WO2008126944A1 - 高温強度、靭性に優れた鋼材並びにその製造方法 - Google Patents

高温強度、靭性に優れた鋼材並びにその製造方法 Download PDF

Info

Publication number
WO2008126944A1
WO2008126944A1 PCT/JP2008/057563 JP2008057563W WO2008126944A1 WO 2008126944 A1 WO2008126944 A1 WO 2008126944A1 JP 2008057563 W JP2008057563 W JP 2008057563W WO 2008126944 A1 WO2008126944 A1 WO 2008126944A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
toughness
steel
steel material
mass
Prior art date
Application number
PCT/JP2008/057563
Other languages
English (en)
French (fr)
Inventor
Suguru Yoshida
Hiroshi Kita
Teruhisa Okumura
Hirokazu Sugiyama
Teruyuki Wakatsuki
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP08751876A priority Critical patent/EP2143814A1/en
Priority to US12/450,762 priority patent/US20100047107A1/en
Priority to CN2008800116104A priority patent/CN101657555B/zh
Priority to JP2009509388A priority patent/JP5079794B2/ja
Publication of WO2008126944A1 publication Critical patent/WO2008126944A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the present invention relates to a steel material excellent in high-temperature strength and toughness and a method for producing the same.
  • Reheat embrittlement is a high temperature embrittlement that causes precipitation of carbides and nitrides (and thus embrittles) when HAZ is heated again to a high temperature.
  • the present invention provides the reheat embrittlement resistance in the heat affected zone of the weld as it is with hot rolling, i.e., without performing tempering heat treatment such as cold rolling, quenching, and tempering after hot rolling.
  • the present invention provides a steel material that is excellent in high-temperature characteristics, including the toughness of the base metal and HA Z, and can be used as a refractory steel material or an extremely thick H-section steel, and a method for producing the same.
  • the content of C and N is limited, an appropriate amount of Nb is added, the relationship between C and Nb is defined, and the drag effect of solid solution Nb (the solid solution Nb is dislocation, etc.)
  • the phenomenon of increasing the high-temperature strength by utilizing the phenomenon of concentrating on lattice defects and improving the strength by acting as resistance to the movement of defects and dislocations, and further, pinning of grain boundaries and intragranular transformation of fine Ti oxides It is used for production to suppress the coarsening of HAZ, improve the high-temperature characteristics such as resistance to reheat embrittlement with little fluctuation in mechanical properties due to plate thickness, and ensure the toughness of the base material and HAZ. Therefore, a steel material in which fine oxides of T i are dispersed in the steel by adjusting the dissolved oxygen concentration in the molten steel when adding Ti, and its manufacturing method.
  • the gist of the present invention is as follows.
  • C 0.0 0 1% or more, 0.0 30% or less
  • S 1 0.0 5% or more, 0.5 0% or less
  • Mn 0.4 0% or more 2.
  • N b 0.0 3% or more 0.5 0% or less
  • T i 0. 0 0 5% or more 0. 0 4 0% or less
  • N 0. 0 0 0 8% or more 0 0 0 5
  • P 0. 0 3 0% or less
  • S 0. 0 2 0% or less
  • the balance is Fe and inevitable impurities, and the contents of C and Nb are
  • the temperature range from 800 to 500 is cooled with an average cooling rate of 0.1 to 10: Z s (9) or ( 10.
  • a steel material having sufficient room temperature strength and high temperature strength and excellent in the toughness and reheat embrittlement resistance of the base metal and HAZ in particular, a refractory H-shaped steel and a very thick H-shaped steel, It can be manufactured without hot working and tempering heat treatment, or with a large thickness, for example, extremely thick H-section steel with a flange thickness of up to about 140 mm. It is possible to manufacture while ensuring toughness.
  • H-section steels manufactured by hot rolling are classified into flange, web, and fillet regions based on their shapes, and the rolling temperature history and cooling rate differ depending on the shape, so they are the same.
  • the mechanical properties of the components may vary greatly depending on the site, the steel having the component composition of the present invention has relatively little dependence on the rolling finish temperature and cooling rate on strength and toughness, and the H shape
  • the variation in the material within the cross-section of the steel can be reduced, and the change in material due to the plate thickness can be reduced. Toughness Can be ensured and variation in the H-section can be reduced.
  • Figure 1 shows the effect of C and Nb on the high temperature strength of steel.
  • Figure 2 shows the effect of the Ti oxide number density distribution on the HAZ toughness of steel.
  • Figure 3 shows the effect of Ti oxide number density distribution on the reheat embrittlement characteristics of steel.
  • Fig. 4 shows the effect of the relationship between the dissolved oxygen content and Ti content before adding Ti on the density of Ti-based oxides.
  • FIG. 5 is a schematic diagram of a shape steel manufacturing process as an example of an apparatus arrangement for carrying out the present invention method.
  • Fig. 6 is a diagram showing the cross-sectional shape of the H-section steel and the sampling position of the mechanical specimen.
  • the present inventor increases hardenability by adding Nb, and generates one or both of mash ferrite and / or bainitic, thereby increasing high temperature strength and strength and toughness at room temperature, and re-resistance.
  • Nb mash ferrite and / or bainitic
  • Nb C which is a carbide of Nb
  • NbN which is a nitride
  • the solid solution Nb decreases due to these precipitations.
  • Nb carbide or nitride precipitates finely, it contributes to improving the strength by precipitation strengthening.
  • the grain boundary of HA Z austenite (Hereinafter also referred to as “a grain boundary”), N b C may precipitate and reheat embrittlement may occur.
  • the present inventor further (1) the relationship between C and Nb and the high temperature strength of the steel material, (2) — after adjusting the dissolved oxygen by secondary deoxidation, T i
  • T i A detailed study of the effects of particle size and number density distribution of Ti-based oxides on HAZ toughness and reheat embrittlement resistance when added and further deoxidized is completed. ..
  • the present inventor in mass%, C: 0.001% or more and 0.030% or less, Si: 0.05% or more and 0.50% or less, Mn: 0.4% 2.0% or less, Nb: 0.03% or more, 0.50% or less, Ti: 0.0 0 5% or more, 0.04 to less than 0%, N: 0.0.0 0 0 8% 0.
  • a Charpy impact test was conducted in accordance with 2 2 4 2.
  • the particle size and density of the Ti-based oxide were measured using a scanning electron microscope.
  • Figure 1 shows the relationship between C and Nb content and high-temperature strength. Specifically, 0.2% resistance to OOt (6 0 t: YS) at 6 OOt, C— N b Z7.7. This is shown for 4.
  • ⁇ and ⁇ are Y S with a tensile strength of 4 0 0 M Pa grade steel at room temperature of 6 0 0, and the mouth is 6 0 0 "CY S of 49 0 M Pa grade steel.
  • Figure 2 shows the effect of the number density distribution of Ti-based oxides with a particle size of 0.05 to 1 Om on HA Z toughness in steel. From Fig. 2, it can be seen that to obtain good HAZ toughness, the grain size is 0.05 to: T of L 0 m It can be seen that it is necessary to disperse the i-based oxide at a ratio of 30 to 300 mm 2 .
  • the time required for cooling from 8 0 0 to 5 0 0 is heated to 1 4 0 O at a heating rate of 10 s and held for 1 s.
  • the heating rate was reheated to 6 0 0 as l O ⁇ CZ s and the aperture value, that is, reheat squeezing was measured. .
  • steel strength is also an element that contributes to toughness.
  • the balance is extremely good, and the dependence of strength on the cooling rate in the cooling process after heating is almost independent, and there is very little variation in properties. It was found that the toughness can be maintained at a high level in every part, and it is a chemical component suitable for ultra-thick H-section steel.
  • the present invention uses a finely dispersed Ti-based oxide to suppress HA Z crystal grain coarsening by the effect of pinning, and to improve HAZ toughness and reheat embrittlement characteristics. It is steel.
  • the lower limit of the grain size of the Ti-based oxide effective for pinning is 0. or more. If the particle size of the Ti-based oxide exceeds 10 m, it becomes the starting point of fracture and impairs toughness.
  • T i 0 2 , T i 2 0 3 complex oxides of these with S i oxides such as S i 0 2 and A 1 oxides such as A 1 2 0 3 , M n S It is a generic term for oxides containing T i in which sulfides such as T i N and nitrides such as T i N are precipitated together.
  • the particle size and density of the Ti-based oxide can be measured using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • Ti-based oxides are observed as spherical inclusions because they crystallize in the liquid phase and do not stretch even during hot rolling.
  • an energy dispersive X-ray analyzer it can be confirmed that the spherical inclusion is an oxide containing T 1. '
  • the amount of dissolved oxygen before adding is important.
  • the amount of dissolved oxygen before adding Ti is less than 0.03%, the particle size of the Ti-based oxide becomes small and the density decreases.
  • the amount of dissolved oxygen before adding Ti exceeds 0.015%, the particle size of the Ti-based oxide exceeds 10 m and becomes coarse, impairing toughness. Therefore, the amount of dissolved oxygen before adding T i is set to a range of 0.0 0 3 to 0.0 15%.
  • the amount of dissolved oxygen will be between 0.0 0 3 and 0.0 1 5%. be able to.
  • C is an element that strengthens steel, and in order to obtain the strength required for structural steel, addition of 0 .. 0 0 1% or more is necessary.
  • the lower limit of the C amount is set to 0.0 0 1% and the upper limit is set to 0.0 30%. Reheat brittleness and From the viewpoint of securing toughness, it is preferable to set the lower limit to 0.05% and the upper limit to 0.020%.
  • S i is an important deoxidizer in the present invention, and is also an element contributing to improvement in strength.
  • 0.05% or more of S i Addition is necessary.
  • the amount of Si exceeds 0.50%, a low melting point oxide is formed, and the scale peelability deteriorates. Therefore, the amount of 3 1 is set to 0.05% or more and 0.50% or less.
  • the Si content exceeds 0.40%, glazing may occur during melting and the aesthetics may be impaired. Therefore, the upper limit of the Si amount is preferably set to not more than 0..40%.
  • M n is an important deoxidizer in the present invention, and is an element that contributes to improvement in strength and toughness by increasing hardenability and increasing the amount of bainitic structure formed.
  • T i 0.000 3 to 0.0 1 5 mass%
  • Mn is an element that easily segregates at the center of the steel slab when producing steel slabs in continuous forging. When Mn exceeding 2.0% is added, the separability of the segregation part becomes excessive. It rises and toughness deteriorates.
  • the Mn content is 0.40% or more and 2.00% or less.
  • the addition amount of strengthening elements other than Mn it is preferable to add 1.10% or more in order to ensure strength by adding Mn.
  • Nb is added to secure solid solution Nb, which is extremely important in the present invention.
  • solid solution Nb By securing solid solution Nb, it is possible to increase the hardenability and increase the room temperature strength, and to increase the deformation resistance by the drag effect of dislocations and to ensure the strength even at high temperatures. Such an effect
  • the addition of Nb exceeding 0.50% deteriorates the HA Z toughness, so the upper limit was made 0.5%.
  • Nb is a strong carbide-forming element, which forms excessive C and NbC and precipitates, resulting in a decrease in solid solution Nb. Therefore, to secure solid solution Nb and improve high temperature strength,
  • C and Nb are the contents of C and Nb, respectively, and the unit is mass%.
  • the lower limit of C-N b / 7. 74 is not specified because it can be obtained from the lower limit of C and the upper limit of N b.
  • the mass concentration product of Nb and C is an indicator of the amount of solute Nb, and in order to further improve the high temperature strength, it is preferably set to 0.0 0 15 or more.
  • the mass concentration product of Nb and C is the product of the contents of Nb and C expressed in mass%.
  • the upper limit of the mass concentration product of N b and C is obtained from the upper limit of the N b and C contents.
  • T i is an important element that forms a T i -based oxide as described above. It is an element that produces carbides and nitrides, and it is easy to form TiN that is stable at high temperatures. Since the formation of T i N can suppress the precipitation of N b N, the addition of T i is extremely effective in securing solid solution N b. In order to obtain this effect, it is necessary to add T i 0.05% or more. On the other hand, when Ti is added to 0.040% or more, the Ti-based oxide, TiN is coarsened and the toughness is impaired.
  • the amount of Ti is set to 0.05% or more and less than 0.040%.
  • the upper limit is preferably 0.020%.
  • N is an impurity element that generates nitride. Reduction of the N content is effective in securing solid solution Nb, and the upper limit is made less than 0.0 0 50%.
  • the N content is preferably as low as possible, but if it is less than 0 '. 0 0 0 8%, the production cost increases.
  • the upper limit of the N content is preferably set to 0.0 0 45%.
  • P and S are impurities. If they are contained in excess, weld cracking and toughness decrease due to solidification segregation. Therefore, P and S should be reduced as much as possible, and the upper limit of each content is 0.0 30% and 0.0 20%.
  • V, Mo, Zr, Hf, Cr, Cu, Ni, Mg, Al, REM, and Z or Ca are further added to this component system as necessary.
  • the properties can be improved by adding appropriately.
  • these selectively added components will be described.
  • V is known as a precipitation strengthening element, but in the present invention with a low C content, it contributes to solid solution strengthening. Even if V is added in an amount exceeding 0.10%, the effect is saturated and the economical efficiency is impaired, so the upper limit is preferably made 0.10%.
  • Mo is an element that contributes to solid solution strengthening and structural strengthening by improving hardenability, and is preferably added according to the target strength. However, if 0.1% or more of Mo is added, the economic efficiency is impaired, and the toughness and high-temperature brittleness of HA Z may be reduced, so the upper limit may be made less than 0.10. preferable.
  • Zr is an element that produces ZrN, which is a nitride that is more stable than TiN.
  • the formation of ZrN contributes more effectively to the reduction of solute N in steel than when Ti is added alone, and solute B and solute Nb can be secured.
  • the content of Zr exceeds 0.03%, coarse ZrN is generated in the molten steel before forging, and the toughness at normal temperature and HAZ toughness are impaired. . Therefore, the concentration of ⁇ ] "is preferably 0.03% or less.
  • the content is preferably 0.005% or more. Is preferable.
  • H f like T i, is an element that forms nitrides and contributes to the reduction of solute N.
  • Hf may reduce the toughness of HAZ. Therefore, it is preferable to set the upper limit of H f to 0.0 1%.
  • C r, Cu, and Ni are elements that contribute to strength increase by improving hardenability. If Cr and Cu are added excessively, the toughness may be impaired. Therefore, the upper limit is preferably set to 1.5% and 1.0%. Ni is preferably set to an upper limit of 1.0% from the viewpoint of economy.
  • Mg is a powerful deoxidizing element, and it produces Mg-based oxides that are stable at high temperatures. Even when heated to high temperatures during welding, it does not dissolve in steel and has the function of pinning grains. Have. This refines the HA Z structure and suppresses toughness degradation. However, if Mg exceeding 0.05% is added, the Mg-based oxide becomes coarse, which does not contribute to pinning of grains and may produce a coarse oxide and impair toughness. Therefore, the upper limit is preferably set to 0.0 0 5%.
  • a 1 is a strong deoxidizing agent and may be added to control the dissolved oxygen concentration after primary deoxidation to 0.0 3 to 0.0 15%. However, if more than 0.030% of A 1 is contained, island-shaped martensite may be formed and the toughness may be impaired, so the upper limit is made 0.030%. From the viewpoint of improving toughness, the upper limit is preferably 0.02%.
  • REM rare earth elements undergoes oxidation and sulfidation reactions in steel, producing oxides and sulfides. These oxides and sulfides are stable at high temperatures and do not dissolve in steel even when heated to high temperatures during welding. Has the function of pinning. This function makes it possible to refine the HAZ structure and suppress toughness degradation.
  • the total content of all rare earth elements is 0.0 1% or more.
  • the upper limit is preferably set to 0.01%. .
  • Ca when added in a small amount, exhibits an effect of suppressing the stretching of the sulfide in the hot rolling in the rolling direction. This improves toughness, and in particular contributes to an improvement in the Charpy value in the thickness direction. In order to obtain this effect, it is preferable to add 0.01% or more of Ca. On the other hand, if Ca is added in excess of 0.05%, the volume fraction of oxides and sulfides may increase and the toughness may be reduced. Therefore, the upper limit is set to 0.005%. It is preferable.
  • the metal structure of the steel of the present invention is not particularly limited, but may be adjusted to the required strength by adjusting the element content to enhance the hardenability. In order to increase the strength, it is preferable to increase the area ratio of one or both of the mash ferrite and bainitic.
  • Matsuferite is a structure in which austenite ⁇ ⁇ diffuses and transforms into Ferai ⁇ with the same composition during the cooling process, and the composition before and after the transformation is the same.
  • the rearrangement of the lattice becomes the rate-limiting step. Therefore, the mash ferrite has a short atom moving distance and is generated at a relatively high transformation rate, so the crystal grain size is larger than the polygonal ferrite ⁇ and the dislocation density is high.
  • the mash ferrite produced by such a mechanism is different from the polygonal ferrite in terms of the crystal grain size, although the crystal grain size is different in the structure observation with an optical microscope. Therefore, they are clearly distinguished To do so, observation with a transmission electron microscope is required. Paynite is a plate-like structure and can be distinguished from mash ferrite and polygonal ferrite by an optical microscope.
  • CeQ which is a hardenability index
  • the strength may increase and the toughness may be impaired, so the upper limit is more preferably set to 0.60 or less.
  • C ea C + S i / 2 4 + M n / 6 + N i / 4 0 + C r / 5 + M o / 4 + V / 1 4
  • C, Si, Mn, Ni, Cr, Mo, and V are the contents of each element [volume%].
  • S i and M n are used as deoxidizers, and the steel is prepared by adjusting the amount of dissolved oxygen before T i addition, and forged into a steel slab. From the viewpoint of productivity, continuous forging is preferred.
  • the obtained slab is formed into a steel plate or section by hot rolling and cooled.
  • the steel materials to which the present invention is directed include steel shapes such as rolled steel plates, H-shaped steels, I-shaped steels, angle steels, groove-shaped steels, unequal side unequal thick angle steels.
  • H-section steel is particularly suitable for building materials that require fire resistance and reheat embrittlement resistance.
  • a steel material having a large plate thickness typified by an extremely thick H-section steel is suitable.
  • the lower limit of the heating temperature of the piece In order to produce a steel material by hot rolling, plastic deformation is facilitated, and in order to sufficiently dissolve Nb, It is necessary to set the lower limit of the heating temperature of the piece to 1 100. In the case of producing a shape steel by hot working, it is preferable to set the heating temperature to 1 2 0 0 ⁇ or more in order to further facilitate plastic deformation.
  • the upper limit for the heating temperature of the steel slab was set to 1 3 5 0 due to the performance and economy of the heating furnace. In order to refine the steel mouth structure, it is preferable to set the upper limit of the heating temperature of the steel slab to 1300.
  • the cumulative reduction ratio at 100 or less is 10% or more.
  • recrystallization during hot working can be promoted to reduce the grain size and improve toughness and strength.
  • the thickness of the product is less than 40 mm, there are few restrictions on the thickness of the material before rolling, and it is possible to improve the strength by securing a cumulative reduction ratio of 100% or less of 30% or more.
  • the cumulative rolling reduction range is preferably 30% or more.
  • the completion temperature is 800 or more.
  • the average cooling rate in the temperature range from 800 to 500 to s from 0.1 to 10 by controlled cooling.
  • the upper limit is preferably 10 and s.
  • Table 1 also shows the amount (% by mass) of dissolved oxygen before adding T i.
  • the blank in Table .1 means that the selected element is not added.
  • FIG. 5 shows the shape steel manufacturing process.
  • the steel slab heated in the heating furnace 4 was rough-rolled by a roughing mill 5 and then rolled into an H-shaped steel by a universal rolling device row consisting of an intermediate universal rolling mill 6 and a finishing universal rolling mill 8.
  • Water cooling between rolling passes was performed by a water cooling device 7 installed before and after the intermediate universal rolling mill 6, and spray cooling and reverse rolling of the flange outer surface were repeated.
  • Cooling after hot rolling was performed by a cooling device 9 installed on the rear surface of the finishing universal rolling mill 8.
  • reheat drawing (Tables 2 to 4) of the reconstructed weld heat affected zone (HA Z) is an important characteristic, and this evaluation is based on the history of welding heat cycles in the test steel. Then, it was heated again, and the drawing was performed according to the drawing value when it was broken by applying a tensile stress at a high temperature. That is, after holding for 1 second at 140,000 on a tensile test piece of a round bar taken from the flange, the cooling time from 80 to 50 is 20 seconds and to 100 The welding heat cycle to be cooled is recorded, and further heated as it is at 60 ° C. at a heating rate of 1 / sec. After holding at 60 ° C. for 60 ° seconds, 0.5 MPa / sec. Tensile stress was applied at a rate of increase in stress to cause breakage, and the drawing value was measured.
  • the target of JIS standard SM 4 0 0, that is, TS 4 0 0 MPa super class, is that yield strength YP at room temperature is 2 3 5 MPa or more, preferably 3 5 5 MPa or less, and tensile strength TS is 4 0 0 to 5 1 OMPa, and the target value of 0.2% resistance to PS at 6 200 is 1 5 7 MPa or more.
  • SM 4 90 ie TS 4 90 MPa super class goal
  • YP is 3 2 5 MP a or more, preferably 4 4 5 MP a or less, TS 4 9 0-6 1 0 MP a, 5 is 2 1 71 [?
  • the target value of impact absorption energy is 0 or more at 100 J, and the preferable upper limit of the yield ratio YPTS is 0.80.
  • Grade 50 is YP 34 5 MPa or more, TS 45 500 MPa or more
  • Grade 65 is YP 4 5 OMPa or more
  • the Charpy test temperature is 0 and the impact absorption energy in the base metal fillet portion is 54 J or more.
  • the HAZ characteristics are 30% or more for reheat drawing in any standard, and 27 J or more for toughness.
  • the reheat drawing is preferably 50% or more.
  • the steels No. 1 to 15: 35 and 39 of the present invention have normal temperature mechanical properties and high temperature mechanical properties within the target values.
  • the yield point is not less than the lower limit value of the JIS standard, and the yield ratio Y P / TS is not more than 0.8, which is within a preferable range.
  • the Charpy impact value at 0 is greater than the target value.
  • the reheat constriction of the reproducible weld heat affected zone is 30% or more.
  • the steel of Comparative No. 1 6-2 2 and 40-42 has components C 1 N b Z 7. 74 4 and the density of the Ti-based oxide is outside the range of the present invention. Therefore, the mechanical properties that satisfy the target have not been obtained.
  • the flange thickness is 90 to 12 '5 mm.
  • 10 0 ot Yield strength and tensile strength both increase with the increase of the following cumulative rolling reduction, and when the cumulative rolling reduction is 10% or more, the strength required for each of Grade 50 and Grade 6 5 is obtained. It will be possible to satisfy even more fully.
  • the production No. 4 9 to 51 has a flange thickness of 1 2 to 5 mm. Accelerated cooling to 0.13 / s with water cooling increases both the yield strength and the tensile strength, making it possible to more fully meet the strength required for Grade 65. Industrial applicability
  • a steel material having sufficient room temperature strength and high temperature strength and excellent in toughness and reheat embrittlement resistance of the base metal and HAZ, particularly fire-resistant H-section steel is subjected to cold working and tempering heat treatment.
  • Manufacture without application ', or with a large plate thickness, for example, an extremely thick H-section steel with a flange thickness of up to about 140 mm, while maintaining hot rolling and securing strength and toughness As a result, the construction cost can be reduced and the cost can be greatly reduced by shortening the construction period. Industry such as improving the reliability of large buildings, ensuring safety, and economic efficiency, etc. The above effect is very remarkable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

高温特性と靭性に優れた鋼材を提供するために、耐火鋼材を、質量%で、C:0.001~0.030%、Si:0.05~0.50%、Mn:0.40~2.00%、Nb:0.03~0.50%、Ti:0.005~0.040%未満、N:0.0008%~0.0050%未満を含有し、P:0.03%以下、S:0.02%以下に制限し、残部がFe及び不可避不純物からなり、C−Nb/7.74≦0.004を満足し、粒径0.05~10μmのTi系酸化物を30~300個/mm2の密度で有するものとする。

Description

明 細 書 高温強度、 靭性に優れた鋼材並びにその製造方法 技術分野
本発明は、 高温強度と靭性に優れた鋼材及びその製造方法に関す る。 背景技術
建築物の超高層化、 建築設計技術の高度化などから耐火設計の見 直しが建設省総合プロジェク トにより行われ、 昭和 6 2年 3月に 「 新耐火設計法」 が制定された。 これにより、 火災時の鋼材の温度を 3 5 0で以下にするという耐火被覆に関する制限が見直され、 鋼材 の高温強度と建築物の実荷重との関係から、 適切な耐火被覆方法を 選択できるようになった。 そのため、 6 0 0 での設計基準を満足 する高温強度を確保できる場合、 即ち、 6 0 0でにおける高温強度 が高い鋼材を使用することにより、 耐火被覆の簡略化や削減が可能 になった。
このような動向に対応すべく、 鋼材の 6 0 0でにおける高温強度 の強化機構、 ( 1 ) フェライ ト結晶粒径の微細化、 ( 2 ) 合金元素 による固溶体強化、 ( 3 ) 硬化相による分散強化、 ( 4 ) 微細析出 物による析出強化、 のうち、 主に析出強化を利用した耐火鋼材が開 発されている。
従来、 析出強化に寄与する元素である M o、 T i 、 N b等を添加 し、 炭化物、 窒化物等によって高温強度を確保する耐火鋼材が数多 く提案されているが、 近年、 M 0の多量の添加による製造コストの 上昇、 溶接性の低下が問題になった。 このような問題に対して、 C及び M oの低減と熱間圧延の終了温 度及び巻取温度の制御によって、 高温強度の確保と、 靱性と溶接性 の改善を図った熱延鋼帯が提案されている (例えば、 特開平 7— 3 0 0 6 1 8号公報、 参照) 。
しかし、 これは巻取時に微細な M o、 N bの炭化物を析出させる ものであり、 固溶 N bを利用していない点で高温強度が十分でなく 、 また、 T i を含有させ、 溶接熱影響部 (Heat Af feced Zone, H A Zという。 ) への窒化物の析出を抑制したものではないため、 H A Zの靭性の低下が懸念される。
また、 C及び M oを低減し、 固溶 N bによって高温高度を高め、 固溶 C及び固溶 Nを減じて冷間加工の成形性を確保した鋼板及び鋼 管が提案されている (例えば、 特開平 1 0— 1 7 6 2 3 7号公報、 特開 2 0 0 0 — 5 4 0 6 1号公報、 特開 2 0 0 0— 2 8 2.1 6 7号 公報、 参照) 。 しかし、 これらは T i /Nが高いため、 粗大な T i Nが析出し、 特に H A Zの靭性の低下が懸念される。
また、 高温強度、 靭性及び溶接性の確保のため、 M oを減じ、 C uの固溶及び析出を利用した耐火鋼材も提案されている (例えば、 特開 2 0 0 2— 1 1 5 0 2 2号公報、 参照) 。 これは、 固溶 Nbに よって高温強度を高めるものではなく、 N bの添加により、 再結晶 温度を低下させて結晶粒を細粒化し、 また、 N bの析出強化を利用 するものである。
さらに、 以上例示した特許文献で提案されている鋼材は、 何れも 、 HA Zにおける再熱脆化を考慮したものではなかった。 再熱脆化 とは、 H A Zが再び高温に加熱された際、 炭化物、 窒化物の析出(こ よって脆化する、 高温脆化である。
また、 主として高層建築物の柱材として使用される極厚 H形鋼に ついても、 板厚サイズの増大にともない、 その製造工程が低圧下量 、 低冷却速度となるため、 薄手の鋼材と比較して充分な加工熱処理 を施すことがより難しくなるため、 従来技術において、 強度を確保 するには合金元素を多量に添加することが必要であり、 その場合に 靭性低下、 溶接性低下などを併発する問題が生じていた。 発明の開示
本発明は、 熱間圧延まま、 即ち、 熱間圧延後、 冷間圧延や、 焼入 れ、 焼戻し等の調質熱処理を行なうことなく、 溶接熱影響部におけ る耐再熱脆化特性を含む高温特性、 及び、 母材と HA Zの靭性に優 れ、 耐火鋼材或いは極厚 H形鋼として用いることのできる鋼材及び その製造方法を提供するものである。
本発明は、 C及び Nの含有量を制限し、 適量の N bを添加して、 Cと N bの関係を規定して固溶 N bのドラッグ効果 (固溶した N b が転位などの格子欠陥に濃化し、 欠陥や転位の移動の抵抗となり強 度を向上させる現象) を利用して高温強度を高め、 更に、 微細な T i 系酸化物を結晶粒界のピンニングと粒内変態の生成に利用して、 H A Zの粗大化を抑制して、 板厚による機械特性変動の少なく、 耐 再熱脆化などの高温特性の向上を図り、 さらには、 母材や HAZの 靭性を確保するために、 T i を添加する際の溶鋼中の溶存酸素濃度 を調整して、 鋼中に T i の微細な酸化物を分散させた鋼材及びその 製造方法である。
そのような本発明の要旨は、 以下のとおりである。
( 1 ) 質量%で、 C : 0. 0 0 1 %以上 0. 0 3 0 %以下、 S 1 : 0. 0 5 %以上 0. 5 0 %以下、 Mn : 0. 4 0 %以上 2. 0 0 %以下、 N b : 0. 0 3 %以上 0. 5 0 %以下、 T i : 0. 0 0 5 %以上 0. 0 4 0 %未満、 N : 0. 0 0 0 8 %以上 0. 0 0 5 0 %未満を含有し、 P : 0. 0 3 0 %以下、 S : 0. 0 2 0 %以下に 制限し、 残部が F e及び不可避不純物からなり、 Cと N bの含有量 が、
C - N b/7. 7 4≤ 0. 0 0 4
を満足し、 粒径が 0. 0 5〜 : L 0. mである T i 系酸化物を 3 0〜 3 0 0個ノ mm2の密度で有することを特徴とする高温特性と'靭性 に優れた鋼材。
( 2 ) 質量%で、 V : 0. 1 0 %以下、 M o : 0. 1 0 %未満 の一方又は双方を含有することを特徴とする上記 ( 1 ) に記載の高 温特性と靭性に優れた鋼材。
( 3 ) 質量%で、 Z r : 0. 0 3 %以下、 H f : 0. 0 1 %以 下の一方又は双方を含有することを特徴とする上記 ( 1 ) 又は ( 2 ) に記載の高温特性と靭性に優れた鋼材。
( 4 ) 質量%で、 C r : 1. 5 %以下、 C u : 1. 0 %以下、 N i : 1. 0 %以下の 1種又は 2種以上を含有することを特徴とす る上記 ( 1 ) 〜 ( 3 ) の何れかに記載の高温特性と靱性に優れた鋼 材。
( 5 ) 質量%で、 M g : 0. 0 0 5 %以下、 A 1 : 0. 0 3 0 % 以下、 R E M : 0. 0 1 %以下、 C a : 0. 0 0 5 %以下の 1種又 は 2種以上を含有することを特徴とする上記 ( 1 ) 〜 (4 ) の何れ かに記載の高温特性と靭性に優れた鋼材。
( 6 ) N bと Cの質量濃度積が 0. 0 0 1 5以上であることを 特徴とする上記 ( 1 ) 〜 ( 5 ) の何れかに記載の高温特性と靭性に 優れた鋼材。
( 7 ) 鋼材が耐火鋼材であることを特徴とする上記 ( 1 ) 〜 ( 6 ) の何れかに記載の高温特性と靭性に優れた鋼材。
( 8 ) 鋼材がフランジ厚 4 0 mm以上の極厚 H形鋼であること を特徴とする上記 ( 1 ) 〜 ( 6 ) の何れかに記載の高温特性と靭性 に優れた鋼材。
( 9 ) 上記 ( 1 ) 〜 ( 6 ) の何れかに記載の成分からなる鋼を 、 溶存酸素を 0. 0 0 3〜 0. 0 1 5質量%に調整した後、 T i を 添加して溶製し、 銬造して得られた鋼片を 1 1 0 0〜 1 3 5 に 加熱し、 熱間圧延することを特徴とする高温'特性と靭性に優れた鋼 材の製造方法。
( 1 0 ) 1 0 0 0 以下での累積圧下率を 1 0 %以上として熱 間圧延することを特徴とする上記 ( 9 ) に記載の高温特性と靭性に 優れた鋼材の製造方法。
( 1 1 ) 熱間圧延後、 8 0 0 から 5 0 0でまでの温度範囲を 0. l〜 1 0 :Z s の平均冷却速度で冷却することを特徴とする上 記 ( 9 ) 又は ( 1 0 ) に記載の高温特性と靭性に優れた鋼材の製造 方法。
本発明によれば、 十分な常温強度及び高温強度を有し、 母材と H A Zの靭性及び耐再熱脆化特性に優れた鋼材、 特に、 耐火 H形鋼や 極厚 H形鋼を、 冷間加工及び調質熱処理を施すことなく製造するこ と、 あるいは、 板厚の大きいサイズ、 例えば、 フランジ厚で 1 4 0 mm程度までの極厚 H形鋼において、 熱間圧延ままで、 強度、 靭性 を確保しつつ製造することが可能になる。
鋼材のうち、 熱間圧延で製造する H形鋼は、 その形状からフラン ジ、 ウェブ、 フィ レッ トの部位に分類され、 各々の形状に応じて、 圧延温度履歴及び冷却速度が異なるため、 同一成分でも機械特性が 部位により大きく変化することがあるが、 本発明の成分組成を有す る鋼は、 強度、 靭性に及ぼす圧延仕上げ温度依存性及び冷却速度依 存性が比較的小さく、 H形鋼の断面部位内での材質のばらつきを軽 減でき、 また、 板厚による材質の変化を小さくすることができるた め、 特に、 極厚 H形鋼のような板厚の大きなサイズでの強度、 靭性 の確保及び H形鋼断面内ばらつきの低減が可能となる。 図面の簡単な説明
図 1 は、 C及び N bが鋼材の高温強度に及ぼす影響を示す図であ る。
図 2は、 T i酸化物の数密度分布が鋼材の H A Zの靭性に及ぼす 影響を示す図である。
図 3は、 T i酸化物の数密度分布が鋼材の再熱脆化特性に及ぼす 影響を示す図である。
図 4は、 T i を添加する前の溶存酸素量と T i 量の関係が T i 系 酸化物の密度に及ぼす影響を示す図である。
図 5は、 本発明法を実施する装置配置例として形鋼製造プロセス の略図である。
図 6は、 H形鋼の断面形状及び機械試験片の採取位置を示す図で ある。 発明を実施するための最良の形態
本発明者は、 N bの添加により焼入れ性を高め、 マツシブフェラ イ ト、 又はべイナイ トの一方又は双方を生成させることにより、 高 温強度並びに常温での強度及び靭性を高め、 かつ、 耐再熱脆化特性 に優れた鋼材を得ること、 更に、 固溶 N bのドラッグ効果によって 、 高温での転位の移動速度を遅らせ、 これにより高温での軟化に対 して抵抗力を発揮し、 耐火鋼材として必要な高温強度を確保するこ とを検討した。
その結果、 N bの効果を最大限に発揮させるための、 低 C化、 低 N化、 及び、 T i の添加について、 以下の知見を得た。
低 C化及び低 N化は、 ポリゴナルフェライ 卜の生成の抑制及び固 溶 N bの確保に有効である。 N bの炭化物である N b C及び窒化物 である N b Nは、 ポリゴナルフェライ トの生成核となり、 かつ、 こ れらの析出によって固溶 N bが減少する。 特に、 少量の N bの炭化 物、 窒化物が微細に析出すれば、 析出強化による強度向上に寄与す るが、 溶接後、 再び高温に加熱されると、 HA Zのオーステナイ ト の結晶粒界 (以下、 ァ粒界ともいう。 ) に N b Cが析出して再熱脆 化を発現することがある。
したがって、 耐再熱脆化特性を確保するためには、 C添加量及び N添加量の上限を規定することは極めて重要である。 また、 炭素含 有量が 0. 0 3 %超では、 部分的に島状マルテンサイ トを生成し、 靭性が著しく低下することがあるという問題も判明した。
さ らに、 T i による制御脱酸によって、 微細な T i 系酸化物を鋼 中に分散させると、 結晶粒をピンニングしてその成長を抑制するた め、 結晶粒径が微細になる。 特に、 H A Zに見られるような 1 4 0 0で加熱、 急冷といった熱サイクルでの結晶粒粗大化を防止させる ことができる。
これにより、 H A Z靭性が向上するだけでなく、 HA Zの高温脆 化も抑制されることがわかった。
以上の知見を基に、 本発明者は、 さ らに、 ( 1 ) C及び N bと鋼 材の高温強度との関係、 ( 2 ) —次脱酸で溶存酸素を調整後、 T i を添加して更に脱酸した場合の T i 系酸化物の粒径及び数密度分布 が H A Z靭性及び耐再熱脆化特性に及ぼす影響について詳細な検討 を ί了つ /こ。 ..
本発明者は、 質量%で、 C : 0. 0 0 1 %以上 0. 0 3 0 %以下 、 S i : 0. 0 5 %以上 0. 5 0 %以下、 M n : 0.. 4 %以上 2. 0 %以下、 N b : 0. 0 3 %以上 0. 5 0 %以下、 T i : 0. 0 0 5 %以上 0. 0 4 0 %未満、 N : 0. 0 0 0 8 %以上 0. 0 05 0 %未満を含有し、 P : 0. 0 3 %以下、 S : 0. 0 2 %以下に制限 し、 残部が F e及び不可避的不純物からなる鋼を、 T i を添加する 際の溶存酸素量を変化させて溶製し、 銬造して得られた鋼片を 1 1 0 0〜 1 3 5 O t:に加熱し、 1 0 0 0で以下での累積圧下率を 3 0 %以上として、 熱間圧延し、 板厚 1 0〜 4 0 mmの鋼板を製造した 鋼板から、 J I S Z 2 2 0 1 に準拠して引.張試験片を採取し 、 常温での引張試験を J I S Z 2 2 4 1 に準拠して行い、 6 0 0 での引張試験を J I S G 0 5 6 7に準拠して行った。 また 、 鋼板から小片を採取して、 昇温速度 1 0で/ 5で 1 4 0 0 ^に加 熱して 1 保持し、 8 0 O t から 5 0 0でまでの冷却に要する時間 を 1 0 s として冷却する、 HA Zの熱履歴を模擬する熱処理 (HA Z再現熱処理という。 ) を施した後、 試験片に加工し、 J I S Z
2 2 4 2に準拠してシャルピー衝撃試験を行った。 また、 T i 系 酸化物の粒径と密度を、 走査型電子顕微鏡を用いて測定した。
図 1 は、 C及び N bの含有量と高温強度の関係、 具体的には、. 6 O O tにおける 0. 2 %耐カ ( 6 0 0 t: Y S ) を、 C— N b Z7. 7 4に対して示したものである。 図において、 〇及び參は常温の引 張強度が 4 0 0 M P a級の鋼材の 6 0 0で Y Sであり、 口は 49 0 M P a級の鋼材の 6 0 0 "CY Sである。
図 1から、 C一 N b/ 7. 7 4が 0. 0 0 4以下になると、 常温 の引張強度が 4 0 0 M P a級、 4 9 0 M P a級の鋼材の、 6 0 0で における 0. 2 %耐力が目標値を超え、 良好な高温強度が得られる ことがわかる。
図 2は、 鋼中において粒径 0. 0 5〜 1 O mの T i 系酸化物の 数密度分布が HA Z靭性に及ぼす影響を示したものである。 図 2か ら、 良好な H A Z靭性を得るには、 粒径が 0. 0 5〜: L 0 mの T i 系酸化物を 3 0〜 3 0 0個 mm2の割合で分散含有することが 必要であることがわかる。
. また、 丸棒の引張試験片を用いて、 昇温速度 1 0 sで 1 4 0 O :に加熱して 1 s保持し、 8 0 0でから 5 0 0でまでの冷却に要 する時間を 1 0 s として 1 0 0でに冷却する HA Z再現熱処理を施 した後、 昇温速度を l O ^CZ s として 6 0 0でに再加熱し、 絞り値 、 即ち再熱絞りを測定した。
その結果、 図 3に示すように、 T i 系酸化物の分散が上記の範囲 にある HA Z靭性に優れる鋼材では、 再熱絞り も 3 0 %以上という 良好な結果が得られ、 耐再熱脆化特性にも優れることが確認された 図 4は、 T i を添加する前の溶存酸素量と T i 量の関係が T i 系 酸化物の密度に及ぼす影響を示したものである。 図 4の数値は、 粒 径が 0. 0 5〜 1 0 mの T i 系酸化物の密度である。 図 4から、 良好な HA Z靭性を有する粒径 0. 0 5〜 1 0 mの T i 系酸化物 を、 3 0〜 3 0 0個ノ mm2の割合で含有する鋼材を得るためには 、 T i添加前の一次脱酸後の溶存酸素を、 質量%で、 0. 0 0 3〜 0. 0 1 5 %、 好ましくは 0. 0 0 3〜 0. 0 1 0 %に調整し、 T i の含有量を 0. 0 0 5〜 0. 0 4 0 %未満、 好ましく は 0. 0 0 5〜 0. 0 2 0 %とする必要があることがわかる。
以上のように、 特に、 Bを含有しない耐火形鋼では、 低 C化及び 低 N化した上で、 さらに、 Cと N bの関係及び T i 系酸化物の粒径 、 数密度を最適化すると、 固溶 N bが確保され、 HA Zのァ粒界へ の炭化物及び窒化物の析出が抑制され、 再熱脆化の防止に極めて有 効であることがわかった。
また、 本成分系のさ らなるメ リ ッ トとして、 固溶 N bによる適度 な焼入れ性を維持するとともに、 鋼材強度ゃ靭性に寄与する元素の バランスが極めて良好であり、 加熱後の冷却過程における冷却速度 による強度ゃ軔性の依存性がほとんどなく、 特性のばらつきが非常 に少ないため、 板厚の大きいサイズに適用した場合には、 強度、 靭 性が、 あらゆる部位において高位で維持でき、 極厚 H形鋼に適した 化学成分であることがわかった。
以上の知見に基づく本発明につき、 以下、 詳細に説明する。 まず 、 T i 系酸化物について説明する。
T i 系酸化物の粒径、 密度 :
本発明は、 微細に分散した T i 系酸化物を利用して、 特に HA Z の結晶粒粗大化をピンニングの効果によつて抑制し、 H A Z靭性及 び再熱脆化特性を向上させた耐火鋼である。 この、 ピンニングに有 効な T i 系酸化物の粒径の下限は、 0. 以上である。 T i 系酸化物の粒径が 1 0 mを超えると、 破壊の起点となって靭性を 阻害する。
また、 H A Z靭性及び再熱脆化特性の向上には、 3 0〜 3 00個 /mm2が有効である。 粒径が 0. 0 5〜 : L .O mの T i 系酸化物 の密度が、 3 0個 Zmm2未満では、 ピンニングの効果が不十分で ある。 一方、 粒径が 0. 0 5〜 : l O mの T i 系酸化物の密度が 3 G 0個ノ mm2を超えると、 亀裂の伝播が促進されて靭性を損なう なお、 T i 系酸化物とは、 T i 02、 T i 23、 これらと S i 02 などの S i 系酸化物及び A 123などの A 1 系酸化物との複合酸化 物、 M n Sなどの硫化物、 T i Nなどの窒化物が複合析出した T i を含む酸化物の総称である。
T i 系酸化物の粒径及び密度は、 走査型電子顕微鏡 ( S EM) を 用いて測定することができる。 T i 系酸化物の同定には、 エネルギ 一分散型 X線分析装置を有する S EMを使用することが好ましい。 T i 系酸化物は、 液相中で晶出し、 熱間圧延でも延伸しないため、 球状の介在物として観察される。 エネルギー分散型 X線分析装置を 使用すると、 球状の介在物が T 1 を含有する酸化物であることを確 認することができる。 '
S E Mにより、 5 0 0 0〜; L 0 0 0 0倍で、 数視野、 好ましくは 2 0視野以上を観察し、 介在物の個数を数えて、 観察部位の面積で 割ることにより、 密度を算出することができる。 なお、 粒径が 0. 0 5 m未満或いは 1 O ^m超の介在物は靭性改善に寄与しないた め、 密度の算出の際には無視する。
T i 添加前の溶存酸素量 :
粒径が 0. 0 5〜 1 0 zm、 密度が 3 0〜 3 0 0個 Zmm2の T i 系酸化物を鋼中に存在させるには、 鋼を溶製する際の、 T i を添 加する前の溶存酸素量が重要である。 T i添加前の溶存酸素量が 0 . 0 0 3 %未満であると、 T i 系酸化物の粒径が小さくなり、 密度 が低下する。 一方、 T i添加前の溶存酸素量が、 0. 0 1 5 %超に なると、 T i 系酸化物の粒径が 1 0 mを超えて粗大化し、 靭性を 阻害する。 したがって、 T i を添加する前の溶存酸素量を 0. 0 0 3〜 0. 0 1 5 %の範囲とした。 鋼を溶製する際、 T i を添加する 前に S i 及び M nを脱酸剤として用いて脱酸を行えば、 溶存酸素量 を 0. 0 0 3〜 0. 0 1 5 %とすることができる。
次に、 本発明の耐火鋼の成分について説明する。
Cは、 鋼を強化する元素であり、 構造用鋼として必要な強度を得 るには、 0.. 0 0 1 %以上の添加が必要である。 一方、 0. 0 3 0 %超の Cを添加すると、 H A Zに粗大な炭化物を生じて、 靭性及び 再熱脆性を低下させ、 また、 ベイナイ ト相のラス間に島状マルテン サイ トを生成し、 母材の靭性が低下する。 したがって、 C量の下限 を 0. 0 0 1 %、 上限を 0. 0 3 0 %とした。 なお、 再熱脆性及び 靭性確保の観点から、 下限を 0. 0 0 5 %, 上限を 0. 0 2 0 %と することが好ましい。
S i は、 本発明において重要な脱酸剤であり、 また、 強度の向上 にも寄与する元素である。 T i を添加する前の溶鋼の溶存酸素を 0 . 0.0 3〜 0. 0 1 5質量%にするために、 また、 母材の強度確保 のためには、 0. 0 5 %以上の S i添加が必要である。 一方、 S i 量が 0. 5 0 %を超えると低融点の酸化物を生成し、 スケール剥離 性が悪化する。 そのため、 3 1量を 0. 0 5 %以上 0. 5 0 %以下 とする。 また、 S i 量が 0. 4 0 %を超えると、 溶融メツキ時のム ラが発生し、 美観性が損なわれことがある。 したがって、 S i量の 上限を 0.. 4 0 %以下とすることが好ましい。
M nは、 本発明において重要な脱酸剤であり、 また、 焼入れ性を 上昇させ、 ベイナイ ト組織の生成量を増加させて、 強度及び靭性の 向上に寄与する元素である。 T i を添加する前の溶鋼の溶存酸素を 0. 0 0 3〜 0. 0 1 5質量%にするために、 また、 母材の強度、 靭性を確保するためには、 0. 4 0 %以上の添加が必要である。 一 方、 M nは、 連続铸造において鋼片を製造する際、 鋼片の中心に偏 析し易い元素であり、 2. 0 0 %を超える Mnを添加すると、 偏析 部の焼入れ性が過度に上昇して靱性が悪化する。
したがって、 Mn量を 0. 4 0 %以上、 2. 0 0 %以下とする。 特に、 M n以外の強化元素の添加量が少ない場合には、 M n添加に よって強度を確保するため、 1. 1 0 %以上を添加することが好ま しい。
N bは、 本発明において極めて重要である固溶 N bの確保のため に添加する。 固溶 N bの確保により、 焼入性を上昇させて常温強度 を高め、 また転位の ドラッグ効果により変形抵抗を増加させて高温 域においても強度を確保させることができる。 このような効果を発 現する固溶 N bを確保するため、 N bを 0. 0 3 %以上添加するこ どが必要である。 一方、 0. 5 0 %超の N bを添加すると、 HA Z 靭性が劣化するため、 上限を 0. 5 0 %とした。 高温強度を更に高 めるためには、 ' N bを 0. 1 0 %以上添加することが好ましい。
また、 N bは強力な炭化物形成元素であり、 過剰な Cと N b Cを 形成して析出するため固溶 N bが減少する。 そのため、 固溶 Nbを 確保して、 高温強度を向上させるには、
C - N b/7. 7 4≤ 0. 0 0 4
を満たすことが必要である。 なお、 ここで C、 N bは、 それぞれ C 、 N bの含有量であり、 単位は質量%である。
C - N b/7. 7 4の下限は、 Cの下限値と N bの上限値から求 めることができるので、 特に規定しない。
N bと Cの質量濃度積は、 固溶 N b量の指標であり、 高温強度を さらに向上させるためには、 0. 0 0 1 5以上とすることが好まし い。 N bと Cの質量濃度積とは、 質量%で表される N b及び Cの含 有量の積である。 N bと Cの質量濃度積の上限は、 N b及び Cの含 有量の上限値から求められるので、. 特に規定しない。
T i は、 上述のように T i 系酸化物を形成する重要な元素である 。 また、 炭化物及び窒化物を生成する元素であり、 高温で安定な T i Nを形成し易い。 T i Nの形成によって、 N b Nの析出を抑制す ることができるため、 T i の添加は、 固溶 N bの確保にも極めて有 効である。 この効果を得るには、 T i を 0. 0 0 5 %以上添加する ことが必要である。 一方、 T i を 0. 0 4 0 %以上添加すると、 T i 系酸化物、 T i Nが粗大化し、 靭性を損なう。
'そのため、 T i 量を 0. 0 0 5 %以上、 0. 0 4 0 %未満とする 。 微細な T i 系酸化物の量を確保し、 靭性を向上させる観点から、 上限は 0. 0 2 0 %が好ましい。 Nは、 窒化物を生成する不純物元素である。 N量の低減は、 固溶 N bの確保に有効であり、 上限を 0. 0 0 5 0 %未満とする。 Nの 含有量は極力低濃度であることが好ましいが、 0 '. 0 0 0 8 %未満 とするには、 製造コス トが増大する。 また、 靭性確保の観点から、 N量の上限を 0. 0 0 4 5 %とすることが好ましい。
P、 Sは不純物であり、 過剰に含有すると、 凝固偏析による溶接 割れ及び靭性の低下を生じる。 したがって、 P及び Sは極力低減す べきであり、 それぞれの含有量の上限を 0. 0 3 0 %、 及び、 0. 0 2 0 %とする。
本発明では、 さらに、 この成分系に、 必要に応じて V、 M o、 Z r、 H f 、 C r、 C u、 N i 、 M g、 A l 、 R E M, 及び Z又は、 C aを適宜添加することにより、 特性を向上させることができる。 以下、 それらの選択的に添加する成分について説明する。
Vは、 析出強化元素として知られているが、 C含有量の低い本発 明では、 固溶強化に寄与する。 Vは、 0. 1 0 %超を添加しても効 果が飽和し、 経済性も損なわれるので、 上限を 0. 1 0 %とするこ とが好ましい。
M oは、 固溶強化及び焼入れ性の向上による組織強化に寄与する 元素であり、 目標とする強度に応じて添加することが好ましい。 し かし、 0. 1 0 %以上の M oを添加すると経済性が損なわれ、 また 、 HA Zの靭性及び高温脆性が低下することがあるので、 上限を 0 . 1 0未満とすることが好ましい。
Z rは、 T i Nよりも高温で安定な窒化物である Z r Nを生成す る元素である。 Z r Nの生成により、 T i を単独で添加した場合よ りも、 鋼中の固溶 Nの低減に有効に寄与し、 固溶 B、 固溶 N bを確 保できる。 Z rの含有量が 0. 0 3 %超になると、 铸造前の溶鋼中 に粗大な Z r Nが生成し、 常温での靱性及び H A Zの靭性を損なう 。 したがって、 ∑ ]" の濃度は 0. 0 3 %以下とすることが好ましい 。 また、 N b Nの析出を抑制し、 高温強度、 絞りの低下を防止する ためには、 0 0 0 5 %以上の添加が好ましい。 。
H f は、 T i と同様、 窒化物を生成する元素であり、 固溶 Nの低 減に寄与する。 しかし、 0. 0 1 %を超える H f を添加すると、 H A Zの靭性が低下することがある。 したがって、 H f の上限を 0. 0 1 %とすることが好ましい。
C r、 C u、 及び、 N i は、 焼入れ性の向上により、 強度上昇に 寄与する元素である。 C r及び C uは、 過剰に添加すると、 靭性を 損なう ことがあるため、 それそれ、 上限を、 1. 5 %、 及び、 1. 0 %とすることが好ましい。 また、 N i は、 経済性の観点から、 上 限を 1. 0 %とすることが好ましい。
M gは、 強力な脱酸元素であるとともに、 高温で安定な M g系酸 化物を生成し、 溶接時に高温に加熱された場合でも鋼中に固溶せず 、 ァ粒をピンニングする機能を有する。 これにより、 HA Zの組織 を微細化し、 靭性の低下を抑制する。 ただし、 0. 0 0 5 %を超え る M gを添加すると、 M g系酸化物が粗大.化し、 ァ粒のピンニング に寄与しなくなり、 粗大な酸化物を生成して靭性を損なう ことがあ るため、 上限を 0. 0 0 5 %とすることが好ましい。
A 1 は、 強力な脱酸剤であり、 一次脱酸後の溶存酸素濃度を 0. 0 0 3〜 0. 0 1 5 %に制御するために添加してもよい。 しかし、 0. 0 3 0 %超の A 1 を含有すると、 島状マルテンサイ トを形成し 、 靱性を損なう ことがあるため、 上限を 0. 0 3 0 %とする。 靭性 向上の観点から、 上限は、 0. 0 2 %が好ましい。
R E M (希土類元素) は、 鋼中で酸化反応及び硫化反応し、 酸化 物及び硫化物を生成する。 これらの酸化物及び硫化物は高温で安定 であり、 溶接時に高温に加熱された場合でも鋼中に固溶せず、 粒界 をピンニングする機能を有する。 この機能により、 H A Zの組織を 微細化し、 靭性の低下を抑制することができる。
この効果を得るには、 すべての希土類元素の合計の含有量を、 0 . 0 0 1 %以上として添加することが好ましい。 一方、 R E Mを、 0 . 0 1 %を超えて添加すると、 酸化物や硫化物の体積分率が高く なり、 靭性を低下させることがあるので、 上限を 0 . 0 1 %とする ことが好ましい。
C aは、 少量を添加することにより、 熱間圧延での硫化物の圧延 方向への延伸を抑制する効果を発現する。 これにより、 靭性が向上 し、 特に、 板厚方向のシャルピー値の改善に寄与する。 この効果を 得るには、 C aを 0 . 0 0 1 %以上添加することが好ましい。 一方 、 C aを、 0 . 0 0 5 %を超えて添加すると、 酸化物や硫化物の体 積分率が高くなり、 靭性を低下させることがあるため、 上限を 0 . 0 0 5 %とすることが好ましい。 · 本発明の鋼の金属組織は特に限定しないが、 焼き入性を高める元 素の含有量を調整して、 要求される強度に応じたものとすればよい 。 強度を高めるには、 マツシブフェライ ト、 ベイナイ トの一方又は 双方の面積率を高めることが好ましい。
マツシブフェライ トは、 冷却過程でオーステナイ 卜が同一組成の フェライ 卜に拡散変態した組織であり、 変態前後の組成が同一であ ることから、 Cの拡散ではなく、 F e原子の自己拡散、 即ち、 格子 の再配列が律速段階になる。 したがって、 マツシブフェライ トは、 原子の移動距離が短く、 比較的速い変態速度で生成するため、 結晶 粒径がポリゴナルフェライ 卜より も大きく、 転位密度が高い。
このような機構で生成するマツシブフェライ トは、 ポリ ゴナルフ エライ トとは、 光学顕微鏡による組織観察では、 結晶粒径が相違す るものの、 形態には差異がない。 したがって、 これらを明確に区別 するには、 透過型電子顕微鏡による観察が必要である。 また、 ペイ ナイ トは板状組織であり、 マツシブフェライ ト及びポリゴナルフエ ライ 卜と、 光学顕微鏡によって判別することが可能である。
なお、 マツシブフェライ ト、 ベイナイ ト、 ポリ ゴナルフェライ ト 以外に、 少量のマルテンサイ ト、 残留オーステナイ ト、 パーライ ト が生じていることがある。
マツシブフェライ ト、 ベイナイ トの生成は、 鋼の焼き入性を高め ることによって促進される。 そのため、 焼き入性指標である C e Q を 0. 0 5以上とすることが好ましい。 また、 CeQが高すぎると、 強度が上昇して靭性を損なう ことがあるため、 上限を 0. 6 0以下 とすることがさらに好ましい。 なお、
C ea= C + S i / 2 4 +M n/ 6 +N i / 4 0 + C r / 5 +M o / 4 + V / 1 4
であり、 C、 S i 、 M n、 N i 、 C r、 M o、 Vはそれぞれの元素 の含有量 [賀量%] である。
次に製造方法について説明する。
鋼は、 上述のように、 S i 、 M nを脱酸剤として使用し、 T i添 加前の溶存酸素量を調整して溶製し、 铸造して鋼片とする。 生産性 の観点から、 連続铸造が好ましい。
得られた鋼片は、 熱間圧延によって鋼板又は形鋼に成形され、 冷 却される。 なお、 本発明が対象とする鋼材は、 圧延された鋼板、 H 形鋼、 I 形鋼、 山形鋼、 溝形鋼、 不等辺不等厚山形鋼等の形鋼が含 まれる。
このうち、 耐火性及び耐再熱脆化特性が要求される建材には、 特 に H形鋼が好適である。 また、 柱材として使用する場合には、 極厚 H形鋼に代表される板厚の大きなサイズの鋼材が好適である。
粒径が 0. 0 5〜 1 の T i 系酸化物を 3 0〜 3 0 0個/ m m 2の割合で含有する本発明の鋼材を得るためには、 T i添加前の 一次脱酸後における溶存酸素の調整が非常に重要であり、 溶存酸素 量を質量%で 0. 0 0 3〜 0. 0 1 5 %に調整する必要がある。 T i 系酸化物を生成するためには 0. 0 0 3 %以上の溶存酸素量が必 要であり、 0. 0 1 5 %を超えると T i 酸化物の粒径が大きくなる ため粒径が 0. 0 5〜 1 0 mの個数が十分に得られなくなる。 こ の観点から、 溶存酸素は 0. 0 1 0 %を上限にすることが好ましい 熱間圧延によって鋼材を製造するには、 塑性変形を容易にし、. N bを十分に固溶させるため、 鋼片の加熱温度の下限を 1 1 0 0 と することが必要である。 また、 熱間加工により形鋼を製造する場合 には、 塑性変形を更に容易にするため、 加熱温度を 1 2 0 0 ^以上 とすることが好ましい。 鋼片の加熱温度の上限は、 加熱炉の性能、 経済性から 1 3 5 0でとした。 鋼のミク口組織を微細化するには、 鋼片の加熱温度の上限を 1 3 0 0でとすることが好ましい。
熱間圧延では、 1 0 0 0 以下での累積圧下率を 1 0 %以上とす ることが好ましい。 これにより、 熱間加工での再結晶を促進させて ァ粒を細粒化し、 靱性及び強度を向上させることができる。
製品の板厚が 4 0 mm未満の場合は、 圧延前の素材の板厚制約が 少なく、 1 0 0 0 以下の累積圧下率を 3 0 %以上確保することで 強度向上が可能となるため、 板厚が 4 0 mm未満の場合、 累積圧下 率の範囲は 3 0 %以上とすることが好ましい。
また、 熱間加工を、 鋼の組織がオーステナイ ト単相である温度範 囲 (ァ単相領域という。 ) で完了させるか、 又は相変態によって生 成するフェライ 卜の体積分率が低い状態で完了させることにより、 降伏強度の著しい上昇、 靭性の低下及び靭性の異方性の発生等、 機 械特性の低下を回避することができる。 したがって、 熱間圧延の終 了温度を 8 0 0で以上とすることが好ましい。
さらに、 熱間圧延後は、 制御冷却により、 8 0 0〜 5 0 0での温 度範囲の平均冷却速度を、 0. 1〜 1 0で s とすることが好まし い。 熱間圧延後の制御冷却によって、 鋼材の強度及び靭性を更に向 上させるには、 8 0 0〜 5 0 0での温度範囲の平均冷却速度を 0. 1 / s以上とすることが好ましい。 一方、 8 0 0〜 5 0 0での温 度範囲の平均冷却速度が 1 0 t:Z s を超えると、 ペイナイ ト相ゃマ ルテンサイ ト相の組織分率が上昇し、 靱性が低下することがあるた め、 上限を 1 0で s とすることが好ましい。 実施例
転炉にて溶製した溶鋼に合金を添加後、 連続铸造して 、 表 1に示 す成分からなる 2 5 0〜 3 0 0 mm厚の鋼片を作成した。 表 1には 、 T i を添加する前の溶存酸素の量 (質量%) も示した。 また、 表 .1の空欄は選択元素が無添加であることを意味する。
表 1
Figure imgf000022_0001
得られた鋼片を、 表 2に示す条件で熱間圧延し、 H形鋼とした。 図 5に形鋼製造プロセスを示す。 加熱炉 4で加熱した鋼片を粗圧延 機 5で粗圧延し、 その後、 中間ユニバーサル圧延機 6及び仕上げュ 二バーサル圧延機 8よりなるユニバーサル圧延装置列で H形鋼に圧 延.した。 圧延パス間の水冷は中間ユニバーサル圧延機 6の前後に設 けた水冷装置 7によって行い、 フランジ外側面のスプレー冷却とリ バース圧延を繰り返し行った。 熱間圧延後の冷却は、 仕上げュニバ ーサル圧延機 8の後面に設置した冷却装置 9で行った。
また、 表 1の鋼 F、 K、 J、 Zについては、 さらに、 表 3の条件 でも熱間圧延し、 鋼 E E、 K、 Zについては、 さらに、 表 4の条件 でも熱間圧延した。
得られた H形鋼において、 図 6に示したように、 フランジ 2の板 厚 t 2の中心部 ( 1 / 2 t 2) でフランジ幅全長 (B) の 1 /4 (フ ランジという。 ) と 1 2 (フィ レッ トという。 ) の部位から J I S Z 2 2 0 1 に準拠して引張試験片を採集した。
常温の引張試験は J I S Z 2 2 4 1 に準拠して行い、 6 0.0 における 0. 2 %耐力の測定は、 J I S G 0 5 6 7に準拠し て行った。 なお、 これらの箇所の特性を求めたのは各々の部位が H 形鋼断面の代表的な部位であり、 H形鋼の平均的な機械特性及び断 面内のばらつきを示すことができると判断したためである。
シャルピー衝撃試験 (表 2〜 4 ) は、 フィ レッ トから小片を採取 し、 代表的な試験法である J I S Z 2 2 4 2に準拠して 0 で 行った。
耐火鋼として使用.される場合は、 再現溶接熱影響部 (HA Z) の 再熱絞り (表 2〜 4 ) が重要な特性であって、 この評価は、 供試鋼 に溶接熱サイクルを履歴させた後、 再度加熱し、 高温で引張応力を 加えて破断させたときの絞り値によって行った。 即ち、 フランジから採取した丸棒の引張試験片に、 1 4 0 0 で 1秒保持した後、 8 0 0でから 5 0 0でまでの冷却時間を 2 0秒と して 1 0 0でまで冷却する溶接熱サイクルを履歴させ、 更に、 その まま 1 /秒の昇温速度で 6 0 0 に加熱して; 6 0 0でで 6 0 0 秒保持した後、 0. 5 M P a /秒の応力増加速度で引張応力を加え て破断させ、 絞り値を測定した。
再現溶接熱影響部 (HA Z ) の靭性 (表 2 ) は、 再熱絞り と同様 に、 供試鋼に溶接熱サイクルを履歴させ、 その後、 シャル.ピー衝撃 試験を J I S Z 2 2 4 2に準拠して 0でで行い、 吸収エネルギ 一で評価した。 即ち、 1 4 0 0でで 1秒保持した後、 8 0 0 から 5 0 までの冷却時間を 2 0秒として 1 0 0でまで冷却する溶接 熱サイクルを履歴した熱処理を施した小片から、 Vノ ッチ試験片を 採取し、 シャルピー衝撃試験に供した。
鋼に要求される強度クラスとしては 2種類あって、 1つは、 S M 4 0 0 と規定される常温引張強度が 4 0 O M P aクラスのものであ り、 もう 1つは、 S M 4 9 0と規定される常温引張強度が 4 9 0 M P aクラスのものであって、 これらを分けて表記.した。 一方、 極厚 H形鋼に関しては、 主として米国 A S TM規格に準ずる場合が多く 、 代表的な強度クラスである G r a d e 5 0、 G r a d e 6 5を分 けて表記した。
なお、 J I S規格の S M 4 0 0、 即ち、 T S 4 0 0 M P a超級の 目標は、 常温における降伏強度 Y Pが 2 3 5 M P a以上、 好ましく は 3 5 5 M P a以下、 引張強度 T Sが 4 0 0〜 5 1 O M P aであり 、 6 0 0ででの 0. 2 %耐カ P Sの目標値は 1 5 7 M P a以上であ る。
S M 4 9 0、 即ち、 T S 4 9 0 M P a超級の目標は、 Y Pが 3 2 5 M P a以上、 好ましくは 4 4 5 M P a以下、 T Sが 4 9 0〜6 1 0 M P a、 5が 2 1 71[ ? &以上でぁる。 また、 S M 4 0 0級、 S 4 9 0級ともに、 0で衝撃吸収エネルギーの目標値は 1 00 J 以上であり、 降伏比 Y P T Sの好ましい上限は 0. 8 0である。 また、 A S T M規格に関しては、 G r a d e 5 0で、 Y P 34 5 MP a以上、 T S 4 5 0 MP a以上、 G r a d e 6 5で、 Y P 4 5 O M P a以上、 T S 5 5 0 M P a以上であり、 上記に加えて、 靭性 に関しては、 何れの場合においても、 シャルピー試験温度 0でで、 母材フィ レツ ト部における衝撃吸収エネルギーが、 5 4 J以上ある ことが好ましい。
再現 H A Zの特性については、 何れの規格においても再熱絞りの 目標が 3 0 %以上であり、 靭性の目標が 2 7 J以上である。 特に、 耐火鋼として評価する場合は、 再熱絞りは 5 0 %以上であることが 好ましい。
表 2
Figure imgf000026_0001
表 3
Figure imgf000027_0001
表 4
Figure imgf000028_0001
表 2に示すように、 本発明の製造 N o . 1〜 : 1 5、 3 5〜 3 9の 鋼は、 常温の機械特性及び高温の機械特性が目標値の範囲内である 。 また、 降伏点が、 J I S規格の下限値以上であり、 降伏比 Y P/ T Sも 0. 8以下で、 好ましい範囲内にある。 さらに、 0 でのシ ャルピー衝撃値は、 目標値以上の値が得られている。 さ らに、 再現 溶接熱影響部の再熱絞り 3 0 %以上を十分に満たしている。
一方、 比較例である製造 N o . 1 6〜 2 2、 4 0〜 4 2の鋼は、 成分、 C一 N b Z 7. 7 4、 T i 系酸化物の密度が本発明の範囲外 であるため、 目標を満足する機械特性が得られていない。
表 3に示すように、 フ.ランジ厚 4 0 mm未満の H形鋼の場合で、 1 0 0 0で以下での累積圧下率を 3 0 %以上とすると、 累積圧下率 が 3 0 %を下回る場合に比べて、 機械特性が良好である。
また、 フランジ厚 4 0 mm以上の極厚 H形鋼の場合は、 製造 N o . 4 3〜 4 8 に、 代表例として、 フランジ厚 9 0〜 1 2 '5 mmの場 合を示すように、 1 0 0 ot:以下の累積圧下率の増加に伴い、 降伏 強度、 引張強度がともに上昇し、 累積圧下率が 1 0 %以上では、 Gr ade5 0、 Grade 6 5 としてそれぞれ要求される強度を、 さらに十分 に満たすことが可能となる。
表 4に示すように、 フランジ 4 0 mm未満の場合、 水冷により 8 0 0〜 5 0 0 間の冷却速度を 1 まで加速して冷却した場 合、 放冷などにより 8 0 0〜 5 0 0で間を 0. 1で/ sで徐冷却さ れる場合より も、 常温強度、 高温強度を高めることが可能である。
また、 極厚 H形鋼については、 製造 N o . 4 9〜 5 1 に、 フラン ジ厚 1 2 5 mmのサイズの場合を代表例として示すように、 8 0 0 〜 5 0 0で間を、 水冷で 0. 1 3で/ s まで加速冷却することに より、 降伏強度、 引張強度がともに上昇し、 Grade 6 5 として要求 される強度を、 さらに十分に満たすことが可能となる。 産業上の利用可能性
本発明によれば、 十分な常温強度及び高温強度を有し、 母材と H A Zの靱性及び耐再熱脆化特性に優れた鋼材、 特に耐火 H形鋼を、 冷間加工及び調質熱処理を施すことなく製造すること'、 あるいは、 板厚の大きいサイズ、 例えば、 フランジ厚で 1 4 0 m m程度までの 極厚 H形鋼において、 熱間圧延ままで、 強度、 靭性を確保しつつ製 造することが可能になり、 これにより、 施工コス ト低減ゃェ期の短 縮による大幅なコス ト削減を図ることができ、 大型建造物の信頼性 向上、 安全性の確保、 経済性等の産業上の効果が極めて顕著である

Claims

請 求 の 範 囲
1 . 質量%で 、
C : 0. 0 0 1 %以上 0. 0 3 0 %以下、
S i : 0. 0 5 %以上 0. 5 0 %以下、
M n : 0. 4 0 %以上 2. 0 0 %以下、
N b : 0. 0 3 %以上 0. 5 0 %以下、
T i : 0. 0 0 5 %以上 0 0 4 0 %未満、
N : 0. 0 0 0 8 %以上 0 0 0 5 0 %未満
を含有し、
P : 0. 0 3 0 %以下、
S : 0. 0 2 0 %以下
に制限し、 残部が F e及び不可避不純物からなり、
Cと N bの含有量が、
C - N b/7. 7 4≤ 0. 0 0 4
を満足し、 粒径が 0. 0 5〜 1 0 mである T i 系酸化物を 3 ◦〜 3 0 0個 mm2の密度で有することを特徴とする高温特性と靭性 に優れた鋼材。
2. 質量%で、
V : 0. 1 0 %以下、
o : 0. 1 0 未,満
の一方又は双方を含有することを特徴とする請求の範囲 1 に記載の 高温特性と靭性に優れた鋼材。
3. 質量%で、
Z r : 0. 0 3 %以下、 '
H f : 0. 0 1 %以下
の一方又は双方を含有することを特徴とする請求の範囲 1 又は 2に 記載の高温特性と靭性に優れた鋼材。
4. 質量%で、
C r : 1. 5 %以下、
C u : 1. 0 %以下、
N i : 1. 0 %以下
の 1種又は 2種以上を含有することを特徴とする請求の範囲 1〜 3 の何れかに記載の高温特性と靭性に優れた鋼材。
5. 質量%で、
M g : 0. 0 0 5 %以下、
A 1 : 0. 0 3 0 %以下、
R EM : 0. 0 1 %以下、
C a : 0. 0 0 5 %以下
の 1種又は 2種以上の一方又は双方を含有することを特徴とする請 求の範囲 1〜 4の何れかに記載の高温特性と靭性に優れた鋼材。
6. N bと Cの質量濃度積が 0. 0 0 1 5以上であることを特徴 とする請求の範囲 1〜 5の何.れかに記載の高温特性と靭性に優れた |¾材 0 '
7. 鋼材が耐火鋼材であることを特徴とする請求の範囲 1〜6の 何れかに記 の高温特性と靭性に優れた鋼材。
8. 鋼材がフランジ厚 4 0 mm以上の極厚 H形鋼であることを特 徵とする請求の範囲 1〜 6の何れかに記載の高温特性と靭性に優れ た鋼材。
9. 請求の範囲 1〜 6の何れかに記載の成分からなる鋼を、 溶存 酸素を 0. 0 0 3〜 0. 0 1 5質量%に調整した後、 T i を添加し て溶製し、 铸造して得られた鋼片を 1 1 0 0〜 1 3 5 0でに加熱し 、 熱間圧延することを特徴とする高温特性と靭性に優れた鋼材の製 造方法。
1 0. 1 0 0 0で以下での累積圧下率を i o %以上として熱間圧 延することを特徴とする請求の範囲 9 に記載の高温特性と靭性に優 れた鋼材の製造方法。
1 1. 熱間圧延後、 8 0 0でから 5 0 0でまでの温度範囲を 0.
1〜 1 O ^Z s の平均冷却速度で冷却することを特徴とする請求の 範囲 9又は 1 0に記載の高温特性と靭性に優れた鋼材の製造方法。
PCT/JP2008/057563 2007-04-11 2008-04-11 高温強度、靭性に優れた鋼材並びにその製造方法 WO2008126944A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08751876A EP2143814A1 (en) 2007-04-11 2008-04-11 Steel material having excellent high-temperature strength and toughness, and method for production thereof
US12/450,762 US20100047107A1 (en) 2007-04-11 2008-04-11 Steel material superior in high temperature strength and toughness and method of production of same
CN2008800116104A CN101657555B (zh) 2007-04-11 2008-04-11 高温强度和韧性优良的钢材及其制造方法
JP2009509388A JP5079794B2 (ja) 2007-04-11 2008-04-11 高温強度、靭性に優れた鋼材並びにその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007103876 2007-04-11
JP2007-103876 2007-04-11
JP2007309289 2007-11-29
JP2007-309289 2007-11-29

Publications (1)

Publication Number Publication Date
WO2008126944A1 true WO2008126944A1 (ja) 2008-10-23

Family

ID=39864030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057563 WO2008126944A1 (ja) 2007-04-11 2008-04-11 高温強度、靭性に優れた鋼材並びにその製造方法

Country Status (6)

Country Link
US (1) US20100047107A1 (ja)
EP (1) EP2143814A1 (ja)
JP (1) JP5079794B2 (ja)
KR (1) KR20090122371A (ja)
CN (1) CN101657555B (ja)
WO (1) WO2008126944A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065479A1 (ja) * 2009-11-27 2011-06-03 新日本製鐵株式会社 高強度極厚h形鋼及びその製造方法
JP2011157582A (ja) * 2010-01-29 2011-08-18 Nippon Steel Corp 靱性に優れた高強度極厚h形鋼およびその製造方法
JP2011190506A (ja) * 2010-03-15 2011-09-29 Nippon Steel Corp 母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材とその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290880B1 (ko) * 2010-03-30 2013-07-29 신닛테츠스미킨 카부시키카이샤 기계 구조용 강의 절삭 방법
BR112013012558B1 (pt) * 2010-11-22 2018-06-05 Nippon Steel & Sumitomo Metal Corporation Chapa de aço do tipo de endurecimento por envelhecimento após o encruamento excelente em resistência ao envelhecimento após o cozimento de acabamento, e método para sua produção
JP5574059B2 (ja) * 2011-12-15 2014-08-20 新日鐵住金株式会社 低温靭性に優れた高強度h形鋼及びその製造方法
CN105568139B (zh) * 2016-03-02 2018-03-27 东营富茂建设工程有限公司 一种h型钢及其生产方法
CN107904368A (zh) * 2017-11-03 2018-04-13 山东钢铁股份有限公司 一种轧后微合金化h型钢低温性能挽救方法
CN108754335B (zh) * 2018-08-22 2019-09-10 武汉钢铁有限公司 一种屈服强度≥550MPa的焊接结构用耐火耐候钢及生产方法
CN111074148B (zh) * 2018-10-19 2022-03-18 宝山钢铁股份有限公司 一种800MPa级热冲压桥壳钢及其制造方法
KR102626001B1 (ko) * 2019-05-09 2024-01-19 닛폰세이테츠 가부시키가이샤 강판 및 그 제조 방법
JP7295457B2 (ja) * 2019-05-23 2023-06-21 日本製鉄株式会社 ホットスタンプ成形体およびその製造方法
CN112410665B (zh) * 2020-11-10 2021-10-29 马鞍山钢铁股份有限公司 一种抑制晶粒长大的厚重热轧h型钢及其生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362156A (ja) * 1991-06-05 1992-12-15 Sumitomo Metal Ind Ltd 耐火性・溶接継手部靱性の優れた鋼材
JPH07300618A (ja) 1994-05-02 1995-11-14 Kawasaki Steel Corp 耐火性および靱性に優れた建築用熱延鋼帯の製造方法
JPH10176237A (ja) 1996-10-16 1998-06-30 Nippon Steel Corp 低降伏比型耐火用熱延鋼板及び鋼管並びにそれらの製造方法
JP2000054061A (ja) 1998-08-10 2000-02-22 Nippon Steel Corp 低降伏比型耐火用鋼材及び鋼管並びにそれらの製造方法
JP2000282167A (ja) 1999-03-29 2000-10-10 Nippon Steel Corp 靱性に優れた低降伏比型鋼材及び鋼管並びにそれらの製造方法
JP2002115022A (ja) 2000-10-11 2002-04-19 Nippon Steel Corp 高温強度に優れた鋼およびその製造方法
JP2002212632A (ja) * 2001-01-16 2002-07-31 Nippon Steel Corp 低降伏比高靭性耐火h形鋼の製造方法
JP2004339549A (ja) * 2003-05-14 2004-12-02 Nippon Steel Corp 溶接性、ガス切断性に優れた構造用490MPa級高張力耐火鋼ならびにその製造方法
JP2004360361A (ja) * 2003-06-06 2004-12-24 Nippon Steel Corp 無耐火被覆鉄骨構造物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3232120B2 (ja) * 1992-02-10 2001-11-26 川崎製鉄株式会社 耐火性と靱性に優れた建築用低降伏比熱延鋼帯およびその製造方法
JP3202310B2 (ja) * 1992-04-02 2001-08-27 新日本製鐵株式会社 大入熱溶接熱影響部靱性の優れた建築用耐火鋼板の製造法
JPH1068018A (ja) * 1996-08-27 1998-03-10 Sumitomo Metal Ind Ltd 溶接熱影響部靭性の優れた構造用耐火鋼板の製造法
JP2002294391A (ja) * 2001-03-29 2002-10-09 Kawasaki Steel Corp 建築構造用鋼及びその製造方法
CN1132958C (zh) * 2001-10-17 2003-12-31 武汉钢铁(集团)公司 高性能耐火耐候建筑用钢及其生产方法
CN1240866C (zh) * 2003-02-25 2006-02-08 鞍山钢铁集团公司 耐火钢及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362156A (ja) * 1991-06-05 1992-12-15 Sumitomo Metal Ind Ltd 耐火性・溶接継手部靱性の優れた鋼材
JPH07300618A (ja) 1994-05-02 1995-11-14 Kawasaki Steel Corp 耐火性および靱性に優れた建築用熱延鋼帯の製造方法
JPH10176237A (ja) 1996-10-16 1998-06-30 Nippon Steel Corp 低降伏比型耐火用熱延鋼板及び鋼管並びにそれらの製造方法
JP2000054061A (ja) 1998-08-10 2000-02-22 Nippon Steel Corp 低降伏比型耐火用鋼材及び鋼管並びにそれらの製造方法
JP2000282167A (ja) 1999-03-29 2000-10-10 Nippon Steel Corp 靱性に優れた低降伏比型鋼材及び鋼管並びにそれらの製造方法
JP2002115022A (ja) 2000-10-11 2002-04-19 Nippon Steel Corp 高温強度に優れた鋼およびその製造方法
JP2002212632A (ja) * 2001-01-16 2002-07-31 Nippon Steel Corp 低降伏比高靭性耐火h形鋼の製造方法
JP2004339549A (ja) * 2003-05-14 2004-12-02 Nippon Steel Corp 溶接性、ガス切断性に優れた構造用490MPa級高張力耐火鋼ならびにその製造方法
JP2004360361A (ja) * 2003-06-06 2004-12-24 Nippon Steel Corp 無耐火被覆鉄骨構造物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065479A1 (ja) * 2009-11-27 2011-06-03 新日本製鐵株式会社 高強度極厚h形鋼及びその製造方法
JP4855553B2 (ja) * 2009-11-27 2012-01-18 新日本製鐵株式会社 高強度極厚h形鋼及びその製造方法
JP2011157582A (ja) * 2010-01-29 2011-08-18 Nippon Steel Corp 靱性に優れた高強度極厚h形鋼およびその製造方法
JP2011190506A (ja) * 2010-03-15 2011-09-29 Nippon Steel Corp 母材の高温強度及び溶接熱影響部の高温延性に優れた耐火鋼材とその製造方法

Also Published As

Publication number Publication date
EP2143814A1 (en) 2010-01-13
US20100047107A1 (en) 2010-02-25
CN101657555A (zh) 2010-02-24
KR20090122371A (ko) 2009-11-27
JP5079794B2 (ja) 2012-11-21
CN101657555B (zh) 2011-08-03
JPWO2008126944A1 (ja) 2010-07-22

Similar Documents

Publication Publication Date Title
KR101139605B1 (ko) 고온 특성과 인성이 우수한 강재 및 그 제조 방법
WO2008126944A1 (ja) 高温強度、靭性に優れた鋼材並びにその製造方法
JP4547044B2 (ja) 靭性、溶接性に優れた高強度厚鋼材及び高強度極厚h形鋼とそれらの製造方法
JP4855553B2 (ja) 高強度極厚h形鋼及びその製造方法
WO2013089156A1 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
WO2015093321A1 (ja) H形鋼及びその製造方法
JP5565531B2 (ja) 高強度極厚h形鋼
JP6354572B2 (ja) 低温用h形鋼及びその製造方法
JP2017115200A (ja) 低温用h形鋼及びその製造方法
JP6645107B2 (ja) H形鋼及びその製造方法
CN110291218B (zh) H型钢及其制造方法
WO2015159793A1 (ja) H形鋼及びその製造方法
WO2016157863A1 (ja) 高強度・高靭性鋼板およびその製造方法
KR101185977B1 (ko) 고온 강도, 인성 및 재열 취화 저항 특성이 우수한 내화 강재 및 그 제조 방법
WO2014143702A2 (en) Line pipe steels and process of manufacturing
JP6390813B2 (ja) 低温用h形鋼及びその製造方法
JP6589503B2 (ja) H形鋼及びその製造方法
JP5515954B2 (ja) 耐溶接割れ性と溶接熱影響部靭性に優れた低降伏比高張力厚鋼板
JP6421638B2 (ja) 低温用h形鋼及びその製造方法
JP4757858B2 (ja) 高温強度、靭性及び耐再熱脆化特性に優れた耐火鋼材並びにその製造方法
JP2017186594A (ja) 低温用h形鋼及びその製造方法
JP4757857B2 (ja) 高温強度、靭性及び耐再熱脆化特性に優れた耐火鋼材並びにその製造方法
JP2005272949A (ja) 耐火性に優れた低降伏比圧延h形鋼およびその製造法
KR20130029437A (ko) 인성과 용접성이 우수한 고강도 후강재 및 고강도 극후 h형강과 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880011610.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009509388

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20097020814

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12450762

Country of ref document: US

Ref document number: 2008751876

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE