WO2008113755A1 - Wässrige dispersionen, enthaltend polyurethan, und ihre verwendung zur herstellung von flächigen substraten - Google Patents

Wässrige dispersionen, enthaltend polyurethan, und ihre verwendung zur herstellung von flächigen substraten Download PDF

Info

Publication number
WO2008113755A1
WO2008113755A1 PCT/EP2008/053077 EP2008053077W WO2008113755A1 WO 2008113755 A1 WO2008113755 A1 WO 2008113755A1 EP 2008053077 W EP2008053077 W EP 2008053077W WO 2008113755 A1 WO2008113755 A1 WO 2008113755A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
weight
aqueous dispersion
groups
silicone
Prior art date
Application number
PCT/EP2008/053077
Other languages
English (en)
French (fr)
Inventor
Nidia Bustos
Jürgen WEISER
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to US12/532,249 priority Critical patent/US9234071B2/en
Priority to JP2009554007A priority patent/JP5970154B2/ja
Priority to MX2009009650A priority patent/MX2009009650A/es
Priority to ES08717819.0T priority patent/ES2529743T3/es
Priority to KR1020157009978A priority patent/KR20150048904A/ko
Priority to CN2008800092595A priority patent/CN101641381B/zh
Priority to EP20080717819 priority patent/EP2137225B1/de
Priority to BRPI0808471A priority patent/BRPI0808471B1/pt
Priority to AU2008228259A priority patent/AU2008228259B2/en
Publication of WO2008113755A1 publication Critical patent/WO2008113755A1/de
Priority to ZA2009/07279A priority patent/ZA200907279B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3821Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4216Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from mixtures or combinations of aromatic dicarboxylic acids and aliphatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/722Combination of two or more aliphatic and/or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C11/00Surface finishing of leather
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C11/00Surface finishing of leather
    • C14C11/003Surface finishing of leather using macromolecular compounds
    • C14C11/006Surface finishing of leather using macromolecular compounds using polymeric products of isocyanates (or isothiocyanates) with compounds having active hydrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24438Artificial wood or leather grain surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31554Next to second layer of polyamidoester

