WO2008069207A1 - リチウム塩およびその製造方法 - Google Patents

リチウム塩およびその製造方法 Download PDF

Info

Publication number
WO2008069207A1
WO2008069207A1 PCT/JP2007/073405 JP2007073405W WO2008069207A1 WO 2008069207 A1 WO2008069207 A1 WO 2008069207A1 JP 2007073405 W JP2007073405 W JP 2007073405W WO 2008069207 A1 WO2008069207 A1 WO 2008069207A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium salt
general formula
alkyl group
raw material
formula
Prior art date
Application number
PCT/JP2007/073405
Other languages
English (en)
French (fr)
Inventor
Hisashi Yamamoto
Masaki Matsui
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/447,961 priority Critical patent/US8026394B2/en
Priority to KR1020097009294A priority patent/KR101062097B1/ko
Priority to CN2007800431551A priority patent/CN101541817B/zh
Publication of WO2008069207A1 publication Critical patent/WO2008069207A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/24Esteramides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/26Amides of acids of phosphorus containing P-halide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/224Phosphorus triamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium salt that can be used, for example, as a supporting salt for an electrolytic solution, and a method for producing the same.
  • Lithium salts generally include LiPF and LiBF.
  • Non-aqueous solvent for imide lithium salt represented by
  • Patent Document 2 Li N (C F SO) (C F SO) (where m and n are independent of each other; integers of! To 4) m 2m + l 2 n 2n + l 2
  • a lithium secondary battery in which an imide lithium salt represented by the formula (1) is dissolved in a non-aqueous solvent is disclosed.
  • these lithium salts contain only one Li cation in the molecular structure, the Li ion transport number is low! / And! /.
  • Patent Document 3 one or both of LiPF and LiBF is used as an electrolyte.
  • lithium phosphate salts having a plurality of Li in the molecular structure generally have a problem of low solubility in solvents, and it is difficult to sufficiently improve the Li ion transport number. It was.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-85888
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-68154
  • Patent Document 3 Japanese Patent Laid-Open No. 10-189043
  • the present invention has been made in view of the above circumstances, and for example, when used as a supporting salt for an electrolytic solution,
  • the lithium salt characterized by having the chemical structure represented by these is provided.
  • an electrolyte solution having a high Li ion transport number can be obtained by using, for example, as a supporting salt for the electrolyte solution.
  • X represents a halogen atom.
  • a lithium salt characterized by having a chemical structure represented by:
  • a method for producing a lithium salt comprising a synthesis step of synthesizing a lithium salt having a chemical structure represented by the formula:
  • a lithium salt capable of obtaining an electrolytic solution or a solid electrolyte membrane having a high Li ion transport number can be obtained by performing the above synthesis step.
  • R and R may be the same or different from each other
  • a lithium salt capable of obtaining an electrolytic solution or a solid electrolyte membrane having a high Li ion transport number can be obtained by performing the above synthesis step.
  • Fig. 1 is a 19 F-NMR chart of a trisubstituted lithium salt obtained by a synthesis example.
  • FIG. 4 is a 31 P-NMR chart of a disubstituted lithium salt obtained by a synthesis example.
  • FIG. 5 is a graph showing the results of impedance measurement of an electrolyte containing a trisubstituted lithium salt
  • the lithium salt of the present invention has a chemical structure represented by the general formula (1) (first embodiment) and has a chemical structure represented by the general formula (2) (second embodiment). It can be roughly divided into S.
  • the lithium salt of the present invention will be described for each embodiment.
  • the lithium salt of this embodiment is characterized by having the chemical structure represented by the general formula (1) described above. According to this embodiment, the lithium salt has three Li in the molecular structure. Therefore, for example, by using it as a supporting salt of the electrolytic solution, an electrolytic solution having a high Li ion transport number can be obtained.
  • Li P Li P
  • lithium phosphates with multiple Li in the molecular structure are generally
  • the lithium salt of this embodiment which has the problem of low solubility in the liquid, can be dissolved in a predetermined solvent described later, and can be used as a supporting salt for the electrolytic solution. Further, the lithium salt of this embodiment can be used as a solid electrolyte without being dissolved in a solvent.
  • R to R may be the same as or different from each other.
  • R to R are a fluoroalkyl group, an alkyl group, or phenyl.
  • At least one of R to R is fluoro.
  • R to R are fluoroalkyl groups. More preferable.
  • the fluoroalkyl group is one in which all hydrogens of the alkyl group are substituted with fluorine.
  • the carbon number o0 and the number of elements of the fluoroalkyl group are not particularly limited, but among them, it is preferably in the range of! In particular, in this embodiment, the fluoroalkyl group is preferably CF.
  • the alkyl group may be a linear alkyl group or a branched alkyl group. Further, the number of carbon atoms of the alkyl group is not particularly limited, but it is preferably within the range of 1-4. Examples of the alkyl group include CH.
  • the phenyl group usually has a hydrogen bonded to a benzene ring.
  • the hydrogen group may be a fluorine-substituted phenyl group in which the hydrogen is substituted with fluorine.
  • R may be a fluorine-substituted phenyl group.
  • the fluorine-substituted phenyl group for example, C F can be mentioned.
  • the lithium salt has a chemical structure represented by the formula (1-1).
  • the lithium salt of this embodiment can be made to have a solvent S such as propylene carbonate. Therefore, it is useful as a supporting salt for the electrolytic solution.
  • This electrolytic solution can be used for general electrochemical devices such as a primary battery, a secondary battery, an electrolytic capacitor, and an electric double layer capacitor. Further, the lithium salt of this embodiment can also be used as a solid electrolyte of the above electrochemical device.
  • the lithium salt of this embodiment is 19 FN It can be identified by MR, 31 P-NMR and plasma emission analysis (ICP).
  • the lithium salt of this embodiment is characterized by having the chemical structure represented by the general formula (2) described above.
  • an electrolyte solution having a high Li ion transport number can be obtained by using, for example, as a supporting salt of the electrolyte solution.
  • lithium phosphates with multiple Li in the molecular structure are generally
  • the lithium salt of this embodiment which has the problem of low solubility in the liquid, can be dissolved in a predetermined solvent described later, and can be used as a supporting salt for the electrolytic solution. Further, the lithium salt of this embodiment can be used as a solid electrolyte without being dissolved in a solvent.
  • R and R may be the same or different from each other.
  • the R and R forces are more preferably the same functional group.
  • R and R are a fluoroalkyl group, an alkyl group or a phenyl group.
  • the fluoroalkyl group, the alkyl group, and the phenyl group are the same as those described in “1. First embodiment”, and thus the description thereof is omitted here.
  • the fluoroalkyl group is preferably CF.
  • X represents a halogen atom.
  • the halogen atom include a fluorine atom (F), a chlorine atom (C1), a bromine atom (Br), iodine (I) and the like.
  • X is preferably a halogen atom heavier than a chlorine atom (C1). S is preferable, and X is more preferably a chlorine atom (C1)! /.
  • the lithium salt has a chemical structure represented by the formula (2-1). It has been confirmed that this lithium salt has higher solubility in organic solvents than the lithium salt represented by the above formula (11). [0050] [Chemical 10]
  • the lithium salt of this embodiment may be a solvent such as propylene carbonate. Therefore, it is useful as a supporting salt for the electrolytic solution.
  • This electrolytic solution can be used for general electrochemical devices such as a primary battery, a secondary battery, an electrolytic capacitor, and an electric double layer capacitor. Further, the lithium salt of this embodiment can also be used as a solid electrolyte of the above electrochemical device.
  • the lithium salt of this embodiment can be identified by 19 FN MR, 31 P-NMR, plasma emission analysis (ICP) and the like.
  • R represents a fluoroalkyl group, an alkyl group, or a phenyl group.
  • X represents a halogen atom.
  • the lithium salt characterized by having the chemical structure represented by these can be provided.
  • the fluoroalkyl group, the arnolequinol group, the phenyl group, and the halogen atom are the same as those described in "2. Second embodiment", and thus the description thereof is omitted here.
  • R is preferably -CF
  • X is a salt.
  • the method for producing a lithium salt of the present invention comprises an embodiment for producing a lithium salt having a chemical structure represented by the general formula (1) (third embodiment) and a chemical structure represented by the general formula (2). It is possible to divide it roughly into the embodiment (fourth embodiment) for producing the lithium salt. Hereinafter, the method for producing a lithium salt of the present invention will be described for each embodiment.
  • the method for producing a lithium salt according to this embodiment includes the following general formula (3-1) to general formula (3-3)
  • a lithium salt capable of obtaining an electrolytic solution or a solid electrolyte membrane having a high Li ion transport number can be obtained.
  • Lithium salt synthase A Raw material for lithium synthesis B
  • Reaction 1 includes trifluoromethanesulfonic acid amide (CF) under an inert gas atmosphere such as Ar.
  • LiC H n-butyllithium
  • a raw material A for lithium salt synthesis As will be described later, in this embodiment, a single lithium salt synthesis raw material A may be used to synthesize lithium salts, and a plurality of lithium salt synthesis raw materials A may be used. You can synthesize! /.
  • Reaction 2 is carried out under an inert gas atmosphere such as Ar, with phosphoric acid trichloride (POC1, lithium salt).
  • inert gas atmosphere such as Ar
  • POC1 phosphoric acid trichloride
  • reaction 2 is POC1
  • the synthesis step in this embodiment includes a raw material A for synthesizing a lithium salt having a chemical structure represented by the general formula (31) to the general formula (3-3) described above, and the general formula (4) described above.
  • a raw material A for synthesizing a lithium salt having a chemical structure represented by the general formula (31) to the general formula (3-3) described above and the general formula (4) described above.
  • the lithium salt synthesis raw material B having the chemical structure represented by reacting the lithium salt synthesis raw material A with the lithium salt synthesis raw material B the above-mentioned general formula (1)
  • This is a step of synthesizing a lithium salt having the chemical structure represented.
  • the lithium salt synthesis raw material A used in the present embodiment has a chemical structure represented by the general formula (3-1) to the general formula (3-3) described above.
  • R to R in the general formula (3 1) to the general formula (3-3) are described in the above “ ⁇ ⁇ lithium salt 1. first embodiment”.
  • R to R are the same functional group, that is, the general formula (3— ;!) to
  • the lithium salt synthesis raw material B used in this embodiment has a chemical structure represented by the general formula (4).
  • X in the general formula (4) is the same as X in the general formula (2) described in the above-mentioned “A. Lithium salt 2. Second embodiment”, and the description thereof is omitted here.
  • X is preferably a chlorine atom (C1).
  • the solvent used in the reaction is not particularly limited as long as it can dissolve the lithium salt synthesis raw materials A and B. Specific examples include jetyl etherol, tetrahydrofuran (THF ), Mentioning ethanol, methanol, etc.
  • the reaction temperature of the lithium salt synthesis raw materials A and B is not particularly limited. 1S For example, it is preferably in the range of 10 ° C to 5 ° C. In particular, in this embodiment, when the lithium salt synthesis raw materials A and B are reacted, it is preferably reacted in an ice bath.
  • the amount of the lithium salt synthesis raw materials A and B used is not particularly limited as long as the lithium salt represented by the general formula (1) can be obtained.
  • the use amount of the lithium salt synthesis raw material B is 1, it is preferable to use the lithium salt synthesis raw material A within a range of 3 to 15 and even within a range of 5 to 9 on a molar basis.
  • the lithium salt synthesis raw material A it is preferable to add 5 equivalents or more of the lithium salt synthesis raw material A to the lithium salt synthesis raw material B.
  • the lithium salt synthesis raw material A is less than 3 equivalents, the NH of the phosphoramide is acidified, so it is estimated that TfNH and phosphorus amide are generated by the H—Li exchange.
  • a method for removing the side reaction product for example, a method using a difference in solubility can be cited.
  • the solvent used in the method using the difference in solubility include Examples include tilether, alcohols, acetone, acetic acid, hexane, cyclohexane, pentane, water, black mouth form, benzene, ethyl acetate, methyl propionate, black mouth form, pyridine, and dimethylformamide.
  • the solubility test using these solvents is appropriately performed, the most suitable solvent for separating the main reaction product and the side reaction product is selected, and the lithium salt is purified. It is preferable.
  • a mixture of lithium salts containing 2-substituents but hardly containing one-substituents may be obtained.
  • the tri-substituted product has low solubility in jetyl ether, and the di-substituted product has high solubility in jetyl ether. Therefore, suspension washing with a lithium salt mixture using jet ether is performed. 3)
  • the substitution product can be left in the filtrate, the 2 substitution product can be transferred to the filtrate, and both can be separated.
  • the method for producing the lithium salt according to this embodiment includes the following general formulas (3-1) and (3-2).
  • R and R may be the same or different from each other.
  • a lithium salt capable of obtaining an electrolytic solution or a solid electrolyte membrane having a high Li ion transport number can be obtained.
  • the synthesis step in the present embodiment is represented by the lithium salt synthesis raw material A having the chemical structure represented by the general formula (3-1) and the general formula (3-2) described above and the general formula (4) described above.
  • the lithium salt synthesis raw material B having the chemical structure is reacted with the lithium salt synthesis raw material A and the lithium salt synthesis raw material B, and is expressed by the above-described general formula (2). This is a step of synthesizing a lithium salt having a chemical structure.
  • R and R are preferably fluoroalkyl groups.
  • X is a chlorine atom
  • the lithium salt synthesis raw material A is in a range of 2 to 10 on a molar basis, Among these, it is preferable to use within the range of 4-9.
  • the purification process in this embodiment will be described.
  • the specific purification method and the like are the same as the contents described in the above “1. Third embodiment”, and thus the description thereof is omitted here.
  • a method for producing a lithium salt can be provided.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is merely an example, and has any configuration that is substantially the same as the technical idea described in the claims of the present invention and that exhibits the same operational effects. Are also included in the technical scope of the present invention.
  • Lithium salts were synthesized according to Reaction 1 and Reaction 2 described above.
  • a solution was obtained by dissolving in ethyl ether solution. Next, n-butyllithium / hexane (1.59M, 8.45 ml, manufactured by Aldrich) was slowly added while stirring the solution in an ice bath. Thereafter, the temperature of the solution was raised to room temperature to obtain a raw material A-containing solution for synthesizing lithium salt.
  • a solution was obtained by mixing with the ether solution. Next, while the solution was stirred in an ice bath, the lithium salt synthesis raw material A-containing solution was slowly added dropwise.
  • FIG. 1 and FIG. 2 show the results of 19 F-NMR and 31 P-NMR of the compound (11), which is a 3-substituted product, respectively.
  • the results of 19 F-NMR and 31 P NMR of compound ( 21 ), which is a disubstituted product, are shown in FIGS. 3 and 4, respectively.
  • the trisubstituted lithium salt (compound (1 1)) obtained in the synthesis example was added at concentrations of 0.5M and 1.0M.
  • the conductivity of the electrolytic solution was measured in the same manner as in Example 1 except that the obtained electrolytic solution was used. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、例えば電解液の支持塩として用いた場合に、リチウム輸率の向上を図ることができるリチウム塩を提供することを主目的とするものである。  本発明は、下記一般式(1) (式中、R1~R3は、互いに、同じであっても良く、異なっていても良く、フルオロアルキル基、アルキル基またはフェニル基を示す。)で表される化学構造を有することを特徴とするリチウム塩を提供することにより、上記課題を解決する。

