WO2008066161A1 - Jeu d'amorces pour l'amplification du gène nat2, réactif pour l'amplification du gène nat2 comprenant ledit jeu d'amorces et utilisation du réactif - Google Patents

Jeu d'amorces pour l'amplification du gène nat2, réactif pour l'amplification du gène nat2 comprenant ledit jeu d'amorces et utilisation du réactif Download PDF

Info

Publication number
WO2008066161A1
WO2008066161A1 PCT/JP2007/073204 JP2007073204W WO2008066161A1 WO 2008066161 A1 WO2008066161 A1 WO 2008066161A1 JP 2007073204 W JP2007073204 W JP 2007073204W WO 2008066161 A1 WO2008066161 A1 WO 2008066161A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
oligonucleotide
seq
primer
nat2
Prior art date
Application number
PCT/JP2007/073204
Other languages
English (en)
French (fr)
Inventor
Mitsuharu Hirai
Satoshi Majima
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to JP2008517251A priority Critical patent/JPWO2008066161A1/ja
Priority to EP07832869A priority patent/EP2078747A4/en
Priority to KR1020117001785A priority patent/KR101110425B1/ko
Priority to US12/297,157 priority patent/US20100297617A1/en
Publication of WO2008066161A1 publication Critical patent/WO2008066161A1/ja
Priority to US13/084,919 priority patent/US20110287421A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/113PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • NAT2 gene amplification primer set NAT2 gene amplification primer set
  • NAT2 gene amplification reagents including the same, and uses thereof
  • the present invention relates to a primer set for amplifying a NAT2 gene, a reagent for amplifying a NAT2 gene containing the primer set, and a use thereof.
  • N-acetylyltransferases are enzymes involved in metabolic pathways that metabolize arylamines of aromatic amines to heterocyclic non-toxic and stable substances by N-conjugation.
  • NAT2 a subtype of NATs, is a process for detoxification of isodiazido (INH), sulfamethaz me, other homonam and heterocyclic arylamines such as sulfonamides, procainamide, hydralazine cagffeme, dapsone and hydrazine-like drugs; amin ofluorene, 4-aminobiphenyl, benzidine ⁇ ⁇ -naphthylamine Involved in the activation of expressed physiological substances such as heterocyclic arylamines present in tannocratic pyrolysis substances and environmental substances.
  • IH isodiazido
  • sulfamethaz me other homonam and heterocyclic arylamines
  • NAT2 is known to exhibit polymorphism, and in humans, 19 types of polymorphism are known.
  • NAT2 * 5 class (NAT2 * 5A-5D) has T (thymine) at position 341 in the mRNA of NAT2 gene changed to C (cytosine)
  • NAT2 * 6 class (NAT2 * 6A, NAT2 * 6B)
  • G (guanine) at position 590 in the mRNA is A (adenine)
  • NAT2 * 7 class (NAT2 * 7A, NAT2 * 7B) is G at position 857 in mRNA
  • Guanine is a polymorphism in which A (adenine) is mutated.
  • Tm melting temperature
  • the hybrid is subjected to a heat treatment, and the dissociation (melting) of the hybrid accompanying an increase in temperature is detected by a change in signal such as absorbance. And it is a method of judging the presence or absence of point mutation by determining ⁇ ⁇ ⁇ straight based on this detection result.
  • Tm values are high for hybrids The higher the homology is, the lower it is. For this reason, a Tm value (evaluation reference value) is previously determined for a hybrid formed of a detection target sequence containing a point mutation and a complementary probe, and the target single-stranded DNA of the detection sample, the probe and Measure the Tm value (measured value).
  • the measured value is comparable to the evaluation reference value, it can be determined that a match, that is, a point mutation exists in the target DNA, and if the measured value is lower than the evaluation reference value, a mismatch, that is, a point mutation exists in the target DNA. It can be judged not to. According to this method, gene analysis can be automated.
  • the detection method using such Tm analysis also has a problem in that it is necessary to specifically and efficiently amplify a region including a target site in PCR.
  • there are many isozymes in NAT and the sequences encoding them are very similar, so that even the coding genes of isozymes other than NAT2 may be amplified in PCR.
  • when amplified to other isoenzyme-encoding genes in this way for example, analysis of a specific polymorphism (NAT2 * 5, NAT2 * 6 or NAT2 * 7) of the NAT2 gene (Non-patent Document 1 or Non-patent) In the literature 2), this also causes the reliability of the analysis results to decline. In this way, analyzing a single sample also involves a great deal of labor, so there is a problem that analyzing a large number of samples is not practical.
  • Non-Patent Document 1 PMID: 8102908 Jpn J Hum Genet. 1993 Jun; 38 (2): 1 63-8.
  • Non-Patent Document 2 PMID: 10507782 Br J Cancer. 1999 Oct; 81 (3): 537—41.
  • an object of the present invention is to provide a primer set for specifically amplifying a target region of the NAT2 gene by a gene amplification method.
  • the primer set of the present invention is a primer set for amplifying the NAT2 gene by a gene amplification method, and comprises the following primer sets (1) to (3): Including at least one selected primer set Primer set (1)
  • a pair of primer sets including a forward primer composed of the oligonucleotide (F1) below and a reverse primer composed of the oligonucleotide (R1) below
  • (F1) At least one oligonucleotide having the same sequence as the region from the 20th to the 32nd base toward the 5 'direction, with the 1038th guanine base (G) in the base sequence of SEQ ID NO: 1 as the first base
  • the oligonucleotide (R 1) having the 3′-end of the guanine base (G) as the 3 ′ end, the 1096th cytosine base (C) in the base sequence of SEQ ID NO: 1 as the first base,
  • a pair of primer sets including a forward primer consisting of the oligonucleotide (F2) below and a reverse primer consisting of the oligonucleotide (R2) below
  • (F2) It is at least one oligonucleotide having the same sequence as the region from the 20th to the 38th base toward the 5 ′ direction with the 1278th cytosine base (C) as the first base in the base sequence of SEQ ID NO: 1.
  • Oligonucleotide (R2) having the cytosine base (C) as the 3 end and the end of the nucleotide sequence of the 1355th guanine base (G) in the base sequence of SEQ ID NO: 1 in the 3 ′ direction, 25 to 40 bases
  • the 1614th cytosine base (C) in the base sequence of SEQ ID NO: 1 is the first base, 3, the direction is 2; and at least one oligonucleotide complementary to the region from! A guanine base (G) complementary to the 1614th cytosine base (C) and at least one 3 ′ oligonucleotide
  • Forward primer consisting of the following oligonucleotide (F3) and the following (R3)
  • oligonucleotide having the same sequence as the region from the 40th base to the 40th base, the oligonucleotide having the thymine base (T) as the 3' end, and
  • R3 At least one oligonucleotide complementary to the region from the 16th base in the base sequence of SEQ ID NO: 1 to the 3 'direction starting from the 1614th cytosine base (C) in the 3' direction;
  • the gene amplification reagent of the present invention is a reagent for amplifying the NAT2 gene by a gene amplification method, and is characterized by including the above-mentioned NAT2 gene amplification primer set of the present invention.
  • the method for producing an amplification product of the present invention is a method for producing an amplification product of the NAT2 gene by a gene amplification method, comprising the following step (I).
  • the polymorphism analysis method of the present invention is a method for analyzing polymorphisms of three detection target sites in NAT2, and includes the following steps (i) to (iv).
  • a target region including a site where a polymorphism (NA T2 * 5, NAT2 * 6 or NAT2 * 7) for detection in the NAT2 gene occurs is specifically detected in the reaction solution. And it can amplify with high efficiency. For this reason, unlike the conventional methods described above, it is possible to reduce labor and cost.
  • the region including the detection target site where a specific polymorphism of the NAT2 gene occurs is specifically amplified in this way, for example, by using a probe complementary to the detection target sequence, Then, Tm analysis can be performed as it is using the reaction solution, and the polymorphism can be typed.
  • amplification and typing can be performed with a single reaction solution, the operation can be automated. Furthermore, if the primer set of the present invention is used, for example, even a sample containing contaminants (eg, whole blood, oral mucosa, etc.) can be pretreated, so that amplification can be performed more quickly and easily. The reaction can be performed. Further, if the primer set of the present invention is used, an amplification reaction can be performed with an amplification efficiency superior to that of the prior art, so that the amplification reaction can be shortened.
  • contaminants eg, whole blood, oral mucosa, etc.
  • the reagent containing the primer set, and the amplification product production method and polymorphism analysis method using these, the polymorphism of the NAT2 gene can be quickly and easily analyzed. It is very effective in the field.
  • FIG. 1 is a graph showing the results of Tm analysis in Example 1 of the present invention.
  • FIG. 2 is a graph showing the results of Tm analysis in Example 2 of the present invention.
  • the primer set for amplification of NAT2 gene of the present invention includes at least one primer set selected from the group consisting of the primer sets (1) to (3).
  • at least one primer set for example, it is possible to specifically amplify a specific target region in the NAT2 gene.
  • the primer set for NAT2 gene amplification of the present invention may include, for example, any one of the primer sets (1) to (3), only one type, or any two types or You may include all of Imama sets (1) to (3)! /.
  • the target region that can be specifically amplified by the primer set (1) is a region including a site where polymorphic NAT2 * 5 occurs in the NAT2 gene.
  • the target region that can be amplified is the region that contains the site where polymorphic NAT2 * 6 occurs in the NAT2 gene.
  • the target region that can be specifically amplified by the primer set (3) is the polymorphic NAT2 gene in the NAT2 gene. * This is the region that includes the part where 7 occurs.
  • these three polymorphisms of the NAT2 gene are all known as polymorphisms that affect drug metabolism. It is important to examine all three polymorphisms.
  • a single reaction system cannot analyze multiple sequences! /, And! /.
  • PCR encodes even the coding genes of isozymes other than NAT2. Therefore, to examine two or all three of the three polymorphisms (NAT2 * 5, NAT2 * 6 and NAT2 * 7) of the NAT2 gene, select the region containing the site where each polymorphism occurs.
  • the NAT2 gene amplification primer set of the present invention contains, for example, any one of primer sets (1) to (3) Of course, it is also preferable to include two or three kinds of force. Using such a NAT2 gene primer set, not only one target region but also two or three target regions can be amplified simultaneously, so that polymorphism analysis of the NAT2 gene can be performed more efficiently than before. it can.
  • the forward primer may be referred to as an F primer and the reverse primer as an R primer.
  • the primer set (1) is a pair of primer sets including a forward primer composed of the following oligonucleotide (F1) and a reverse primer composed of the following (R1) oligonucleotide.
  • a pair of primer sets including a forward primer composed of the oligonucleotide (F1) below and a reverse primer composed of the oligonucleotide (R1) below
  • (F1) At least one oligonucleotide having the same sequence as the region from the 20th to the 32nd base, with the 1038th guanine base (G) in the base sequence of SEQ ID NO.
  • Oligonucleotide (R 1) having the 3 ′ end of the guanine base (G) as a nucleotide, and the 1096th cytosine base (C) in the base sequence of SEQ ID NO: 1 as the first base
  • the nucleotide sequence shown in SEQ ID NO: 1 is a human-derived allylamine N-acetyltransferase NAT alcoholeno 1-2 gene (Human h NAT allele 1-2 gene for arylamine).
  • N-acetyltransferase DNA sequence for example, NCBI accession: No. D1087.
  • the primer set (1) is a primer set for amplifying a DNA strand containing the 1039th to 1095th regions in SEQ ID NO: 1 and its complementary strand.
  • the 1063rd base in this region (the 1063rd base in SEQ ID NO: 1) is known to have a point mutation (1063T, 1063C) that affects the function of NAT2, and this polymorphism is The above mentioned NAT2 * 5.
  • the polymorphism at this site can be represented by 1063T / T, 1063C / C in the case of a homozygote, and 1063T / C in the case of a heterozygote.
  • the polymorphism of NAT2 * 5 for example, as 341T / T, 341 C / C, 341T / C It can also be expressed.
  • this primer set (1) is also referred to as “NAT 2 * 5 primer set”.
  • NAT 2 * 5 primer set When analyzing only the NAT2 * 5 polymorphism, only the NAT2 * 5 primer set may be used.
  • the base at the 3 ′ end that plays a role in determining the starting point of amplification by DNA polymerase only needs to satisfy the above-mentioned conditions.
  • the primer set (1) binds to other similar isozyme genes (eg, NAT1, NAT6, NAT8, NAT9, etc.). Can be sufficiently prevented.
  • the length of each primer is not particularly limited, and is suitable for a general length. You can power to adjust.
  • An example of the primer length is, for example, in the range of 13 to 50 mer, preferably 14 to 45 mer, and more preferably 15 to 40 mer.
  • the F1 primer is directed toward the 5 ′ direction with the 1038-th guanine base (G) in the base sequence of SEQ ID NO: 1 as the first base, ie, 20-32 bases (preferably, 24-30
  • the base sequence, more preferably at least one oligonucleotide having the same sequence as the region from base 25 to base 29) is preferred.
  • the R1 primer has a force in the 3 ′ direction with the 1096th cytosine base (C) in the base sequence of SEQ ID NO: 1 as the first base, ie, the 17th to 24th bases (preferably the 19th to 23rd bases, More preferably, it is at least one oligonucleotide complementary to the region from the 20th to the 22nd base). Since the 3 ′ ends of the F1 primer and the R1 primer are fixed, the region extending from the primer is, for example, the force S, which is the region from the 1039th to the 1095th region in SEQ ID NO: 1, as described above. The total length of the amplified product varies depending on the length of the primer used.
  • C cytosine base
  • the R1 primer is compared to the nucleotide sequence shown in SEQ ID NO: 1, and the F1 primer is
  • Each of the oligonucleotides may not be completely complementary to the complementary strand of the nucleotide sequence. That is, in a part other than the base at the 3 ′ end in each primer, the completely complementary oligonucleotide and 1 to 5 bases may be different.
  • F1 primer and R1 primer are not limited to this.
  • the combination of these F1 primer and R1 primer is not limited at all, but among these, the F1 ′ primer consisting of the oligonucleotide of SEQ ID NO: 5 or SEQ ID NO: 7 and the oligonucleotide of SEQ ID NO: 16 or SEQ ID NO: 18 Particularly preferred is a primer set (1 ') comprising R1' primer.
  • T m (° C) is the Tm (° C.) when the sequence shown in the table below and a completely complementary sequence are hybridized.
  • MELTCALC software http: //www.meltcalc com /
  • the parameters were calculated with an oligonucleotide concentration of 0 ⁇ 2 ⁇ and a sodium equivalent (Na eq.) of 50 mM (hereinafter the same).
  • the Tm value can be calculated by, for example, a conventionally known MELTCAL C software (http://www.meltcalc.com/) or the like, and can also be determined by a neighbor method (hereinafter the same). .
  • the primer set (2) is an oligonucleotide of the following (F2) Make a follower and a repurposer with the reverberation sprout made up of the following ((RR22)) It is a pair of polypropylene components including a set. .
  • the 11227788thplateotocinin salt base group ((CC)) in the salt base group sequence of sequence number 11 is referred to as the 11th salt base. If it is facing the direction of 55 '' direction, it is the same arrangement sequence as the territory area in 2200 ⁇ 3388 It is a single orioligogonucleotide, with 33rigotocincin base groups ((CC)) as the terminal end.
  • the primer set (2) is a primer set for amplifying a DNA strand containing the region 1279 to 1354 or the region 1279 to 1613 in SEQ ID NO: 1 and its complementary strand. It is known that the 1312th base in this region (the 1312th base in SEQ ID NO: 1) has a point mutation (1312G, 1312A) that affects the function of NAT2. , NAT2 * 6 mentioned above.
  • the polymorphism at this site can be represented by 1312G / G and 1312A / A in the case of a homozygote and 1312G / A in the case of a heterozygote.
  • this primer set (2) is also referred to as “NAT2 * 6 primer set”.
  • NAT2 * 6 primer set When analyzing only the NAT2 * 6 polymorphism, use only the primer set for NAT2 * 6. Use it.
  • the F2 primer and the R2 primer of the primer set (2) have a 3'-end that plays a role in determining the starting point of amplification by DNA polymerase for the same reason as the primer set (1).
  • the base only needs to satisfy the above-described conditions. Therefore, the lengths of the F2 primer and the R2 primer are not particularly limited, and the same lengths as described above can be exemplified.
  • the F2 primer has 20 to 38 bases (preferably 2;! To 2) in the 5 ′ direction with the 1278th cytosine base (C) in the base sequence of SEQ ID NO: 1 as the first base.
  • the R2 primer is the 25th to 40th bases (preferably the 27th to 35th bases) in the 3 ′ direction, with the 1355th guanine base (G) in the base sequence of SEQ ID NO: 1 as the first base. More preferably, at least one oligonucleotide complementary to the region from the 28th to the 34th base), or the 1614th cytosine base (C) in the base sequence of SEQ ID NO: 1 as the first base in the 3, direction.
  • the oligonucleotide is at least one oligonucleotide complementary to the region from base 2 to base 36 (preferably base 23 to 36, more preferably base 24 to 36). Since the 3 ′ ends of the F2 primer and R2 primer are fixed, the region extending from the primer is usually the 1279th to 135th 4th region or 1279th to 1613 of SEQ ID NO: 1, as described above. The second region, force S, and the overall length of the resulting amplification product will vary depending on the length of the primer used.
  • the R2 primer may not be an oligonucleotide that is completely complementary to the base sequence shown in SEQ ID NO: 1 and the F2 primer is not completely complementary to the complementary strand of the base sequence. That is, in a part excluding the base at the 3 ′ end in each primer, the completely complementary oligonucleotide and 1 to 5 bases may be different.
  • F2 primer and R2 primer are not limited to this. Further, the combination of these F2 primer and R2 primer is not limited at all, but among these, the oligonucleotide force of SEQ ID NO: 33 or SEQ ID NO: 109, the F2 ′ primer and the oligonucleotide of SEQ ID NO: 39 or SEQ ID NO: 48 Especially preferred is a primer set (2 ') comprising R2' primer consisting of! [0032] [Table 2]
  • the primer set (3) is a pair of primer sets including the following (F3) oligonucleotide force, the following forward primer and the following (R3) oligonucleotide reverse primer. It is.
  • a pair of primer sets including a forward primer composed of the oligonucleotide (F3) below and a reverse primer composed of the oligonucleotide (R3) below
  • (F3) At least one oligo having the same sequence as the region from the first to the 40th base in the 5 ′ direction with the 1556th thymine base (T) as the first base in the base sequence of SEQ ID NO: 1; An oligonucleotide having the 3 'end of the thymine base (T), and
  • R3 At least one oligonucleotide complementary to the region from the 16th base in the base sequence of SEQ ID NO: 1 to the 3 'direction starting from the 1614th cytosine base (C) in the 3'direction;
  • the primer set (3) is a primer set for amplifying a DNA strand containing the 1557th to 1613th region or the 1279th to 1613th region in SEQ ID NO: 1 and its complementary strand. .
