WO2008068814A1 - 粉末乾燥調味料とその製造方法及びその製造装置 - Google Patents

粉末乾燥調味料とその製造方法及びその製造装置 Download PDF

Info

Publication number
WO2008068814A1
WO2008068814A1 PCT/JP2006/324022 JP2006324022W WO2008068814A1 WO 2008068814 A1 WO2008068814 A1 WO 2008068814A1 JP 2006324022 W JP2006324022 W JP 2006324022W WO 2008068814 A1 WO2008068814 A1 WO 2008068814A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
seasoning
soy sauce
dry powder
drying tower
Prior art date
Application number
PCT/JP2006/324022
Other languages
English (en)
French (fr)
Inventor
Shin Kiyokawa
Taro Kiyokawa
Original Assignee
Misato Plaheat Mfg. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misato Plaheat Mfg. Ltd. filed Critical Misato Plaheat Mfg. Ltd.
Priority to EP06833825A priority Critical patent/EP2095725A1/en
Priority to US12/515,615 priority patent/US20100062140A1/en
Priority to JP2008548109A priority patent/JPWO2008068814A1/ja
Priority to PCT/JP2006/324022 priority patent/WO2008068814A1/ja
Publication of WO2008068814A1 publication Critical patent/WO2008068814A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/60Salad dressings; Mayonnaise; Ketchup
    • A23L27/63Ketchup
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/10Natural spices, flavouring agents or condiments; Extracts thereof
    • A23L27/14Dried spices
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/40Table salts; Dietetic salt substitutes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/50Soya sauce

Definitions

  • Powder dry seasoning method for producing the same, and apparatus for producing the same
  • the present invention relates to a dry powder seasoning produced by drying a liquid seasoning, a production method thereof, and a production apparatus thereof.
  • Soy sauce is a typical liquid seasoning that consumes a lot in Japan.
  • Many types of soy sauce are manufactured and sold, such as koikuchi soy sauce, light soy sauce, tamari soy sauce, white soy sauce, saiko komii soy sauce, raw soy sauce, and low-salt soy sauce.
  • the soy sauce normally used is liquid and is stored, transported and sold in containers such as glass bottles and plastic bottles, and used in small portions.
  • storing and transporting liquids increases the transportation cost due to their large volume and weight, and tends to deteriorate in a short period of time when stored at high temperatures.
  • Another problem is that the taste changes during storage. Therefore, the fresh one immediately after collection is used for prize.
  • Juices such as powdered milk and instant noodles are dried by freeze drying, spray drying, and other methods to reduce the volume of the powder and improve handling and storage.
  • the first is “deliquescent”. For example, if it is deliquescent, for example, if it is left in an atmosphere with a humidity of about 50% to 60% with a pile of dried soy sauce in a flat dish-shaped container with a diameter of about 5 cm, it is left for about 2 to 3 hours. As a result, the surface layer absorbs moisture, and the absorbed portion hardens along the chevron, and the resulting force is peeled off from the dried soy sauce pile in a state similar to a cone-shaped baked confectionery force. If the dried soy sauce is stored for a whole day and night, the whole becomes sticky and the handling property is extremely deteriorated.
  • Heat-drying methods are often used for powdered seasonings such as powdered milk and instant noodle soups and chemicals.
  • Spray dryers are often used as dryers for carrying out this drying method.
  • the method of drying soy sauce seems to be most preferable to the force spray drying method using a vacuum drum drying method, a vacuum freeze drying method, and a spray drying method.
  • a preferable apparatus used in this spray drying method for example, a pressure nozzle type spray dryer, a two-fluid nozzle type spray dryer, a desk atomizer set spray dryer, a spray drying / granulating combined dryer, or the like is used. (See Non-Patent Document 1, Patent Documents 1 and 2).
  • soy sauce is sprayed together with high-pressure air in a drying tower to which hot air is supplied from above, or soy sauce refined by a rotating disc is released in a dispersed state, and atomized soy sauce droplets Heat to dry.
  • hot air is 120-200 ° C
  • high-temperature heated air of 260 ° C is used in consideration of efficiency.
  • Non-Patent Document 1 Koshobo Co., Ltd. Published September 1, 1997 "Basics and Applications of Dried Foods” Pages 92-94
  • Patent Document 1 JP 2004-105066 A
  • Patent Document 2 Japanese Patent Laid-Open No. 7-213249
  • dextrin is added as an “excipient” in order to dry soy sauce as a raw material to obtain a powdery dried soy sauce.
  • excipients have excellent properties in powdered water, which contributes greatly to deliquescence. It is a substance. Therefore, since it contains a large amount of dextrin, the conventional dry powdered soy sauce cannot be used for applications such as opening and closing the lid whenever it is poorly stored.
  • water is added to the dried soy sauce containing dextrin and returned to the original liquid, it becomes a different component from the original soy sauce! Inevitably a decline in
  • dry powder using high-temperature hot air using a conventional spray dryer contains a small amount of water (about 2 to 3%) in the solid content, but most of the water that existed as soy sauce evaporates. ing.
  • this dried powdery soy sauce is essentially deliquescent and absorbs moisture in a short time as described above.
  • an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a dry powder seasoning excellent in long-term storage stability with low deliquescence in use, a method for producing the same, and a method for producing the same To provide an apparatus.
  • the present invention provides a dry powder seasoning, wherein a liquid seasoning containing at least a salt sodium salt, a seasoning component and a solvent is dried at a temperature not higher than the boiling point of the liquid.
  • a mixture containing a large-diameter sphere and a small-diameter sphere is produced to suppress segregation of sodium chloride sodium in the surface layer portion of the large-diameter sphere.
  • the solvent constituting the liquid is evaporated slowly without evaporating rapidly.
  • the liquid seasoning contains an alcohol contained in the solvent and It may be dried at a temperature lower than the azeotropic temperature of water to produce a mixture containing large spheres and small spheres.
  • the alcohol can be kept inside the large-diameter sphere or the small-diameter sphere, and the taste close to that of the raw material seasoning can be maintained.
  • the surface layer portion of the large-diameter spherical body may be formed on a smooth surface without tearing.
  • the water content of the mixture may be 4 to 12% by weight.
  • the diameter force of the large-diameter spherical body may be 0 m or more.
  • the temperature is not higher than the boiling point of the liquid.
  • the liquid seasoning is sprayed in the form of mist droplets, and the mist droplets are sprayed into the drying tower. It is characterized by drying with convection up and down.
  • the temperature in the drying tower is controlled to a temperature equal to or lower than the azeotropic temperature of alcohol and water contained in the solvent, and the liquid seasoning and mist droplets are contained in the drying tower. Even if you spray like so.
  • a temperature difference is provided on the inner wall surface of the drying tower main body so that the temperature difference between the high place and the low place is in a range of about 10 to 30 ° C., and the inner wall surface is utilized using the temperature difference. Make an upward flow along.
  • a drying tower main body and an upper portion of the drying tower main body are provided.
  • a raw material seasoning spraying means provided, a raw material seasoning supply device with a temperature control function connected to the spraying means, a cyclone connected to the lower part of the drying tower body for separating dry powder soy sauce, And a gas discharge device for maintaining the cyclone in a reduced pressure state, and heating means such as an electric heater is provided on the outer surface of the drying tower body.
  • a temperature sensor is provided for measuring the temperature of a required portion of the tower body, the temperature in the tower body is equal to or lower than the boiling point temperature of the liquid material, and the temperature in the high wall is the same as the temperature in the low wall.
  • a control device for controlling the heat generation state of the heating means is provided so as to be lower.
  • the solvent constituting the liquid will evaporate slowly and form a large spherical body.
  • water vapor moves slowly toward the outside force of the large-diameter spherical body and is slowly released from the surface, so that the components dissolved in moisture, especially sodium chloride, does not accumulate on the surface layer. It is possible to keep the state held by
  • the temperature in the drying tower body is a temperature equal to or lower than the azeotropic temperature of alcohol and water contained in the solvent, and the temperature in the high wall is the temperature in the low wall.
  • a control device for controlling the heat generation state of the heating means may be provided so as to be lower than the above.
  • the resulting large-diameter sphere or small-diameter sphere can retain the umami component and alcohol in its interior, thereby obtaining a dry powder seasoning having a taste close to that of the raw material seasoning. Is possible.
  • the inner wall surface of the drying tower main body may be subjected to water repellent processing such as silicon processing or fluororesin processing to prevent adhesion of droplets.
  • an acid / aluminum spray layer mainly composed of acid / aluminum on the outer surface of the drying tower main body, and an acid / titanium further mainly formed on the acid / aluminum spray layer.
  • a two-layer ceramic layer having an oxide-titanium sprayed layer may be formed, and the heating means may be disposed on the outer surface of the titanium oxide layer.
  • a heating means is arranged in at least three regions divided in the longitudinal direction of the drying tower body via an electrical insulating layer on a two-layer structure ceramic layer formed on the outer surface of the drying tower body. The controller may control the temperature of each heating unit independently.
  • a liquid seasoning containing at least sodium chloride sodium salt, a seasoning component and a solvent is dried at a temperature not higher than the boiling point of the liquid and mixed to contain a large sphere and a small sphere.
  • segregation of salt and sodium is suppressed in the surface layer of the large-diameter spheroid, and the component that causes deliquescence has little contact with air or Since it is protected from exposure, it reduces deliquescence in use and enhances long-term preservation.
  • FIG. 1 is a diagram showing an example of an apparatus for carrying out the present invention.
  • FIG. 2 (A) is an explanatory diagram of the flow of airflow in the drying tower shown in FIG. 1, and (B) is an explanatory diagram of the generation state of the mixed flow.
  • FIG. 3 is a partial sectional view of the drying tower body.
  • FIG. 5 is a sectional view of the nozzle.
  • FIG. 7 is a cross-sectional view of the nozzle.
  • FIG. 8 is a sectional view of the nozzle.
  • FIG. 9 is a cross-sectional view of the nozzle.
  • FIG. 10 is a scanning electron micrograph of dry powder soy sauce obtained by the production method of the embodiment.
  • FIG. 11 is an enlarged scanning electron micrograph of the dry powder soy sauce of FIG.
  • FIG. 12 is a scanning electron micrograph of powder dried soy sauce by a conventional production method.
  • FIG. 13 is an explanatory diagram that correlates the surface state of the dry powder soy sauce sample of the embodiment and the elemental analysis results of the surface layer.
  • FIG. 14 is an explanatory diagram of the results of elemental analysis of the surface layer based on a backscattered electron image in a dry powder soy sauce sample of a conventional example.
  • FIG. 15 is a scanning ion micrograph of a cross section obtained by FIB processing of the powdered soy sauce of the embodiment.
  • FIG. 16 is a scanning ion micrograph of a cross section of a conventional powder dried soy sauce processed by FIB.
  • FIG. 17 is a photomicrograph sketch of powder dry soy sauce of an embodiment.
  • FIG. 18 is a photomicrograph sketch of powder dry soy sauce of an embodiment.
  • FIG. 19 is a photomicrograph of dry powder soy sauce of an embodiment.
  • FIG. 20 is a photomicrograph of dry powder soy sauce of an embodiment.
  • FIG. 21 is a photomicrograph of dry powder soy sauce of an embodiment.
  • FIG. 22 is a photomicrograph of dry powder soy sauce of an embodiment.
  • FIG. 23 A sketch of a micrograph of dry powder soy sauce obtained by a conventional method.
  • FIG. 24 is a photomicrograph sketch of dry powder soy sauce obtained by a conventional method.
  • FIG. 25 is a photomicrograph of dry powder soy sauce obtained by a conventional method.
  • FIG. 26 is a micrograph of dry powder soy sauce obtained by a conventional method.
  • FIG. 27 is a photomicrograph of dry powder soy sauce obtained by a conventional method.
  • FIG. 28 is a photomicrograph of dry powder soy sauce obtained by a conventional method.
  • FIG. 1 shows a manufacturing apparatus according to an embodiment.
  • reference numeral 1 denotes a drying tower body, and a spray nozzle 2 (two-fluid spray nozzle) is connected to the upper portion of the drying tower body 1.
  • a heater 5a and a pump 3 are connected in order to the spray nozzle 2, and a tank 4 filled with soy sauce r is connected to the pump 3.
  • the soy sauce r in the tank 4 is pressurized by the pump 3, further heated by the heater 5a, supplied to the spray nozzle 2 in a predetermined amount via the pipe 5, and sprayed into the tower body 1 to form a fine mist.
  • a drop m is formed.
  • the reason for interposing the heater 5a is that when low-temperature soy sauce is sprayed as it is, dry powdered soy sauce cannot be formed smoothly and in some cases there is a risk of explosive evaporation.
  • This drying tower main body 1 has a relation of applying low temperature drying, and is formed in a relatively long and rigid cylindrical shape. For example, a diameter of 0.5 to: Lm, a height Is using a cylindrical device of 5m to 10m. Therefore, the powder can be sufficiently formed even by heating at low temperature by extending the time for the mist to descend in the tower body 1.
  • FIGS. 2A and 2B are partial cross-sectional views of the drying tower body, and FIG. 3 is an explanatory view of a two-layered ceramic layer formed on the drying tower body.
  • the drying tower body 1 is made of aluminum (in some cases, stainless steel or iron plate can be used), and the outer surface thereof has an alumina ceramic layer C1 as shown in FIG. Spray this al A two-layered ceramics layer 21 is formed by thermal spraying a titanium oxide ceramic layer C2 on the Mina ceramic layer CI.
  • a far-infrared electric heater 17 is provided on the outer surface of the double structure ceramic layer 21 with an electric insulating layer 22 interposed therebetween.
  • the electric heater 17 is divided into a plurality of stages (17a, 17b, 17c) in the longitudinal direction of the drying tower body 1 so that the temperature in the longitudinal direction of the tower body 1 can be freely adjusted.
  • temperature sensors SI and S2 for measuring the temperature and temperature distribution inside the drying tower body 1 are provided at least in the upper part, the middle part, and the lower part in the drying tower body 1.
  • a plurality of units are provided so that the temperature in the drying tower body 1 can be controlled overall and comprehensively.
  • the inner surface of the drying tower body 1 is coated with a silicone resin film or a fluorine resin film as a water-repellent resin film, so that mist droplets of soy sauce do not adhere, and dry powdered soy sauce can be efficiently generated. ing.
  • FIG. 5 is a cross-sectional view of the spray nozzle
  • FIG. 6 is a cross-sectional view taken along the line V-V of FIG. 5
  • FIGS. 7 to 9 are explanatory views of mist droplet generation.
  • Communicated with Reference numeral 33 denotes a nozzle portion that ejects the supplied soy sauce r in a shower state.
  • three air introduction paths 35 communicate with the mist droplet generation section 35, and the three air introduction paths 35 are in the center direction of the mist droplet generation section 35 and in directions intersecting with each other. It extends to. Compressed air (air a) heated to a predetermined temperature is introduced into each air introduction path 35 via a heated air supply means (not shown).
  • the air a introduced from the air introduction path 36 is, as shown in FIG. It is sprayed on the almost opposite position of the inner surface of the pipe, creating a flow along the wall of the trunk, and the mist f is dropped without touching the wall of the trunk.
  • a pipe or duct 6 is connected to the lower part of the drying tower body 1, the duct 6 is connected to the supply pipe of the cyclone 7, and the discharge pipe 6a of the cyclone 7 is connected to a blower 8 that performs powerful exhaust. Yes. Exhaust gas from the blower 8 is guided to an exhaust gas treatment device 9, and the exhaust gas treatment device 9 liquefies water vapor generated in the drying process by spraying cooling water to form drain D, or is contained in the exhaust gas. It has a function of separating and removing solid content by a filter. Further, the dry powder soy sauce d of the resulting product separated by the cyclone 7 is accommodated in a tank 7a connected via a valve.
  • the electric heater 17 is divided into three sections 17a, 17b, and 17c, which can be controlled to different temperatures.
  • the temperature of the electric heater 17a is controlled so that the temperature T1 force S60 ° C of the portion where the spray nozzle 2 exists
  • the temperature of the electric heater 17b is controlled so that the temperature T2 of the intermediate portion becomes 65 ° C
  • the temperature of the electric heater 17c can be controlled so that the temperature T3 of the lower part becomes 75 ° C.
  • the drying is mainly performed by indirectly applying thermal energy to the spray using far infrared rays emitted from the inside of the drying tower 1.
  • the heat energy is also given by the low-temperature warm air used for spraying the soy sauce, which is the material to be treated, and the radiation of the internal heat of the tower body.
  • the raw material soy sauce r which is a liquid seasoning, contains at least salty sodium (salt content), seasoning ingredients (total nitrogen content, etc.) and solvents (alcohol and water).
  • salty sodium salt content
  • seasoning ingredients total nitrogen content, etc.
  • solvents alcohol and water
  • the raw material soy sauce r is not supplemented with an excipient for shaping into a powder. This is because the taste of the soy sauce used as a raw material is not changed.
  • the temperature Tl, ⁇ 2, ⁇ 3 (that is, the temperature on the electric heater side) of each part in the drying tower body 1 is adjusted.
  • the lower temperature ⁇ 3 is 82 ° C (azeotropic temperature of water and alcohol in soy sauce) or lower
  • the upper temperature T1 is 40 ° C or higher
  • the central temperature T2 is The temperature is controlled to be intermediate between the temperature T1 and the lower temperature T3.
  • the control device 21 controls the temperatures Tl, ⁇ 2, and ⁇ 3 of each part in the drying tower body 1.
  • the raw material soy sauce r is heated to about 70 ° C by a heater 5a provided between the tank 4 and the nozzle 2, and sprayed into the tower body 1 with hot air of about 80 ° C.
  • FIG. 2 (B) shows the disturbance state of the mist droplets inside the tower body 1, and an efficient disturbance state is created inside the tower body 1 by the air flow as shown in FIG. 2 (A).
  • the soy sauce r mist is formed like a dense fog or sea of clouds and floats in the drying tower body 1 by riding on an air current (updraft and downdraft), rotating, fusing, and coalescing repeatedly to dry.
  • dry powdered soy sauce is obtained.
  • the dry powder soy sauce actually obtained is compared to the size of the fine powder that would be obtained when the fine mist droplets of soy sauce were dried individually in the drying tower. , It has grown into a large one. In other words, even if the mist droplets are dried as they are, it is considered that dry powder soy sauce of the required size is not formed!
  • Fine soy sauce mist sprayed in the drying tower body 1 floats in the warm air (filled with far-infrared rays and hot air) in the drying tower body, and rotates and collides while turning.
  • the mist droplets that collided with each other melt together and gradually grow together as an aggregate.
  • the soap bubbles float and fall while turning, the ones that come in contact with other soap bubbles and adhere to each other grow greatly.
  • the outer shell gradually grows so that the small soap bubbles that cannot be fused are contained inside, and the power also contains seeds.
  • the external shape of the fine powder in the product changes depending on the temperature conditions in this growth stage and the disturbance conditions described later. Since the components of soy sauce are a mixture of solid content, moisture and volatile content as exemplified above, the solid content contained in the raw material soy sauce forms a powder skeleton as drying progresses.
  • an upward flow u can be generated along the inner wall surface of the drying tower main body 1 and a downward flow dn can be generated in the center, whereby mist droplets can be generated. It is possible to adjust the time of floating inside the tower body 1.
  • This embodiment was obtained as a result of considering experience in producing a small amount of powdered dry soy sauce, observation of electron micrographs, estimation of evaporation behavior from the external shape of powdered soy sauce, and prediction.
  • the temperature inside the drying tower is set to a temperature equal to or lower than the azeotropic point of water and alcohol (about 82 ° C) contained in the raw material soy sauce to suppress the generation of explosive water vapor.
  • the azeotropic point of the mixture of water and alcohol is 40 ° C to 82 ° C, and the drying temperature is within the above range, preferably Is around 60 ° C.
  • the drying temperature constitutes the ingredients of soy sauce and is lower than 82 ° C, which is the azeotropic temperature of water and alcohol, it is possible to leave about 7% to 8% of moisture in the dry powdered soy sauce Then, the alcohol and umami components contained in the soy sauce can be left.
  • the body temperature is divided into the upper part, the middle part and the lower part, or the upper and lower parts, and the lower part temperature is made higher, and the upper part temperature is made lower than the lower part temperature.
  • the temperature difference between the upper and lower parts is preferably 15 ° C or more. In this case, if the maximum temperature is lower than 82 ° C, which is the azeotropic temperature of water and alcohol constituting the soy sauce component, a temperature difference of about 20 ° C to 30 ° C can be implemented.
  • Fig. 10 is a scanning electron micrograph of powder dry soy sauce obtained by the production method of the embodiment
  • Fig. 11 is an enlarged photograph of a part of a large-diameter spherical body.
  • the mist m of soy sauce r is a predetermined temperature (water and alcohol in soy sauce The temperature is lower than the azeotropic temperature of the water) and a predetermined temperature distribution according to the equation (1), and the mist droplets float in the disturbed state in the drying tower body 1 for a long time.
  • Other fog water and alcohol in soy sauce The temperature is lower than the azeotropic temperature of the water) and a predetermined temperature distribution according to the equation (1), and the mist droplets float in the disturbed state in the drying tower body 1 for a long time.
  • contact, fusion, and coalescence are repeated with a substantially dry powdered soy sauce from which some of the water has evaporated from the mist, forming a small spherical body having a diameter of about 5 to 30 m, for example, as shown in FIG.
  • a large-diameter sphere having a diameter of about 30 m or more (more preferably 40 m or more) is formed through the formed small-diameter sphere.
  • the small-diameter spherical body and the large-diameter spherical body form a mixture, and the surface layer portion of the large-diameter spherical body is formed on a smooth surface without tearing as shown in FIG.
  • the surface layer part of the large-diameter spherical body (having a diameter of about 100 m) formed by repeating the above contact, fusion, and coalescence, a solid body containing salty sodium crystals (or salty sodium crystals consolidated) ) Appears only in two places a, and other parts of the prayer are suppressed. In the photograph, the segregation of the sodium chloride sodium crystals appears white.
  • the size of the salt-sodium sodium crystal or the like by segregation is, for example, 5 ⁇ m or less per unit, even if a plurality of them appear on the surface layer of the spherical body, the deliquescence is lower. It can be suppressed.
  • the area of the surface layer covered with the sodium chloride sodium crystal is the area ratio with respect to the total surface area of the large-diameter spheroid, practically about 30% or less, and more preferably If the area ratio is 15% or less, more preferably less than a few percent, deliquescence can be kept lower.
  • each salt-sodium crystal, etc. is placed at a position physically separated from each other, so that moisture (saturated saline) is on the surface of each salt-sodium crystal. Even if it adheres, it cannot work together, so the amount of water adhering to it will be released into the air again without increasing the amount of water, and it will be able to store a lot of water, which will cause deliquescence. This is because a solidified body of sodium crystals is difficult to grow.
  • the reason for suppressing the prayer to the surface layer is that the salty sodium salt contained in the raw material soy sauce moves together with water all at once to the surface layer side of the spheroid because the drying is done gently. It is presumed that it stays evenly in each part of the spherical body.
  • the dry powdered soy sauce of this embodiment has a high residual moisture content of 7-9%, so that the sodium chloride salt (or chlorine ion and sodium ion) is evenly held inside the spherical body and crystallized. It is hard to make it.
  • FIG. 12 is a scanning electron micrograph of powder dried soy sauce by a conventional manufacturing method.
  • Fig. 12 in the surface layer of large-diameter spheroids in dry powder soy sauce produced by the conventional manufacturing method, salty salt of sodium salt crystals is seen everywhere (the part that appears white as shown by symbol b). The prayers of sodium chloride sodium crystals are found almost uniformly throughout the surface layer. To support this, when you taste the dry powder soy sauce by the conventional manufacturing method, you will feel a strong salty taste.
  • the surface layer portion of the large sphere is within the resolution (: m) of the micrograph. Only the segregation of salted sodium crystals is observed at two locations a, and no extensive segregation is observed. To support this, when the powdered dry soy sauce of this embodiment is tasted, the salty taste is suppressed and the taste is mild and mellow.
  • FIG. 13 is an explanatory diagram in which the surface state of the powder dry soy sauce sample of the embodiment and the elemental analysis results of the surface layer (about 1 ⁇ m from the surface) are associated with each other.
  • Fig. 13 (A) shows a BEI (Back Scattering Electron Image) image
  • Fig. 13 (B) shows an EDS (Energy Dispersive X-ray).
  • FIG. 13C is an explanatory diagram of the distribution state of sodium atoms (Na) by EDS.
  • chlorine atoms (C1) are distributed almost uniformly on the surface of the large sphere. If sodium chloride crystals are present, the density of the chlorine atom (C 1) points will increase, and in the figure the black surface of the large-diameter sphere should become darker. Is not visible.
  • FIG. 14 is an explanatory diagram of the elemental analysis result of the surface layer (about 1 m from the surface) based on the backscattered electron image in the dry powder soy sauce sample of the conventional example.
  • Fig. 14 (A) is a BEI image
  • Fig. 14 (B) is an explanatory diagram of the distribution of chlorine atoms (C1)
  • Fig. 14 (C) is an explanatory diagram of the distribution of sodium atoms (Na). is there.
  • the BEI image shown in Fig. 14 (A) many white parts are scattered on the surface of the sample, and in the conventional one, a state that seems to be a prayer of sodium chloride is observed. .
  • the chlorine atom (C1) is shown in Fig. 14 (B).
  • the black region (region with many chlorine atoms) and the white region (region with few chlorine atoms) are clearly separated, and the chlorine exists in a part of the surface. I understand that.
  • sodium atoms (Na) may be present in a part of the large spherical body as shown in FIG. 14 (C).
  • Figure 15 shows a scanning ion microscope image of a cross-section of the dried powdered soy sauce of the embodiment processed by FIB. Is true.
  • Fig. 15 (A) and Fig. 15 (B) show cross sections of different sample spherical bodies.
  • FIB Fluorine Beam processing is a technology that processes a specific part of a sample while observing a scanning ion microscope image by irradiating the sample with a gallium (Ga) ion beam and performing sputtering. It is possible to get
  • a plurality of cavities kl are seen in the cross section, the wall thickness is thick, and the thick part BD1
  • the structure is dense and homogeneous in appearance.
  • the dry powdered soy sauce of this embodiment is considered to be in a state where the salty sodium is stable and uniformly dispersed even within the sample without the prejudice of the salty sodium crystals. I think that this also helps to reduce deliquescence.
  • FIG. 16 is a scanning ion micrograph of a cross section obtained by FIB processing of a powdery soy sauce of a conventional example.
  • FIGS. 16 (A) and 16 (B) show different sample spherical bodies.
  • the dry powder soy sauce of the conventional example has a plurality of cavities k2 in its cross section, and the structure of the thick part is salted in a part that is not homogeneous in appearance.
  • a different part of the composition which is presumed to be crystal k3, was observed. Some particles have cracks and dents observed on the surface of the shell.
  • the resulting dried powder soy sauce d is separated by a cyclone 7 shown in Fig. 1 and then taken out into the tank 7a through a valve.
  • This dry powder soy sauce does not contain any dextrin as an excipient unlike the conventional dry powder soy sauce, and uses a commercial product as a raw material.
  • the difference between this dry powdered soy sauce and conventional dry powdered soy sauce is also seen in the residual moisture content.
  • the former had a residual moisture content of 2-3%, while the latter was 7-9%. Since the drying temperature is below the azeotropic temperature of water and alcohol in soy sauce as described above, water evaporation and alcohol evaporation were suppressed during the drying process, and confinement of umami components along with alcohol was confirmed. . In this case, the residual moisture content may be 4-12%.
  • the residual moisture content is less than 4%, the umami component is also removed together, and if it exceeds 12%, the smooth powder state cannot be maintained. More preferably, it may be 6 to 10% from the viewpoint of containing the umami component and maintaining the powder state. More preferably, as in the case of the embodiment, when the residual moisture content is 7 to 9%, it is possible to feel a savory ingredient similar to that of the raw material soy sauce, and maintain a smooth powder state for a long period of time. be able to.
  • FIG. 17 and FIG. 18 show dl and d2, respectively, which are large-diameter spherical bodies copied from the dry powder soy sauce according to this embodiment, which were included in the electron micrographs.
  • Figures 19 and 20 show the secondary electron images (SEI) of the dry powder soy sauce, respectively.
  • Fig. 21 and Fig. 22 show BEI images (backscattered electron images), respectively.
  • FIG. 19 and FIG. 21 are electron micrographs with a magnification of 350 times.
  • 20 and 22 are electron micrographs with a magnification of 750 times.
  • the diameter of the large spherical sphere constituting the powder-dried soy sauce of the embodiment is 40 to 120 / ⁇ ⁇ , and the diameter of the small spherical sphere. Has dimensions of about 30-40 m.
  • These large and small spherical bodies have the following characteristics in appearance.
  • the large-diameter spherical body has a spherical shape having a clean and smooth surface as shown in FIG. 19 or FIG. Some have “mold” protrusions or patterns, and others have shapes similar to those shown in FIG. 22, as shown in FIG.
  • FIGS. 25 and 27 show a magnification of 350 times
  • FIGS. 26 and 28 show a magnification of 750 times.
  • the powders d3 to d6 in FIGS. 23 and 24 constitute a sphere. It is a mixture of large and small spherical or potato-shaped fine powders with a total size V.
  • the surface of the spherical body has irregularities and is rugged, and many holes and cracks are formed on the outer surface of the spherical body.
  • the droplet force generated upon drying for a short time or for a short period of time the generated water vapor reaches the skeleton that forms a shell that is an aggregate of solid matter that has grown or is growing. Presumed to be destroyed. That is, the water inside the fine mist droplets evaporates in a boiling state, and this water vapor evaporates while destroying the shell body surrounded by the shell body and having an escape route (water vapor explosion).
  • the shape of the sphere changes in relation to the strength of the water vapor squirting state.
  • the explosive water squirting destroys the shell like a crater on the moon surface.
  • small jets make small cracks and holes in the shell.
  • the fracture state of the shell body affects the size of the surface area, that is, the contact area with air, and it is presumed that the deliquescence increases in comparison with the dry powder soy sauce of this embodiment.
  • the surface layer (and inner layer) is distributed in such a way that salty sodium crystals are prevented from being prayed and salted sodium is dispersed on the surface.
  • the components that cause deliquescence are protected so that they are less exposed or exposed to the air, so that the deliquescence in the state of use is reduced and prolonged. Storability can be improved.
  • the composition of the raw material soy sauce used a commercially available one as it is, but it is not limited to this.
  • “starch” saturated moromi
  • a starch seasoning produced in the starch drawing step can be easily dried to produce a powder seasoning having a good taste.
  • soy sauce as a liquid seasoning has been described, but the application of the present invention is not limited to this.
  • dressing especially non-oil dressing
  • ketchup sauce, domigrass sauce, tomato pyle, and so on
  • seasonings for example, those containing a large amount of oil, for example in a kneaded form, may be sprayed as mist droplets in a drying tower after being dissolved in a solvent such as alcohol. !
  • an edible water repellent examples include edible coating materials having vegetable protein power, rosin, sandalac, copal, gum arabic, twein, soy protein, and casein.

Abstract

 少なくとも塩化ナトリウム、調味成分及び溶媒を含む液状体の調味料を該液状体の沸点温度以下の温度で乾燥させて大径球状体及び小径球状体を含む混合体を生成するため、溶媒が急激に気化することはなく、ゆっくりと蒸発し、水分に溶け込んでいる成分、特に、塩化ナトリウムが、大径球状体の表層部に集積せずに、内部に保持されるため、表層部における塩化ナトリウムの偏析が抑えられ、潮解性が低下する。したがって、使用状態における潮解性が低く、長期間の保存性に優れた粉末乾燥調味料を得ることが可能となる。                                                               

Description

明 細 書
粉末乾燥調味料とその製造方法及びその製造装置
技術分野
[0001] 本発明は、液状体の調味料を乾燥させて製造した粉末乾燥調味料とその製造方 法及びその製造装置に関する。
背景技術
[0002] わが国における消費量が多ぐ代表的な液体状の調味料として醤油がある。この醤 油には、こいくち醤油、うすくち醤油、たまり醤油、白醤油、さいしこみ醤油、生醤油、 減塩醤油など多数の種類の商品が製造され、販売されている。通常使用する醤油は 液状であり、これをガラスビンやペットボトルなどの容器に収容して貯蔵や輸送、そし て販売され、そして小口に分けて使用される。しかし、液体での貯蔵や輸送すること は容積が大きく重量もあることから輸送コストが増加し、また、高温になる場所で保存 すると短期間に変質する傾向があり、その保存条件が力なり厳しぐ保存中に味が変 化するという問題もある。従って、蔵出し直後の新鮮なものが賞用される。
粉ミルクやインスタントラーメンなどの汁は、凍結乾燥や噴霧乾燥などの方法によつ て乾燥して粉体として減容して取扱性や保存性が改善されている。
[0003] (潮解性について)
しかし、乾燥醤油には本質的な問題がある。
即ち、第 1に「潮解性」を有していることである。潮解性を有すると、例えば、直径が 5 cm程度の平皿状の容器に乾燥醤油を山盛りにした状態で、湿度が 50〜60%程度 の雰囲気内に放置した場合、約 2〜3時間の放置で表面の層が吸湿し、その吸湿し た部分が山形に沿って硬化し、あた力も円錐形の焼き菓子力力サブタのような状態で 乾燥醤油の山から剥離する状態に至る。そして、乾燥醤油を 1昼夜保存すると全体 がべトべト状態となり、取扱性が極端に悪化する。
[0004] 第 2に、第 1の潮解性乃至吸湿性により乾燥醤油の微粉末を小出しする容器に入 れ、これを少量ずつ振りかけのように粉末状で使用することが実質的に困難である。 前記のように短時間の吸湿により表面の層が力サブタのように凝集固化してしまうこと から、短時間に容器の排出孔が目詰まりする。
第 3に、乾燥醤油を元の液体に戻した場合には味が大きく変化する。長期に保管 すると、吸湿によりカビ臭くなり、味が悪化する。
特に、従来品では穎粒状に形成するために大量の「賦形剤」を付与することから粉 末乾燥醤油をもとの状態に戻すと、味が変化する。
[0005] (乾燥方法について)
粉ミルクやインスタントラーメンの汁などの粉末状の調味料や薬品などには加熱乾 燥方法が多く使用されている。この乾燥方法を実施する乾燥機としては、噴霧乾燥 機 (スプレードライヤ)が多く使用されている。
一方、醤油を乾燥する方法は、減圧ドラム乾燥法、真空凍結乾燥法、噴霧乾燥法 が使用されている力 噴霧乾燥法が最も好ましいようである。この噴霧乾燥法に用い られる好ましい装置は、例えば、加圧ノズル式噴霧乾燥機、二流体ノズル式噴霧乾 燥機、デスクアトマイザ一式噴霧乾燥機、噴霧乾燥'造粒兼用乾燥機などが使用さ れている (非特許文献 1、特許文献 1、 2参照)。
従来では、熱風が上方より下方に供給される乾燥塔内に、高圧の空気と共に醤油 を噴霧し、或いは回転円板によって微細化した醤油を分散状態で放出し、霧化され た醤油の液滴を加熱して乾燥している。この場合、熱風は 120〜200°C、効率を考 慮し 260°Cもの高温加熱空気が採用されている。
非特許文献 1 :株式会社 幸書房 1997. 9. 1発行 「乾燥食品の基礎と応用」 第 92〜94頁
特許文献 1 :特開 2004— 105066号公報
特許文献 2:特開平 7 - 213249号公報
発明の開示
発明が解決しょうとする課題
[0006] ところで、一般に、醤油を原料としてこれを乾燥して穎粒状の粉末乾燥醤油とする ためには、「賦形剤」としてデキストリンを添加する。賦形剤を使用しない場合、目的と する大きさの穎粒状の粉末乾燥醤油を製造できないからである。ところが、賦形剤は 粉末の水溶ィ匕にすぐれた性質を持ち、これはとりもなおさず潮解性に大きく寄与する 物質である。従って、デキストリンを大量に含むために従来の粉末乾燥醤油は保存 性が悪ぐたびたび蓋を開閉するような用途には使用できない。その上にデキストリン を含む粉末乾燥醤油に水を添加して元の液体に戻した場合、元の醤油とは異なる成 分となって!/、るために元の味と違った味となり、品質の低下が避けられな 、。
また、従来のスプレードライヤを使用した高温の熱風を使用する乾燥粉末は、上記 固形分に僅かな水分 (約 2〜3%)が含まれるが、醤油として存在していた水分の多く は蒸発している。しかし、この乾燥した粉末乾燥醤油は本質的に潮解性があり、短時 間に吸湿することは上述した通りである。
[0007] そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、使用状態 における潮解性が低ぐ長期間の保存性に優れた粉末乾燥調味料とその製造方法 及びその製造装置を提供することにある。
課題を解決するための手段
[0008] 上記課題を解決するため、本発明は、粉末乾燥調味料において、少なくとも塩ィ匕ナ トリウム、調味成分及び溶媒を含む液状体の調味料を該液状体の沸点温度以下の 温度で乾燥させて大径球状体及び小径球状体を含む混合体を生成し、大径球状体 の表層部における塩ィ匕ナトリウムの偏析を抑えたことを特徴としている。
本発明では、液状体の沸点温度以下の温度で乾燥させることで、液状体を構成す る溶媒が急激に気化することはなぐゆっくりと蒸発することとなる。
このため、大径球状体を形成するに際し、水蒸気は大径球状体内部から外部に向 力つてゆっくりと移動し、表面からゆっくりと放出されるので、水分に溶け込んでいる 成分、特に、塩ィ匕ナトリウムを表層部に集積させることなぐ内部に保持させた状態を 保つことができる。
従って、大径球状体の表面における塩ィ匕ナトリウムの固結による結晶化が促進され ることはなく、ひいては、大径球状体の表層部における塩ィ匕ナトリウムの偏析を抑え、 潮解性を低く保つことが可能となる。
[0009] この場合において、好ましくは、前記大径球状体の表層部に塩素及びナトリウムを 略均一な分散状態で分布させて塩ィ匕ナトリウムの偏析を抑えるようにしてもょ 、。 また、より好ましくは、前記液状体の調味料を前記溶媒に含まれるアルコール及び 水の共沸点温度以下の温度で乾燥させて大径球状体及び小径球状体を含む混合 体を生成するようにしてもょ 、。
本構成では、溶媒に含まれるアルコール及び水の共沸点温度以下の温度で乾燥 させることで、アルコールの蒸発に伴う、アルコール及びこのアルコールに溶けている 旨味成分が失われるのを抑制し、旨味成分及びアルコールを大径球状体又は小径 球状体内部に保持させたままとすることができ、より、原料調味料に近い味を保持す ることがでさる。
[0010] さらに、好ましくは、前記大径球状体の表層部を断裂のない滑面に形成するように してちよい。
また、好ましくは、前記混合体の水分量を 4〜 12重量%とするようにしてもよい。 さらに、好ましくは、前記大径球状体の直径力 0 m以上であるようにしてもよい。
[0011] また、少なくとも塩ィ匕ナトリウム、調味成分及び溶媒を含む液状体の調味料を乾燥 させて粉末乾燥調味料を製造する製造方法にお!、て、前記液状体の沸点温度以下 の温度で、高所内壁面の温度が低所内壁面の温度に比べ低くなるように制御された 乾燥塔内に、前記液状体の調味料を霧滴となるように噴霧し、この霧滴を乾燥塔内 で上下に対流させながら乾燥させることを特徴としている。
[0012] この場合において、好ましくは、前記乾燥塔内の温度を溶媒に含まれるアルコール 及び水の共沸点温度以下の温度に制御し、この乾燥塔内に、液状体の調味料を霧 滴となるように噴霧するようにしてもょ 、。
また、より好ましくは、高所と低所の温度差が約 10〜30°Cの範囲となるように、乾燥 塔本体の内壁面に温度差を設け、該温度差を利用して内壁面に沿って上昇流を発 生させるようにしてちょい。
[0013] また、少なくとも塩ィ匕ナトリウム、調味成分及び溶媒を含む液状体の調味料を乾燥 させて粉末乾燥調味料を製造する製造装置において、乾燥塔本体と、この乾燥塔本 体の上部に設けられた原料調味料の噴霧手段と、この噴霧手段に接続された原料 調味料の温度制御機能付き供給装置と、前記乾燥塔本体の下部に接続され、乾燥 粉末醤油を分離するためのサイクロンと、このサイクロン中を減圧状態に保持する気 体排出装置とを備え、前記乾燥塔本体の外面に電熱ヒータなどの加熱手段を設ける と共に、前記塔本体の必要な箇所の温度を測定する温度センサを設け、前記塔本体 内の温度が、前記液状体の沸点温度以下の温度で、高所内壁面の温度が低所内 壁面の温度に比べ低くなるように前記加熱手段の発熱状態を制御する制御装置を 設けたことを特徴としている。
従って、本発明の装置では、液状体の沸点温度以下の温度で乾燥させることで、 液状体を構成する溶媒が急激に気化することはなぐゆっくりと蒸発することとなり、大 径球状体を形成するに際し、水蒸気は大径球状体内部力 外部に向力つてゆっくり と移動し、表面からゆっくりと放出されるので、水分に溶け込んでいる成分、特に、塩 化ナトリウムを表層部に集積させることなぐ内部に保持させた状態を保たせることで きる。
従って、本装置で得られる大径球状体の表面における塩ィ匕ナトリウムの固結による 結晶化が促進されることはなぐひいては、大径球状体の表層部における塩ィ匕ナトリ ゥムの偏析を抑え、潮解性を低く保つことが可能となる。
[0014] この場合にお 、て、好ましくは、前記乾燥塔本体内の温度が、前記溶媒に含まれる アルコール及び水の共沸点温度以下の温度で、高所内壁面の温度が低所内壁面 の温度に比べ低くなるように前記加熱手段の発熱状態を制御する制御装置を設ける ようにしてもよい。
本構成では、溶媒に含まれるアルコール及び水の共沸点温度以下の温度で乾燥 させることで、アルコールの蒸発に伴う、アルコール及びこのアルコールに溶けている 旨味成分が失われるのを抑制する。したがって、得られる大径球状体あるいは小径 球状体は、旨味成分及びアルコールをその内部に保持したままとすることができ、よ り、原料調味料に近い味を保持した粉末乾燥調味料を得ることが可能となる。
また、より好ましくは、前記乾燥塔本体の内壁面には、液滴の付着を防止するシリコ ン加工、フッ素樹脂加工等の撥水加工が施されて 、るようにしてもょ 、。
[0015] さらに、好ましくは、前記乾燥塔本体の外面には酸ィ匕アルミが主体の酸ィ匕アルミ溶 射層と、この酸ィ匕アルミ溶射層の上に更に酸ィ匕チタンが主体の酸ィ匕チタン溶射層と を有する二層構造セラミックス層を形成し、前記酸化チタン層の外面に前記加熱手 段を配置するようにしてもょ 、。 さらにまた、好ましくは、前記乾燥塔本体の外面に形成した二層構造セラミックス層 上に電気絶縁層を介して少なくとも前記乾燥塔本体の長手方向に区分した 3つの領 域毎に加熱手段を配置し、前記制御部は、各加熱手段をそれぞれ独立して温度制 御するようにしてちょい。
発明の効果
[0016] 本発明では、少なくとも塩ィ匕ナトリウム、調味成分及び溶媒を含む液状体の調味料 を該液状体の沸点温度以下の温度で乾燥させて大径球状体及び小径球状体を含 む混合体を生成したから、混合体の生成過程で大径球状体の表層部に塩ィ匕ナトリウ ムの偏析を抑えることができ、潮解性の原因である成分が空気と接触が少なぐ或い は露出しないように保護されるため、使用状態における潮解性を低下し、長期間の保 存性が高められる。
図面の簡単な説明
[0017] [図 1]本発明を実施するための装置の一例を示す図である。
[図 2] (A)は図 1に示す乾燥塔における気流の流れの説明図、(B)は同じく混合流の 発生状態の説明図である。
[図 3]乾燥塔本体の一部断面図。
圆 4]乾燥塔本体の一部断面図。
[図 5]ノズルの断面図。
[図 6]図 5の V— V断面図。
[図 7]ノズルの横断面図。
[図 8]ノズルの断面図。
[図 9]ノズルの横断面図。
[図 10]実施形態の製造方法により得られる粉末乾燥醤油の走査型電子顕微鏡写真 である。
[図 11]図 10の粉末乾燥醤油を拡大した走査型電子顕微鏡写真である。
[図 12]従来の製造方法による粉末乾燥醤油の走査型電子顕微鏡写真である。
[図 13]実施形態の粉末乾燥醤油試料の表面状態及び表層の元素分析結果を対応 づけた説明図である。 [図 14]従来例の粉末乾燥醤油試料における反射電子像に基づぐ表層の元素分析 結果の説明図である。
[図 15]実施形態の粉末乾燥醤油を FIB加工した断面の走査型イオン顕微鏡写真で ある。
[図 16]従来例の粉末乾燥醤油を FIB加工した断面の走査型イオン顕微鏡写真であ る。
[図 17]実施形態の粉末乾燥醤油の顕微鏡写真のスケッチである。
[図 18]実施形態の粉末乾燥醤油の顕微鏡写真のスケッチである。
[図 19]実施形態の粉末乾燥醤油の顕微鏡写真である。
[図 20]実施形態の粉末乾燥醤油の顕微鏡写真である。
[図 21]実施形態の粉末乾燥醤油の顕微鏡写真である。
[図 22]実施形態の粉末乾燥醤油の顕微鏡写真である。
[図 23]従来法によって得られた粉末乾燥醤油の顕微鏡写真のスケッチである。
[図 24]従来法によって得られた粉末乾燥醤油の顕微鏡写真のスケッチである。
[図 25]従来法によって得られた粉末乾燥醤油の顕微鏡写真である。
[図 26]従来法によって得られた粉末乾燥醤油の顕微鏡写真である。
[図 27]従来法によって得られた粉末乾燥醤油の顕微鏡写真である。
[図 28]従来法によって得られた粉末乾燥醤油の顕微鏡写真である。
符号の説明
1 乾燥塔本体
2 噴霧ノズル
3 ポンプ
4 原料タンク
5 配管
5a 加熱器
6 ダクト
7 サイクロン 9 排気処理装置
17 電熱ヒータ
D ドレン
d 粉末乾燥醤油
dn 下降流
m 霧滴
r 原料醤油
S1、S2 温度センサ
u 上昇流
発明を実施するための最良の形態
[0019] 以下、本発明の一実施の形態を添付した図面を参照して説明する。
図 1は、実施形態の製造装置である。
図 1において、符号 1は乾燥塔本体を示し、乾燥塔本体 1の上部には、スプレーノ ズル 2 (二流体噴霧ノズル)が接続されている。スプレーノズル 2には加熱器 5a、ポン プ 3が順に接続され、ポンプ 3には醤油 rが充満したタンク 4が接続されている。タンク 4内の醤油 rはポンプ 3で加圧され、更に、加熱器 5aで加熱され、配管 5を経由して所 定量ずつスプレーノズル 2に供給され、塔本体 1内に噴霧されて微細な霧滴 mを形 成するようになっている。加熱器 5aを介在させた意味は、低温の醤油をそのまま噴霧 した場合、粉末乾燥醤油の形成が円滑にできず、場合によっては爆発的な蒸発を発 生する危険性があるからである。
[0020] この乾燥塔本体 1は、低温乾燥を適用する関係もあって、比較的長尺で堅型の円 筒状に形成されており、例えば、直径が 0. 5〜: Lm、高さが 5m〜10mの円筒形の装 置を使用している。そのために霧滴が塔本体 1内を降下するための時間を長くして低 温加熱によっても十分に粉体を形成できる。
図 2 (A)及び図 2 (B)は、それぞれ乾燥塔本体の一部断面図であり、図 3は、乾燥 塔本体に形成された 2層構造セラミックス層の説明図である。乾燥塔本体 1は、アルミ -ゥム製 (場合によってはステンレス鋼や鉄板を使用することも可能である。 )であつ て、その外表面には、図 3に示すように、アルミナセラミックス層 C1を溶射し、このアル ミナセラミックス層 CIの上に酸ィ匕チタンセラミックス層 C2を溶射して二層構造セラミツ タス層 21を形成している。
[0021] 二重構造セラミックス層 21の外表面の上層には、図 4に示すように、電気絶縁層 22 を介して遠赤外線電熱ヒータ 17が設けられている。電熱ヒータ 17は、図 2に示すよう に、乾燥塔本体 1の長手方向に複数段(17a、 17b、 17c)に分割され、塔本体 1の長 さ方向の温度を自在に調整できるようにしている。そして、乾燥塔本体 1の内部には、 図 1に示すように、少なくとも上部と中間部と下部とに、乾燥塔本体 1の内部の温度と 温度分布を測定するための温度センサ SI, S2を複数本設けており、乾燥塔本体 1 内の全体的、総合的に温度制御できるようになって!/、る。
また、乾燥塔本体 1の内面には、撥水性榭脂膜としてシリコン榭脂膜あるいはフッ素 榭脂膜がコーティングされ、醤油の霧滴が付着せず、粉末乾燥醤油を効率的に生成 できるようにしている。
[0022] 図 5は、スプレーノズルの断面図、図 6は、図 5の V— V断面図、図 7乃至図 9は、霧 滴生成の説明図である。
スプレーノズル 2は、ポンプ 3からの醤油 rを一時的に蓄える液だめ部 31を備え、こ の液だめ部 31は複数の細孔 32を介して霧滴生成部 35 ( =霧滴生成空間)に連通し ている。 33は、供給された醤油 rをシャワー状態で噴出するノズル部を示す。
霧滴生成部 35には、図 6に示すように、 3本のエア導入路 35が連通し、 3本のエア 導入路 35は、霧滴生成部 35の中心方向、かつ、互いに交差する方向に延びている 。各エア導入路 35には、加熱空気供給手段(図示せず)を介して、所定の温度にカロ 熱された圧縮空気 (エア a)が導入される。
[0023] ポンプ 3を駆動し、液だめ部 31に醤油!:が供給されると、供給された醤油!:は、複数 の細孔 32を有するノズル部 33に導入され、シャワー状の醤油 fとして霧滴生成部 35 内に供給される。この状態で、エア導入路 36からエア aが導入されると、図 7乃至図 9 に示すように、霧滴生成部 35内で乱流が発生し、シャワー状の醤油 fは、かき乱され て、霧滴 mとされる。そして、霧滴生成部 35の下方の開口力 乾燥塔本体 1内に滴 下する。
このとき、エア導入路 36から導入されたエア aは、図 9に示すように、霧滴生成部 35 の内面の略対向する位置に吹き付けられ、胴部の壁に沿って流れをつくり、霧滴 fが 胴部の壁に接することなく、滴下するようにされて!、る。
[0024] 乾燥塔本体 1の下部には、パイプ乃至ダクト 6が接続され、ダクト 6はサイクロン 7の 供給管に接続され、サイクロン 7の排出管 6aは強力な排気を行うブロア 8に接続され ている。ブロア 8よりの排気は、排気処理装置 9に導かれ、排気処理装置 9は、乾燥 工程で発生した水蒸気を冷却水の噴霧によって液ィ匕してドレン Dとし、或いは排気中 に含まれている固形分をフィルタにより分離除去する機能を有する。また、サイクロン 7により分離された生成結果物の粉末乾燥醤油 dは、バルブを介して接続されている タンク 7a内に収容されるようになって 、る。
[0025] 図 2 (A)において、電熱ヒータ 17は三区分 17a、 17b、 17cに分割され、それぞれ 別の温度に制御が可能である。例えば、スプレーノズル 2の存在する部分の温度 T1 力 S60°Cとなるように電熱ヒータ 17aの温度を制御し、中間部の温度 T2が 65°Cとなる ように電熱ヒータ 17bの温度を制御し、更に下部の温度 T3が 75°Cとなるように電熱ヒ ータ 17cの温度を制御することが可能である。ここで、乾燥塔本体 1の内部の温度を 正確に測定することは、気流や輻射熱などの関係で困難である。そこで、電熱ヒータ 17の部分の温度を正確に測定して、乾燥塔本体 1の内部の温度を予測して制御す る方法ち採用することがでさる。
[0026] 上記構成では、乾燥塔 1の内部カゝら放射される遠赤外線を利用して、噴霧に間接 的な熱エネルギの付与によって乾燥することを主体として 、る。もっとも被処理原料 である醤油を噴霧するために使用する低温の温風と塔本体の内面力 の輻射熱の 放射によっても熱エネルギが与えられることは勿論である。
[0027] つぎに、粉末乾燥醤油の製造方法につ!、て説明する。
液状調味料である原料醤油 rには、少なくとも塩ィ匕ナトリウム (塩分)、調味成分 (全 窒素分等)及び溶媒 (アルコール及び水)等が含まれているが、例えば、「こいくち醤 油」成分の一例を挙げると次の通りである。
(1)全窒素分 : 1. 602%…(旨味成分'固形成分)
ァスパラギン酸、グルタミン酸
(2)塩分 : 16. 15%〜 (潮解性関与成分'固形成分) (3)糖類 : 3. 1%— (潮解性関与成分)
還元糖、ダリコース、ァラビノース
、グリセリン、ァラニン
(4)固形分:19. 1%— (核となる成分の一部'固形成分)
無機質 (カリウム、カルシウム、マ
グネシゥム、リン、鉄など)
酵素
(5)アルコール分 : 2. 65%…(蒸発気化成分)
(6)水分 : 57. 4%— (蒸発気化成分)
本実施形態において、この原料醤油 rには、粉末に賦形するための賦形剤が添カロ されていない。これは、原料となる醤油の味に変化を与えないためである。
[0028] 上述のように、乾燥塔本体 1内の各部の温度 Tl、 Τ2、 Τ3 (つまり電熱ヒータ側の温 度)が調節される。この実施の形態では、下部の温度 Τ3を 82°C (醤油中の水とアル コールの共沸温度)以下とし、上部の温度 T1を 40°C以上とし、さらに中央部の温度 T2を上部の温度 T1と下部の温度 T3の中間の温度となるように制御する。このとき、
10°C≤ I T3-T1 I ≤30°C
となるように制御する。
乾燥塔本体 1内の各部の温度 Tl、 Τ2、 Τ3の制御は、上記の制御装置 21 (図 1参 照。)が司る。
[0029] ついで、タンク 4とノズル 2の間に設けてある加熱器 5aにより原料醤油 rを約 70°Cに 加熱しつつ、約 80°Cの熱風と共に塔本体 1内に噴霧する。
