process for producing unidirectionally grain oriented electromagnetic steel sheet
PL08740914T PL2140949T3 (pl) 2007-04-24 2008-04-22 Sposób wytwarzania blachy cienkiej ze stali elektrotechnicznej o ziarnach zorientowanych jednokierunkowo
KR1020097017729A KR101120125B1 (ko) 2007-04-24 2008-04-22 일방향성 전자강판의 제조 방법
JP2009511922A JP5392076B2 (ja) 2007-04-24 2008-04-22 一方向性電磁鋼板の製造方法
CN2008800133947A CN101668596B (zh) 2007-04-24 2008-04-22 单向性电磁钢板的制造方法
BRPI0810570-7A BRPI0810570A2 (pt) 2007-04-24 2008-04-22 método de produção de chapa de aço elétrico com grão orientado

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-114255 2007-04-24
JP2007114255 2007-04-24

Publications (1)

Publication Number Publication Date
WO2008133337A1 true WO2008133337A1 (ja) 2008-11-06

Family

ID=39925781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058229 WO2008133337A1 (ja) 2007-04-24 2008-04-22 一方向性電磁鋼板の製造方法

Country Status (9)

Country Link
US (1) US8236110B2 (ja)
EP (1) EP2140949B1 (ja)
JP (1) JP5392076B2 (ja)
KR (1) KR101120125B1 (ja)
CN (1) CN101668596B (ja)
BR (1) BRPI0810570A2 (ja)
PL (1) PL2140949T3 (ja)
RU (1) RU2411092C1 (ja)
WO (1) WO2008133337A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047966A (ja) * 2015-12-07 2016-04-07 新日鐵住金株式会社 高Si含有の方向性電磁鋼板の冷間圧延方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639742B (zh) * 2009-11-18 2016-03-30 新日铁住金株式会社 奥氏体系不锈钢板及其制造方法
RU2769149C1 (ru) * 2018-09-28 2022-03-28 ДжФЕ СТИЛ КОРПОРЕЙШН Способ изготовления листа из текстурированной электротехнической стали и стан холодной прокатки
CN109468438A (zh) * 2018-12-21 2019-03-15 武汉万实新能源科技股份有限公司 一种硅钢极薄带生产方法
KR102405173B1 (ko) * 2019-12-20 2022-06-02 주식회사 포스코 방향성 전기강판 및 그의 제조방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4623820Y1 (ja) 1968-12-04 1971-08-17
JPS5037130A (ja) 1973-06-29 1975-04-07
JPS5413846A (en) 1977-07-01 1979-02-01 Lucas Industries Ltd Starting motor for internal combustion engine
JPS5429182A (en) 1977-12-15 1979-03-05 Ntn Toyo Bearing Co Ltd Device for forming pocket bores in ring
JPS60179885A (ja) 1984-02-27 1985-09-13 Hitachi Ltd パタ−ン処理方式
JPS6240315A (ja) 1985-08-15 1987-02-21 Nippon Steel Corp 磁束密度の高い一方向性珪素鋼板の製造方法
JPH02282422A (ja) 1989-04-21 1990-11-20 Nippon Steel Corp 高磁束密度薄手一方向性電磁鋼板の製造方法
JPH04289121A (ja) 1991-03-15 1992-10-14 Kawasaki Steel Corp 磁気特性の安定した薄手方向性けい素鋼板の製造方法
JPH09287025A (ja) 1996-04-22 1997-11-04 Nippon Steel Corp 磁気特性が優れた一方向性電磁鋼板の製造方法
JP2001192732A (ja) 2000-01-11 2001-07-17 Nippon Steel Corp 磁気特性が優れた一方向性電磁鋼板を得る冷間圧延方法
JP2002129234A (ja) 2000-10-19 2002-05-09 Nippon Steel Corp 高磁束密度薄手一方向性電磁鋼板の製造方法
JP2006207026A (ja) * 2004-12-27 2006-08-10 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990924A (en) * 1972-08-01 1976-11-09 Nippon Steel Corporation Method for producing high magnetic flux density grain-oriented electrical steel sheet and strips having excellent characteristics
JP2814437B2 (ja) * 1987-07-21 1998-10-22 川崎製鉄 株式会社 表面性状に優れた方向性けい素鋼板の製造方法
JPH0717960B2 (ja) 1989-03-31 1995-03-01 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
EP0452153B1 (en) * 1990-04-12 1998-03-25 Nippon Steel Corporation Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
KR930011625B1 (ko) * 1990-07-16 1993-12-16 신닛뽄 세이데쓰 가부시끼가이샤 냉간압연에 의한 판두께가 얇은 초고규소 전자강판의 제조방법
JPH0533056A (ja) 1991-07-31 1993-02-09 Kawasaki Steel Corp 磁気特性の優れた方向性けい素鋼板の製造方法
US5666842A (en) * 1993-07-22 1997-09-16 Kawasaki Steel Corporation Method of cold rolling grain-oriented silicon steel sheet having excellent and uniform magnetic characteristics along rolling direction of coil and a roll cooling controller for cold rolling mill using the cold rolling method
RU2164451C2 (ru) 1999-05-11 2001-03-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ холодной прокатки полос
RU2224030C2 (ru) 2002-04-25 2004-02-20 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства анизотропной электротехнической тонколистовой стали

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4623820Y1 (ja) 1968-12-04 1971-08-17
JPS5037130A (ja) 1973-06-29 1975-04-07
JPS5413846A (en) 1977-07-01 1979-02-01 Lucas Industries Ltd Starting motor for internal combustion engine
JPS5429182A (en) 1977-12-15 1979-03-05 Ntn Toyo Bearing Co Ltd Device for forming pocket bores in ring
JPS60179885A (ja) 1984-02-27 1985-09-13 Hitachi Ltd パタ−ン処理方式
JPS6240315A (ja) 1985-08-15 1987-02-21 Nippon Steel Corp 磁束密度の高い一方向性珪素鋼板の製造方法
JPH02282422A (ja) 1989-04-21 1990-11-20 Nippon Steel Corp 高磁束密度薄手一方向性電磁鋼板の製造方法
JPH04289121A (ja) 1991-03-15 1992-10-14 Kawasaki Steel Corp 磁気特性の安定した薄手方向性けい素鋼板の製造方法
JPH09287025A (ja) 1996-04-22 1997-11-04 Nippon Steel Corp 磁気特性が優れた一方向性電磁鋼板の製造方法
JP2001192732A (ja) 2000-01-11 2001-07-17 Nippon Steel Corp 磁気特性が優れた一方向性電磁鋼板を得る冷間圧延方法
JP2002129234A (ja) 2000-10-19 2002-05-09 Nippon Steel Corp 高磁束密度薄手一方向性電磁鋼板の製造方法
JP2006207026A (ja) * 2004-12-27 2006-08-10 Nippon Steel Corp 磁気特性の優れた無方向性電磁鋼板の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HARASE ET AL., JOURNAL OF THE JAPAN INSTITUTE OF METALS, vol. 29, no. 7, pages 552
KONO ET AL., IRON AND STEEL, vol. 68, 1982, pages 58
See also references of EP2140949A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047966A (ja) * 2015-12-07 2016-04-07 新日鐵住金株式会社 高Si含有の方向性電磁鋼板の冷間圧延方法

Also Published As

Publication number Publication date
KR101120125B1 (ko) 2012-03-22
BRPI0810570A2 (pt) 2011-11-08
US8236110B2 (en) 2012-08-07
PL2140949T3 (pl) 2017-10-31
US20100084058A1 (en) 2010-04-08
EP2140949A1 (en) 2010-01-06
RU2411092C1 (ru) 2011-02-10
KR20090114413A (ko) 2009-11-03
JP5392076B2 (ja) 2014-01-22
JPWO2008133337A1 (ja) 2010-07-29
CN101668596A (zh) 2010-03-10
EP2140949B1 (en) 2017-05-31
EP2140949A4 (en) 2016-07-13
CN101668596B (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
US20200040423A1 (en) Non-oriented electrical steel sheet
KR20120118494A (ko) 방향성 전자강판의 제조방법
JP6191780B2 (ja) 方向性電磁鋼板の製造方法および窒化処理設備
JP2015516503A (ja) 無方向性電磁鋼板及びその製造方法
CN111566245A (zh) 双取向电工钢板及其制造方法
WO2008133337A1 (ja) 一方向性電磁鋼板の製造方法
JP2024041844A (ja) 無方向性電磁鋼板の製造方法
JP3644130B2 (ja) 方向性電磁鋼板の製造方法
JPWO2020149347A1 (ja) 方向性電磁鋼板の製造方法
CN109906284B (zh) 取向电工钢板及其制造方法
JP3873309B2 (ja) 方向性電磁鋼板の製造方法
JP3839924B2 (ja) 皮膜特性と磁気特性に優れた一方向性電磁鋼板及びその製造方法並びにその製造法に用いる脱炭焼鈍設備
JP5087865B2 (ja) 高炭素冷延鋼板およびその製造方法
JP2004332031A (ja) 磁気特性に優れた無方向性電磁鋼板の製造方法
JPH10130729A (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3492993B2 (ja) 高磁束密度薄手一方向性電磁鋼板の製造方法
JPH0978129A (ja) 全方位の磁気特性が極めて優れた無方向性電磁鋼板の製造方法
JP6191564B2 (ja) 方向性電磁鋼板の製造方法および窒化処理設備
JP3492965B2 (ja) 磁気特性が優れた一方向性電磁鋼板を得る冷間圧延方法
JP4790151B2 (ja) 鉄損および磁束密度が極めて優れた無方向性電磁鋼板およびその製造方法
JPH10245667A (ja) 超低鉄損一方向性極薄けい素鋼板の製造方法
JP2005068525A (ja) 鉄損が低くかつ磁束密度の高い方向性電磁鋼板の製造方法
EP4450655A1 (en) Method for manufacturing grain-oriented electrical steel sheet
KR970007031B1 (ko) 안정화된 자기적 특성을 갖는 방향성 전기강판의 제조방법
JP3546114B2 (ja) 磁束密度が高い方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880013394.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009511922

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097017729

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 6152/DELNP/2009

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2008740914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008740914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12450996

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009143317

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0810570

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091022