Definitions

  • the present invention relates to aqueous dispersions containing (A) at least one polyurethane, (B) at least one compound of the general formula Ia or Ib
  • R 1 , R 2 and R 3 may be the same or different and are selected from A 1 -NCO and A 1 -NH-CO-X, wherein
  • a 1 is a spacer having 2 to 20 C atoms and
  • X is chosen 0 (AO) x R 4 ,
  • AO is C 2 -C 4 -alkylene oxide
  • x is an integer in the range from 1 to 50 and R 4 is selected from hydrogen and C 1 -C 30 -alkyl
  • Aqueous silicone-containing dispersions find numerous applications. Thus, they are used for example for the hydrophobing of sheet-like substrates such as textiles or leather.
  • a particular application is the coating of leather by means of a reverse coating process, as disclosed, for example, in WO 05/47549.
  • the top layer, with which the leather is coated plays a crucial role in the haptic properties.
  • silicone dispersions which are suitable for coating substrates, in particular by the inversion process. It was a further object to provide coated substrates with good fastness properties, in particular rub fastness, and good grip. It was a further object to provide a process for the production of coated substrates that the provides above-mentioned coated substrates and can be carried out advantageously.
  • Polyurethane (A) is called.
  • Polyurethane (A) is preferably a thermoplastic polyurethane.
  • Thermoplastic polyurethanes also referred to as TPU for short
  • dispersions prepared therefrom are known as such.
  • Polyurethanes (A) are well known, commercially available and generally consist of a soft phase of higher molecular weight polyhydroxyl compounds, e.g. polyester or polyether segments, and a urethane hard phase formed from low molecular weight chain extenders and di- or polyisocyanates.
  • polyurethanes (A) are well known.
  • polyurethanes (A) are converted by reaction of
  • isocyanate-reactive compounds usually having a molecular weight (Mw) of 500 to 10,000 g / mol, preferably 500 to 5,000 g / mol, more preferably 800 to 3,000 g / mol, and (c) chain extenders having a molecular weight of 50 to 499, if appropriate in the presence of
  • isocyanates (a) it is possible to use generally known aliphatic, cycloaliphatic, araliphatic and / or aromatic isocyanates, for example tri-, tetra-, penta-, hexa-, hepta- and / or octamethylene diisocyanate, 2-methylpentamethylene diisocyanate 1, 5, 2-ethyl-butylene-diisocyanate-1, 4, pentamethylene-diisocyanate-1, 5, butylene-diisocyanate-1, 4, 1-isocyanato-3,3,5-trimethyl-5-isocyanato methylcyclohexane (isophorone diisocyanate, IPDI), 1,4- and / or 1,3-bis (isocyanatomethyl) cyclohexane (HXDI), 1,4-cyclohexane diisocyanate, 1-methyl-2,4- and / or 2, 6-cyclohexane-di
  • 4,4'-MDI is used.
  • aliphatic diisocyanates in particular hexamethylene diisocyanate (HDI)
  • aromatic diisocyanates such as 2,2'-, 2,4'- and / or 4,4'-diphenylmethane diisocyanate (MDI) and mixtures of the above-mentioned isomers.
  • isocyanate-reactive compounds (b) it is possible to use the generally known isocyanate-reactive compounds, for example polyesterols, polyetherols and / or polycarbonatediols, which are usually also grouped under the term "polyols", with molecular weights (M w ) in the region of 500 and 8,000 g / mol, preferably 600 to 6,000 g / mol, in particular 800 to 3,000 g / mol, and preferably an average functionality to isocyanates of 1, 8 to 2.3, preferably 1, 9 to 2.2, in particular 2.
  • polyesterols polyetherols and / or polycarbonatediols
  • M w molecular weights
  • Polyether polyols are preferably used, for example those based on generally known starter substances and customary alkylene oxides, for example ethylene oxide, 1,2-propylene oxide and / or 1,2-butylene oxide, preferably polyetherols based on polyoxytetramethylene (polyTHF), 1 , 2-propylene oxide and ethylene oxide.
  • Polyetherols have the advantage that they have a higher hydrolytic stability than polyesterols, and are preferably as component (b), in particular for the preparation of soft polyurethanes (A1).
  • Particularly suitable polycarbonate diols are aliphatic polycarbonate diols, for example 1,4-butanediol polycarbonate and 1,6-hexanediol polycarbonate.
  • polyester diols are those mentioned by polycondensation of at least one primary diol, preferably at least one primary aliphatic diol, for example ethylene glycol, 1, 4-butanediol, 1, 6-hexanediol, neopentyl glycol or more preferably 1, 4-dihydroxymethylcyclohexane (as Mixture of isomers) or mixtures of at least two of the aforementioned diols on the one hand and at least one, preferably at least two dicarboxylic acids or their anhydrides on the other hand.
  • Preferred dicarboxylic acids are aliphatic dicarboxylic acids such as adipic acid, glutaric acid, succinic acid and aromatic dicarboxylic acids such as phthalic acid and in particular isophthalic acid.
  • Polyetherols are preferred by addition of alkylene oxides, in particular ethylene oxide, propylene oxide and mixtures thereof, to diols such as ethylene glycol, 1, 2-propylene glycol, 1, 2-butylene glycol, 1, 4-butanediol, 1, 3-propanediol, or to triols such
  • glycerol prepared in the presence of highly active catalysts.
  • highly active catalysts are, for example, cesium hydroxide and Dimetal cyanide catalysts, also referred to as DMC catalysts.
  • a frequently used DMC catalyst is zinc hexacyanocobaltate.
  • the DMC catalyst can be left in the polyetherol after the reaction, preferably it is removed, for example by sedimentation or filtration.
  • isocyanate-reactive compounds (b) proportionately also one or more diols or diamines having a carboxylic acid group or sulfonic acid group (b '), in particular alkali metal or ammonium salts of 1, 1-dimethylolbutanoic, 1, 1-dimethylolpropionic or
  • Chain extenders (c) used are aliphatic, araliphatic, aromatic and / or cycloaliphatic compounds having a molecular weight of 50 to 499 g / mol and at least two functional groups, preferably compounds having exactly two functional groups per molecule, known per se -
  • diamines and / or alkanediols having 2 to 10 carbon atoms in the alkylene radical in particular 1, 3-propanediol, butanediol-1, 4, hexanediol-1, 6 and / or di-, tri-, tetra-, penta-, Hexa, hepta, octa, nona and / or Dekaalkylenglykole having 3 to 8 carbon atoms per molecule, preferably corresponding oligo- and / or polypropylene glycols, whereby mixtures of chain extenders (c) can be used.
  • components (a) to (c) are difunctional compounds, i. Diisocyanates (a), difunctional polyols, preferably polyetherols (b) and difunctional chain extenders, preferably diols.
  • Suitable catalysts (d), which in particular accelerate the reaction between the NCO groups of the diisocyanates (a) and the hydroxyl groups of the synthesis components (b) and (c), are known per se tertiary amines, such as triethylamine, dimethylcyclohexylamine, N-methylmorpholine , N, N'-dimethylpiperazine, 2- (dimethylaminoethoxy) ethanol, diazabicyclo- (2,2,2) -octane ("DABCO”) and similar tertiary amines, and in particular organic metal compounds such as titanic acid esters, iron compounds such as Iron (III) acetylacetonate, tin compounds, eg tin diacetate, tin dioctoate, tin dilaurate or the tin dialkyl salts of aliphatic carboxylic acids such as dibutyltin diacetate, dibutyltin dilaurate or the like
  • auxiliaries and / or additives (e) can also be added to components (a) to (c).
  • examples which may be mentioned are blowing agents, anti-blocking agents, surface-active substances, fillers, for example nanoparticle-based fillers, especially fillers based on CaCO 3, nucleating agents, lubricants, dyes and pigments, antioxidants, for example for hydrolysis, light, heat or discoloration, inorganic and / or organic fillers, reinforcing agents and plasticizers, metal deactivators.
  • component (e) also includes hydrolysis protectants such as, for example, polymeric and low molecular weight carbodiimides.
  • the soft polyurethane preferably contains triazole and / or triazole derivative and antioxidants in an amount of from 0.1 to 5% by weight, based on the total weight of the relevant soft polyurethane.
  • antioxidants are generally suitable substances which inhibit or prevent unwanted oxidative processes in the plastic to be protected. In general, antioxidants are commercially available. Examples of antioxidants are hindered phenols, aromatic amines, thiosynergists, trivalent phosphorus organophosphorus compounds, and hindered amine light stabilizers. Examples of sterically hindered phenols can be found in Plastics Additive Handbook, 5th edition, H. Zweifel, ed, Hanser Publishers, Kunststoff, 2001 ([1]), pp. 98-107 and pp.
  • the antioxidants in particular the phenolic antioxidants, have a molecular weight of greater than 350 g / mol, more preferably greater than 700 g / mol and a maximum molecular weight (M w ) of at most 10,000 g / mol, preferably up to a maximum of 3,000 g / mol on. Furthermore, they preferably have a melting point of at most 180 ° C. Furthermore, preference is given to using antioxidants which are amorphous or liquid. Also, as component (e), mixtures of two or more antioxidants may be used.
  • chain regulators chain terminators
  • chain regulators usually having a molecular weight of from 31 to 3000 g / mol.
  • Such chain regulators are compounds which have only one isocyanate-reactive functional group, for example monofunctional alcohols, monofunctional amines and / or monofunctional polyols.
  • chain regulators can generally NEN in an amount of 0 to 5, preferably 0.1 to 1 parts by weight, based on 100 parts by weight of component (b) are used and fall by definition under the component (c).
  • crosslinking agents having two or more isocyanate-reactive groups towards the end of the synthesis reaction, for example hydrazine hydrate.
  • components (b) and (c) can be selected in relatively wide molar ratios.
  • the reaction for preparing polyurethane (A) can be carried out at a ratio of 0.8 to 1.4: 1, preferably at a ratio of 0.9 to 1.2: 1, more preferably at a ratio of 1.05 to 1, 2: 1 done.
  • the index is defined by the ratio of the total isocyanate groups used in the reaction of component (a) to the isocyanate-reactive groups, i. the active hydrogens, the components (b) and optionally (c) and optionally monofunctional isocyanate-reactive components as chain terminators such as e.g. Monoalcohols.
  • the preparation of polyurethane (A) can be carried out continuously by processes known per se, for example by one-shot or the prepolymer process, or discontinuously by the prepolymer process known per se.
  • the reacting components (a), (b), (c) and optionally (d) and / or (e) may be mixed together successively or simultaneously with the reaction starting immediately.
  • Polyurethane (A) can be dispersed in water by methods known per se, for example by dissolving polyurethane (A) in acetone or preparing it as a solution in acetone, adding water and then removing the acetone, for example by distilling off.
  • polyurethane (A) is prepared as a solution in N-methylpyrrolidone or N-ethylpyrrolidone, water is added and the N-methylpyrrolidone or N-ethylpyrrolidone is removed.
  • aqueous dispersions according to the invention contain two different polyurethanes (A1) and (A2), of which polyurethane (A1) is a so-called soft polyurethane, which is constructed as described above as polyurethane (A), and at least a hard polyurethane (A2).
  • polyurethane (A1) is a so-called soft polyurethane, which is constructed as described above as polyurethane (A)
  • hard polyurethane A2
  • rigid polyurethane (A2) can be prepared analogously to soft polyurethane (A1), but other isocyanate-reactive compounds (b) or other mixtures of isocyanate-reactive compounds (b) are also used in the context of the present invention as isocyanates reactive compounds (b2) or abbreviated to compound (b2).
  • Examples of compounds (b2) are in particular 1, 4-butanediol, 1, 6-hexanediol and neopentyl glycol, either in admixture with one another or in admixture with polyethylene glycol.
  • mixtures of diisocyanates for example mixtures of HDI and IPDI, are selected as diisocyanate (a) and (a2), larger amounts of IPDI being selected for the preparation of hard polyurethane (A2) than for the production of soft polyurethane (A1).
  • polyurethane (A2) has a Shore A hardness in the range of more than 60 to a maximum of 100, the Shore A hardness according to DIN 53505 being determined after 3 seconds.
  • polyurethane (A) has an average particle diameter in the range of 100 to 300 nm, preferably 120 to 150 nm, determined by laser light scattering.
  • soft polyurethane (A1) has an average particle diameter in the range of 100 to 300 nm, preferably 120 to 150 nm, as determined by laser light scattering.
  • polyurethane (A2) has an average particle diameter in the range of 100 to 300 nm, preferably 120 to 150 nm, as determined by laser light scattering.
  • Aqueous dispersions according to the invention also contain
  • R 1 , R 2 and R 3 may be different or preferably the same and are selected from A 1 -NCO and A 1 -NH-CO-X, wherein
  • a 1 is a spacer having 2 to 20 carbon atoms, selected from arylene, unsubstituted or substituted by one to four C 1 -C 4 -alkyl groups, alkylene and cycloalkylene, for example 1, 4-cyclohexylene.
  • Preferred spacers A 1 are phenylene, in particular para-phenylene, furthermore toluene, in particular para-toluylene, and C 2 -C 12 -alkylene such as, for example, ethylene (CH 2 CH 2 ), furthermore - (CH 2 J 3 -, - (CH 2 J 4 -, - (CH 2 J 5 -, - (CH 2 J 6 -, - (CH 2 J 8 -, - (CH 2 ) io-,
  • X is chosen 0 (AO) x R 4 , where
  • AO is C 2 -C 4 -alkylene oxide, for example butylene oxide, in particular ethylene oxide (CH 2 CH 2 O) or propylene oxide (CH (CH 3 ) CH 2 O) or (CH 2 CH (CH 3 ) O),
  • x is an integer in the range of 1 to 50, preferably 5 to 25, and
  • R 4 is selected from hydrogen and C 1 -C 30 -alkyl, in particular C 1 -C 10 -alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert. Butyl, n-pentyl, iso-
  • Particularly preferred compounds (B) are those in which R 1 and R 2 and R 3 are the same in each case (CH 2) 4 -NCO, (CH 2) 6 -NCO or (CH 2) i2 -NCO.
  • Aqueous dispersions according to the invention furthermore each contain (C) a silicone compound having reactive groups, in the context of the present invention also called silicone compound (C).
  • Examples of reactive groups in connection with silicone compounds (C) are, for example, carboxylic acid groups, carboxylic acid derivatives such as, for example, carboxylic acid methyl esters or carboxylic anhydrides, in particular succinic anhydride groups, and particularly preferably carboxylic acid groups.
  • reactive groups are also primary and secondary amino groups, for example NH (iso-C 3 H 7 ) groups, NH (nC 3 H 7 ) groups, NHfcyclo-C ⁇ Hn) groups and NH (n-C4Hg) groups, in particular NH (C 2 H 5 ) groups and NH (CH 3 ) groups, and very particularly preferably NH 2 groups.
  • aminoalkylamino preferably such as -NH-CH 2 -CH 2 -NH 2 groups, -NH-CH2-CH 2 -CH 2 NH 2 groups, -NH-CH 2 -CH 2 -NH (C 2 H 5 ) Groups, -NH-CH 2 -CH 2 -CH 2 -NH (C 2 H 5 ) groups, -NH-CH 2 -CH 2 -NH (CH 3 ) groups, -NH-CH 2 -CH 2 -CH 2 -NH (CH 3 ) groups.
  • the reactive group or groups are bonded to silicone compound (C) either directly or preferably via a spacer A 2 .
  • a 2 is selected from arylene, unsubstituted or substituted with one to four Ci-C4-alkyl groups, alkylene and cycloalkylene such as 1, 4-cyclohexylene.
  • Preferred spacers A 2 are phenylene, in particular para-phenylene, furthermore toluene, in particular para-phenylene.
  • C 2 -C 8 alkylene such as ethylene (CH 2 CH 2 ), furthermore - (CH 2 ) 3-, - (CH 2 J 4 -, - (CH 2 ) S -, - (CH 2 J 6 -, - (CH 2 ) S-, - (CH 2 ) io-, - (CH 2 ) I 2 -, - (CH 2 ) i 4 -, - (CH 2 ) i 6 - and
  • silicone compound (C) contains nonreactive
  • Groups especially di-Ci-Cio-alkyl-Si0 2 groups or phenyl-Ci-Cio-alkyl-Si0 2 - groups, in particular dimethyl-SiO 2 groups, and optionally one or more Si (CH 3 ) 2 -OH Groups or Si (CH 3 ) 3 groups.
  • silicone compound (C) has on average one to four reactive groups per molecule.
  • silicone compound (C) has on average one to four COOH groups per molecule.
  • silicone compound (C) has on average one to four amino groups or aminoalkylamino groups per molecule.
  • Silicone compound (C) has a chain or branched Si-O-Si units.
  • silicone compound (C) has a molecular weight M n in the range of 500 to 10,000 g / mol, preferably to 5,000 g / mol.
  • silicone compound (C) has a plurality of reactive groups per molecule, these reactive groups may be bonded directly or via spacer A 2 via several Si atoms or in pairs via the same Si atom to the Si-O-Si chain.
  • the reactive groups or the reactive group may be bonded to one or more of the terminal Si atoms of silicone compound (C) - directly or via spacer A 2 -.
  • the reactive group or groups are bonded to one or more of the non-terminal Si atoms of silicone compound (C) directly or through spacer A 2 .
  • aqueous dispersion (D) contains a polydi-C 1 -C 4 -alkylsiloxane which has neither amino groups nor COOH groups, preferably a polydimethylsiloxane, in the context of the present invention also briefly polydialkylsiloxane (D) or Polydimethylsiloxane (D) called.
  • CrC 4 -AlkVl in polydialkylsiloxane (D) may be different or preferably equal and selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and tert-butyl, wherein unbranched CrC 4 -AlkVl is preferred, particularly preferred is methyl.
  • Polydialkylsiloxane (D) and preferably polydimethylsiloxane (D) are preferably unbranched polysiloxanes with Si-O-Si chains or polysiloxanes which have up to 3, preferably at most one branch per molecule.
  • Polydialkylsiloxane (D) and in particular polydimethylsiloxane (D) can have one or more Si (C 1 -C 4 -alkyl) 2-OH groups.
  • the aqueous dispersion according to the invention comprises a total of from 20 to 30% by weight of polyurethane (A), or in total in the range of from 20 to 30% by weight of polyurethanes (A1) and (A2 ), in the range of 1 to 10, preferably 2 to 5 wt .-% compound (B), in the range of 1 to 10 wt .-% silicone compound (C), in the range of zero to 5, preferably 2 to 4 wt. -% crosslinker (D), in the range of zero to 10, preferably 0.5 to 5 wt .-% polydialkylsiloxane (D).
  • Suitable organic solvents are, for example, alcohols such as ethanol or isopropanol and in particular glycols, diglycols, triglycols or tetraglycols and di- or preferably monohydric glycols, diglycols, triglycols or tetraglycols etherified with C 1 -C 4 -alkyl.
  • Suitable organic solvents are ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, 1,2-dimethoxyethane, methyltriethylene glycol ("methyltriglycol”) and triethylene glycol n-butyl ether (“butyltriglycol”).
  • aqueous dispersion according to the invention contains in the range from 10 to 30% by weight soft polyurethane (A1) and in the range from zero to 20% by weight hard polyurethane (A2).
  • aqueous dispersion according to the invention has a total solids content of 5 to 60 wt .-%, preferably 10 to 50 wt .-% and particularly preferably 25 to 45 wt .-%.
  • aqueous dispersion according to the invention contains at least one additive (E) selected from pigments, matting agents, light stabilizers, antistatic agents, antisoil, anticancer, thickening agents, in particular thickeners based on polyurethanes, and hollow microspheres.
  • E additive
  • pigments matting agents, light stabilizers, antistatic agents, antisoil, anticancer, thickening agents, in particular thickeners based on polyurethanes, and hollow microspheres.
  • aqueous dispersion according to the invention contains a total of up to 20% by weight of additives (E).
  • polyurethane (A), compound (B) and silicone compound (C) are mixed with water and optionally one or more of the abovementioned organic solvents. Furthermore, if desired, mixed with polydialkylsiloxane (D) and additives (E). The mixing can be carried out, for example, by stirring.
  • polyurethane (A), compound (B), silicone compound (C) and water and optionally one or more of the abovementioned organic solvents and, if desired, polydialkylsiloxane (D) and additives (E) are arbitrary ,
  • thickening agents are added last as an example of an additive (E), thus establishing the desired viscosity.
  • Another object of the present invention is the use of aqueous dispersions of the invention for the production of multilayer sheet substrates.
  • a further subject matter of the present invention is a process for the production of multilayer flat substrates using aqueous dispersions according to the invention, also called coating process according to the invention in the context of the present invention.
  • Another object of the present invention are multilayer flat substrates, prepared using aqueous dispersions of the invention.
  • sheet-like substrates For flat substrates, for example, it can be plastic films, z.
  • sheet substrates for example, it can be plastic films, z.
  • sheet substrates of textile such as mats, knits, loops, braids, knitwear, fabrics, and particularly non-wovens, synthetic suede materials having a microfiber top surface.
  • Further suitable sheet-like substrates are molded articles made of plastic, for example dashboards, furthermore artificial leather and very particularly preferably leather, leather also including split leather and leather with raw-skin flaws.
  • Leather may be tanned by any method, for example, chromium (III) compounds or chromium-free, and may be due to any animal skin, especially cattle. It is irrelevant whether the animal from whose skin one made leather used in the process according to the invention was slaughtered or died due to accidents or natural causes such as, for example, diseases.
  • flat substrate is coated with dispersion according to the invention and then cured, for example by thermal treatment.
  • a flat substrate is coated by a reversal process, as described, for example, in WO 05/47549.
  • the procedure is as follows.
  • a planar body is made of a material, preferably of metal, plastic or especially a silicone, in particular a silicone rubber.
  • the flat body is structurized, for example by embossing and preferably by treatment with help a laser.
  • the structuring preferably corresponds to the grain structure of a leather, for example a cow, calf or crocodile leather or the surface structure of a nubuck leather.
  • the structuring can have a fantasy structure, or one can imprint logos.
  • the structuring in addition to the grain structure of a leather, such as a cow, calf or crocodile leather additionally fine wells with a maximum depth of 200 microns, preferably from 60 to 100 microns and an average diameter in the range of 10 to 30 microns on.
  • the pattern of the indentations can then correspond to a beef, veal or crocodile skin.
  • the flat body has a thickness in the range of 0.5 to 5 mm, preferably 1 to 3 mm.
  • aqueous dispersion according to the invention to the structured body, for example by spraying, spraying, pouring, knife coating, coating or roller coating.
  • the sheet body has room temperature. However, it preferably has a temperature which is higher than room temperature, in particular in the range from 35 to 90 ° C. This results in a stronger solidification of the coating by means of the aqueous dispersion according to the invention.
  • the solidified coating is then transferred to a flat substrate.
  • the transfer can be done manually or preferably by machine, in particular in such a way that the flat body has been brought into contact with a roller or roller and now transfers the coating to the relevant flat substrate with the aid of the flat body applied to a roller or roller.
  • a multilayer substrate according to the invention is obtained.
  • the solidified coating produced from the aqueous dispersion according to the invention serves as cover layer in the multilayer substrate according to the invention and can also be referred to as cover layer in the context of the present invention.
  • the adhesion of the transferred layer and the planar substrate can be improved by further thermally treating or compressing the freshly prepared multilayer substrate according to the invention or by performing a combination of the above-mentioned steps.
  • inventive multilayer substrates have excellent properties, for example, good breathability, very good fastnesses such as rubbing fastness and a very good grip.
  • the coating produced using the aqueous dispersion according to the invention is not transferred directly to the planar substrate, but firstly brings a bonding layer onto the solidified coating while it is still on the planar body, for example the roll or roller, and transfers coating and tie layer prepared by using the aqueous dispersion of the present invention to the sheet substrate together.
  • the coating produced using aqueous dispersion according to the invention is not transferred directly to the planar substrate, but first brings a bonding layer onto the solidified coating while it is still on the body, and a second bonding layer to the sheet-like substrate, wherein the two bonding layers have substantially the same composition, and transfers coating and bonding layer prepared using aqueous dispersion according to the invention jointly to the already provided with bonding layer sheet substrate.
  • the bonding layer or the bonding layers having essentially the same composition are layers which are obtained by applying preferably one or more aqueous formulations, the aqueous formulations in question being composed as follows:
  • polyurethane at least one polyurethane, which may be the same or different from polyurethane (A), ( ⁇ ) at least one compound of general formula I a or I b, which is as defined above, also referred to for short as compound ( ⁇ ); preferably compound (B) and compound ( ⁇ ) are the same,
  • (Y) preferably at least one binder, for example a (meth) acrylate binder or a polyurethane binder, preferably a copolymer of
  • Binder (y) is preferably a copolymer of (meth) acrylic acid and at least one C 1 -C 10 -alkyl ester of (meth) acrylic acid, ( ⁇ ) optionally at least one additive, for example selected from pigments, handle agents, thickeners ( Thickeners), antistatics and matting agents.
  • the remainder is preferably water.
  • the aqueous formulation (s) from which one desires to make the topcoat (s) contain a silicone compound such as silicone compound (C) or polydialkylsiloxane (D).
  • a silicone compound such as silicone compound (C) or polydialkylsiloxane (D).
  • the aqueous formulation (s) from which one desires to make the topcoat (s) contain at least one soft polyurethane ( ⁇ 1) and at least one rigid polyurethane ( ⁇ 2), each different or preferably equally soft polyurethane (A1) or hard polyurethane (A2) may be.
  • the aqueous formulation (s) from which one desires to make the topcoat (s) may contain one or more organic solvents.
  • organic solvents are alcohols such as ethanol or isopropanol and in particular glycols, diglycols, triglycols or tetraglycols and di- or preferably monohydric glycols, diglycols, triglycols or tetraglycols etherified with C 1 -C 4 -alkyl.
  • Suitable organic solvents are ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, 1,2-dimethoxyethane, methyltriethylene glycol (“methyltriglycol”) and triethylene glycol n-butyl ether (“butyltriglycol”).
  • the aqueous formulation (s) from which one desires to make the topcoat (s) is composed as follows: in total in the range of 20 to 30% by weight of polyurethane ( ⁇ ), in the range from 1 to 5, preferably 2 to 3 wt .-% compound (ß), in the range of up to 20 wt .-% of binder (y), ranging from zero to a total of 20 wt .-% additive (s) ( ⁇ ), and preferably neither silicone compound (C) nor polydialkylsiloxane (D).
  • the aqueous formulation (s) from which one desires to make the topcoat (s) will be in the range of 10 to 30 weight percent soft polyurethane ( ⁇ 1) and in the range of zero to 20% by weight hard polyurethane ( ⁇ 2).
  • indications in% by weight in each case designate the active ingredient or solid and are based on the entire aqueous formulation used in the coating method according to the invention.
  • the remainder to 100 wt .-% missing is preferably continuous phase, for example water or a mixture of one or more organic solvents and water, wherein in the above-mentioned mixtures at least 50 wt .-% water.
  • the thickness of the outer layers may be in the range of 5 to 50 microns, preferably 10 to 30 microns.
  • the application can be carried out, for example, by spraying, spraying, pouring, knife coating, coating or rollercoating.
  • the bonding of the layers can be improved or accelerated by conventional methods per se, for example by thermal treatment at 80 to 120 0 C and / or pressing together at a contact pressure in the range of 1, 5 to 3 bar.
  • Inventive multilayer substrates are suitable for the production of, for example, furniture and in particular automotive interior parts, in particular car seats, furthermore of shoes, textiles and furniture. They have a good authenticity and also an excellent breathability. An object of the present application are thus also automotive interior parts, shoes, textiles and furniture, produced using multilayer substrates according to the invention.
  • Aqueous dispersion Disp.1 according to the invention having a solids content of 35% and a kinematic viscosity of 25 seconds was obtained at 23 ° C., determined in accordance with DIN EN ISO 2431, as of May 1996.
  • aqueous dispersion 7% by weight of an aqueous dispersion (particle diameter: 125 nm, solids content: 40%) of a soft polyurethane (A1.1), prepared from hexamethylene diisocyanate (a 1.1) and isophorone diisocyanate (a1.2), were mixed with stirring in a stirred vessel.
  • A1.1 soft polyurethane
  • a 1.1 hexamethylene diisocyanate
  • a1.2 isophorone diisocyanate
  • polyester diol (b1.1) having a molecular weight M w of 800 g / mol, prepared by polycondensation of isophthalic acid, adipic acid and 1, 4-dihydroxymethylcyclohexane (mixture of isomers) in a molar ratio of 1: 1: 2, 5 wt .-% 1, 4-butanediol (b1.2), and 3 wt .-% monomethylated polyethylene glycol (c.1) and 3 wt .-% H2N-CH2CH2-NH-CH2CH2-COOH, wt .-% each based on
  • Polyurethane (A2.2) obtainable by reaction of isophorone diisocyanate (a1.2), 1, 4-
  • Aqueous dispersion Disp.2 according to the invention having a solids content of 35% and a kinematic viscosity of 25 seconds was obtained at 23 ° C., determined in accordance with DIN
  • a laser-engravable silicone polymer layer with a smooth surface based on a room-temperature-curing filler-containing 2-component silicone elastomer was prepared by intensively mixing the two components together and applying them to a temporary PET cover film using a knife coating. The silicone layer was allowed to cure for 16 hours at room temperature. The thus chemically reinforced elastomeric silicone layer was fixed with the aid of a silicone adhesive on a polyester fabric as a carrier element. The reinforced elastomeric polymer layer with fabric backing obtained after removal of the temporary PET cover sheet had a total layer thickness of 1.7 mm. The resulting flat body (not structured) was fabricated before laser structuring into plate pieces of approx. 40 x 100 cm.
  • a CO 2 laser engraving machine of the type BDE 4131 (Stork Prints Austria GmbH, Kufstein) was used.
  • the machine has 3 sealed CO 2 lasers with a rated output of 250 W each, the corresponding optical components and the associated peripherals for control, laser cooling, exhaust air detection and exhaust air treatment.
  • the cylindrical receiving system consisted of either a thin-walled cylindrical metal drum or Metallkonen, in which a so-called. Drucksleeve, consisting of a (usually multi-layered) cylindrical hollow cylinder of one or more plastics, is clamped.
  • the laser control took place via a connected control computer by means of a special output software.
  • the output software interprets the motif, which is in the form of a grayscale bitmap, as a pixel-by-pixel height profile.
  • Each gray level corresponds to a specific engraving depth or engraving performance at the relevant point of the motif. Ideally, the relationship between grayscale value and engraving depth is approximately linear.
  • the flat body (not structured) was in the form of a plane layer and was fixed on a cylindrical receiving element for the duration of the engraving.
  • the rotating cylindrical receiving member with the die to be processed was uniformly displaced relative to the laser beam in the axial direction. In this way, the laser beam swept over the entire surface of the planar body to be machined.
  • aqueous dispersion 7% by weight of an aqueous dispersion (particle diameter: 125 nm), solids content: 40%) of a soft polyurethane ( ⁇ 1.1) prepared from hexamethylene diisocyanate (a 1.1) and isophorone diisocyanate (a1.2) in a ratio by weight of 13: 10 as diisocyanates and and as diols a polyesterdiol (b1.1) having a molecular weight M w of 800 g / mol, prepared by polycondensation of isophthalic acid, adipic acid and 1, 4-dihydroxymethylcyclohexane (mixture of isomers) in a molar ratio of 1: 1: 2, 5 wt.
  • a soft polyurethane ⁇ 1.1
  • a 1.1 hexamethylene diisocyanate
  • a1.2 isophorone diisocyanate
  • b1.1 polyesterdiol having a molecular weight M w of
  • Aqueous formulation WF.1 was obtained. Note: Compound (B.1) was identical to compound (ß.1).
  • aqueous dispersion 7% by weight of an aqueous dispersion (particle diameter: 125 nm), solids content: 40%) of a soft polyurethane ( ⁇ 1.1) prepared from hexamethylene diisocyanate (a 1.1) and isophorone diisocyanate (a1.2) in a ratio by weight of 13: 10 as diisocyanates and as diols a polyester diol (b1.1) having a molecular weight M w of 800 g / mol, prepared by polycondensation of isophthalic acid, adipic acid and 1, 4-dihydroxymethylcyclohexane (mixture of isomers) in a molar ratio of 1: 1: 2 , 5 wt .-% 1, 4-butanediol (b1.2), 3 wt .-% of simply methylated polyethylene glycol (c.1) and 3 wt .-% H 2 N-CH 2 CH 2 -NH-CH 2 CH 2
  • Aqueous dispersion WF.2 according to the invention having a solids content of 35% and a kinematic viscosity of 25 sec. was obtained, determined at 23 ° C. in accordance with DIN EN ISO 2431, as at May 1996.
  • the flat body was placed on a heatable surface and heated to 80 0 C. Subsequently, it was sprayed through several spray nozzles Disp.1 or Disp.2, in each case 60 g / m 2 (wet). It was allowed to solidify at 80 0 C until the surface was no longer sticky. A flat body coated with a cover layer was obtained.
  • Tanned on a conventionally with chromium (III) was Rindernappaleder WF.1 WF.2 or applied by means of a spray gun, namely 50 g / m 2 (wet). It was stored at room temperature for two minutes, after which the coated cattle napkin felt dry.
  • the flat body (uncoated) was easily and residue-free removed from inventive coated cattle leather L.1 or L.2 and immediately used again.
  • Bovine leathers L.1 or L.2 according to the invention had the following properties: Adhesive strength in accordance with DIN EN ISO 1644 with a cyanoacrylate adhesive: dry value: 21.3 N / cm, wet value: 10.3 N / cm or 10, 5 N / cm rubbing fastness in accordance with DIN EN ISO 1 1640: Petrol Grizzly, Tested with Benzine: Grade 5 for 2Ox Neutral Soap Rub: Grade 5 for 100x solvent rub fastness tested with ethanol: Grade 5 wet scrub resistance, Grade 4 to 5 for 50Ox Welding fastness: Grade 5 for 100x dry rub fast: Grade 5 for 2.00Ox
  • Dihydroxymethylcyclohexane (mixture of isomers) in a molar ratio of 1: 1: 2, 5 wt .-% 1, 4-butanediol (b1.2), 3 wt .-% monomethylated polyethylene glycol (c.1) and 3 wt .-% H 2 N-CH 2 CH 2 -NH-CH 2 CH 2 -COOH,% by weight, based in each case on polyester diol (b1.1), softening point of 62 ° C., softening starts at 55 ° C., Shore hardness A 54 .
  • a polyurethane-based thickener 0.5% by weight of a polyurethane-based thickener, 1% by weight of hollow microspheres, average diameter 20 ⁇ m, of polyvinylidene chloride, filled with isobutane, 15% by weight of silica gel.
  • aqueous dispersion 10% by weight of an aqueous dispersion (particle diameter: 125 nm) of a thermoplastic polyurethane (A1.1) prepared from hexamethyl diisocyanate (a 1.1) and isophorone diisocyanate (a1.2) in a ratio by weight of 13:10 as diisocyanates and as diols a polyester diol (b1.1) having a molecular weight M w of 800 g / mol, prepared by polycondensation of isophthalic acid, adipic acid and 1, 4-dihydroxymethylcyclohexane (mixture of isomers) in a molar ratio of 1: 1: 2, 5 wt.
  • A1.1 thermoplastic polyurethane
  • a1.2 isophorone diisocyanate
  • softening point of 62 ° C. softening starts at 55 ° C.
  • Shore hardness A 54 60% by weight of an aqueous dispersion (particle diameter: 150 nm) of a hard polyurethane (A2.2), obtainable by reaction of isophorone diisocyanate, 1, 4-
  • Butanediol, 1, 1-dimethylolpropionic acid, hydrazine hydrate and polypropylene glycol having a molecular weight M w of 4200 g / mol, softening point of 195 ° C, Shore hardness A 86, 3.5 wt .-% of a 70 wt .-% (in propylene carbonate ) Solution of compound (B.1) (see above), NCO content 12%,
  • a polyurethane-based thickener 0.5% by weight of a polyurethane-based thickener, 1% by weight of hollow microspheres, average diameter 20 ⁇ m, of polyvinylidene chloride, filled with isobutane, 15% by weight of silica gel.
  • the two-dimensional body of II was placed on a heatable surface and heated to 80 0 C. Subsequently, sprays were dispensed by several spray nozzles Disp.3 or Disp.4, namely 80 g / m 2 (wet). It was allowed to solidify at 80 0 C until the surface was no longer sticky. It was obtained with a cover layer coated flat body.
  • VI. On the coated with a top layer surface body of VI. was brought by spray nozzles analogous to V. WF.1 or WF.2, in each case 50 g / m 2 (wet). It was allowed to dry in an air dryer at 80 0 C until the surface was no longer sticky. It was obtained with a cover layer and a connecting layer coated flat body.
  • non-woven WF.1 or WF.2 was applied, in each case 50 g / m 2 (wet). It was stored at room temperature for two minutes, after which the coated nonwovens felt dry.
  • Nonwovens VS.1 and VS.2 coated according to the invention were elastic, breathable, dimensionally stable and had a very good feel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Wässrige Dispersionen, enthaltend (A) mindestens ein Polyurethan, (B) mindestens eine Verbindung der allgemeinen Formel I a oder I b (I a) (I b) wobei R1, R2 und R3 gleich oder verschieden sein können und gewählt werden aus A1-NCO und A1-NH-CO-X, wobei A1 ein Spacer mit 2 bis 20 C-Atomen ist und X gewählt wird 0(AO)xR4, AO ist C2-C4-Alkylenoxid, x ist eine ganze Zahl im Bereich von 1 bis 50 und R4 ist gewählt aus Wasserstoff und C1-C30-Alkyl, (C) und mindestens eine Silikonverbindung mit reaktiven Gruppen.

Description

WÄSSRIGE DISPERSIONEN, ENTHALTEND POLYURETHAN, UND IHRE VERWENDUNG ZUR HERSTELLUNG VON FLÄCHIGEN SUBSTRATEN
Die vorliegende Erfindung betrifft wässrige Dispersionen, enthaltend (A) mindestens ein Polyurethan, (B) mindestens eine Verbindung der allgemeinen Formel I a oder I b
Figure imgf000002_0001
I a I b
wobei R1, R2 und R3 gleich oder verschieden sein können und gewählt werden aus A1-NCO und A1-NH-CO-X, wobei
A1 ein Spacer mit 2 bis 20 C-Atomen ist und
X gewählt wird 0(AO)xR4,
AO ist C2-C4-Alkylenoxid, x ist eine ganze Zahl im Bereich von 1 bis 50 und R4 ist gewählt aus Wasserstoff und Ci-C3o-Alkyl,
(C) und mindestens eine Silikonverbindung mit reaktiven Gruppen.
Wässrige silikonhaltige Dispersionen finden zahlreiche Anwendungen. So werden sie beispielsweise zur Hydrophobierung von flächigen Substraten wie beispielsweise Textil oder Leder eingesetzt. Eine bestimmte Anwendung ist dabei die Beschichtung von Leder mit Hilfe eines Umkehrbeschichtungsverfahrens, wie es beispielsweise in WO 05/47549 offenbart ist. Dabei spielt die Deckschicht, mit der das Leder beschichtet wird, für die haptischen Eigenschaften eine entscheidende Rolle.
Aus DE 20 2006 007 957 U1 ist bekannt, dass sich zugerichtete Leder unter Verwendung von Silikondispersionen herstellen lassen, die Partikel mit einem mittleren Durchmesser zwischen 3 μm und 13 μm aufweisen und die einer Polyurethandispersion zugeschlagen werden, die als Deckschicht im Umkehrverfahren auf das zu beschichtende Leder aufgetragen wird. Die Echtheiten, insbesondere die dauerhaften Griffechtheiten, von derartig beschichteten Ledern können jedoch noch verbessert werden. Außerdem lässt sich die Verwendbarkeit der Matrizen noch verbessern.
Es bestand also die Aufgabe, Silikondispersionen bereit zu stellen, die sich für das Beschichten von Substraten insbesondere nach dem Umkehrverfahren eignen. Es be- stand weiterhin die Aufgabe, beschichtete Substrate mit guten Echtheiten, insbesondere Reibechtheiten, und gutem Griff bereit zu stellen. Es bestand weiterhin die Aufgabe, ein Verfahren zur Herstellung von beschichteten Substraten bereit zu stellen, dass die vorstehend genannten beschichteten Substrate liefert und sich vorteilhaft ausführen lässt.
Dementsprechend wurden die eingangs definierten wässrigen Dispersionen gefunden.
Erfindungsgemäße wässrige Dispersionen enthalten
(A) mindestens ein Polyurethan, das im Rahmen der vorliegenden Erfindung auch als
Polyurethan (A) bezeichnet wird.
Bei Polyurethan (A) handelt es sich vorzugsweise um ein thermoplastisches Polyurethan. Thermoplastische Polyurethane (kurz auch als TPU bezeichnet) und daraus hergestellte Dispersionen sind als solche bekannt.
Polyurethane (A) sind allgemein bekannt, kommerziell erhältlich und bestehen im all- gemeinen aus einer Weichphase aus höhermolekularen Polyhydroxylverbindungen, z.B. aus Polyester- oder Polyethersegmenten, und einer Urethan-Hartphase, gebildet aus niedermolekularen Kettenverlängerungsmitteln und Di- oder Polyisocyanaten.
Verfahren zur Herstellung von Polyurethanen (A) sind allgemein bekannt. Im allgemei- nen werden Polyurethane (A) durch Umsetzung von
(a) Isocyanaten, bevorzugt Diisocyanaten mit
(b) gegenüber Isocyanaten reaktiven Verbindungen, üblicherweise mit einem Molekulargewicht (Mw) von 500 bis 10.000 g/mol, bevorzugt 500 bis 5.000 g/mol, besonders bevorzugt 800 bis 3.000 g/mol, und (c) Kettenverlängerungsmitteln mit einem Molekulargewicht von 50 bis 499 gegebenenfalls in Gegenwart von
(d) Katalysatoren
(e) und/oder üblichen Zusatzstoffen hergestellt.
Im Folgenden sollen beispielhaft die Ausgangskomponenten und Verfahren zur Herstellung der bevorzugten Polyurethane (A) dargelegt werden. Die bei der Herstellung der Polyurethane üblicherweise verwendeten Komponenten (a), (b), (c) sowie gegebenenfalls (d) und/oder (e) sollen im Folgenden beispielhaft beschrieben werden:
Als Isocyanate (a) können allgemein bekannte aliphatische, cycloaliphatische, aralipha- tische und/oder aromatische Isocyanate eingesetzt werden, beispielsweise Tri-, Tetra-, Penta-, Hexa-, Hepta- und/oder Oktamethylendiisocyanat, 2-Methyl-pentamethylen- diisocyanat-1 ,5, 2-Ethyl-butylen-diisocyanat-1 ,4, Pentamethylen-diisocyanat-1 ,5, Buty- len-diisocyanat-1 ,4, 1 -lsocyanato-3,3,5-trimethyl-5-isocyanato-methyl-cyclohexan (Isophorondiisocyanat, IPDI), 1 ,4- und/oder 1 ,3-Bis(isocyanatomethyl)cyclohexan (HXDI), 1 ,4-Cyclohexan-diisocyanat, 1-Methyl-2,4- und/oder -2, 6-cyclohexan-di- isocyanat und/oder 4,4'-, 2,4'- und 2,2'-Dicyclohexylmethan-diisocyanat, 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (MDI), 1 ,5-Naphthylendiisocyanat (NDI), 2,4- und/oder 2,6-Toluylendiisocyanat (TDI), Diphenylmethandiisocyanat, 3,3'-Dimethyl- diphenyl-diisocyanat, 1 ,2-Diphenylethandiisocyanat und/oder Phenylendiisocyanat. Bevorzugt wird 4,4'-MDI verwendet. Bevorzugt sind zudem aliphatische Diisocyanate, insbesondere Hexamethylendiisocyanat (HDI), und besonders bevorzugt sind aromatische Diisocyanate wie 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (MDI) und Mischungen der vorstehend genannten Isomere.
Als gegenüber Isocyanaten reaktive Verbindungen (b) können die allgemein bekannten gegenüber Isocyanaten reaktiven Verbindungen eingesetzt werden, beispielsweise Polyesterole, Polyetherole und/oder Polycarbonatdiole, die üblicherweise auch unter dem Begriff „Polyole" zusammengefasst werden, mit Molekulargewichten (Mw) im Bereich von 500 und 8.000 g/mol, bevorzugt 600 bis 6.000 g/mol, insbesondere 800 bis 3.000 g/mol, und bevorzugt einer mittleren Funktionalität gegenüber Isocyanaten von 1 ,8 bis 2,3, bevorzugt 1 ,9 bis 2,2, insbesondere 2. Bevorzugt setzt man Polyetherpo- lyole ein, beispielsweise solche auf der Basis von allgemein bekannten Startersubstanzen und üblichen Alkylenoxiden, beispielsweise Ethylenoxid, 1 ,2-Propylenoxid und/oder 1 ,2-Butylenoxid, bevorzugt Polyetherole basierend auf Polyoxytetramethylen (PoIy-THF), 1 ,2-Propylenoxid und Ethylenoxid. Polyetherole weisen den Vorteil auf, dass sie eine höhere Hydrolysestabilität als Polyesterole besitzen, und sind bevorzugt als Komponente (b), insbesondere zur Herstellung von weichen Polyurethanen (A1 ).
Als Polycarbonatdiole sind insbesondere aliphatische Polycarbonatdiole zu nennen, beispielsweise 1 ,4-Butandiol-Polycarbonat und 1 ,6-Hexandiol-Polycarbonat.
Als Polyesterdiole sind solche zu nennen, die sich durch Polykondensation von mindestens einem primären Diol, vorzugsweise mindestens einen primären aliphatischen Diol, beispielsweise Ethylenglykol, 1 ,4-Butandiol, 1 ,6-Hexandiol, Neopentylglykol oder besonders bevorzugt 1 ,4-Dihydroxymethylcyclohexan (als Isomerengemisch) oder Mischungen von mindestens zwei der vorstehend genannten Diole einerseits und mindestens einer, bevorzugt mindestens zwei Dicarbonsäuren oder ihren Anhydriden andererseits herstellen lassen. Bevorzugte Dicarbonsäuren sind aliphatische Dicarbonsäuren wie Adipinsäure, Glutarsäure, Bernsteinsäure und aromatische Dicarbonsäuren wie beispielsweise Phthalsäure und insbesondere Isophthalsäure.
Polyetherole werden bevorzugt durch Anlagerung von Alkylenoxiden, insbesondere Ethylenoxid, Propylenoxid und Mischungen daraus, an Diole wie beispielsweise Ethylenglykol, 1 ,2-Propylenglykol, 1 ,2-Butylenglykol, 1 ,4-Butandiol, 1 ,3-Propandiol, oder an Triole wie beispielsweise Glycerin, in Gegenwart von hochaktiven Katalysatoren hergestellt. Derartige hochaktive Katalysatoren sind beispielsweise Cäsiumhydroxid und Dimetallcyanidkatalysatoren, auch als DMC-Katalysatoren bezeichnet. Ein häufig eingesetzter DMC-Katalysator ist das Zinkhexacyanocobaltat. Der DMC-Katalysator kann nach der Umsetzung im Polyetherol belassen werden, vorzugsweise wird er entfernt, beispielsweise durch Sedimentation oder Filtration.
Statt eines Polyols können auch Mischungen verschiedener Polyole eingesetzt werden.
Zur Verbesserung der Dispergierbarkeit kann man als gegenüber Isocyanaten reaktive Verbindungen (b) anteilig auch ein oder mehr Diole oder Diamine mit einer Carbonsäuregruppe oder Sulfonsäuregruppe (b') einsetzen, insbesondere Alkalimetall- oder Ammoniumsalze von 1 ,1-Dimethylolbutansäure, 1 ,1-Dimethylolpropionsäure oder
Figure imgf000005_0001
Als Kettenverlängerungsmittel (c) werden an sich bekannte aliphatische, araliphati- sche, aromatische und/oder cycloaliphatische Verbindungen mit einem Molekulargewicht von 50 bis 499 g/mol und mindestens zwei funktionellen Gruppen, bevorzugt Verbindungen mit genau zwei funktionellen Gruppen pro Molekül, eingesetzt, bei- spielsweise Diamine und/oder Alkandiole mit 2 bis 10 C-Atomen im Alkylenrest, insbesondere 1 ,3-Propandiol, Butandiol-1 ,4, Hexandiol-1 ,6 und/oder Di-, Tri-, Tetra-, Penta-, Hexa-, Hepta-, Okta-, Nona- und/oder Dekaalkylenglykole mit 3 bis 8 Kohlenstoffatomen pro Molekül, bevorzugt entsprechende Oligo- und/oder Polypropylenglykole, wobei auch Mischungen an Kettenverlängerungsmitteln (c) eingesetzt werden können.
Besonders bevorzugt handelt es sich bei den Komponenten (a) bis (c) um difunktionel- Ie Verbindungen, d.h. Diisocyanate (a), difunktionelle Polyole, bevorzugt Polyetherole (b) und difunktionelle Kettenverlängerungsmittel, bevorzugt Diole.
Geeignete Katalysatoren (d), welche insbesondere die Reaktion zwischen den NCO- Gruppen der Diisocyanate (a) und den Hydroxylgruppen der Aufbaukomponenten (b) und (c) beschleunigen, sind an sich bekannte tertiäre Amine, wie z.B. Triethylamin, Dimethylcyclohexylamin, N-Methylmorpholin, N,N'-Dimethylpiperazin, 2- (Dimethylaminoethoxy)-ethanol, Diazabicyclo-(2,2,2)-octan („DABCO") und ähnliche tertiäre Amine, sowie insbesondere organische Metallverbindungen wie Titansäureester, Eisenverbindungen wie z. B. Eisen-(lll)- acetylacetonat, Zinnverbindungen, z. B. Zinndiacetat, Zinndioctoat, Zinndilaurat oder die Zinndialkylsalze aliphatischer Carbonsäuren wie Dibutylzinndiacetat, Dibutylzinndilaurat oder ähnliche. Die Katalysatoren werden üblicherweise in Mengen von 0,0001 bis 0,1 Gew.-Teilen pro 100 Gew.-Teile Komponente (b) eingesetzt.
Neben Katalysator (d) können den Komponenten (a) bis (c) auch Hilfsmittel und/oder Zusatzstoffe (e) hinzugefügt werden. Genannt seien beispielsweise Treibmittel, Anti- blockmittel, oberflächenaktive Substanzen, Füllstoffe, beispielsweise Füllstoffe auf Basis von Nanopartikeln, insbesondere Füllstoffe auf Basis von CaCθ3, weiterhin Keimbildungsmittel, Gleithilfemittel, Farbstoffe und Pigmente, Antioxidantien, z.B. gegen Hydrolyse, Licht, Hitze oder Verfärbung, anorganische und/oder organische Füllstoffe, Verstärkungsmittel und Weichmacher, Metalldeaktivatoren. In einer bevorzugten Ausführungsform fallen unter die Komponente (e) auch Hydrolyseschutzmittel wie beispielsweise polymere und niedermolekulare Carbodiimide. Bevorzugt enthält das weiche Polyurethan Triazol und/oder Triazolderivat und Antioxidantien in einer Menge von 0,1 bis 5 Gew.-% bezogen auf das Gesamtgewicht des betreffenden weichen Polyu- rethans. Als Antioxidantien sind im allgemeinen Stoffe geeignet, welche unerwünschte oxidative Prozesse im zu schützenden Kunststoff hemmen oder verhindern. Im allgemeinen sind Antioxidantien kommerziell erhältlich. Beispiele für Antioxidantien sind sterisch gehinderte Phenole, aromatische Amine, Thiosynergisten, Organophosphorverbindungen des trivalenten Phosphors, und Hindered Amine Light Stabilizers. Bei- spiele für sterisch gehinderte Phenole finden sich in Plastics Additive Handbook, 5th edition, H. Zweifel, ed, Hanser Publishers, München, 2001 ([1]), S. 98-107 und S. 1 16 - S. 121. Beispiele für Aromatische Amine finden sich in [1 ] S. 107-108. Beispiele für Thiosynergisten sind gegeben in [1], S.104-105 und S.112-1 13. Beispiele für Phosphite finden sich in [1], S.109-1 12. Beispiele für Hindered Amine Light Stabilizer sind gege- ben in [1], S.123-136. Zur Verwendung im Antioxidantiengemisch eignen sich bevorzugt phenolische Antioxidantien. In einer bevorzugten Ausführungsform weisen die Antioxidantien, insbesondere die phenolischen Antioxidantien, eine Molmasse von größer 350 g/mol, besonders bevorzugt von größer 700g/mol und einer maximalen Molmasse (Mw) bis maximal 10.000 g/mol, bevorzugt bis maximal 3.000 g/mol auf. Ferner besitzen sie bevorzugt einen Schmelzpunkt von maximal 1800C. Weiterhin werden bevorzugt Antioxidantien verwendet, die amorph oder flüssig sind. Ebenfalls können als Komponente (e) auch Gemische von zwei oder mehr Antioxidantien verwendet werden.
Neben den genannten Komponenten (a), (b) und (c) und gegebenenfalls (d) und (e) können auch Kettenregler (Kettenabbruchsmittel), üblicherweise mit einem Molekulargewicht von 31 bis 3000 g/mol, eingesetzt werden. Solche Kettenregler sind Verbindungen, die lediglich eine gegenüber Isocyanaten reaktive funktionelle Gruppe aufweisen, wie z.B. monofunktionelle Alkohole, monofunktionelle Amine und/oder monofunk- tionelle Polyole. Durch solche Kettenregler kann ein Fließverhalten, insbesondere bei weichen Polyurethanen, gezielt eingestellt werden. Kettenregler können im allgemei- nen in einer Menge von 0 bis 5, bevorzugt 0,1 bis 1 Gew.-Teile, bezogen auf 100 Gew.-Teile der Komponente (b) eingesetzt werden und fallen definitionsgemäß unter die Komponente (c).
Neben den genannten Komponenten (a), (b) und (c) und gegebenenfalls (d) und (e) können auch Vernetzungsmittel mit zwei oder mehr gegenüber Isocyanat reaktiven Gruppen gegen Schluss der Aufbaureaktion eingesetzt werden, beispielsweise Hydra- zinhydrat.
Zur Einstellung der Härte von Polyurethan (A) können die Komponenten (b) und (c) in relativ breiten molaren Verhältnissen gewählt werden. Bewährt haben sich molare Verhältnisse von Komponente (b) zu insgesamt einzusetzenden Kettenverlängerungsmitteln (c) von 10 : 1 bis 1 : 10, insbesondere von 1 : 1 bis 1 : 4, wobei die Härte der weichen Polyurethane mit zunehmendem Gehalt an (c) ansteigt. Die Umsetzung zur Her- Stellung von Polyurethan (A) kann bei einer Kennzahl von 0,8 bis 1 ,4 : 1 , bevorzugt bei einer Kennzahl von 0,9 bis 1 ,2 : 1 , besonders bevorzugt bei einer Kennzahl von 1 ,05 bis 1 ,2 : 1 erfolgen. Die Kennzahl ist definiert durch das Verhältnis der insgesamt bei der Umsetzung eingesetzten Isocyanatgruppen der Komponente (a) zu den gegenüber Isocyanaten reaktiven Gruppen, d.h. den aktiven Wasserstoffen, der Komponenten (b) und gegebenenfalls (c) und gegebenenfalls monofunktionellen gegenüber Isocyanaten reaktiven Komponenten als Kettenabbruchsmitteln wie z.B. Monoalkoholen.
Die Herstellung von Polyurethan (A) kann nach an sich bekannten Verfahren kontinuierlich, beispielsweise nach One-shot oder dem Prepolymerverfahren, oder diskontinu- ierlich nach dem an sich bekannten Prepolymerprozess erfolgen. Bei diesen Verfahren können die zur Reaktion kommenden Komponenten (a), (b), (c) und gegebenenfalls (d) und/oder (e) nacheinander oder gleichzeitig miteinander vermischt werden, wobei die Reaktion unmittelbar einsetzt.
Polyurethan (A) kann man nach an sich bekannten Verfahren in Wasser dispergieren, beispielsweise indem man Polyurethan (A) in Aceton löst oder als Lösung in Aceton herstellt, mit Wasser versetzt und danach das Aceton entfernt, beispielsweise durch Abdestillieren. In einer Variante stellt man Polyurethan (A) als Lösung in N- Methylpyrrolidon oder N-Ethylpyrrolidon her, versetzt mit Wasser und entfernt das N- Methylpyrrolidon bzw. N-Ethylpyrrolidon.
In einer Ausführungsform der vorliegenden Erfindung enthalten erfindungsgemäße wässrige Dispersionen zwei verschiedene Polyurethane (A1 ) und (A2) auf, von denen Polyurethan (A1 ) ein sogenanntes weiches Polyurethan ist, das wie oben als Polyu- rethan (A) beschrieben aufgebaut ist, und mindestens ein hartes Polyurethan (A2). Hartes Polyurethan (A2) kann man im Grundsatz analog zu weichem Polyurethan (A1 ) herstellen, jedoch wählt man andere gegenüber Isocyanaten reaktiven Verbindungen (b) oder andere Mischungen von gegenüber Isocyanaten reaktiven Verbindungen (b), im Rahmen der vorliegenden Erfindung auch als gegenüber Isocyanaten reaktiven Verbindungen (b2) oder kurz Verbindung (b2) bezeichnet.
Beispiele für Verbindungen (b2) sind insbesondere 1 ,4-Butandiol, 1 ,6-Hexandiol und Neopentylglykol, entweder in Mischung miteinander oder in Mischung mit Polyethylen- glykol.
In einer Variante der vorliegenden Erfindung wählt man als Diisocyanat (a) und (a2) jeweils Mischungen von Diisocyanaten, beispielsweise Mischungen von HDI und IPDI, wobei man zur Herstellung von hartem Polyurethan (A2) größere Anteile an IPDI wählt als zur Herstellung von weichem Polyurethan (A1).
In einer Ausführungsform der vorliegenden Erfindung weist Polyurethan (A2) einen Shore-Härte A im Bereich von über 60 bis maximal 100 auf, wobei die Shore-Härte A nach DIN 53505 nach 3 s bestimmt wurde.
In einer Ausführungsform der vorliegenden Erfindung weist Polyurethan (A) einen mitt- leren Partikeldurchmesser im Bereich von 100 bis 300 nm, bevorzugt 120 bis 150 nm auf, bestimmt durch Laserlichtstreuung.
In einer Ausführungsform der vorliegenden Erfindung weist weiches Polyurethan (A1 ) einen mittleren Partikeldurchmesser im Bereich von 100 bis 300 nm, bevorzugt 120 bis 150 nm auf, bestimmt durch Laserlichtstreuung.
In einer Ausführungsform der vorliegenden Erfindung weist Polyurethan (A2) einen mittleren Partikeldurchmesser im Bereich im Bereich von 100 bis 300 nm, bevorzugt 120 bis 150 nm auf, bestimmt durch Laserlichtstreuung.
Erfindungsgemäße wässrige Dispersionen enthalten weiterhin
(B) eine Verbindung der allgemeinen Formel I a oder I b, im Rahmen der vorliegenden
Erfindung auch kurz Verbindung (B) genannt,
R1 R1
I
0Y 1 I I f
NH HN.
V ^R2
O
I b wobei R1, R2 und R3 verschieden oder vorzugsweise gleich sein können und gewählt werden aus A1-NCO und A1-NH-CO-X, wobei
A1 ein Spacer mit 2 bis 20 C-Atomen ist, gewählt aus Arylen, unsubstituiert oder substituiert mit einer bis vier Ci-C4-Alkylgruppen, Alkylen und Cycloalkylen, beispielsweise 1 ,4-Cyclohexylen. Bevorzugte Spacer A1 sind Phenylen, insbesondere para-Phenylen, weiterhin Toluylen, insbesondere para-Toluylen, und C2-Ci2-Alkylen wie beispielsweise Ethylen (CH2CH2), weiterhin -(CH2J3-, -(CH2J4-, -(CH2J5-, -(CH2J6-, -(CH2J8-, -(CH2)io-,
X gewählt wird 0(AO)xR4, wobei
AO ist C2-C4-Alkylenoxid, beispielsweise Butylenoxid, insbesondere Ethylenoxid (CH2CH2O) oder Propylenoxid (CH(CH3)CH2O) bzw. (CH2CH(CH3)O),
x ist eine ganze Zahl im Bereich von 1 bis 50, bevorzugt 5 bis 25, und
R4 ist gewählt aus Wasserstoff und Ci-C3o-Alkyl, insbesondere Ci-Cio-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-
Pentyl, sec.-Pentyl, neo-Pentyl, 1 ,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec- Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, besonders bevorzugt C1-C4- Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.- Butyl.
Besonders bevorzugte Verbindungen (B) sind solche, bei denen R1 und R2 und R3 jeweils gleich (CH2)4-NCO, (CH2)6-NCO oder (CH2)i2-NCO sind.
Erfindungsgemäße wässrige Dispersionen enthalten weiterhin jeweils (C) eine Silikonverbindung mit reaktiven Gruppen, im Rahmen der vorliegenden Erfindung auch Silikonverbindung (C) genannt.
Beispiele für reaktive Gruppen im Zusammenhang mit Silikonverbindungen (C) sind beispielsweise Carbonsäuregruppen, Carbonsäurederivate wie beispielsweise Carbon- säuremethylester oder Carbonsäureanhydride, insbesondere Bernsteinsäureanhydridgruppen, und besonders bevorzugt Carbonsäuregruppen.
Beispiele für reaktive Gruppen sind weiterhin primäre und sekundäre Aminogruppen, beispielsweise NH(iso-C3H7)-Gruppen, NH(n-C3H7)-Gruppen, NHfcyclo-CβHn)- Gruppen und NH(n-C4Hg)-Gruppen, insbesondere NH(C2H5)-Gruppen und NH(CH3)- Gruppen, und ganz besonders bevorzugt NH2-Gruppen. Weiterhin sind Aminoalkylaminogruppen bevorzugt wie beispielsweise -NH-CH2-CH2-NH2-Gruppen, -NH-CH2-CH2-CH2-NH2-Gruppen, -NH-CH2-CH2-NH(C2H5)-Gruppen, -NH-CH2-CH2-CH2-NH(C2H5)-Gruppen, -NH-CH2-CH2-NH(CH3)-Gruppen, -NH-CH2-CH2-CH2-NH(CH3)-Gruppen.
Die reaktive Gruppe bzw. die reaktiven Gruppen sind an Silikonverbindung (C) entweder direkt oder vorzugsweise über einen Spacer A2 gebunden. A2 wird gewählt aus Arylen, unsubstituiert oder substituiert mit einer bis vier Ci-C4-Alkylgruppen, Alkylen und Cycloalkylen wie beispielsweise 1 ,4-Cyclohexylen. Bevorzugte Spacer A2 sind Phenylen, insbesondere para-Phenylen, weiterhin Toluylen, insbesondere para-
Toluylen, und C2-Ci8-Alkylen wie beispielsweise Ethylen (CH2CH2), weiterhin -(CH2)3-, -(CH2J4-, -(CH2)S-, -(CH2J6-, -(CH2)S-, -(CH2)io-, -(CH2)I2-, -(CH2)i4-, -(CH2)i6- und
Zusätzlich zu den reaktiven Gruppen enthält Silikonverbindung (C) nicht-reaktive
Gruppen, insbesondere Di-Ci-Cio-alkyl-Si02-Gruppen oder Phenyl-Ci-Cio-Alkyl-Si02- Gruppen, insbesondere Dimethyl-SiO2-Gruppen, und gegebenenfalls eine oder mehrere Si(CH3)2-OH-Gruppen oder Si(CH3)3-Gruppen.
In einer Ausführungsform der vorliegenden Erfindung weist Silikonverbindung (C) im Mittel ein bis vier reaktive Gruppen pro Molekül auf.
In einer speziellen Ausführungsform der vorliegenden Erfindung weist Silikonverbindung (C) im Mittel ein bis vier COOH-Gruppen pro Molekül auf.
In einer anderen speziellen Ausführungsform der vorliegenden Erfindung weist Silikonverbindung (C) im Mittel ein bis vier Aminogruppen oder Aminoalkylaminogruppen pro Molekül auf.
Silikonverbindung (C) weist kettenförmig oder verzweigt angeordnete Si-O-Si-Einheiten auf.
In einer Ausführungsform der vorliegenden Erfindung weist Silikonverbindung (C) ein Molekulargewicht Mn im Bereich von 500 bis 10.000 g/mol auf, bevorzugt bis 5.000 g/mol.
Wenn Silikonverbindung (C) mehrere reaktive Gruppen pro Molekül aufweist, so können diese reaktiven Gruppen - direkt oder über Spacer A2 - über mehrere Si-Atome oder paarweise über dasselbe Si-Atom an der Si-O-Si-Kette gebunden sein. Die reaktiven Gruppen bzw. die reaktive Gruppe kann an einem oder mehreren der terminalen Si-Atome von Silikonverbindung (C) - direkt oder über Spacer A2 - gebunden sein. In einer anderen Ausführungsform der vorliegenden Erfindung ist die reaktive Gruppe bzw. sind die reaktiven Gruppen an einem oder mehreren der nicht terminalen Si-Atome von Silikonverbindung (C) - direkt oder über Spacer A2 - gebunden.
In einer Ausführungsform der vorliegenden Erfindung enthält erfindungsgemäße wäss- rige Dispersion (D) ein Polydi-Ci-C4-Alkylsiloxan, das weder Aminogruppen noch COOH-Gruppen aufweist, vorzugsweise ein Polydimethylsiloxan, im Rahmen der vorliegenden Erfindung auch kurz Polydialkylsiloxan (D) bzw. Polydimethylsiloxan (D) genannt.
Dabei kann CrC4-AIkVl in Polydialkylsiloxan (D) verschieden oder vorzugsweise gleich sein und gewählt aus Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl, wobei unverzweigtes CrC4-AIkVl bevorzugt ist, besonders bevorzugt ist Methyl.
Bei Polydialkylsiloxan (D) und vorzugsweise bei Polydimethylsiloxan (D) handelt es sich vorzugsweise um unverzweigte Polysiloxane mit Si-O-Si-Ketten oder um solche Polysiloxane, die bis zu 3, bevorzugt maximal eine Verzweigung pro Molekül aufweisen.
Polydialkylsiloxan (D) und insbesondere Polydimethylsiloxan (D) kann eine oder meh- rere Si(CrC4-Alkyl)2-OH-Gruppen aufweisen.
In einer Ausführungsform der vorliegenden Erfindung enthält erfindungsgemäße wäss- rige Dispersion insgesamt im Bereich von 20 bis 30 Gew.-% Polyurethan (A), bzw. insgesamt im Be- reich von 20 bis 30 Gew.-% Polyurethane (A1 ) und (A2), im Bereich von 1 bis 10, bevorzugt 2 bis 5 Gew.-% Verbindung (B), im Bereich von 1 bis 10 Gew.-% Silikonverbindung (C), im Bereich von null bis 5, bevorzugt 2 bis 4 Gew.-% Vernetzer (D), im Bereich von null bis 10, bevorzugt 0,5 bis 5 Gew.-% Polydialkylsiloxan (D).
Dabei bezeichnen Angaben in Gew.-% jeweils den Wirkstoff bzw. Feststoff und sind auf die gesamte erfindungsgemäße wässrige Dispersion bezogen. Der zu 100 Gew.-% fehlende Rest ist vorzugsweise kontinuierliche Phase, beispielsweise Wasser oder ein Gemisch von einem oder mehreren organischen Lösemitteln und Wasser, wobei in vorstehend genannten Gemischen mindestens 50 Gew.-% Wasser sind. Geeignete organische Lösemittel sind beispielsweise Alkohole wie Ethanol oder Isopropanol und insbesondere Glykole, Diglykole, Triglykole oder Tetraglykole und zweifach oder vorzugsweise einfach mit Ci-C4-AIkVl veretherte Glykole, Diglykole, Triglykole oder Tetraglykole. Beispiele für geeignete organische Lösemittel sind Ethylenglykol, Propylengly- kol, Butylenglykol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Dipropylengly- kol, 1 ,2-Dimethoxyethan, Methyltriethylenglykol („Methyltriglykol") und Triethylenglykol- n-butylether („Butyltriglykol").
In einer Ausführungsform der vorliegenden Erfindung enthält erfindungsgemäße wäss- rige Dispersion im Bereich von 10 bis 30 Gew.-% weiches Polyurethan (A1) und im Bereich von null bis 20 Gew.-% hartes Polyurethan (A2).
In einer Ausführungsform der vorliegenden Erfindung weist erfindungsgemäße wässri- ge Dispersion einen Feststoffgehalt von insgesamt 5 bis 60 Gew.-% auf, bevorzugt 10 bis 50 Gew.-% und besonders bevorzugt 25 bis 45 Gew.-%.
In einer Ausführungsform der vorliegenden Erfindung enthält erfindungsgemäße wäss- rige Dispersion mindestens einen Zusatz (E), gewählt aus Pigmenten, Mattierungsmit- teln, Lichtschutzmitteln, Antistatika, Antisoil, Antiknarz, Verdickungsmitteln, insbeson- dere Verdickungsmitteln auf Basis von Polyurethanen, und Mikrohohlkugeln.
In einer Ausführungsform der vorliegenden Erfindung enthält erfindungsgemäße wäss- rige Dispersion insgesamt bis zu 20 Gew.-% an Zusätzen (E).
Weiterhin wurde ein Verfahren zur Herstellung von erfindungsgemäßen wässrigen Dispersionen gefunden, im Rahmen der vorliegenden Erfindung auch erfindungsgemäßes Herstellverfahren genannt. Zur Durchführung des erfindungsgemäßen Herstellverfahrens vermischt man Polyurethan (A), Verbindung (B) und Silikonverbindung (C) mit Wasser und gegebenenfalls einem oder mehreren der vorstehend genannten organi- sehen Lösemittel. Weiterhin vermischt man, falls gewünscht, mit Polydialkylsiloxan (D) und Zusätzen (E). Das Vermischen kann man beispielsweise durch Verrühren durchführen. Dabei ist die Reihenfolge der Zugabe von Polyurethan (A), Verbindung (B), Silikonverbindung (C) und Wasser und gegebenenfalls einem oder mehreren der vorstehend genannten organischen Lösemittel sowie - falls gewünscht - Polydialkylsilo- xan (D) und Zusätzen (E) beliebig.
Bevorzugt geht man von einem in Wasser oder einem Gemisch aus Wasser und organischem Lösemittel dispergierten Polyurethan (A) oder von dispergiertem weichem Polyurethan (A1 ) und hartem Polyurethan (A2) aus und gibt, vorzugsweise unter Rüh- ren, Verbindung (B) und Silikonverbindung (C) sowie, falls gewünscht, Polydialkylsiloxan (D) und gegebenenfalls ein oder mehrere organische Lösemittel zu. In einer speziellen Ausführungsform des erfindungsgemäßen Herstellverfahrens gibt man Verdickungsmittel als Beispiel für einen Zusatz (E) als letztes zu und stellt so die gewünschte Viskosität ein.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von erfindungsgemäßen wässrigen Dispersionen zur Herstellung von mehrschichtigen flächigen Substraten. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von mehrschichtigen flächigen Substraten unter Verwendung von erfin- dungsgemäßen wässrigen Dispersionen, im Rahmen der vorliegenden Erfindung auch erfindungsgemäßes Beschichtungsverfahren genannt. Ein weiterer Gegenstand der vorliegenden Erfindung sind mehrschichtige flächige Substrate, hergestellt unter Verwendung von erfindungsgemäßen wässrigen Dispersionen.
Zur Herstellung von erfindungsgemäßen mehrschichtigen flächigen Substraten geht man von flächigen Substraten aus. Bei flächigen Substraten kann es sich beispielsweise um Kunststofffolien, z. B. aus Polyethylen, Polypropylen, Polyester, Polycarbonat, Polystyrol oder Polyvinylchlorid, handeln. Bevorzugt wählt man flächige Substrate aus Textil, beispielsweise Matten, Gewirken, Gelegen, Geflechten, Strickwaren, Geweben und insbesondere Vliesstoffen (Non-Wovens), synthetischen Veloursmaterialien mit einer aus Mikrofasern bestehenden Oberseite. Weitere geeignete flächige Substrate sind Formkörper aus Kunststoff, beispielsweise Armaturenbretter, weiterhin Kunstleder und ganz besonders bevorzugt Leder, wobei unter Leder auch Spaltleder und Leder mit Rohhautfehlern einbezogen ist. Leder kann nach beliebigem Verfahren gegerbt sein, beispielsweise mit Chrom-(lll)-Verbindungen oder chromfrei, und kann auf beliebige Tierhaut zurückzuführen sein, insbesondere auf Rind. Dabei ist es unerheblich, ob das Tier, aus dessen Haut man im erfindungsgemäßen Verfahren eingesetzten Leder gemacht hat, geschlachtet wurde oder aufgrund von Unfällen oder natürlichen Ursachen wie beispielsweise Krankheiten gestorben ist.
Wünscht man Leder als flächiges Substrat einzusetzen, so kann man die Fleischseite oder die Narbenseite mit erfindungsgemäßer Dispersion beschichten.
In einer Ausführungsform der vorliegenden Erfindung beschichtet man flächiges Sub- strat mit erfindungsgemäßer Dispersion und härtet danach aus, beispielsweise durch thermische Behandlung.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung beschichtet man flächiges Substrat nach einem Umkehrverfahren, wie es beispielsweise in WO 05/47549 beschrieben ist. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung geht man wie folgt vor. Man stellt in einem ersten Schritt aus einem Material, bevorzugt aus Metall, Kunststoff oder besonders einem Silikon, insbesondere einem Silikonkautschuk, einen flächigen Körper dar. In einem zweiten Schritt gibt man dem flächigen Körper eine Strukturierung, beispielsweise durch Prägen und bevorzugt durch Behandlung mit Hilfe eines Lasers. Die Strukturierung entspricht vorzugsweise der Narbenstruktur eines Leders, beispielsweise eines Rind-, Kalbs- oder Krokodilleders oder der Oberflächenstruktur eines Nubukleders. In einer Variante der vorliegenden Erfindung kann die Strukturierung eine Fantasiestruktur aufweisen, oder man kann Logos aufprä- gen.
In einer speziellen Ausführungsform weist die Strukturierung neben der Narbenstruktur eines Leders, beispielsweise eines Rind-, Kalbs- oder Krokodilleders zusätzlich feine Vertiefungen mit einer maximalen Tiefe von 200 μm, bevorzugt von 60 bis 100 μm und einem mittleren Durchmesser im Bereich von 10 bis 30 μm auf. Das Muster der Vertie- fungen kann dann einem Rinds-, Kalbs- oder Krokodilleder entsprechen.
In einer Ausführungsform der vorliegenden Erfindung weist der flächige Körper eine Dicke im Bereich von 0,5 bis 5 mm, bevorzugt 1 bis 3 mm auf.
Im dritten Schritt des erfindungsgemäßen Beschichtungsverfahrens geht man vorzugsweise so vor, dass man erfindungsgemäße wässrige Dispersion auf den strukturierten Körper aufträgt, beispielsweise durch Sprühen, Spritzen, Gießen, Rakeln, Coaten oder Rollcoaten.
Man kann beispielsweise 10 bis 100 g/m2, bevorzugt 50 bis 75 g/m2 erfindungsgemäße wässrige Dispersion auf den flächigen Körper auftragen.
In einer Ausführungsform der vorliegenden Erfindung hat der flächige Körper Zimmertemperatur. Vorzugsweise hat er jedoch eine Temperatur, die höher ist als Zimmer- temperatur, insbesondere im Bereich von 35 bis 900C. Dadurch wird eine stärkere Verfestigung der Beschichtung durch erfindungsgemäße wässrige Dispersion bewirkt.
In einem vierten Schritt überträgt man dann die verfestigte Beschichtung auf ein flächiges Substrat. Das Übertragen kann manuell oder vorzugsweise maschinell geschehen, insbesondere so, dass man den flächigen Körper mit einer Rolle oder Walze in Verbindung gebracht hat und nun mit Hilfe des auf eine Rolle oder Walze aufgebrachten flächigen Körpers die Beschichtung auf das betreffende flächige Substrat überträgt. Man erhält ein erfindungsgemäßes mehrschichtiges Substrat. Die aus erfindungsgemäßer wässriger Dispersion hergestellte verfestigte Beschichtung dient im erfindungsgemä- ßen mehrschichtigen Substrat Deckschicht und kann im Rahmen der vorliegenden Erfindung auch als Deckschicht bezeichnet werden. In einem weiteren Schritt kann man die Adhäsion von übertragener Schicht und flächigem Substrat dadurch verbessern, dass man das frisch hergestellte erfindungsgemäße mehrschichtige Substrat noch thermisch behandelt oder zusammenpresst oder eine Kombination der vorstehend genannten Schritte durchführt.
Man beobachtet, dass bei der Durchführung des erfindungsgemäßen Beschichtungs- verfahrens der flächige Körper nur äußerst langsam an Qualität einbüßt, beispielsweise durch Verschmutzung.
Erfindungsgemäße mehrschichtige Substrate weisen insgesamt vorzügliche Eigenschaften auf, beispielsweise gute Atmungsaktivität, sehr gute Gebrauchsechtheiten wie beispielsweise Reibechtheiten und einen sehr guten Griff.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung überträgt man die unter Verwendung von erfindungsgemäßer wässriger Dispersion hergestellte Be- schichtung nicht unmittelbar auf das flächige Substrat, sondern bringt zunächst noch eine Verbindungsschicht auf die verfestigte Beschichtung, so lange sie sich noch auf dem flächigen Körper befindet, beispielsweise der Rolle oder der Walze, und überträgt unter Verwendung von erfindungsgemäßer wässriger Dispersion hergestellte Beschichtung und Verbindungsschicht gemeinsam auf das flächige Substrat.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung überträgt man die unter Verwendung von erfindungsgemäßer wässriger Dispersion hergestellte Beschichtung nicht unmittelbar auf das flächige Substrat, sondern bringt zunächst eine Verbindungsschicht auf die verfestigte Beschichtung, so lange sie sich noch auf dem Körper befindet, und eine zweite Verbindungsschicht auf das flächige Substrat, wobei die beiden Verbindungsschichten im wesentlichen die gleiche Zusammensetzung aufweisen, und überträgt unter Verwendung von erfindungsgemäßer wässriger Dispersion hergestellte Beschichtung und Verbindungsschicht gemeinsam auf das bereits mit Verbindungsschicht versehene flächige Substrat.
Bei der Verbindungsschicht bzw. den Verbindungsschichten mit im Wesentlichen gleicher Zusammensetzung handelt es sich beispielsweise um Schichten, die man durch Auftragen von vorzugsweise einer oder mehreren wässrigen Formulierungen erhält, wobei die betreffenden wässrigen Formulierungen wie folgt zusammengesetzt sind:
(α) mindestens ein Polyurethan, das gleich oder verschieden von Polyurethan (A) sein kann, (ß) mindestens eine Verbindung der allgemeinen Formel I a oder I b, die wie vorstehend definiert ist, kurz auch Verbindung (ß) genannt; vorzugsweise sind Verbindung (B) und Verbindung (ß) gleich,
(Y) vorzugsweise mindestens ein Bindemittel, beispielsweise ein (Meth)acrylatbinde- mittel oder ein Polyurethanbindemittel, vorzugsweise ein Copolymerisat von
(Meth)acrylsäure, im Rahmen der vorliegenden Erfindung auch als Bindemittel (y) bezeichnet. Vorzugsweise handelt es sich bei Bindemittel (y) um ein Copoylymer von (Meth)acrylsäure und mindestens einem Ci-Cio-Alkylester von (Meth)acrylsäure, (δ) gegebenenfalls mindestens einen Zusatzstoff, beispielsweise gewählt aus Pigmen- ten, Griffmitteln, Verdickungsmitteln (Verdickern), Antistatika und Mattierungsmitteln.
Der Rest ist vorzugsweise Wasser.
Vorzugsweise enthält die wässrige Formulierung bzw. die wässrigen Formulierungen, aus der bzw. denen man die Deckschicht(en) herzustellen wünscht, eine Silikonverbindung wie beispielsweise Silikonverbindung (C) oder wie Polydialkylsiloxan (D).
In einer Ausführungsform der vorliegenden Erfindung enthält die wässrige Formulierung bzw. die wässrigen Formulierungen, aus der bzw. denen man die Deckschicht(en) herzustellen wünscht, mindestens ein weiches Polyurethan (α1) und mindestens ein hartes Polyurethan (α2), die jeweils verschieden oder vorzugsweise gleich weichem Polyurethan (A1 ) bzw. hartem Polyurethan (A2) sein können.
Die wässrige Formulierung bzw. die wässrigen Formulierungen, aus der bzw. denen man die Deckschicht(en) herzustellen wünscht, können ein oder mehrere organische Lösemittel enthalten. Beispiele für organische Lösemittel sind Alkohole wie Ethanol oder Isopropanol und insbesondere Glykole, Diglykole, Triglykole oder Tetraglykole und zweifach oder vorzugsweise einfach mit Ci-C4-Alkyl veretherte Glykole, Diglykole, Triglykole oder Tetraglykole. Beispiele für geeignete organische Lösemittel sind Ethy- lenglykol, Propylenglykol, Butylenglykol, Diethylenglykol, Triethylenglykol, Tetraethy- lenglykol, Dipropylenglykol, 1 ,2-Dimethoxyethan, Methyltriethylenglykol („Methyltrigly- kol") und Triethylenglykol-n-butylether („Butyltriglykol")..
In einer Ausführungsform der vorliegenden Erfindung ist die wässrige Formulierung bzw. die wässrigen Formulierungen, aus der bzw. denen man die Deckschicht(en) herzustellen wünscht, wie folgt zusammengesetzt: insgesamt im Bereich von 20 bis 30 Gew.-% Polyurethan (α), im Bereich von 1 bis 5, bevorzugt 2 bis 3 Gew.-% Verbindung (ß), im Bereich von bis 20 Gew.-% Bindemittel (y), im Bereich von null bis insgesamt 20 Gew.-% Zusatzstoff(e) (δ), und vorzugsweise weder Silikonverbindung (C) noch Polydialkylsiloxan (D). In einer Ausführungsform der vorliegenden Erfindung enthält die wässrige Formulierung bzw. die wässrigen Formulierungen, aus der bzw. denen man die Deckschicht(en) herzustellen wünscht, im Bereich von 10 bis 30 Gew.-% weiches Polyurethan (α1 ) und im Bereich von null bis 20 Gew.-% hartes Polyurethan (α2).
Dabei bezeichnen Angaben in Gew.-% jeweils den Wirkstoff bzw. Feststoff und sind auf die gesamte im erfindungsgemäßen Beschichtungsverfahren eingesetzte wässrige Formulierung bezogen. Der zu 100 Gew.-% fehlende Rest ist vorzugsweise kontinuierliche Phase, beispielsweise Wasser oder ein Gemisch von einem oder mehreren organischen Lösemitteln und Wasser, wobei in vorstehend genannten Gemischen mindestens 50 Gew.-% Wasser sind.
Die Dicke der Deckschichten kann im Bereicht von 5 bis 50 μm betragen, bevorzugt 10 bis 30 μm.
Das Auftragen kann beispielsweise erfolgen durch Sprühen, Spritzen, Gießen, Rakeln, Coaten oder Rollcoaten erfolgen.
Das Verbinden der Schichten kann durch an sich übliche Methoden verbessert bzw. beschleunigt werden, beispielsweise durch thermische Behandlung bei 80 bis 1200C und/oder Aneinanderpressen bei einem Anpressdruck im Bereich von 1 ,5 bis 3 bar.
Erfindungsgemäße mehrschichtige Substrate eignen sich zur Herstellung von beispielsweise Möbeln und insbesondere Automobilinnenteilen, insbesondere Autositzen, weiterhin von Schuhen, Textilien und Möbeln. Sie weisen eine gute Echtheit und außerdem eine vorzügliche Atmungsaktivität auf. Ein Gegenstand der vorliegenden Anmeldung sind also weiterhin Automobilinnenteile, Schuhe, Textilien und Möbel, herge- stellt unter Verwendung von erfindungsgemäßen mehrschichtigen Substraten.
Die Erfindung wird durch Arbeitsbeispiele erläutert.
Allgemeine Bemerkung: Angaben in Gew.-% sind teil qu'elle.
I. Herstellung von erfindungsgemäßen wässrigen Dispersionen
1.1 Herstellung einer erfindungsgemäßen wässrigen Dispersion Disp.1
In einem Rührgefäß vermischte man unter Rühren: 7 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 125 nm, Feststoffgehalt: 40%) eines weichen Polyurethans (A1.1), hergestellt aus Hexamethylendiisocyanat (a 1.1 ) und Isophorondiisocyanat (a1.2) im Gew.-Verhältnis 13:10 als Diisocyanate und als Diole einem Polyesterdiol (b1.1) mit einem Molekulargewicht Mw von 800 g/mol, hergestellt durch Polykondensation von Isophthalsäure, Adipinsäure und 1 ,4- Dihydroxymethylcyclohexan (Isomerengemisch) in einem Molverhältnis von 1 :1 :2, 5 Gew.-% 1 ,4-Butandiol (b1.2), sowie 3 Gew.-% einfach methyliertem Polyethylenglykol (c.1) sowie 3 Gew.-% H2N-CH2CH2-NH-CH2CH2-COOH, Gew.-% jeweils bezogen auf Polyesterdiol (b1.1 ),
Erweichungspunkt von weichem Polyurethan (A1.1): 62°C, Erweichung beginnt bei 55°C, Shore-Härte A 54, 65 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 150 nm) eines harten Polyurethans (A2.1), erhältlich durch Umsetzung von Isophorondiisocyanat (a1.2), 1 ,4- Butandiol (b1.2) und H2N-CH2CH2-NH-CH2CH2-COOH, Erweichungspunkt von 195°C, Shore-Härte A 86, 3,5 Gew.-% einer 70 Gew.-% Lösung (in Propylencarbonat) von Verbindung (B.1 )
Figure imgf000018_0001
NCO-Gehalt 12%,
6 Gew.-% einer 65 Gew.-% wässrigen Dispersion der Silikonverbindung nach Beispiel 2 aus EP-A 0 738 747 (C.1 ) 2 Gew.-% Ruß,
0,5 Gew.-% eines Verdickungsmittels auf Polyurethanbasis.
Man erhielt erfindungsgemäße wässrige Dispersion Disp.1 mit einem Feststoffgehalt von 35% und einer kinematischen Viskosität von 25 Sek. bei 23°C, bestimmt nach DIN EN ISO 2431 , Stand Mai 1996.
1.2 Herstellung einer erfindungsgemäßen wässrigen Dispersion Disp.2
In einem Rührgefäß vermischte man unter Rühren: 7 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 125 nm, Feststoffgehalt: 40%) eines weichen Polyurethans (A1.1 ), hergestellt aus Hexamethylendiisocyanat (a 1.1 ) und Isophorondiisocyanat (a1.2) im Gew.-Verhältnis 13:10 als Diisocyanate und als Diole einem Polyesterdiol (b1.1) mit einem Molekulargewicht Mw von 800 g/mol, hergestellt durch Polykondensation von Isophthalsäure, Adipinsäure und 1 ,4- Dihydroxymethylcyclohexan (Isomerengemisch) in einem Molverhältnis von 1 :1 :2, 5 Gew.-% 1 ,4-Butandiol (b1.2), sowie 3 Gew.-% einfach methyliertem Polyethylenglykol (c.1) sowie 3 Gew.-% H2N-CH2CH2-NH-CH2CH2-COOH, Gew.-% jeweils bezogen auf
Polyesterdiol (b1.1 ),
Erweichungspunkt von weichem Polyurethan (A1.1): 62°C, Erweichung beginnt bei
55°C, Shore-Härte A 54, 65 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 150 nm) eines harten
Polyurethans (A2.2), erhältlich durch Umsetzung von Isophorondiisocyanat (a1.2), 1 ,4-
Butandiol (b1.2), 1 ,1-Dimethylolpropionsäure, Hydrazinhydrat und Polypropylenglykol mit einem Molekulargewicht Mw von 4200 g/mol (b1.3), Polyurethan (A2.2) hatte einen
Erweichungspunkt von 195°C, Shore-Härte A 86, 3,5 Gew.-% einer 70 Gew.-% Lösung (in Propylencarbonat) von Verbindung (B.1 ),
6 Gew.-% einer 65 Gew.-% wässrigen Dispersion der Silikonverbindung nach Beispiel
2 aus EP-A 0 738 747 (C.1 )
2 Gew.-% Ruß,
0,5 Gew.-% eines Verdickungsmittels auf Polyurethanbasis.
Man erhielt erfindungsgemäße wässrige Dispersion Disp.2 mit einem Feststoffgehalt von 35% und einer kinematischen Viskosität von 25 Sek. bei 23°C, bestimmt nach DIN
EN ISO 2431 , Stand Mai 1996.
II. Herstellung eines flächigen Körpers
Es wurde eine lasergravierbare Silikonpolymerschicht mit einer glatten Oberfläche auf Basis eines raumtemperaturhärtenden füllstoffhaltigen 2-Komponenten-Silikonelasto- mers hergestellt, indem die beiden Komponenten intensiv miteinander vermischt und mit Hilfe einer Rakelbeschichtung auf eine temporäre PET-Deckfolie aufgebracht wur- den. Man ließ die Silikonschicht 16 Stunden bei Raumtemperatur aushärten. Die so chemisch verstärkte elastomere Silikonschicht fixierte man mit Hilfe eines Silikonklebers auf einem Polyestergewebe als Trägerelement. Die nach Entfernung der temporären PET-Deckfolie erhaltene verstärkte elastomere Polymerschicht mit Gewebeträger wies eine Gesamtschichtdicke von 1 ,7 mm auf. Der erhaltende flächige Körper (nicht strukturiert) wurde vor der anschließenden Strukturierung mittels Laser in Plattenstücke von ca. 40 x 100 cm konfektioniert.
Zur Strukturierung des flächigen Körpers wurde eine Cθ2-Lasergravurmaschine vom Typ BDE 4131 (Fa. Stork Prints Austria GmbH, Kufstein) verwendet. Die Maschine verfügt über 3 sealed Cθ2-Laser mit einer Nennleistung von je 250 W, den entsprechenden optischen Komponenten sowie der zugehörigen Peripherie zur Steuerung, Laserkühlung, Ablufterfassung und Abluftbehandlung. Das zylindrische Aufnahmesystem bestand entweder aus einer dünnwandigen zylindrischen Metalltrommel oder aus Metallkonen, in die ein sog. Drucksleeve, bestehend aus einem (meist mehrschichtig aufgebauten) zylindrischen Hohlzylinder aus einem oder mehreren Kunststoffen, eingespannt wird. Die Lasersteuerung erfolgte über einen verbundenen Steuerrechner mittels einer speziellen Ausgabesoftware. Die Ausgabesoftware interpretiert das als Graustufen-Bitmap vorliegende Motiv als pixelweises Höhenprofil. Jede Graustufe entspricht einer bestimmten Gravurtiefe bzw. Gravurleistung am betreffenden Punkt des Motivs. Idealerweise ist der Zusammenhang zwischen Graustufenwert und Gravurtiefe ungefähr linear eingestellt.
Der flächige Körper (nicht strukturiert) lag als plane Schicht vor und wurde auf einem zylindrischen Aufnahmeelement für die Dauer der Gravur fixiert. Während des Gravurprozesses wurde das rotierende zylindrische Aufnahmeelement mit der zu bearbeitenden Matrize gleichförmig relativ zum Laserstrahl in axialer Richtung verschoben. Auf diese Weise überstrich der Laserstrahl die gesamte zu bearbeitende Fläche des flächigen Körpers.
Der flächige Körper (nicht strukturiert) gemäß Beispiel II. wurde mit einem Motiv graviert, das aus einer Kombination aus den folgenden beiden Einzelmotiven gemäß Tabelle 1 bestand. Tabelle 1 : Einzelmotiven des Motivs auf dem flächigen Körper (strukturiert)
Ipi = lines per inch
Auf diese Weise wurde ein flächiger Körper (strukturiert) mit rauer Oberfläche und ca. 10000 Näpfchen / cm2 erhalten. Die Tiefe der gravierten Näpfchen betrug ca. 80 μm. Der flächige Körper (strukturiert) wurde mit Hilfe einer Wasser-Tensid-Mischung nachgereinigt und direkt für erfindungsgemäße Beschichtungsverfahren eingesetzt.
III. Herstellung von wässrigen Formulierungen für die Deckschicht
III.1 Herstellung einer erfindungsgemäßen wässrigen Formulierung WF.1
In einem Rührgefäß vermischte man unter Rühren:
7 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 125 nm), Feststoffgehalt: 40%) eines weichen Polyurethans (α1.1 ), hergestellt aus Hexamethylendiisocyanat (a 1.1 ) und Isophorondiisocyanat (a1.2) im Gew.-Verhältnis 13:10 als Diisocyanate und und als Diole einem Polyesterdiol (b1.1) mit einem Molekulargewicht Mw von 800 g/mol, hergestellt durch Polykondensation von Isophthalsäure, Adipinsäure und 1 ,4- Dihydroxymethylcyclohexan (Isomerengemisch) in einem Molverhältnis von 1 :1 :2, 5 Gew.-% 1 ,4-Butandiol (b1.2), 3 Gew.-% einfach methyliertem Polyethylenglykol (c.1 ) sowie 3 Gew.-% H2N-CH2CH2-N H-CH2CH2-COOH, Gew.-% jeweils bezogen auf Polyesterdiol (b1.1 ),
Erweichungspunkt von 62°C, Erweichung beginnt bei 55°C, Shore-Härte A 54, 65 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 150 nm) eines harten Polyurethans (α2.1 ) durch Umsetzung von Isophorondiisocyanat (a1.2), 1 ,4-Butandiol (b1.2) und H2N-CH2CH2-NH-CH2CH2-COOH, Erweichungspunkt von 1700C, Shore- Härte A 90,
3,5 Gew.-% einer 70 Gew.-% Lösung (in Propylencarbonat) von Verbindung (ß.1), NCO-Gehalt 12%, 2 Gew.-% Ruß.
Man erhielt wässrige Formulierung WF.1. Anmerkung: Verbindung (B.1 ) war identisch mit Verbindung (ß.1).
III.2 Herstellung einer erfindungsgemäßen wässrigen Formulierung WF.2
In einem Rührgefäß vermischte man unter Rühren:
7 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 125 nm), Feststoffgehalt: 40%) eines weichen Polyurethans (α1.1 ), hergestellt aus Hexamethylendiisocyanat (a 1.1 ) und Isophorondiisocyanat (a1.2) im Gew.-Verhältnis 13:10 als Diisocyanate und und als Diole einem Polyesterdiol (b1.1) mit einem Molekulargewicht Mw von 800 g/mol, hergestellt durch Polykondensation von Isophthalsäure, Adipinsäure und 1 ,4- Dihydroxymethylcyclohexan (Isomerengemisch) in einem Molverhältnis von 1 :1 :2, 5 Gew.-% 1 ,4-Butandiol (b1.2), 3 Gew.-% einfach methyliertem Polyethylenglykol (c.1 ) sowie 3 Gew.-% H2N-CH2CH2-NH-CH2CH2-COOH, Gew.-% jeweils bezogen auf PoIy- esterdiol (b1.1 ),
Erweichungspunkt von 62°C, Erweichung beginnt bei 55°C, Shore-Härte A 54, 65 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 150 nm) eines harten Polyurethans (α2.2), erhältlich durch Umsetzung von Isophorondiisocyanat (a1.2), 1 ,4- Butandiol (b1.2), 1 ,1-Dimethylolpropionsäure, Hydrazinhydrat und Polypropylenglykol mit einem Molekulargewicht Mw von 4200 g/mol (b1.3), Polyurethan (α2.2) hatte einen Erweichungspunkt von 195°C, Shore-Härte A 90,
3,5 Gew.-% einer 70 Gew.-% Lösung (in Propylencarbonat) von Verbindung (ß.1), NCO-Gehalt 12%, und 2 Gew.-% Ruß. Man erhielt erfindungsgemäße wässrige Dispersion WF.2 mit einem Feststoffgehalt von 35% und einer kinematischen Viskosität von 25 Sek., bestimmt nach bei 23°C nach DIN EN ISO 2431 , Stand Mai 1996.
IV. Auftragung von erfindungsgemäßen Dispersionen auf flächigen Körper aus II.
Der flächige Körper wurde auf eine beheizbare Unterlage gelegt und auf 800C erwärmt. Anschließend wurde durch mehrere Sprühdüsen Disp.1 oder Disp.2 aufgesprüht, und zwar jeweils 60 g/m2 (nass). Man ließ bei 800C verfestigen, bis die Oberfläche nicht mehr klebrig war. Man erhielt einen mit einer Deckschicht beschichteten flächigen Körper.
V. Auftragung von Verbindungsschicht auf Leder und auf mit einer Deckschicht beschichtete flächige Körper aus IV. und Übertragung der Beschichtungen vom beschichteten flächigen Körper auf Leder
Auf die mit einer Deckschicht beschichteten flächigen Körper aus IV. brachte man durch zwei Sprühdüsen analog zu IV. WF.1 bzw. WF.2 auf, und zwar 70 g/m2 (nass). Man ließ in einem Lufttrockner bei 800C trocknen, bis die Oberfläche nicht mehr klebrig war. Man erhielt einen mit einer Deckschicht und einer Verbindungsschicht beschichteten flächigen Körper.
Auf ein konventionell mit Chrom (III) gegerbtes Rindernappaleder wurde WF.1 bzw. WF.2 mit Hilfe einer Spritzpistole aufgetragen, und zwar 50 g/m2 (nass). Man lagerte zwei Minuten bei Zimmertemperatur, danach fühlte sich das beschichtete Rindernappaleder trocken an.
Anschließend legte man das beschichtete Rindernappaleder mit der Beschichtung nach unten auf den mit einer Deckschicht und einer Verbindungsschicht beschichteten flächigen Körper und presste in einer beheizten Presse (90°C) mit Hilfe von druckelastischen Abstützen bei einem Druck von 2 bar über einen Zeitraum von 15 Sekunden. Man erhielt ein erfindungsgemäßes beschichtetes Rindernappaleder L.1.
Der flächige Körper (unbeschichtet) ließ sich leicht und rückstandsfrei von erfindungs- gemäßem beschichtetem Rindernappaleder L.1 bzw. L.2 entfernen und sofort wieder verwenden.
Erfindungsgemäße Rindernappaleder L.1 bzw. L.2 hatten folgende Eigenschaften: Haftfestigkeit in Anlehnung an DIN EN ISO 1 1644 mit einem Cyanacrylatkleber: Wert trocken: 21 ,3 N/cm, Wert nass: 10,3 N/cm bzw. 10,5 N/cm Reibechtheiten in Anlehnung an DIN EN ISO 1 1640: Benzinreibechtheit, gestestet mit Waschbenzin: Note 5 für 2Ox Neutralseife-Reibechtheit: Note 5 für 100x Lösemittelreibechtheit, getestet mit Ethanol: Note 5 Nassreibechtheit, Note 4 bis 5 für 50Ox Schweißreibechtheit: Note 5 für 100x Trockenreibechtheit: Note 5 für 2.00Ox
VI. Beschichtung eines Vliesstoffs
Man ging aus von einem Vliesstoff (Polyester) und einem flächigen Körper (strukturiert) gemäß II.
VI.1 Herstellung von erfindungsgemäßen wässrigen Dispersionen Disp.3 und Disp.4
Man vermischte in einem Rührgefäß unter Rühren:
10 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 125 nm) eines thermoplastischen Polyurethans (A1.1 ), hergestellt aus Hexamethyldiisocyanat (a 1.1 ) und Isophorondiisocyanat (a1.2) im Gew.-Verhältnis 13:10 als Diisocyanate und als Diole einem Polyesterdiol (b1.1) mit einem Molekulargewicht Mw von 800 g/mol, hergestellt durch Polykondensation von Isophthalsäure, Adipinsäure und 1 ,4-
Dihydroxymethylcyclohexan (Isomerengemisch) in einem Molverhältnis von 1 :1 :2, 5 Gew.-% 1 ,4-Butandiol (b1.2), 3 Gew.-% einfach methyliertem Polyethylenglykol (c.1 ) sowie 3 Gew.-% H2N-CH2CH2-N H-CH2CH2-COOH, Gew.-% jeweils bezogen auf Polyesterdiol (b1.1 ), Erweichungspunkt von 62°C, Erweichung beginnt bei 55°C, Shore- Härte A 54,
60 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 150 nm) eines harten Polyurethans (A1.2) durch Umsetzung von Isophorondiisocyanat, 1 ,4-Butandiol und H2N-CH2CH2-NH-CH2CH2-COOH, Shore-Härte A 86, 3,5 Gew.-% einer 70 Gew.-% (in Propylencarbonat) Lösung von Verbindung (B.1 ) (s.o.), NCO-Gehalt 12%,
6 Gew.-% einer 60 Gew.-% wässrigen Dispersion der Silikonverbindung nach Beispiel
2 aus EP-A 0 738 747 (C.1 )
2 Gew.-% Ruß,
0,5 Gew.-% eines Verdickungsmittels auf Polyurethanbasis, 1 Gew.-% Mikrohohlkugeln, mittlerer Durchmesser 20 μm, aus Polyvinylidenchlorid, gefüllt mit Isobutan, 15 Gew.-% Kieselgel.
Man erhielt erfindungsgemäße wässrige Dispersion Disp.3 mit einem Feststoffgehalt von 30% und einer kinematischen Viskosität von 25 Sek. bei 23°C, bestimmt nach DIN EN ISO 2431 , Stand Mai 1996. Man vermischte in einem Rührgefäß unter Rühren:
10 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 125 nm) eines thermo- plastischen Polyurethans (A1.1 ), hergestellt aus Hexamethyldiisocyanat (a 1.1 ) und Isophorondiisocyanat (a1.2) im Gew.-Verhältnis 13:10 als Diisocyanate und als Diole einem Polyesterdiol (b1.1) mit einem Molekulargewicht Mw von 800 g/mol, hergestellt durch Polykondensation von Isophthalsäure, Adipinsäure und 1 ,4- Dihydroxymethylcyclohexan (Isomerengemisch) in einem Molverhältnis von 1 :1 :2, 5 Gew.-% 1 ,4-Butandiol (b1.2), 3 Gew.-% einfach methyliertem Polyethylenglykol (c.1 ) sowie 3 Gew.-% H2N-CH2CH2-N H-CH2CH2-COOH, Gew.-% jeweils bezogen auf Polyesterdiol (b1.1 ), Erweichungspunkt von 62°C, Erweichung beginnt bei 55°C, Shore- Härte A 54, 60 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 150 nm) eines harten Polyurethans (A2.2), erhältlich durch Umsetzung von Isophorondiisocyanat, 1 ,4-
Butandiol, 1 ,1-Dimethylolpropionsäure, Hydrazinhydrat und Polypropylenglykol mit einem Molekulargewicht Mw von 4200 g/mol, Erweichungspunkt von 195°C, Shore-Härte A 86, 3,5 Gew.-% einer 70 Gew.-% (in Propylencarbonat) Lösung von Verbindung (B.1 ) (s.o.), NCO-Gehalt 12%,
6 Gew.-% einer 60 Gew.-% wässrigen Dispersion der Silikonverbindung nach Beispiel
2 aus EP-A 0 738 747 (C.1 )
2 Gew.-% Ruß,
0,5 Gew.-% eines Verdickungsmittels auf Polyurethanbasis, 1 Gew.-% Mikrohohlkugeln, mittlerer Durchmesser 20 μm, aus Polyvinylidenchlorid, gefüllt mit Isobutan, 15 Gew.-% Kieselgel.
Man erhielt erfindungsgemäße wässrige Dispersion Disp.4 mit einem Feststoffgehalt von 30% und einer kinematischen Viskosität von 25 Sek. bei 23°C, bestimmt nach DIN EN ISO 2431 , Stand Mai 1996.
VI.2 Auftragung von erfindungsgemäßen Dispersionen auf flächigen Körper aus II.
Der flächige Körper aus II. wurde auf eine beheizbare Unterlage gelegt und auf 800C erwärmt. Anschließend wurde durch mehrere Sprühdüsen Disp.3 bzw. Disp.4 aufgesprüht, und zwar 80 g/m2 (nass). Man ließ bei 800C verfestigen, bis die Oberfläche nicht mehr klebrig war. Man erhielt mit einer Deckschicht beschichtete flächige Körper.
Auf den mit einer Deckschicht beschichteten flächigen Körper aus VI. brachte man durch Sprühdüsen analog zu V. WF.1 bzw. WF.2 auf, und zwar in jedem Falle 50 g/m2 (nass). Man ließ in einem Lufttrockner bei 800C trocknen, bis die Oberfläche nicht mehr klebrig war. Man erhielt mit einer Deckschicht und einer Verbindungsschicht beschichtete flächige Körper.
Auf Vliesstoff wurde WF.1 bzw. WF.2 aufgetragen, und zwar in jedem Falle 50 g/m2 (nass). Man lagerte zwei Minuten bei Zimmertemperatur, danach fühlten sich die beschichteten Vliesstoffe trocken an.
Anschließend legte man die beschichteten Vliesstoffe mit der Beschichtung nach unten auf den mit einer Deckschicht und einer Verbindungsschicht beschichteten flächigen Körper und presste in einer beheizten Presse (900C) mit Hilfe von druckelastischen Abstützen bei einem Druck von 2 bar über einen Zeitraum von 15 Sekunden. Man erhielt erfindungsgemäßen beschichteten Vliesstoff VS.1 und VS.2.
Der flächige Körper (unbeschichtet) ließ sich leicht und rückstandsfrei von erfindungsgemäßem beschichtetem Vliesstoff VS.1 bzw. VS.2 entfernen und sofort wieder verwenden. Erfindungsgemäß beschichtete Vliesstoffe VS.1 und VS.2 waren elastisch, atmungsaktiv, dimensionsstabil und hatten einen sehr guten Griff.

Claims

Patentansprüche
1. Wässrige Dispersion, enthaltend
(A) mindestens ein Polyurethan,
(B) mindestens eine Verbindung der allgemeinen Formel I a oder I b
Figure imgf000026_0001
I a I b
wobei R1, R2 und R3 gleich oder verschieden sein können und gewählt wer- den aus A1-NCO und A1-NH-CO-X, wobei
A1 ein Spacer mit 2 bis 20 C-Atomen ist und
X gewählt wird 0(AO)xR4,
AO ist C2-C4-Alkylenoxid, x ist eine ganze Zahl im Bereich von 1 bis 50 und R4 ist gewählt aus Wasserstoff und Ci-C3o-Alkyl,
(C) und mindestens eine Silikonverbindung mit reaktiven Gruppen.
2. Wässrige Dispersion nach Anspruch 1 , dadurch gekennzeichnet, dass AO gewählt wird aus Ethylenoxid und Propylenoxid.
3. Wässrige Dispersion nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Silikonverbindung (C) gewählt wird aus Silikonverbindungen mit ein bis vier Aminogruppen pro Molekül, Silikonverbindungen mit ein bis vier Aminoalkylami- nogruppen pro Molekül und Silikonverbindungen mit ein bis vier COOH- Gruppen pro Molekül.
4. Wässrige Dispersionen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie zusätzlich
(D) mindestens ein Polydi-Ci-C4-Alkylsiloxan enthalten, das weder Ami- nogruppen noch COOH-Gruppen aufweist.
5. Wässrige Dispersionen nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass A1 gewählt wird aus Phenylen, Toluylen und C2-Ci2-Alkylen.
6. Verwendung von wässrigen Dispersionen nach einem der Ansprüche 1 bis 5 zur Herstellung von mehrschichtigen flächigen Substraten.
7. Verfahren zur Herstellung von mehrschichtigen flächigen Substraten unter Ver- wendung von wässrigen Dispersionen nach einem der Ansprüche 1 bis 5.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass man in einem ersten Schritt einen flächigen Körper aus einem Silikon herstellt, den man in einem zweiten Schritt mit einer Struktur versieht, im dritten Schritt trägt man wässrige Dispersion nach einem der Ansprüche 1 bis 5 auf den strukturierten Körper auf und härtet aus, und man überträgt in einem vierten Schritt die Schicht aus den vorstehend genannten Schritten auf ein flächiges Substrat.
9. Mehrschichtiges flächiges Substrat, hergestellt nach einem Verfahren nach ei- nem der Ansprüche 7 oder 8.
10. Mehrschichtiges flächiges Substrat nach Anspruch 9, dadurch gekennzeichnet, dass flächiges Substrat gewählt wird aus Kunststofffolien, Leder, Kunstleder, Textil und Formkörper aus Kunststoff.
1 1. Verwendung von mehrschichtigen flächigen Substraten nach Anspruch 9 oder 10 zur Herstellung von Automobilinnenteilen, Schuhen, Textilien und Möbeln.
12. Automobilinnenteile, Schuhe, Textilien und Möbel, hergestellt unter Verwen- düng von mehrschichtigen flächigen Substraten nach Anspruch 9 oder 10.
PCT/EP2008/053077 2007-03-21 2008-03-14 Wässrige dispersionen, enthaltend polyurethan, und ihre verwendung zur herstellung von flächigen substraten WO2008113755A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US12/532,249 US9234071B2 (en) 2007-03-21 2008-03-14 Aqueous dispersions and their use for the production of sheet-like substrates
JP2009554007A JP5970154B2 (ja) 2007-03-21 2008-03-14 水性分散液、及びそのシート状基材の製造のための使用方法
MX2009009650A MX2009009650A (es) 2007-03-21 2008-03-14 Dispersiones acuosas que comprenden poliuretano y el uso de las mismas para la produccion de sustratos planos.
ES08717819.0T ES2529743T3 (es) 2007-03-21 2008-03-14 Dispersiones acuosas que contienen poliuretano y su uso para la fabricación de sustratos planos
KR1020157009978A KR20150048904A (ko) 2007-03-21 2008-03-14 수분산액 및 시트형 기재의 제조에서의 이의 용도
CN2008800092595A CN101641381B (zh) 2007-03-21 2008-03-14 包含聚氨酯的水分散体及其在生产片状基材中的用途
EP20080717819 EP2137225B1 (de) 2007-03-21 2008-03-14 Wässrige dispersionen, enthaltend polyurethan, und ihre verwendung zur herstellung von flächigen substraten
BRPI0808471A BRPI0808471B1 (pt) 2007-03-21 2008-03-14 dispersão aquosa, uso de dispersões aquosas, processo para a produção de substratos tipo folha de múltiplas camadas, substrato tipo folha de múltiplas camadas, uso de substratos tipo folha de múltiplas camadas, e, painéis interiores de automóveis, sapatos, têxteis ou peça de mobília.
AU2008228259A AU2008228259B2 (en) 2007-03-21 2008-03-14 Aqueous dispersions comprising polyurethane and the use thereof for the production of flat substrates
ZA2009/07279A ZA200907279B (en) 2007-03-21 2009-10-19 Aqueous dispersions comprising polyurethane and the use thereof for the production of flat substrates

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP07104557.9 2007-03-21
EP07104557 2007-03-21
EP07104899.5 2007-03-26
EP07104899 2007-03-26

Publications (1)

Publication Number Publication Date
WO2008113755A1 true WO2008113755A1 (de) 2008-09-25

Family

ID=39575631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/053077 WO2008113755A1 (de) 2007-03-21 2008-03-14 Wässrige dispersionen, enthaltend polyurethan, und ihre verwendung zur herstellung von flächigen substraten

Country Status (11)

Country Link
US (1) US9234071B2 (de)
EP (1) EP2137225B1 (de)
JP (2) JP5970154B2 (de)
KR (2) KR20150048904A (de)
CN (1) CN101641381B (de)
AU (1) AU2008228259B2 (de)
BR (1) BRPI0808471B1 (de)
ES (1) ES2529743T3 (de)
MX (1) MX2009009650A (de)
WO (1) WO2008113755A1 (de)
ZA (1) ZA200907279B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010043549A1 (de) * 2008-10-15 2010-04-22 Basf Se Gegenstände mit mindestens einer durch eine membran abgedeckten öffnung und verfahren zu ihrer herstellung
DE102009001121A1 (de) 2009-02-24 2010-08-26 Basf Se Mehrschichtige Verbundmaterialien, ihre Herstellung und Verwendung
US10329450B2 (en) 2015-05-22 2019-06-25 Basf Coatings Gmbh Method for producing a multicoat coating
US10781336B2 (en) 2015-05-22 2020-09-22 Basf Coatings Gmbh Aqueous basecoat material for producing a coating

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008228259B2 (en) * 2007-03-21 2012-11-29 Basf Se Aqueous dispersions comprising polyurethane and the use thereof for the production of flat substrates
EP2247439A1 (de) * 2008-02-27 2010-11-10 Basf Se Mehrschichtige verbundmaterialien, die eine schicht aus cellulosehaltigem material umfassen, verfahren zu ihrer herstellung und ihre verwendung
PT2247443T (pt) * 2008-02-27 2018-11-13 Basf Se Materiais compósitos multicamadas compreendendo uma película de plástico ou metal, métodos para o seu fabrico e a sua utilização
DE102008000419A1 (de) * 2008-02-27 2009-09-03 Basf Se Mehrschichtige Verbundmaterialien, die ein textiles Flächengebilde umfassen, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2009106498A1 (de) * 2008-02-27 2009-09-03 Basf Se Mehrschichtige verbundmaterialien, die eine schaumstoffschicht umfassen, verfahren zu ihrer herstellung und ihre verwendung
WO2010007042A1 (de) 2008-07-17 2010-01-21 Basf Se Verfahren zur kontinuierlichen herstellung von mehrschichtigen verbundkörpern
CN102471470B (zh) 2009-07-15 2014-05-21 巴斯夫欧洲公司 包含支化低聚或聚合化合物的混合物及其制备方法和用途
EP2585506A1 (de) * 2010-06-22 2013-05-01 Bayer Intellectual Property GmbH Verfahren zur herstellung von flächigen, hydrophilen, aliphatischen polyurethan-schäumen
EP2853604A1 (de) * 2013-09-30 2015-04-01 Rhodia Poliamida E Especialidades Ltda Gerbeverfahren
EP2853605A1 (de) * 2013-09-30 2015-04-01 Rhodia Poliamida E Especialidades Ltda Gerbeverfahren zum Erhalten von Leder
WO2015089370A1 (en) 2013-12-13 2015-06-18 Avery Dennison Corporation Water based printable coatings
JP7146426B2 (ja) * 2018-03-27 2022-10-04 松本油脂製薬株式会社 繊維用撥水剤組成物及びその利用
WO2021031174A1 (en) 2019-08-22 2021-02-25 Dow Global Technologies Llc Polyether based waterborne polyurethane dispersion and method for preparing the same
FR3100399B1 (fr) 2019-08-27 2021-09-24 Moving Magnet Tech Machine à bobinage toroïdal
CN115443356A (zh) 2020-04-15 2022-12-06 巴斯夫欧洲公司 含有水性聚氨酯分散体和双组分聚氨酯的层压物及其用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0122552A2 (de) * 1983-04-13 1984-10-24 Bayer Ag Wässrige, vernetzerhaltige Polyurethanzubereitungen und ihre Verwendung zur Thermoaktiv-Einstrich-Umkehrbeschichtung
EP1050551A2 (de) * 1999-05-07 2000-11-08 Bayer Ag Wässrige 2K-PUR-Systeme mit verbesserter Haftung und Korrosionsbeständigkeit
WO2005047549A1 (de) * 2003-11-15 2005-05-26 Basf Aktiengesellschaft Mit einer zurichtung versehener träger

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518522A (en) * 1983-09-19 1985-05-21 Mobay Chemical Corporation Blocked polyisocyanates with improved storage stability
JPH0637754B2 (ja) * 1987-08-10 1994-05-18 大日精化工業株式会社 多孔性シ−ト材料及びその製造方法
JP2569659B2 (ja) * 1987-12-25 1997-01-08 大日本インキ化学工業株式会社 イソシアネート化合物の乳化方法
DE19514665A1 (de) * 1995-04-20 1996-10-24 Wacker Chemie Gmbh Wäßrige Dispersionen von Organopolysiloxanen
JP4000614B2 (ja) * 1997-02-10 2007-10-31 大日本インキ化学工業株式会社 耐久性を有する水性樹脂組成物ならびに防汚性コート剤および離型性コート剤
AU738464B2 (en) * 1997-04-22 2001-09-20 Rohm And Haas Company Wear-resistant traffic marking composition
DE19945848A1 (de) * 1999-09-24 2001-04-05 Henkel Kgaa Beschichtungsmittel für Elastomere
JP2001171728A (ja) * 1999-12-15 2001-06-26 Denki Kagaku Kogyo Kk エンボスキャリアテープ用シート
DE20317670U1 (de) * 2003-11-15 2004-03-11 Schaefer, Philipp Flächiges Material mit einem Grundkörper aus Leder und einem Vliesmaterial
DE202006007957U1 (de) 2006-05-18 2006-07-20 Schaefer, Philipp Im Umkehrverfahren zugerichtetes Leder
EP2126193A1 (de) 2006-12-22 2009-12-02 Basf Se Verbundmaterial, insbesondere kunstleder
AU2008228259B2 (en) * 2007-03-21 2012-11-29 Basf Se Aqueous dispersions comprising polyurethane and the use thereof for the production of flat substrates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0122552A2 (de) * 1983-04-13 1984-10-24 Bayer Ag Wässrige, vernetzerhaltige Polyurethanzubereitungen und ihre Verwendung zur Thermoaktiv-Einstrich-Umkehrbeschichtung
EP1050551A2 (de) * 1999-05-07 2000-11-08 Bayer Ag Wässrige 2K-PUR-Systeme mit verbesserter Haftung und Korrosionsbeständigkeit
WO2005047549A1 (de) * 2003-11-15 2005-05-26 Basf Aktiengesellschaft Mit einer zurichtung versehener träger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010043549A1 (de) * 2008-10-15 2010-04-22 Basf Se Gegenstände mit mindestens einer durch eine membran abgedeckten öffnung und verfahren zu ihrer herstellung
DE102009001121A1 (de) 2009-02-24 2010-08-26 Basf Se Mehrschichtige Verbundmaterialien, ihre Herstellung und Verwendung
US10329450B2 (en) 2015-05-22 2019-06-25 Basf Coatings Gmbh Method for producing a multicoat coating
US10781336B2 (en) 2015-05-22 2020-09-22 Basf Coatings Gmbh Aqueous basecoat material for producing a coating

Also Published As

Publication number Publication date
EP2137225A1 (de) 2009-12-30
CN101641381A (zh) 2010-02-03
BRPI0808471A2 (pt) 2014-07-15
MX2009009650A (es) 2009-09-22
US9234071B2 (en) 2016-01-12
AU2008228259A1 (en) 2008-09-25
CN101641381B (zh) 2012-05-23
JP2010522252A (ja) 2010-07-01
AU2008228259B2 (en) 2012-11-29
KR20150048904A (ko) 2015-05-07
US20100119775A1 (en) 2010-05-13
JP2015013993A (ja) 2015-01-22
ZA200907279B (en) 2010-12-29
KR20090129456A (ko) 2009-12-16
ES2529743T3 (es) 2015-02-25
JP6238853B2 (ja) 2017-11-29
JP5970154B2 (ja) 2016-08-17
EP2137225B1 (de) 2014-12-03
BRPI0808471B1 (pt) 2018-10-23

Similar Documents

Publication Publication Date Title
EP2137225B1 (de) Wässrige dispersionen, enthaltend polyurethan, und ihre verwendung zur herstellung von flächigen substraten
EP2057293B1 (de) Zugerichtetes leder
EP2247443B1 (de) Mehrschichtige verbundmaterialien, die eine kunststoff- oder metallfolie umfassen, verfahren zu ihrer herstellung und ihre verwendung
DE2252280C3 (de) Textilbeschichtungen und Syntheseleder aus Polycarbonat-Polyharnstoff-Elastomeren
EP2288493B1 (de) Mehrschichtige verbundmaterialien, die eine wasserdampfdurchlässige kunststofffolie umfassen, verfahren zu ihrer herstellung und ihre verwendung
DE2231411C3 (de) Verbundmaterialien und Verfahren zu ihrer Herstellung
EP2303569B1 (de) Verfahren zur kontinuierlichen herstellung von mehrschichtigen verbundkörpern
DE3316450A1 (de) Koagulierte polyurethan-beschichtungszusammensetzungen und deren verwendung zum beschichten von substraten
WO2009106503A1 (de) Mehrschichtige verbundmaterialien, die ein textiles flächengebilde umfassen, verfahren zu ihrer herstellung und ihre verwendung
DE2221756C3 (de) Verfahren zur Herstellung von lösungsmittelbeständigen, lichtechten, knick- und reibfesten Polyurethanüberzügen auf textlien Substraten, Leder oder Kunstleder oder von Folien
DE102008041987A1 (de) Lösungsmittelfreies polyurethanbasiertes Kunstleder mit der Struktur von Menschenhaut und Verfahren zum Herstellen desselben
EP2268483A1 (de) Mehrschichtige verbundmaterialien, die eine schaumstoffschicht umfassen, verfahren zu ihrer herstellung und ihre verwendung
DE2020153B2 (de) Verfahren zur Herstellung einer Deckschicht auf künstlichem Leder
WO2009106499A1 (de) Mehrschichtige verbundmaterialien, die eine schicht aus cellulosehaltigem material umfassen, verfahren zu ihrer herstellung und ihre verwendung
EP2419467A1 (de) Sphärische partikel und ihre verwendung
WO2010043549A1 (de) Gegenstände mit mindestens einer durch eine membran abgedeckten öffnung und verfahren zu ihrer herstellung
DE2632618C3 (de) Verfahren zur Herstellung von Kunstleder mit geschäumten Urethanschichten
DE3134112A1 (de) Beschichtungs- und zurichtmittel fuer leder und lederaustauschstoffe auf basis von polyurethanharnstoff-beschichtungsmassen
DE2455318A1 (de) Verfahren zur beschichtung von flaechengebilden
DE2264853C3 (de) Verfahren zur Herstellung von gegebenenfalls mKeiner homogenen oder mikroporösen Kunststoffdeckschicht versehenen Polyurethanschaumstoffollen Ausscheidung aus: 22 31 411 Bayer AG, 5090 Leverkusen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880009259.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08717819

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/009650

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2009554007

Country of ref document: JP

Ref document number: 2008228259

Country of ref document: AU

Ref document number: 5531/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12532249

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008717819

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20097020866

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2008228259

Country of ref document: AU

Date of ref document: 20080314

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0808471

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090909