図 2 (B)は、塔本体 1内部の霧滴の撹乱状態を示し、図 2 (A)のような気流によって 、塔本体 1内部には効率的な撹乱状態が作りだされている。その結果、醤油 rの霧滴 は、濃霧か雲海のように形成されて乾燥塔本体 1内を気流 (上昇気流及び下降気流 )に乗って浮遊し、回転し、融合し、合体を繰り返して乾燥し、粉末乾燥醤油が得られ る。
実際に得られた粉末乾燥醤油は、醤油の微細な霧滴が、乾燥塔の中で独立して個 々に、そのままの状態で乾燥したとして得られるであろう微粉末の大きさと比較して、 遙に大型のものに成長している。即ち、霧滴がそのまま乾燥しても必要とする大きさ の粉末乾燥醤油を形成しな!、と考えられる。
[0030] この観察より、発明者は、次のように推察している。乾燥塔本体 1内に噴霧された微 細な醤油の霧滴は、乾燥塔本体の中の温風 (遠赤外線と温風が充満)の中を浮遊し 、旋回しながら、回転し、衝突し、し力も衝突した霧滴同志は互いに融け合い、合体し て次第に集合体として成長する。つまり、シャボン玉が浮遊し、旋回しながら落下する 間に、他のシャボン玉と接触し、互いに付着したものは大きく成長する。この成長過 程において、融合することができない小さなシャボン玉を内部に、あた力も種を含む ように外殻が次第に成長していくのである。また、この成長の段階の温度条件や後述 する撹乱の条件により、製品となった微粉末の外形的に変化する。醤油の成分は、 先に例示したように固形分と水分と揮発分の混合体であるため、乾燥が進むにつれ て原料醤油に含まれていた固形分が粉末の骨格を形成することとなる。
[0031] 即ち、乾燥塔本体 1内へ噴霧された醤油 rの霧滴を穏やかに加熱することで、ヒート ショックを防止しつつ、中間部から下部に至るに従って温度を高め、その間に乾燥塔 本体 1の側壁より多量の遠赤外線を照射して霧滴内部も均一に加熱することで、表 面のみが乾燥してしまうことにより、内圧が上昇して水蒸気爆発が発生するような乾 燥を防ぎながら造粒を助長する。
この造粒の過程では、上記(1)式に従い、乾燥塔本体 1の内部の壁面に沿って上 昇流 uを、中央部に下降流 dnを発生することができ、それによつて、霧滴が塔本体 1 の内部を浮遊する時間を調節可能である。
[0032] 以上をまとめると、乾燥条件 (加熱条件)の設定の指針は、以下のようになる。
本実施の形態は、少量の粉末乾燥醤油を製造した経験と、電子顕微鏡写真等の 観察、粉末乾燥醤油の外形からの蒸発挙動の推察、予想などを考慮した結果得られ たものである。
(1) 霧滴が乾燥する際には、霧滴より水蒸気が発生する。この場合、「水分の沸騰」 を極力防止することを目的として、醤油の霧滴の加熱条件と加熱手段を、従来技術 では適用されて 、な 、範囲の低温乾燥の採用に適したものとする。
(2) 低温乾燥を行うために、乾燥に寄与する熱エネルギーとして大量の「遠赤外線 の放射」と、少量の熱風を併用する。
そして乾燥塔本体内の温度を、原料醤油に含まれている水とアルコールの共沸点( 約 82°C)以下の温度として爆発的な水蒸気の発生を抑制する。
具体的には、原料醤油の成分を構成して!/、る水とアルコール分の混合体の共沸点 以下である、 40°C〜82°Cであり、乾燥温度を前記範囲内とし、好ましくは 60°C前後 とする。
その理由は、霧滴からの水分の蒸発を、従来技術に比較して、遙かに穏やかなも のとするためである。
この結果、乾燥温度が醤油の成分を構成して 、る水とアルコールの共沸温度であ る 82°Cより低いと、粉末乾燥醤油の中に水分を 7%〜8%程度残すことが可能となり 、醤油に含まれて 、るアルコール分と旨み成分を残留させることが可能となる。
[0033] (3) 本実施の形態は、霧滴力 穏やかな水分の蒸発を目的としているから、乾燥を 助けるために、乾燥塔本体の長さは従来の高温乾燥を行う装置と比較すると長く設 定することとなる。
(4) また、乾燥塔本体の内部の壁面に沿う「上昇流」を塔本体の上下の温度差によ つて自然に発生させ、乾燥の状態に加熱状態を合わせる必要があるので、乾燥塔本 体の温度を上部と中間部と下部、あるいは上下に分割して下部側の温度を高温に、 上部側の温度を下部側の温度より低い温度とする。上部 下部の温度差は、好まし くは 15°C以上とする。この場合に、最高温度が醤油の成分を構成している水とアルコ 一ルの共沸温度である 82°Cより低ければ、 20°C〜30°C程の温度差でも実施可能で ある。
即ち、実際の製造装置では、上部 下部の温度差が小さいと必要とする上昇気流 を十分に発生し乃至、温度差を大きくするために下部側(高温度側)の温度を上げる と、上述した温度範囲力 外れることになるので、上述した温度範囲内において実現 可能な温度差を実際の装置で設定する必要がある。
[0034] 図 10は、実施形態の製造方法により得られる粉末乾燥醤油の走査型電子顕微鏡 写真であり、図 11は、一部の大径球状体を拡大して示す同写真である。
本実施形態の構成では、醤油 rの霧滴 mは所定の温度 (醤油中の水とアルコール の共沸温度以下の温度)及び(1)式に従う所定の温度分布となるように加熱されて 、 る乾燥塔本体 1内の上記撹乱状態の中を長時間に亘り浮遊し、この霧滴が他の霧滴
、或いは霧滴から一部の水分が蒸発した略乾燥粉末醤油と接触、融合、合体を繰り 返し、図 10に示すように、例えば直径略 5〜30 m程度の小径球状体を形成し、或 いは、形成された小径球状体を経て直径略 30 m以上 (より好ましくは 40 m以上) の大径球状体を形成する。
[0035] 本実施形態では、小径球状体及び大径球状体が混合体を生成し、大径球状体の 表層部は、図 11に示すように、断裂のない滑面に形成され、し力も、上記の接触、融 合、合体の繰り返しにより生成された大径球状体 (直径が略 100 m)の表層部には 塩ィ匕ナトリウム結晶(あるいは塩ィ匕ナトリウム結晶が固結した固結体)の偏祈が 2箇所 a に現れるだけで、それ以外の部位への偏祈が抑えられている。該写真では、塩ィ匕ナ トリウム結晶の偏析は白色で現れている。
[0036] 偏析による塩ィ匕ナトリウム結晶等の大きさは、 1個単位で例えば 5 μ m以下であれば 、それが球状体の表層部に、複数個出現したとしても、潮解性はより低く抑えられる。 また、塩ィ匕ナトリウム結晶等で覆われる表層部の面積は、大径球状体の全表面積に 対する面積比で、実用的には、略 30%程度以下であればよぐより好ましくは、その 面積比が 15%以下であればよぐさらに好ましくは数%未満であれば、潮解性はより 低く抑えられる。
これらは、吸湿した場合であっても、各塩ィ匕ナトリウム結晶等が互いに物理的に離 れた位置に配置されているため、各塩ィ匕ナトリウム結晶等の表面に水分 (飽和食塩 水)が付着したとしても、協働することができないので、付着する水分の量が増加する ことなぐ再び空気中に放散され、多くの水分を蓄えることができ、潮解性の原因とな る塩ィ匕ナトリウム結晶の固結体が成長しづらいからである。
ここで、表層部への偏祈が抑えられるのは、乾燥を穏やかに行っているため、原料 醤油に含まれていた塩ィ匕ナトリウムが球状体の表層側に一気に水と一緒に移動する ことがなく、球状体の各部に均等に留まるためと推察される。
本実施形態の粉末乾燥醤油は、残留水分量 7〜9%が高いため、塩ィ匕ナトリウム( あるいは塩素イオン及びナトリウムイオン)を球状体内部に均等に保持し、結晶化さ せにくくしている。
[0037] ここで、従来の製造方法による粉末乾燥醤油との比較を行う。
図 12は、従来の製造方法による粉末乾燥醤油の走査型電子顕微鏡写真である。 図 12に示すように、従来の製造方法による粉末乾燥醤油における、大径球状体の 表層部には、塩ィ匕ナトリウム結晶の偏祈が随所 (符号 bで示す白く見える箇所)に見ら れ、表層部の全域にほぼ均一に塩ィ匕ナトリウム結晶の偏祈が認められる。これを裏付 けるように、従来の製造方法による粉末乾燥醤油を賞味した場合には、強い塩味を 感じることとなる。
これに対し、本実施形態の粉末乾燥醤油では、直径 100 m以上の大径球状体に おいても、大径球状体の表層部には顕微鏡写真の分解能( : m)の範囲内にて 、塩ィ匕ナトリウム結晶の偏祈が 2箇所 aに認められるだけで、広範な偏析は認められな い。これを裏付けるように、本実施形態の粉末乾燥醤油を賞味した場合には、塩味が 押さえられ、穏やかでまろやかな味となっている。
[0038] 図 13は、実施形態の粉末乾燥醤油試料の表面状態及び表層(表面から約 1 μ m) の元素分析結果を対応づけた説明図である。ここで、図 13 (A)は、 BEI (Back scat tering Electron Image)像、図 13 (B)は、 EDS (Energy Dispersive X— ray
Spectroscopy)による塩素原子(CI)の分布状態説明図、図 13 (C)は、同じく ED Sによるナトリウム原子 (Na)の分布状態説明図である。
図 13 (A)に示すような BEI像によれば、外観的には、塩ィ匕ナトリウム結晶の偏析は 見受けられない。 BEI像では、塩化ナトリウム結晶が存在すると、図 13 (A)の中央部 に示した粉末乾燥醤油の大径球状体 (直径が略 80 μ m)の表面に白っぽ 、部分が 外観される力 図 13 (A)には、それが外観されない。また、元素分析的にも、図 13 ( A)の中央部に示した粉末乾燥醤油の大径球状体 (直径が略 80 μ m)に着目した場 合、図 13 (B)に示すように、塩素原子 (C1)は、大径球状体の表面にほぼ一様に分 散状態で分布していることがわかる。塩化ナトリウム結晶が存在すれば、塩素原子 (C 1)の点の密度が増して、図中、大径球状体の表面の黒色が色濃くなるはずであるが 、図 13 (B)には、それが外観されない。
同様に、ナトリウム原子 (Na)についても、図 13 (C)に示すように、図 13 (A)の中央 部に示した粉末乾燥醤油の大径球状体の表面にほぼ一様に分散状態で分布してい ることがゎカゝる。この場合も塩化ナトリウム結晶が存在すると、ナトリウム原子 (Na)の 点の密度が増して、図中、大径球状体の表面の黒色が色濃くなるはずであるが、図 1 3 (C)には、それが外観されない。
[0039] 図 14は、従来例の粉末乾燥醤油試料における反射電子像に基づぐ表層(表面か ら約 1 m)の元素分析結果の説明図である。ここで、図 14 (A)は、 BEI像、図 14 (B )は、塩素原子 (C1)の分布状態説明図、図 14 (C)は、ナトリウム原子 (Na)の分布状 態説明図である。図 14 (A)に示す BEI像によれば、外観的にも、試料の表面に白色 部分が多く散見され、従来のものでは、塩ィ匕ナトリウムの偏祈とみられる状態が観察さ れている。そして、従来の粉末乾燥醤油の大径球状体(図 14 (A)中央より左斜め上 に存在する最も径が大き 、もの)に着目した場合、塩素原子 (C1)は、図 14 (B)に示 すように、図中、黒い領域 (塩素原子の多い領域)と、白い領域 (塩素原子の少ない 領域)とが明確に分かれており、塩素が表面の一部に偏って存在していることがわか る。同様に、ナトリウム原子 (Na)も、図 14 (C)に示すように、大径球状体の一部に偏 つて存在して ヽることがゎカゝる。
[0040] これらの結果から、従来の粉末乾燥醤油では、表面に塩ィ匕ナトリウム結晶の偏祈が 見られ、これにより、塩ィ匕ナトリウムに起因する潮解性が生じると推定される。先に述 ベたように、粉末乾燥醤油を賞味した場合に強い塩味を感じるのは、この偏祈した塩 化ナトリウムに起因して 、ると考えられる。
これに対し、本構成の粉末乾燥醤油においては、深度 1 μ m程度までの表層にお いて、塩素 (C1)及びナトリウム (Na)が略均一に分散状態で分布しているが、表層部 には塩ィ匕ナトリウム結晶の偏析は認められず、これにより、塩ィ匕ナトリウムに起因する 潮解性が低下していることがわかる。これにともなって、先に述べたように、本実施形 態の粉末乾燥醤油を賞味した場合には、塩味が押さえられ、穏やかでまろや力な味 が感じられるのは、塩化ナトリウム以外の成分が表面に現れて 、るからであると考えら れる。
[0041] 次に粉末乾燥醤油の断面の状態につ!、て検討する。
図 15は、実施形態の粉末乾燥醤油を FIB加工した断面の走査型イオン顕微鏡写 真である。図 15 (A)、図 15 (B)はそれぞれ異なる試料球状体の断面を示す。
FIB (Focused Ion Beam)加工とは、ガリウム(Ga)イオンビームを試料に照射し てスパッタリングすることにより、走査型イオン顕微鏡像を見ながら試料の特定箇所を 加工する技術であり、平滑な試料断面を得ることが可能となって 、る。
図 15 (A)、図 15 (B)に示すように、いずれの粉末乾燥醤油の試料も、その断面に おいて複数の空洞 klが見られ、肉厚は厚く形成され、肉厚部 BD1の組織は、外観 上、緻密で均質である。
従って、本実施形態の粉末乾燥醤油は、試料内部においても、塩ィ匕ナトリウム結晶 の偏祈がなぐ塩ィ匕ナトリウムが安定、かつ、均一に分散している状態にあると考えら れ、このことも潮解性を抑制するのに役立っていると思料する。
[0042] 一方、図 16は、従来例の粉末乾燥醤油を FIB加工した断面の走査型イオン顕微 鏡写真である。なお、図 16 (A)、図 16 (B)はそれぞれ異なる試料球状体の断面を示 す。
図 16 (A)、 (B)に示すように、従来例の粉末乾燥醤油は、その断面において、複 数の空洞 k2が見られ、肉厚部の組織は外観上均質ではなぐ一部に塩ィ匕ナトリウム の結晶 k3と推定される、組成の異なる部分が観察されている。また、一部の粒子は、 殻体の表面に割れ目や窪みが観察されて 、る。
従って、表面における塩ィ匕ナトリウム結晶の偏析及び割れ目が、潮解性に影響を与 免るちのと居、料する。
[0043] 生成結果物の粉末乾燥醤油 dは、図 1に示すサイクロン 7により分離された後にバ ルブを介してタンク 7a内に取りだされる。
タンク 7aから回収した粉末乾燥醤油 dを容器 (不図示)に入れ、蓋をして時々この蓋 をあけては必要な量の醤油を取出し、蓋をし、この開閉操作を数 10回以上も繰り返し て行った。しかし、驚くべきことに、遠赤外線を乾燥塔内に放射し、低温 (60〜75°C) で乾燥した粉末乾燥醤油は、蓋の開閉のたびに、容器の外力 内部に空気が強制 交換され、そして水分が浸入する機会があつたが、製造からかなりの期間が経つに、 全く潮解せずに保管されて 、た。この粉末乾燥醤油の成分分析と化学的な品質評 価をした結果、成分は通常の醤油と実質的に変化しておらず、また、醤油としての味 や香りなどが元の状態を保持して 、るとの評価を得た。
[0044] この粉末乾燥醤油は、従来の粉末乾燥醤油のように賦形剤であるデキストリンを全 く添加しておらず、市販品のままを原料としている。この粉末乾燥醤油と従来の粉末 乾燥醤油との違いは、残留水分量にも見られる。前者は残留水分量が 2〜3%であ つたのに対し、後者は 7〜9%であった。乾燥温度が上述のように醤油中の水とアル コールの共沸温度以下の温度であるため、乾燥過程で水の蒸発及びアルコールの 蒸発が抑えられ、アルコールとともに旨味成分の封じ込みが確認された。この場合に おいて、残留水分量は、 4〜 12%であってもよい。これは、残留水分量が 4%未満で は、旨味成分も一緒に抜けてしまうし、 12%超では、さらさらとした粉末状態を維持で きないからである。また、より好ましくは、旨み成分の封じ込み及び粉末状態の維持の 観点から、 6〜10%としてもよい。さらに好ましくは、実施形態の場合のように、残留 水分量 7〜9%とすることが原料醤油と同程度の旨み成分を感じることができ、さらさ らとした粉末状態を長期に亘つて維持することができる。
[0045] 次に、実施形態の粉末乾燥醤油の特徴を、従来の粉末乾燥醤油と比較してより詳 細に説明する。
図 17及び図 18は、電子顕微鏡写真に含まれていた、本実施形態による粉末乾燥 醤油の内、大径球状体を模写したものを dl, d2をそれぞれ示している。また、図 19と 図 20には、粉末乾燥醤油の二次電子像 (SEI)をそれぞれ示す。さらに、図 21と図 2 2に BEI像 (反射電子像)をそれぞれ示す。
これらの場合において、図 19と図 21とは、倍率 350倍の電子顕微鏡写真である。 また、図 20と図 22とは、倍率 750倍の電子顕微鏡写真である。
[0046] 図 17乃至図 22に示す、これらの電子顕微鏡写真より求めると、実施形態の粉末乾 燥醤油を構成する大径球状体の径は、 40〜120 /ζ πι、小径球状体の径は、 30-40 m程度の寸法を持っている。そして、これらの大、小の球状体は、外観的には、下 記の特徴を持っている。
(1) 図 19及び図 21に示すように、全体として大きく成長したもの(大径球状体)と 、それほど成長しない小さいもの(小径球状体)とが混在している。そして、大径球状 体の数はそれほど多くはな 、。 [0047] (2) 大径球状体は、図 19又は図 21に示すように、綺麗で平滑な表面を持つ球状 のものと、図 22に示すように、表面に「亀甲形あるいは至サッカーボール型」の突起 あるいは模様を有するものや、図 20に示すように、図 22に示したものに近い形状を 有するものがある。
(3)図 17〜図 22に示すように、大径球状体も、小径球状体も殆んどが「独立した球 状の殻体」を形成して 、る。そして表面に割れ目や開口などが見られな!/、。
[0048] 図 23及び図 24 (顕微鏡写真を模写した画)は、従来の市販の粉末乾燥醤油 d3, d 4, d5, d6の特徴を示す画であり、図 25及び図 26は、走査型電子顕微鏡によって撮 影した市販の粉末乾燥醤油に関する BEI像 (反射電子像)であり、図 27、図 28は、 電子顕微鏡によって撮影した市販の粉末乾燥醤油の二次電子像 (SEI)である。 ここで、図 25と図 27は、倍率 350倍、図 26と図 28は、倍率 750倍である。
[0049] 従来の高温を適用した高速加熱方法で乾燥した粉末乾燥醤油の特徴をまとめると 、以下のようになる。
図 25乃至図 28に示した顕微鏡写真より概略の寸法を推定すると、微粉末の 1個の 直径が大きなもので 100〜 120 mであり、小さなもので、 15〜25 /ζ πι程度で大小 種々のもが混在している。そして、これらの球状体は、外観的には、下記の特徴を持 つている。
(1) 図 23と図 24の粉末 d3〜d6は球体を構成している。全体として大きさが不揃 V、で、大 ·小の球状乃至ジャガイモ状の微粉末の混合体である。
(2) 球状体の表面には凹凸があり、ゴッゴッとしており、球状体の外面には多数の 穴や割れ目が形成されて!ヽる。
(3) 大径の球体の内部に中に複数の小径の球体が粒状に含まれている(図 25及 び図 26参照)。
(4) 球状体は、個々に分離しているものは少ない。大径球状体の内部に多数の 小径球状体が収容され、また、大径球状体の表面に中径乃至小径の球状体がコブ のように付着し、更にこれに別の球体が付着し、あた力も生姜の塊の外形を呈してい る(図 25乃至図 26)。
[0050] すなわち、従来技術で採用されている約 120°C〜260°Cの高温の熱風を乾燥塔内 に吹き込む乾燥方法は、霧滴の水分が蒸発の際に大量の熱エネルギーを一瞬にし て受ける。そしてこの熱エネルギーの授受により水分は一気に蒸発するものと考えら れる。しかも、この急激な加熱による水分の急激な蒸発は、従来の乾燥方法では不 可避的なものである。
[0051] 従って、瞬間的あるいは短時間の乾燥の際に発生した液滴力 発生した水蒸気は 、成長した、あるいは成長しつつある固形分の集合体である殻体を形成しつつある骨 格まで破壊することになると推察される。即ち、微細な霧滴の内部の水分が沸騰状態 で蒸発し、この水蒸気は、殻体に囲まれて逃げ道がなぐ殻体を破壊しつつ (水蒸気 爆発)、蒸発する。
[0052] さらに従来技術によれば、水蒸気の噴出状態の強弱に関係して球体の形状が変化 し、特に、爆発的な水蒸気の噴出は、殻体を恰も月面のクレーターのように破壊する 一方、小さな噴出は殻体に小さな割れ目や穴をあける。更に殻体の破壊状態により 表面積の大小、つまり空気との接触面積に影響があり、これに関係して潮解性が本 実施形態の乾燥粉末醤油と比較して大きくなると推察される。
[0053] 本実施形態の乾燥粉末醤油の潮解性が低ぐさらさらとした状態を確保できる理由 は以下の点にある。
(1) 表層(及び内層)に塩ィ匕ナトリウム結晶の偏祈が抑制され、塩ィ匕ナトリウムが表 面に分散するように分布して 、る。
(2) 残留水分量が高ぐ旨み成分を封じ込めるとともに、塩ィ匕ナトリウムも内層に封 じ込めている。
(3) 比較的低温で、長時間乾燥させているため、大径球状体の径が比較的大きく なり、凝集しにくくなつており、ひいては、全体としての表面積が小さくなつて吸湿しに くい。
これらの結果、本実施形態の乾燥粉末醤油によれば、潮解性の原因である成分が 空気と接触が少なぐあるいは露出しないように保護されるため、使用状態における 潮解性を低下し、長期間の保存性を高めることができる。
[0054] 以上の説明は、本発明の一態様について説明したが、以下のような変形例が可能 である。
以上の説明においては、原料醤油の組成として、市販のものをそのまま使用してい たが、これに限定されず、例えば醤油を完成する前の処理工程で発生した「澱」(熟 成もろみを絞って生醤油を製造し、これを火入れ処理した後、澱引き工程で発生した 澱)でも簡単に乾燥し味の良い粉末調味料を製造することができる。
[0055] 以上の説明においては、液状の調味料として、醤油の場合について説明したが、 本発明の適用はこれに限られるものではない。
例えば、そばつゆ、ポン酢、魚醤、牡蠣油、焼き肉やすき焼きなどのたれ、ドレッシ ング(特にノンオイルドレッシング)、ケチャップ、ソース、ドミグラスソース、トマトピユレ 一などのピューレ、スープ、ペッパーソース、マヨネーズ等が挙げられる。これら調味 料の内、例えば油分が多く含まれて、例えば練り状となったものなどは、一担、アルコ ールなどの溶媒で溶解した後に、乾燥塔内に霧滴として噴霧してもよ!、。
[0056] また、以上の説明においては、原料調味料には添加物はカ卩えない場合について説 明したが、さらに潮解性を抑制するためには、少量の食用撥水剤を添加することも可 能である。食用撥水剤としては、例えば、植物性の蛋白質力 なる可食性の被覆材、 ロジン、サンダラック、コーパル、アラビアガム、ツエイン、大豆タンパク、カゼインなど が挙げられる。

Claims

請求の範囲
[1] 少なくとも塩化ナトリウム、調味成分及び溶媒を含む液状体の調味料を該液状体の 沸点温度以下の温度で乾燥させて大径球状体及び小径球状体を含む混合体を生 成し、大径球状体の表層部に塩化ナトリウムの偏析を抑えたことを特徴とする粉末乾 燥調味料。
[2] 前記大径球状体の表層部に塩素及びナトリウムを略均一な分散状態で分布させて 塩ィ匕ナトリウムの偏析を抑えたことを特徴とする請求項 1に記載の粉末乾燥調味料。
[3] 前記偏析による前記塩化ナトリウムの結晶あるいは前記結晶が固結した固結体の 大きさは 5 μ m以下であることを特徴とする請求項 1又は 2に記載の粉末乾燥調味料
[4] 前記液状体の調味料を前記溶媒に含まれるアルコール及び水の共沸点温度以下 の温度で乾燥させて大径球状体及び小径球状体を含む混合体を生成したことを特 徴とする請求項 1乃至 3のいずれか一項に記載の粉末乾燥調味料。
[5] 前記大径球状体の表層部を断裂のない滑面に形成したことを特徴とする請求項 1 乃至 4の 、ずれか一項に記載の粉末乾燥調味料。
[6] 前記混合体の水分量を 4〜12重量%としたことを特徴とする請求項 1乃至 5のいず れか一項に記載の粉末乾燥調味料。
[7] 前記大径球状体の直径力 0 m以上であることを特徴とする請求項 1乃至 6のい ずれか一項に記載の粉末乾燥調味料。
[8] 少なくとも塩化ナトリウム、調味成分及び溶媒を含む液状体の調味料を乾燥させて 粉末乾燥調味料を製造する製造方法にお!、て、前記液状体の沸点温度以下の温 度で、高所内壁面の温度が低所内壁面の温度に比べ低くなるように制御された乾燥 塔内に、前記液状体の調味料を霧滴となるように噴霧し、この霧滴を乾燥塔内で上 下に対流させながら乾燥させることを特徴とする粉末乾燥調味料の製造方法。
[9] 前記乾燥塔内の温度を溶媒に含まれるアルコール及び水の共沸点温度以下の温 度に制御し、この乾燥塔内に、液状体の調味料を霧滴となるように噴霧することを特 徴とする請求項 8に記載の粉末乾燥調味料の製造方法。
[10] 高所と低所の温度差が約 10〜30°Cの範囲となるように、乾燥塔本体の内壁面に 温度差を設け、該温度差を利用して内壁面に沿って上昇流を発生させることを特徴 とする請求項 8又は 9記載の粉末乾燥調味料の製造方法。
[11] 少なくとも塩化ナトリウム、調味成分及び溶媒を含む液状体の調味料を乾燥させて 粉末乾燥調味料を製造する製造装置にお!ヽて、
乾燥塔本体と、この乾燥塔本体の上部に設けられた原料調味料の噴霧手段と、こ の噴霧手段に接続された原料調味料の温度制御機能付き供給装置と、前記乾燥塔 本体の下部に接続され、乾燥粉末醤油を分離するためのサイクロンと、このサイクロ ン中を減圧状態に保持する気体排出装置とを備え、前記乾燥塔本体の外面に電熱 ヒータなどの加熱手段を設けると共に、前記塔本体の必要な箇所の温度を測定する 温度センサを設け、前記塔本体内の温度が、前記液状体の沸点温度以下の温度で 、高所内壁面の温度が低所内壁面の温度に比べ低くなるように前記加熱手段の発 熱状態を制御する制御装置を設けたことを特徴とする粉末乾燥調味料の製造装置。
[12] 前記乾燥塔本体内の温度力 前記溶媒に含まれるアルコール及び水の共沸点温 度以下の温度で、高所内壁面の温度が低所内壁面の温度に比べ低くなるように前 記加熱手段の発熱状態を制御する制御装置を設けたことを特徴とする請求項 11に 記載の粉末乾燥調味料の製造装置。
[13] 前記乾燥塔本体の内壁面には、液滴の付着を防止するシリコン加工、フッ素榭脂 加工等の撥水加工が施されていることを特徴とする請求項 11又は 12に記載の粉末 乾燥調味料の製造装置。
[14] 前記乾燥塔本体の外面には酸化アルミが主体の酸化アルミ溶射層と、この酸化ァ ルミ溶射層の上に更に酸ィ匕チタンが主体の酸ィ匕チタン溶射層とを有する二層構造セ ラミックス層を形成し、前記酸化チタン層の外面に前記加熱手段を配置したことを特 徴とする請求項 11乃至 13のいずれか一項に記載の粉末乾燥調味料の製造装置。
[15] 前記乾燥塔本体の外面に形成した二層構造セラミックス層上に電気絶縁層を介し て少なくとも前記乾燥塔本体の長手方向に区分した 3つの領域毎に加熱手段を配置 し、前記制御部は、各加熱手段をそれぞれ独立して温度制御することを特徴とする 請求項 14に記載の粉末乾燥調味料の製造装置。
PCT/JP2006/324022 2006-11-30 2006-11-30 粉末乾燥調味料とその製造方法及びその製造装置 WO2008068814A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06833825A EP2095725A1 (en) 2006-11-30 2006-11-30 Powdery dry seasoning, process for producing the same, and apparatus for producing the same
US12/515,615 US20100062140A1 (en) 2006-11-30 2006-11-30 Dry powder seasoning and manufacturing method and apparatus for the same
JP2008548109A JPWO2008068814A1 (ja) 2006-11-30 2006-11-30 粉末乾燥調味料とその製造方法及びその製造装置
PCT/JP2006/324022 WO2008068814A1 (ja) 2006-11-30 2006-11-30 粉末乾燥調味料とその製造方法及びその製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324022 WO2008068814A1 (ja) 2006-11-30 2006-11-30 粉末乾燥調味料とその製造方法及びその製造装置

Publications (1)

Publication Number Publication Date
WO2008068814A1 true WO2008068814A1 (ja) 2008-06-12

Family

ID=39491735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324022 WO2008068814A1 (ja) 2006-11-30 2006-11-30 粉末乾燥調味料とその製造方法及びその製造装置

Country Status (4)

Country Link
US (1) US20100062140A1 (ja)
EP (1) EP2095725A1 (ja)
JP (1) JPWO2008068814A1 (ja)
WO (1) WO2008068814A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069473A1 (ja) * 2012-10-30 2014-05-08 キッコーマン株式会社 粉末調味料およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX350838B (es) 2011-02-11 2017-09-18 Grain Proc Corporation * Composicion de sal.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141274A (en) * 1981-02-24 1982-09-01 Ajinomoto Co Inc Production of powdered soysauce
JPS60232074A (ja) * 1984-05-02 1985-11-18 Okawara Mfg Co Ltd 低塩粉末醤油の製造方法
JPH048275A (ja) * 1990-04-27 1992-01-13 Kikkoman Corp 乾燥剤及び乾燥食品の保存方法
JPH0670711A (ja) * 1992-08-27 1994-03-15 Sagami Chem Res Center ドコサヘキサエン酸を含む醤油
JPH07213249A (ja) 1994-01-31 1995-08-15 Kikkoman Corp 新粉末調味料
JP2000041613A (ja) * 1998-07-30 2000-02-15 Ajinomoto Co Inc 乾燥調味料の製造方法、乾燥調味料及びその利用
JP2001078728A (ja) * 1999-09-13 2001-03-27 Tsukioka:Kk 粉体付着食品
JP2002330722A (ja) * 2001-05-09 2002-11-19 Komeisha:Kk 粉末調味料の製造方法
JP2004105066A (ja) 2002-09-18 2004-04-08 Kikkoman Corp 粉末醤油

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448373C (zh) * 2002-02-18 2009-01-07 味之素株式会社 保持了风味和香味的干粉及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141274A (en) * 1981-02-24 1982-09-01 Ajinomoto Co Inc Production of powdered soysauce
JPS60232074A (ja) * 1984-05-02 1985-11-18 Okawara Mfg Co Ltd 低塩粉末醤油の製造方法
JPH048275A (ja) * 1990-04-27 1992-01-13 Kikkoman Corp 乾燥剤及び乾燥食品の保存方法
JPH0670711A (ja) * 1992-08-27 1994-03-15 Sagami Chem Res Center ドコサヘキサエン酸を含む醤油
JPH07213249A (ja) 1994-01-31 1995-08-15 Kikkoman Corp 新粉末調味料
JP2000041613A (ja) * 1998-07-30 2000-02-15 Ajinomoto Co Inc 乾燥調味料の製造方法、乾燥調味料及びその利用
JP2001078728A (ja) * 1999-09-13 2001-03-27 Tsukioka:Kk 粉体付着食品
JP2002330722A (ja) * 2001-05-09 2002-11-19 Komeisha:Kk 粉末調味料の製造方法
JP2004105066A (ja) 2002-09-18 2004-04-08 Kikkoman Corp 粉末醤油

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KABUSHIKIKAISHA SAIWAISHOBO, BASE ANDAPPLICATION OF DRIED FOOD, 1 September 1997 (1997-09-01), pages 92 - 94

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069473A1 (ja) * 2012-10-30 2014-05-08 キッコーマン株式会社 粉末調味料およびその製造方法
JPWO2014069473A1 (ja) * 2012-10-30 2016-09-08 キッコーマン株式会社 粉末調味料およびその製造方法

Also Published As

Publication number Publication date
JPWO2008068814A1 (ja) 2010-03-11
EP2095725A1 (en) 2009-09-02
US20100062140A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
Link et al. Fluidized bed spray granulation: Investigation of the coating process on a single sphere
US9303321B2 (en) Cladding composition with flux particles
CA2374220A1 (en) Spray-drying plant, and process for the use thereof
Jiang et al. Effect of hydroxyapatite coating on nickel release of the porous NiTi shape memory alloy fabricated by SHS method
WO2008068814A1 (ja) 粉末乾燥調味料とその製造方法及びその製造装置
US20210129425A1 (en) A method for post-treating and a post-treatment system
Maffini et al. Growth dynamics of pulsed laser deposited nanofoams
Rutkevičius et al. Fabrication of salt–hydrogel marbles and hollow-shell microcapsules by an aerosol gelation technique
DE102007015584A1 (de) Vorrichtung und Verfahren zum Desinfizieren von Eismaschinen, Eissilos und/oder Kanälen zum Transportieren von Eis
JP2009545157A5 (ja)
WO2019007647A1 (de) Verfahren zum abkühlen eines dreidimensionalen bauteils und abkühlvorrichtung
JP2006177640A (ja) 凍結真空乾燥装置
JP2008048618A (ja) 粉末乾燥醤油とその製造方法及びその製造装置
JP3540755B2 (ja) 魚骨微粉末の製造方法
KR102135640B1 (ko) 기능성 소금 제조방법
JPH11228274A (ja) 硫黄被覆肥料
AU700764B2 (en) New solid storage and marketing presentation for phytosanitary compositions, process and installation for its preparation
Lum Superheated steam in spray drying for particle functionality engineering
KR102175381B1 (ko) 기능성 청정소금
Khaleeq-ur-Rahman et al. Morphological and structural analysis of nano-structured gold thin film on silicon by pulsed laser deposition technique
JP2022500282A (ja) コーティングされた固形医薬投薬形態の調製のためのプロセス
US20090008842A1 (en) Method and apparatus for producing metallic ultrafine particles
US20050246938A1 (en) Powdered animal scent composition and structures and methods for making and/or using such powdered animal scent compositions
WO2013071324A2 (de) Verfahren für das herstellen von porösen körnern aus wasserglas
JP2004115430A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06833825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548109

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12515615

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006833825

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE