WO2008065959A1 - Transducteur à ultrasons - Google Patents

Transducteur à ultrasons Download PDF

Info

Publication number
WO2008065959A1
WO2008065959A1 PCT/JP2007/072634 JP2007072634W WO2008065959A1 WO 2008065959 A1 WO2008065959 A1 WO 2008065959A1 JP 2007072634 W JP2007072634 W JP 2007072634W WO 2008065959 A1 WO2008065959 A1 WO 2008065959A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer case
vibration
notch
case
ultrasonic transducer
Prior art date
Application number
PCT/JP2007/072634
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Hirano
Takaaki Asada
Mio Furuya
Junichi Nishie
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to KR1020097010856A priority Critical patent/KR101102223B1/ko
Priority to JP2008546963A priority patent/JP4888492B2/ja
Priority to EP07832363.1A priority patent/EP2076061B1/en
Priority to CN2007800438870A priority patent/CN101543095B/zh
Publication of WO2008065959A1 publication Critical patent/WO2008065959A1/ja
Priority to US12/467,361 priority patent/US7692367B2/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/18Details, e.g. bulbs, pumps, pistons, switches or casings
    • G10K9/22Mountings; Casings
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to an ultrasonic transducer that performs signal conversion between an ultrasonic signal and an electric signal.
  • a directivity control body that controls the shape of the ultrasonic beam on the inner bottom surface of the outer case to which the piezoelectric element is attached make sure they are in close contact.
  • This directivity control body is a member in which a hole having a major axis in one direction with respect to a planar direction is formed, and the length of the hole of the directivity control body is adjusted by being in close contact with the inner bottom surface of the outer case.
  • the effective vibration area of the ultrasonic wave in the axial direction is expanded, and the effective vibration area of the ultrasonic wave in the short axis direction (direction perpendicular to the long axis direction) of the hole of the directivity control body is narrowed.
  • the ultrasonic vibration operation surface the more the contact portion of the outer case becomes. A lot of mass is applied, and the mass restrains the vibration of the outer case. Hereinafter, this mass is referred to as restrained mass. In this way, there is a difference in the effective vibration region between the long axis direction and the short axis direction of the hole of the directivity control body, and the restrained mass with respect to the bottom surface of the outer case at both sides of the long axis of the hole is relatively increased.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-128292
  • the ultrasonic vibration operation of the directivity control body is not rotationally symmetric at an arbitrary angle (180 degree rotationally symmetric). This contributes to flattening of the beam shape, but at the same time a large bending mode ( A vibration in a vibration mode in which the effective vibration region is alternately distorted in the major axis direction and the minor axis direction of the hole is also generated, and unnecessary vibration (high-order spurious) is generated separately from the fundamental vibration. Since the frequency of this unnecessary vibration is close to the resonance frequency of the fundamental vibration, it is easily excited together with the fundamental vibration. As a result, it continues to vibrate for up to one vibration in this unwanted vibration mode, which adversely affects the reverberation characteristics.
  • the piezoelectric element continues to generate an electric signal due to the vibration due to the reverberation. Therefore, the electric signal based on the vibration of the piezoelectric element due to the ultrasonic wave reflected by the obstacle is generated. It will be extinguished by the electric signal of vibration due to reverberation, and it will not be possible to detect the ultrasonic waves reflected by the obstacle.
  • An object of the present invention is to provide an ultrasonic transducer capable of obtaining an excellent fundamental vibration that prevents unnecessary vibration and suppresses reverberation while having a case structure for flattening an ultrasonic beam. is there.
  • the present invention provides a bottomed cylindrical outer case, a piezoelectric element provided on the inner bottom surface of the outer case, and an ultrasonic vibration that is provided on the inner case and faces the inner bottom surface of the outer case.
  • an ultrasonic transducer comprising an inner case that restrains vibration by the piezoelectric element of the outer case on the working surface by mass, and a terminal that is electrically connected to the piezoelectric element
  • the inner case is an ultrasonic vibration working surface.
  • the first notch for flattening the ultrasonic beam generated by the vibration of the piezoelectric element and the outer case is provided at a portion facing the position where the piezoelectric element is disposed, and the first of the ultrasonic vibration working surfaces is the first.
  • the second feature is that a second cutout or engraved second cutout is provided.
  • the "first notch for flattening the ultrasonic beam” is an ultrasonic vibration working surface of the inner case that faces the inner bottom surface that is the vibration surface of the outer case, and is This is a notch for creating anisotropy in the minor axis direction and thereby flattening the directivity.
  • it is an oval or rectangular notch whose major axis is one direction with respect to the plane direction, and the presence of this first notch makes the left / right / up / down aspect ratio of the effective vibration area of the outer case 1 It is something that makes it bigger.
  • the beam shape is flattened so that, for example, the horizontal width of the ultrasonic beam is different from the vertical width of the ultrasonic beam width, and the mass that binds the outer case together with the first notch portion.
  • the second notch exists at a position where the distribution of the water becomes uniform. In other words, the mass balance of the inner case that restrains the outer case is balanced, and unnecessary vibration such as bending mode is suppressed.
  • the first notch has a shape having a major axis in one direction along a surface facing the inner bottom surface of the outer case, and the second notch is a major axis. It is placed in a line-symmetrical position on both sides.
  • the second notch is present at a position where the mass of restraint with respect to the outer case is large, so that the mass balance of the mass restraining the outer case is achieved. Unnecessary vibration such as bending mode is effectively suppressed.
  • the second cutout portion forms a bank portion around the first cutout portion due to the presence of the second cutout portion, and is formed on the entire surface outside the bankportion.
  • the second notch extends to the corner (ridge) of the inner case, even if there is a dimensional error between the inner case and the outer case, the ultrasonic vibration operation surface of the inner case and the outer case It is possible to reliably prevent unnecessary mode vibrations caused by the above-described mass balance loss, which does not cause the degree of close contact with the inner bottom surface of the case to be unbalanced.
  • the medium density of the inner case is set higher than the medium density of the outer case.
  • the resonance vibration of the side surface of the outer case can be suppressed as much as the vibration of the bottom surface of the outer case can be suppressed, and reverberation can be further suppressed.
  • a space formed by the second cutout portion of the inner case and the inner bottom surface of the outer case is filled with a filler having a medium density lower than that of the inner case and the outer case.