  • the 1579th base in this region (the 1579th base in SEQ ID NO: 1) is known to have a point mutation (1579G, 1579 A) that affects the function of ⁇ 2, and this polymorphism is , NAT2 * 7 mentioned above.
  • the polymorphism at this site can be represented by 1579G / G and 1579A / A in the case of a homozygote and 1579G / A in the case of a heterozygote.
  • the 1579th base in SEQ ID NO: 1 corresponds to the 857th base in the mRNA of the NAT2 gene, it is expressed as a NAT2 * 7 polymorphism, for example, 857G / G, 857A / A, 857G / A. You can also.
  • this primer set (3) is also referred to as “NAT2 * 7 primer set”.
  • NAT2 * 7 primer set When analyzing only the NAT2 * 7 polymorphism, only the NAT2 * 7 primer set should be used.
  • the F3 primer and the R3 primer of the primer set (3) have the 3 ′ end that plays the role of determining the starting point of amplification by DNA polymerase for the same reason as the primer set (1).
  • the base only needs to satisfy the above-described conditions.
  • the lengths of the F3 primer and the R3 primer are not particularly limited, and can be exemplified by the same lengths as described above.
  • the F3 primer is a 2 ′ toward the 5 ′ direction from the 1556th thymine base (T) in the base sequence of SEQ ID NO: 1;
  • at least one oligonucleotide having the same sequence as the region from the 23rd to the 40th base, more preferably the 24th to 40th base), or the 1278th cytosine base (C) in the base sequence of SEQ ID NO: 1.
  • the R3 primer has a force in the 3 ′ direction with the 1614th cytosine base (C) in the base sequence of SEQ ID NO: 1 as the first base, 2;! -36th base (preferably (or 23-35).
  • the oligonucleotide is complementary to at least one of the bases, more preferably (from bases 24 to 28), since the 3 ′ ends of the F3 primer and R3 primer are fixed.
  • the region extending from the primer is usually the force S that is the 1557th to 1613rd region or the 1279th to 1613th region in IJ No. 1 as described above, and the entire amplification product obtained. The length varies depending on the length of the primer used.
  • the R3 primer may not be an oligonucleotide that is completely complementary to the nucleotide sequence shown in SEQ ID NO: 1 and the F3 primer is not completely complementary to the complementary strand of the nucleotide sequence. That is, in a part other than the base at the 3 ′ end in each primer, the completely complementary oligonucleotide and 1 to 5 bases may be different.
  • F3 primer and R3 primer are not limited to this.
  • the combination of these F3 primer and R3 primer is not limited at all, but among these, the oligonucleotide force of SEQ ID NO: 60 or SEQ ID NO: 113, the F2 ′ primer and oligonucleotide of SEQ ID NO: 71 or SEQ ID NO: 81 Especially preferred is a primer set (3,) comprising R3 'primer!
  • each primer described above may be, for example, one having a conventionally known arbitrary sequence added to the 5 'end in order to increase the reaction temperature of the amplification reaction.
  • primer set (2) or the primer set (3) is used to amplify a DNA strand containing the 1279th to 1613rd strands and its complementary strand, the same as shown below for the primer sets of the deviation and misalignment. Forward and reverse primers can be used.
  • the 1614th cytosine base (C) in the base sequence of SEQ ID NO: 1 is the first base and is 2 in the 3 ′ direction; at least one orientation complementary to the region from! To the 36th base Oligonucleotide having a guanine base (G) complementary to the 1614th cytosine base (C) as a terminal
  • the primer set of the present invention includes, for example, a primer set (2) and (3) in addition to the primer set (1). May be included.
  • the forward primer includes one type of forward primer that also serves as the forward primer of the primer set (2) and primer set (3).
  • the reverse primer includes the primer set (2) and primer set ( You may include each reverse primer of 3)! /.
  • the ⁇ 2 gene amplification primer set of the present invention comprising at least one of such primer sets (1) to (3) is used, for example, for amplifying ⁇ 2 gene in a biological sample such as a whole blood sample. It is preferable to do.
  • the addition ratio of the whole blood sample in the gene amplification reaction solution is set to 0.; It is preferable to set it to -0.5 volume%. This point will be described later.
  • the ⁇ 2 gene amplification reagent of the present invention is a reagent for amplifying the ⁇ 2 gene by the gene amplification method as described above, and includes the ⁇ ⁇ 2 gene amplification primer set of the present invention.
  • the reagent for gene 2 gene amplification of the present invention is characterized by including the set of primers of the present invention, and the composition other than this is not limited at all.
  • the ⁇ 2 gene amplification reagent of the present invention is, for example, a probe capable of hybridizing to the detection target site of ⁇ 2 gene in order to detect an amplification product obtained by the gene amplification method using the primer set of the present invention. May be included.
  • the primer set of the present invention for example, the primer sets (1) to (3) included therein
  • one to three target regions in the NAT2 gene can be specifically amplified by gene amplification. For this reason, by coexisting a probe complementary to the detection target sequence in each target region, for example, the presence or absence of amplification and the gene type (polymorphism) of the detection target site can be detected by the method described later. Is possible.
  • the NAT2 gene amplification reagent of the present invention is preferably used when the NAT2 gene is amplified in a biological sample such as whole blood.
  • a biological sample such as whole blood.
  • the addition ratio of the whole blood sample in the reaction solution for gene amplification should be 0.;! To 0.5% by volume. preferable.
  • the “detection target sequence” means a sequence including a site where a polymorphism occurs (detection target site).
  • the form of the NAT2 gene amplification reagent of the present invention is not particularly limited.
  • a liquid reagent containing the NAT2 gene amplification primer set of the present invention may be used, and suspended in a solvent before use. It may be a dry reagent.
  • the content of the NAT2 gene amplification primer set is not particularly limited.
  • the method for producing an amplification product of the present invention is a method for producing an amplification product of a NAT2 gene by a gene amplification method, and includes the following step (I).
  • the target region of the NAT2 gene can be amplified as described above by performing the amplification reaction using the NAT2 gene amplification primer set of the present invention.
  • the NAT2 gene amplification primer set of the present invention includes two types of the primer sets (1) to (3), two purposes including two detection target sites in the NAT2 gene, respectively. Regions can be amplified simultaneously in the same reaction.
  • the primer set for amplifying the NAT2 gene of the present invention includes all of the primer sets (1) to (3), three target regions each including three detection target sites in the NAT2 gene are subjected to the same reaction. It can be amplified simultaneously in liquid.
  • the target region to be amplified is a region including each detection target site where each polymorphism (NAT2 * 5, NAT2 * 6 and NAT2 * 7) occurs.
  • the method for producing an amplification product of the present invention is characterized by using the primer set of the present invention, and the type and conditions of the gene amplification method are not limited at all.
  • the gene amplification method is not particularly limited as described above.
  • PCR Polym erase Chain Reaction
  • NASBA Nucleic acid sequence based amplification
  • TMA Transcription-mediated amplification
  • a force PCR method such as the SDA (Str and Displacement Amplification) method
  • SDA String and Displacement Amplification
  • the sample to which the present invention is applied is not particularly limited as long as it contains, for example, a basket-like nucleic acid.
  • a material containing impurities include, for example, whole blood, oral cells (eg, oral mucosa), somatic cells such as nails and hair, germ cells, sputum, amniotic fluid, paraffin-embedded tissue, urine, gastric fluid (eg, Gastric lavage fluid) and suspensions thereof.
  • gastric fluid eg, Gastric lavage fluid
  • This region of the difficult NAT2 gene can be specifically amplified. For this reason, according to the present invention, even a sample with a large amount of contaminants, which was difficult in the conventional method, can be used as it is without performing a pretreatment such as purification. Therefore, it can be said that the amplification product can be prepared more rapidly than the conventional method from the viewpoint of sample pretreatment.
  • the addition ratio of the sample in the reaction solution is not particularly limited! /.
  • the lower limit of the addition ratio in the reaction solution is preferably 1S, for example, 0.01% by volume or more, more preferably 0.05 volume. % Or more, more preferably 0.1% by volume or more.
  • the upper limit of the addition ratio is not particularly limited, but is preferably 2% by volume or less, more preferably 1% by volume or less, and still more preferably 0.5% by volume or less.
  • the addition ratio of a biological sample such as a whole blood sample in the reaction solution Is preferably set to, for example, 0.;! To 0.5% by volume.
  • heat treatment is usually applied for DNA denaturation (dissociation into single-stranded DNA). This heat treatment denatures sugars and proteins contained in the sample, resulting in insoluble precipitates and Turbidity may occur. For this reason, when the presence or absence of amplification products and the genotype (polymorphism) of the site to be detected are confirmed by optical techniques, the occurrence of such precipitates and turbidity may affect the measurement accuracy.
  • the addition ratio of the whole blood sample in the reaction solution is set within the above-mentioned range, the mechanism is unknown, but for example, it is possible to sufficiently prevent the influence of the generation of precipitates due to denaturation. As a result, the measurement accuracy by optical methods can be improved. In addition, since PCR inhibition by contaminants in the whole blood sample is sufficiently suppressed, amplification efficiency can be further improved. Therefore, in addition to the use of the primer set of the present invention, the necessity for pretreatment of the sample can be further eliminated by setting the addition ratio of the sample such as the whole blood sample within the aforementioned range.
  • the ratio of the whole blood sample in the reaction solution, the volume fraction as described above (e.g., 0;.! ⁇ 0.5 volume 0/0), the nag hemoglobin (hereinafter, referred to as "Hb") can also be expressed as a weight ratio.
  • the ratio of the whole blood sample in the reaction solution is preferably in the range of, for example, 0.565 to 113 g / L, more preferably (converted to 2.825-55.5 g / L) in terms of Hb amount. More preferably, it is in the range of 5.65-28.25 g / L
  • the addition rate of the whole blood sample in the reaction may satisfy both the volume ratio and the Hb weight ratio, for example. However, either one may be satisfied.
  • the whole blood is, for example, hemolyzed whole blood, unhemolyzed whole blood, anticoagulated whole blood, whole blood containing a coagulated fraction, or the like!
  • the target nucleic acid contained in the sample is, for example, DNA.
  • the DNA may be, for example, DNA originally contained in a sample such as a biological sample, or may be amplification product DNA amplified by a gene amplification method. In the latter case, cDNA generated by reverse transcription reaction (for example, RT-PCR (Reverse Transcription PCR)) from RNA (total RNA, mRNA, etc.) originally contained in the sample can be mentioned.
  • RT-PCR Reverse Transcription PCR
  • albumin it is preferable to add albumin to the reaction solution prior to the start of the gene amplification reaction. By adding such albumin therefore, for example, the influence of the generation of precipitates and turbidity as described above can be further reduced, and the amplification efficiency can be further improved. Specifically, it is preferable to add albumin before the amplification reaction in the step (I) or the dissociation step into single-stranded DNA.
  • the addition ratio of albumin in the reaction solution is, for example, in the range of 0.0;! To 2% by weight, preferably 0 .;! To 1% by weight, and more preferably 0.2 to 0%. 8% by weight.
  • the albumin is not particularly limited, and examples thereof include ushi serum albumin (BSA), human serum albumin, rat serum albumin, horse serum albumin and the like. Any one of these may be used! You can use two or more types together.
  • a primer set for NAT2 gene amplification of the present invention comprising DNA as a target nucleic acid and the primer sets (1) to (3).
  • An example of producing amplification products of three target regions of the NAT2 gene by PCR using The present invention is characterized by using the primer set of the present invention, and other configurations and conditions are not limited at all.
  • the addition ratio of the primer set of the present invention is not particularly limited, but it is preferable to add the F primer of the primer set (;!) To (3) so as to be 0 ⁇ 1 to 2 11101 / L ⁇ preferably More preferably, it is 0.25-1.5.5 mol / L, and particularly preferably 0.5-1111101 /.
  • R primers of primer sets (1) it is more preferable to add R primers of primer sets (1) to (3) so that each of them is 0 ⁇ 1 to 2 11101 / (0.25—1.5 ⁇ 11101). It is particularly preferable (or 0.5-1 mol / L.
  • the addition ratio of F primer to R primer (F: R, molar ratio) in each primer set is not particularly limited, For example, 1: 0.25 to; 1: 4 force S is preferable, more preferably 1: 0.5 to 1: 2.
  • the ratio of the whole blood sample in the reaction solution is not particularly limited, but the above-mentioned range is preferable.
  • the whole blood sample may be added to the reaction solution as it is, or it may be diluted with a solvent such as water or buffer in advance and then added to the reaction solution.
  • the dilution rate is not particularly limited.
  • the power can be set so that the final whole blood addition ratio in the reaction solution falls within the above range. It is 2000 times, preferably (it is 200 to 000 times).
  • composition components in the reaction liquid are not particularly limited, and examples include conventionally known components.
  • the ratio is not particularly limited.
  • examples of the composition component include DNA polymerase, nucleotide (nucleoside triphosphate (dNTP)), and solvent.
  • the reaction solution preferably further contains albumin. Note that the order of addition of each composition component is not limited at all to the reaction solution! /.
  • the DNA polymerase is not particularly limited, and for example, a conventionally known polymerase derived from a thermostable bacterium can be used. Specific examples include DNA polymerase from Thermus aauaticus (US Pat. Nos.
  • thermostable DNA polymerase from Thermus aauaticus Is preferred! / ⁇
  • the addition rate of the DNA polymerase in the reaction solution is not particularly limited, but is, for example, 1 to 100 U / mL, preferably 5 to 50 U / mL, more preferably 20 to 30 U / mL. It is.
  • the DNA polymerase activity unit (U) is generally an acid-insoluble precipitate of activated salmon sperm DNA as a saddle primer and lOnmol of all nucleotides in a reaction solution for activity measurement at 74 ° C for 30 minutes.
  • S1U which is the active power to be taken into
  • 25 mM TAPS buffer pH 9.3, 25.C
  • 50 mM KC1 2 mM MgCl
  • ImM menorecaptoethanolate 200 ⁇ M dATP, 200 ⁇ M dGTP.
  • nucleoside triphosphate examples include dNTP (dATP, dCTP, dTTP).
  • the addition rate of dNTP in the reaction solution is not particularly limited, but is, for example, 0.01 to 1 mmol / L, preferably 0.05 to 0.5 mmol / L, and more preferably 0 to! Measure with ⁇ 0.3mmolZL.
  • the solvent examples include buffers such as Tris-HCl, Tricine, MES, MOPS, HEPES, and CAPS. Commercially available buffers for PCR, buffers for commercially available PCR kits, and the like can be used. .
  • the PCR reaction solution further contains heparin, betaine, KC1, MgCl, MgSO, glycerin.
  • the ratio of addition of cerol and the like may be set within a range not inhibiting the PCR reaction, for example.
  • the total volume of the reaction solution is not particularly limited, and is, for example, a force that can be appropriately determined according to the equipment used (thermal cycler) and the like. Usually, it is 1 to 500, preferably 10 to 100. is there.
  • PCR cycle conditions are not particularly limited.
  • (1) dissociation of double-stranded DNA from whole blood into single-stranded DNA, (2) primer annealing, and (3) primer extension (polymerase reaction) are as follows.
  • the number of cycles is not particularly limited, but the following three steps (1) to (3) are considered as one cycle, and for example, 30 cycles or more are preferable.
  • the upper limit is not particularly limited.
  • the total is 100 cycles or less, preferably 70 cycles or less, and more preferably 50 cycles or less.
  • the temperature change at each step may be automatically controlled using, for example, a thermal cycler.
  • the primer set of the present invention is used, the amplification efficiency is excellent as described above. Therefore, according to the conventional method, about 3 hours were required for 50 cycles, whereas according to the present invention, about 1 It is possible to complete 50 cycles in about an hour (preferably within 1 hour).
  • an amplification product complementary to the three regions of the NAT2 gene is produced. I can do it.
  • a primer set (1) to (3) corresponding to the target region for example, a primer set (1) to (3) corresponding to the target region, A primer set for amplifying NAT2 gene of the present invention, which includes two kinds of primer sets, one of the displacement force, one or! /, And the displacement, may be used.
  • the method for producing an amplification product of the present invention may further include a step of detecting the amplification product in the region obtained by the amplification reaction described above. Thereby, the presence or absence of an amplification product and the genotype (polymorphism NAT2 * 5, NAT2 * 6 or NAT2 * 7) in the target region of the NAT2 gene can also be detected. The presence or absence of the amplification product can be confirmed by a conventionally known method.
  • a probe capable of hybridizing to the detection target site of the NAT2 gene for example, a fluorescent labeling probe
  • the reaction solution can be confirmed by measuring the fluorescence intensity of the fluorescent label in the probe.
  • a probe for example, a fluorescent label
  • Two or three kinds of fluorinated probes are added, and in step (ii), the reaction solution can be confirmed by measuring the fluorescence intensity of each fluorescent label in each probe.
  • the detection of polymorphisms NAT2 * 5, NAT2 * 6 and NAT2 * 7 in the NAT2 gene will be described below as one embodiment of the present invention.
  • the NAT2 gene polymorphism analysis method of the present invention is a method for analyzing a polymorphism of a site to be detected in a NAT2 gene, and includes the following steps (i) to (iv).
  • the probe in the step (i) is not particularly limited.
  • a probe that hybridizes to the site where polymorphic NAT2 * 5 is generated hereinafter also referred to as “NAT2 * 5 probe”
  • polymorphic NAT2 * Probes that hybridize to the occurrence site of 6 hereinafter also referred to as “NAT2 * 6 probe”
  • probes that hybridize to the occurrence site of polymorphic NAT2 * 7 hereinafter also referred to as “probe for NAT2 * 7”
  • These probes are preferably probes complementary to the detection target sequence including the detection target sequence.
  • probes may be any force, one type, or any force, two types or all three types.
  • the target region amplified by the NAT2 gene amplification primer set of the present invention may be used. Can be determined according to the type.
  • the same reaction solution can be used to analyze the polymorphisms of the two detection target sites or all three detection target sites.
  • the probe for detecting the polymorphism is not particularly limited, and can be set by a conventionally known method.
  • the detection target sequence including the polymorphic detection target site may be designed based on the sense strand sequence of the NAT2 gene, or may be designed based on the antisense strand sequence.
  • the base of the polymorphism detection target site can be appropriately determined according to the type of each polymorphism.
  • any of the detection target sites of the NAT2 gene can be detected by the method described later. It is possible to determine whether such polymorphism is exhibited.
  • Each probe can be added to the amplification reaction solution after the step (i), that is, after performing the amplification reaction on the target region of the NAT2 gene, and can be easily and quickly analyzed. Therefore, it is preferable to add to the reaction solution in advance prior to the amplification reaction in the step (i).
  • the addition ratio of the probe in the reaction solution is not particularly limited! /, For example, it is preferable to add each probe in a range of 10 to 400 nmol, more preferably 20 to 200 nmol. It is.
  • this unlabeled probe may be used together with an unlabeled probe having the same sequence as the labeled probe.
  • phosphoric acid may be added to the 3 ′ end.
  • the molar ratio of the labeled probe to the unlabeled probe is preferably, for example, 1: 10-10: 1.
  • the length of the probe is not particularly limited, and is, for example, 5 to 50 mer, preferably 10 to 30 mer.
  • the Tm value will be described. As the solution containing double-stranded DNA is heated, the absorbance at 260 nm increases. This is because hydrogen bonds between both strands in double-stranded DNA are unwound by heating and dissociated into single-stranded DNA (DNA melting). When all double-stranded DNA is dissociated into single-stranded DNA, the absorbance is about 1.5 times the absorbance at the start of heating (absorbance of double-stranded DNA alone). Therefore, it can be judged that melting has been completed. Based on this phenomenon, the melting temperature Tm is generally defined as the temperature at which the absorbance reaches 50% of the total increase in absorbance.
  • the measurement of the signal indicating the dissolved state of the hybrid formed product of the amplification product and the probe may be the above-described absorbance measurement at 260 nm. It may be a signal measurement.
  • a labeled probe labeled with a labeling substance as the probe and measure the signal of the labeled substance.
  • the labeled probe for example, there is a labeled probe which shows a signal alone and does not show a signal by hybrid formation !, a labeled probe, or a labeled probe which does not show a signal alone and shows a signal by hybridization. can give.
  • polymorphisms can be confirmed for the amplification products of two or three target regions amplified in the same reaction solution.
  • two or three types of probes they are preferably labeled with different labels that are detected under different conditions.
  • the labeling substance in the labeled probe include a fluorescent dye (fluorophore).
  • a probe that is labeled with a fluorescent dye exhibits fluorescence alone, and fluorescence decreases (for example, quenches) by hybridization is preferable.
  • a probe that uses such a quenching phenomenon is generally called a fluorescence quenching probe.
  • the probe it is preferable that the 3 ′ end or 5 ′ end of the oligonucleotide is preferably labeled with a fluorescent dye, and the base at the end to be labeled is preferably C.
  • the labeled probe it is preferable to design the base sequence of the labeled probe so that a base paired with the terminal base C of the probe or the base paired with the base;
  • a probe is generally called a guanine quenching probe and is known as a so-called QProbe (registered trademark).
  • QProbe registered trademark
  • the terminal C labeled with the fluorescent dye approaches G in the DNA to be detected, whereby the emission of the fluorescent dye becomes weak (fluorescence intensity decreases). Phenomenon).
  • the fluorescent dye is not particularly limited, and examples thereof include fluorescein, phosphor, rhodamine, polymethine dye derivatives, and the like, and commercially available fluorescent dyes include, for example, BODIPY FL (trademark, Molecular 'Probe Co., Ltd.). ), FluorePrime (trade name, manufactured by Amersham Almacia), Fluoredite (trade name, manufactured by Millipore), FAM (manufactured by ABI), Cy 3 and Cy5 (manufactured by Amersham Almacia), TAMRA (manufactured by Molecular Probes) ) Etc.
  • the combination of fluorescent dyes used for the three types of probes is not particularly limited as long as it can be detected under different conditions.
  • Pacific Blue detection wavelength 450 to 480 nm
  • TAMRA detection wavelength 585 to 700 nm
  • BODIPY FL detection wavelength of 515 to 555 nm
  • probe sequences for detecting polymorphic NAT2 * 5, NAT2 * 6, and NAT2 * 7 are shown below, but the present invention is not limited thereto.
  • the following probe (1) is an example of a probe for NAT2 * 5, and is a probe for detecting a sense strand.
  • the probe (2) below is an example of a probe for NAT2 * 6, and is a probe for detecting an antisense strand.
  • the following probe (3) is an example of a probe for NAT2 * 7, and is a probe for detecting an antisense strand.
  • (1-1) at least one oligonucleotide complementary to the region from the 13th base toward the 19th base in the 3 'direction starting from the 1056th guanine base (G) in SEQ ID NO: 1 as the first base,
  • the at least one oligonucleotide having the same sequence as the region from the 16th to the 21st base in the 5 'direction starting from the 1583rd cytosine base (C) in SEQ ID NO: 1 3. Oligonucleotide at the end
  • the base complementary to the 1063rd base of SEQ ID NO: 1 is represented by r, and y is A or G.
  • SEQ ID NO: 1 The base corresponding to the 12th position of r is represented by r, r is G or A, and in the probe (3), the base corresponding to the 1579th position of SEQ ID NO: 1 is represented by r, and the r is , G or A.
  • Tm (° C) is the Tm (° C) when the sequence shown in the table below and a completely complementary sequence are hybridized.
  • MELTCALC software http: //www.meltcalc. com /
  • the parameters were calculated with the oligonucleotide concentration of 0.2 ⁇ ⁇ and the sodium equivalent (Na eq.) 50 mM.
  • Probe (1) in the above table consists of a sequence complementary to the region where the 1063rd position in SEQ ID NO: 1 is C, and the upper case base is the 1063rd base position of SEQ ID NO: 1. Indicates a complementary base.
  • the capital letter base can be replaced with r, and r can be either G or A.
  • Probe (2) in the above table consists of the same sequence as the region where the 1312th in SEQ ID NO: 1 is A, and indicates the 1312th base in capital letter SEQ ID NO: 1.
  • the capital letter base can be replaced with r, and r can be either G or A.
  • Probe (3) in the table has the same sequence as the region where the 1579th position in SEQ ID NO: 1 is A, and the upper case base indicates the 1579th base of SEQ ID NO: 1.
  • the capital base can be replaced with r, r may be either G or A.
  • the complementary strand of the oligonucleotide shown in the above table may be used.
  • the probe is an example, and the present invention is not limited to this.
  • the probe for NAT2 * 5 among the probes (1) for example, at least selected from the group consisting of oligonucleotides consisting of the nucleotide sequences of SEQ ID NO: 90, SEQ ID NO: 91, SEQ ID NO: 118, and SEQ ID NO: 122
  • One oligonucleotide is preferred.
  • V a wild-type detection probe and a mutant detection probe in combination.
  • the wild-type detection probe is, for example, a probe for detecting the detection target sequence (sense strand) or its complementary strand (antisense strand) which is the 1063rd basic force of SEQ ID NO: 1.
  • the mutant detection probe is a probe for detecting a detection target sequence (sense strand) or its complementary strand (antisense strand) in which the 1063rd base of SEQ ID NO: 1 is C.
  • At least one oligonucleotide (probe for detection of mutation type) consisting of base sequences of SEQ ID NOs: 87 to 92 and 116 and at least one oligonucleotide consisting of base sequences of SEQ ID NOs: 117 to 123 It is more preferable to use in combination with a wild type detection probe), and more preferably, an oligonucleotide consisting of the nucleotide sequence of SEQ ID NO: 90 or SEQ ID NO: 91 (mutation detection probe) and SEQ ID NO: 118 or SEQ ID NO: 122 It is used in combination with an oligonucleotide (probe for wild type detection) consisting of the nucleotide sequence.
  • the wild-type detection probe and the mutant-type detection probe are used in combination as described above, it is preferable to set, for example, the Tm value of the perfect match of each probe is shifted.
  • the NAT2 * 6 probe is preferably an oligonucleotide having the base sequence of SEQ ID NO: 99.
  • an oligonucleotide having the base sequence of SEQ ID NO: 105 or SEQ ID NO: 107 is preferable.
  • the probe for NAT2 * 5 (probe (1)) and the probe for NAT2 * 7 (probe (3)) should have cytosine at the 3 'end as described above.
  • an appropriate fluorescent dye eg BODIPY FL, TAMRA, etc.
  • the NAT2 * 6 probe (probe (2)) is preferably labeled with a fluorescent dye as described above (for example, Pacific Blue) on the 5 ′ end cytosine.
  • a phosphate group may be further added to the 3 ′ end.
  • the respective fluorescent dyes may be the same or different.
  • PCR is performed as described above using the reaction solution to which the three kinds of labeled probes are added, and three regions of the NAT2 gene are simultaneously amplified in the same reaction solution.
  • the reaction solution includes, for example, the NAT2 gene amplification primer set of the present invention, a DNA polymerase, dNTP, a sample containing a nucleic acid to be a cage, and the three types of probes.
  • various additives that can be used for nucleic acid amplification may be included.
  • the heating temperature in the dissociation step is not particularly limited as long as the amplification product can be dissociated, and is, for example, 85 to 95 ° C.
  • the heating time is not particularly limited, but is usually 1 second to 10 minutes, preferably 1 second to 5 minutes.
  • Hybridization between the dissociated single-stranded DNA and the labeled probe can be performed, for example, by lowering the heating temperature in the dissociation step after the dissociation step.
  • temperature conditions it is 40-50 degreeC, for example.
  • the temperature of the reaction solution is changed, and a signal value indicating the melting state of the hybrid former between the amplification product and the labeled probe is measured.
  • the reaction solution hybridized product of the single-stranded DNA and the labeled probe
  • the fluctuation of the signal value accompanying the temperature rise is measured.
  • a probe labeled with a C-terminal at the end (guanine quenching probe) is used, fluorescence is reduced or quenched in the hybridized state with single-stranded DNA. Then, it emits fluorescence.
  • a hybrid that has decreased or quenched fluorescence may be gradually heated to measure the increase in fluorescence intensity with increasing temperature.
  • the temperature range for measuring the fluctuation of the fluorescence intensity is not particularly limited! /,
  • the start temperature is room temperature to 85 ° C, preferably 25 to 70 ° C, and the end temperature. Is, for example, 40 to 105 ° C.
  • the rate of temperature rise is not particularly limited, but is, for example, 0.;! To 20 ° C./second, and preferably 0.3 to 5 ° C./second.
  • the Tm value is determined by analyzing the fluctuation of the signal. Specifically, the amount of change in fluorescence intensity per unit time at each temperature (1d increase in fluorescence intensity / dt) is calculated from the obtained fluorescence intensity, and the temperature showing the lowest value can be determined as the Tm value. In addition, the point where the amount of increase in fluorescence intensity per unit time (the amount of increase in fluorescence intensity / 1) is the highest can also be determined as straight. If a probe that does not show a signal alone and that shows a signal by hybridization is used as a labeled probe, on the other hand, the decrease in fluorescence intensity should be measured.
  • each Tm is used under the conditions corresponding to the labels of the three types of probes. Determine the value.
  • the BODIPY FL probe for NAT2 * 5 has a detection wavelength of 515-555 nm
  • NAT For example, Pacific Blue of the probe for 2 * 6 can be detected at a detection wavelength of 450 to 480 nm
  • TAMRA of the probe for NAT2 * 7 can be detected at a detection wavelength of, for example, 585 to 700 nm.
  • the genotype at each detection target site is determined.
  • a hybrid (match) that is completely complementary has a higher Tm value indicating dissociation than a hybrid (mismatch) that differs in one base. Therefore, in advance, the genotype at each detection target site can be determined by determining the Tm value of a hybrid that is completely complementary to the probe and the Tm value of a hybrid that differs by one base. it can.
  • the base of the detection target site is assumed to be a mutant type (for example, the 1063rd base in SEQ ID NO: 1 is C) and a probe complementary to the detection target sequence containing it is used, the Tm of the hybrid formed Value As long as the Tm value of a completely complementary hybrid is the same, the polymorphism of the amplification product can be judged as a mutant type.
  • the polymorphism of the amplification product is the wild type (for example, for example, it can be determined that the 1063rd base in SEQ ID NO: 1 is T). Furthermore, if both Tm values are detected, it can be determined as a heterozygote. In this way, the polymorphic NAT2 * 5, NAT2 * 6 and NAT2 * 7 genotypes can be determined from the three Tm values for each labeling probe.
  • the method of measuring the signal fluctuation accompanying the temperature increase by increasing the temperature of the reaction solution containing the probe (by heating the noble body).
  • signal fluctuations during hybridization may be measured.
  • the hybrid is formed by lowering the temperature of the reaction solution containing the probe, the signal fluctuation accompanying the temperature drop may be measured.
  • a labeled probe that shows a signal alone and does not show a signal due to hybridization for example, a guanine quenching probe
  • the single-stranded DNA and the probe are dissociated.
  • the fluorescence is reduced or quenched. Therefore, for example, the temperature of the reaction solution may be gradually lowered to measure the decrease in fluorescence intensity as the temperature drops.
  • the temperature of the reaction solution may be gradually lowered to measure the decrease in fluorescence intensity as the temperature drops.
  • NAT2 * 5, NAT2 * 6 or NAT2 * 7 of the NAT2 gene
  • primer set for amplifying NAT2 gene of the present invention comprising primer sets corresponding to the target region among primer set (1) to ( 3 ), including one or two or two types of primer sets; Any force to hybridize to the target site to be detected, one type of probe or! /, Displacement force, and two types of probe should be used!
  • Blood was collected from 4 subjects using heparin lithium blood collection tubes (samples 1 to 4).
  • the obtained blood 10 HL and distilled water 90 HL were mixed, and this mixed solution 10 L and distilled water 90 ⁇ L were further mixed.
  • 10 L of these mixed solutions were added to 40 ⁇ L of a PCR reaction solution having the following composition, and PCR was performed using a thermal cycler.
  • the PCR was performed at 95 ° C for 60 seconds, followed by 50 cycles of 95 ° C for 1 second and 60 ° C for 10 seconds, followed by further treatment at 95 ° C for 1 second and 40 ° C for 60 seconds. Subsequently, the PCR reaction solution was heated from 40 ° C. to 95 ° C.
  • the measurement wavelengths were 450 to 480 nm (detection of fluorescent dye Pacific Blue), 5 15 to 555 nm (detection of fluorescent dye BODIPY FL), and 585 to 700 nm (detection of fluorescent dye TAMRA).
  • the time required for 50 cycles of PCR was about 1 hour.
  • the Tm value of the hybrid that matches the probe for NAT2 * 5 is 66 ⁇ 0 ° C
  • the Tm value of the mismatched hybrid is 58 ⁇ 0 ° C
  • the Tm value of the hybrid that matches the probe for NAT2 * 6 is 61
  • the Tm value of the mismatched hybrid is 5 ⁇ 0 ° C
  • the Tm value of the hybrid that matches the NAT2 * 7 probe is 6 ⁇ 0 ° C
  • the Tm value of the mismatched hybrid is 5 ⁇ 0 ° C. .
  • FIG. This figure is a graph of Tm analysis showing the change in fluorescence intensity with increasing temperature.
  • the differential value on the vertical axis shows “1d increase in fluorescence intensity / dt”, and the horizontal axis shows temperature (hereinafter the same) ).
  • the genotypes of NAT2 * 5, NAT2 * 6 and NAT2 * 7 in each sample were determined from the signal peaks.
  • polymorphisms of NAT2 * 5, NAT2 * 6, and NAT2 * 7 were confirmed by RFLP method and sequence method for 8 subjects. was gotten.
  • the PCR reaction solution was heated from 40 ° C. to 75 ° C. at a temperature increase rate of C / 3 seconds, and the change in fluorescence intensity over time was measured.
  • the measurement wavelengths were 450 to 480 nm (detection of fluorescent dye Pacific Blue), 515 to 555 nm (detection of fluorescent dye BODIPY FL), and 585 to 700 nm (detection of fluorescent dye TAMRA).
  • Tm value of the hybrid that matches the probe for NAT2 * 5 is 63 ° C
  • the Tm value of the mismatched hybrid is 56 ° C
  • the probe for NAT2 * 6 Tm value of matching hybrid is 58 ° C
  • Tm value of mismatched hybrid is 55.5 ° C
  • Tm value of hybrid matching with NAT2 * 7 probe is 58 ° C
  • Tm value of mismatched hybrid is 49 ° C C.
  • FIG. 1 The results of Samples 1 to 3 are shown in FIG.
  • This figure is a graph of Tm analysis showing the change in fluorescence intensity with increasing temperature.
  • the differential value on the vertical axis shows “1d increase in fluorescence intensity / dt”, and the horizontal axis shows temperature.
  • the genotypes of NAT2 * 5, NAT2 * 6 and NAT2 * 7 in each sample were determined from the signal peak.
  • pretreatment was not performed! /
  • three regions of the NAT2 gene were simultaneously amplified in the same reaction solution, and Three types of polymorphisms could be analyzed using the same reaction solution.
  • a region including a site where a specific polymorphism (NAT2 * 5, NAT2 * 6 or NAT2 * 7) in the NAT2 gene occurs is specifically and efficiently amplified. be able to. For this reason, it is possible to reduce labor and cost unlike the conventional method as described above.
  • the region including the polymorphic detection target site is specifically amplified in this manner, for example, by using a probe complementary to the detection target sequence including the detection target site, the reaction solution The Tm analysis can be performed as it is, and the polymorphism can be typed.
  • the operation can be automated.
  • the primer set of the present invention pretreatment can be omitted even for samples containing contaminants (for example, whole blood, oral mucosa, etc.), so that the amplification reaction can be performed more quickly and easily. It can be performed. Further, if the primer set of the present invention is used, an amplification reaction can be performed with an amplification efficiency superior to that of the prior art, so that the amplification reaction can be shortened. Therefore, according to the primer set of the present invention, a reagent containing the primer set, and a method for producing an amplification product using the same, the polymorphism of the NAT2 gene can be analyzed quickly and easily, which is extremely effective in the medical field. I can say that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

明 細 書
NAT2遺伝子増幅用プライマーセット、それを含む NAT2遺伝子増幅用 試薬およびその用途
技術分野
[0001] 本発明は、 NAT2遺伝子を増幅するためのプライマーセット、それを含む NAT2遺 伝子増幅用試薬およびその用途に関する。
背景技術
[0002] N—ァセチルトランスフェラーゼ(NATs)は、芳香族アミンゃ複素環ァミンの aryla mineを N—抱合化により無毒で安定な物質に代謝する代謝経路に関与する酵素で ある。中でも NATsのサブタイプである NAT2は、イソ二アジド(INH)、 sulfamethaz me、その他の sulfonamides、 procainamide、 hydralazine cagffeme、 dapsone 等の同素環および複素環 arylamineや hydrazine様薬物の無毒化過程; 2— amin ofluorene、 4— aminobiphenyl、 benzidine^ β― naphthylamine タンノヽク質の 熱分解物質中に存在する複素環 arylamines等の発現性生理物質や環境物質等の 活性化に関与している。 NAT2は、多型性を示すことが知られており、ヒトにおいては 、 19種類の多型が知られている。これらの多型の中で、 NAT2 * 5類(NAT2 * 5A 〜5D)は、 NAT2遺伝子の mRNAにおける 341位の T (チミン)が C (シトシン)に変 異しており、 NAT2 * 6類(NAT2 * 6A、 NAT2 * 6B)は、前記 mRNAにおける 59 0位の G (グァニン)が A (アデニン)に、 NAT2 * 7類(NAT2 * 7A、 NAT2 * 7B)は 、 mRNAにおける 857位の G (グァニン)が A (アデニン)に変異した多型である。
[0003] このような変異を有する患者が、抗拮抗剤である INHを服用した場合、肝機能障害 を発生することが知られている。これは、 NAT2遺伝子変異のために NAT2活性が 変化し、これによつて INHの N—ァセチル化が十分に行われず、肝毒性の高いヒドラ ジンの生成が増大したためである。この他にも、前述の procainamideや sulfasalazi ne等の副作用に、 NAT2の遺伝子多型が関連していることが明ら力、となっている。こ のため、患者の NAT2の遺伝子多型を確認することは、副作用を回避して、適切な 薬物治療を行う際に極めて重要である。特に、 NAT2については、複数の多型 (NA T2 * 5、 NAT2 * 6、 NAT2 * 7)を確認することが重要である。
[0004] 他方、あらゆる疾患の原因や、個体間の疾患易罹患性 (疾患のかかり易さ)、個体 間における薬効の違い等を遺伝子レベルで解析する方法として、点突然変異、いわ ゆる一塩基多型(SNP)の検出が広く行われて!/、る。点突然変異の一般的な検出方 法としては、(1)試料の標的 DNAについて、検出対象配列に相当する領域を PCR ( Polymerase chain reaction)により増幅させ、その全遺伝子配列を解析する Dir ect Sequencing法、(2)試料の標的 DNAについて、検出対象配列に相当する領 域を PCRにより増幅させ、前記検出対象配列における目的の変異の有無により切断 作用が異なる制限酵素によってその増幅産物を切断し、電気泳動を行うことでタイピ ングを行う RFLP解析、(3) 3'末端領域に目的の変異が位置するプライマーを用い て PCRを行い、増幅の有無によって変異を判断する ASP— PCR法等があげられる
[0005] しかしながら、これらの方法は、例えば、試料から抽出した DNAの精製、電気泳動 、制限酵素処理等が必須であるため、手間やコストがかかってしまう。また、 PCRを行 つた後、反応容器を一旦開封する必要があるため、前記増幅産物が次の反応系に 混入し、解析精度が低下するおそれがある。さらに、 自動化が困難であるため、大量 のサンプルを解析することができない。また、前記(3)の ASP— PCR法については、 特異性が低!/ヽとレ、う問題もある。
[0006] このような問題から、近年、点突然変異の検出方法として、標的核酸とプローブとか ら形成される二本鎖核酸の融解温度(Tm: melting temperature)を解析する方 法が実用化されている。このような方法は、例えば、 Tm解析、または、前記二本鎖の 融解曲線の解析により行われることから、融解曲線解析と呼ばれている。これは、以 下のような方法である。すなわち、まず、検出目的の点突然変異を含む検出対象配 列に相補的なプローブを用いて、検出試料の標的一本鎖 DNAと前記プローブとの ハイブリッド(二本鎖 DNA)を形成させる。続いて、このハイブリッド形成体に加熱処 理を施し、温度上昇に伴うハイブリッドの解離 (融解)を、吸光度等のシグナルの変動 によって検出する。そして、この検出結果に基づいて Τιι^直を決定することにより、点 突然変異の有無を判断する方法である。 Tm値は、ハイブリッド形成体の相同性が高 い程高ぐ相同性が低い程低くなる。このため、点突然変異を含む検出対象配列とそ れに相補的なプローブとのハイブリッド形成体について予め Tm値 (評価基準値)を 求めておき、検出試料の標的一本鎖 DNAと前記プローブとの Tm値 (測定値)を測 定する。前記測定値が評価基準値と同程度であれば、マッチ、すなわち標的 DNA に点突然変異が存在すると判断でき、測定値が評価基準値より低ければ、ミスマッチ 、すなわち標的 DNAに点突然変異が存在しないと判断できる。そして、この方法に よれば、遺伝子解析の自動化も可能である。
[0007] しかしながら、このような Tm解析を利用した検出方法についても、 PCRにおいて、 検出目的部位を含む領域を特異的且つ効率的に増幅できなければならないという 問題がある。特に、 NATには多くのアイソザィムが存在し、それらをコードする配列も 極めて類似しているため、 PCRにおいて、 NAT2以外のアイソザィムのコード遺伝子 までもが増幅されるおそれがある。また、このように他のアイソザィムのコード遺伝子ま でも増幅された場合、例えば、 NAT2遺伝子の特定の多型(NAT2 * 5、 NAT2 * 6 または NAT2 * 7)の解析(非特許文献 1または非特許文献 2)にお!/、て、解析結果 の信頼性を低下させる原因にもなる。そして、このように、 1つのサンプルを解析する にも多大な労力を伴うため、大量のサンプルを解析することは実用的ではないという 問題もある。
非特許文献 1 : PMID : 8102908 Jpn J Hum Genet. 1993 Jun ; 38 (2) : 1 63 - 8.
非特許文献 2 : PMID : 10507782 Br J Cancer. 1999 Oct ; 81 (3) : 537— 41.
発明の開示
[0008] そこで、本発明は、遺伝子増幅法により NAT2遺伝子の目的領域を特異的に増幅 するためのプライマーセットの提供を目的とする。
[0009] 前記目的を達成するために、本発明のプライマーセットは、遺伝子増幅法により N AT2遺伝子を増幅するためのプライマーセットであって、下記プライマーセット(1)〜 (3)からなる群から選択された少なくとも 1つのプライマーセットを含むことを特徴とす プライマーセット(1)
下記(F1)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R1)のオリ ゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F1)配列番号 1の塩基配列における 1038番目のグァニン塩基(G)を 1塩基目とし て 5'方向に向かって 20〜32塩基目までの領域と同じ配列である少なくとも一つのォ リゴヌクレオチドであって、前記グァニン塩基(G)を 3'末端とするオリゴヌクレオチド (R 1 )配列番号 1の塩基配列における 1096番目のシトシン塩基( C )を 1塩基目として 3'方向に向かって 17〜24塩基目までの領域に相補的な少なくとも一つのオリゴヌク レオチドであって、前記 1096番目のシトシン塩基(C)に相補的なグァニン塩基(G) プライマーセット(2)
下記(F2)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R2)のオリ ゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F2)配列番号 1の塩基配列における 1278番目のシトシン塩基(C)を 1塩基目として 5'方向に向かって 20〜38塩基目までの領域と同じ配列である少なくとも一つのオリ ゴヌクレオチドであって、前記シトシン塩基(C)を 3,末端とするオリゴヌクレオチド (R2)配列番号 1の塩基配列における 1355番目のグァニン塩基(G)を 1塩基目とし て 3'方向に向かって 25〜40塩基目までの領域に相補的な少なくとも一つのオリゴヌ クレオチドであって、前記 1355番目のグァニン塩基(G)に相補的なシトシン塩基(C および、
配列番号 1の塩基配列における 1614番目のシトシン塩基(C)を 1塩基目として 3,方 向に向かって 2;!〜 36塩基目までの領域に相補的な少なくとも一つのオリゴヌクレオ チドであって、前記 1614番目のシトシン塩基(C)に相補的なグァニン塩基(G)を 3' の少なくとも一方のオリゴヌクレオチド
プライマーセット(3)
下記(F3)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R3)のオリ ゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F3)配列番号 1の塩基配列における 1556番目のチミン塩基 (T)を 1塩基目として 5
'方向に向かって 2;!〜 40塩基目までの領域と同じ配列である少なくとも一つのオリゴ ヌクレオチドであって、前記チミン塩基 (T)を 3'末端とするオリゴヌクレオチド、 および、
配列番号 1の塩基配列における 1278番目のシトシン塩基(C)を 1塩基目として 5'方 向に向かって 20〜38塩基目までの領域と同じ配列である少なくとも一つのオリゴヌク レオチドであって、前記シトシン塩基(C)を 3'末端とするオリゴヌクレオチド の少なくとも一方のオリゴヌクレオチド
(R3)配列番号 1の塩基配列における 1614番目のシトシン塩基 (C)を 1塩基目として 3'方向に向かって 2;!〜 36塩基目までの領域に相補的な少なくとも一つのオリゴヌク レオチドであって、前記 1614番目のシトシン塩基(C)に相補的なグァニン塩基(G)
[0010] また、本発明の遺伝子増幅用試薬は、遺伝子増幅法により NAT2遺伝子を増幅す るための試薬であって、前記本発明の NAT2遺伝子増幅用プライマーセットを含む ことを特徴とする。
[0011] 本発明の増幅産物の製造方法は、遺伝子増幅法により NAT2遺伝子の増幅産物 を製造する方法であって、下記 (I)工程を含むことを特徴とする。
(I)試料中の核酸を铸型として、本発明の NAT2遺伝子増幅用プライマーセットを用 いて、反応液中で、前記 NAT2遺伝子の増幅を行う工程
[0012] 本発明の多型解析方法は、 NAT2における 3つの検出対象部位の多型を解析す る方法であって、下記 (i)〜(iv)工程を含むことを特徴とする。
(i)本発明の増幅産物の製造方法により、 NAT2遺伝子における検出対象部位を含 む領域を反応液中で増幅させる工程
(ii)前記 (i)工程における増幅産物と、前記検出対象部位にハイブリダィズ可能なプ ローブとを含む反応液を準備する工程
(iii)前記反応液の温度を変化させ、前記増幅産物と前記プローブとのハイブリッド形 成体の融解状態を示すシグナル値を測定する工程 (iv)温度変化に伴う前記シグナル値の変動から、前記検出対象部位の多型を決定 する工程
[0013] 本発明のプライマーセットによれば、 NAT2遺伝子における検出目的の多型(NA T2 * 5、 NAT2 * 6または NAT2 * 7)が発生する部位を含む目的領域を、反応液 中で特異的且つ高効率で増幅することができる。このため、前述のような従来法とは 異なり、手間やコストを低減することが可能となる。また、このように NAT2遺伝子の特 定の多型が発生する検出対象部位を含む領域を特異的に増幅されることから、例え ば、さらに、検出対象配列に相補的なプローブを使用することで、前記反応液を用い てそのまま Tm解析を行い、前記多型をタイピングすることが可能となる。また、一つ の反応液で増幅やタイピングが可能であることから、操作の自動化も可能になる。さ らに、本発明のプライマーセットを用いれば、例えば、夾雑物が含まれる試料 (例えば 、全血や口腔粘膜等)であっても、前処理を省略できるため、より迅速且つ簡便に増 幅反応を行うことができる。また、本発明のプライマーセットを用いれば、従来よりも優 れた増幅効率で増幅反応が行えるため、増幅反応も短縮化が可能である。したがつ て、本発明のプライマーセットやこれを含む試薬、ならびにこれらを用いた増幅産物 の製造方法および多型解析方法によれば、 NAT2遺伝子の多型を迅速かつ簡便に 解析できることから、医療分野にぉレ、てきわめて有効とレ、える。
図面の簡単な説明
[0014] [図 1]図 1は、本発明の実施例 1における Tm解析の結果を示すグラフである。
[図 2]図 2は、本発明の実施例 2における Tm解析の結果を示すグラフである。
発明を実施するための最良の形態
[0015] < NAT2遺伝子増幅用プライマーセット〉
本発明の NAT2遺伝子増幅用プライマーセットは、前述のように、前記プライマー セット(1)〜(3)からなる群から選択された少なくとも 1つのプライマーセットを含むこと を特徴とする。少なくともいずれかのプライマーセットを含むことによって、例えば、 N AT2遺伝子における特定の目的領域を特異的に増幅することが可能である。
[0016] 本発明の NAT2遺伝子増幅用プライマーセットは、例えば、前記プライマーセット( 1)〜(3)のうちいずれ力、 1種類のみを含んでもよいし、いずれか 2種類、または、プラ イマ一セット(1)〜(3)の全てを含んでもよ!/、。後述するが、プライマーセット(1)によ り特異的に増幅し得る目的領域は、 NAT2遺伝子において、多型 NAT2 * 5が発生 する部位を含む領域であり、プライマーセット(2)により特異的に増幅し得る目的領域 は、 NAT2遺伝子において、多型 NAT2 * 6が発生する部位を含む領域であり、プ ライマーセット(3)により特異的に増幅し得る目的領域は、 NAT2遺伝子において、 多型 NAT2 * 7が発生する部位を含む領域である。
前述のように、 NAT2遺伝子のこれら 3種類の多型は、全て薬剤代謝に影響を与え る多型として知られていることから、いずれ力、 1種類だけでなぐいずれ力、 2種類もしく は 3種類全ての多型を調べることが重要視されている。し力、しながら、従来法では、 1 つの反応系にお!/、て複数の配列を解析することができな!/、と!/、う問題がある。これは 、前述のように、 NATには多くのアイソザィムが存在するため、 PCRにおいて、 NAT 2以外のアイソザィムのコード遺伝子までもが増幅されることが原因と考えられる。この ため、 NAT2遺伝子の 3種類の多型(NAT2 * 5、 NAT2 * 6および NAT2 * 7)のう ち、 2種類または 3種類全てを調べるには、それぞれの多型が生じる部位を含む領域 を、別個の反応系において各々増幅させ、得られた増幅産物を別個に解析する必要 がある。このように、従来の方法では、 NAT遺伝子の中でも NAT2遺伝子のみを铸 型とし、且つ、 NAT2遺伝子において、前記多型が生じる部位をそれぞれ含む 2種 類または 3種類の目的領域のみを特異的に増幅させることは極めて困難である。そし て、このように、 1つのサンプルを解析するにも多大な労力を伴うため、大量のサンプ ルを解析することは実用的ではないという問題がある。これに対して、本発明の NAT 2遺伝子増幅用プライマーセットによれば、前記プライマーセット(1)〜(3)のうち!/ヽ ずれ力、 2種類または 3種類全てを含む場合であっても、それぞれの目的領域を、同一 反応液において同時に且つ特異的に増幅することができる。このため、前述の従来 法とは異なり、手間やコストを低減することが可能となる。また、このように同一反応液 において 2つまたは 3つの目的領域が特異的に増幅されることから、例えば、それぞ れの目的領域における検出対象配列に相補的なプローブを使用することで、前記反 応液を用いてそのまま Tm解析を行い、前記 2種類または 3種類の多型をそれぞれタ ィビングすることが可能となる。このように、 NAT2遺伝子における 2種類もしくは 3種 類の多型を同一反応液で解析することが可能となることから、本発明の NAT2遺伝 子増幅用プライマーセットは、例えば、プライマーセット(1)〜(3)のいずれか 1種類 を含む場合はもちろんのこと、いずれ力、 2種類もしくは 3種類を含むことも好ましい。こ のような NAT2遺伝子プライマーセットを用いて、 1つの目的領域はもちろんのこと、 2つまたは 3つの目的領域を同時に増幅すれば、従来よりも効率よぐ NAT2遺伝子 の多型解析を行うことができる。
[0018] なお、以下、フォワードプライマーを Fプライマー、リバースプライマーを Rプライマー ということがある。
[0019] 前記プライマーセット(1)は、前述のように、下記(F1)のオリゴヌクレオチドからなる フォワードプライマーおよび下記(R1)のオリゴヌクレオチドからなるリバースプライマ 一を含む一対のプライマーセットである。
下記(F1)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R1)のオリ ゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F1)配列番号 1の塩基配列における 1038番目のグァニン塩基(G)を 1塩基目とし て 5'方向に向力、つて 20〜32塩基目までの領域と同じ配列である少なくとも一つのォ リゴヌクレオチドであって、前記グァニン塩基(G)を 3'末端とするオリゴヌクレオチド (R 1 )配列番号 1の塩基配列における 1096番目のシトシン塩基( C )を 1塩基目として 3'方向に向力 て 17〜24塩基目までの領域に相補的な少なくとも一つのオリゴヌク レオチドであって、前記 1096番目のシトシン塩基(C)に相補的なグァニン塩基(G)
[0020] 配列番号 1に示す塩基配列は、ヒト由来ァリルアミン N—ァセチルトランスフェラーゼ NATァレノレ 1—2退ィ 子 (Human h NAT allele 1—2 gene for arylamine
N-acetyltransferase)の DNA配列であって、例えば、 NCBIァクセッション: No. D1087( こ登録されてレヽる。
[0021] 前記プライマーセット(1)は、配列番号 1における 1039番目〜 1095番目の領域を 含む DNA鎖ならびにその相補鎖を増幅させるためのプライマーセットである。この領 域内の 1063番目の塩基(配列番号 1における 1063番目の塩基)は、 NAT2の機能 に影響を与える点突然変異(1063T、 1063C)の存在が知られており、この多型が、 前述の NAT2 * 5である。本発明において、この部位の多型は、ホモ接合体の場合 、 1063T/T, 1063C/C,ヘテロ接合体の場合、 1063T/Cで表すことができる。 なお、配列番号 1における 1063番目の塩基は、 NAT2遺伝子の mRNAにおける 3 41番目の塩基に相当するため、 NAT2 * 5の多型として、例えば、 341T/T、 341 C/C、 341T/Cとして表すこともできる。以下、このプライマーセット(1)を、「NAT 2 * 5用プライマーセット」ともいう。なお、 NAT2 * 5の多型のみを解析する場合には 、 NAT2 * 5用プライマーセットのみを使用すればよい。
[0022] プライマーセット(1)の F1プライマーおよび R1プライマーは、 DNAポリメラーゼによ る増幅の開始点を決定する役割を果たす 3'末端の塩基が、前述の条件を満たして いればよい。このように各プライマーの 3'末端の塩基を固定することによって、プライ マーセット(1)が、例えば、類似する他のアイソザィムの遺伝子(例えば、 NAT1、 N AT6、 NAT8、 NAT9遺伝子等)に結合することを十分に防止することができる。
[0023] このように、 F1プライマーおよび R1プライマーは、その 3'末端の塩基が固定されて いればよいことから、各プライマーの長さ自体は特に制限されず、一般的な長さに適 宜調整すること力できる。プライマーの長さの一例としては、例えば、 13〜50merの 範囲であり、好ましくは 14〜45merであり、より好ましくは 15〜40merである。具体 例として、前記 F1プライマーは、配列番号 1の塩基配列における 1038番目のグァニ ン塩基(G)を 1塩基目として 5 '方向に向力、つて 20〜32塩基目(好ましくは、 24〜30 塩基目、より好ましくは 25〜29塩基目 )までの領域と同じ配列である少なくとも一つ のオリゴヌクレオチドであることが好ましい。また、前記 R1プライマーは、配列番号 1の 塩基配列における 1096番目のシトシン塩基 (C)を 1塩基目として 3'方向に向力、つて 17〜24塩基目(好ましくは、 19〜23塩基目、より好ましくは 20〜22塩基目)までの 領域に相補的な少なくとも一つのオリゴヌクレオチドであることが好ましい。なお、 F1 プライマーと R1プライマーの 3'末端が固定されていることから、プライマーから伸長 する領域は、例えば、前述のように配列番号 1における 1039番目〜 1095番目の領 域である力 S、得られる増幅産物の全体の長さは使用するプライマーの長さに応じて変 化する。
[0024] また、 R1プライマーは、配列番号 1に示す塩基配列に対して、 F1プライマーは、前 記塩基配列の相補鎖に対して、それぞれ完全に相補なオリゴヌクレオチドでなくとも よい。すなわち、各プライマーにおける 3 '末端の塩基を除く部分において、完全に相 補なオリゴヌクレオチドと 1個〜 5個の塩基が異なっていてもよい。
[0025] 以下に、 F1プライマーと R1プライマーの具体例を示す力 本発明は、これには限 定されない。また、これらの F1プライマーと R1プライマーとの組み合わせは何ら制限 されないが、これらの中でも、配列番号 5または配列番号 7のオリゴヌクレオチドからな る F1 'プライマーと配列番号 16または配列番号 18のオリゴヌクレオチドからなる R1 ' プライマーとを含むプライマーセット(1 ' )が特に好ましい。なお、下記表における「T m (°C)」は、下記表の配列と完全に相補的な配列とがハイブリッドした場合の Tm (°C )であり、 MELTCALCソフトウェア(http : //www. meltcalc. com/)により、パ ラメーターをオリゴヌクレオチド濃度 0· 2 Μ、ナトリウム当量(Na eq. ) 50mMとし て算出した値である(以下、同様)。前記 Tm値は、例えば、従来公知の MELTCAL Cソフトウェア(http : //www. meltcalc. com/)等により算出でき、また、隣接法 (Nearest Neighbor Method)によって決定することもできる(以下、同様)。
[0026] [表 1]
Figure imgf000012_0001
[0027] つぎに、前記プライマーセット(2)は、前述のように、下記(F2)のオリゴヌクレオチド かかららななるるフフォォワワーードドププラライイママーーおおよよびび下下記記((RR22))ののオオリリゴゴヌヌククレレオオチチドドかかららななるるリリババーースス ププラライイママーーをを含含むむ一一対対ののププラライイママーーセセッットトででああるる。。
下下記記((FF22))ののオオリリゴゴヌヌククレレオオチチドドかかららななるるフフォォワワーードドププラライイママーーおおよよびび下下記記((RR22))ののオオリリ ゴゴヌヌククレレオオチチドドかかららななるるリリババーーススププラライイママーーをを含含むむ一一対対ののププラライイママーーセセッットト
((FF22))配配列列番番号号 11のの塩塩基基配配列列ににおおけけるる 11227788番番目目ののシシトトシシンン塩塩基基((CC))をを 11塩塩基基目目ととししてて 55''方方向向にに向向かかっってて 2200〜〜3388塩塩基基目目ままででのの領領域域とと同同じじ配配列列ででああるる少少ななくくとともも一一つつののオオリリ ゴゴヌヌククレレオオチチドドででああっってて、、前前記記シシトトシシンン塩塩基基((CC))をを 33,,末末端端ととすするるオオリリゴゴヌヌククレレオオチチドド ((RR22))配配列列番番号号 11のの塩塩基基配配列列ににおおけけるる 11335555番番目目ののググァァニニンン塩塩基基((GG))をを 11塩塩基基目目ととしし てて 33''方方向向にに向向かかっってて 2255〜〜4400塩塩基基目目ままででのの領領域域にに相相補補的的なな少少ななくくとともも一一つつののオオリリゴゴヌヌ ククレレオオチチドドででああっってて、、前前記記 11335555番番目目ののググァァニニンン塩塩基基((GG))にに相相補補的的ななシシトトシシンン塩塩基基((CC
Figure imgf000013_0001
および、
配列番号 1の塩基配列における 1614番目のシトシン塩基(C)を 1塩基目として 3 '方 向に向かって 2;!〜 36塩基目までの領域に相補的な少なくとも一つのオリゴヌクレオ チドであって、前記 1614番目のシトシン塩基(C)に相補的なグァニン塩基(G)を 3'
Figure imgf000013_0002
の少なくとも一方のオリゴヌクレオチド
前記プライマーセット(2)は、配列番号 1における 1279番目〜 1354番目の領域ま たは 1279番目〜 1613番目の領域を含む DNA鎖ならびにその相補鎖を増幅させ るためのプライマーセットである。この領域内の 1312番目の塩基(配列番号 1におけ る 1312番目の塩基)は、 NAT2の機能に影響を与える点突然変異(1312G、 1312 A)の存在が知られており、この多型が、前述の NAT2 * 6である。本発明において、 この部位の多型は、ホモ接合体の場合、 1312G/G、 1312A/A,ヘテロ接合体の 場合、 1312G/Aで表すことができる。なお、配列番号 1における 1312番目の塩基 は、 NAT2遺伝子の mRNAにおける 590番目の塩基に相当するため、 NAT2 * 6 の多型として、例えば、 590G/G、 590A/A、 590G/Aとして表すこともできる。 以下、このプライマーセット(2)を、「NAT2 * 6用プライマーセット」ともいう。なお、 N AT2 * 6の多型のみを解析する場合には、 NAT2 * 6用プライマーセットのみを使 用すればよい。
[0029] 本発明において、プライマーセット(2)の F2プライマーおよび R2プライマーは、前 記プライマーセット(1)と同様の理由から、 DNAポリメラーゼによる増幅の開始点を 決定する役割を果たす 3'末端の塩基が、前述の条件を満たしていればよい。このた め、 F2プライマーおよび R2プライマーの長さ自体は特に制限されず、前述と同様の 長さが例示できる。具体例として、前記 F2プライマーは、配列番号 1の塩基配列にお ける 1278番目のシトシン塩基(C)を 1塩基目として 5'方向に向かって 20〜38塩基 目(好ましくは、 2;!〜 38塩基目、より好ましくは 22〜38塩基目)までの領域と同じ配 列である少なくとも一つのオリゴヌクレオチドであることが好ましい。また、前記 R2ブラ イマ一は、配列番号 1の塩基配列における 1355番目のグァニン塩基(G)を 1塩基目 として 3'方向に向かって 25〜40塩基目(好ましくは、 27〜35塩基目、より好ましくは 28〜34塩基目 )までの領域に相補的な少なくとも一つのオリゴヌクレオチド、または、 配列番号 1の塩基配列における 1614番目のシトシン塩基(C)を 1塩基目として 3,方 向に向かって 2;!〜 36塩基目(好ましくは、 23〜36塩基目、より好ましくは 24〜36塩 基目 )までの領域に相補的な少なくとも一つのオリゴヌクレオチドであることが好まし い。なお、 F2プライマーと R2プライマーの 3 '末端が固定されていることから、プライ マーから伸長する領域は、通常、前述のように配列番号 1における 1279番目〜 135 4番目の領域または 1279番目〜 1613番目の領域である力 S、得られる増幅産物の全 体の長さは使用するプライマーの長さに応じて変化する。
[0030] また、 R2プライマーは、配列番号 1に示す塩基配列に対して、 F2プライマーは、前 記塩基配列の相補鎖に対して、それぞれ完全に相補なオリゴヌクレオチドでなくとも よい。すなわち、各プライマーにおける 3'末端の塩基を除く部分において、完全に相 補なオリゴヌクレオチドと 1個〜 5個の塩基が異なっていてもよい。
[0031] 以下に、 F2プライマーと R2プライマーの具体例を示す力 本発明は、これには限 定されない。また、これらの F2プライマーと R2プライマーとの組み合わせは何ら制限 されないが、これらの中でも、配列番号 33または配列番号 109のオリゴヌクレオチド 力、らなる F2'プライマーと配列番号 39または配列番号 48のオリゴヌクレオチドからな る R2'プライマーとを含むプライマーセット (2 ' )が特に好まし!/、。 [0032] [表 2]
Figure imgf000015_0001
[0033] つぎに、前記プライマーセット(3)は、前述のように、下記(F3)のオリゴヌクレオチド 力、らなるフォワードプライマーおよび下記(R3)のオリゴヌクレオチドからなるリバース プライマーを含む一対のプライマーセットである。
下記(F3)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R3)のオリ ゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F3)配列番号 1の塩基配列における 1556番目のチミン塩基 (T)を 1塩基目として 5 '方向に向かって 2;!〜 40塩基目までの領域と同じ配列である少なくとも一つのオリゴ ヌクレオチドであって、前記チミン塩基 (T)を 3'末端とするオリゴヌクレオチド、 および、
配列番号 1の塩基配列における 1278番目のシトシン塩基(C)を 1塩基目として 5'方 向に向かって 20〜38塩基目までの領域と同じ配列である少なくとも一つのオリゴヌク レオチドであって、前記シトシン塩基(C)を 3 '末端
の少なくとも一方のオリゴヌクレオチド
(R3)配列番号 1の塩基配列における 1614番目のシトシン塩基 (C)を 1塩基目として 3'方向に向かって 2;!〜 36塩基目までの領域に相補的な少なくとも一つのオリゴヌク レオチドであって、前記 1614番目のシトシン塩基(C)に相補的なグァニン塩基(G)
Figure imgf000016_0001
[0034] 前記プライマーセット(3)は、配列番号 1における 1557番目〜 1613番目の領域ま たは 1279番目〜 1613番目の領域を含む DNA鎖ならびにその相補鎖を増幅させ るためのプライマーセットである。この領域内の 1579番目の塩基(配列番号 1におけ る 1579番目の塩基)は、 ΝΑΤ2の機能に影響を与える点突然変異(1579G、 1579 A)の存在が知られており、この多型が、前述の NAT2 * 7である。本発明において、 この部位の多型は、ホモ接合体の場合、 1579G/G、 1579A/A、ヘテロ接合体の 場合、 1579G/Aで表すことができる。なお、配列番号 1における 1579番目の塩基 は、 NAT2遺伝子の mRNAにおける 857番目の塩基に相当するため、 NAT2 * 7 の多型として、例えば、 857G/G、 857A/A、 857G/Aとして表すこともできる。 以下、このプライマーセット(3)を、「NAT2 * 7用プライマーセット」ともいう。なお、 N AT2 * 7の多型のみを解析する場合には、 NAT2 * 7用プライマーセットのみを使 用すればよい。
[0035] 本発明において、プライマーセット(3)の F3プライマーおよび R3プライマーは、前 記プライマーセット(1)と同様の理由から、 DNAポリメラーゼによる増幅の開始点を 決定する役割を果たす 3'末端の塩基が、前述の条件を満たしていればよい。このた め、 F3プライマーおよび R3プライマーの長さ自体は特に制限されず、前述と同様の 長さが例示できる。具体例として、前記 F3プライマーは、配列番号 1の塩基配列にお ける 1556番目のチミン塩基 (T)を 1塩基目として 5'方向に向かって 2;!〜 40塩基目( 好ましくは、 23〜40塩基目、より好ましくは 24〜40塩基目)までの領域と同じ配列で ある少なくとも一つのオリゴヌクレオチド、または、配列番号 1の塩基配列における 12 78番目のシトシン塩基(C)を 1塩基目として 5 '方向に向かって 20〜38塩基目(好ま しくは、 2;!〜 38塩基目、より好ましくは 22〜38塩基目)までの領域と同じ配列である 少なくとも一つのオリゴヌクレオチドであることが好ましい。また、前記 R3プライマーは 、配列番号 1の塩基配列における 1614番目のシトシン塩基(C)を 1塩基目として 3 ' 方向に向力、つて 2;!〜 36塩基目(好ましく (ま、 23〜35塩基目、より好ましく (ま 24〜28 塩基目 )までの領域に相補的な少なくとも一つのオリゴヌクレオチドであることが好ま しい。なお、 F3プライマーと R3プライマーの 3 '末端が固定されていることから、プライ マーから伸長する領域は、通常、前述のように酉己歹 IJ番号 1における 1557番目〜 161 3番目の領域または 1279番目〜 1613番目の領域である力 S、得られる増幅産物の全 体の長さは使用するプライマーの長さに応じて変化する。
[0036] また、 R3プライマーは、配列番号 1に示す塩基配列に対して、 F3プライマーは、前 記塩基配列の相補鎖に対して、それぞれ完全に相補なオリゴヌクレオチドでなくとも よい。すなわち、各プライマーにおける 3 '末端の塩基を除く部分において、完全に相 補なオリゴヌクレオチドと 1個〜 5個の塩基が異なっていてもよい。
[0037] 以下に、 F3プライマーと R3プライマーの具体例を示す力 本発明は、これには限 定されない。また、これらの F3プライマーと R3プライマーとの組み合わせは何ら制限 されないが、これらの中でも、配列番号 60または配列番号 113のオリゴヌクレオチド 力、らなる F2 'プライマーと配列番号 71または配列番号 81のオリゴヌクレオチドからな る R3 'プライマーとを含むプライマーセット (3, )が特に好まし!/、。
[0038] [表 3] プライマ一 配列 Tm (°C) 配列番号
5 -agtgctgagaaatatatttaagatttccttggggagaaat-3' 60.7 1 13
5 -gtgctgagaaatatatttaagatttccttggggagaaat-3' 60.1 1 14
5'-tgctgagaaatatatttaagatttccttggggagaaat-3' 59.5 1 15
5 -gctgagaaatatatttaagatttccttggggagaaat-3' 58.7 54
5 -ctgagaaatatatttaagatttccttggggagaaat--i' 57.1 55
5'-tgagaaatatatttaagatttccttggggagaaat-3' 56.6 56
5'-gagaaatatatttaagatttccttggggagaaat-3' 55.6 57
5'-agaaatatatttaagatttccttggggagaaat-3' 55 58
5'-gaaatatatttaagatttccttggggagaaat-3' 54.2 59
F3プライマ一 5'-aaatatatttaagatttccttggggagaaat-3' 53.4 60
NAT2*フ用 5'-aatatatttaagatttccttggggagaaat-3' 53 61
5 '-atatatttaagatttc cttggggagaaat- 3 '- 52.5 62
5'-tatatttaagatttccttggggagaaat-3' 52.2 63
5'-atatttaagatttccttggggagaaat-3' 52.4 64
5'-tatttaagatttc cttgggga gaaat-3' 52 65
5'-atttaagatttccttggggagaaat-3' 52.2 66
5 '-tttaagatttccttggggagaaat-3 ' 51.8 67
5'-ttaagatttccttggggagaaat-3' 51.2 68
5'-taagatttccttggggagaaat-3' 50.5 69
5 '-aagatttccttggggagaaat-3 ' 50.6 70
5'-tgataattagtgagttgggtgatacatacacaaggg-3' 60.フ 71
5'-gataattagtgagttgggtgatacatacacaaggg-3' 59.9 72
5'-ataattagtgagttgggtgatacatacacaaggg-3' 59.5 73
5'-taattagtgagttgggtgatacatacacaaggg-3' 59.4 74
5'-aattagtgagttgggtgatacatacacaaggg-3' 59.7 75
5'-attagtgagttgggtgatacatacacaaggg-3' 59.5 76
5'-ttagtgagttgggtgatacatacacaaggg-3' 59.5 77
R3プライマー 5'-tagtgag tgggtgatacatacacaaggg-3' 59.3 78
NA丁 2 ffl 5'_agtgagttgggtgatacatacacaaggg-3' 59.6 79
5'-gtgagttgggtgatacatacacaaggg-3' 58.8 80
5'-tgagttggg gatacatacacaaggg-3' 57.9 81
5 '-gagttgggtgatacataca c aaggg-3' 56.7 82
5'-agttgggtgatacatacacaaggg-3' 55.9 83
5'-gttgggtgatacatacacaaggg-3' 54.8 84
5Htgggtgatacatacacaaggg-3' 53.6 85
5'-tgggtgataoatacacaaggg-3' 53 86
[0039] また、前述した各プライマーは、例えば、増幅反応の反応温度を上げるために、従 来公知の任意の配列を 5'末端に付加したものでもよい。
[0040] 前記プライマーセット(2)または前記プライマーセット(3)により、 1279番目〜 1613 番目を含む DNA鎖ならびにその相補鎖を増幅させる場合、レ、ずれのプライマーセッ トにおいても、以下に示す同じフォワードプライマーおよびリバースプライマーが使用 できる。
フォワードプライマー
(F2) (F3)配列番号 1の塩基配列における 1278番目のシトシン塩基(C)を 1塩基目 として 5'方向に向かって 20〜38塩基目までの領域と同じ配列である少なくとも一つ のオリゴヌクレオチドであって、前記シトシン塩基(C)を 3,末端とするオリゴヌクレオチ K
リノ ースプライマー
(R2) (R3)配列番号 1の塩基配列における 1614番目のシトシン塩基(C)を 1塩基目 として 3'方向に向かって 2;!〜 36塩基目までの領域に相補的な少なくとも一つのオリ ゴヌクレオチドであって、前記 1614番目のシトシン塩基(C)に相補的なグァニン塩基 (G)を 3,末端とするオリゴヌクレオチド
[0041] この場合、本発明のプライマーセットは、プライマーセット(1)の他に、プライマーセ ット(2)および(3)として、例えば、 1種類のプライマーセット(ΝΑΤ2 * 6 * 7用プライ マー)を含むのみでもよい。また、フォワードプライマーについては、前記プライマー セット(2)およびプライマーセット(3)のフォワードプライマーを兼ねる 1種類のフォヮ 一ドプライマ一を含み、リバースプライマーについては、前記プライマーセット(2)お よびプライマーセット (3)のそれぞれのリバースプライマーを含んでもよ!/、。
[0042] このようなプライマーセット(1)〜(3)の少なくとも 1つを含む本発明の ΝΑΤ2遺伝子 増幅用プライマーセットは、例えば、全血試料等の生体試料における ΝΑΤ2遺伝子 を増幅させる際に使用することが好ましい。特に、本発明の ΝΑΤ2遺伝子増幅用プ ライマーセットを、後述するような多型の検出用プローブとともに使用する際には、遺 伝子増幅用反応液における全血試料の添加割合を 0. ;!〜 0. 5体積%とすることが 好ましい。この点については、後述する。
[0043] < ΝΑΤ2遺伝子増幅用試薬〉
本発明の ΝΑΤ2遺伝子増幅用試薬は、前述のように、遺伝子増幅法により ΝΑΤ2 遺伝子を増幅するための試薬であって、本発明の ΝΑΤ2遺伝子増幅用プライマー セットを含むことを特徴とする。本発明の ΝΑΤ2遺伝子増幅用試薬は、本発明のブラ イマ一セットを含むことが特徴であり、これ以外の組成等については何ら制限されな い。
[0044] 本発明の ΝΑΤ2遺伝子増幅用試薬は、例えば、本発明のプライマーセットを用い た遺伝子増幅法により得られる増幅産物を検出するために、さらに、 ΝΑΤ2遺伝子 の検出対象部位にハイブリダィズ可能なプローブを含んでもよい。前述のように、本 発明のプライマーセットによれば、例えば、それに含まれるプライマーセット(1)〜(3) の種類に応じて、遺伝子増幅法によって NAT2遺伝子における 1つ〜 3つの目的領 域を特異的に増幅できる。このため、前記各目的領域における検出対象配列に相補 的なプローブを共存させることによって、例えば、増幅の有無や検出対象部位の遺 伝子型(多型)等を、後述する方法によって検出することが可能である。このようなプ ローブやその利用方法に関しては、後の多型の解析方法において説明する。また、 本発明の NAT2遺伝子増幅用試薬は、全血等の生体試料における NAT2遺伝子 を増幅させる際に使用することが好ましい。特に、本発明の NAT2遺伝子増幅用試 薬を、前述のプローブとともに使用する際には、遺伝子増幅用反応液における全血 試料の添加割合を 0.;!〜 0. 5体積%とすることが好ましい。なお、本発明において、 「検出対象配列」とは、多型が発生する部位 (検出対象部位)を含む配列を意味する
[0045] 本発明の NAT2遺伝子増幅用試薬の形態は、特に制限されず、例えば、本発明 の NAT2遺伝子増幅用プライマーセットを含有する液体試薬でもよレ、し、使用前に 溶媒で懸濁する乾燥試薬であってもよい。また、 NAT2遺伝子増幅用プライマーセッ トの含有量も、特に制限されない。
[0046] <増幅産物の製造方法〉
本発明の増幅産物の製造方法は、前述のように、遺伝子増幅法により NAT2遺伝 子の増幅産物を製造する方法であって、下記 (I)工程を含むことを特徴とする。
(I)試料中の核酸を铸型として、本発明の NAT2遺伝子増幅用プライマーセットを用 いて、反応液中で、前記 NAT2遺伝子の増幅を行う工程
[0047] このように本発明の NAT2遺伝子増幅用プライマーセットを用いて増幅反応を行う ことによって、前述のように、 NAT2遺伝子の目的領域を増幅させることができる。ま た、本発明の NAT2遺伝子増幅用プライマーセットが、前記プライマーセット(1)〜( 3)のうちいずれ力、 2種類を含む場合は、 NAT2遺伝子における 2つの検出対象部位 をそれぞれ含む 2つの目的領域を、同一反応液中で同時に増幅させることができる。 また、本発明の NAT2遺伝子増幅用プライマーセットが、前記プライマーセット(1)〜 (3)の全てを含む場合には、 NAT2遺伝子における 3つの検出対象部位をそれぞれ 含む 3つの目的領域を、同一反応液中で同時に増幅させることができる。本発明によ り増幅させる目的領域は、前述のように、各多型(NAT2 * 5、 NAT2 * 6および NA T2 * 7)が発生する検出対象部位をそれぞれ含む領域である。なお、本発明の増幅 産物の製造方法においては、本発明のプライマーセットを使用することが特徴であつ て、遺伝子増幅法の種類や条件等は何ら制限されない。
[0048] 前記遺伝子増幅法としては、前述のように特に制限されず、例えば、 PCR (Polym erase Chain Reaction)法、 NASBA (Nucleic acid sequence based amp lification)法、 TMA (Transcription— mediated amplification)法、 SDA (Str and Displacement Amplification)法等があげられる力 PCR法が好ましい。な お、以下、 PCR法を例にあげて、本発明を説明するが、これには制限されない。
[0049] 本発明を適用する試料としては、例えば、铸型となる核酸を含んでいればよぐ特 に制限されないが、例えば、夾雑物が含まれる材料に適用することが好ましい。前記 夾雑物が含まれる試料としては、例えば、全血、口腔内細胞(例えば、口腔粘膜)、 爪や毛髪等の体細胞、生殖細胞、喀痰、羊水、パラフィン包埋組織、尿、胃液 (例え ば、胃洗浄液)等や、それらの懸濁液等があげられる。本発明のプライマーセットを用 いた増幅産物の製造方法によれば、例えば、様々な夾雑物が含まれる試料 (特に、 全血や口腔内細胞等の生体試料)であっても、その影響を受け難ぐ NAT2遺伝子 の前記領域を特異的に増幅することができる。このため、本発明によれば、従来法で は困難であった夾雑物の多い試料であっても、例えば、精製等の前処理を行うことな ぐそのまま使用することが可能である。したがって、試料の前処理の観点からも、従 来法よりさらに迅速に増幅産物を調製することが可能といえる。
[0050] 前記反応液における試料の添加割合は、特に制限されな!/、。具体例として、前記 試料が生体試料 (例えば、全血試料)の場合、前記反応液における添加割合の下限 1S 例えば、 0. 01体積%以上であることが好ましぐより好ましくは 0. 05体積%以上 、さらに好ましくは 0. 1体積%以上である。また、前記添加割合の上限も、特に制限 されないが、例えば、 2体積%以下が好ましぐより好ましくは 1体積%以下、さらに好 ましくは 0. 5体積%以下である。
[0051] また、後述するような光学的検出を目的とする場合、特に、標識化プローブを用い た光学的検出を行う場合、前記反応液における全血試料等の生体試料の添加割合 は、例えば、 0.;!〜 0. 5体積%に設定することが好ましい。 PCR反応においては、 通常、 DNA変性(一本鎖 DNAへの解離)のために熱処理が施される力 この熱処 理によって、試料に含まれる糖やタンパク質等が変性し、不溶化の沈殿物や濁り等 が発生するおそれがある。このため、増幅産物の有無や検出対象部位の遺伝子型( 多型)を光学的手法により確認する場合、このような沈殿物や濁りの発生が、測定精 度に影響を及ぼす可能性がある。し力、しながら、反応液における全血試料の添加割 合を前述の範囲に設定すれば、メカニズムは不明であるが、例えば、変性による沈殿 物等の発生による影響を十分に防止することができるため、光学的手法による測定 精度を向上できる。また、全血試料中の夾雑物による PCRの阻害も十分に抑制され るため、増幅効率をより一層向上することができる。したがって、本発明のプライマー セットの使用に加えて、さらに、全血試料等の試料の添加割合を前述の範囲に設定 することによって、より一層、試料の前処理の必要性を排除できる。
[0052] また、前記反応液中の全血試料の割合は、前述のような体積割合 (例えば、 0.;!〜 0. 5体積0 /0)ではなぐヘモグロビン(以下、「Hb」という)の重量割合で表すこともで きる。この場合、前記反応液における全血試料の割合は、 Hb量に換算して、例えば 、 0. 565〜; 113g/Lの範囲カ好ましく、より好ましく (ま 2. 825-56. 5g/Lの範囲、 さらに好ましくは 5. 65-28. 25 g/Lの範囲である。なお、前記反応中における 全血試料の添加割合は、例えば、前記体積割合と Hb重量割合の両方を満たしても よいし、いずれか一方を満たしてもよい。
[0053] 全血としては、例えば、溶血した全血、未溶血の全血、抗凝固全血、凝固画分を含 む全血等の!/、ずれであってもよ!/、。
[0054] 本発明にお!/、て、試料に含まれる標的核酸は、例えば、 DNAである。前記 DNA は、例えば、生体試料等の試料に元来含まれる DNAでもよいし、遺伝子増幅法によ り増幅させた増幅産物 DNAであってもよい。後者の場合、前記試料に元来含まれて いる RNA (トータル RNA、 mRNA等)から逆転写反応(例えば、 RT— PCR(Revers e Transcription PCR) )により生成させた cDNAがあげられる。
[0055] 本発明の増幅産物の製造方法において、遺伝子増幅反応の開始に先立ち、前記 反応液にさらにアルブミンを添加することが好ましい。このようなアルブミンの添加によ つて、例えば、前述のような沈殿物や濁りの発生による影響をより一層低減することが でき、且つ、増幅効率もさらに向上することができる。具体的には、前記 (I)工程の増 幅反応や、一本鎖 DNAへの解離工程前に、アルブミンを添加することが好ましい。
[0056] 前記反応液におけるアルブミンの添加割合は、例えば、 0. 0;!〜 2重量%の範囲で あり、好ましくは 0. ;!〜 1重量%であり、より好ましくは 0. 2〜0. 8重量%である。前記 アルブミンとしては、特に制限されず、例えば、ゥシ血清アルブミン(BSA)、ヒト血清 アルブミン、ラット血清アルブミン、ゥマ血清アルブミン等があげられ、これらはいずれ 力、 1種類でもよ!/ヽし 2種類以上を併用してもよレ、。
[0057] つぎに、本発明の増幅産物の製造方法に関し、全血試料について、 DNAを標的 核酸とし、前記プライマーセット(1)〜(3)を含む本発明の NAT2遺伝子増幅用ブラ イマ一セットを用いた PCRにより NAT2遺伝子の 3つの目的領域の増幅産物を製造 する例をあげて説明する。なお、本発明は、本発明のプライマーセットを使用すること が特徴であり、他の構成ならびに条件は何ら制限されなレ、。
[0058] まず、 PCR反応液を調製する。本発明のプライマーセットの添加割合は、特に制限 されないが、プライマーセット(;!)〜(3)の Fプライマーを、それぞれ 0· 1〜2 11101/ Lとなるように添カロすること力《好ましく、より好ましくは 0. 25-1. 5〃mol/Lであり、 特に好ましくは 0· 5〜1 11101/しである。また、プライマーセット(1 )〜(3)の Rプライ マーを、それぞれ 0· 1〜2 11101/しとなるように添加することが好ましぐより好ましく (ま 0. 25—1. 5〃11101/しであり、特に好ましく (ま 0. 5〜1〃 mol/Lである。各プライ マーセットにおける Fプライマーと Rプライマーとの添加割合(F : R、モル比)は、特に 制限されないが、例えば、 1 : 0. 25〜; 1 : 4力 S好ましく、より好ましくは 1 : 0. 5〜; 1 : 2で ある。
[0059] 反応液における全血試料の割合は、特に制限されないが、前述の範囲が好ましい 。全血試料は、そのまま反応液に添加してもよいし、予め、水や緩衝液等の溶媒で希 釈してから反応液に添加してもよい。全血試料を予め希釈する場合、その希釈率は 特に制限されず、例えば、反応液での最終的な全血添加割合が前記範囲となるよう に設定できる力 ί列え (ま、、 100〜2000倍で り、好ましく (ま 200〜 000倍である。
[0060] 前記反応液における他の組成成分は、特に制限されず、従来公知の成分があげら れ、その割合も特に制限されない。前記組成成分としては、例えば、 DNAポリメラー ゼ、ヌクレオチド (ヌクレオシド三リン酸 (dNTP) )および溶媒があげられる。また、前 述のように前記反応液はさらにアルブミンを含有することが好ましい。なお、前記反応 液にぉレ、て、各組成成分の添加順序は何ら制限されな!/、。
[0061] 前記 DNAポリメラーゼとしては、特に制限されず、例えば、従来公知の耐熱性細菌 由来のポリメラーゼが使用できる。具体例としては、テルムス ·アクアティカス(Therm us aauaticus)由来 DNAポリメラーゼ(米国特許第 4, 889, 818号および同第 5, 079, 352号)(商品名 Taaポリメラーゼ)、テルムス ·テルモフィラス(Thermus ther mophilus)由来 DNAポリメラーゼ(WO 91/09950) (rTth DNA polymerase )、ピロコッカス ·フリオサス(Pyrococcus fiiitaiS)由来 DNAポリメラーゼ(WO 9 2/9688) (Pfu DNA polymerase: Stratagenes社製)、テルモコッカス'リトラリ ス (Thermococcus litoralis)由来 DNAポリメラーゼ(EP— A 455 430) (商標 V ent : Biolab New England社製)等が商業的に入手可能であり、中でも、テルムス •アクアティカス (Thermus aauaticus)由来の耐熱性 DNAポリメラーゼが好まし!/ヽ
[0062] 前記反応液中の DNAポリメラーゼの添加割合は、特に制限されないが、例えば、 1 〜; 100U/mLであり、好ましくは 5〜50U/mLであり、より好ましくは 20〜30U/m Lである。なお、 DNAポリメラーゼの活性単位(U)は、一般に、活性化サケ精子 DN Aを铸型プライマーとして、活性測定用反応液中、 74°Cで、 30分間に lOnmolの全 ヌクレオチドを酸不溶性沈殿物に取り込む活性力 S1Uである。前記活性測定用反応 液の糸且成は、例えば、 25mM TAPS buffer (pH9. 3、 25。C)、 50mM KC1、 2 mM MgCl 、 ImMメノレカプトエタノーノレ、 200 μ M dATP、 200 μ M dGTP、 2
2
00 Μ dTTP、 100 M「 α— 32P」dCTP、 0. 25mg/mL活性化サケ精子 DNA である。
[0063] 前記ヌクレオシド三リン酸としては、通常、 dNTP (dATP、 dCTP、 dTTP)があげら れる。前記反応液中の dNTPの添加割合は、特に制限されないが、例えば、 0. 01 〜; lmmol/Lであり、好ましくは 0· 05—0. 5mmol/Lであり、より好ましくは 0· ;!〜 0. 3mmolZLでめる。 [0064] 前記溶媒としては、例えば、 Tris-HCl, Tricine, MES、 MOPS, HEPES、 CA PS等の緩衝液があげられ、市販の PCR用緩衝液や市販の PCRキットの緩衝液等が 使用できる。
[0065] また、前記 PCR反応液は、さらに、へパリン、ベタイン、 KC1、 MgCl 、 MgSO、グリ
2 4 セロール等を含んでもよぐこれらの添加割合は、例えば、 PCR反応を阻害しない範 囲で設定すればよい。
[0066] 反応液の全体積は、特に制限されず、例えば、使用する機器 (サーマルサイクラ一 )等に応じて適宜決定できる力 通常、 1〜500 しであり、好ましくは 10〜; 100 し である。
[0067] つぎに、 PCRを行う。 PCRのサイクル条件は特に制限されないが、例えば、(1)全 血由来二本鎖 DNAの 1本鎖 DNAへの解離、(2)プライマーのアニーリング、 (3)プ ライマーの伸長(ポリメラーゼ反応)は、それぞれ以下の通りである。また、サイクル数 も特に制限されないが、下記(1)〜(3)の 3ステップを 1サイクルとして、例えば、 30サ イタル以上が好ましい。上限は特に制限されないが、例えば、合計 100サイクル以下 、好ましくは 70サイクル以下、さらに好ましくは 50サイクル以下である。各ステップの 温度変化は、例えば、サーマルサイクラ一等を用いて自動的に制御すればよい。本 発明のプライマーセットを使用した場合、前述のように増幅効率に優れるため、従来 の方法によれば 50サイクルに 3時間程度を要していたのに対して、本発明によれば、 約 1時間程度(好ましくは 1時間以内)で 50サイクルを完了することも可能である。
[0068] [表 4]
Figure imgf000025_0001
[0069] 以上のようにして、 NAT2遺伝子の 3つの領域に相補的な増幅産物を製造すること 力できる。なお、 3つの目的領域のうちいずれか 1つまたはいずれか 2つに相補的な 増幅産物を製造する場合には、例えば、プライマーセット(1)〜(3)のうち目的領域 に対応するレ、ずれ力、 1種類または!/、ずれか 2種類のプライマーセットを含む、本発明 の NAT2遺伝子増幅用プライマーセットを使用すればよい。
[0070] 本発明の増幅産物の製造方法は、さらに、前述の増幅反応によって得られた領域 の増幅産物を検出する工程を含んでもよい。これによつて、増幅産物の有無や、 NA T2遺伝子の前記目的領域における遺伝子型(多型 NAT2 * 5、 NAT2 * 6または N AT2 * 7)を検出することもできる。増幅産物の有無は、従来公知の方法により確認 できる。具体的には、例えば、前記 (I)工程において、前記反応液に、さらに、 NAT2 遺伝子の検出対象部位にハイブリダィズ可能なプローブ (例えば、蛍光標識化プロ ーブ)を添加しておき、さらに、(Π)工程として、前記反応液について、前記プローブ における蛍光標識の蛍光強度を測定することによって確認できる。また、増幅させる 目的領域が 2つまたは 3つの場合には、例えば、前記 (I)工程において、前記反応液 に、さらに、 NAT2遺伝子の各検出対象部位にハイブリダィズ可能なプローブ(例え ば、蛍光標識化プローブ)を 2種類または 3種類添加しておき、さらに、(Π)工程として 、前記反応液について、各プローブにおける各蛍光標識の蛍光強度を測定すること によって確認できる。なお、 NAT2遺伝子における多型 NAT2 * 5、 NAT2 * 6およ び NAT2 * 7の検出については、本発明の一形態として、以下に説明する。
[0071] < NAT2遺伝子の多型解析方法〉
本発明の NAT2遺伝子の多型解析方法は、 NAT2遺伝子における検出対象部位 の多型を解析する方法であって、下記 (i)〜(iv)工程を含むことを特徴とする。
(i)本発明の増幅産物の製造方法により、 NAT2遺伝子における検出対象部位を含 む領域を反応液中で増幅させる工程
(ii)前記 (i)工程における増幅産物と、前記検出対象部位にハイブリダィズ可能なプ ローブとを含む反応液を準備する工程
(iii)前記反応液の温度を変化させ、前記増幅産物と前記プローブとのハイブリッド形 成体の融解状態を示すシグナル値を測定する工程
(iv)温度変化に伴う前記シグナル値の変動から、前記検出対象部位の多型を決定 する工程
[0072] このように本発明のプライマーセットを用いて増幅産物の製造することによって、前 述のように NAT2遺伝子における多型(NAT2 * 5、 NAT2 * 6および NAT2 * 7) の検出対象部位を含む目的領域を増幅し、前記目的領域における検出対象部位の 多型を解析することができる。
[0073] 前記(i)工程におけるプローブは、特に制限されず、例えば、多型 NAT2 * 5の発 生部位にハイブリダィズするプローブ(以下、「NAT2 * 5用プローブ」ともいう)、多型 NAT2 * 6の発生部位にハイブリダィズするプローブ(以下、「NAT2 * 6用プローブ 」ともレ、う)および多型 NAT2 * 7の発生部位にハイブリダィズするプローブ(以下、「 NAT2 * 7用プローブ」ともいう)があげられる。これらのプローブは、前記検出対象 配列を含む検出対象配列に相補的なプローブであることが好ましい。これらのプロ一 ブは、いずれ力、 1種類でもよいし、いずれ力、 2種類または 3種類全てであってもよぐ 例えば、本発明の NAT2遺伝子増幅用プライマーセットによって増幅させた目的領 域の種類に応じて決定できる。 2種類または 3種類のプローブを用いた場合、例えば 、同一反応液を用いて、いずれ力、 2つの検出対象部位または前記 3つ全ての検出対 象部位の多型を解析することができる。
[0074] 前記多型を検出するためのプローブは、特に制限されず、従来公知の方法によつ て設定できる。例えば、多型の検出対象部位を含む検出対象配列として、 NAT2遺 伝子のセンス鎖の配列に基づいて設計してもよいし、アンチセンス鎖の配列に基づ いて設計してもよい。また、多型の検出対象部位の塩基は、各多型の種類に応じて 適宜決定できる。すなわち、 NAT2 * 5の場合、配列番号 1における 1063番目の塩 基に「T」および「C」の多型が知られていることから、例えば、 1063番目力 である検 出対象配列、および、 1063番目が Cである検出対象配列のいずれかに相補的なプ ローブ(センス鎖の検出用プローブ)や、そのアンチセンス鎖の配列に相補的なプロ ーブ(アンチセンス鎖の検出用プローブ)があげられる。また、 NAT2 * 6の場合、配 列番号 1における 1312番目の塩基に「G」および「A」の多型が知られていることから 、例えば、 1312番目が Gである検出対象配歹 IJ、および、 1312番目が Aである検出 対象配列の!/、ずれかに相補的なプローブ(センス鎖の検出用プローブ)や、そのアン チセンス鎖の配列に相補的なプローブ(アンチセンス鎖の検出用プローブ)があげら れる。また、 NAT2 * 7の場合、配列番号 1における 1579番目の塩基に「G」および「 A」の多型が知られていることから、例えば、 1579番目が Gである検出対象酉己列、お よび、 1579番目が Aである検出対象配列のいずれかに相補的なプローブ(センス鎖 の検出用プローブ)や、そのアンチセンス鎖の配列に相補的なプローブ(アンチセン ス鎖の検出用プローブ)があげられる。このように、多型が生じる検出対象部位の塩 基を前述のようないずれかの塩基に設定してプローブを設計しても、後述するような 方法により、 NAT2遺伝子の各検出対象部位においてどのような多型を示すかを判 断することが可能である。
[0075] 前記各プローブは、前記(i)工程の後、すなわち、 NAT2遺伝子の目的領域につ いて増幅反応を行った後、増幅反応液に添加することもできる力 容易且つ迅速に 解析を行えることから、前記 (i)工程の増幅反応に先立って、予め反応液に添加して おくことが好ましい。
[0076] 前記反応液におけるプローブの添加割合は、特に制限されな!/、が、例えば、各プ ローブを 10〜400nmolの範囲となるように添加することが好ましぐより好ましくは 20 〜200nmolである。また、プローブの標識として蛍光色素を用いている場合、例えば 、検出する蛍光強度を調整するために、標識化プローブと同じ配列である未標識プ ローブを併用してもよぐこの未標識プローブは、その 3'末端にリン酸が付加されても よい。この場合、標識化プローブと非標識プローブのモル比は、例えば、 1: 10-10 : 1が好ましい。前記プローブの長さは、特に制限されず、例えば、 5〜50merであり 、好ましくは 10〜30merである。
[0077] Tm値について説明する。二本鎖 DNAを含む溶液を加熱していくと、 260nmにお ける吸光度が上昇する。これは、二本鎖 DNAにおける両鎖間の水素結合が加熱に よってほどけ、一本鎖 DNAに解離 (DNAの融解)することが原因である。そして、全 ての二本鎖 DNAが解離して一本鎖 DNAになると、その吸光度は加熱開始時の吸 光度(二本鎖 DNAのみの吸光度)の約 1. 5倍程度を示し、これによつて融解が完了 したと判断できる。この現象に基づき、融解温度 Tmとは、一般に、吸光度が、吸光度 全上昇分の 50%に達した時の温度と定義される。 [0078] 前記(iii)工程にお!/、て、前記増幅産物と前記プローブとのハイブリッド形成体の融 解状態を示すシグナルの測定は、前述した、 260nmの吸光度測定でもよいが、標識 物質のシグナル測定であってもよい。具体的には、前記プローブとして、標識物質で 標識化された標識化プローブを使用し、前記標識化物質のシグナル測定を行うこと が好ましい。前記標識化プローブとしては、例えば、単独でシグナルを示し且つハイ ブリツド形成によりシグナルを示さな!/、標識化プローブ、または、単独でシグナルを示 さず且つハイブリッド形成によりシグナルを示す標識化プローブがあげられる。前者 のようなプローブであれば、検出対象配列とハイブリッド(二本鎖 DNA)を形成して!/ヽ る際にはシグナルを示さず、加熱によりプローブが遊離するとシグナルを示す。また、 後者のプローブであれば、検出対象配列とハイブリッド(二本鎖 DNA)を形成するこ とによってシグナルを示し、加熱によりプローブが遊離するとシグナルが減少(消失) する。したがって、この標識によるシグナルをシグナル特有の条件(吸収波長等)で検 出することによって、前記 260nmの吸光度測定と同様に、融解の進行ならびに Tm 値の決定等を行うことができる。
[0079] 本発明においては、前述のように、同一反応液で増幅させた 2つまたは 3つの目的 領域の増幅産物について多型を確認することもできる。このため、 2種類または 3種 類のプローブを使用する際には、それぞれ異なる条件で検出される異なる標識によ つて標識化されていることが好ましい。このように異なる標識を使用することによって、 同一反応液であっても、検出条件を変えることによって、各増幅産物を別個に解析 すること力 S可倉 となる。
[0080] 前記標識化プローブにおける標識物質の具体例としては、例えば、蛍光色素(蛍 光団)があげられる。前記標識化プローブの具体例としては、例えば、蛍光色素で標 識され、単独で蛍光を示し且つハイブリッド形成により蛍光が減少(例えば、消光)す るプローブが好ましい。このような蛍光消光現象(Quenching phenomenon)を禾 lj 用したプローブは、一般に、蛍光消光プローブと呼ばれる。中でも、前記プローブとし ては、オリゴヌクレオチドの 3 '末端もしくは 5 '末端が蛍光色素で標識化されているこ とが好ましぐ標識化される前記末端の塩基は、 Cであることが好ましい。この場合、 前記標識化プローブがハイブリダィズする検出対象配列において、前記標識化プロ ーブの末端塩基 Cと対をなす塩基もしくは前記対をなす塩基から;!〜 3塩基離れた塩 基が Gとなるように、前記標識化プローブの塩基配列を設計することが好ましい。この ようなプローブは、一般的にグァニン消光プローブと呼ばれ、いわゆる QProbe (登録 商標)として知られている。このようなグァニン消光プローブが検出対象配列にハイブ リダィズすると、蛍光色素で標識化された末端の Cが、前記検出対象 DNAにおける Gに近づくことによって、前記蛍光色素の発光が弱くなる(蛍光強度が減少する)とい う現象を示す。このようなプローブを使用すれば、シグナルの変動により、ハイブリダ ィズと解離とを容易に確認すること力 Sできる。
[0081] 前記蛍光色素としては、特に制限されないが、例えば、フルォレセイン、リン光体、 ローダミン、ポリメチン色素誘導体等があげられ、市販の蛍光色素としては、例えば、 BODIPY FL (商標、モレキュラー 'プローブ社製)、 FluorePrime (商品名、アマシ ャムフアルマシア社製)、 Fluoredite (商品名、ミリポア社製)、 FAM (ABI社製)、 Cy 3および Cy5 (アマシャムフアルマシア社製)、 TAMRA (モレキュラープローブ社製) 等があげられる。 3種類のプローブに使用する蛍光色素の組み合わせは、例えば、 異なる条件で検出できればよぐ特に制限されないが、例えば、 Pacific Blue (検出 波長 450〜480nm)、 TAMRA (検出波長 585〜700nm)および BODIPY FL ( 検出波長 515〜555nm)の組み合わせ等があげられる。
[0082] 以下に、多型 NAT2 * 5、 NAT2 * 6および NAT2 * 7を検出するためのプローブ の配列の具体例を示すが、本発明は、これには制限されない。下記プローブ(1)は、 NAT2 * 5用プローブの一例であり、センス鎖を検出するためのプローブである。下 記プローブ(2)は、 NAT2 * 6用プローブの一例であり、アンチセンス鎖を検出する ためのプローブである。下記プローブ(3)は、 NAT2 * 7用プローブの一例であり、ァ ンチセンス鎖を検出するためのプローブである。
[0083] プローブ(1)
(1— 1)配列番号 1における 1056番目のグァニン塩基 (G)を 1塩基目として 3'方向 に向かって 13〜; 19塩基目までの領域に相補的な少なくとも 1つのオリゴヌクレオチド であって、前記グァニン塩基 (G)に相補的なシトシン塩基を 3'末端とするオリゴヌク レオチド プローブ(2)
配列番号 1における 1302番目のシトシン塩基(C)を 1塩基目として 5'方向に向かつ て 18〜27塩基目までの領域と同じ配列である少なくとも 1つのオリゴヌクレオチドで あって、前記シトシン塩基を 5'末端とするオリゴヌクレオチド
プローブ(3)
配列番号 1における 1583番目のシトシン塩基(C)を 1塩基目として 5'方向に向かつ て 16〜21塩基目までの領域と同じ配列である少なくとも 1つのオリゴヌクレオチドで あって、前記シトシン塩基を 3,末端とするオリゴヌクレオチド
[0084] 前記プローブ(1)において、配列番号 1の 1063番目の塩基に相補的な塩基は、 r で表され、前記 yは、 Aまたは Gであり、前記プローブ(2)において、配列番号 1の 13 12番目にあたる塩基は、 rで表され、前記 rは、 Gまたは Aであり、前記プローブ(3)に おいて、配列番号 1の 1579番目にあたる塩基は、 rで表され、前記 rは、 Gまたは Aで ある。
[0085] さらに、前記プローブ(1)、プローブ(2)およびプローブ(3)の具体例を下記表に示 す。なお、下記表における「Tm(°C)」は、下記表の配列と完全に相補的な配列とが ハイブリッドした場合の Tm (°C)であり、 MELTCALCソフトウェア(http: //www . meltcalc. com/)により、パラメーターをオリゴヌクレオチド濃度 0· 2 ^ Μ、ナトリウ ム当量(Na eq. ) 50mMとして算出した値である。
[0086] [表 5]
配列 Tm (°C)
5'-tcctgccgtcaGtggtcac-3' 58.1 87
5'-cctgccgtcaGtggtcac-3' 56.8 88
5'-ctgccgtcaGtggtcac-3' 54.2 89
5'-tgccgtcaGtggtcac-3' 52.9 90
D 5 -gccgtcaGtggtcac-3' 50.8 91
5'-ccgtcaGtggtcac-3' 46.3 92
プローブ(1 ) 5'-cgtcaGtggtcac-3' 42.3 1 16
NAT2*5用 5'-tcctgccgtcaAtggtcac-3' 56.2 117
5' - cctgccgtcaAtggtcac - 3' 54.9 118
5'-ctgccgtcaAtggtcac-3' 52.2 1 19
5'-tgccgtcaAtggtcac-3' 50.7 120
5'-gccgtcaAtggtcac-3' 48.5 121
5' - ccgtcaAtggtcac - 3' 43.8 122
5'-cgtcaAtggtcac-3' 39.6 123
5'-cttgaacctcAaacaattgaagatttt-3' 53.4 93
5'-cttgaacctcAaacaattgaagattt-3' 52.9 94
5'-cttgaacctcAaacaattgaagatt-3' 52.4 95
5'-cttgaacctcAaacaattgaagat-3' 51.8 96
プローブ (2) 5'一 cttgaacctcAaacaattgaaga—3' 51.4 9フ
NAT2*6用 5'-cttgaacctcAaacaattgaag-3' 50.1 Θ8
5'-cttgaacctcAaacaattgaa-3' 48.9 99
5'-cttgaacctcAaacaattga-3' 48 100
5'-cttgaacctcAaacaattg-3' 46.4 101
5' - cttgaacctcAaacaatt - 3' 44.3 102
5'-cccaaacctggtgatgAatcc-3' 54.9 103
5'-ccaaacctggtgatgAatcc-3' 52.5 104
プローブ (3) 5'-caaacctggtgatgAatcc-3' 49.9 105
NAT2*7用 5'-aaacctggtgatgAatcc-3' 48 106
5' - aacctggtgatgAatcc - 3' 47 107
5'-acctggtgatgAatcc-3' 45.8 108 前記表におけるプローブ(1)は、配列番号 1における 1063番目が Cである領域に 相補的な配列からなり、大文字の塩基が、配列番号 1の 1063番目の塩基に相補的 な塩基を示す。なお、前記プローブ(1)において、前記大文字の塩基は、 rに置き換 えることができ、前記 rは、 Gおよび Aのいずれでもよい。前記表におけるプローブ(2) は、配列番号 1における 1312番目が Aである領域と同じ配列からなり、大文字の塩 基力 配列番号 1における 1312番目の塩基を示す。なお、前記プローブ(2)におい て、前記大文字の塩基は、 rに置き換えることができ、前記 rは、 Gおよび Aのいずれ でもよい。前記表におけるプローブ(3)は、配列番号 1における 1579番目が Aである 領域と同じ配列からなり、大文字の塩基が、配列番号 1の 1579番目の塩基を示す。 なお、前記プローブ(3)において、大文字の塩基は、 rに置き換えることができ、前記 rは、 Gおよび Aのいずれでもよい。本発明におけるプローブの具体例としては、例え ば、前述のように、前記表に示すオリゴヌクレオチドの相補鎖であってもよい。
[0088] 前記プローブは一例であって、本発明はこれには限定されない。 NAT2 * 5用プロ ーブとしては、前記プローブ(1)の中でも、例えば、配列番号 90、配列番号 91、配列 番号 118および配列番号 122の塩基配列からなるオリゴヌクレオチドからなる群から 選択された少なくとも 1つのオリゴヌクレオチドが好ましい。また、 NAT2 * 5用プロ一 ブとしては、 V、わゆる野生型検出用プローブと変異型検出用プローブとを併用するこ とが好ましい。ここで、野生型検出用プローブとは、例えば、配列番号 1の 1063番目 の塩基力 である検出対象配列(センス鎖)またはその相補鎖(アンチセンス鎖)を検 出するためのプローブであり、変異型検出用プローブとは、配列番号 1の 1063番目 の塩基が Cである検出対象配列(センス鎖)またはその相補鎖(アンチセンス鎖)を検 出するためのプローブである。本発明においては、例えば、配列番号 87〜92および 116の塩基配列からなる少なくとも 1つのオリゴヌクレオチド(変異型検出用プローブ) と、配列番号 117〜; 123の塩基配列からなる少なくとも 1つのオリゴヌクレオチド(野生 型検出用プローブ)とを併用することが好ましぐより好ましくは、配列番号 90または 配列番号 91の塩基配列からなるオリゴヌクレオチド(変異型検出用プローブ)と、配 列番号 118または配列番号 122の塩基配列からなるオリゴヌクレオチド(野生型検出 用プローブ)との併用である。このように野生型検出用プローブと変異型検出用プロ 一ブとを併用する場合、例えば、各プローブのパーフェクトマッチの Tm値をずらして 設定することが好ましい。
[0089] NAT2 * 6用プローブとしては、配列番号 99の塩基配列からなるオリゴヌクレオチド が好ましい。 NAT2 * 7用プローブとしては、配列番号 105または配列番号 107の塩 基配列からなるオリゴヌクレオチドが好ましい。
[0090] そして、これらのプローブは、 2種類以上を使用する際には、前述のように、それぞ れ異なる蛍光色素(異なる波長で検出される蛍光色素)で標識化することが好ましレヽ 。例えば、前記表に示すプローブをグァニン消光プローブとする場合、 NAT2 * 5用 プローブ(プローブ(1) )および NAT2 * 7用プローブ(プローブ(3) )は、 3'末端のシ トシンを前述のような蛍光色素(例えば、 BODIPY FL、 TAMRA等)で標識化し、 NAT2 * 6用プローブ(プローブ(2) )は、 5'末端のシトシンを前述のような蛍光色素 (例えば、 Pacific Blue)で標識化することが好ましい。また、 5'末端に蛍光色素を 標識化したプローブは、例えば、プローブ自体が伸長することを予防するために、そ の 3'末端にさらにリン酸基が付加されてもよい。また、前述のように野生型検出用プ ローブと変異型検出用プローブを使用する場合、それぞれの蛍光色素は、同じであ つても異なっていてもよい。
[0091] 次に、本発明の検出方法について、一例として、下記プローブを用いて、 NAT2遺 伝子における 3つの多型 NAT2 * 5、 NAT2 * 6および NAT2 * 7を検出する方法 を説明する。なお、本発明はこれには制限されない。
[0092] (プローブ)
NAT2 * 5用プローブ
5'- tgccgtcaGtggtcac- (BODIPY FL)- 3' (配列番号 90)、
5'- gccgtcaGtggtcac- (BODIPY FL)- 3' (配列番号 91)、
5'-cctgccgtcaAtggtcac-(BODIPY FL)_3' (配列番号 118)、または、 5'-ccgtcaAtggtcac-(BODIPY FL)_3' (配列番号 122)
NAT2 * 6用プローブ
5 '-(Pacific Blue)— cttgaacctcAaacaattgaa— P-3' (酉己歹 IJ番号 99)
NAT2 * 7用プローブ
5'-caaacctggtgatgAatcc-(TAMRA)-3' (配列番号 105)、または、
5'-aacctggtgatgAatcc-(TAMRA)-3' (配列番号 107)、
[0093] まず、前記 3種類の標識化プローブを添加した反応液を用いて、前述のように PCR を行い、同一反応液中で、 NAT2遺伝子の 3つの領域を同時に増幅させる。前記反 応液は、例えば、本発明の NAT2遺伝子増幅用プライマーセット、 DNAポリメラーゼ 、 dNTP、铸型となる核酸を含む試料、および、前記 3種類のプローブを含む。この 他に、核酸増幅に使用できる種々の添加剤を含んでもよい。
[0094] 次に、得られた増幅産物の解離、および、解離により得られた一本鎖 DNAと前記 標識化プローブとのハイブリダィズを行う。これは、例えば、前記反応液の温度変化 によって fiうことができる。 [0095] 前記解離工程における加熱温度は、前記増幅産物が解離できる温度であれば特 に制限されないが、例えば、 85〜95°Cである。加熱時間も特に制限されないが、通 常、 1秒〜 10分であり、好ましくは 1秒〜 5分である。
[0096] 解離した一本鎖 DNAと前記標識化プローブとのハイブリダィズは、例えば、前記解 離工程の後、前記解離工程における加熱温度を降下させることによって行うことがで きる。温度条件としては、例えば、 40〜50°Cである。
[0097] そして、前記反応液の温度を変化させ、前記増幅産物と前記標識化プローブとの ハイプリッド形成体の融解状態を示すシグナル値を測定する。具体的には、例えば、 前記反応液(前記一本鎖 DNAと前記標識化プローブとのハイブリッド形成体)を加 熱し、温度上昇に伴うシグナル値の変動を測定する。前述のように、末端の C塩基が 標識化されたプローブ(グァニン消光プローブ)を使用した場合、一本鎖 DNAとのハ イブリダィズした状態では、蛍光が減少ほたは消光)し、解離した状態では、蛍光を 発する。したがって、例えば、蛍光が減少ほたは消光)しているハイブリッド形成体を 徐々に加熱し、温度上昇に伴う蛍光強度の増加を測定すればよい。
[0098] 蛍光強度の変動を測定する際の温度範囲は、特に制限されな!/、が、例えば、開始 温度が室温〜 85°Cであり、好ましくは 25〜70°Cであり、終了温度は、例えば、 40〜 105°Cである。また、温度の上昇速度は、特に制限されないが、例えば、 0.;!〜 20 °C /秒であり、好ましくは 0. 3〜5°C/秒である。
[0099] 次に、前記シグナルの変動を解析して Tm値を決定する。具体的には、得られた蛍 光強度から各温度における単位時間当たりの蛍光強度変化量(一 d蛍光強度増加量 /dt)を算出し、最も低い値を示す温度を Tm値として決定できる。また、単位時間当 たりの蛍光強度増加量 (蛍光強度増加量/ 1)が最も高い点を Τι^直として決定するこ ともできる。なお、標識化プローブとして、消光プローブではなぐ単独でシグナルを 示さず且つハイブリッド形成によりシグナルを示すプローブを使用した場合には、反 対に、蛍光強度の減少量を測定すればょレ、。
[0100] 本発明にお!/、ては、 3つの多型 NAT2 * 5、 NAT2 * 6および NAT2 * 7を検出す るため、 3種類のプローブの各標識に応じた条件で、それぞれの Tm値を決定する。
NAT2 * 5用プローブの BODIPY FLは、例えば、検出波長 515〜555nm、 NAT 2 * 6用プローブの Pacific Blueは、例えば、検出波長 450〜480nm、 NAT2 * 7 用プローブの TAMRAは、例えば、検出波長 585〜700nmで検出することができる
[0101] そして、これらの Tm値から、各検出対象部位における遺伝子型を決定する。 Tm解 析において、完全に相補であるハイブリッド(マッチ)は、一塩基が異なるハイブリッド( ミスマッチ)よりも、解離を示す Tm値が高くなるという結果が得られる。したがって、予 め、前記プローブについて、完全に相補であるハイブリッドの Tm値と、一塩基が異な るハイブリッドの Tm値とを決定しておくことにより、各検出対象部位における遺伝子 型を決定することができる。例えば、検出対象部位の塩基を変異型 (例えば、配列番 号 1における 1063番目の塩基が C)と仮定し、それを含む検出対象配列に相補的な プローブを使用した場合、形成したハイブリッドの Tm値力 完全に相補なハイブリツ ドの Tm値と同じであれば、前記増幅産物の多型は、変異型と判断できる。また、形 成したハイブリッドの Tm値力 S、一塩基異なるハイブリッドの Tm値と同じ(完全に相補 なハイブリッドの Tm値より低い値)であれば、前記増幅産物の多型は、野生型(例え ば、配列番号 1における 1063番目の塩基が T)と判断できる。さらに、両方の Tm値 が検出された場合には、ヘテロ接合体と決定できる。このようにして、各標識化プロ一 ブに対する 3つの Tm値から、多型 NAT2 * 5、 NAT2 * 6および NAT2 * 7の遺伝 子型を判断することができる。
[0102] また、本発明においては、前述のように、前記プローブを含む反応液の温度を上昇 させて (ノヽイブリツド形成体を加熱して)、温度上昇に伴うシグナル変動を測定する方 法に代えて、例えば、ハイブリッド形成時におけるシグナル変動の測定を行ってもよ い。すなわち、前記プローブを含む反応液の温度を降下させてハイブリッド形成体を 形成する際に、前記温度降下に伴うシグナル変動を測定してもよい。
[0103] 具体例として、単独でシグナルを示し且つハイブリッド形成によりシグナルを示さな い標識化プローブ (例えば、グァニン消光プローブ)を使用した場合、一本鎖 DNAと プローブとが解離している状態では蛍光を発している力 S、温度の降下によりハイブリツ ドを形成すると、前記蛍光が減少ほたは消光)する。したがって、例えば、前記反応 液の温度を徐々に降下して、温度下降に伴う蛍光強度の減少を測定すればよい。他 方、単独でシグナルを示さず且つハイブリッド形成によりシグナルを示す標識化プロ ーブを使用した場合、一本鎖 DNAとプローブとが解離して!/、る状態では蛍光を発し ていないが、温度の降下によりハイブリッドを形成すると、蛍光を発するようになる。し たがって、例えば、前記反応液の温度を徐々に降下して、温度下降に伴う蛍光強度 の増加を測定すればよい。
[0104] なお、 NAT2遺伝子の 3種類の多型(NAT2 * 5、 NAT2 * 6または NAT2 * 7)の うちいずれ力、 1つまたはいずれ力、 2つの多型を解析する場合には、例えば、プライマ 一セットひ)〜(3)のうち目的領域に対応するレ、ずれ力、 1種類またはレ、ずれか 2種類 のプライマーセットを含む、本発明の NAT2遺伝子増幅用プライマーセットを使用し 、さらに、 目的の検出対象部位にハイブリダィズするいずれ力、 1種類のプローブまた は!/、ずれ力、 2種類のプローブを使用すればよ!/、。
[0105] つぎに、本発明の実施例について説明する。ただし、本発明は、下記実施例により 制限されない。
実施例 1
[0106] 被検者 4人からへパリンリチウム採血管を用いて採血を行った(サンプル 1〜4)。得 られた血液 10 H Lと蒸留水 90 H Lを混合し、さらに、この混合液 10 Lと蒸留水 90 μ Lとを混合した。これら混合液 10 Lを、下記組成の PCR反応液 40 μ Lに添加し、 サーマルサイクラ一を用いて PCRを行った。 PCRの条件は、 95°Cで 60秒処理した 後、 95°C1秒および 60°C10秒を 1サイクルとして 50サイクル繰り返し、さらに 95°Cで 1秒、 40°Cで 60秒処理した。そして、続けて、温度の上昇速度を C/3秒として、前 記 PCR反応液を 40°Cから 95°Cに加熱していき、経時的な蛍光強度の変化を測定し た。測定波長は、測定波長は、 450〜480nm (蛍光色素 Pacific Blueの検出)、 5 15〜555nm (蛍光色素 BODIPY FLの検出)、および、 585〜700nm (蛍光色素 TAMRAの検出)とした。なお、 50サイクルの PCRに要した時間は、約 1時間であつ た。
[0107] [表 6] (P CR反応液:単位 I )
蒸留水 1 7. 3
5% N a 0. 5
20% BS A 1
40¾グリセロール 3. 1
1 0 G e n e T £ a q b u f f e r ¾ 5
2. 5mM d N T P i 4
1 0 Om M g C I 2 0. 5
5〃M NA T 2 * 5用プロ —ブ 1
5 jU M AT 2 * 5用プロ —ブ 2 3
5 i M NAT 2 * 6用プロ —ブ 1 . 5
5 jW M NAT 2 * 7用プローブ 0. 5
1 00 M N A T 2 5 F 1プライマ一 0. 5
^ 00 μΝ\ N AT 2 ^ 5 R 1プライマ一 0. 2
1 00 M N AT 2 ^ 6 F 2プライマ一 0. 2
1 00 M N AT 2 ^ ^ 6 R 2プライマー 0. 5
1 00 μΜ NA T 2 7 F 3プライマ一 0. 2
1 00 N AT 2 7 R 3プライマ一 0. 5
Figure imgf000038_0001
T o t a l A O U
* 商品名 G e n e T a q F P : 二ッポンジーン社製
[0108] (プローブ)
NAT2*5用プローブ 1
5'-tgccgtcaGtggtcac-(BODIPY FL)- 3' (配列番号 90)
NAT2*5用プローブ 2
5'-tgccgtcaGtggtcac-P-3' (配列番号 90)
NAT2*6用プローブ
5 '-(Pacific Blue)— cttgaacctcAaacaattgaa— P-3' (酉己歹 IJ番号 99) NAT2*7用プローブ
5 ' -caaacctggtgatgAatcc-(TAMRA)-3 ' (配列番号 105)
[0109] (プライマーセット)
NAT2*5 F1プライマー
5 -cagttaacaaatacagcactggcatgg-3 (¾列番号 7)
NAT2 ^ 5 R1プライマー
5 -acatctgggaggagcttccag-3 (酉己列番号 18) NAT2 * 6 F2プライマー
5'-ctcatctcctgccaaagaagaaac-3' (酉己列番号 33)
NAT2 * 6 R2プライマー
5— gatgtggttataaatgaagatgttggagac— 3 (目歹1 J番^ "48)
NAT2 * 7 F3プライマー
5 -aaatatatttaagatttccttggggagaaat-3 (酉己歹1 J^i号り 0)
NAT2 * 7 R3プライマー
5 -t gagt t gggt gat ac at ac acaaggg- J ' (目 ti列番^ "81)
[0110] NAT2 * 5用プローブとマッチするハイブリッドの Tm値は 66· 0°C、ミスマッチのハ イブリツドの Tm値は 58· 0°C、 NAT2 * 6用プローブとマッチするハイブリッドの Tm 値は 61. 0°C、ミスマッチのハイブリッドの Tm値は 53· 0°C、 NAT2 * 7用プローブと マッチするハイブリッドの Tm値は 63· 0°C、ミスマッチのハイブリッドの Tm値は 56· 0 Cである。
[0111] サンプル 1〜4の結果を図 1に示す。この図は、温度上昇に伴う蛍光強度の変化を 示す Tm解析のグラフであり、縦軸の微分値は「一 d蛍光強度増加量/ dt」を示し、横 軸は温度を示す(以下、同様)。同図に示すように、シグナルのピークから、各サンプ ルにおける NAT2 * 5、 NAT2 * 6および NAT2 * 7の遺伝子型を決定した。これら の実施例の結果を裏付けるために、被検者 8人について、 RFLP法およびシークェ ンス法によって、 NAT2 * 5、 NAT2 * 6および NAT2 * 7の多型を確認した結果、 実施例と同じ結果が得られた。このように、本発明のプライマーセットを使用すること により、前処理を施していない全血試料を使用して、 NAT2遺伝子の 3つの領域を同 一反応液中で同時に増幅し、且つ、前記同一反応液を用いて 3種類の多型を解析 すること力 Sでさた。
実施例 2
[0112] 被検者 3人から EDTA採血管を用いて採血を行った(サンプル;!〜 3)。得られた血 液 10 11 Lと下記希釈液 A 7011 Lとを混合し、さらに、この混合液 10 Lと下記希釈 液 Β 70 μ Lとを混合した。得られた混合液 10 Lを 95°Cで 5分間加熱処理した後、 下記組成の PCR反応液 46 μ Lに添加し、サーマルサイクラ一を用いて PCRを行つ た。 PCRの条件は、 95°Cで 60秒処理した後、 95°C1秒および 65°C15秒を 1サイク ルとして 50サイクル繰り返し、さらに 95°Cで 1秒、 40°Cで 60秒処理した。そして、続 けて、温度の上昇速度を C/3秒として、前記 PCR反応液を 40°Cから 75°Cに加熱 していき、経時的な蛍光強度の変化を測定した。測定波長は、 450〜480nm (蛍光 色素 Pacific Blueの検出)、 515〜555nm (蛍光色素 BODIPY FLの検出)、お よび、 585〜700nm (蛍光色素 TAMRAの検出)とした。
[0113] (希釈液 A)
10mM Tris— HCl(pH8)、 0. ImM EDTA、 0.05% NaN、 0.3% SDS
3
(希釈液 B)
lOmM Tris— HCl(pH8)、 0· ImM EDTA、 0.05% NaN
3
[0114] [表 7]
(PCR反応液:単位 ί/ I )
蒸留水 14. 5
5% NaN 0. 5
20% BS A 0. 5
40。/oグリセロール 12. 5
1 0 G e n e T £ a q b u f f e r^ 5
2. 5mM d NTP 4
1 0 OmM MgC 12 0. 5
5 jWM N A T 2 * 5用プロ —ブ 1 1
5 jUM N A T 2 * 5用プロ —ブ 2 1
5 M NAT 2 * 6用プローブ
5 ji M AT 2 * 7用プローブ 2
100 / M ΝΑΤ2 ^ ^ 5 F 1プライマ一 0. 5
100 M Ν ΑΤ2 ^ 5 R1プライマ一 0. 25
100 M Ν ΑΤ2 ^ ^ 6 F2プライマ一 0. 25
100 jUM N AT 2 =i ^ 6 R 2プライマ一 0. 5
100 jUM N AT 2 =) 7 F3プライマ一 0. 25
1 OO iM NAT 2 ^ 7 R3プライマ一 0. 5
5 U// 1 Ge n e T a q F * 0. 25
T o t a I し
* 商品名 Ge n e T a q FP 二ツボンジーン社製
[0115] (プローブ)
NAT2*5用プローブ 1 5' - gccgtcaGtggtcac - (BODIPY FL)— 3' (配列番号 91)
NAT2 * 5用プローブ 2
5' - ccgtcaAtggtcac - (BODIPY FL)- 3' (配列番号 118
NAT2 * 6用プローブ
5'— (Pacific Blue)― cttgaacctcAaacaattgaa— P— 3 ' (酉己歹 IJ番号 99) NAT2 * 7用プローブ
5'― aacctggtgatgAatcc― (TAMRA) 3' (配列番号 107)
[0116] (プライマーセット)
NAT2 * 5 F1プライマー
5― tccagttaacaaatacagcactggcatgg― ό ' (配列番号 7) NAT2 * 5 R1プライマー
5― ccacatctgggaggagcttccag― 3 (配列番号 18) NAT2 * 6 F2プライマー
5― agaatttcttaattctcatctcctgccaaagaagaaac― 3 (目己列番^ "d3)
NAT2 * 6 R2プライマー
5— gaacaaaatgatgtggttataaatgaagatgttggagac (目 ti列番^ "48) NAT2 * 7 F3プライマー
5― agtgctgaaaaatatatttaagatttccttggggagaaat― 3 (酉己歹1 J^i ^"り 0) NAT2 * 7 R3プライマー
5— tgataattagtgagttgggtgatacatacacaaggg— (目列番^ "81) [0117] NAT2 * 5用プローブとマッチするハイブリッドの Tm値は 63°C、ミスマッチのハイブ リツドの Tm値は 56°C、 NAT2 * 6用プローブとマッチするハイブリッドの Tm値は 58 °C、ミスマッチのハイブリッドの Tm値は 50· 5°C、 NAT2 * 7用プローブとマッチする ハイブリッドの Tm値は 58°C、ミスマッチのハイブリッドの Tm値は 49°Cである。
[0118] サンプル 1〜3の結果を図 2に示す。この図は、温度上昇に伴う蛍光強度の変化を 示す Tm解析のグラフであり、縦軸の微分値は「一 d蛍光強度増加量/ dt」を示し、横 軸は温度を示す。同図に示すように、シグナルのピークから、各サンプルにおける N AT2 * 5、 NAT2 * 6および NAT2 * 7の遺伝子型を決定した。これらの実施例の 結果を裏付けるために、被検者 3人について、 RFLP法およびシークェンス法によつ て、 NAT2 * 5、 NAT2 * 6および NAT2 * 7の多型を確認した結果、実施例と同じ 結果が得られた。このように、本発明のプライマーセットを使用することにより、前処理 を施していな!/、全血試料を使用して、 NAT2遺伝子の 3つの領域を同一反応液中で 同時に増幅し、且つ、前記同一反応液を用いて 3種類の多型を解析することができ た。
産業上の利用可能性
以上のように、本発明のプライマーセットによれば、 NAT2遺伝子における特定の 多型(NAT2 * 5、 NAT2 * 6または NAT2 * 7)が生じる部位を含む領域を、特異 的に高効率で増幅することができる。このため、前述のような従来法とは異なり手間 やコストを低減することが可能となる。また、このように多型の検出対象部位を含む領 域が特異的に増幅されることから、例えば、前記検出対象部位を含む検出対象配列 に相補的なプローブを使用することで、前記反応液を用いてそのまま Tm解析を行レ、 、前記多型をタイピングすることが可能となる。また、 1つの反応液で増幅やタイピン グが可能であることから、操作の自動化も可能になる。さらに、本発明のプライマーセ ットを用いれば、例えば、夾雑物が含まれる試料 (例えば、全血や口腔粘膜等)であ つても、前処理を省略できるため、より迅速且つ簡便に増幅反応を行うことができる。 また、本発明のプライマーセットを用いれば、従来よりも優れた増幅効率で増幅反応 が行えるため、増幅反応も短縮化が可能である。したがって、本発明のプライマーセ ットゃこれを含む試薬、ならびにこれらを用いた増幅産物の製造方法によれば、 NA T2遺伝子の多型を迅速かつ簡便に解析できることから、医療分野においてきわめて 有効といえる。

Claims

請求の範囲 遺伝子増幅法により NAT2遺伝子を増幅するためのプライマーセットであって、 下記プライマーセット(1)〜(3)からなる群から選択された少なくとも 1つのプライマ 一セットを含むことを特徴とする NAT2遺伝子増幅用プライマーセット。 プライマーセット(1) 下記(F1)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R1)のオリ ゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F1)配列番号 1の塩基配列における 1038番目のグァニン塩基(G)を 1塩基目とし て 5'方向に向力、つて 20〜32塩基目までの領域と同じ配列である少なくとも一つのォ リゴヌクレオチドであって、前記グァニン塩基(G)を 3'末端とするオリゴヌクレオチド (R 1 )配列番号 1の塩基配列における 1096番目のシトシン塩基( C )を 1塩基目として 3'方向に向力 て 17〜24塩基目までの領域に相補的な少なくとも一つのオリゴヌク レオチドであって、前記 1096番目のシトシン塩基(C)に相補的なグァニン塩基(G) プライマーセット(2)
下記(F2)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R2)のオリ ゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F2)配列番号 1の塩基配列における 1278番目のシトシン塩基(C)を 1塩基目として 5'方向に向かって 20〜38塩基目までの領域と同じ配列である少なくとも一つのオリ ゴヌクレオチドであって、前記シトシン塩基(C)を 3,末端とするオリゴヌクレオチド (R2)配列番号 1の塩基配列における 1355番目のグァニン塩基(G)を 1塩基目とし て 3'方向に向力、つて 25〜40塩基目までの領域に相補的な少なくとも一つのオリゴヌ クレオチドであって、前記 1355番目のグァニン塩基(G)に相補的なシトシン塩基(C および、
配列番号 1の塩基配列における 1614番目のシトシン塩基(C)を 1塩基目として 3,方 向に向かって 2;!〜 36塩基目までの領域に相補的な少なくとも一つのオリゴヌクレオ チドであって、前記 1614番目のシトシン塩基(C)に相補的なグァニン塩基(G)を 3' の少なくとも一方のオリゴヌクレオチド
プライマーセット(3)
下記(F3)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R3)のオリ ゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F3)配列番号 1の塩基配列における 1556番目のチミン塩基 (T)を 1塩基目として 5 '方向に向かって 2;!〜 40塩基目までの領域と同じ配列である少なくとも一つのオリゴ ヌクレオチドであって、前記チミン塩基 (T)を 3'末端とするオリゴヌクレオチド、 および、
配列番号 1の塩基配列における 1278番目のシトシン塩基(C)を 1塩基目として 5'方 向に向かって 20〜38塩基目までの領域と同じ配列である少なくとも一つのオリゴヌク レオチドであって、前記シトシン塩基(C)を 3'末端とするオリゴヌクレオチド の少なくとも一方のオリゴヌクレオチド
(R3)配列番号 1の塩基配列における 1614番目のシトシン塩基 (C)を 1塩基目として 3'方向に向かって 2;!〜 36塩基目までの領域に相補的な少なくとも一つのオリゴヌク レオチドであって、前記 1614番目のシトシン塩基(C)に相補的なグァニン塩基(G)
[2] 前記プライマーセット(1)〜(3)が、それぞれ下記プライマーセット(1 ' )〜(3' )であ る、請求の範囲 1記載の NAT2遺伝子増幅用プライマーセット。
プライマーセット ') 下記(F1 ' )のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R1 ' )の オリゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F1 ' )配列番号 5の塩基配列からなるオリゴヌクレオチド、および、配列番号 7の塩基 酉己列からなるオリゴヌクレオチドの少なくとも一方のオリゴヌクレオチド
(R1 ' )配列番号 16の塩基配列からなるオリゴヌクレオチド、および、配列番号 18の 塩基配列からなるオリゴヌクレオチドの少なくとも一方のオリゴヌクレオチド
プライマーセット(2' )
下記(F2,)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R2,)の オリゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F2' )配列番号 33の塩基配列からなるオリゴヌクレオチド、および、配列番号 109の 塩基配列からなるオリゴヌクレオチドの少なくとも一方のオリゴヌクレオチド
(R2' )配列番号 39の塩基配列からなるオリゴヌクレオチド、および、配列番号 48の 塩基配列からなるオリゴヌクレオチドの少なくとも一方のオリゴヌクレオチド プライマーセット(3,)
下記(F3,)のオリゴヌクレオチドからなるフォワードプライマーおよび下記(R3,)の オリゴヌクレオチドからなるリバースプライマーを含む一対のプライマーセット
(F3' )配列番号 60の塩基配列からなるオリゴヌクレオチド、および、配列番号 113の 塩基配列からなるオリゴヌクレオチドの少なくとも一方のオリゴヌクレオチド
(R3' )配列番号 71の塩基配列からなるオリゴヌクレオチド、および、配列番号 81の 塩基配列からなるオリゴヌクレオチドの少なくとも一方のオリゴヌクレオチド
[3] NAT2遺伝子増幅用プライマーセットが、生体試料中の NAT2遺伝子を増幅する ためのプライマーセットである、請求の範囲 1記載の NAT2遺伝子増幅用プライマー セット。
[4] 前記生体試料が、全血である、請求の範囲 3記載の NAT2遺伝子増幅用プライマ 一セット。
[5] 遺伝子増幅法により NAT2遺伝子を増幅するための試薬であって、請求の範囲 1 記載の NAT2遺伝子増幅用プライマーセットを含むことを特徴とする NAT2遺伝子 増幅用試薬。
[6] さらに、 NAT2遺伝子の検出対象部位にハイブリダィズ可能なプローブを含む、請 求の範囲 5記載の NAT2遺伝子増幅用試薬。
[7] 前記プローブが、下記 (Ρ1 ' )〜(Ρ3' )に示すオリゴヌクレオチドからなる群から選 択された少なくとも 1つのプローブである、請求の範囲 6記載の ΝΑΤ2遺伝子増幅用 試薬。
(ΡΙ ' )配列番号 90の塩基配列からなるオリゴヌクレオチド、配列番号 91の塩基配列 力 なるオリゴヌクレオチド、配列番号 118の塩基配列からなるオリゴヌクレオチドおよ び配列番号 122の塩基配列からなるオリゴヌクレオチドからなる群から選択された少 なくとも一つのオリゴヌクレオチド
(Ρ2' )配列番号 99の塩基配列からなるオリゴヌクレオチド
(Ρ3' )配列番号 105の塩基配列からなるオリゴヌクレオチド、および、配列番号 107 の塩基配列からなるオリゴヌクレオチドの少なくとも一方のオリゴヌクレオチド
[8] 前記プローブが、蛍光標識化プローブである、請求の範囲 6記載の ΝΑΤ2遺伝子 増幅用試薬。
[9] 遺伝子増幅法により ΝΑΤ2遺伝子の増幅産物を製造する方法であって、
下記 (I)工程を含むことを特徴とする増幅産物の製造方法。
(I)試料中の核酸を铸型として、請求の範囲 1記載の ΝΑΤ2遺伝子増幅用プライマ 一セットを用いて、反応液中で、前記 ΝΑΤ2遺伝子の増幅を行う工程
[10] 前記 (I)工程において、前記反応液に、さらに、 ΝΑΤ2遺伝子の検出対象部位に ハイブリダィズ可能なプローブを添加する、請求の範囲 9記載の増幅産物の製造方 法。
[11] 前記プローブが、下記 (Ρ1 ' )〜(Ρ3' )に示すオリゴヌクレオチドからなる群から選 択された少なくとも 1つのプローブである、請求の範囲 10記載の増幅産物の製造方 法。
(ΡΙ ' )配列番号 90の塩基配列からなるオリゴヌクレオチド、配列番号 91の塩基配列 力 なるオリゴヌクレオチド、配列番号 118の塩基配列からなるオリゴヌクレオチドおよ び配列番号 122の塩基配列からなるオリゴヌクレオチドからなる群から選択された少 なくとも一つのオリゴヌクレオチド
(Ρ2' )配列番号 99の塩基配列からなるオリゴヌクレオチド
(Ρ3' )配列番号 105の塩基配列からなるオリゴヌクレオチド、および、配列番号 107 の塩基配列からなるオリゴヌクレオチドの少なくとも一方のオリゴヌクレオチド
[12] 前記プローブが、蛍光標識化プローブである、請求の範囲 10記載の増幅産物の 製造方法。
[13] さらに、下記 (II)工程を含む、請求の範囲 12記載の増幅産物の製造方法。
(II)前記反応液について、前記蛍光標識化プローブにおける蛍光標識の蛍光強度 を測定する工程
[14] 前記試料が、生体試料である、請求の範囲 9記載の増幅産物の製造方法。
[15] 前記生体試料が、全血である、請求の範囲 14記載の増幅産物の製造方法。
[16] 前記反応液における全血試料の添加割合力 0. ;!〜 0. 5体積%である、請求の範 囲 15記載の増幅産物の製造方法。
[17] NAT2遺伝子における検出対象部位の多型を解析する方法であって、
下記 ω〜(iV)工程を含むことを特徴とする多型解析方法。
(i)請求の範囲 9記載の増幅産物の製造方法により、 NAT2遺伝子における検出対 象部位を含む領域を反応液中で増幅させる工程
(ϋ)前記 ω工程における増幅産物と、前記検出対象部位にハイブリダィズ可能なプ ローブとを含む反応液を準備する工程
(iii)前記反応液の温度を変化させ、前記増幅産物と前記プローブとのハイブリッド形 成体の融解状態を示すシグナル値を測定する工程
(iv)温度変化に伴う前記シグナル値の変動から、前記検出対象部位の多型を決定 する工程
[is] 前記 ω工程において、増幅反応に先立って、前記反応液に、前記検出対象部位 にハイブリダィズ可能なプローブを添加する、請求の範囲 17記載の多型解析方法。
PCT/JP2007/073204 2006-11-30 2007-11-30 Jeu d'amorces pour l'amplification du gène nat2, réactif pour l'amplification du gène nat2 comprenant ledit jeu d'amorces et utilisation du réactif WO2008066161A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008517251A JPWO2008066161A1 (ja) 2006-11-30 2007-11-30 Nat2遺伝子増幅用プライマーセット、それを含むnat2遺伝子増幅用試薬およびその用途
EP07832869A EP2078747A4 (en) 2006-11-30 2007-11-30 PRIMER SET FOR THE REINFORCEMENT OF THE NAT2 GENE, REAGENT FOR THE REINFORCEMENT OF THE NAT2 GENE THEREFOR AND APPLICATION THEREOF
KR1020117001785A KR101110425B1 (ko) 2006-11-30 2007-11-30 Nat2 유전자 증폭용 프라이머 셋트, 그것을 포함하는 nat2 유전자 증폭용 시약 및 그 용도
US12/297,157 US20100297617A1 (en) 2006-11-30 2007-11-30 Primer set for amplifying nat2 gene, reagent for amplifying nat2 gene containing the same, and the uses thereof
US13/084,919 US20110287421A1 (en) 2006-11-30 2011-04-12 Probes for Detection of NAT2 Gene, Reagent Containing the Same, and The Uses Thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006322956 2006-11-30
JP2006-322956 2006-11-30
JP2007232612 2007-09-07
JP2007-232612 2007-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/084,919 Division US20110287421A1 (en) 2006-11-30 2011-04-12 Probes for Detection of NAT2 Gene, Reagent Containing the Same, and The Uses Thereof

Publications (1)

Publication Number Publication Date
WO2008066161A1 true WO2008066161A1 (fr) 2008-06-05

Family

ID=39467947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073204 WO2008066161A1 (fr) 2006-11-30 2007-11-30 Jeu d'amorces pour l'amplification du gène nat2, réactif pour l'amplification du gène nat2 comprenant ledit jeu d'amorces et utilisation du réactif

Country Status (6)

Country Link
US (2) US20100297617A1 (ja)
EP (1) EP2078747A4 (ja)
JP (1) JPWO2008066161A1 (ja)
KR (2) KR101068605B1 (ja)
CN (1) CN102154274A (ja)
WO (1) WO2008066161A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001969A1 (ja) * 2008-07-02 2010-01-07 アークレイ株式会社 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
EP2546362A1 (en) 2011-07-12 2013-01-16 ARKRAY, Inc. Method and kit for amplifying and detecting polynucleotide
US9284603B2 (en) 2010-01-21 2016-03-15 Arkray, Inc. Target sequence amplification method, polymorphism detection method, and reagents for use in the methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889818A (en) 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
WO1991009950A1 (en) 1989-12-22 1991-07-11 F. Hoffmann-La Roche Ag Recombinant expression vectors and purification methods for thermus thermophilus dna polymerase
EP0455430A2 (en) 1990-04-26 1991-11-06 New England Biolabs, Inc. Purified thermostable DNA polymerase obtainable from Thermococcus litoralis
US5079352A (en) 1986-08-22 1992-01-07 Cetus Corporation Purified thermostable enzyme
WO1992009689A1 (en) 1990-12-03 1992-06-11 Stratagene PURIFIED THERMOSTABLE $i(PYROCOCCUS FURIOSUS)
WO2001073118A2 (en) * 2000-03-29 2001-10-04 Lgc (Teddington) Limited Hybridisation beacon and method of rapid sequence detection and discrimination
JP2002119291A (ja) * 2000-08-03 2002-04-23 Japan Bioindustry Association 核酸の測定方法、それに用いる核酸プローブ及びその方法によって得られるデータを解析する方法
JP2005323563A (ja) * 2004-05-17 2005-11-24 Arkray Inc Nat2*7の変異の検出法ならびにそのための核酸プローブおよびキット
JP2005328708A (ja) * 2004-05-18 2005-12-02 Arkray Inc Nat2*5の変異の検出法ならびにそのための核酸プローブおよびキット
JP2005328707A (ja) * 2004-05-18 2005-12-02 Arkray Inc Nat2*6の変異の検出法ならびにそのための核酸プローブおよびキット

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183963B1 (en) * 1998-10-23 2001-02-06 Signalgene Detection of CYP1A1, CYP3A4, CYP2D6 and NAT2 variants by PCR-allele-specific oligonucleotide (ASO) assay
US20020128215A1 (en) * 2000-02-02 2002-09-12 Hans-Ulrich Thomann Novel sequence variants of the human N-acetyltransferase -2 (NAT -2) gene and use thereof
WO2001066804A2 (en) * 2000-03-09 2001-09-13 Protogene Laboratories, Inc. Methods for optimizing hybridization performance of polynucleotide probes and localizing and detecting sequence variations
EP1295941B1 (en) * 2000-06-27 2009-12-16 National Institute of Advanced Industrial Science and Technology Novel nucleic acid probes and method of assaying nucleic acid by using the same
US7054758B2 (en) * 2001-01-30 2006-05-30 Sciona Limited Computer-assisted means for assessing lifestyle risk factors
US20040265816A1 (en) * 2001-07-05 2004-12-30 Eiichi Tanaka Method of judging risk of side effects of remedys for rheumatoid arthritis (ra)
DE10219373A1 (de) * 2002-04-30 2004-02-19 Adnagen Ag Verfahren und Diagnosekit zur molekularen Diagnostik pharmakologisch relevanter Gene
US7181071B2 (en) * 2001-11-27 2007-02-20 Samsung Electronics Co., Ltd. Method and apparatus for encoding and decoding key value data of orientation interpolator node
JP4336877B2 (ja) * 2003-04-18 2009-09-30 アークレイ株式会社 β3アドレナリン受容体変異遺伝子の検出法ならびにそのための核酸プローブおよびキット
MX2007008506A (es) * 2005-01-13 2010-05-17 Progenika Biopharma Sa Metodos y productos para genotipificacion in vitro.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889818A (en) 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
US5079352A (en) 1986-08-22 1992-01-07 Cetus Corporation Purified thermostable enzyme
WO1991009950A1 (en) 1989-12-22 1991-07-11 F. Hoffmann-La Roche Ag Recombinant expression vectors and purification methods for thermus thermophilus dna polymerase
EP0455430A2 (en) 1990-04-26 1991-11-06 New England Biolabs, Inc. Purified thermostable DNA polymerase obtainable from Thermococcus litoralis
WO1992009689A1 (en) 1990-12-03 1992-06-11 Stratagene PURIFIED THERMOSTABLE $i(PYROCOCCUS FURIOSUS)
WO2001073118A2 (en) * 2000-03-29 2001-10-04 Lgc (Teddington) Limited Hybridisation beacon and method of rapid sequence detection and discrimination
JP2002119291A (ja) * 2000-08-03 2002-04-23 Japan Bioindustry Association 核酸の測定方法、それに用いる核酸プローブ及びその方法によって得られるデータを解析する方法
JP2005323563A (ja) * 2004-05-17 2005-11-24 Arkray Inc Nat2*7の変異の検出法ならびにそのための核酸プローブおよびキット
JP2005328708A (ja) * 2004-05-18 2005-12-02 Arkray Inc Nat2*5の変異の検出法ならびにそのための核酸プローブおよびキット
JP2005328707A (ja) * 2004-05-18 2005-12-02 Arkray Inc Nat2*6の変異の検出法ならびにそのための核酸プローブおよびキット

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BLOMEKE B. ET AL.: "Identification of N-Acetyltransferase 2 Genotypes by Continuous Monitoring of Fluorogenic Hybridization Probes", ANALYTICAL BIOCHEMISTRY, vol. 275, 1999, pages 93 - 97, XP000874148 *
BURCKHARDT J.: "Amplification of DNA from whole blood", PCR METHODS AND APPLICATIONS, vol. 3, no. 4, 1994, pages 239 - 243, XP000456781 *
PMID: 8102908 JPN J HUM GENET., vol. 38, no. 2, June 1993 (1993-06-01), pages 163 - 8
See also references of EP2078747A4 *
TORIMURA M. ET AL.: "Fluorescence-Quenching Phenomenon by Photoinduced Electron Transfer between a Fluorescent Dye and a Nucleotide Base", ANALYTICAL SCIENCES, vol. 17, no. 1, 2001, pages 155 - 160, XP002953171 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001969A1 (ja) * 2008-07-02 2010-01-07 アークレイ株式会社 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
JP5637850B2 (ja) * 2008-07-02 2014-12-10 アークレイ株式会社 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
US9115391B2 (en) 2008-07-02 2015-08-25 Arkray, Inc. Method of detecting a polymorphism at a polymorphism site
US9284603B2 (en) 2010-01-21 2016-03-15 Arkray, Inc. Target sequence amplification method, polymorphism detection method, and reagents for use in the methods
EP2546362A1 (en) 2011-07-12 2013-01-16 ARKRAY, Inc. Method and kit for amplifying and detecting polynucleotide

Also Published As

Publication number Publication date
US20100297617A1 (en) 2010-11-25
EP2078747A4 (en) 2009-12-09
US20110287421A1 (en) 2011-11-24
KR101110425B1 (ko) 2012-03-14
CN102154274A (zh) 2011-08-17
KR101068605B1 (ko) 2011-09-30
EP2078747A1 (en) 2009-07-15
KR20110017012A (ko) 2011-02-18
KR20080107377A (ko) 2008-12-10
JPWO2008066161A1 (ja) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5307538B2 (ja) Ugt1a1遺伝子増幅用プライマーセット、それを含むugt1a1遺伝子増幅用試薬およびその用途
JP5637850B2 (ja) 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
JP5224526B2 (ja) 遺伝子増幅用プライマーセット、それを含む遺伝子増幅用試薬およびその用途
WO2008066162A1 (fr) Jeu d&#39;amorces pour l&#39;amplification du gène cyp2c19, réactif pour l&#39;amplification du gène cyp2c19 comprenant ledit jeu d&#39;amorces et utilisation du réactif
WO2011062258A1 (ja) Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途
JP5917144B2 (ja) 疾患関連遺伝子の多型検出用プローブおよびその用途
JP5290957B2 (ja) 免疫関連遺伝子の多型の検出用プローブおよびその用途
WO2008066163A1 (fr) Ensemble d&#39;amorces utilisé dans l&#39;amplification du gène cyp2c9, réactif utilisé dans l&#39;amplification du gène cyp2c9, et son utilisation
JP5279492B2 (ja) 肥満遺伝子増幅用プライマーセット、それを含む肥満遺伝子増幅用試薬およびその用途
WO2011052755A1 (ja) Mpl遺伝子多型検出用プローブおよびその用途
WO2011090154A1 (ja) 標的配列の増幅方法、多型検出方法およびそれに用いる試薬
JP5367365B2 (ja) Sult1a1遺伝子増幅用プライマーセット、それを含むsult1a1遺伝子増幅用試薬およびその用途
WO2008066161A1 (fr) Jeu d&#39;amorces pour l&#39;amplification du gène nat2, réactif pour l&#39;amplification du gène nat2 comprenant ledit jeu d&#39;amorces et utilisation du réactif
WO2011077990A1 (ja) c-kit遺伝子の多型検出用プローブおよびその用途
JP5635496B2 (ja) Egfr遺伝子多型検出用プローブおよびその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027648.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008517251

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087020258

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12297157

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007832869

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020117001785

Country of ref document: KR