Description

明 細 書
リチウム塩およびその製造方法
技術分野
[0001] 本発明は、例えば電解液の支持塩として用いることができるリチウム塩、およびその 製造方法に関するものである。
背景技術
[0002] 従来、リチウム二次電池に用いられる電解液には、非水溶媒にリチウム塩を溶解し た電解液が使用されている。リチウム塩としては、一般的には、 LiPFや LiBF等が
6 4 知られている。さらに現在、種々のリチウム塩を用いたリチウム二次電池の開発が盛 んに行われている。
[0003] 例えば、特許文献 1においては、 Li (C X Y) N (ただし Xはハロゲン、 nは;!〜 4 n 2n+ l 2
の整数、 Yは CO基または SO基を示す。)で表されるイミド系リチウム塩を非水溶媒
2
に溶解させたリチウム二次電池が開示されている。また、特許文献 2においては、 Li N (C F SO ) (C F SO ) (ただし、 mおよび nは各々独立した;!〜 4の整数) m 2m+ l 2 n 2n+ l 2
で表されるイミド系リチウム塩を非水溶媒に溶解させたリチウム二次電池が開示され ている。し力、しながら、これらのリチウム塩は、分子構造中に含まれる Liカチオンが 1 つのみであるため、 Liイオン輸率が低!/、と!/、つた問題があった。
[0004] 一方、特許文献 3においては、電解質として、 LiPF 、 LiBFの一方もしくは両方と
6 4
、 Li P〇 、 Li (OH) PO 、 Li (CH ) P〇 、 Li (C H ) P〇の少なくとも 1つと、を含
3 4 2 3 4 3 2 4 2 2 5 4
む非水電解液を用いたリチウム二次電池が開示されている。し力もながら、 Li POの
3 4 ように、分子構造中に複数の Liを有するリン酸リチウム塩は、一般的に、溶媒に対す る溶解性が低いという問題があり、 Liイオン輸率の向上を充分に図ることは困難であ つた。
[0005] 特許文献 1 :特開平 7— 85888号公報
特許文献 2 :特開 2001— 68154公報
特許文献 3:特開平 10— 189043号公報
発明の開示 発明が解決 1
[0006] 本発明は、上記実情に鑑みてなされたものであり、例えば電解液の支持塩として用 いた場合 oosに
的とするものである。
課題を解決するための手段
[0007] 上記課題を解決するために、本発明においては、下記一般式(1)
[0008] [化 1]
一般式(1 )
Figure imgf000003_0001
[0009] (式中、 R〜Rは、互いに、同じであっても良く、異なっていても良ぐフルォロアルキ
1 3
ル基、アルキル基またはフエ二ル基を示す。 )
で表される化学構造を有することを特徴とするリチウム塩を提供する。
[0010] 本発明によれば、分子構造中に 3個の Liを有することから、例えば電解液の支持塩 として用いることで、 Liイオン輸率が高い電解液を得ることができる。
[0011] また、本発明においては、下記一般式(2)
[0012] [化 2]
一般式 (2)
Figure imgf000003_0002
[0013] (式中、 Rおよび Rは、互いに、同じであっても良く、異なっていても良ぐフルォロア
1 2
ルキル基、アルキル基またはフエ二ル基を示す。 Xは、ハロゲン原子を示す。 ) で表される化学構造を有することを特徴とするリチウム塩を提供する。
[0014] 本発明によ ϋ Νれば、分子構造中に 2個の Liを有することから、例えば電解液の支持塩
ί + - として用いることで H、 Liイオン輸率が高い電解液を得ることができる。
[0015] また、本発明においては、下記一般式(3— 1)〜一般式(3— 3)
[0016] [化 3]
oos
R. ― N― H R3一 S一 N一 H
II
0 一般式 (3— 1 ) 一般式 (3— 2) —般式(3— 3)
[0017] (式中、 R〜Rは、互いに、同じであっても良く、異なっていても良ぐフルォロアルキ
1 3
ル基、アルキル基またはフエ二ル基を示す。 )
で表される化学構造を有するリチウム塩合成用原料 Aと、
下記一般式 (4)
[0018] [化 4]
Figure imgf000004_0001
一般式 (4)
[0019] (式中、 Xはハロゲン原子を示す。 )
で表される化学構造を有するリチウム塩合成用原料 Bと、を用い、
上記リチウム塩合成用原料 Aと、上記リチウム塩合成用原料 Bとを反応させることに より、下記一般式(1)
[0020] [化 5] 一般式(1 )
Figure imgf000005_0001
[0021] (式中、 R〜Rは、互いに、同
1 3
ル基、アルキル基またはフエ二ル基 oosを )
で表される化学構造を有するリチウム塩を合成する合成工程を有することを特徴とす るリチウム塩の製造方法を提供する。
[0022] 本発明によれば、上記の合成工程を行うことにより、 Liイオン輸率が高い電解液や 固体電解質膜を得ることが可能なリチウム塩を得ることができる。
[0023] また、本発明においては、下記一般式(3— 1)および一般式(3— 2)
[0024] [化 6]
^一
Figure imgf000005_0002
一般式 (3— 1 ) —般式 (3— 2)
[0025] (式中、 Rおよび Rは、互いに、同じであっても良く、異なっていても良く,
1 2
ルキル基、アルキル基またはフエ二ル基を示す。)
で表される化学構造を有するリチウム塩合成用原料 Aと、
下記一般式 (4)
[0026] [化 7]
Figure imgf000005_0003
一般式 (4) [0027] (式中、 Xはハロゲン原子を示す。)
で表される化学構造を有するリチウム塩合成用原料 Bと、を用い、
上記リチウム塩合成用原料 Aと、上記リチウム塩合成用原料 Bとを反応させること より、下記一般式 (2)
[0028] [化 8コ
一般式 (2)
Figure imgf000006_0001
[0029] (式中、 Rおよび Rは、互いに、同じであっても良く、異なっていても良ぐフルォロア
1 2
ルキル基、アルキル基またはフエ二ル基を示す。 Xは、ハロゲン原子を示す。 ) で表される化学構造を有するリチウム塩を合成する合成工程を有することを特徴とす るリチウム塩の製造方法を提供する。
[0030] 本発明によれば、上記の合成工程を行うことにより、 Liイオン輸率が高い電解液や 固体電解質膜を得ることが可能なリチウム塩を得ることができる。
[0031] 上記発明においては、上記合成工程の際に生じた副反応生成物を除去する精製 工程を有することが好ましレ、。合成工程の際に副反応生成物が生じた場合であって も、精製を行うことで、純度の高い目的物を得ることができるからである。
発明の効果
[0032] 本発明にお!/、ては、例えば電解液の支持塩として有用な新規のリチウム塩を提供 すること力 Sできると!/、う効果を奏する。
図面の簡単な説明
[0033] 園 1]合成例により得られた 3置換リチウム塩の19 F— NMRチャートである。
園 2]合成例により得られた 3置換リチウム塩の31 P— NMRチャートである。
園 3]合成例により得られた 2置換リチウム塩の19 F— NMRチャートである。 [図 4]合成例により得られた 2置換リチウム塩の31 P— NMRチャートである。
[図 5]3置換リチウム塩を含む電解液のインピーダンス測定の結果を示すグラフである
発明を実施するための最良の形態
[0034] 以下、本発明のリチウム塩、およびその製造方法について詳細に説明する。
[0035] A.リチウム塩
まず、本発明のリチウム塩について説明する。本発明のリチウム塩は、一般式(1) で表される化学構造を有するもの(第一実施態様)と、一般式 (2)で表される化学構 造を有するもの(第二実施態様)と、に大別すること力 Sできる。以下、本発明のリチウム 塩について、実施態様ごとに説明する。
[0036] 1.第一実施態様
まず、本発明のリチウム塩の第一実施態様について説明する。本実施態様のリチウ ム塩は、上述した一般式(1)で表される化学構造を有することを特徴とするものであ 本実施態様によれば、分子構造中に 3個の Liを有することから、例えば電解液の支 持塩として用いることで、 Liイオン輸率が高い電解液を得ることができる。なお、 Li P
3
Oのように、分子構造中に複数の Liを有するリン酸リチウム塩は、一般的に、溶媒に
4
対する溶解性が低いという問題があった力 s、本実施態様のリチウム塩は、後述する所 定の溶媒に溶解させることができ、電解液の支持塩として用いることができる。また、 本実施態様のリチウム塩は、溶媒に溶解させず固体電解質として用いることも可能で ある。
[0037] 一般式(1)において、 R〜Rは、互いに、同じであっても良く、異なっていても良い
1 3
。本実施態様においては、中でも、 R〜Rの少なくとも 2個以上が同じ官能基である
1 3
こと力 S好ましく、 R〜Rの全てが同じ官能基であることがより好ましい。リチウム塩の製
1 3
造が容易だからである。
[0038] 一般式(1)において、 R〜Rは、フルォロアルキル基、アルキル基またはフエニル
1 3
基を示す。本実施態様においては、中でも、 R〜Rの少なくとも 1個以上がフルォロ
1 3
アルキル基であることが好ましぐ R〜Rの全てがフルォロアルキル基であることがよ り好ましい。
[0039] 上記フルォロアルキル基は、アルキル基の水素が全てフッ素で置換されたものであ
3 c
つても良く、一部がフッ素で置換されたものであっても良い。また、上記フルォロアル キル基の炭 o0、素—— 数としては、特に限定されるものではないが、中でも;!〜 4の範囲内で あること力 S好ましい。特に、本実施態様においては、上記フルォロアルキル基が C Fであることが好ましい。
3
[0040] 上記アルキル基は、直鎖アルキル基であっても良く、分岐アルキル基であっても良 い。また、上記アルキル基の炭素数としては、特に限定されるものではないが、中で も 1〜4の範囲内であることが好ましい。上記アルキル基は、例えば CH等を挙げ
3 ること力 sでさる。
[0041] 上記フエニル基は、通常、ベンゼン環に結合した水素を有するものである力 本実 施態様にぉレ、ては、この水素がフッ素で置換されたフッ素置換フエニル基であっても 良い。すなわち、上記 Rが、フッ素置換フエニル基であっても良い。フッ素置換フエ二 ル基としては、例えば C F等を挙げること力 Sできる。
6 5
[0042] 特に、本実施態様においては、リチウム塩が式(1— 1)で表される化学構造を有す ることが好ましい。
[0043] [化 9] ? S— CF,
II
0 0 式(1—1 )
Figure imgf000008_0001
[0044] 本実施態様のリチウム塩は、例えばプロピレンカーボネート等の溶媒等させること力 S できる。そのため、電解液の支持塩として有用である。この電解液は、例えば一次電 池、二次電池、電解コンデンサ、電気二重層キャパシタ等の一般的な電気化学デバ イスに用いることができる。また、本実施態様のリチウム塩は、上記の電気化学デバイ スの固体電解質として用いることも可能である。本実施態様のリチウム塩は、 19F-N MR、 31P— NMRおよびプラズマ発光分析(ICP)等により同定することができる。
[0045] 2.第二実施態様
次に、本発明のリチウム塩の第二実施態様について説明する。本実施態様のリチ ゥム塩は、上述した一般式(2)で表される化学構造を有することを特徴とするもので ある。
本実施態様によれば、分子構造中に 2個の Liを有することから、例えば電解液の支 持塩として用いることで、 Liイオン輸率が高い電解液を得ることができる。なお、 Li P
3
Oのように、分子構造中に複数の Liを有するリン酸リチウム塩は、一般的に、溶媒に
4
対する溶解性が低いという問題があった力 s、本実施態様のリチウム塩は、後述する所 定の溶媒に溶解させることができ、電解液の支持塩として用いることができる。また、 本実施態様のリチウム塩は、溶媒に溶解させず固体電解質として用いることも可能で ある。
[0046] 一般式(2)において、 Rおよび Rは、互いに、同じであっても良く、異なっていても
1 2
良い。本実施態様においては、中でも、 Rおよび R力 同じ官能基であることがより
1 2
好ましい。リチウム塩の製造が容易だからである。
[0047] 一般式(2)において、 Rおよび Rは、フルォロアルキル基、アルキル基またはフエ
1 2
二ル基を示す。本実施態様においては、中でも、 Rおよび R力 Sフルォロアルキル基
1 2
であることがより好ましい。なお、上記フルォロアルキル基、上記アルキル基、および 上記フエニル基については、上記「1.第一実施態様」に記載した内容と同様である ので、ここでの説明は省略する。特に、本実施態様においては、上記フルォロアルキ ル基が CFであることが好ましい。
3
[0048] 一般式(2)において、 Xはハロゲン原子を示す。上記ハロゲン原子としては、例え ば、フッ素原子 (F)、塩素原子(C1)、臭素原子 (Br)、ヨウ素 (I)等を挙げることができ る。中でも、本実施態様においては、 Xが塩素原子(C1)よりも重いハロゲン原子であ ること力 S好ましく、 Xが塩素原子(C1)であることがより好まし!/、。
[0049] 特に、本実施態様においては、リチウム塩が式(2— 1)で表される化学構造を有す ること力 S好ましい。なお、このリチウム塩は、上記式(1 1)で表されるリチウム塩よりも さらに有機溶媒に対する溶解性が高いことが確認されている。 [0050] [化 10]
o , i+ o
し I I I
3 C一 S一 N一 P一 CI
O N 式 (2—1 )
+
o=s=o
[0051] 本実施態様のリチウム塩は、例えばプロピレンカーボネート等の溶媒等させることが できる。そのため、電解液の支持塩として有用である。この電解液は、例えば一次電 池、二次電池、電解コンデンサ、電気二重層キャパシタ等の一般的な電気化学デバ イスに用いることができる。また、本実施態様のリチウム塩は、上記の電気化学デバイ スの固体電解質として用いることも可能である。本実施態様のリチウム塩は、 19F-N MR、 31P— NMRおよびプラズマ発光分析(ICP)等により同定することができる。
[0052] 3.その他
本発明においては、下記一般式(5)
[0053] [化 11]
0 I I uし1+ 0
R― S― N― P ~~ X 一般式 (5)
0 X
[0054] (式中、 Rは、フルォロアルキル基、アルキル基またはフエ二ル基を示す。 Xは、ハロ ゲン原子を示す。 )
で表される化学構造を有することを特徴とするリチウム塩を提供することができる。
[0055] 一般式(5)における、フルォロアルキル基、ァノレキノレ基、フエニル基およびハロゲン 原子については、上記「2.第二実施態様」に記載した内容と同様であるので、ここで の説明は省略する。本発明においては、 Rが、 - CFであることが好ましく、 Xが、塩
3
素原子(C1)であること力 s好ましレ、。 [0056] B.リチウム塩の製造方法
次に、本発明のリチウム塩の製造方法について説明する。本発明のリチウム塩の製 造方法は、一般式(1)で表される化学構造を有するリチウム塩を製造する態様 (第三 実施態様)と、一般式 (2)で表される化学構造を有するリチウム塩を製造する態様( 第四実施態様)と、に大別すること力 Sできる。以下、本発明のリチウム塩の製造方法に ついて、実施態様ごとに説明する。
[0057] 1.第三実施態様
まず、本発明のリチウム塩の製造方法の第三実施態様について説明する。本実施 態様のリチウム塩の製造方法は、下記一般式 (3— 1 )〜一般式 (3— 3)
[0058] [化 12]
R——
Figure imgf000011_0001
—般式 (3— 1 ) —般式 (3— 2) —般式(3— 3)
[0059] (式中、 R〜Rは、互いに、同じであっても良く、異なっていても良ぐフルォロアルキ
1 3
ル基、アルキル基またはフエ二ル基を示す。 )
で表される化学構造を有するリチウム塩合成用原料 Aと、
下記一般式 (4)
[0060] [化 13]
0
II
X ~† ~ X
X
一般式 (4)
[0061] (式中、 Xはハロゲン原子を示す。 )
で表される化学構造を有するリチウム塩合成用原料 Bと、を用い、
上記リチウム塩合成用原料 Aと、上記リチウム塩合成用原料 Bとを反応させることに より、下記一般式(1) [0062] [化 14]
一般式(1 )
Figure imgf000012_0001
[0063] (式中、 R〜Rは、互いに、同じであっても良く、異なっていても良ぐフルォロアルキ
1 3
ル基、アルキル基またはフエ二ル基を示す。 )
で表される化学構造を有するリチウム塩を合成する合成工程を有することを特徴とす るものである。
[0064] 本実施態様によれば、上記の合成工程を行うことにより、 Liイオン輸率が高い電解 液や固体電解質膜を得ることが可能なリチウム塩を得ることができる。
[0065] 次に、本実施態様のリチウム塩の製造方法の一例について、下記の反応 1および 反応 2を用いて説明する。
[0066] [化 15]
(反応 1 )
U
― 一 H
Figure imgf000013_0001
リチウム塩合成用頂料 A
(反応 2)
Figure imgf000013_0002
リチウム塩合成用照料 A リチウム堪合成用原料 B
† 。。i=
Figure imgf000013_0003
化合物(1 _ 1 ) 化合物 (2— 1 ) 化合物(5— 1 )
3置換体 2 換体 1置換体
Figure imgf000013_0004
化合物(1— 1 )
3置換体
[0067] 反応 1は、 Ar等の不活性ガス雰囲気下で、トリフルォロメタンスルホン酸アミド(CF
3
SO NH )をジェチルエーテル等の有機溶媒に溶解させた溶液を用意し、氷浴中で
2 2
撹拌しながら、 n ブチルリチウム(LiC H )等の塩基性リチウム化合物を添加するこ
4 9
とにより、リチウム塩合成用原料 Aを得る反応である。なお、後述するように、本実施 態様においては、単一のリチウム塩合成用原料 Aを用いてリチウム塩の合成を行って も良ぐ複数のリチウム塩合成用原料 Aを用レ、てリチウム塩の合成を行っても良!/、。
[0068] 反応 2は、 Ar等の不活性ガス雰囲気下で、リン酸トリクロライド(POC1、リチウム塩
3
合成用原料 B)をジェチルエーテル等の有機溶媒に溶解させた溶液を用意し、氷浴 中で撹拌しながら、反応 1で得られたリチウム塩合成用原料 Aを添加する反応である 。反応 2により、 (CF SO NLi)基が P原子に 3個結合した 3置換体 (化合物(1 1) )
3 2
が合成される。これが本実施態様における目的物となる。ただし、反応 2は、 POC1
3 の C1原子を (CF SO NLi)基で置換する反応であることから、反応条件等によって
3 2
は、副反応生成物として 2置換体 (化合物(2— 1) )および 1置換体 (化合物(5— 1) ) が生成する可能性がある。そのような場合は、後述するように、例えば溶媒に対する 溶解度の違いを利用して、副反応生成物を除去する精製工程を行うことで、純度の 高レ、目的物(化合物(1 1) )を得ること力できる。
以下、本実施態様のリチウム塩の製造方法について、工程ごとに説明する。
[0069] (1)合成工程
まず、本実施態様における合成工程について説明する。本実施態様における合成 工程は、上述した一般式(3 1)〜一般式(3— 3)で表される化学構造を有するリチ ゥム塩合成用原料 Aと、上述した一般式 (4)で表される化学構造を有するリチウム塩 合成用原料 Bと、を用い、上記リチウム塩合成用原料 Aと、上記リチウム塩合成用原 料 Bとを反応させることにより、上述した一般式(1)で表される化学構造を有するリチ ゥム塩を合成する工程である。
[0070] 本実施態様に用いられるリチウム塩合成用原料 Aは、上述した一般式(3— 1)〜一 般式 (3— 3)で表される化学構造を有するものである。一般式 (3 1 )〜一般式 (3— 3)における R〜Rについては、上記「Α·リチウム塩 1.第一実施態様」に記載され
1 3
ている一般式(1)の R〜Rと同様であるので、ここでの説明は省略する。特に、本実
1 3
施態様においては、 R〜Rが同一の官能基であること、すなわち一般式(3—;!)〜
1 3
一般式(3— 3)で表される化合物が同一であることが好ましい。また、 R〜Rは、フル
1 3 ォロアルキル基であることが好ましぐ CFであることがより好ましい。
3
[0071] 本実施態様に用いられるリチウム塩合成用原料 Bは、上述した一般式 (4)で表され る化学構造を有するものである。一般式 (4)における Xについては、上記「A.リチウ ム塩 2.第二実施態様」に記載されている一般式(2)における Xと同様であるので、 ここでの説明は省略する。特に、本実施態様においては、 Xが塩素原子(C1)である ことが好ましい。 [0072] 反応に用いられる溶媒としては、リチウム塩合成原料 Aおよび Bを溶解させることが できるものであれば特に限定されるものではないが、具体的には、ジェチルエーテノレ 、テトラヒドロフラン (THF)、エタノール、メタノール等を挙げること力 Sできる。
[0073] リチウム塩合成原料 Aおよび Bの反応温度としては、特に限定されるものではない 1S 例えば一 10°C〜5°Cの範囲内であることが好ましい。特に、本実施態様におい ては、リチウム塩合成原料 Aおよび Bを反応させる際に、氷浴中で反応させることが 好ましい。
[0074] リチウム塩合成原料 Aおよび Bの使用量としては、一般式(1)で表されるリチウム塩 を得ることができれば特に限定されるものではない。例えば、リチウム塩合成原料 Bの 使用量を 1とした時に、リチウム塩合成原料 Aをモル基準で、 3〜; 15の範囲内、中で も 5〜9の範囲内で使用することが好ましい。
[0075] 本実施態様のリチウム塩の製造方法においては、合成条件によって、上述した反 応 2のように、 (RSO NLi)基の 3置換体、 2置換体、 1置換体の混合物が得られる場
2
合がある。合成工程において、一般式(1)で表されるリチウム塩、すなわち(RSO N
2
Li)基の 3置換体を高い割合で得るためには、リチウム塩合成原料 Aをリチウム塩合 成原料 Bに対して、 5当量以上添加することが好ましい。なお、例えばリチウム塩合成 原料 Aが 3当量未満の場合、リンアミドの N— Hが酸性化するため、 H— Li交換により TfNHおよびリンアミドが生成すると推定される。
2
[0076] 本実施態様により得られる、一般式(1)で表されるリチウム塩の詳細については、上 記「A.リチウム塩 1.第一実施態様」に記載した内容と同様であるので、ここでの説 明は省略する。
[0077] (2)精製工程
次に、本実施態様における精製工程について説明する。本実施態様においては、 上記合成工程の際に生じた副反応生成物を除去する精製工程を行うことが好ましい 。合成工程の際に副反応生成物が生じた場合であっても、精製を行うことで、純度の 高!/ヽ目的物を得ること力 Sできる力、らである。
[0078] 副反応生成物を除去する方法としては、例えば、溶解度の差を用いる方法等を挙 げること力 Sできる。溶解度の差を用いる方法で使用される溶媒としては、例えば、ジェ チルエーテル、アルコール類、アセトン、酢酸、へキサン、シクロへキサン、ペンタン、 水、クロ口ホルム、ベンゼン、酢酸ェチル、プロピオン酸メチル、クロ口ホルム、ピリジン 、ジメチルホルムアミド等を挙げることができる。本実施態様においては、これらの溶 媒を用いた溶解性試験を適宜行い、主反応生成物と副反応生成物とを分離するた めに最も適した溶媒を選択し、リチウム塩の精製を行うことが好ましい。
[0079] 例えば、上述した反応 1および反応 2を行うと、 (CF SO NLi)基の 3置換体および
3 2
2置換体を含むが、 1置換体をほとんど含まないリチウム塩の混合物が得られる場合 がある。このような場合、 3置換体はジェチルエーテルに対する溶解性が低ぐ 2置換 体はジェチルエーテルに対する溶解性が高いことから、リチウム塩の混合物にジェ チルエーテルを用いて懸濁洗浄を行うことにより、 3置換体を濾過物に残留させ、 2置 換体を濾液に移動させることができ、両者の分離を行うことができる。
[0080] 2.第四実施態様
次に、本発明のリチウム塩の製造方法の第四実施態様について説明する。本実施 態様のリチウム塩の製造方法は、下記一般式(3— 1)および一般式(3— 2)
[0081] [化 16]
Figure imgf000016_0001
一般式 (3— 1 ) —般式 (3— 2)
[0082] (式中、 Rおよび Rは、互いに、同じであっても良く、異なっていても良く、フルォロア
1 2
ルキル基、アルキル基またはフエ二ル基を示す。)
で表される化学構造を有するリチウム塩合成用原料 Aと、
下記一般式 (4)
[0083] [化 17]
0
II
X ~† ~ X
X
一般式 (4) [0084] (式中、 Xはハロゲン原子を示す。)
で表される化学構造を有するリチウム塩合成用原料 Bと、を用い、
上記リチウム塩合成用原料 Aと、上記リチウム塩合成用原料 Bとを反応させること より、下記一般式 (2)
[0085] [化 18]
一般式 (2)
Figure imgf000017_0001
[0086] (式中、 Rおよび Rは、互いに、同じであっても良く、異なっていても良ぐフルォロア
1 2
ルキル基、アルキル基またはフエ二ル基を示す。 Xは、ハロゲン原子を示す。 ) で表される化学構造を有するリチウム塩を合成する合成工程を有することを特徴とす るものである。
[0087] 本実施態様によれば、上記の合成工程を行うことにより、 Liイオン輸率が高い電解 液や固体電解質膜を得ることが可能なリチウム塩を得ることができる。
[0088] なお、本実施態様のリチウム塩の製造方法の具体例については、原則的には、上 述した反応 1および反応 2と同様であるので、ここでの説明は省略する。以下、本実 施態様のリチウム塩の製造方法について、工程ごとに説明する。
[0089] (1)合成工程
本実施態様における合成工程は、上述した一般式(3— 1)および一般式(3— 2)で 表される化学構造を有するリチウム塩合成用原料 Aと、上述した一般式 (4)で表され る化学構造を有するリチウム塩合成用原料 Bと、を用い、上記リチウム塩合成用原料 Aと、上記リチウム塩合成用原料 Bとを反応させることにより、上述した一般式(2)で 表される化学構造を有するリチウム塩を合成する工程である。
[0090] 本実施態様に用いられるリチウム塩合成用原料 Aおよび B、並びに反応に用いられ る溶媒等については、上記「1.第三実施態様」に記載した内容と同様であるので、こ こでの説明は省略する。特に、本実施態様においては、 Rおよび Rが同一の官能
1 2
基であること、すなわち一般式(3— 1)および一般式(3— 2)で表される化合物が同 一であることが好ましい。また、 Rおよび Rは、フルォロアルキル基であることが好ま
1 2
しぐ— CFであることがより好ましい。また、本実施態様においては、 Xが塩素原子(
3
C1)であることが好ましい。
[0091] 本実施態様のリチウム塩の製造方法においては、合成条件によって、上述した反 応 2のように、 (RSO NLi)基の 2置換体、 3置換体、 1置換体の混合物が得られる場
2
合がある。合成工程において、一般式(2)で表されるリチウム塩、すなわち(RSO N
2
Li)基の 2置換体を高い割合で得るためには、例えば、リチウム塩合成原料 Bの使用 量を 1とした時に、リチウム塩合成原料 Aをモル基準で、 2〜; 10の範囲内、中でも 4〜 9の範囲内で使用することが好ましい。
[0092] 本実施態様により得られる、一般式(1)で表されるリチウム塩の詳細については、上 記「A.リチウム塩 2.第二実施態様」に記載した内容と同様であるので、ここでの説 明は省略する。
[0093] (2)精製工程
次に、本実施態様における精製工程について説明する。本実施態様においては、 上記合成工程の際に生じた副反応生成物を除去する精製工程を行うことが好ましい 。合成工程の際に副反応生成物が生じた場合であっても、精製を行うことで、純度の 高い目的物を得ること力 Sできる力、らである。具体的な精製方法等については、上記「 1.第三実施態様」に記載した内容と同様であるので、ここでの説明は省略する。
[0094] また、本発明においては、合成条件や精製条件を適宜選択することにより、 (CF S
3
O NLi)基の 1置換体、すなわち、上述した一般式(5)で表される化学構造を有する
2
リチウム塩の製造方法を提供することができる。
[0095] なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例 示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的 範囲に包含される。
実施例 [0096] 以下に実施例を示して本発明をさらに具体的に説明する。
[0097] [合成例]
上述した反応 1および反応 2に従って、リチウム塩の合成を行った。
(反応 1)
まず、 Ar雰囲気下で、 2. Ogの CF SO NH (アルドリッチ社製)を、 20mlの脱水ジ
3 2 2
ェチルエーテル溶液に溶解させ溶液を得た。次に、この溶液を氷浴中で撹拌しなが ら、 n ブチルリチウム/へキサン(1. 59M、 8. 45ml,アルドリッチ社製)をゆっくり 添加した。その後、溶液の温度を室温まで昇温させることにより、リチウム塩合成用原 料 A含有溶液を得た。
[0098] (反応 2)
次に、 Ar雰囲気下で、 0. 19mlの POC1 (アルドリッチ社製)を 20mlの脱水ジェチ
3
ルエーテル溶液と混合し溶液を得た。次に、この溶液を氷浴中で撹拌しながら、上記 のリチウム塩合成用原料 A含有溶液をゆっくりと滴下した。
滴下後、室温まで昇温し、反応を進行させるため、 THFを 20ml添加し、続いてジメ トキシエタンを 2 Oml添加し、 50°Cで 12時間加熱還流を行った。
[0099] その後、得られた溶液を、減圧下で溶媒を除去し乾固させた。次に、ジェチルエー テル、クロ口ホルム、ジェチルエーテルの順で懸濁洗浄を行い、白色結晶の化合物(
1 1)を得た。また、懸濁洗浄で用いた 2回目のジェチルエーテルの濾液を減圧濃 縮、乾燥し、白〜淡黄粉末の化合物(2 1)を得た。なお、この条件では、一置換体
(化合物(5 1) )のリチウム塩はほとんど得られなかった。
[0100] (リチウム塩の同定)
3置換体である化合物(1 1)の19 F— NMRおよび31 P— NMRの結果をそれぞれ 図 1および図 2に示す。一方、 2置換体である化合物(2 1)の19 F— NMRおよび31 P NMRの結果をそれぞれ図 3および図 4に示す。
[0101] [実施例;!〜 3]
合成例で得られた 3置換体のリチウム塩 (化合物(1 1) )を、濃度 0. 5M、 1. 0M
、 1. 5Mとなるように、プロピオンカーボネートに溶解させ電解液を得た。いずれの電 解液にお!/、ても、リチウム塩が完全に溶解して!/、ることが確認された。 得られた電解液のイオン伝導度を、交流インピーダンス法を用いて測定を行った。 イオン伝導度の測定には、白金/白金黒電極を対向させた 2極式のセルを用い、 1 MHzから 1Hzでインピーダンス測定を行った。得られた抵抗値とセル定数よりイオン 伝導度を求めた。その結果を表 1に示す。また、図 5は、電解液のインピーダンス測
Figure imgf000020_0001
[0102] [比較例 1および 2]
Li POを濃度 0. 5M、 1. 0Mとなるようにプロピオンカーボネートに溶解させ電解
3 4
液を得た。し力もながら、 Li POは完全には溶解せず、懸濁した電解液が得られた。
3 4
得られた電解液を用いたこと以外は、実施例 1と同様にして、電解液の伝導度を測 定した。その結果を表 1に示す。
[0103] [表 1]
Figure imgf000020_0002
実施例;!〜 3においては、リチウム塩がプロピオンカーボネートに完全に溶解した。 さらに、その電解液は、良好な伝導度を示すことが確認された。一方、比較例 1およ び 2においては、リチウム塩がプロピオンカーボネートに全く溶解せず、伝導度も低か つた。

Claims

請求の範囲 [1] 下記一般式(1)
[化 1]
一般式(1 )
Figure imgf000021_0001
(式中、 R〜Rは、互いに、同じであっても良く、異なっていても良ぐフルォロアルキ
1 3
ル基、アルキル基またはフエ二ル基を示す。 )
で表される化学構造を有することを特徴とするリチウム塩。
[2] 下記一般式 (2)
[化 2]
一般式 (2)
Figure imgf000021_0002
(式中、 Rおよび Rは、互いに、同じであっても良く、異なっていても良く、フルォロア
1 2
ルキル基、アルキル基またはフエ二ル基を示す。 Xは、ハロゲン原子を示す。 ) で表される化学構造を有することを特徴とするリチウム塩。
[3] 下記一般式 (3— 1 )〜一般式 (3— 3)
[化 3] —— H
Figure imgf000022_0001
—般式 (3— 1 ) —般式 (3— 2) —般式(3— 3)
(式中、 R〜Rは、互いに、同じであっても良く、異なっていても良ぐ
1 3
ル基、アルキル基またはフエ二ル基を示す。 )
で表される化学構造を有するリチウム塩合成用原料 Aと、
下記一般式 (4)
[化 4コ
O
II
X ~† ~ X
X
一般式 (4) +
(式中、 Xはハロゲン原子を示す。 )
で表される化学構造を有するリチウム塩合成用原料 Bと、を用い、
前記リチウム塩合成用原料 Aと、前記リチウム塩合成用原料 Bとを反応させること より、下記一般式(1)
[化 5]
一般式(1 )
Figure imgf000022_0002
(式中、 R〜Rは、互いに、同じであっても良く、異なっていても良ぐフルォロアルキ
1 3
ル基、アルキル基またはフエ二ル基を示す。) で表される化学構造を有するリチウム塩を合成する合成工程を有することを特徴とす るリチウム塩の製造方法。
下記一般式(3— 1)および一般式(3— 2)
[化 6] - N—— H
Figure imgf000023_0001
一般式 (3— 1 ) —般式 (3— 2)
(式中、 Rおよび Rは、互いに、同じであっても良く、異なっていても良ぐフルォロア
1 2
ルキル基、アルキル基またはフエ二ル基を示す。)
で表される化学構造を有するリチウム塩合成用原料 Aと、
下記一般式 (4)
[化 7]
0
II
X ~† ~ X
X
—般式 (4)
(式中、 Xはハロゲン原子を示す。 )
で表される化学構造を有するリチウム塩合成用原料 Bと、を用い、
前記リチウム塩合成用原料 Aと、前記リチウム塩合成用原料 Bとを反応させることに より、下記一般式 (2)
[化 8] 一般式 (2)
Figure imgf000024_0001
(式中、 Rおよび Rは、互いに、同じであっても良く、異なっていても良ぐフルォロア
1 2
ルキル基、アルキル基またはフエ二ル基を示す。 Xは、ハロゲン原子を示す。 ) で表される化学構造を有するリチウム塩を合成する合成工程を有することを特徴とす るリチウム塩の製造方法。
[5] 前記合成工程の際に生じた副反応生成物を除去する精製工程を有することを特徴 とする請求の範囲第 3項または請求の範囲第 4項に記載のリチウム塩の製造方法。
PCT/JP2007/073405 2006-12-05 2007-12-04 リチウム塩およびその製造方法 WO2008069207A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/447,961 US8026394B2 (en) 2006-12-05 2007-12-04 Lithium salt and method for producing thereof
KR1020097009294A KR101062097B1 (ko) 2006-12-05 2007-12-04 리튬염 및 그의 제조 방법
CN2007800431551A CN101541817B (zh) 2006-12-05 2007-12-04 锂盐及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-328457 2006-12-05
JP2006328457A JP4665894B2 (ja) 2006-12-05 2006-12-05 リチウム塩およびその製造方法

Publications (1)

Publication Number Publication Date
WO2008069207A1 true WO2008069207A1 (ja) 2008-06-12

Family

ID=39492093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073405 WO2008069207A1 (ja) 2006-12-05 2007-12-04 リチウム塩およびその製造方法

Country Status (5)

Country Link
US (1) US8026394B2 (ja)
JP (1) JP4665894B2 (ja)
KR (1) KR101062097B1 (ja)
CN (1) CN101541817B (ja)
WO (1) WO2008069207A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088766A1 (ja) * 2014-12-01 2016-06-09 セントラル硝子株式会社 2価のアニオンを有するイミド酸化合物及びその製造方法
JP2016105370A (ja) * 2014-12-01 2016-06-09 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2016117636A (ja) * 2014-12-01 2016-06-30 セントラル硝子株式会社 2価のアニオンを有するイミド酸化合物及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006381A1 (ja) * 2014-07-09 2016-01-14 日本電気株式会社 非水電解液及びリチウムイオン二次電池
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
PL3796450T3 (pl) * 2019-09-18 2024-05-13 Samsung Sdi Co., Ltd. Dodatek, elektrolit do akumulatora litowego i akumulator litowy go zawierający

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001672A (ja) * 2006-06-26 2008-01-10 Toyota Motor Corp リチウム塩およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311104B2 (ja) 1993-09-17 2002-08-05 株式会社東芝 リチウム二次電池
JPH10189043A (ja) 1996-12-26 1998-07-21 Hitachi Ltd リチウム2次電池
JP4020571B2 (ja) 1999-06-25 2007-12-12 三洋電機株式会社 リチウム二次電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001672A (ja) * 2006-06-26 2008-01-10 Toyota Motor Corp リチウム塩およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU K. ET AL.: "A new protonation chemistry of phosphazenes and the formation of bis(sulfonyl)imides", INORGANIC CHEMISTRY COMMUNICATIONS, vol. 2, no. 6, 1999, pages 261 - 264, XP002723370, DOI: doi:10.1016/S1387-7003(99)00060-X *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088766A1 (ja) * 2014-12-01 2016-06-09 セントラル硝子株式会社 2価のアニオンを有するイミド酸化合物及びその製造方法
JP2016105370A (ja) * 2014-12-01 2016-06-09 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2016117636A (ja) * 2014-12-01 2016-06-30 セントラル硝子株式会社 2価のアニオンを有するイミド酸化合物及びその製造方法

Also Published As

Publication number Publication date
KR20090085615A (ko) 2009-08-07
KR101062097B1 (ko) 2011-09-02
JP2008137979A (ja) 2008-06-19
CN101541817A (zh) 2009-09-23
JP4665894B2 (ja) 2011-04-06
CN101541817B (zh) 2012-02-15
US8026394B2 (en) 2011-09-27
US20100036160A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
JP4564092B2 (ja) パーフルオロアルカンスルホン酸エステルの製造方法
CA2537587C (en) Superhigh purity ionic liquid
JP4611567B2 (ja) イオン性液体
EP1956026B1 (en) Ionic liquid containing phosphonium cation having p-n bond and method for producing same
WO2008069207A1 (ja) リチウム塩およびその製造方法
KR20180135406A (ko) 디플루오로인산 에스테르를 채용한 디플루오로인산 리튬의 제조방법
EP1127888B1 (en) Lithium fluoralkylphosphates and their use as electrolyte salts
CN108503670A (zh) 一种氟磷酰亚胺及其碱金属盐的制备方法
JP6405745B2 (ja) ジフルオロリン酸リチウムの製造方法
KR100971065B1 (ko) 리튬이온전지용 전해액의 제조방법 및 이를 사용한리튬이온전지
EP2952518A1 (en) Organic Phosphonium Salts, a Method for their Preparation, and their Use in Electrochemical Systems
EP2608307B1 (en) Method for producing a lithium hexafluorophosphate concentrated liquid
GB2566473A (en) Magnesium salts
KR100685563B1 (ko) 안정한 비스(트리플루오로메틸)아미드 염 및 이의 제조방법
JP2003034692A (ja) フルオロアルキルリン酸塩およびこれらの物質の調製法
KR20010095331A (ko) 리튬 염, 그의 제조방법, 비수성 전해질 및 전기화학적 전지
JP2018123054A (ja) ジフルオロリン酸リチウムの製造方法
RU2246499C2 (ru) Способ получения литиевых комплексных солей для использования в химических источниках тока
KR102611979B1 (ko) 배터리 적용을 위한 술폰이미드 염
JP2005179254A (ja) 常温溶融塩およびその製造方法
JP2008001672A (ja) リチウム塩およびその製造方法
JP6010252B2 (ja) 双性イオン化合物およびイオン伝導体
CN114606520B (zh) 一种芳基磷酸酯的合成方法
KR20230060368A (ko) 환형 포스핀 화합물의 제조방법
JP2007153867A (ja) イオン性化合物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780043155.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850053

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097009294

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12447961

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07850053

Country of ref document: EP

Kind code of ref document: A1