  • the bank portion is formed between the first notch portion and the second notch portion, the filler acting as a damping material reaches the effective vibration region of the piezoelectric element. It is possible to prevent the fundamental vibration in the effective vibration region of the piezoelectric element that cannot reach from being affected.
  • a through hole is formed in the second cutout portion.
  • filling can be performed simply by injecting a filler or the like into the inner bottom surface of the outer case and the second notch through the through hole from the inside of the inner case.
  • a filler or the like into the inner bottom surface of the outer case and the second notch through the through hole from the inside of the inner case.
  • the outer case and the inner case can be bonded with the above-mentioned filler, so that an adhesive only for bonding the outer case and the inner case becomes unnecessary.
  • the present invention has a structure in which both ends of the first cutout portion in the long axis direction reach the end portion of the case, and a third cutout portion is provided in the longitudinal direction of the bank portion. .
  • an ultrasonic transducer that can obtain an excellent fundamental vibration that can prevent unnecessary vibration and suppress reverberation, while having a case structure for flattening an ultrasonic beam.
  • FIG. 1 is a cross-sectional view showing a configuration of an ultrasonic transducer according to a first embodiment.
  • FIG. 2 is a perspective view of an inner case used in the ultrasonic transducer.
  • FIG. 3 is a perspective view of an inner case used in an ultrasonic transducer according to a second embodiment and an ultrasonic transducer as a comparative example thereof.
  • 4 is a diagram showing impedance characteristics with respect to frequency of the ultrasonic transducer having the inner case shown in FIG. 3.
  • FIG. 3 is a perspective view of an inner case used in an ultrasonic transducer according to a second embodiment and an ultrasonic transducer as a comparative example thereof. 4 is a diagram showing impedance characteristics with respect to frequency of the ultrasonic transducer having the inner case shown in FIG. 3.
  • FIG. 3 is a perspective view of an inner case used in an ultrasonic transducer according to
  • FIG. 5 is a diagram showing the reverberation characteristics of an ultrasonic transducer including the inner case shown in FIG.
  • FIG. 6 is a perspective view of an inner case used in an ultrasonic transducer according to a third embodiment.
  • FIG. 7 is a diagram showing a vibration mode of an inner bottom surface of an outer case of an ultrasonic transducer according to a third embodiment and an ultrasonic transducer of a comparative example thereof.
  • FIG. 8 is a diagram showing reverberation characteristics of an ultrasonic transducer according to a third embodiment and an ultrasonic transducer of a comparative example.
  • FIG. 9 is a diagram showing directivity characteristics of an ultrasonic transducer according to a third embodiment and an ultrasonic transducer of a comparative example thereof.
  • FIG. 10 is a cross-sectional view showing a configuration of an ultrasonic transducer according to a fourth embodiment. Explanation of symbols
  • FIG. 1 is a cross-sectional view of the main part of the ultrasonic transducer according to the first embodiment
  • FIG. 2 is a perspective view as seen from the upper surface side of the inner case.
  • a case is composed of two members, an outer case 1 and an inner case 2, which are joined together.
  • the outer case 1 is made of, for example, aluminum, and a disk-shaped piezoelectric element 3 is bonded to the inner bottom surface thereof.
  • the piezoelectric element 3 has electrodes on both sides, and one electrode is electrically connected to the outer case 1.
  • the inner case 2 is made of a material higher than the medium density of the outer case 1, for example, zinc.
  • the surface opposite to the inner bottom surface (ceiling surface in the figure) of the outer case 1 (ultrasonic vibration acting surface) is oblong.
  • the first notch portion 11 and the second notch portions 12a and 12b are formed at positions away from the first notch portion 11.
  • the ultrasonic vibration acting surface (upper surface in the figure) of the inner case 2 has second notches 12a, 12b symmetrically about the major axis of the first notch 11 as the axis of symmetry. Is arranged. For this reason, the distribution of the mass constraining the outer case 1 together with the first notch is made uniform, and unnecessary vibration such as bending mode is suppressed. This unnecessary vibration suppression effect!
  • the unwanted vibration described above occurs on the ultrasonic vibration acting surface of the inner case 2 in contact with the inner bottom surface of the outer case 1 with respect to the major axis direction and the major axis direction of the effective vibration region of the piezoelectric element 3 and the outer case 1. This is thought to occur because the restrained mass is not balanced with the short axis direction, which is the vertical direction.
  • the effective vibration region corresponds to a portion of the bottom surface of the outer case 1 to which the piezoelectric element is bonded and the first notch portion of the ultrasonic vibration acting surface of the inner case 2 faces.
  • the major axis direction L of the effective vibration region is the first notch 11 corresponds to the major axis direction
  • the minor axis direction S of the effective vibration region corresponds to a direction perpendicular to the major axis direction of the first notch 11.
  • the longitudinal direction L of the first notch is such that the portion where the ultrasonic vibration acting surface of the inner case 2 is in contact with the inner bottom of the outer case 1 is small.
  • a relatively small restraining mass force is not applied to the minor axis direction S of the.
  • the vibration energy is concentrated in the major axis direction L of the first notch, and the vibration energy is easily propagated in the major axis direction L of the first notch.
  • a difference in vibration energy occurs between the major axis direction L and the minor axis direction S of the first notch, and anisotropy occurs.
  • the second notches 12a and 12b are arranged in line symmetry with the long axis of the first notch 11 as the symmetry axis on the ultrasonic vibration acting surface of the inner case 2.
  • the distribution of the constraining mass that restrains the outer case 1 together with the first notch is made uniform between the major axis direction L and the minor axis direction S of the first notch part, and the anisotropy is maintained. Unnecessary vibration such as bending mode can be suppressed.
  • the medium density of the inner case 2 is higher than the medium density of the outer case 1.
  • the vibration of the piezoelectric element joined to the bottom surface of the outer case 1 is also transmitted to the side surface of the outer case 1 to generate reverberation.
  • the inner case 2 having a medium density higher than the medium density of the outer case 1 is joined from the inside of the outer case 1, thereby suppressing the vibration of the side surface of the outer case 1 from the inside of the outer case 1. Therefore, the resonance vibration of the side surface of the external case 1 can be suppressed.
  • FIG. 3 is a diagram showing the shape of the inner case used in the ultrasonic transducer according to the second embodiment.
  • Fig. 3 (A) is a perspective view of the inner case used in the ultrasonic transducer according to the second embodiment as seen from the ultrasonic vibration acting surface side
  • Fig. 3 (B) is an inner case of the ultrasonic transducer as a reference example.
  • the force in which the first notch portions 11a and l ib and the second notch portions 12a and 12b are provided on the ultrasonic vibration acting surface of the inner case 2 is described.
  • the first notch for the purpose of flattening the ultrasonic beam is formed separately at a position facing 180 ° across the central through hole.
  • the presence of the second notches 12a and 12b forms a bank around the first notches 11a and lib (and also around the through holes).
  • the second notches 12a and 12b are formed on the entire outer surface of the bank portion.
  • FIG. 4 is a plot of the impedance waveform versus frequency of the ultrasonic transducer having the inner case shown in FIG. Each three samples are plotted! /.
  • the impedance R is the real part of the impedance characteristic I Z I of the sensor and corresponds to the antiresonance point in I Z I.
  • the existence of an anti-resonance point means that there is a vibration mode near that frequency, and therefore it is desirable that the impedance R has no peak other than the fundamental vibration.
  • Fig. 4 (A) shows the case using the inner case shown in Fig. 3 (A)
  • Fig. 4 (B) shows the case using the inner case shown in Fig. 3 (B).
  • the deviation is also a force that shows a large vibration peak in the vicinity of 50 kHz.
  • Fig. 4 (B) a small peak is seen in the vicinity of 65 kHz. It can be seen that the unnecessary vibration mode due to.
  • FIG. 4A of the present invention shows that the above unnecessary vibration mode is hardly seen.
  • FIG. 5 shows the results of measuring the reverberation characteristics of the two ultrasonic transducers.
  • FIG. 5A shows the characteristics of the ultrasonic transducer according to the second embodiment
  • FIG. 5B shows the characteristics of the ultrasonic transducer of the comparative example.
  • the left T1 period in Fig. 5 (A) is the transmitted wave (driving period), and the vibration in the subsequent T2 period is due to the reflected wave.
  • one square on the horizontal axis is 0.1 ms.
  • Fig. 5 (B) if the reverberation continues for a long time after the end of the driving section, it can be seen that no reflected wave can be detected.
  • a damping material is not applied as in the prior art to prevent unnecessary vibrations, a characteristic with high transmission / reception sensitivity can be obtained.
  • the second notch is not limited to the shape described in the first and second embodiments, but may be a notch, a carved shape, a tapered shape, or the like.
  • FIG. 6 is a diagram showing the shape of the inner case used in the ultrasonic transducer according to the third embodiment.
  • the force in which the first notch portions 11a and l ib and the second notch portions 12a and 12b are provided on the ultrasonic vibration acting surface of the inner case 2 Second Embodiment Unlike the case, both ends of the first notch in the long axis direction reach the end of the ultrasonic vibration acting surface of the inner case 2.
  • the third notches 15a and 15b are provided in the middle of the longitudinal portions of the supporting portions 13a and 13b formed between the first notches 11a and 11b and the second notches 12a and 12b. .
  • FIG. 7 is a diagram showing vibration modes of the bottom surface of the outer case of the ultrasonic transducer according to the third embodiment and the ultrasonic transducer of the comparative example.
  • Fig. 7 (A) shows the vibration mode of the bottom surface of the outer case of the ultrasonic transducer with the inner case shown in Fig. 6.
  • FIG. 7 (C) shows the vibration mode of the inner bottom surface of the outer case of the ultrasonic transducer (the ultrasonic transducer according to the second embodiment) having the inner case shown in FIG. 3 (A).
  • FIGS. 7B and 7D show the effects of the third cutouts 15 (15a, 15b) provided in the support 13 and are shown.
  • the range indicated by the ellipse is the approximate position of contact with the ultrasonic vibration acting surface of the inner case, and the arrows S, H, and V indicate the vibration direction of the spurious mode.
  • FIGS. 7A and 7B when the third notch 15 is provided in the ridge 13, the third notch of the ridge is shown in FIG. 7B. Since the vibration is absorbed at 15 (since the longitudinal compression and tensile stress is released), the vibrations in the directions of arrows H and V are not so great, and the spurious can be reduced.
  • a force S is provided in which the third notches 15a and 15b are provided in each of the prongs 13a and 13b, and a plurality of the third notches may be provided in the prongs.
  • the third cutouts 15a and 15b have a shape cut in a direction perpendicular to the major axes of the slats 13a and 13b, and the longitudinal center position of the slats or the center position thereof. It is preferable to provide it at a symmetrical position. Due to this shape, the mass balance centering on the center of the ultrasonic vibration acting surface of the inner case facing the inner bottom surface which is the vibration surface of the outer case can be achieved.
  • FIG. 8 (A) is a diagram showing the reverberation characteristics of the ultrasonic transducer according to the third embodiment
  • FIG. 8 (B) is the reverberation of the ultrasonic transducer including the inner case shown in FIG. 3 (A).
  • FIG. 8 (A) is a diagram showing the reverberation characteristics of the ultrasonic transducer according to the third embodiment
  • FIG. 8 (B) is the reverberation of the ultrasonic transducer including the inner case shown in FIG. 3 (A).
  • FIG. 8 (B) is the reverberation of the ultrasonic transducer including the inner case shown in FIG. 3 (A).
  • the left T1 period is the transmitted wave (driving period), and the vibration during the subsequent Tr period is due to reverberation.
  • the vibration during the subsequent T2 period is due to the reflected wave.
  • one square on the horizontal axis is 0.1 ms. It can be seen that the reverberation time Tr in Fig. 8 (A) is almost the same as the reverberation time Tr in Fig. 8 (B). As a result, even when the third notches 15a and 15b are formed, reverberation can be suppressed to the same extent as in FIG. 8B.
  • FIG. 9 shows an ultrasonic transducer according to the third embodiment
  • FIG. 4 is a diagram showing a directivity characteristic of sound pressure of an ultrasonic transducer including the inner case shown in (A).
  • Figure 9 (A) shows the sound pressure characteristics in the vertical direction, and 90 and 90 degrees are the major axis directions of the first notch.
  • Fig. 9 (B) shows the sound pressure characteristics in the horizontal direction, and 90 and 90 degrees are in the minor axis direction of the first notch.
  • the solid line indicates the characteristics of the ultrasonic transducer according to the third embodiment, and the broken line indicates the characteristics of the ultrasonic transducer including the inner case shown in FIG.
  • the ultrasonic transducer according to the third embodiment it is possible to further flatten the ultrasonic beam while suppressing reverberation.
  • the second notch is provided as a space for the air medium in the same manner as the first notch.
  • the second notch and the outer case 1 are provided.
  • the space formed between the bottom surface and the outer case 1 and the inner case 2 is filled with a filler having a lower medium density.
  • FIG. 10 is a cross-sectional view of an ultrasonic transducer according to the fourth embodiment.
  • the inner case 2 is formed with through holes 14a and 14b penetrating the second notches 12a and 12b, respectively.
  • a filler is injected from the back side of the inner case 2 through the through holes 14a and 14b, and the second notches 12a and 12b are filled with the filler.
  • unnecessary vibrations at the corners of the inner bottom surface of the outer case 1 and the side surfaces of the outer case 1 are absorbed, and the influence of unnecessary vibration mode can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

明 細 書
超音波トランスデューサ
技術分野
[0001] この発明は、超音波信号と電気信号との信号変換を行う超音波トランスデューサに 関するものである。
背景技術
[0002] 超音波トランスデューサとして、筒状の外側ケースの内底面に圧電素子を設け、外 側ケースの内部に指向性制御体を設けた構成が特許文献 1に開示されて!/、る。
[0003] ここでは、物体探知や距離計測の目的に応じて超音波ビームを扁平化するために 、圧電素子が取り付けられた外側ケースの内底面に超音波ビームの形状を制御する 指向性制御体を密着させてレ、る。
[0004] この指向性制御体は、平面方向に対して一方向を長軸とする孔が形成された部材 であり、外側ケースの内底面に密着することによって、指向性制御体の孔の長軸方 向への超音波の有効振動領域が広がり、指向性制御体の孔の短軸方向(長軸方向 に対して垂直な方向)への超音波の有効振動領域が狭まる。また、外側ケースの底 面と、指向性制御体のうち外側ケースの内底面に対向する面(以下、超音波振動作 用面とする)との接触面が広いほど、外側ケースの接触部分により多くの質量がかか り、その質量が外側ケースの振動を拘束することになる。以下、この質量を拘束質量 という。このように、指向性制御体の孔の長軸方向と短軸方向との有効振動領域に差 を設け、上記孔の長軸の両脇部分での外側ケース底面に対する拘束質量が相対的 に増大するように構成することによって、外側ケースの振動面である底面に指向性制 御体の孔の長軸方向と短軸方向とで異方性が生じ、超音波ビームが扁平化すると考 x_られる。
特許文献 1 :特開 2001— 128292号公報
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、上記のような従来技術においては、指向性制御体の超音波振動作 用面による外側ケース底面への拘束質量が任意角度の回転対称形ではない(180 度回転対称形である。)ので、このことがビーム形状の扁平化に寄与するが、それと 同時に大きなベンディングモード(有効振動領域が上記孔の長軸方向と短軸方向と に交互に歪むような振動モード)の振動も生じてしまい、基本振動とは別に不要振動 (高次スプリアス)が発生する。この不要振動の周波数は基本振動の共振周波数と近 いため、基本振動と共に励起されやすい。その結果、この不要振動モードでの振動 カ^ヽつまでも振動し続け、残響特性に悪影響が生じる。
[0006] このような不要振動モードの残響が長く続くと、残響による振動で圧電素子が電気 信号を発生しつづけるため、障害物で反射した超音波による圧電素子の振動に基づ く電気信号が残響による振動の電気信号によってかき消されてしまい、障害物で反 射した超音波を検出することができなくなってしまう。
[0007] このような不要振動の発生を抑制するために、外側ケースの圧電素子が形成され た有効振動領域以外の底面に例えばシリコーン樹脂やウレタン樹脂等のダンピング 材を塗布することが有効である。しかし、上述のような構成の超音波トランスデューサ では、圧電素子の有効振動領域近辺にダンピング材が付与されることになるので、 上記ダンピング材が不要振動だけでなぐ基本振動をも吸収してしまい、感度が低下 するという問題が生じる。
[0008] この発明の目的は、超音波ビームを扁平化するケース構造でありながら、不要振動 を防ぎ且つ残響を抑制するだけでなぐ優れた基本振動を得られる超音波トランスデ ユーサを提供することにある。
課題を解決するための手段
[0009] この発明は、有底筒状の外部ケースと、外部ケースの内底面に設けた圧電素子と、 外部ケースの内部に設けられ、外部ケースの内底面に対向する面である超音波振動 作用面で外部ケースの前記圧電素子による振動を質量で拘束する内部ケースと、圧 電素子に電気的に導通する端子と、を備えた超音波トランスデューサにおいて、 内部ケースは、超音波振動作用面のうち圧電素子の配置位置に対向する部分に、 圧電素子および外部ケースの振動により生じる超音波ビームを扁平化する第 1の切 欠部を有し、且つ、超音波振動作用面のうち、第 1の切欠部とは離れた位置に例え ば切欠状または彫り込み形状の第 2の切欠部を設けたことを特徴としている。
[0010] ここで、「超音波ビームを扁平化する第 1の切欠部」とは、外部ケースの振動面であ る内底面に対向する内部ケースの超音波振動作用面で、長軸方向と短軸方向とで 異方性を生じさせて、それによつて指向性を扁平化するための切欠部である。例え ば、平面方向に対して一方向を長軸とする楕円形、長方形等の切欠部であり、この 第 1の切欠部の存在によって、外部ケースの有効振動領域の左右上下のアスペクト 比を 1よりも大きくするものである。
[0011] この構造により、例えばビーム形状が扁平化されて、例えば超音波ビームの水平幅 と超音波ビーム幅の垂直幅が異なるようになり、第 1の切欠部とともに外部ケースを拘 束する質量の分布が均一化する位置に第 2の切欠部が存在することになる。すなわ ち、外部ケースを拘束する内部ケースの質量バランスがとれて、ベンディングモード 等の不要振動が抑制される。
[0012] またこの発明は、例えば前記第 1の切欠部は前記外部ケースの内底面に対向する 面に沿って一方向に長軸を有する形状を成し、前記第 2の切欠部は長軸の両脇の 線対称位置に配置する。
この構造により、第 1の切欠部だけが存在する場合に外部ケースに対する拘束質 量が大きな位置に第 2の切欠部が存在することになり、外部ケースを拘束する質量の 質量バランスがとれて、ベンディングモード等の不要振動が効果的に抑制される。
[0013] またこの発明は、例えば前記第 2の切欠部は、当該第 2の切欠部の存在によって前 記第 1の切欠部の周囲に堤部を形成するとともに当該堤部の外側の全面に設ける。 この構造により、外部ケースの内底面と内部ケースの超音波振動作用面との接触 部分を最小限とすることができるため、質量バランスのばらつきを抑制することができ る。また、内部ケースのコーナー(稜)部分にまで第 2の切欠部が広がることになるの で、内部ケースと外部ケースとに寸法誤差があっても、内部ケースの超音波振動作 用面と外部ケースの内底面との密着度がアンバランスになることもなぐ上記質量バラ ンスのくずれによって生じる不要モードの振動を確実に防ぐことができる。
[0014] またこの発明は、前記内部ケースの媒質密度は前記外部ケースの媒質密度より高 くする。 そのことにより外部ケースの底面の振動を抑制できるだけでなぐ外部ケースの側 面の共振振動も抑制することができ、残響をより抑制できる。
[0015] またこの発明は、前記内部ケースの第 2の切欠部と前記外部ケースの内底面とで構 成される空間を前記内部ケースおよび前記外部ケースより媒質密度の低い充填材で 充填する。
この構造によれば、外部ケースの内底面(特にそのコーナー部分)および外部ケー スの側面の不要振動を吸収することができ、不要振動をより効果的に抑制できる。な お、本発明によれば、第 1の切欠部と第 2の切欠部との間に堤部が形成されているた め、ダンピング材として作用する充填材が圧電素子の有効振動領域にまで達するこ とがなぐ圧電素子の有効振動領域の基本振動に影響することを防ぐことができる。
[0016] またこの発明は、前記第 2の切欠部に貫通孔を形成する。
この構造により、内部ケースの内部から貫通孔を通して外部ケースの内底面と第 2 の切欠部内に充填材等を注入するだけで充填できるようになる。その結果、外部ケ ースと内部ケースとを上記充填材で接着することができるので、外部ケースと内部ケ 一スとを接着するためだけの接着剤は不要となる。
[0017] またこの発明は、前記第 1の切欠部の長軸方向の両端は前記ケースの端部にまで 達し、前記堤部の長手方向の途中に第 3の切欠部を備えた構造とする。
[0018] この構造により、残響を抑制したまま、指向性をより向上させることができる。すなわ ち、超音波ビームをより扁平化させることができる。
発明の効果
[0019] この発明によれば、超音波ビームを扁平化するケース構造でありながら、不要振動 を防ぎ且つ残響を抑制するだけでなぐ優れた基本振動を得られる超音波トランスデ ユーサが構成できる。
図面の簡単な説明
[0020] [図 1]第 1の実施形態に係る超音波トランスデューサの構成を示す断面図である。
[図 2]同超音波トランスデューサで用いる内部ケースの斜視図である。
[図 3]第 2の実施形態に係る超音波トランスデューサおよびその比較例としての超音 波トランスデューサで用いる内部ケースの斜視図である。 [図 4]図 3に示した内部ケースを備えた超音波トランスデューサの周波数に対するイン ピーダンスの特性を示す図である。
[図 5]図 3に示した内部ケースを備えた超音波トランスデューサの残響特性を示す図 である。
[図 6]第 3の実施形態に係る超音波トランスデューサで用いる内部ケースの斜視図で ある。
[図 7]第 3の実施形態に係る超音波トランスデューサとその比較例の超音波トランスデ ユーサの外部ケース内底面の振動モードを示す図である。
[図 8]第 3の実施形態に係る超音波トランスデューサとその比較例の超音波トランスデ ユーサの残響特性を示す図である。
[図 9]第 3の実施形態に係る超音波トランスデューサとその比較例の超音波トランスデ ユーサの指向特性を示す図である。
[図 10]第 4の実施形態に係る超音波トランスデューサの構成を示す断面図である。 符号の説明
1一外部ケース
2—内部ケース
3—圧電素子
4, 5—ワイヤ
6, 7—ピン
8—吸音材
9 ピン支持基板
10—充填材
11 第 1の切欠部
12—第 2の切欠部
13 堤部
14一貫通孔
15 第 3の切欠部
発明を実施するための最良の形態 [0022] 《第 1の実施形態》
図 1は第 1の実施形態に係る超音波トランスデューサの主要部の断面図、図 2は内 部ケースの上面側から見た斜視図である。この超音波トランスデューサは、外部ケー ス 1と内部ケース 2の 2つの部材でケースを構成し、これを接合している。外部ケース 1 は、例えばアルミニウムからなり、その内底面に円板形状の圧電素子 3を接合してい る。この圧電素子 3はその両面に電極を備えていて、一方の電極は外部ケース 1に対 して電気的に導通している。
[0023] 内部ケース 2は外部ケース 1の媒質密度より高い材料、例えば亜鉛からなり、外部 ケース 1の内底面(図における天井面)に対向する面 (超音波振動作用面)には長円 形の第 1の切欠部 11とこの第 1の切欠部 11から離れた位置に第 2の切欠部 12a, 12 bを形成している。
[0024] 内部ケース 2の中央部には貫通孔を有し、貫通孔から金属製のピン 6, 7を引き出し ている。また、この貫通孔には外部ケース 1の底面側から順に吸音材 8、ピン支持基 板 9、充填材 10をそれぞれ設けている。また圧電素子 3の内部ケース 2側の電極とピ ン 6の一端との間をワイヤ 4で接続している。さらにもう一方のピン 7の一端と内部ケー ス 2との間をワイヤ 5で接続して!/、る。ピン 6およびピン 7の他端はそれぞれ内部ケー ス 2の貫通孔を通って内部ケース 2の外部へ引き出されている。
[0025] 図 2に示すように内部ケース 2の超音波振動作用面(図における上面)には、第 1の 切欠部 11の長軸を対称軸として線対称に第 2の切欠部 12a, 12bを配置している。 そのため第 1の切欠部とともに外部ケース 1を拘束する質量の分布が均一化し、ベン デイングモード等の不要振動が抑制される。この不要振動抑制効果につ!/、て詳述す
[0026] 上記不要振動は、外部ケース 1の内底面と接している内部ケース 2の超音波振動 作用面において、圧電素子 3および外部ケース 1の有効振動領域の長軸方向と長軸 方向に対して垂直な方向である短軸方向とで拘束質量のバランスがとれていないた めに発生すると考えられる。ここで、有効振動領域とは外部ケース 1の底面のうち、圧 電素子が接合されており、かつ、内部ケース 2の超音波振動作用面の第 1の切欠部 が対向する部分に相当する。そして、有効振動領域の長軸方向 Lとは、第 1の切欠部 11の長軸方向に相当し、有効振動領域の短軸方向 Sとは、第 1の切欠部 11の長軸 方向に対して垂直な方向に相当する。
[0027] まず、圧電素子 3が外部ケース 1の底面を振動変位させる際、その変位は外部ケー ス 1に接触している内部ケース 2の超音波振動作用面の質量によって拘束されると考 えられる。すなわち、第 1の切欠部の短軸方向 Sは、内部ケース 2の超音波振動作用 面が外部ケース 1の内底面と接触する部分が大きいため、外部ケース 1の底面に大き な拘束質量がかかり、振動面である底面全体が拘束されることになる。これにより、第 1の切欠部の短軸方向 Sへは振動エネルギが伝播し難くなる。一方、第 1の切欠部の 長軸方向 Lは、内部ケース 2の超音波振動作用面が外部ケース 1の内底面と接触す る部分が小さぐ外部ケース 1の底面には第 1の切欠部の短軸方向 Sに対して相対的 に小さな拘束質量し力、かからない。このため、第 1の切欠部の長軸方向 Lへ振動エネ ルギが集中することになり、第 1の切欠部の長軸方向 Lへ振動エネルギが伝播しやす くなる。その結果、第 1の切欠部の長軸方向 Lと短軸方向 Sとの間に振動エネルギの 差が生じ、異方性が生じる。このような有効振動領域の第 1の切欠部の長軸方向しと 短軸方向 Sとでの伝播する振動エネルギの差、および、内部ケース 2の超音波振動 作用面が外部ケース 1の底面を拘束する拘束質量の差が、有効振動領域の長軸方 向 Lと短軸方向 Sとに交互に歪むベンディングモードを励振するものと考えられる。
[0028] そこで、図 2に示したように内部ケース 2の超音波振動作用面に第 1の切欠部 11の 長軸を対称軸として線対称に第 2の切欠部 12a, 12bを配置する。このことにより第 1 の切欠部とともに外部ケース 1を拘束する拘束質量の分布が第 1の切欠部の長軸方 向 Lと短軸方向 Sとの間で均一化し、異方性を維持したまま、ベンディングモード等の 不要振動を抑制することができる。
[0029] またこの例では、内部ケース 2の媒質密度は外部ケース 1の媒質密度より高い。一 般に、外部ケース 1の底面に接合された圧電素子の振動は外部ケース 1の側面にも 伝達され、残響を発生させる。この例のように外部ケース 1の媒質密度よりも高い媒質 密度を有する内部ケース 2を外部ケース 1の内部から接合させることによって、外部ケ ース 1の内部から外部ケース 1の側面の振動を押さえ込むことが可能となり、外部ケ ース 1の側面の共振振動を抑制することができる。 [0030] 《第 2の実施形態》
図 3は第 2の実施形態に係る超音波トランスデューサで用いる内部ケースの形状を 示す図である。図 3 (A)はその第 2の実施形態に係る超音波トランスデューサで用い る内部ケースの超音波振動作用面側から見た斜視図、(B)はその参考例としての超 音波トランスデューサの内部ケースの斜視図である。
[0031] この第 2の実施形態では、内部ケース 2の超音波振動作用面に、第 1の切欠部 11a , l ibおよび第 2の切欠部 12a, 12bを設けている力 第 1の実施形態の場合と異なり 、超音波ビームを偏平化することを目的とする第 1の切欠部は、中央の貫通孔を挟ん で 180° 対向する位置に分離して形成している。また、これに伴って第 2の切欠部 1 2a, 12bの存在によって第 1の切欠部 11a, l ibの周囲に(さらには貫通孔の周囲に も)堤部を形成している。第 2の切欠部 12a, 12bは、その堤部の外側の全面に形成 している。
[0032] 図 4は図 3に示した内部ケースを備えた超音波トランスデューサの周波数に対する インピーダンスの波形をプロットしたものである。それぞれ 3つのサンプルにつ!/、てプ ロットしている。ここでのインピーダンス測定は、 R-X法(Z=R+jX)によるものである。ここ でインピーダンス Rはセンサのインピーダンス特生 I Z I の実数部分であり、 I Z I に おける反共振点に相当する。反共振点が存在するということはその周波数付近で振 動モードを持つということであり、よってインピーダンス Rには基本振動以外のピーク が存在しないことが望ましい。
[0033] 図 4 (A)は図 3 (A)に示した内部ケースを用いたもの、図 4 (B)は図 3 (B)に示した 内部ケースを用いたものである。図 4 (A)および図 4 (B)の!/、ずれも 50kHz付近にあ る大きなピークが基本振動モードを示す力 図 4 (B)においては 65kHz付近に小さ なピークが見られ、ベンディングモードによる不要振動モードが生じていることがわか る。一方、本発明の図 4 (A)では上記不要振動モードがほとんど見られないことがわ かる。
[0034] このように基本周波数のすぐ近くに不要振動モードが存在すると、超音波トランスデ ユーサを基本周波数で駆動した時に不要振動も励振させやすくなり、残響特性が悪 化する。図 3 (A)に示したように第 2の切欠部 12a, 12bを形成したことにより上記不 要振動が十分に抑制されていることが分かる。
[0035] 図 5は上記 2つの超音波トランスデューサの残響特性を測定した結果である。図 5 ( A)はこの第 2の実施形態に係る超音波トランスデューサの特性、(B)はその比較例 の超音波トランスデューサの特性である。図 5 (A)の左側の T1期間は発信波 (駆動 期間)、その後の T2期間の振動は反射波によるものである。ここで横軸の一マスは 0 . 1msである。図 5 (B)のように駆動区間が終了した後に残響が長く続くと、反射波が 全く検知できないことが分かる。またこの実施形態でも不要振動防止のための従来の ようなダンピング材の付与は行わな!/、ので、送受感度の大きな特性が得られる。
[0036] なお、第 2の切欠部は第 1および第 2の実施形態に記載されている形状に限らず、 切欠状、彫り込み状、テーパー状等であってもよい。
[0037] 《第 3の実施形態》
図 6は第 3の実施形態に係る超音波トランスデューサで用いる内部ケースの形状を 示す図である。
[0038] この第 3の実施形態では、内部ケース 2の超音波振動作用面に、第 1の切欠部 11a , l ibおよび第 2の切欠部 12a, 12bを設けている力 第 2の実施形態の場合と異なり 、第 1の切欠部の長軸方向の両端は内部ケース 2の超音波振動作用面の端部にま で達している。また、第 1の切欠部 11a, l ibと第 2の切欠部 12a, 12bとの間に形成 される提部 13a, 13bの長手方向の途中に第 3の切欠部 15a, 15bを備えている。
[0039] 図 7は第 3の実施形態に係る超音波トランスデューサとその比較例の超音波トランス デューサの外部ケース内底面の振動モードを示す図である。図 7 (A)は図 6に示した 内部ケースを備えた超音波トランスデューサの外部ケース内底面の振動モードを示 している。また、図 7 (C)は図 3 (A)に示した内部ケースを備えた超音波トランスデュ ーサ(第 2の実施形態に係る超音波トランスデューサ)の外部ケース内底面の振動モ ードを示している。また、図 7 (B) (D)は提部 13に設けた第 3の切欠部 15 (15a, 15b )の作用効果にっレ、て示してレ、る。
[0040] 図 7 (A) (C)において楕円で示す範囲は内部ケースの超音波振動作用面に当接 する概略位置、矢印 S, H, Vはそれぞれスプリアスモードの振動方向を示している。
[0041] いま、図 7 (C)において矢印 Sで示す方向に振動するスプリアスがある場合、提部 1 3の中央部では振動の逃げ場がないので、矢印 H方向に大きく振動してしまい、さら に矢印 V方向の振動も増大させてしまう。この矢印 H, V方向の振動モードはべンデ イングモードであり、これが各種スプリアスモードを引き起こす。
[0042] 一方、図 7 (A) (B)のように、提部 13に第 3の切欠部 15がある場合には、図 7 (B)に 示すように提部の第 3の切欠部 15で振動が吸収されるので (長手方向の圧縮'引つ 張り応力が逃がされるので)、矢印 H、 V方向の振動はそれほど大きくならず、スプリ ァスが低減できる。
[0043] 図 6に示した例では第 3の切欠部 15a, 15bを提部 13a, 13bにそれぞれ 1つずつ 設けた力 S、第 3の切欠部は提部に複数設けてもよい。
[0044] 上記第 3の切欠部 15a, 15bは、提部 13a, 13bの長軸に対して垂直方向に切り込 んだ形状であり、且つ、提部の長手方向の中心位置またはその中心位置に対して対 称位置に設けるのが良好である。この形状により、外部ケースの振動面である内底面 に対向する内部ケースの超音波振動作用面の中心を中心とする質量バランスがとれ るカゝらである。
[0045] 図 8 (A)は第 3の実施形態に係る超音波トランスデューサの残響特性を示す図、図 8 (B)は図 3 (A)に示した内部ケースを備えた超音波トランスデューサの残響特性を 示す図である。
[0046] 図 8 (A) (B)において左側の T1期間は発信波 (駆動期間)、それに連続する Tr期 間の振動は残響によるものである。図 8 (A) (B)において、その後の T2期間の振動 は反射波によるものである。ここで横軸の一マスは 0. 1msである。図 8 (A)の残響時 間 Trは図 8 (B)の残響時間 Trとほぼ同程度であることが分かる。これにより、第 3切 欠部 15a, 15bを形成した場合でも、図 8 (B)と同程度に残響を抑制することができる
[0047] 図 9は、第 3の実施形態に係る超音波トランスデューサと、その比較対象である図 3
(A)に示した内部ケースを備えた超音波トランスデューサの音圧の指向特性を示す 図である。図 9 (A)は垂直方向音圧特性であり、 90, 90度は第 1の切欠部の長軸 方向である。図 9 (B)は、水平方向音圧特性であり、 90, 90度は第 1の切欠部の 短軸方向である。 [0048] また、図 9において、実線は第 3の実施形態に係る超音波トランスデューサの特性、 破線は図 3 (A)に示した内部ケースを備えた超音波トランスデューサの特性である。
[0049] このように、第 3の実施形態に係る超音波トランスデューサによれば、第 1の切欠部 の長軸方向の両端をケースの端部にまで達するようにしたので、指向性をより向上さ せること力 Sでさる。
[0050] 以上に示したように、第 3の実施形態に係る超音波トランスデューサによれば、残響 を抑制したまま超音波ビームをより扁平化させることができる。
[0051] 《第 4の実施形態》
第 1 ·第 2の実施形態では第 2の切欠部を第 1の切欠部と同様に空気媒質の空間部 として設けたが、第 4の実施形態では第 2の切欠部と外部ケース 1の内底面との間に 生じる空間内に外部ケース 1および内部ケース 2より媒質密度の低い充填材を充填し たものである。
[0052] 図 10は第 4の実施形態に係る超音波トランスデューサの断面図である。内部ケース 2には第 2の切欠部 12a, 12bに対してそれぞれ貫通する貫通孔 14a, 14bを形成し ている。この貫通孔 14a, 14bを介して内部ケース 2の背面側から充填材を注入し、 第 2の切欠部 12a, 12bを充填材で充填する。これにより外部ケース 1の内底面のコ ーナ一部および外部ケース 1の側面部の不要振動が吸収され不要振動モードによる 影響が更に改善できる。

Claims

請求の範囲
[1] 有底筒状の外部ケースと、前記外部ケースの内底面に設けた圧電素子と、前記外 部ケースの内部に設けられ、前記外部ケースの内底面に対向する面である超音波振 動作用面で前記外部ケースの前記圧電素子による振動を質量で拘束する内部ケー スと、前記圧電素子に電気的に導通する端子と、を備えた超音波トランスデューサに おいて、
前記内部ケースは、前記超音波振動作用面のうち前記圧電素子の配置位置に対 向する部分に、前記圧電素子および外部ケースの振動により生じる超音波ビームを 扁平化する第 1の切欠部を有し、且つ、前記超音波振動作用面のうち、前記第 1の 切欠部とは離れた位置に第 2の切欠部を有してなる超音波トランスデューサ。
[2] 前記第 1の切欠部は前記外部ケースの内底面に対向する面に沿って一方向に長 軸を有する形状を成し、前記第 2の切欠部は前記長軸を対称軸として線対称に配置 したものである請求項 1に記載の超音波トランスデューサ。
[3] 前記第 2の切欠部は、当該第 2の切欠部の存在によって前記第 1の切欠部の周囲 に堤部を形成するとともに当該堤部の外側の全面に亘つて切欠かれたものである請 求項 1または 2に記載の超音波トランスデューサ。
[4] 前記内部ケースの媒質密度は前記外部ケースの媒質密度より高い、請求項;!〜 3 のうち!/、ずれかに記載の超音波トランスデューサ。
[5] 前記内部ケースの第 2の切欠部と前記外部ケースの内底面とで構成される空間を 前記内部ケースおよび前記外部ケースより媒質密度の低い充填材で充填した請求 項 1〜4のうちいずれかに記載の超音波トランスデューサ。
[6] 前記第 2の切欠部に貫通孔を形成した請求項 5に記載の超音波トランスデューサ。
[7] 前記第 1の切欠部の長軸方向の両端は前記ケースの端部にまで達し、前記堤部の 長手方向の途中に第 3の切欠部を備えた請求項 3に記載の超音波トランスデューサ
PCT/JP2007/072634 2006-11-27 2007-11-22 Transducteur à ultrasons WO2008065959A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020097010856A KR101102223B1 (ko) 2006-11-27 2007-11-22 초음파 트랜스듀서
JP2008546963A JP4888492B2 (ja) 2006-11-27 2007-11-22 超音波トランスデューサ
EP07832363.1A EP2076061B1 (en) 2006-11-27 2007-11-22 Ultrasonic transducer
CN2007800438870A CN101543095B (zh) 2006-11-27 2007-11-22 超声波转换器
US12/467,361 US7692367B2 (en) 2006-11-27 2009-05-18 Ultrasonic transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-318329 2006-11-27
JP2006318329 2006-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/467,361 Continuation US7692367B2 (en) 2006-11-27 2009-05-18 Ultrasonic transducer

Publications (1)

Publication Number Publication Date
WO2008065959A1 true WO2008065959A1 (fr) 2008-06-05

Family

ID=39467751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072634 WO2008065959A1 (fr) 2006-11-27 2007-11-22 Transducteur à ultrasons

Country Status (6)

Country Link
US (1) US7692367B2 (ja)
EP (1) EP2076061B1 (ja)
JP (1) JP4888492B2 (ja)
KR (1) KR101102223B1 (ja)
CN (1) CN101543095B (ja)
WO (1) WO2008065959A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077918A (ja) * 2009-09-30 2011-04-14 Murata Mfg Co Ltd 超音波トランスデューサ
JP5387697B2 (ja) * 2010-01-25 2014-01-15 株式会社村田製作所 超音波振動装置
JP5447535B2 (ja) * 2009-12-25 2014-03-19 株式会社村田製作所 超音波振動装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047743A1 (fr) * 2006-10-20 2008-04-24 Murata Manufacturing Co., Ltd. capteur ultrasonore
KR101286768B1 (ko) * 2009-12-08 2013-07-16 한국전자통신연구원 압전형 스피커 및 그 제조 방법
US9105835B2 (en) * 2010-12-10 2015-08-11 Mitsubishi Electric Corporation Air-coupled ultrasonic sensor
CN102075837B (zh) * 2010-12-22 2012-07-04 汉得利(常州)电子有限公司 一种高频率高灵敏度超声波传感器
KR20130013431A (ko) * 2011-07-28 2013-02-06 삼성전기주식회사 초음파 센서
CN103797819B (zh) * 2011-10-21 2016-08-24 株式会社村田制作所 超声波换能器
US10322949B2 (en) * 2012-03-15 2019-06-18 Flodesign Sonics, Inc. Transducer and reflector configurations for an acoustophoretic device
WO2018211589A1 (ja) * 2017-05-16 2018-11-22 三菱電機株式会社 超音波センサ装置及び障害物検知装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921016A (en) 1973-12-12 1975-11-18 Proctor & Assoc Co Sonic signal generator and housing
JPS61120600A (ja) 1984-11-15 1986-06-07 Matsushita Electric Ind Co Ltd 超音波セラミツクマイクロホン
JPH11266498A (ja) 1998-01-13 1999-09-28 Murata Mfg Co Ltd 超音波センサ、およびその製造方法
JP2001013239A (ja) * 1999-06-30 2001-01-19 Matsushita Electric Works Ltd 超音波振動子
JP2001078296A (ja) * 1999-08-31 2001-03-23 Matsushita Electric Works Ltd 超音波振動子
JP2002058097A (ja) 2000-06-02 2002-02-22 Matsushita Electric Works Ltd 超音波振動子
JP2004015150A (ja) 2002-06-04 2004-01-15 Murata Mfg Co Ltd 超音波センサ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821834A (en) * 1972-07-18 1974-07-02 Automation Ind Inc Method of making an ultrasonic search unit
JPS60139399U (ja) 1984-02-24 1985-09-14 日本特殊陶業株式会社 超音波セラミツクセンサ
FR2800229B1 (fr) * 1999-10-22 2002-04-05 Thomson Marconi Sonar Sas Transducteur acoustique sous-marin a large bande
JP2001128292A (ja) 1999-10-28 2001-05-11 Nippon Ceramic Co Ltd 超音波トランスデューサの製造方法
JP2004343660A (ja) 2003-05-19 2004-12-02 Nippon Ceramic Co Ltd 超音波センサ
JP4228997B2 (ja) * 2004-05-26 2009-02-25 パナソニック電工株式会社 超音波センサ
JP4306561B2 (ja) * 2004-08-11 2009-08-05 株式会社デンソー 超音波センサ
US7973455B2 (en) 2005-09-09 2011-07-05 Murata Manufacturing Co., Ltd. Ultrasonic sensor having stable anisotropy in directional properties
WO2007069609A1 (ja) * 2005-12-14 2007-06-21 Murata Manufacturing Co., Ltd. 超音波トランスデューサ
WO2008047743A1 (fr) 2006-10-20 2008-04-24 Murata Manufacturing Co., Ltd. capteur ultrasonore

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921016A (en) 1973-12-12 1975-11-18 Proctor & Assoc Co Sonic signal generator and housing
JPS61120600A (ja) 1984-11-15 1986-06-07 Matsushita Electric Ind Co Ltd 超音波セラミツクマイクロホン
JPH11266498A (ja) 1998-01-13 1999-09-28 Murata Mfg Co Ltd 超音波センサ、およびその製造方法
JP2001013239A (ja) * 1999-06-30 2001-01-19 Matsushita Electric Works Ltd 超音波振動子
JP2001078296A (ja) * 1999-08-31 2001-03-23 Matsushita Electric Works Ltd 超音波振動子
JP2002058097A (ja) 2000-06-02 2002-02-22 Matsushita Electric Works Ltd 超音波振動子
JP2004015150A (ja) 2002-06-04 2004-01-15 Murata Mfg Co Ltd 超音波センサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077918A (ja) * 2009-09-30 2011-04-14 Murata Mfg Co Ltd 超音波トランスデューサ
JP5447535B2 (ja) * 2009-12-25 2014-03-19 株式会社村田製作所 超音波振動装置
KR101422819B1 (ko) 2009-12-25 2014-07-23 가부시키가이샤 무라타 세이사쿠쇼 초음파 진동장치
JP5387697B2 (ja) * 2010-01-25 2014-01-15 株式会社村田製作所 超音波振動装置

Also Published As

Publication number Publication date
EP2076061A1 (en) 2009-07-01
JP4888492B2 (ja) 2012-02-29
US20090218913A1 (en) 2009-09-03
CN101543095A (zh) 2009-09-23
EP2076061A4 (en) 2011-06-01
JPWO2008065959A1 (ja) 2010-03-04
CN101543095B (zh) 2012-06-13
US7692367B2 (en) 2010-04-06
EP2076061B1 (en) 2019-01-30
KR20090075872A (ko) 2009-07-09
KR101102223B1 (ko) 2012-01-05

Similar Documents

Publication Publication Date Title
JP4888492B2 (ja) 超音波トランスデューサ
EP2076062B1 (en) Ultrasonic sensor
CN102859580B (zh) 用于触发超声传感器的方法以及超声传感器
JP4900022B2 (ja) 超音波センサ
JP4618165B2 (ja) 超音波センサ
JP5672389B2 (ja) 超音波センサ
JPH01119200A (ja) 超音波変換器
US11703581B2 (en) Ultrasonic transducer for a measuring device
WO2007091609A1 (ja) 超音波センサ
WO2021256414A1 (ja) 超音波センサ
WO2005009075A1 (ja) 超音波送受波器
JPWO2020174640A1 (ja) ソナー、超音波振動子
JP4134911B2 (ja) 超音波送受波器、及びその製造方法
WO2021176726A1 (ja) ソナー
JP5950742B2 (ja) 超音波送受波器
CN110709175A (zh) 超声传感器
JP4338568B2 (ja) 超音波探触子及び超音波診断装置
JP2009055458A (ja) 超音波送受波器
WO2014174730A1 (ja) 超音波発生装置
JP2020161888A (ja) 超音波センサ
WO2024089918A1 (ja) 超音波トランスデューサおよびこれを備えるパラメリックスピーカ
WO2021210151A1 (ja) ソナー
JP2000253494A (ja) 超音波センサ用圧電素子
JP2001056322A (ja) 超音波探触子
TW200933129A (en) Ultrasonic sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780043887.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008546963

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007832363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097010856

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE