WO2008119679A1 - Verfahren zur nichtdispersiven infrarot-gasanalyse - Google Patents

Verfahren zur nichtdispersiven infrarot-gasanalyse Download PDF

Info

Publication number
WO2008119679A1
WO2008119679A1 PCT/EP2008/053403 EP2008053403W WO2008119679A1 WO 2008119679 A1 WO2008119679 A1 WO 2008119679A1 EP 2008053403 W EP2008053403 W EP 2008053403W WO 2008119679 A1 WO2008119679 A1 WO 2008119679A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
measuring
signal value
radiation
measurement
Prior art date
Application number
PCT/EP2008/053403
Other languages
English (en)
French (fr)
Inventor
Ralf Bitter
Camiel Heffels
Thomas Hörner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2008119679A1 publication Critical patent/WO2008119679A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N21/3518Devices using gas filter correlation techniques; Devices using gas pressure modulation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/066Modifiable path; multiple paths in one sample

Definitions

  • the invention relates to a method for non-dispersive infrared (NDIR) gas analysis according to the single-jet principle, in which a measuring radiation is periodically modulated and passed through a measuring cuvette with a gas sample to be analyzed through it onto a detector device which generates a detection signal.
  • NDIR non-dispersive infrared
  • This problem is usually solved by a double-jet version of the NDIR gas analyzer, in which the generated radiation is split into a measuring beam path with the measuring cuvette lying therein and a comparison beam path with a comparison cuvette arranged therein and containing a reference gas.
  • the disadvantage is the increased design effort and the associated higher production costs.
  • contamination in the cuvette can only be detected by additional measures.
  • the invention is therefore based on the object, with the simplest means to detect age- or pollution-related changes in the measurement beam path and intensity fluctuations of the generated measurement radiation and to use for the measurement.
  • the object is achieved in that in the method of the type specified, the modulation of the measuring radiation comprises a first and a second modulation variant, in which the path length distributions of the measuring radiation are different in the measuring cuvette, respectively, and that the quotient is formed from the detection signal values obtained in the two modulation variants.
  • the invention is based on the finding that intensity fluctuations of the measurement radiation produced and contamination on the inner wall of the measurement cuvette in the interesting narrow-band wavelength range of an NDIR Gasanalysa- sector regardless of the wavelength and caused by multiple reflections on the inner wall of the cuvette probability distribution of the optical Path length of the measuring radiation in the cuvette affect, while the absorption in the gas sample wavelength and distance-dependent.
  • the probability distribution of the path length of the measurement radiation in the measurement cuvette by means of two modulation variants, the signal component resulting from intensity fluctuations of the generated measurement radiation and contamination of the measurement cuvette can be eliminated by quotient formation from the detection signal values obtained in the two modulation variants, and this with a structurally simple design NDIR device in single-jet design.
  • the detection signal of a single-jet NDIR gas analyzer can be expressed in a simplified manner by:
  • T gas (l, ⁇ ) the transmission spectrum of the sample gas as a function of the optical path length 1 and the wavelength ⁇ and
  • a ( ⁇ ) denotes the absorption spectrum of an opto-pneumatic detector.
  • Equation Eq. 1 result in varying the probability distribution P (I) of the optical path length of the measuring radiation in the measuring cuvette by means of a first and a second modulation variant V1 or V2, two alternating detection signal values which can be described as follows:
  • the additional scalar components T V i and T v2 result from the fact that in practice in the modulation of the probability distribution P (I) of the path length of the measuring radiation, ie, for example, in a change in the radiation coupling into the cuvette by means of a Modulatorrades (chopper), also a change in the transmission takes place.
  • the quotient S V i / S V 2 is preferably used only as a monitoring signal value from the values of the detection signal obtained in the two modulation variants.
  • the modulation of the measuring radiation then also comprises a third modulation variant in which the measuring radiation is alternately interrupted and released in a conventional manner and the detection signal value obtained is used as the measured signal value. The corresponding monitoring signal values are determined and stored once for different measured signal values.
  • the current measurement signal is not only influenced by the concentration of the measurement gas in the gas sample, but also by changes in the intensity of the generated measurement radiation or contamination of the measurement cuvette.
  • interpolation algorithms can be used or an analytical function can be adapted to the existing value pairs.
  • the first and the second modulation variants are complementary to one another and that the sum of the detection signal values obtained in the first and second modulation variants is used as the measured signal value.
  • Complementary here means that the first and second modulation variants in total as the above-mentioned third modulation variant behave, in which the measuring radiation is alternately interrupted and released in a conventional manner.
  • the detection signals resulting from the first and second modulation variants are therefore also complementary and contain in sum all measurement information.
  • the variation of the probability distribution of the optical path length of the measuring radiation through the measuring cuvette can take place in that the measuring radiation in the first and second
  • Modulation variant is introduced in each case at different angles in the cuvette, so that arise due to different frequencies of reflections on the inner wall of the cuvette different probability distributions of the path length.
  • Angles for introducing the measuring radiation into the measuring cuvette can be detected by movement, eg. B. tumbling motion, the radiation source generating the measuring radiation or by arranged between the radiation source and the cuvette moving or variable aperture, slats, radiation-refracting elements, etc. are generated.
  • the measuring radiation can also be introduced into different optical entry regions of the measuring cuvette in the first and second modulation variants, the different entry regions being non-mirror-symmetrical with respect to the radiation axis of the measuring radiation.
  • the measuring radiation can be introduced in an oblique incidence into the cuvette in the direction of arrival alternately in a front and rear entry area into the cuvette. If the measuring radiation falls vertically into the measuring cuvette, it may, for. B. alternately in a near the axis of the cuvette middle inlet region and an inner wall of the cuvette near outer outer region are introduced into the cuvette.
  • the method according to the invention makes it possible to analyze two different gas samples by rather, a dual-jet, non-dispersive, infrared gas analyzer that uses two cuvettes instead of one cuvette and one cuvette for the different gas samples.
  • FIG. 1 shows an embodiment of a NDIR gas analyzer in a single-channel design
  • FIG. 2 shows a modulator wheel of the gas analyzer shown in FIG. 1,
  • FIG. 3 shows an example of a NDIR gas analyzer in a two-channel design and modified for the analysis of two different gas samples
  • FIG. 4 shows a modulator wheel of the gas analyzer shown in FIG.
  • FIG. 1 shows an NDIR gas analyzer in a single-channel design with an infrared radiator 1, which generates a measuring radiation 2.
  • the measuring radiation 2 falls vertically into a measuring cuvette 3, which contains a gas sample 4 with a measuring gas whose concentration is to be determined.
  • the measuring radiation 2 is incident on a narrow-band opto-pneumatic detector 5, which generates a detection signal S, which is processed in an evaluation device 6 to form a measuring signal M.
  • a rotating modulator wheel 7 is arranged between the infrared radiator 1 and the measuring cuvette 3.
  • the Modulatorrad 7 is divided into six sectors, wherein in each second sector, a window 8, 9, 10 is provided for the measuring radiation 2 and in the intermediate sectors, the measuring radiation 2 is interrupted. This results during the modulation of the measuring Radiation 2 through the modulator wheel 7 three different modulation variants Vl, V2 and V3.
  • the measuring radiation 2 alternately changes into a central inlet region near the axis of the measuring cuvette 3 by means of the window 8 or the two-part window 9 and an outer inlet region near the inner walls of the measuring cuvette 3 into the measuring cuvette 3 initiated.
  • the NDIR gas analyzer shown in FIG. 3 differs from that of FIG. 1 in its twin-jet design.
  • a beam splitter 12 so-called trouser chamber
  • the measuring radiation generated by the infrared radiator 1 is directed onto two measuring beam paths 2 and 2 'with measuring cuvettes 3, 3' lying therein. and detectors 5, 5 'divided.
  • a modulator wheel 7' is arranged, which can be designed exactly like the modulator wheel 7 shown in FIG.
  • FIG. 4 shows a preferred embodiment of the modulator wheel 7 'in relation to the exemplary embodiment in FIG. 3, in which instead of the windows 8 and 9 symmetrical to the center of the optical entry region of the measuring cuvette 3 (see FIG. 2), an outer window 8' and an inner window 8 'are provided Window 9 'are provided.
  • this window arrangement proves to be particularly favorable for the variation of the optical path length in the measuring cuvettes 3, 3 '.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Bei der nichtdispersiven Infrarot-Gasanalyse nach dem Einstrahl-Prinzip wird eine Messstrahlung (2 ) periodisch moduliert und durch eine Messküvette ( 3 ) mit einer darin enthaltenen zu analysierenden Gasprobe ( 4 ) hindurch auf eine Detektoreinrichtung ( 5 ) geleitet, die daraufhin ein Detektionssignal ( S ) erzeugt. Um mit einfachsten Mitteln alterungs- oder verschmutzungsbedingte Veränderungen im Messstrahlengang und Intensitätsschwankungen der erzeugten Messstrahlung ( 2 ) zu erkennen und für die Messung zu nutzen, ist vorgesehen, dass die Modulation der Messstrahlung ( 2 ) eine erste und eine zweite Modulationsvariante (Vl, V2 ) umfasst, in denen die Weglängenverteilungen der Messstrahlung ( 2 ) in der Messküvette (3) unterschiedlich sind, und dass der Quotient (Svi /Sv2 ) aus den bei den beiden Modulationsvarianten (Vl, V2 ) erhaltenen Detektionssignalwerten ( SVi, Sv2 ) gebildet wird. Der Quotient (SVi /Sv2 ) kann direkt als Messignalwert (M) oder alternativ als Überwachungssignalwert (W) für den Messsignalwert (M) herangezogen werden, wenn der Messsignalwert (M) in her kömmlicher Weise durch abwechselndes Freigeben und Unterbrechen der Messstrahlung (2) erzeugt wird.

Description

Beschreibung
Verfahren zur nichtdispersiven Infrarot-Gasanalyse
Die Erfindung betrifft ein Verfahren zur nichtdispersiven Infrarot- (NDIR-) Gasanalyse nach dem Einstrahl-Prinzip, bei dem eine Messstrahlung periodisch moduliert und durch eine Messküvette mit einer darin enthaltenen zu analysierenden Gasprobe hindurch auf eine Detektoreinrichtung geleitet wird, die ein Detektionssignal erzeugt.
In einem NDIR-Gasanalysator nach dem Einstrahl-Prinzip können Änderungen des Detektionssignals nicht eindeutig zugeordnet werden. So ist es nicht möglich, Veränderungen der Intensität der erzeugten Messstrahlung oder Verschmutzungen der Messküvette von den zu messenden Konzentrationsänderungen des Messgases in der Gasprobe zu unterscheiden.
Üblicherweise wird dieses Problem durch eine Zweistrahl-Aus- führung des NDIR-Gasanalysators gelöst, bei der die erzeugte Strahlung in einen Messstrahlengang mit der darin liegenden Messküvette und einen Vergleichsstrahlengang mit einer darin angeordneten und ein Vergleichsgas enthaltenden Vergleichs- küvette aufgeteilt wird. Von Nachteil sind der erhöhte kon- struktive Aufwand und die damit verbundenen höheren Herstellungskosten. Außerdem können auch hier Verschmutzungen in der Messküvette nur durch zusätzliche Maßnahmen erkannt werden.
Der Erfindung liegt daher die Aufgabe zugrunde, mit einfach- sten Mitteln alterungs- oder verschmutzungsbedingte Veränderungen im Messstrahlengang und Intensitätsschwankungen der erzeugten Messstrahlung zu erkennen und für die Messung zu nutzen .
Gemäß der Erfindung wird die Aufgabe dadurch gelöst, dass bei dem Verfahren der eingangs angegebenen Art die Modulation der Messstrahlung eine erste und eine zweite Modulationsvariante umfasst, in denen die Weglängenverteilungen der Messstrahlung in der Messküvette jeweils unterschiedlich sind, und dass der Quotient aus den bei den beiden Modulationsvarianten erhaltenen Detektionssignalwerten gebildet wird.
Die Erfindung beruht auf der Erkenntnis, dass sich Intensitätsschwankungen der erzeugten Messstrahlung sowie Verschmutzungen an der Innenwand der Messküvette in dem interessierenden schmalbandigen Wellenlängenbereich eines NDIR-Gasanalysa- tors unabhängig von der Wellenlänge und der durch Mehrfach- reflektionen an der Innenwand der Messküvette hervorgerufenen Wahrscheinlichkeitsverteilung der optischen Weglänge der Messstrahlung in der Messküvette auswirken, während die Absorption in der Gasprobe Wellenlängen- und weglängenabhängig ist. Indem die Wahrscheinlichkeitsverteilung der Weglänge der Messstrahlung in der Messküvette mittels zweier Modulationsvarianten variiert wird, kann durch Quotientenbildung aus den bei den beiden Modulationsvarianten erhaltenen Detektionssignalwerten der aus Intensitätsschwankungen der erzeugten Messstrahlung sowie Verschmutzungen der Messküvette resultie- rende Signalanteil eliminiert werden, und dies mit einem konstruktiv einfachen NDIR-Gerät in Einstrahl-Ausführung.
Das Detektionssignal eines NDIR-Gasanalysators in Einstrahl- Ausführung lässt sich vereinfacht ausdrücken durch:
S = ] htrauΛX) -TSystem(λy J [p(l)R(Ä)^TGas(l,Ä)]dl - A(Ä) dλ ( Gl . 1 ) ,
Ä=0 1=0
wobei
S das Detektions s ignal , Istrahier (λ) das Intens i tat s spektrum der erzeugten Mes s strah¬ lung, Tsystem (λ) das Transitii s s ions spekt rum des Gasanalysators ohne
Berücksichtigung der Messküvette,
P(I) die Wahrscheinlichkeitsverteilung der optischen Weglänge 1 in der Messküvette,
R(λ) die Reflektivität der Messküvettenwandung, a(l) die Anzahl der Reflexionen als Funktion der optischen Weglänge 1,
TGas(l,λ) das Transmissionsspektrum des Messgases als Funktion der optischen Weglänge 1 und der Wellenlänge λ und
A(λ) das Absorptionsspektrum eines opto-pneumatischen Detektors bezeichnen .
Da es sich um einen NDIR-Analysator in Einstrahl-Ausführung handelt, der über keinen Vergleichsstrahlengang verfügt, ist es nicht möglich zwischen Änderungen von Istrahier (λ) , TSystem(λ) und TGas(l,λ) zu unterscheiden.
Unter Bezug auf Gleichung Gl. 1 ergeben sich durch Variieren der Wahrscheinlichkeitsverteilung P(I) der optischen Weglänge der Messstrahlung in der Messküvette mittels einer ersten und einer zweiten Modulationsvariante Vl bzw. V2 zwei alternierende Detektionssignalwerte, die wie folgt beschrieben werden können:
Sn = J IStrahlAV - Tn - TSystem(λ) . ] [p(l)R(Ä)^TGas(l,Ä)]dl - A(Ä) dλ (Gl. 2)
Ä=0 1=0
Figure imgf000005_0001
Die zusätzlichen skalaren Komponenten TVi und Tv2 ergeben sich aus der Tatsache, dass im Praxisfall bei der Modulation der Wahrscheinlichkeitsverteilung P(I) der Weglänge der Messstrahlung, also beispielsweise bei einer Veränderung der Strahlungseinkopplung in die Messküvette mittels eines Modulatorrades (Chopper) , auch eine Änderung der Transmission erfolgt.
Durch Bildung des Quotienten aus den beiden Detektionssignal- werten SVi und SV2 ergibt sich: "ZL = K - { ^ - ^ dλ (Gl . 4 ) ,
Sv2 λS(λ) ] [p V2(i)RWa(1%Ai,φι
1=0
mi t S ( λ ) = I strahler ( λ ) T system ( λ ) - A ( λ ) Und K = TVl / T V2
Aufgrund der schmalbandigen Funktionsweise des opto-pneumati- schen Detektors kann davon ausgegangen werden, dass Veränderungen von S (λ) (z. B. Intensitätsschwankungen der erzeugten Messstrahlung des Strahlers, Verschmutzung der Messküvette) , für den interessierenden schmalbandigen Wellenlängenbereich wellenlängenunabhängig sind. Sie können daher durch einen Faktor F3 beschrieben werden, der auf eine unveränderliche Systemfunktion S0 (λ) wirkt, also S (λ) = F3-S0 (λ) . Der Faktor F3 kürzt sich außerhalb des Integrals weg, so dass bleibt:
(G1 5)
Figure imgf000006_0001
Die Funktionen PVi (1) , Pv2 (1) und R(λ)a<1) können als zeitlich konstant betrachtet werden. Ebenso ist So (λ) zeitlich kon- stant. Verschmutzungen in der Messküvette zeigen sich in dem Faktor F3, solange sie keine Abhängigkeiten zu optischen Weglängen aufweisen (Verschmutzung von kleinen Flächen) , und haben somit keinen Einfluss auf den Quotienten SVi/SV2-
Es ergibt sich also ein funktionaler Zusammenhang zwischen dem Quotienten SVi/SV2 und dem Transmissionsspektrum des Messgases TGas . Dieser Zusammenhang kann kalibriert werden. Der Quotient SVi/SV2 aus den bei den beiden Modulationsvarianten erhaltenen Detektionssignalwerten Svi und SV2 erlaubt somit einen direkten Rückschluss auf die Messgaskonzentration und kann daher in vorteilhafter Weise als Messsignalwert herangezogen werden, auf den Änderungen des Systems (Intensitäts- Schwankungen der Messstrahlung und zusätzliche Dämpfungen durch Verschmutzung) keine Auswirkung haben.
Da die Modulationstiefe und daraus folgend die Messempfind- lichkeit beim Modulieren der Wahrscheinlichkeitsverteilung der optischen Weglänge der Messstrahlung durch die Mess- küvette geringer ist als bei herkömmlichen Unterbrechen und Freigeben der Messstrahlung mittels eines Unterbrecherrades (Zerhacker, Chopper) , wird der Quotient SVi/SV2 aus den bei den beiden Modulationsvarianten erhaltenen Werten des Detek- tionssignals vorzugsweise nur als Überwachungssignalwert herangezogen. Die Modulation der Messstrahlung umfasst dann noch eine dritte Modulationsvariante, bei der die Messstrahlung in herkömmlicher Weise abwechselnd unterbrochen und freigegeben wird und der dabei erhaltene Detektionssignalwert als Messsignalwert herangezogen wird. Es werden einmalig für unterschiedliche Messsignalwerte die dazu korrespondierenden Überwachungssignalwerte ermittelt und abgespeichert. Danach wird bei jeder Messung überprüft, ob der zusammen mit dem aktuellen Messsignalwert erhaltene aktuelle Überwachungssignalwert von dem korrespondierenden abgespeicherten Überwachungssignalwert abweicht. Ist dies der Fall, so ist das aktuelle Messsignal nicht nur von der Konzentration des Messgases in der Gasprobe, sondern zusätzlich durch Veränderungen der Intensität der erzeugten Messstrahlung oder Verschmutzungen der Messküvette beeinflusst. Um Messsignalwerte zu überprüfen, für welche keine Überwachungssignalwerte gemessen wurden, können Interpolationsalgorithmen eingesetzt oder eine analytische Funktion an die vorhandenen Wertepaare angepasst (fitten) werden.
Anstelle der dritten Modulationsvariante zur Erzeugung des Messsignalwertes kann vorgesehen werden, dass die erste und die zweite Modulationsvariante zueinander komplementär sind und dass die Summe aus den in der ersten und zweiten Modulationsvariante erhaltenen Detektionssignalwerten als Messsignalwert herangezogen wird. Komplementär bedeutet hier, dass sich die erste und zweite Modulationsvariante in Summe wie die oben angegebene dritte Modulationsvariante verhalten, bei der die Messstrahlung in herkömmlicher Weise abwechselnd unterbrochen und freigegeben wird. Die aus der ersten und zweiten Modulationsvariante resultierenden Detektionssignale sind daher ebenfalls komplementär sind und enthalten in Summe sämtliche Messinformationen.
Die Variation der Wahrscheinlichkeitsverteilung der optischen Weglänge der Messstrahlung durch die Messküvette kann dadurch erfolgen, dass die Messstrahlung bei der ersten und zweiten
Modulationsvariante jeweils unter unterschiedlichem Winkel in die Messküvette eingeleitet wird, so dass sich aufgrund von unterschiedlichen Häufigkeiten von Reflektionen an der Innenwand der Messküvette unterschiedliche Wahrscheinlichkeits- Verteilungen der Weglänge ergeben. Die unterschiedlichen
Winkel zur Einleitung der Messstrahlung in die Messküvette können durch Bewegung, z. B. taumelnde Bewegung, der die Messstrahlung erzeugenden Strahlungsquelle oder durch zwischen der Strahlungsquelle und der Messküvette angeordnete bewegte oder variable Blenden, Lamellen, strahlungsbrechende Elemente usw. erzeugt werden.
Die Messstrahlung kann auch in der ersten und zweiten Modulationsvariante jeweils in unterschiedliche optische Eintritts- bereiche der Messküvette eingeleitet werden, wobei die unterschiedlichen Eintrittsbereiche in Bezug auf die Strahlungsachse der Messstrahlung nicht-spiegelsymmetrisch sind. So kann die Messstrahlung bei schrägem Einfall in die Messküvette in Einfallsrichtung gesehen abwechselnd in einen vorderen und hinteren Eintrittsbereich in die Messküvette eingeleitet werden. Wenn die Messstrahlung senkrecht in die Messküvette fällt, kann sie z. B. abwechselnd in einen zur Achse der Messküvette nahen mittleren Eintrittsbereich und einen zur Innenwand der Messküvette nahen äußeren Eintritts- bereich in die Messküvette eingeleitet werden.
Schließlich ermöglicht das erfindungsgemäße Verfahren die Analyse zweier unterschiedlicher Gasproben, indem ein übli- eher nichtdispersiver Infrarot-Gasanalysator in Zweistrahl- Ausführung verwendet wird, bei dem anstelle einer Messküvette und einer Vergleichsküvette zwei Messküvetten für die unterschiedlichen Gasproben vorgesehen werden.
Zur weiteren Erläuterung der Erfindung wird im Folgenden auf die Figuren der Zeichnung Bezug genommen; im Einzelnen zeigen :
Figur 1 ein Ausführungsbeispiel eines NDIR-Gasanalysators in Einkanal-Ausführung,
Figur 2 ein Modulatorrad des in Figur 1 gezeigten Gasanaly- sators,
Figur 3 ein Beispiel eines zur Analyse zweier unterschiedlicher Gasproben modifizierten NDIR-Gasanalysators in Zweikanal-Ausführung und
Figur 4 ein Modulatorrad des in Figur 3 gezeigten Gasanaly- sators .
Figur 1 zeigt einen NDIR-Gasanalysator in Einkanal-Ausführung mit einem Infrarot-Strahler 1, der eine Messstrahlung 2 er- zeugt. Die Messstrahlung 2 fällt senkrecht in eine Messküvette 3, die eine Gasprobe 4 mit einem Messgas enthält, dessen Konzentration zu bestimmen ist. Nach Durchstrahlen der Messküvette 3 fällt die Messstrahlung 2 auf einen schmalbandigen opto-pneumatischen Detektor 5, der ein Detektionssignal S er- zeugt, das in einer Auswerteeinrichtung 6 zu einem Messsignal M verarbeitet wird. Zwischen dem Infrarot-Strahler 1 und der Messküvette 3 ist ein rotierendes Modulatorrad 7 angeordnet.
Wie Figur 2 zeigt, ist das Modulatorrad 7 in sechs Sektoren unterteilt, wobei in jedem zweiten Sektor ein Fenster 8, 9, 10 für die Messstrahlung 2 vorgesehen ist und in den dazwischenliegenden Sektoren die Messstrahlung 2 unterbrochen wird. Daraus ergeben sich während der Modulation der Mess- Strahlung 2 durch das Modulatorrad 7 drei verschiedene Modulationsvarianten Vl, V2 und V3. Bei der ersten und zweiten Modulationsvariante Vl und V2 wird die Messstrahlung 2 mittels des Fensters 8 bzw. des zweigeteilten Fensters 9 ab- wechselnd in einen zur Achse der Messküvette 3 nahen mittleren Eintrittsbereich und einen zu den Innenwänden der Messküvette 3 nahen äußeren Eintrittsbereich in die Messküvette 3 eingeleitet. Dadurch ergeben sich bei den beiden Modulationsvarianten Vl und V2 unterschiedliche durch Mehrfachreflektion an den Innenwänden der Messküvette 3 hervorgerufene Wahrscheinlichkeitsverteilungen der optischen Weglänge der Messstrahlung 2 in der Messküvette 3. In der Auswerteeinrichtung 6 wird aus den resultierenden Detektionssignalen Svi und SV2 der Quotient SVi/SV2 als Überwachungssignal W gebildet. Bei der dritten Modulationsvariante V3 wird die Messstrahlung 2 mittels des Fensters 10 in herkömmlicher Weise abwechselnd unterbrochen und vollständig freigegeben, wobei der dabei erhaltene Detektionssignalwert SV3 als Messsignalwert M herangezogen wird.
Im Neuzustand oder gereinigten Zustand des NDIR-Gasanalysa- tors werden für unterschiedliche Messsignalwerte M = SV3 die dazu korrespondierenden Überwachungssignalwerte W = SVi/SV2 ermittelt und in einer Tabelle 11 abgespeichert. Später wird bei jeder Messung überprüft, ob der zusammen mit dem aktuellen Messsignalwert M erhaltene aktuelle Überwachungssignalwert W von dem in der Tabelle abgespeicherten korrespondierenden Überwachungssignalwert W abweicht. Ist dies der Fall, so ist das aktuelle Messsignal M nicht nur von der Konzen- tration des Messgases in der Gasprobe 4, sondern zusätzlich durch Veränderungen der Intensität der erzeugten Messstrahlung 2 oder Verschmutzungen der Messküvette 3 beeinflusst.
Der in Figur 3 gezeigte NDIR-Gasanalysator unterscheidet sich von dem nach Figur 1 durch seinen Zweistrahl-Aufbau. Mittels eines Strahlteilers 12 (sog. Hosenkammer) wird die von dem Infrarot-Strahler 1 erzeugte Messstrahlung auf zwei Messstrahlengänge 2 und 2' mit darin liegenden Messküvetten 3, 3' und Detektoren 5, 5' aufgeteilt. Die beiden Messküvetten 3, 3' enthalten unterschiedliche zu analysierende Gasproben 4, 4'. Jeder der Detektoren 5, 5' erzeugt ein Detektionssignal S, S', das in einer Auswerteeinrichtung 6, 6' zu einem Mess- signal M, M' verarbeitet wird. Zwischen dem Strahlteiler 12 und den Messküvetten 3, 3' ist ein Modulatorrad 7' angeordnet, das genauso wie das in Figur 2 gezeigte Modulatorrad 7 ausgeführt sein kann.
Figur 4 zeigt eine in Bezug auf das Ausführungsbeispiel in Figur 3 bevorzugte Ausbildung des Modulatorrads 7 ' , bei dem anstelle der zur Mitte des optischen Eintrittsbereichs der Messküvette 3 symmetrischen Fenster 8 und 9 (vgl. Figur 2) ein äußeres Fenster 8' und ein inneres Fenster 9' vorgesehen sind. Angesichts der schrägen Einleitung der Messstrahlung 2, 2' durch den Strahlteiler 12 in die Messküvetten 3, 3' erweist sich diese Fensteranordnung als besonders günstig für die Variation der optischen Weglänge in den Messküvetten 3, 3' .
Durch die in den Figuren 2 und 3 gezeigte komplementäre Anordnung der Fenster 8, 9 bzw. 8', 9' wird erreicht, dass die resultierenden Detektionssignalen SVi, SV2 bzw. SVi', SV2' ebenfalls komplementär sind und in Summe sämtliche Messinfor- mationen enthalten.

Claims

Patentansprüche
1. Verfahren zur nichtdispersiven Infrarot-Gasanalyse nach dem Einstrahl-Prinzip, bei dem eine Messstrahlung (2) perio- disch moduliert und durch eine Messküvette (3) mit einer darin enthaltenen zu analysierenden Gasprobe (4) hindurch auf eine Detektoreinrichtung (5) geleitet wird, die ein Detek- tionssignal (S) erzeugt, dadurch gekennzeichnet, dass die Modulation der Messstrahlung (2) eine erste Modulations- Variante (Vl) und eine zweite Modulationsvariante (V2) um- fasst, in denen die Weglängenverteilungen der Messstrahlung (2) in der Messküvette (3) jeweils unterschiedlich sind, und dass der Quotient (SVi/SV2) aus den bei den beiden Modula¬ tionsvarianten (Vl, V2 ) erhaltenen Detektionssignalwerten (Svi, SV2) gebildet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Quotient (SVi/SV2) aus den in der ersten und zweiten Modulationsvariante (Vl, V2) erhaltenen Detektionssignal- werten (SVi, SV2) als Messsignalwert (M) herangezogen wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erste Modulationsvariante (Vl) und die zweite Modulationsvariante (V2) zueinander komplementär sind und dass die Summe aus den in der ersten und zweiten Modulationsvariante (Vl, V2) erhaltenen Detektionssignalwerten (SVi, SV2) als Messsignalwert (M) herangezogen wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Quotient (SVi/SV2) aus den in der ersten und zweiten
Modulationsvariante (Vl, V2) erhaltenen Detektionssignalwerten (Svi, SV2) als Überwachungssignalwert (W) herangezogen wird, dass die Modulation der Messstrahlung (2) eine dritte Modulationsvariante (V3) umfasst, bei der die Messstrahlung (2) abwechselnd unterbrochen und freigegeben wird und der dabei erhaltene Detektionssignalwert (SV3) als Messsignalwert (M) herangezogen wird, dass einmalig für unterschiedliche Messsignalwerte (M) die dazu korrespondierenden Überwachungs- signalwerte (W) ermittelt und abgespeichert werden und dass danach bei jeder Messung überprüft wird, ob der zusammen mit dem aktuellen Messsignalwert (M) erhaltene aktuelle Überwachungssignalwert (W) von dem korrespondierenden abge- speicherten Überwachungssignalwert (W) abweicht.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Messstrahlung (2) bei der ersten und zweiten Modulationsvariante (Vl, V2) jeweils unter unter- schiedlichem Winkel in die Messküvette (3) eingeleitet wird.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Messstrahlung (2) in der ersten und zweiten Modulationsvariante (Vl, V2) jeweils in unterschied- liehe optische Eintrittsbereiche der Messküvette (3) eingeleitet wird, wobei die unterschiedlichen Eintrittsbereiche in Bezug auf die Strahlungsachse der Messstrahlung (2) nicht- spiegelsymmetrisch sind.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zur Analyse zweier unterschiedlicher Gasproben (4, 4') ein nichtdispersiver Infrarot-Gasanalysator in Zweistrahl-Ausführung verwendet wird, bei dem anstelle einer Messküvette (3) und einer Vergleichsküvette zwei Mess- küvetten (3, 3') für die unterschiedlichen Gasproben (4, 4') vorgesehen werden.
PCT/EP2008/053403 2007-03-30 2008-03-20 Verfahren zur nichtdispersiven infrarot-gasanalyse WO2008119679A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007015611.3 2007-03-30
DE200710015611 DE102007015611A1 (de) 2007-03-30 2007-03-30 Verfahren zur nichtdispersiven Infrarot-Gasanalyse

Publications (1)

Publication Number Publication Date
WO2008119679A1 true WO2008119679A1 (de) 2008-10-09

Family

ID=39618975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/053403 WO2008119679A1 (de) 2007-03-30 2008-03-20 Verfahren zur nichtdispersiven infrarot-gasanalyse

Country Status (2)

Country Link
DE (1) DE102007015611A1 (de)
WO (1) WO2008119679A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076614A1 (de) * 2009-12-22 2011-06-30 Siemens Aktiengesellschaft Ndir-zweistrahl-gasanalysator und verfahren zur bestimmung der konzentration einer messgaskomponente in einem gasgemisch mittels eines solchen gasanalysators
US8632625B2 (en) 2010-06-17 2014-01-21 Pason Systems Corporation Method and apparatus for liberating gases from drilling fluid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009021829A1 (de) * 2009-05-19 2010-11-25 Siemens Aktiengesellschaft NDIR-Zweistrahl-Gasanalysator und Verfahren zur Bestimmung der Konzentration einer Messgaskomponente in einem Gasgemisch mittels eines solchen Gasanalysators

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2806144A (en) * 1953-09-15 1957-09-10 Phillips Petroleum Co Infrared analyzer
US3781910A (en) * 1971-09-28 1973-12-25 Schlumberger Compteurs Infrared absorption analysis method and apparatus for determining gas concentration
US3808436A (en) * 1973-06-28 1974-04-30 Sensors Inc Apparatus for gas analyses
DD211410A1 (de) * 1982-11-09 1984-07-11 Junkalor Dessau Analysator mit moduliertem abbildungssignal und stoergroessenunterdrueckter messsignalvorverarbeitung
DE19608907C1 (de) * 1996-03-07 1997-04-03 Siemens Ag Nichtdispersiver Gasanalysator
EP1621868A1 (de) * 2004-07-30 2006-02-01 ABB PATENT GmbH Einrichtung und Verfahren zur Kalibrierung der Empfindlichkeit eines Fotometers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1598535C3 (de) * 1965-09-01 1974-02-14 Hartmann & Braun Ag, 6000 Frankfurt Mehrstrahl-Infrarot-Gasanalysator
DE2522428A1 (de) * 1975-05-21 1976-12-09 Heinz Dr Rer Nat Hummel Photometrischer analysator
DE19723941C2 (de) * 1997-06-06 1999-07-29 Siemens Ag Optisch-pneumatischer Detektor für nichtdispersive Gasanalysatoren
DE19732470C2 (de) * 1997-07-28 1999-11-18 Siemens Ag Nichtdispersiver Infrarot-Gasanalysator
DE19738138A1 (de) * 1997-09-01 1999-03-04 Siemens Ag Nichtdispersiver Gasanalysator
DE19819192C1 (de) * 1998-04-30 1999-07-29 Siemens Ag Gasanalysator
DE19840570A1 (de) * 1998-09-05 2000-03-16 M & R Mes Und Regelungstechnik Verfahren zur Signalverarbeitung eines Gasanalysators mit Interferenzfiltern und elektronischen Strahlungsdetektoren
DE19841491A1 (de) * 1998-09-10 1999-09-16 Siemens Ag Opto-pneumatischer Detektor für ein nichtdispersives Infrarot-Gasanalysegerät
DE10104556A1 (de) * 2001-02-01 2002-02-07 Siemens Ag Nichtdispersiver Infrarot-Gasanalysator
EP1510798B1 (de) * 2003-08-28 2006-12-27 Siemens Aktiengesellschaft Verfahren und System zur Wellenlängenmodulationsspektrometrie
WO2005026705A1 (en) * 2003-09-12 2005-03-24 Ir Microsystems S.A. Gas detection method and gas detector device
EP1544604B1 (de) * 2003-12-17 2017-09-27 Siemens Aktiengesellschaft Verfahren zur Wellenlängenmodulationsspektroskopie

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2806144A (en) * 1953-09-15 1957-09-10 Phillips Petroleum Co Infrared analyzer
US3781910A (en) * 1971-09-28 1973-12-25 Schlumberger Compteurs Infrared absorption analysis method and apparatus for determining gas concentration
US3808436A (en) * 1973-06-28 1974-04-30 Sensors Inc Apparatus for gas analyses
DD211410A1 (de) * 1982-11-09 1984-07-11 Junkalor Dessau Analysator mit moduliertem abbildungssignal und stoergroessenunterdrueckter messsignalvorverarbeitung
DE19608907C1 (de) * 1996-03-07 1997-04-03 Siemens Ag Nichtdispersiver Gasanalysator
EP1621868A1 (de) * 2004-07-30 2006-02-01 ABB PATENT GmbH Einrichtung und Verfahren zur Kalibrierung der Empfindlichkeit eines Fotometers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076614A1 (de) * 2009-12-22 2011-06-30 Siemens Aktiengesellschaft Ndir-zweistrahl-gasanalysator und verfahren zur bestimmung der konzentration einer messgaskomponente in einem gasgemisch mittels eines solchen gasanalysators
DE102009059962A1 (de) * 2009-12-22 2011-07-14 Siemens Aktiengesellschaft, 80333 NDIR-Zweistrahl-Gasanalysator und Verfahren zur Bestimmung der Konzentration einer Messgaskomponente in einem Gasgemisch mittels eines solchen Gasanalysators
DE102009059962B4 (de) * 2009-12-22 2011-09-01 Siemens Aktiengesellschaft NDIR-Zweistrahl-Gasanalysator und Verfahren zur Bestimmung der Konzentration einer Messgaskomponente in einem Gasgemisch mittels eines solchen Gasanalysators
CN102713566A (zh) * 2009-12-22 2012-10-03 西门子公司 Ndir-双束-气体分析仪和借助于这种气体分析仪来确定气体混合物中的测量气体成分的浓度的方法
US8632625B2 (en) 2010-06-17 2014-01-21 Pason Systems Corporation Method and apparatus for liberating gases from drilling fluid
US9568419B2 (en) 2010-06-17 2017-02-14 Pason Systems Corporation Method and apparatus for speciating hydrocarbons
US9651481B2 (en) 2010-06-17 2017-05-16 Pason Systems Corporation Method and apparatus for liberating gases from drilling fluid
US10180396B2 (en) 2010-06-17 2019-01-15 Parson Systems Corporation Method and apparatus for speciating hydrocarbons

Also Published As

Publication number Publication date
DE102007015611A1 (de) 2008-10-09

Similar Documents

Publication Publication Date Title
EP0076356B1 (de) Verfahren und Vorrichtung zur Messung der Konzentration einer IR-, NDIR-, VIS- oder UV-Strahlung absorbierenden Komponente eines Komponentengemischs
EP2032967B1 (de) Spektroskopischer detektor und verfahren zur bestimmung von blut und biologischen markersubstanzen in flüssigkeiten
EP0094374B1 (de) Verfahren zur kontinuierlichen Messung der Masse von Aerosolteilchen in gasförmigen Proben sowie Vorrichtung zur Durchführung des Verfahrens
EP1091205B1 (de) Spektralphotometrische und nephelometrische Detektionseinheit
DE10033563C2 (de) Laserspektroskopiesystem
EP1711800B1 (de) Verfahren und vorrichtung zur bestimmung eines objektmaterials
EP3051272B1 (de) Verfahren und automatisches analysegerät zur bestimmung von lipiden und anderen störsubstanzen in körperflüssigkeitsproben
DE112009002702B4 (de) Automatischer Analysator
DE69535012T2 (de) Verfahren und Vorrichtung zur Messung der Konzentration von absorbierenden Bestandteilen in einem streuenden Medium
EP3108220B1 (de) Verfahren und vorrichtung zum zuordnen einer blutplasmaprobe
EP2240760B1 (de) Nichtdispersiver infrarot-gasanalysator
DE2902776A1 (de) Verfahren fuer das analysieren mit farbidentifizierungs-testpapier und eine vorrichtung zur durchfuehrung des verfahrens
EP2246692A1 (de) Verfahren zur Detektion von Verunreinigungen einer optischen Messküvette
DE69920645T2 (de) Verfahren und Vorrichtung zur Messung von Lichtabsorptionsspektren
EP1183523B1 (de) Analysegerät
WO2008119679A1 (de) Verfahren zur nichtdispersiven infrarot-gasanalyse
DE102009059962A1 (de) NDIR-Zweistrahl-Gasanalysator und Verfahren zur Bestimmung der Konzentration einer Messgaskomponente in einem Gasgemisch mittels eines solchen Gasanalysators
DE19509822C2 (de) Ölkonzentrations-Meßgerät
DE3938142C2 (de)
DE2927156A1 (de) Vorrichtung zum messen der sauerstoffkonzentration
DE60301764T2 (de) Gerät und Verfahren zum Nachweis von Zirkulardichroismus im Infrarotbereich
EP2635882B1 (de) Verfahren zur bestimmung von chemischen bestandteilen von festen oder flüssigen stoffen mithilfe von thz-spektroskopie
DE102004031643A1 (de) Nichtdispersiver Infrarot-Gasanalysator
EP2551662B1 (de) Optische Gasanalysatoreinrichtung mit Mitteln zum Verbessern der Selektivität bei Gasgemischanalysen
WO2015028365A1 (de) Analyseverfahren zur ermittlung der typen und konzentrationen biologischer partikel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08718112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08718112

Country of ref document: EP

Kind code of ref document: A1