WO2008065784A1 - Appareil de détermination de dispersion et système de compensation de dispersion automatique utilisant un tel appareil - Google Patents

Appareil de détermination de dispersion et système de compensation de dispersion automatique utilisant un tel appareil Download PDF

Info

Publication number
WO2008065784A1
WO2008065784A1 PCT/JP2007/065900 JP2007065900W WO2008065784A1 WO 2008065784 A1 WO2008065784 A1 WO 2008065784A1 JP 2007065900 W JP2007065900 W JP 2007065900W WO 2008065784 A1 WO2008065784 A1 WO 2008065784A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
amount
waveform
received
circuit
Prior art date
Application number
PCT/JP2007/065900
Other languages
English (en)
French (fr)
Inventor
Nobuhide Yoshida
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2008546894A priority Critical patent/JP5012811B2/ja
Priority to US12/514,766 priority patent/US8488961B2/en
Publication of WO2008065784A1 publication Critical patent/WO2008065784A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/336Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring polarization mode dispersion [PMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07951Monitoring or measuring chromatic dispersion or PMD
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2569Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to polarisation mode dispersion [PMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/252Distortion or dispersion compensation after the transmission line, i.e. post-compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/254Distortion or dispersion compensation before the transmission line, i.e. pre-compensation

Definitions

  • the present invention relates to a polarization dispersion amount, or a chromatic dispersion amount and a polarization component, from a transmission waveform deteriorated by polarization dispersion or a combined dispersion of polarization dispersion and chromatic dispersion in a high-speed optical transmission system.
  • the present invention relates to a dispersion detection apparatus capable of detecting both of the amount of scattering and an automatic dispersion compensation system using the same.
  • Polarization dispersion is caused by the optical fiber polarization component (TE mode and TM mode 2) due to the effect of deviation from a perfect circle and stress on the optical fiber because the optical fiber is slightly elliptical. Dispersion caused by different propagation delay times of two optical modes). Polarization dispersion generally increases as the transmission speed of an optical signal increases and as the transmission distance increases.
  • polarization dispersion is caused by temperature changes, fiber touch (hand touching optical fibers, It fluctuates over time due to changes in the transmission path environment due to stress, such as the application of stress to the optical fiber due to wind blowing on Aiba.
  • Non-Patent Document 1 discloses, for example, fluctuations in polarization dispersion with respect to temperature changes.
  • Non-Patent Document 1 points out the correlation between the amount of polarization dispersion fluctuation of the single-mode fiber in the underground pipeline over 48.8 km and the environmental temperature change. According to this result, it can be seen that the fluctuation of the polarization dispersion with respect to the temperature change is relatively slow in the min order.
  • Non-Patent Document 2 reports the frequency of occurrence of polarization dispersion fluctuation due to mechanical vibration.
  • Non-Patent Document 2 reports that the speed of polarization dispersion fluctuation is generally KHz, that is, several msec. Therefore, in order to compensate polarization dispersion with high accuracy, not only automatically performs compensation according to the transmission line condition when the system is started up (so-called no adjustment and adjustment free), but also during dynamic operation of the system. In addition, it is necessary to monitor the influence of polarization dispersion and perform compensation operation following the polarization dispersion at high speed in the order of msec.
  • Patent Document 2 discloses a technique for optimally controlling the amount of compensation for waveform degradation based on information related to a code error of an optical signal. Specifically, in the automatic dispersion compensation system disclosed in Patent Document 2, an optical signal is amplified by an optical amplifier 101 and then sent to a tunable dispersion compensator 102 as shown in FIG. The output signal of the tunable dispersion compensator 102 is amplified by the optical amplifier 103 and then converted into an electric signal by the light receiving element 104.
  • the output signal of the light receiving element 104 is amplified by the amplifier circuit 105, subjected to clock regeneration / identification processing by the clock regeneration / identification circuit 106, and is subjected to serial / parallel conversion by the serial / parallel conversion circuit 107.
  • Error correction circuit 108 performs code processing on the output signal of series-parallel conversion circuit 107 to detect a code error, and feeds back information about the detected code error to control circuit 109.
  • the control circuit 109 optimally controls the tunable dispersion compensator 102 based on the information fed back from the error correction circuit 108.
  • an optical receiver 110 includes a photodiode (PD) 111 that converts an optical signal into an electrical signal, and a photodiode (PD) 111.
  • PD photodiode
  • the status monitor 117 monitors the status of the PD 111, the equalizing amplifier 114, and the identification circuit 116.
  • PMD compensator 118 is controlled according to the monitoring result of PMD monitor 119 as shown in FIG.
  • PMD compensation for the optical reception signal input to the dispersion compensator 120 is performed.
  • the dispersion compensator 52 is controlled according to the result.
  • variable chromatic dispersion compensation devices used for chromatic dispersion compensation include VIPA (Virtually-Imaged—Phased—Array) disclosed in Non-Patent Document 5, and FBG (Fiber- Bragg— There is an optical device using Grafting).
  • specific techniques for polarization dispersion compensation include, for example, methods such as an optical processing type, a photoelectric processing type, and an electric processing type disclosed in Non-Patent Document 7. Among these, it is necessary to control the polarization state of the light processing type and the photoelectric processing type. Furthermore, as a control method for polarization dispersion compensation, disclosed in Non-Patent Documents 8 and 9, half the frequency component of the clock signal included in the optical signal after polarization dispersion compensation and 1/4 of There is a method for controlling the polarization state by monitoring the frequency component.
  • Patent Document 1 separates chromatic dispersion compensation control and polarization dispersion compensation control from each other, and does not make both controls compatible. For this reason, there is a problem in that the size of the device is increased and the cost is increased because a process for making each control compatible is required.
  • Patent Document 2 The technique disclosed in Patent Document 2 is such that, as shown in FIG. 1, the identification and control of dispersion are performed by electrical processing! It can be said that it is advantageous from the viewpoint of conversion!
  • this technology when a dispersion fluctuation occurs due to a change in some condition and a sign error occurs, it is possible to control dispersion compensation excessively (to the + side) from the current level, or in a decreasing direction. Has data to determine whether to control (to one side)! /, N! /.
  • Patent Document 7 a dither that expresses gradation with dots generated randomly.
  • Non-Patent Document 10 Ring method or hill-climbing method such as disclosed in Non-Patent Document 10 that determines the next search course that is closest to the goal when the next candidate vertex is expanded from the current vertex. Using this algorithm, a method for finding the optimal compensation point can be adopted.
  • the technique disclosed in Patent Document 2 does not have the above data, it cannot be determined first whether the error rate decreases or increases when the dispersion compensation amount is increased. In other words, when the dispersion compensation amount is controlled based on the error rate, it takes a long time to reach the optimum value.
  • the step of the dispersion compensation amount control interval is rough, the convergence point of the system may not be found. Therefore, the dispersion compensation amount control interval must maintain a certain degree of accuracy. In this case, the time required for convergence and the number of iterations further increase. Therefore, it is difficult to apply to systems that require high-speed compensation in the order of msec.
  • the automatic dispersion compensation system shown in FIG. 2 is a general automatic dispersion compensation system that extracts a control signal from a normal waveform monitor. A specific algorithm to determine the cause of chromatic dispersion and polarization dispersion is not considered.
  • the automatic dispersion compensation system shown in FIG. 3 requires a monitor, a control device, and a dispersion compensator corresponding to each of chromatic dispersion and polarization dispersion, as described in (1). .
  • the dispersion compensator and its peripheral devices are mostly composed of optical components, which leads to an increase in the size and cost of the device due to an increase in the number of components. Therefore, there is a problem that it is difficult to generalize.
  • Patent Document 1 JP-A-7-221705
  • Patent Document 2 JP 2002-208892 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-7150
  • Patent Document 4 JP-A-8-321805
  • Patent Document 5 Japanese Patent Laid-Open No. 9 326755
  • Patent Document 6 JP-A-10-276172
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2002-33701
  • Non-Patent Document 1 J. Cameron et al .: Time evolution of polarization—mo de dispersion for aerial and buried cables, Proc. OFC98, pp240 -241 "
  • Non-Patent Document 2 " ⁇ ⁇ Brow et al .: Measurement of the Maximum Speed of PMD Fluctuation in Installed Field Fiber, Proc. OFC '99, pp 83-85"
  • Non-Patent Document 3 "G. Ishikawa et al.,” DEMONSTRATION OF AUTOM ATIC DISPERSION EQUALIZATION IN 40 Gbit / s OTDM TRAN SMISSION ", ECOC '98, pp. 519—520"
  • Non-Patent Document 4 "Y. Akiyama et al.,” AUTOMATIC DISPERSION EQ UALIZATION IN 40 Gbit / s TRANSMISSION BY SEAMLESS— S WITCHING BETWEEN MULTIPLESIGNAL WAVELENGTHS ", EC OC '99, pp. 1- 150- 151"
  • Non-Patent Document 5 "M. 3 ⁇ 4hirasaki et al., 'Dispersion Compensation Using The Virtually Imaged Phased Array, APCC OECC' 99, pp. 1367-1370, 1999"
  • Non-Patent Document 6 "M. M. Ohn et al.,” Tunable Fiber Grating Dispersion
  • Non-Patent Document 7 "H. Bulow et al.,” Optical and electronic PMD compensation ", OFC '03, p. 541"
  • Non-Patent Document 8 "IHL Ooi et al., Automatic Polarization-Mode Dispersion Compensation in 40 Gbit / s Transmission", IOOC '99, WE 5
  • Non-Patent Document 9 D. Sandel et al., Automatic polarization mode disper sion compensation in40 Gbit / s optical transmission system ", Elec tron. Lett., 1998, pp2258— 2259"
  • Non-Patent Document 10 "Makoto Nagaoka: Software Science 14" Knowledge and Reasoning ", Iwanami Shoten, 19 88, pp. 114-120
  • an object of the present invention is to provide a dispersion detecting apparatus capable of compensating polarization dispersion at a high speed on the order of msec and an automatic dispersion compensating system using the dispersion detecting apparatus. Another object of the present invention is to compensate for polarization dispersion at a high speed on the order of msec, and in the state where chromatic dispersion and polarization dispersion occur simultaneously, It is an object of the present invention to provide a dispersion detection device capable of distinguishing between a shape deterioration factor and a waveform deterioration factor due to wavelength dispersion, and an automatic dispersion compensation system using the same.
  • the dispersion detection apparatus of the present invention uses the following method.
  • polarization dispersion is waveform degradation caused by combining two waves of a slow wave component and a fast wave component of an optical waveform caused by group delay (DGD) with a power branching ratio ⁇ . It is.
  • the transfer function ⁇ is expressed as equation (1).
  • is the energy ratio of the delayed wave to the input wave
  • DGD is the group delay
  • 1UI is one symbol length.
  • the power branching ratio ⁇ in the transfer function is 1:
  • the feature is that the eye opening force symbol of the received eye pattern waveform is asymmetrical at both the left and right ends in the symbol.
  • the received waveform is sampled while varying the discrimination threshold in the amplitude direction, and the eye opening amount in the voltage direction of the received eye pattern waveform is detected from this sampling data.
  • This eye opening amount is detected at a plurality of phase points of the received eye pattern waveform, and by comparing these detection results, the degree of asymmetry! / On the left and right sides of the received eye pattern waveform is determined and asymmetrical.
  • the amount of polarization dispersion can be estimated from the degree! /.
  • the dispersion detection apparatus for detecting the polarization dispersion amount as described above is obtained by a waveform monitor circuit that samples data from a received waveform of a received signal transmitted through a transmission line, and a waveform monitor circuit.
  • the received waveform monitor processing unit has a histogram extraction circuit that extracts histogram data representing the intensity distribution in the voltage direction of the received waveform based on the sampled data, and analyzes the histogram data extracted by the received waveform monitor processing unit By determining the left / right asymmetry level of the received eye pattern waveform of the received waveform, the polarization component for estimating the polarization dispersion amount in the transmission line based on the determined asymmetry level A dispersion amount detection unit having a dispersion estimation circuit and a force are configured.
  • the dispersion amount detection unit further includes a voltage direction eye opening detection unit that detects an eye opening amount in the voltage direction of the received eye pattern waveform.
  • a voltage direction eye opening detection unit that detects an eye opening amount in the voltage direction of the received eye pattern waveform.
  • the waveform degradation caused by chromatic dispersion causes the crosspoint to fluctuate from the middle position to the upper side or the lower side, and the phase direction margin of the eye pattern waveform decreases. Is the feature.
  • the eye opening amount and the crosspoint fluctuation amount in the phase direction of the received eye pattern waveform are detected, and the phase is detected. It is possible to estimate the amount of chromatic dispersion by performing arithmetic processing based on the eye opening in the direction and the amount of cross-point variation.
  • the dispersion detection device for separately detecting the polarization dispersion amount and the chromatic dispersion amount in this way samples the data from the received waveform of the received signal transmitted through the transmission path.
  • Circuit and sampling data obtained by the waveform monitor circuit The received waveform monitor processing unit having a histogram extraction circuit that extracts the histogram data representing the intensity distribution in the voltage direction of the received waveform and the received waveform obtained by analyzing the histogram data extracted by the received waveform monitor processing unit Polarization dispersion estimation circuit that determines the left / right asymmetry degree of the received eye pattern waveform and estimates the polarization dispersion amount in the transmission line based on the determined asymmetry degree, and the center position of the cross point of the received eye pattern waveform And a dispersion amount detector having a chromatic dispersion estimation circuit for estimating the chromatic dispersion amount in the transmission line based on the amount of fluctuation from the eye and the eye opening amount in the phase direction.
  • the dispersion amount detection unit As a specific operation procedure of the dispersion amount detection unit, first, the cross point variation amount of the received eye pattern waveform is detected first, and if there is no variation, it is estimated that there is no chromatic dispersion, and the above-mentioned bias is detected. The routine proceeds to a wave dispersion amount detection routine. Conversely, if there is a cross-point variation, the routine proceeds to the above-described chromatic dispersion amount detection routine, and after the detection of the chromatic dispersion amount is completed, the routine proceeds to the polarization dispersion amount detection routine. This makes it possible to isolate the diversification factors.
  • the lookup data indicating the correlation between the polarization dispersion amount and the left / right asymmetry degree of the eye pattern waveform, and the chromatic dispersion amount and the pattern waveform stored in advance are stored. Since detection is performed using look-up data representing the correlation between the eye opening amount in the phase direction and the cross-point variation, detection at high speed is possible.
  • This automatic dispersion compensation system is based on a photoelectric conversion circuit that converts a received signal transmitted through a transmission path from an optical signal to an electrical signal, and dispersion of the received signal converted into an electrical signal by the photoelectric conversion circuit.
  • An electrical dispersion compensator that compensates for waveform deterioration, a dispersion detector that detects the amount of dispersion based on the received waveform of the received signal that has passed through the electrical dispersion compensator, and a clock signal that is derived from the signal that has passed through the electrical dispersion compensator.
  • Clock data recovery circuit that performs recovery and extraction and data signal recovery, demultiplexer that performs serial-parallel conversion on the data signal output from the clock data recovery circuit, and detection of the amount of polarization dispersion detected by the dispersion detector Based on the results, an adaptive compensation amount control unit that controls the compensation coefficient of the electrical dispersion compensator and the identification threshold value of the clock data recovery circuit, and a force are configured.
  • the compensation coefficient and discrimination threshold for example, the correlation between the amount of dispersion and the compensation coefficient and discrimination threshold. If the lookup data representing the relationship is stored in advance in the lookup data table, and this lookup data is used, the method can be adopted.
  • the routine of the automatic dispersion compensation system using these dispersion detection devices does not use optical component control such as polarization control, and all can be performed by electrical processing. Compared with, it is possible to reduce the number of parts and reduce the cost.
  • the configuration is such that the amount of dispersion is detected by using information obtained by monitoring the received waveform at high speed and using lookup data representing the correlation between the amount of waveform degradation and the amount of dispersion, information such as the code error rate is obtained. Compared to the case where it is used, the number of repetitions of the process until detection is reduced, and it can sufficiently cope with automatic compensation of polarization dispersion that fluctuates at a high speed on the order of msec.
  • FIG. 1 is a diagram showing a configuration example of a conventional automatic dispersion compensation system.
  • FIG. 2 is a diagram showing another configuration example of a conventional automatic dispersion compensation system.
  • FIG. 3 is a diagram showing still another configuration example of a conventional automatic dispersion compensation system.
  • FIG. 4 is a block diagram showing a configuration of a dispersion detection apparatus according to the first exemplary embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration example of an automatic dispersion compensation system using the dispersion detection apparatus shown in FIG.
  • FIG. 6 is a diagram illustrating the principle of estimating the amount of polarization dispersion from a waveform degraded by polarization dispersion.
  • FIG. 7 is a flowchart for explaining the schematic operation of the automatic dispersion compensation system shown in FIG.
  • FIG. 8 is a diagram showing another configuration example of an automatic dispersion compensation system using the dispersion detection apparatus shown in FIG.
  • FIG. 9 is a block diagram showing a configuration of a dispersion detecting apparatus according to a second embodiment of the present invention.
  • FIG. 10 is a diagram for explaining the principle of estimating the amount of chromatic dispersion from a waveform degraded by chromatic dispersion.
  • FIG. 11 is a diagram showing a configuration example of an automatic dispersion compensation system using the dispersion detection apparatus shown in FIG. 9.
  • FIG. 12 is a flowchart illustrating a schematic operation of the automatic dispersion compensation system shown in FIG. 11.
  • FIG. 13 is a diagram showing another configuration example of an automatic dispersion compensation system using the dispersion detection apparatus shown in FIG.
  • FIG. 14 is a block diagram showing the configuration of the dispersion detection apparatus of the third exemplary embodiment of the present invention.
  • FIG. 15 shows the result of simulating the difference in degradation due to the difference in the group delay amount of the received eye pattern waveform.
  • FIG. 16 is a diagram showing a configuration example of an automatic dispersion compensation system using the dispersion detecting apparatus shown in FIG.
  • FIG. 17 is a diagram showing another configuration example of an automatic dispersion compensation system using the dispersion detection apparatus shown in FIG.
  • FIG. 4 is a block diagram showing the configuration of the dispersion detection apparatus according to the first embodiment of the present invention.
  • the dispersion detection apparatus of this embodiment detects the amount of polarization dispersion in an optical fiber that is a transmission path.
  • the dispersion detection apparatus of the present embodiment includes a received waveform monitor processing unit 1 that monitors a received waveform that has deteriorated in a received signal received from an optical fiber, and a received waveform monitor processing unit 1 And a dispersion amount detection unit 4 for detecting the polarization dispersion amount of the received waveform monitored at.
  • the waveform monitor processing unit 1 includes a waveform monitor circuit 2 and a histogram extraction circuit 3.
  • Waveform monitor circuit 2 monitors the received waveform and samples data from the monitored received waveform.
  • the histogram extraction circuit 3 extracts histogram data representing the intensity distribution in the voltage direction of the received waveform by multiplying and averaging the sampling data obtained by the waveform monitor circuit 2.
  • the dispersion amount detection unit 4 includes a voltage direction eye opening detection unit 5, a lookup data table 6, and a polarization dispersion estimation circuit 7.
  • the voltage direction eye opening detection unit 5 is obtained by analyzing the histogram data extracted by the reception waveform monitor processing unit 1.
  • the voltage direction (amplitude direction) of the reception eye pattern waveform obtained by converting the reception waveform into an eye pattern.
  • the eye opening amount of the eye is detected.
  • a plurality of voltage direction eye opening detection units 5 are provided, and the plurality of voltage direction eye opening detection units 5 perform voltage direction eye detection at a plurality of phase points in the phase direction of the clock (time axis direction). Detect multiple eye openings.
  • the lookup data table 6 stores in advance lookup data representing the correlation between the polarization dispersion amount and the degree of left-right asymmetry of the eye pattern waveform.
  • the polarization dispersion estimation circuit 7 compares the detection results of the plurality of eye opening amounts in the voltage direction detected by the voltage direction eye opening detection unit 5, thereby calculating the left and right sides of the received eye pattern waveform. Determine the degree of asymmetry.
  • waveform degradation due to polarization dispersion causes the eye opening of the received eye pattern waveform to be asymmetric at both the left and right sides in one symbol, except when the power branching ratio ⁇ is 1: 1. This is a major feature.
  • the polarization dispersion estimation circuit 7 compares the degree of left-right asymmetry determined above with the lookup data in the look-up data table 6 to uniquely estimate the polarization dispersion amount with the force S. Monkey.
  • the amount of polarization dispersion is detected based on typical characteristics of waveform degradation caused by polarization dispersion and V, and the degree of left-right asymmetry of the received eye pattern waveform. Therefore, compared to the conventional technology that estimates the polarization dispersion based on the correspondence map between the waveform degradation pattern and the dispersion factor, the accumulated data used as the basis for the correspondence map can be reduced. Typing becomes possible. In addition, it is possible to detect the amount of polarization dispersion at high speed by simplifying the correspondence map.
  • FIG. 5 is a diagram illustrating a configuration example of an automatic dispersion compensation system using the dispersion detection apparatus illustrated in FIG.
  • the automatic dispersion compensation system of this example includes the above-described received waveform monitor processing unit.
  • the photoelectric conversion circuit 8 converts the received signal transmitted through the optical fiber from an optical signal to an electrical signal.
  • the electrical dispersion compensator 9 compensates for waveform deterioration due to polarization dispersion of the received signal converted into an electrical signal by the photoelectric conversion circuit 8.
  • the clock data recovery circuit 10 performs clock signal reproduction 'extraction and data signal recovery from the signal that has passed through the electrical dispersion compensator 9.
  • the demultiplexer 11 performs serial-parallel conversion on the data signal that has been subjected to CDR processing by the clock data recovery circuit 10.
  • the waveform monitor circuit 2 includes a discriminator 13, a fluctuation threshold control circuit 14, and a phase interpolator.
  • the discriminator 13 is adjusted by the fluctuation threshold control circuit 14 from the received waveform that has passed through the electrical dispersion compensator 9 at the timing based on the discrimination clock whose phase is adjusted by the phase interpolator 15 and the phase controller 16.
  • the data that is equal to or higher than the identified identification threshold is sampled.
  • the discrimination threshold Vth of the discriminator 13 is changed in the voltage direction by the fluctuation threshold control circuit 14, and the discriminator 13 is supplied.
  • the received waveform data that has passed through the electrical dispersion compensator 9 is sampled while the phase of the identification clock to be applied is changed by the phase interpolator 15 and the phase controller 16.
  • the waveform shown in FIG. 6 is a received eye pattern waveform under the conditions of DGD of 20 ps and power branching ratio ⁇ force 3 ⁇ 4: 1.
  • the sampling data obtained by the discriminator 13 is serial / parallel converted by the serial / parallel conversion circuit 18.
  • the counter 19 counts the number of sampled data, and the timer circuit 17 determines the timing at which the identification threshold is changed by the fluctuation threshold control circuit 14 according to the count value of the counter 19, the phase interpolator 15 and the phase controller. 16 controls the phase change timing.
  • the histogram extraction circuit 3 includes a time differentiating circuit 20 that extracts the histogram data by multiplying and averaging the sampling data obtained by the waveform monitor circuit 2.
  • the time differentiating circuit 20 includes a data count number of sampling data obtained by sampling the received waveform for a fixed time with the discrimination threshold of the discriminator 13 fixed, and then the discriminator. Calculate the difference between the sampling count of the sampling data obtained by sampling the received waveform for a certain period of time with the 13 identification thresholds changed by one step, and store the difference data every time the identification threshold is changed. To do. Thereby, the time differentiating circuit 20 calculates the intensity distribution in the voltage direction of the received waveform and uses it as histogram data.
  • the voltage direction eye opening detection unit 5 analyzes the received eye pattern waveform obtained by analyzing the histogram data obtained by the reception waveform monitor processing unit 1.
  • the eye opening amount in the voltage direction is repeatedly detected at a plurality of phase points.
  • the polarization dispersion estimation circuit 7 determines the degree of left-right asymmetry of the received eye pattern waveform, and compares the determined degree of left-right asymmetry with the lookup data in the lookup data table 6 to estimate the amount of polarization dispersion. To do. This estimation result is output as the detection result of the polarization dispersion amount.
  • the adaptive compensation amount control unit 12 is configured based on the detection result of the polarization dispersion amount detected by the dispersion amount detection unit 4, and the optimum compensation coefficient and clock data recovery circuit 10 of the electrical dispersion compensator 9 And an adaptive compensation amount control coefficient determination circuit 21 for determining an optimum value of the discrimination threshold.
  • determining the compensation coefficient and the identification threshold for example, a method of storing lookup data representing a correlation between the polarization dispersion amount, the compensation coefficient, and the identification threshold in advance in a lookup data table, and using the lookup data. Can be taken.
  • FIG. 7 is a flowchart for explaining the schematic operation of the automatic dispersion compensation system shown in FIG. It is.
  • step 401 when the received waveform from the electrical dispersion compensator 9 is input (step 401), the received waveform is changed in the voltage direction with the identification threshold. Sampling is performed (steps 402 and 403), and histogram data is extracted (step 404). Further, steps 402 to 404 are repeated while changing the clock phase (step 405).
  • the dispersion amount detection unit 4 analyzes a plurality of (2 to 3 points) positions in the phase direction of the received eye pattern waveform obtained by analyzing the histogram data extracted by the received waveform monitor processing unit 1.
  • the eye opening amount in the voltage direction is detected (step 406), and the left and right asymmetry of the received eye pattern waveform is determined by comparing the detected eye opening amounts (step 407, 408). If the eye opening in the voltage direction is asymmetrical as a result of comparing the left and right sides of one symbol length, the power branching ratio ⁇ is estimated (step 409).
  • step 410 it is determined whether or not the maximum value of the eye opening in the voltage direction is on both the left and right sides of the received eye pattern waveform (step 410). Set to 0.5 (step 411), otherwise the power branching ratio ⁇ is set to 0 (step 412). Further, the polarization dispersion amount is detected by comparing the left / right asymmetry degree of the received eye pattern waveform with the lookup data in the lookup data table 6 (step 413).
  • the adaptive compensation amount control unit 12 determines the optimum compensation coefficient and clock data recovery circuit of the electrical dispersion compensator 9 based on the detection result of the polarization dispersion amount detected by the dispersion amount detection unit 4.
  • the optimum value of the discrimination threshold of 10 is determined, and the determined value is set in the electric dispersion compensator 9 and the clock differential force varistor circuit 10 (step 414).
  • the amount of polarization dispersion is detected based on the typical characteristics of waveform degradation due to polarization dispersion and the degree of left-right asymmetry of the received eye pattern waveform. Therefore, compared to conventional technology that estimates the amount of polarization dispersion based on a correspondence map between waveform degradation patterns and dispersion factors, the accumulated data that forms the basis of the correspondence map can be reduced. Is possible. In addition, it is possible to detect the amount of polarization dispersion at high speed by simplifying the correspondence map.
  • FIG. 8 shows another configuration example of the automatic dispersion compensation system using the dispersion detection apparatus shown in FIG. FIG.
  • the reception waveform monitor processing unit 1 described above, the dispersion amount detection unit 4 described above, the photoelectric conversion circuit 8, and the clock data are received as reception units.
  • the transmission unit includes a multiplexer (MUX: multiple xer) 22, an electric equalizer circuit 23, an optical modulator driver circuit 24, an optical modulator 25, and a laser diode 26.
  • MUX multiple xer
  • the photoelectric conversion circuit 8 converts the reception signal transmitted through the optical fiber 27 from an optical signal to an electrical signal.
  • the clock data recovery circuit 10 performs recovery and extraction of the clock signal from the received signal and recovery of the data signal.
  • the reception waveform monitor processing unit 1 monitors the reception waveform received from the optical fiber 27, and the dispersion amount detection unit 4 detects the polarization dispersion amount of the reception waveform monitored by the reception waveform monitor processing unit 1. To do.
  • the configurations and operations of the received waveform monitor processing unit 1 and the dispersion amount detection unit 4 are the same as those shown in FIG.
  • the multiplexer 22 performs parallel / serial conversion on a transmission signal to be transmitted to the transmission destination.
  • the electric equalizer circuit 23 corrects the frequency characteristic of the transmission signal based on the detection result of the polarization dispersion amount detected by the dispersion amount detection unit 4.
  • the optical modulator driver circuit 24 is based on the output signal of the electrical equalizer circuit 23, and the optical modulator
  • the optical modulator 25 modulates the optical signal emitted from the laser diode 26 under the control of the optical modulator driver circuit 24.
  • the detection result of the polarization dispersion amount at the reception unit is fed back to the transmission unit, and the transmission signal subjected to the dispersion equalization process in anticipation of the waveform deterioration amount in advance is used.
  • the amount of compensation is optimized by sending it to the receiver.
  • FIG. 9 is a block diagram showing a configuration of a dispersion detection apparatus according to the second exemplary embodiment of the present invention.
  • the dispersion detection apparatus of this embodiment separates and detects the amount of chromatic dispersion and the amount of polarization dispersion in an optical fiber that is a transmission path.
  • the dispersion detecting apparatus of the present embodiment is monitored by a received waveform monitor processing unit 1 that monitors a received waveform that has deteriorated in waveform received from an optical fiber, and a received waveform monitor processing unit 1.
  • a dispersion amount detection unit 28 for separately detecting the chromatic dispersion amount and the polarization dispersion amount of the received waveform.
  • the received waveform monitor processing unit 1 includes a waveform monitor circuit 2 and a histogram extraction circuit 3 as in the first embodiment shown in FIG.
  • the waveform monitor circuit 2 monitors the received waveform and samples data from the monitored received waveform.
  • the histogram extraction circuit 3 extracts histogram data representing the intensity distribution in the voltage direction of the received waveform by multiplying and averaging the sampling data obtained by the waveform monitor circuit 2.
  • the dispersion amount detection unit 28 is similar to the dispersion amount detection unit 4 of the first embodiment shown in FIG. 4, and the voltage direction eye opening detection unit 5, the lookup data table 6, and the polarization dispersion unit And an estimated circuit 7. Further, the dispersion amount detection unit 28 includes a phase direction eye opening detection unit 29, a cross point variation detection unit 30, a variation amount calculation circuit 31, and a chromatic dispersion estimation circuit 32.
  • the voltage direction eye opening detection unit 5 is a voltage direction (amplitude direction) of a received eye pattern waveform obtained by analyzing the histogram data extracted by the received waveform monitor processing unit 1 into an eye pattern of the received waveform. The eye opening amount of the eye is detected.
  • the phase direction eye opening detection unit 29 is obtained by analyzing the histogram data extracted by the reception waveform monitor processing unit 1, and the phase direction (time axis direction) of the reception eye pattern waveform obtained by converting the reception waveform into an eye pattern ) Is detected.
  • the cross point fluctuation detection unit 30 is obtained by analyzing the histogram data extracted by the reception waveform monitor processing unit 1, and a cross point (rising edge curve) of the reception eye pattern waveform obtained by converting the reception waveform into an eye pattern. The center position force at the intersection with the falling edge curve) and the amount of fluctuation are detected. This fluctuation amount is input to the polarization dispersion estimation circuit 7 and the chromatic dispersion estimation circuit 32 after being calculated by the fluctuation amount calculation circuit 31.
  • Lookup data table 6 shows the degree of left-right asymmetry of polarization dispersion and eye pattern waveform. Lookup data representing the correlation with the match is stored in advance. Further, the lookup data table 6 stores in advance lookup data representing the correlation between the amount of chromatic dispersion and the eye opening in the phase direction of the eye pattern waveform, and the correlation between the amount of chromatic dispersion and the amount of variation of the cross point.
  • Waveform degradation due to chromatic dispersion is shown in the eye pattern waveform in Fig. 10.
  • the cross point changes from the center position to the upper side or the lower side.
  • the phase direction margin of the eye pattern waveform is reduced.
  • the chromatic dispersion estimation circuit 32 detects the eye opening amount in the phase direction of the received eye pattern waveform detected by the phase direction eye opening detection unit 29 and the reception eye detected by the cross point variation detection unit 30. By comparing the fluctuation amount of the crosspoint of the pattern waveform with the lookup data in the lookup data table 6, the chromatic dispersion amount can be uniquely estimated.
  • the polarization dispersion estimation circuit 7 compares and calculates the detection results of the plurality of eye opening amounts in the voltage direction detected by the voltage direction eye opening detection unit 5, and thereby the left and right sides of the received eye pattern waveform are compared. By determining the degree of asymmetry and comparing the determined degree of left-right asymmetry with the lookup data in Lookup Data Table 6, the amount of polarization dispersion is uniquely estimated.
  • the amount of wavelength dispersion is detected based on the amount of variation in the crosspoint of the received eye pattern waveform and the amount of eye opening in the phase direction, which is a typical feature.
  • the amount of polarization dispersion is detected based on the degree of asymmetry of the received eye pattern waveform, which is a typical feature. Therefore, compared to the conventional technology that estimates the amount of polarization dispersion based on the correspondence map between the waveform degradation pattern and the dispersion factor, less accumulated data is used as the basis for the correspondence map. It becomes possible.
  • FIG. 11 is a diagram showing a configuration example of an automatic dispersion compensation system using the dispersion detection apparatus shown in FIG.
  • the automatic dispersion compensation system of this example includes the above-described received waveform monitor processing unit 1, the above-described dispersion amount detection unit 28, the photoelectric conversion circuit 8, the electrical dispersion compensator 9, A clock data recovery circuit (CDR) 10, a serial-parallel conversion circuit (DMX) 11, and an adaptive compensation amount control unit 12 are included.
  • CDR clock data recovery circuit
  • DMX serial-parallel conversion circuit
  • the photoelectric conversion circuit 8 converts the received signal transmitted through the optical fiber from an optical signal to an electrical signal.
  • the electric dispersion compensator 9 compensates for waveform degradation due to polarization dispersion and wavelength dispersion of the received signal converted into an electric signal by the photoelectric conversion circuit 8.
  • the clock data recovery circuit 10 performs clock signal reproduction and extraction and data signal recovery from the signal that has passed through the electrical dispersion compensator 9.
  • the demultiplexer 11 performs serial-parallel conversion on the data signal that has been subjected to CDR processing by the clock data recovery circuit 10.
  • the waveform monitor circuit 2 includes a discriminator 13, a fluctuation threshold control circuit 14, and a phase interpolator.
  • the discrimination threshold of the discriminator 13 is changed in the voltage direction by the fluctuation threshold control circuit 14, and the phase of the clock applied to the discriminator 13 is changed by the phase interpolator 15 and the phase controller 16.
  • the received waveform data that passed through the electrical dispersion compensator 9 is sampled.
  • the sampling data obtained by the discriminator 13 is serial / parallel converted by the serial / parallel conversion circuit 18.
  • the counter 19 counts the number of sampling data, and the timer circuit 17 determines the timing at which the identification threshold is changed by the fluctuation threshold control circuit 14 according to the count value of the counter 19, the phase interpolator 15 and the phase controller 16. To control the phase change timing.
  • the histogram extraction circuit 3 has a time differentiating circuit 20 that extracts the histogram data by multiplying and averaging the sampling data obtained by the waveform monitor circuit 2.
  • the voltage direction eye opening detection unit 5 performs the reception waveform monitoring.
  • the eye opening amount in the voltage direction of the received eye pattern waveform obtained by the Utah processing unit 1 is detected, and the phase direction eye opening detection unit 29 detects the eye opening amount in the phase direction of the received eye pattern waveform to detect cross-point fluctuations.
  • the detection unit 30 detects the amount of variation from the center position of the cross point of the received eye pattern waveform.
  • the chromatic dispersion estimation circuit 32 estimates the chromatic dispersion amount by comparing the variation amount of the cross point of the received eye pattern waveform and the eye opening amount in the phase direction with the lookup data in the lookup data table 6.
  • Polarization dispersion estimation circuit 7 detects the degree of left-right asymmetry of the received eye pattern waveform, and compares the determined degree of left-right asymmetry with the lookup data in lookup data table 6 to detect the amount of polarization dispersion. To do.
  • the adaptive compensation amount control unit 12 determines the optimum compensation coefficient and clock data recovery of the electrical dispersion compensator 9 based on the detection result of the chromatic dispersion amount-polarization dispersion amount detected by the dispersion amount detection unit 28.
  • the adaptive compensation amount control coefficient determination circuit 21 that determines the optimum value of the discrimination threshold of the circuit 10 is provided.
  • look-up data indicating the correlation between the wavelength dispersion amount 'polarization dispersion amount and the compensation coefficient and the discrimination threshold is stored in advance in the look-up data table. If you use, you can use the method.
  • FIG. 12 is a flowchart for explaining the schematic operation of the automatic dispersion compensation system shown in FIG.
  • the received waveform monitor processing unit 1 receives the received waveform from the electrical dispersion compensator 9 (step 901)
  • the received waveform is changed in the voltage direction in the identification threshold.
  • Sampling is performed (steps 902 and 903), and histogram data is extracted (step 904). Further, steps 902 to 904 are repeated while changing the phase of the clock (step 905).
  • the dispersion amount detection unit 28 detects the eye opening amount in the voltage direction of the received signal pattern waveform obtained by analyzing the histogram data (step 906), and detects the cross point of the received eye pattern waveform. The variation from the center position is detected (step 907), and the eye opening in the phase direction of the received eye pattern waveform is detected (step 908). Cross point is strange If it is moving (step 909), the routine proceeds to a routine for detecting the amount of chromatic dispersion, and the amount of variation in the crosspoint of the received eye pattern waveform and the eye opening amount in the phase direction are stored in the look-up data in the NORKUP data table 6. To detect the amount of chromatic dispersion (step 910).
  • the routine proceeds to a routine for detecting the amount of polarization dispersion.
  • the routine for detecting the amount of polarization dispersion the amount of polarization dispersion is detected by the processing in steps 91;! To 917 similar to steps 407 to 413 described in FIG.
  • the adaptive compensation amount control unit 12 uses the detection result of the wavelength dispersion amount / polarization dispersion amount detected by the dispersion amount detection unit 4 to calculate the compensation coefficient and clock data of the electrical dispersion compensator 9.
  • the optimum value of the discrimination threshold of the force variation circuit 10 is determined, and the determined value is set in the electric dispersion compensator 9 and the clock data recovery circuit 10 (step 918).
  • FIG. 13 is a diagram showing another configuration example of the automatic dispersion compensation system using the dispersion detection apparatus shown in FIG.
  • the transmission unit includes a multiplexer (MUX) 22, an electric equalizer circuit 23, an optical modulator driver circuit 24, an optical modulator 25, and a laser diode 26.
  • MUX multiplexer
  • the photoelectric conversion circuit 8 converts the received signal transmitted through the optical fiber 27 from an optical signal to an electrical signal.
  • the clock data recovery circuit 10 performs recovery and extraction of the clock signal from the received signal and recovery of the data signal.
  • the received waveform monitor processing unit 1 monitors the received waveform received from the optical fiber, and the dispersion amount detection unit 28 detects the chromatic dispersion amount and polarization dispersion of the received waveform monitored by the received waveform monitor processing unit 1. The quantity is detected separately. Note that the configurations and operations of the received waveform monitor processing unit 1 and the dispersion amount detection unit 28 are the same as those shown in FIG. 11, and thus detailed description thereof is omitted.
  • the multiplexer 22 performs parallel / serial conversion on the transmission signal to be transmitted to the transmission destination.
  • the electric equalizer circuit 23 corrects the frequency characteristics of the transmission signal based on the detection result of the chromatic dispersion amount / polarization dispersion amount detected by the dispersion amount detection unit 28.
  • the optical modulator driver circuit 24 is based on the output signal of the electrical equalizer circuit 23, and the optical modulator
  • the optical modulator 25 modulates the optical signal emitted from the laser diode 26 under the control of the optical modulator driver circuit 24.
  • the detection result of the chromatic dispersion amount 'polarization dispersion amount at the reception unit is fed back to the transmission unit, and the transmission equalization processing is performed in advance in anticipation of the waveform degradation amount.
  • the amount of compensation is optimized by transmitting the received signal to the receiver.
  • FIG. 14 is a block diagram showing the configuration of the dispersion detection apparatus according to the third embodiment of the present invention.
  • the dispersion detection apparatus according to the present embodiment detects the amount of chromatic dispersion and the amount of polarization dispersion in an optical fiber that is a transmission line. Further, among the polarization dispersions, the group delay amount (DGD) is a received eye pattern waveform. Detects that it is more than 1 unit interval time.
  • DDD group delay amount
  • the dispersion detection apparatus of the present embodiment includes a received waveform monitor processing unit 1 that monitors a received waveform whose waveform has deteriorated in a received signal received from an optical fiber, and a received waveform monitor processing unit 1.
  • the chromatic dispersion amount and polarization dispersion amount of the received waveform monitored are detected separately, and it is detected that the group delay amount of polarization dispersion is more than one unit interval time of the received eye pattern waveform.
  • a dispersion amount detection unit 33 is provided to monitor the chromatic dispersion amount and polarization dispersion amount of the received waveform monitored.
  • the waveform monitor processing unit 1 has a waveform monitor circuit 2 and a histogram extraction circuit 3.
  • Waveform monitor circuit 2 monitors the received waveform and samples data from the monitored received waveform.
  • the histogram extraction circuit 3 extracts histogram data representing the intensity distribution in the voltage direction of the received waveform by multiplying and averaging the sampling data obtained by the waveform monitor circuit 2.
  • the dispersion amount detection unit 33 is similar to the dispersion amount detection unit 28 of the second embodiment shown in FIG. 9, and the voltage direction eye opening detection unit 5, the lookup data table 6, and the polarization dispersion Estimated times A path 7, a phase direction eye opening detection unit 29, a cross-point variation detection unit 30, a variation calculation circuit 31, and a chromatic dispersion estimation circuit 32. Further, the dispersion amount detection unit 33 includes a cross point position detection unit 34 and a group delay amount identification function unit 35.
  • the voltage direction eye opening detection unit 5 is obtained by analyzing the histogram data extracted by the reception waveform monitor processing unit 1.
  • the voltage direction (amplitude direction) of the reception eye pattern waveform obtained by converting the reception waveform into an eye pattern.
  • the eye opening amount of the eye is detected.
  • Information on the eye opening amount in the voltage direction is input to the polarization dispersion estimating circuit 7 and the group delay amount identifying function unit 35.
  • the phase direction eye opening detection unit 29 obtains the phase direction (time axis direction) of the received eye pattern waveform obtained by analyzing the histogram data extracted by the received waveform monitor processing unit 1 into an eye pattern of the received waveform. ) Is detected.
  • the cross-point fluctuation detection unit 30 is obtained by analyzing the histogram data extracted by the reception waveform monitor processing unit 1, and the cross-point (rising edge curve) of the reception eye pattern waveform obtained by converting the reception waveform into an eye pattern. The center position force at the intersection with the falling edge curve) and the amount of fluctuation are detected. This fluctuation amount is input to the polarization dispersion estimation circuit 7 and the chromatic dispersion estimation circuit 32 after being calculated by the fluctuation amount calculation circuit 31.
  • the cross point position detection unit 34 analyzes the histogram data extracted by the reception waveform monitor processing unit 1 and obtains the high level (mark side) and low level of the cross point of the received eye pattern waveform. The position near the intermediate potential on the side (space side) is detected.
  • the lookup data table 6 stores in advance lookup data representing the correlation between the polarization dispersion amount and the degree of left-right asymmetry of the eye pattern waveform. Further, the lookup data table 6 stores in advance lookup data representing the correlation between the amount of chromatic dispersion and the eye opening in the phase direction of the eye pattern waveform, and the correlation between the amount of chromatic dispersion and the amount of variation of the cross point. Furthermore, the lookup data table 6 shows the amount of polarization dispersion when the group delay is 1 unit interval or more, the presence / absence of cross points within the unit time of the eye pattern waveform, and the voltage direction in that case. Lookup data representing the correlation between the eye opening amount and the eye opening amount is stored in advance.
  • FIG. 15 is a diagram showing a result of simulating a difference in deterioration due to a difference in the group delay amount of the received eye pattern waveform.
  • the waveform degradation when the group delay amount is 1 unit interval time or more of the reception eye waveform is the high level of the reception eye pattern waveform.
  • the main feature is that the cross-point position near the intermediate potential between the low-level side and the low-level side has a degraded shape that also exists within one unit interval of the received eye pattern waveform.
  • the group delay amount identification function unit 35 has a cross point inside the eye opening (within one unit interval) of the received eye pattern waveform based on the detection result by the cross point position detection unit 34. If the eye opening amount in the voltage direction at that time is compared with the lookup data in the lookup data table 6, it can be identified that the group delay amount is 1 unit interval time or more. Conversely, the group delay amount identifying function unit 35 can identify that the group delay amount is less than one unit interval time when it is identified that there is no cross point within one unit interval.
  • the chromatic dispersion estimation circuit 32 detects the eye opening amount in the phase direction of the received eye pattern waveform detected by the phase direction eye opening detection unit 29 and the cross point fluctuation detection unit 30.
  • the amount of chromatic dispersion can be uniquely estimated by comparing the amount of fluctuation of the cross-point of the received eye pattern waveform with the lookup data in the lookup data table 6.
  • the detection results of the plurality of eye opening amounts in the voltage direction detected by the voltage direction eye opening detection unit 5 are also obtained.
  • the polarization dispersion amount is uniquely determined. presume.
  • the amount of wavelength dispersion is detected based on the amount of variation in the cross point of the received eye pattern waveform and the amount of eye opening in the phase direction, which is a typical feature.
  • the amount of polarization dispersion is detected based on the degree of asymmetry of the received eye pattern waveform, which is a typical feature. The fact that the group delay amount of the received eye pattern waveform is 1 unit interval time or more is identified based on information on whether or not a cross point has entered the received eye pattern waveform.
  • the amount of accumulated data that forms the basis of the correspondence map is reduced, resulting in smaller equipment. Is possible. Furthermore, by simplifying the correspondence map, it becomes possible to detect and detect the chromatic dispersion amount 'polarization dispersion amount' at high speed.
  • FIG. 16 is a diagram showing a configuration example of an automatic dispersion compensation system using the dispersion detection apparatus shown in FIG.
  • the automatic dispersion compensation system of this example includes the above-described received waveform monitor processing unit 1, the above-described dispersion amount detection unit 33, the photoelectric conversion circuit 8, the electrical dispersion compensator 9, A clock data recovery circuit (CDR) 10, a serial-parallel conversion circuit (DMX) 11, an adaptive compensation amount control unit 12, and a pre-equalizer 36 are included.
  • the pre-equalizer 36 is arranged between the photoelectric conversion circuit 8 and the electrical dispersion compensator 9. Further, the pre-equalizer 36 includes a variable delay element (variable delay element) 37, a weighting circuit 38, and an addition / subtraction circuit 39. However, the pre-equalizer 36 can be used with a general filter circuit such as a transversal filter.
  • the photoelectric conversion circuit 8 converts the received signal transmitted through the optical fiber from an optical signal to an electrical signal.
  • the electrical dispersion compensator 9 compensates for waveform degradation due to polarization dispersion and wavelength dispersion of the received signal converted into an electrical signal by the photoelectric conversion circuit 8.
  • the clock data recovery circuit 10 performs clock signal reproduction and extraction and data signal recovery from the signal that has passed through the electrical dispersion compensator 9.
  • the demultiplexer 11 performs serial / parallel conversion on the data signal that has been subjected to CDR processing by the clock data recovery circuit 10.
  • the voltage direction eye opening detection unit 5 detects the eye opening amount in the voltage direction of the received eye pattern waveform obtained by the reception waveform monitor processing unit 1, and
  • the phase direction eye opening detector 29 detects the amount of eye opening in the phase direction of the received eye pattern waveform, and the cross point fluctuation detector 30 detects the amount of fluctuation from the center position of the cross point of the received eye pattern waveform.
  • the cross point position detector 34 detects the position of the cross point of the received eye pattern waveform near the intermediate potential.
  • the chromatic dispersion estimation circuit 32 estimates the chromatic dispersion amount by comparing the variation amount of the cross point of the received eye pattern waveform and the eye opening amount in the phase direction with the lookup data in the lookup data table 6.
  • the polarization dispersion estimation circuit 7 determines the degree of left-right asymmetry of the received eye pattern waveform, and compares the determined degree of left-right asymmetry with the lookup data in the lookup data table 6 to detect the amount of polarization dispersion. To do.
  • the group delay amount identification function unit 35 identifies that a cross point exists within one unit interval time of the received eye pattern waveform, the eye opening amount information in the voltage direction at that time is used as lookup data. By comparing with the lookup data in Table 6, it is identified that the group delay is 1 unit interval time or more. Conversely, when the group delay amount identification function unit 35 identifies that there is no cross point within one unit interval time of the received eye pattern waveform, the group delay amount identification unit 35 confirms that the group delay amount is less than one unit interval time. Identify.
  • the group delay amount identifying function unit 35 When the group delay amount identifying function unit 35 identifies that the group delay amount is equal to or greater than one unit interval time, it outputs a control signal to the pre-equalizer 36 to receive the received waveform. Set the operating state to compensate for the waveform degradation due to the group delay equivalent to the first one-unit interval time. Then, the remaining waveform degradation is compensated by performing waveform shaping processing in the electric dispersion compensator 9 in the next stage.
  • a delay control signal is output to the variable delay element 37, and a weighting control signal is output to the weighting circuit 38.
  • variable delay element 37 performs delay processing on the received signal converted into an electric signal by the photoelectric conversion circuit 8 based on the delay control signal
  • the weighting circuit 38 is output from the variable delay element 37 based on the weighting control signal.
  • the addition / subtraction circuit 39 performs addition / subtraction between the reception signal before being input to the variable delay element 37 and the reception signal output from the weighting circuit 38. This makes it possible to equalize the waveform degradation by the time corresponding to the first unit interval time of the received waveform.
  • the adaptive compensation amount control unit 12 determines the optimum compensation coefficient and clock data recovery of the electrical dispersion compensator 9 based on the detection result of the chromatic dispersion amount-polarization dispersion amount detected by the dispersion amount detection unit 33.
  • the adaptive compensation amount control coefficient determination circuit 21 that determines the optimum value of the discrimination threshold of the circuit 10 is provided.
  • look-up data indicating the correlation between the wavelength dispersion amount 'polarization dispersion amount and the compensation coefficient and the discrimination threshold is stored in advance in the look-up data table. If you use, you can use the method.
  • FIG. 17 is a diagram showing another configuration example of the automatic dispersion compensation system using the dispersion detection apparatus shown in FIG.
  • the reception waveform monitor processing unit 1 described above, the dispersion amount detection unit 33 described above, the photoelectric conversion circuit 8, and the clock data record are received as the reception unit.
  • Force burr circuit 10 the transmission unit includes a multiplexer (MUX) 22, an electric equalizer circuit 23, an optical modulator driver circuit 24, an optical modulator 25, and a laser diode 26.
  • MUX multiplexer
  • the transmission unit includes a multiplexer (MUX) 22, an electric equalizer circuit 23, an optical modulator driver circuit 24, an optical modulator 25, and a laser diode 26.
  • the photoelectric conversion circuit 8 converts the received signal transmitted through the optical fiber 27 from an optical signal to an electrical signal.
  • the clock data recovery circuit 10 performs recovery and extraction of the clock signal from the received signal and recovery of the data signal.
  • the received waveform monitor processing unit 1 monitors the received waveform received from the optical fiber, and the dispersion amount detecting unit 33 is the chromatic dispersion amount and polarization dispersion of the received waveform monitored by the received waveform monitor processing unit 1. The quantity is detected separately. Furthermore, the dispersion amount detector 33 determines that the group delay amount in polarization dispersion is 1 unit interval time or more, that is, due to polarization dispersion. It is also detected that the waveform deterioration is an extremely deteriorated shape. The configuration and operation of the dispersion amount detection unit 33 are the same as those shown in FIG.
  • the multiplexer 22 performs parallel / serial conversion on the transmission signal to be transmitted to the transmission destination.
  • the electric equalizer circuit 23 generates a transmission signal based on the detection result of whether or not the occurrence of the chromatic dispersion amount / polarization dispersion amount and group delay amount detected by the dispersion amount detection unit 33 is 1 unit interval or more. Correct the frequency characteristics.
  • the optical modulator driver circuit 24 is based on the output signal of the electrical equalizer circuit 23.
  • the optical modulator 25 modulates the optical signal emitted from the laser diode 26 under the control of the optical modulator driver circuit 24.
  • the amount of compensation is optimized by feeding back to the transmitter the generation status of the group delay amount and transmitting the transmission signal subjected to the dispersion equalization process in advance in anticipation of the waveform degradation amount.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Description

明 細 書
分散検出装置およびそれを用いた自動分散補償システム
技術分野
[0001] 本発明は、高速光伝送システムにおいて、偏波分散、または、偏波分散と波長分 散の複合分散で劣化した伝送波形から、偏波分散量、または、波長分散量と偏波分 散量の両方を検出することができる分散検出装置およびそれを用いた自動分散補償 システムに関する。
背景技術
[0002] 近年のネットワーク容量の急激な増加に伴い、光伝送システムの大容量化が求めら れている。最近は、現在実用化されている lOGbpsの波長多重 (WDM)伝送方式よ りもさらなる大容量伝送が可能となる 40Gbpsの WDM光伝送システムの開発が急ピ ツチで進められている。
[0003] このような 40Gbpsの光伝送システムでは、これまで問題となってきた波長分散に起 因する波形劣化だけでなぐ偏波分散に起因する波形劣化の影響が非常に大きくな り、光信号の伝送距離が著しく制限されるという問題がある。
[0004] 偏波分散は、光ファイバが僅かに楕円化しているために真円からのずれの影響や 光ファイバに対する応力の影響によって、光ノ ルスの偏波成分 (TEモードおよび T Mモードの 2つの光モード)の伝播遅延時間が異なることによって生じる分散である。 偏波分散は、一般に光信号の伝送速度が高速になるほど、また伝送距離が長くなる ほど大きくなる。
[0005] これまでに敷設された古!/、光ファイバ(主に日本以外で設置されたもの)には、 lps /km1/2を超える大きな偏波分散を有するものも存在する。例えば、このような光ファ ィバで光信号を 100km伝送した場合、 2つの偏光成分に生じる群遅延(DGD : Diff erential Group Delay) Δ τは 10ps程度となり、 40Gbpsの光信号の 1タイムス口 ット 25psの 2/5にも達する。そのため、光信号の波形劣化が著しくなり、伝送距離が 大きく制限される。
[0006] さらに、偏波分散は、温度変化や、ファイバタツチ(光ファイバに手が触れたり、光フ アイバに風が吹き付けられたりするなどにより光ファイバに応力力 Sかかること)などのス トレスによる伝送路環境の変化によって経時的に変動する。
[0007] 温度変化に対する偏波分散の変動に関しては、例えば、非特許文献 1に開示され ている。非特許文献 1では、地下管路のシングルモードファイバの 48. 8kmにわたる 偏波分散変動量と環境温度変化との相関が指摘されている。この結果によれば、温 度変化に対する偏波分散の変動は、 minオーダで比較的低速であることがわかる。
[0008] これに対して、非特許文献 2では、偏波分散変動の機械的振動(mechanical vib ration)による発生頻度が報告されている。非特許文献 2では、偏波分散変動の速さ は一般に KHz、即ち数 msecの速さであると報告されている。従って、高精度に偏波 分散を補償するには、システムの立上げ時に伝送路状態に応じて自動で補償動作 を行うだけでなく(いわゆる無調整'調整フリー化)、システムの運用中もダイナミックに 偏波分散の影響をモニタして、 msecオーダで高速に偏波分散に追随して補償動作 を行う必要がある。
[0009] さらに、実環境では、上記で述べた偏波分散のほかに、これまでの光伝送システム で波形劣化の大きな要因であった波長分散の影響も存在する。そのため、実環境で 受信する光信号の受信波形は、複数の分散要因が同時に混在することに起因して、 複雑に劣化した波形となっている。このような複数の分散要因に起因して劣化した波 形を、既存の波長分散補償器や一般的な波形劣化を補償するイコライザによって無 理に補償しようと試みても、収束解を得ることができず、分散劣化を最適に補償でき ない状態に陥る場合がある。
[0010] 従って、 40Gbpsの光伝送システムで数百 kmの伝送を可能にするためには、次の
2つの仕組みが必要となる。
[0011] (1)システム運用中も msecオーダで高速に偏波分散を自動で補償する仕組み
(2)従来の波長分散と偏波分散が同時に発生している状態において、偏波分散に よる波形劣化と、波長分散による波形劣化の両方を最適に補償できる仕組み ここで、波長分散および偏波分散を自動補償する技術としては、例えば、特許文献 1に開示された技術がある。具体的には、特許文献 1に開示された自動分散補償シ ステムにおいては、光伝送路を伝送されてきた光信号に対して、波長分散の自動補 償を行う分散補償器と、偏波分散の自動補償を行う分散補償器と、が個別に設けら れており、それぞれの分散補償器が可変型補償分散デバイス、制御用モニタ回路、 および制御回路を備えて!/、る。
[0012] また、特許文献 2には、光信号の符号誤りに関する情報に基づいて波形劣化の補 償量を最適制御する技術が開示されている。具体的には、特許文献 2に開示された 自動分散補償システムにおいては、図 1に示すように、光信号は光アンプ 101で増 幅された後に可変分散補償器 102に送られる。可変分散補償器 102の出力信号は 、光アンプ 103で増幅された後に受光素子 104で電気信号に変換される。受光素子 104の出力信号は増幅回路 105で増幅され、クロック再生/識別回路 106でクロック 再生 ·識別処理が行われ、直並列変換回路 107で直並列変換される。誤り訂正回路 108は、直並列変換回路 107の出力信号に対する符号処理を行うことで符号誤りを 検出し、検出した符号誤りに関する情報を制御回路 109にフィードバックする。制御 回路 109は、誤り訂正回路 108からフィードバックされた情報を基に、可変分散補償 器 102を最適制御する。
[0013] また、特許文献 3には、波長分散と偏波分散を切り分ける試みとして、波長分散モ ユタの変わりに一般的な伝送品質モニタを使用して、伝送品質劣化の主要因である 2つの分散を切り分ける技術が開示されている。ちなみに、伝送品質モニタの一例と しては、誤り測定器や、 Q値を測定する伝送品質モニタ等がある。具体的には、特許 文献 3に開示された一の自動分散補償システムにおいては、図 2に示すように、光受 信器 110は、光信号を電気信号に変換するフォトダイオード(PD) 111と、前置増幅 器 112および増幅器 113によって構成され、電気信号を増幅し波形整形を行う等化 増幅器 114と、等化増幅器 114の出力信号からクロック信号を抽出するクロック抽出 回路 115と、等化増幅器 114の出力信号の状態を識別する識別回路 116とを備えて いる。状態モニタ 117は、 PD111、等化増幅器 114、および識別回路 116の状態を モニタする。また、特許文献 3に開示された他の自動分散補償システムにおいては、 図 3に示すように、 PMDモニタ 119のモニタ結果に応じて PMD補償器 118を制御 する。これにより、分散補償器 120に入力される光受信信号に対する PMD補償がな される。また、光/電気変換器 (O/E) 121をモニタする分散モニタ 122のモニタ結 果に応じて、分散補償器 52を制御する。
[0014] なお、波長分散補償についての具体的な技術としては、例えば、特許文献 4〜6、 非特許文献 3, 4などに開示された技術がある。波長分散補償に用いられる可変型 波長分散補償デバイスとしては、非特許文献 5に開示された VIPA (Virtually— Ima ged— Phased— Array)や、非特許文献 6に開示された FBG (Fiber— Bragg— Gra ting)を用いた光デバイスなどがある。
[0015] また、偏波分散補償についての具体的な技術としては、例えば、非特許文献 7に開 示されている、光処理型、光電処理型および電気処理型などの方式がある。この中 で光処理型および光電処理型については偏光状態の制御を行う必要がある。さらに 、偏波分散補償についての制御方式としては、非特許文献 8, 9に開示されている、 偏波分散補償後の光信号に含まれるクロック信号の 1/2の周波数成分や 1/4の周 波数成分をモニタして、偏光状態の制御を行う方式がある。
[0016] しかしながら、上記のような従来の分散補償技術においては、幾つかの課題がある 。以下に、分散補償技術ごとの課題を列挙する。
[0017] (1)偏波分散補償についての具体的な従来技術としては、光処理、電気処理など を行う幾つかの技術がある。ただし、それらの偏波分散補償技術の殆どは偏光状態 の制御を必要としている。し力、しながら、 msecオーダの高速で経時変動する偏波分 散に対して偏光制御を実現するのは難しレ、と!/、う課題がある。
[0018] (2)特許文献 1に開示された技術は、波長分散の補償制御と偏波分散の補償制御 とを切り分け、各々の制御を両立させるものではない。そのため、各々の制御を両立 させる処理が必要となることから装置サイズの大型化、高コスト化につながるという課 題がある。
[0019] (3)特許文献 2に開示された技術は、図 1に示したように、分散の識別や制御など が電気処理で行われて!/、ることから装置の小型化、低コスト化と!/、う観点では有利と いえる。し力、しながら、この技術は、何らかの条件変化により分散変動が生じ、符号誤 りが発生した場合に、分散の補償を現状より過剰に(+側に)制御する力、、あるいは 減少方向に(一側に)制御するかを判定するためのデータを有して!/、な!/、。一般には 、特許文献 7に開示されるような、乱数的に発生させたドットで階調を表現するディザ リング手法や、非特許文献 10に開示されるような、現在の頂点から次の候補の頂点 を展開したとき、その中で最もゴールに近そうなものを次の探索コースとして決める山 登り手法などのアルゴリズムを用いることで、最適な補償点を見つけ出す方法が採ら れる。しかし、特許文献 2に開示された技術は、上記のデータを有していないために 、分散補償量を増加したときに誤り率が減少するか増加するかを最初に確定すること はできない。即ち、誤り率を基に分散補償量を制御する場合に、最適値に到達する までに要する時間が長くなつてしまう。さらに、分散補償量の制御間隔の刻みが荒い 場合、システムの収束ポイントが見つけられない恐れがあるので、分散補償量の制御 間隔はある程度高精度を維持しなければならない。この場合、収束までに必要な時 間および繰り返し回数はさらに増加してしまう。従って、 msecオーダの高速補償が必 要なシステムへの適用は難しレ、と!/、う課題がある。
(4)特許文献 3に開示された技術のうち、図 2に示した自動分散補償システムは、 通常の波形モニタから制御信号を抽出する一般的な自動分散補償システムであり、 具体的にどのように波長分散と偏波分散の原因を切り分けるかの具体的なアルゴリ ズム '構成は検討されていない。また、図 3に示した自動分散補償システムは、(1)で 述べたのと同様に、波長分散および偏波分散のそれぞれに対応して、モニタ、制御 装置、および分散補償器が必要となる。また、分散補償器およびその周辺装置は大 部分が光部品で構成されているため、部品点数の増大による装置の大型化、高コス ト化につながる。従って、汎用化がしにくいという課題がある。
特許文献 1 :特開平 7— 221705号公報
特許文献 2:特開 2002— 208892号公報
特許文献 3:特開 2004— 7150号公報
特許文献 4 :特開平 8— 321805号公報
特許文献 5:特開平 9 326755号公報
特許文献 6 :特開平 10— 276172号公報
特許文献 7 :特開 2002— 33701号公報
非特許文献 1 : J. Cameron et al. : Time evolution of polarization— mo de dispersion for aerial and buried cables, Proc. OFC98, pp240 - 241"
非特許文献 2 : "Η· Brow et al. : Measurement of the Maximum Speed of PMD Fluctuation in Installed Field Fiber, Proc. OFC' 99, pp 83 - 85"
非特許文献 3 : "G. Ishikawa et al. , "DEMONSTRATION OF AUTOM ATIC DISPERSION EQUALIZATION IN 40 Gbit/s OTDM TRAN SMISSION", ECOC' 98, pp. 519— 520"
非特許文献 4 : "Y. Akiyama et al. , "AUTOMATIC DISPERSION EQ UALIZATION IN 40 Gbit/s TRANSMISSION BY SEAMLESS— S WITCHING BETWEEN MULTIPLESIGNAL WAVELENGTHS", EC OC' 99, pp. 1- 150- 151"
非特許文献 5 : "M. ¾hirasaki et al. , 'Dispersion Compensation Using The Virtually Imaged Phased Array , APCC OECC' 99, pp. 1367 - 1370, 1999"
非特許文献 6 : "M. M. Ohn et al. , "Tunable Fiber Grating Dispersion
Usinga Piezoelectric Stack , OFC' 97 WJ3"
非特許文献 7 : "H. Bulow et al. , "Optical and electronic PMD compe nsation", OFC' 03, p. 541"
非特許文献 8 : "IHL Ooi et al. , Automatic Polarization― ModeDispersio n Compensation in 40 Gbit/s Transmission", IOOC' 99, WE 5" 非特許文献 9 : "D. Sandel et al. , Automatic polarization mode disper sion compensation in40 Gbit/ s optical transmission system", Elec tron. Lett. , 1998, pp2258— 2259"
非特許文献 10 : "長岡真:岩波講座ソフトウェア科学 14「知識と推論」、岩波書店、 19 88、 pp. 114- 120"
発明の開示
そこで、本発明の目的は、 msecオーダの高速で偏波分散を補償することができる 分散検出装置およびそれを用いた自動分散補償システムを提供することにある。 [0022] 本発明の他の目的は、 msecオーダの高速で偏波分散を補償することができるとと もに、波長分散と偏波分散が同時に発生している状態において、偏波分散による波 形劣化要因と、波長分散による波形劣化要因を切り分けることができる分散検出装 置およびそれを用いた自動分散補償システムを提供することにある。
[0023] 上記の目的を達成するために、本発明の分散検出装置は、以下のような手法を用 いる。
[0024] まず、偏波分散の影響で劣化した波形を補償する場合について述べる。
[0025] 上述のように、偏波分散は、群遅延(DGD)により生じる光波形の遅波成分および 速波成分の 2つの波が、パワー分岐比 γで合波されることにより生じる波形劣化であ る。伝達関数 ζは式(1)のように表現される。
[0026] (1 γ ) + γ ζ— DGD/1UI (1)
ここで、 γは入力波に対する遅延波のエネルギ割合、 DGDは群遅延、 1UIは 1シ ンボル長である。
[0027] 偏波分散に起因する波形劣化では、上記伝達関数におけるパワー分岐比 γが 1:
1の場合を除き、受信アイパターン波形のアイ開口量力 シンボル内の左右両端で非 対称になることが大きな特徴である。
[0028] 従って、受信波形を、識別閾値を振幅方向に可変させながらサンプリングし、この サンプリングデータから受信アイパターン波形の電圧方向のアイ開口量を検出する。
[0029] このアイ開口量を受信アイパターン波形の複数の位相点で検出し、これら検出結 果を比較することで受信アイパターン波形の左右での非対称度合!/、を判定し、非対 称度合!/、から偏波分散量を推定することができる。
[0030] このように偏波分散量を検出する第 1態様の分散検出装置は、伝送路を伝送され てきた受信信号の受信波形からデータをサンプリングする波形モニタ回路、および、 波形モニタ回路により得られたサンプリングデータを基にして受信波形の電圧方向の 強度分布を表すヒストグラムデータを抽出するヒストグラム抽出回路を有する受信波 形モニタ処理部と、受信波形モニタ処理部にて抽出されたヒストグラムデータを解析 することで得られる受信波形の受信アイパターン波形の左右の非対称度合いを判定 し、判定した非対称度合いを基にして伝送路における偏波分散量を推定する偏波分 散推定回路を有する分散量検出部と、力 構成される。
[0031] なお、分散量検出部は、受信アイパターン波形の電圧方向のアイ開口量を検出す る電圧方向アイ開口検出部をさらに有する。偏波分散推定回路は、識別クロックの位 相を変更する度に、受信アイパターン波形の電圧方向のアイ開口量の検出結果を取 得し、該検出結果を比較することで受信アイパターン波形の左右の非対称性度合い を判定し、判定した非対称度合いを基にして偏波分散量を推定することになる。
[0032] ここで、パワー分岐比 γが 1: 1の場合、即ち分岐比が等しい場合は、受信アイバタ ーン波形は、電圧軸にアイ開口がつぶれるだけで、左右の対称性が崩れることはな い。
[0033] したがって、偏波分散推定回路は、電圧方向のアイ開口量を 1シンボル長の左右 で比較したときに、非対称性ではな力 た場合は、 Ί = 0または 50%であると判定す る。その後、電圧方向の具体的なアイ開口量を見積もることで γ値を推測することに なる。
[0034] なお、分散量検出の際は、予め格納された、偏波分散量とアイパターン波形の左 右の非対称度合いとの相関関係を表すルックアップデータを用いて検出を行うことか ら、高速での検出が可能となる。
[0035] 次に、偏波分散と波長分散の影響で劣化した波形を補償する場合について述べる
[0036] 波長分散に起因する波形劣化は、偏波分散での波形劣化とは対照的に、クロスポ イントが中間位置から上側または下側に変動し、かつアイパターン波形の位相方向 余裕が減少するのが特徴である。
[0037] そのため、上述したような受信アイパターン波形の電圧方向のアイ開口量を検出す るほ力、に、受信アイパターン波形の位相方向のアイ開口量およびクロスポイント変動 量を検出し、位相方向のアイ開口量、クロスポイント変動量を基に演算処理を行うこと で波長分散量を推定することが可能となる。
[0038] このように偏波分散量と波長分散量とを分離して検出する第 2態様の分散検出装 置は、伝送路を伝送されてきた受信信号の受信波形からデータをサンプリングする 波形モニタ回路、および、波形モニタ回路により得られたサンプリングデータを基にし て受信波形の電圧方向の強度分布を表すヒストグラムデータを抽出するヒストグラム 抽出回路を有する受信波形モニタ処理部と、受信波形モニタ処理部にて抽出された ヒストグラムデータを解析することで得られる受信波形の受信アイパターン波形の左 右の非対称度合いを判定し、判定した非対称度合いを基にして伝送路における偏 波分散量を推定する偏波分散推定回路、および、受信アイパターン波形のクロスポ イントの中心位置からの変動量、位相方向のアイ開口量を基にして伝送路における 波長分散量を推定する波長分散推定回路を有する分散量検出部とから構成される。
[0039] 具体的な分散量検出部の動作手順としては、まず、受信アイパターン波形のクロス ポイント変動量を最初に検出し、変動がない場合は波長分散が存在しないと推定し、 上述の偏波分散量検出ルーチンに移行する。逆に、クロスポイント変動が存在した場 合には、上述の波長分散量検出ルーチンに移行し、波長分散量の検出が終了した 後に偏波分散量検出ルーチンに移行する。これにより、分散要因を切り分けることが 可能になる。
[0040] なお、分散量検出の際は、予め格納された、偏波分散量とアイパターン波形の左 右の非対称度合いとの相関関係を表すルックアップデータ、および、波長分散量とァ ィパターン波形の位相方向のアイ開口量およびクロスポイント変動量との相関関係を 表すルックアップデータを用いて検出を行うことから、高速での検出が可能となる。
[0041] 次に、上述した分散検出装置を用いた自動分散補償システムについて説明する。
[0042] 本自動分散補償システムは、伝送路を伝送されてきた受信信号を光信号から電気 信号に変換する光電気変換回路と、光電変換回路にて電気信号に変換された受信 信号の分散による波形劣化を補償する電気分散補償器と、電気分散補償器を通過 した受信信号の受信波形を基にして分散量を検出する分散検出装置と、電気分散 補償器を通過した信号から、クロック信号の再生'抽出およびデータ信号のリカバリを 行うクロックデータリカバリ回路と、クロックデータリカバリ回路から出力されたデータ信 号を直並列変換するデマルチプレクサと、分散検出装置にて検出された偏波分散量 の検出結果を基に、電気分散補償器の補償係数およびクロックデータリカバリ回路 の識別閾値を制御するァダプティブ補償量制御部と、力 構成される。補償係数およ び識別閾値の決定に際しては、例えば、分散量と補償係数および識別閾値との相関 関係を表すルックアップデータをルックアップデータテーブルに予め格納しておき、こ のルックアップデータを用いるとレ、う手法を採ることができる。
[0043] 以上述べた分散検出装置により、初期設定時、およびサービス運用時の両方の場 合において、偏波分散による波形劣化量を推定し、偏波分散量の検出ができるよう になる。
[0044] また、偏波分散と波長分散が混在する場合でも、分散要因の切り分けと分散量の 推定が 1つの装置で可能である。
[0045] また、これらの分散検出装置を用いた自動分散補償システムのルーチンは、偏光 制御などの光部品の制御を用いず、電気処理で全てが可能になることから、光部品 を用いた場合に比べて小型集積化が可能であり、部品点数の削減、低コスト化が可 能である。
[0046] また、受信波形を高速モニタした情報を用い、かつ波形劣化量と分散量との相関 関係を表すルックアップデータを用いて分散量を検出する構成であるため、符号誤り 率などの情報を用いる場合に比べて、検出までの処理の繰り返し回数が低減され、 msecオーダの高速で変動する偏波分散を自動補償するのに十分対応可能である。 図面の簡単な説明
[0047] [図 1]従来の自動分散補償システムの一構成例を示す図である。
[図 2]従来の自動分散補償システムの他の構成例を示す図である。
[図 3]従来の自動分散補償システムのさらに他の構成例を示す図である。
[図 4]本発明の第 1の実施形態の分散検出装置の構成を示すブロック図である。
[図 5]図 4に示した分散検出装置を用いた自動分散補償システムの一構成例を示す 図である。
[図 6]偏波分散により劣化した波形から偏波分散量を推定する原理を説明する図で ある。
[図 7]図 5に示した自動分散補償システムの概略動作を説明するフローチャートであ
[図 8]図 4に示した分散検出装置を用いた自動分散補償システムの他の構成例を示 す図である。 [図 9]本発明の第 2の実施形態の分散検出装置の構成を示すブロック図である。
[図 10]波長分散により劣化した波形から波長分散量を推定する原理を説明する図で ある。
[図 11]図 9に示した分散検出装置を用いた自動分散補償システムの一構成例を示す 図である。
[図 12]図 11に示した自動分散補償システムの概略動作を説明するフローチャートで ある。
[図 13]図 9に示した分散検出装置を用いた自動分散補償システムの他の構成例を示 す図である。
[図 14]本発明の第 3の実施形態の分散検出装置の構成を示すブロック図である [図 15]受信アイパターン波形の群遅延量の違いによる劣化具合の違いをシミュレ一 シヨンした結果を示す図である。
[図 16]図 14に示した分散検出装置を用いた自動分散補償システムの一構成例を示 す図である。
[図 17]図 14に示した分散検出装置を用いた自動分散補償システムの他の構成例を 示す図である。
発明を実施するための最良の形態
[0048] 以下に、本発明を実施するための最良の形態について図面を参照して説明する。
[0049] (第 1の実施形態)
図 4は、本発明の第 1の実施形態の分散検出装置の構成を示すブロック図である。 本実施形態の分散検出装置は、伝送路である光ファイバにおける偏波分散量を検 出する。
[0050] 図 4を参照すると、本実施形態の分散検出装置は、光ファイバから受信した受信信 号の波形劣化した受信波形をモニタする受信波形モニタ処理部 1と、受信波形モニ タ処理部 1にてモニタされた受信波形の偏波分散量を検出する分散量検出部 4と、 を有している。
[0051] 波形モニタ処理部 1は、波形モニタ回路 2と、ヒストグラム抽出回路 3と、を有してい [0052] 波形モニタ回路 2は、受信波形をモニタし、モニタした受信波形からデータをサンプ
[0053] ヒストグラム抽出回路 3は、波形モニタ回路 2により得られたサンプリングデータを積 算、平均化することで、受信波形の電圧方向の強度分布を表すヒストグラムデータを 抽出する。
[0054] 分散量検出部 4は、電圧方向アイ開口検出部 5と、ルックアップデータテーブル 6と 、偏波分散推定回路 7と、を有している。
[0055] 電圧方向アイ開口検出部 5は、受信波形モニタ処理部 1で抽出されたヒストグラム データを解析することで得られる、受信波形をアイパターン化した受信アイパターン 波形の電圧方向(振幅方向)のアイ開口量を検出する。なお、電圧方向アイ開口検 出部 5は複数設けられており、これら複数の電圧方向アイ開口検出部 5によって、クロ ックの位相方向(時間軸方向)の複数の位相点で、電圧方向のアイ開口量を複数検 出する。
[0056] ルックアップデータテーブル 6は、偏波分散量とアイパターン波形の左右非対称度 合いとの相関関係を表すルックアップデータを予め格納する。
[0057] 偏波分散推定回路 7は、電圧方向アイ開口検出部 5にて検出された電圧方向の複 数のアイ開口量の検出結果を比較演算することで、受信アイパターン波形の左右で の非対称度合いを判定する。
[0058] 上述したように、偏波分散に起因する波形劣化は、パワー分岐比 γが 1: 1の場合 を除き、受信アイパターン波形のアイ開口量が 1シンボル内の左右両端で非対称に なることが大きな特徴である。
[0059] そのため、偏波分散推定回路 7は、上記で判定した左右非対称度合いを、ルックァ ップデータテーブル 6のルックアップデータと比較することで、偏波分散量を一意に 推定すること力 Sでさる。
[0060] 上述したように本実施形態では、偏波分散に起因した波形劣化の典型的な特徴と V、える受信アイパターン波形の左右非対称度合レ、を基に偏波分散量を検出する。よ つて、波形劣化パターンと分散要因との対応マップを基に偏波分散量を推定する従 来技術と比較して、対応マップの元になる蓄積データが少なくてすむため、装置の小 型化が可能になる。さらに、対応マップの簡素化により高速での偏波分散量の検出 が可能になる。
[0061] 図 5は、図 4に示した分散検出装置を用いた自動分散補償システムの一構成例を 示す図である。
[0062] 図 5を参照すると、本例の自動分散補償システムは、上述の受信波形モニタ処理部
1と、上述の分散量検出部 4と、光電変換回路 8と、電気分散補償器 9と、クロックデー タリ力バリ回路(CDR : clock data recovery) 10と、デマルチプレクサ(DMX : De multiplexer) 11と、ァダプティブ補償量制御部 12と、を有している。
[0063] 光電変換回路 8は、光ファイバを伝送されてきた受信信号を光信号から電気信号 に変換する。
[0064] 電気分散補償器 9は、光電変換回路 8にて電気信号に変換された受信信号の偏波 分散による波形劣化を補償する。
[0065] クロックデータリカバリ回路 10は、電気分散補償器 9を通過した信号から、クロック信 号の再生'抽出、およびデータ信号のリカバリを行う。
[0066] デマルチプレクサ 11は、クロックデータリカバリ回路 10にて CDR処理された後のデ ータ信号を直並列変換する。
[0067] 波形モニタ回路 2は、識別器 13と、変動閾値制御回路 14と、位相インターポレータ
15と、位相コントローラ 16と、タイマー回路 17と、直並列変換回路 18と、カウンタ 19 と、を有している。
[0068] 識別器 13は、位相インターポレータ 15および位相コントローラ 16で位相が調整さ れた識別クロックに基づくタイミングで、電気分散補償器 9を通過した受信波形から、 変動閾値制御回路 14で調整された識別閾値以上のデータをサンプリングする。
[0069] すなわち、波形モユタ回路 2では、図 6の受信アイパターン波形に示すように、識別 器 13の識別閾値 Vthを変動閾値制御回路 14で電圧方向に変化させながら、かつ識 別器 13に与える識別クロックの位相を位相インターポレータ 15および位相コントロー ラ 16で変化させながら、電気分散補償器 9を通過した受信波形のデータをサンプリ ングする。なお、図 6に示す波形は、 DGDが 20ps、パワー分岐比 γ力 ¾ : 1の条件で の受信アイパターン波形となってレ、る。 [0070] 識別器 13により得られたサンプリングデータは、直並列変換回路 18にて直並列変 換される。カウンタ 19は、サンプリングデータのデータ数をカウントし、タイマー回路 1 7は、カウンタ 19のカウント値に応じて、変動閾値制御回路 14で識別閾値を変化さ せるタイミング、位相インターポレータ 15および位相コントローラ 16で位相を変化させ るタイミングを制御する。
[0071] ヒストグラム抽出回路 3は、波形モニタ回路 2により得られたサンプリングデータを積 算、平均化することで、ヒストグラムデータを抽出する時間微分回路 20を有している。
[0072] 具体的には、時間微分回路 20は、識別器 13の識別閾値を固定した状態で一定時 間受信波形をサンプリングして得られたサンプリングデータのデータカウント数と、そ の後に識別器 13の識別閾値を一段階変化させた状態で一定時間受信波形をサン プリングして得られたサンプリングデータのデータカウント数と、の差分を算出し、該 差分データを識別閾値の変更の度に蓄積する。これにより、時間微分回路 20は、受 信波形の電圧方向の強度分布を算出し、ヒストグラムデータとする。
[0073] 分散量検出部 4では、上述のように、電圧方向アイ開口検出部 5が、受信波形モニ タ処理部 1で得られたヒストグラムデータを解析することで得られる、受信アイパターン 波形の電圧方向のアイ開口量を、複数の位相点にて繰り返し検出する。
[0074] 偏波分散推定回路 7は、受信アイパターン波形の左右非対称度合いを判定し、判 定した左右非対称度合いをルックアップデータテーブル 6のルックアップデータと比 較することで、偏波分散量を推定する。この推定結果が、偏波分散量の検出結果とし て出力される。
[0075] ァダプティブ補償量制御部 12は、分散量検出部 4にて検出された偏波分散量の検 出結果を基に、電気分散補償器 9の最適な補償係数およびクロックデータリカバリ回 路 10の識別閾値の最適値を決定するァダプティブ補償量制御係数決定回路 21を 有している。補償係数および識別閾値の決定に際しては、例えば、偏波分散量と補 償係数および識別閾値との相関関係を表すルックアップデータをルックアップデータ テーブルに予め格納しておき、このルックアップデータを用いるという手法を採ること ができる。
[0076] 図 7は、図 5に示した自動分散補償システムの概略動作を説明するフローチャート である。
[0077] 図 7を参照すると、まず、受信波形モニタ処理部 1では、電気分散補償器 9からの受 信波形が入力されると (ステップ 401)、受信波形を、識別閾値を電圧方向に変化さ せながらサンプリングし(ステップ 402, 403)、ヒストグラムデータを抽出する(ステップ 404)。さらに、クロック位相を変化させながら(ステップ 405)、ステップ 402〜404を 繰り返す。
[0078] 次に、分散量検出部 4では、受信波形モニタ処理部 1で抽出されたヒストグラムデー タを解析することで得られる受信アイパターン波形の位相方向の複数(2〜3点)の位 相点にて、電圧方向のアイ開口量を検出し (ステップ 406)、検出した複数のアイ開 口量を比較演算することで受信アイパターン波形の左右の非対称性を判定する (ス テツプ 407, 408)。電圧方向のアイ開口量を 1シンボル長の左右で比較した結果、 非対称であった場合は、パワー分岐比 γを推定する(ステップ 409)。一方、対称で あった場合は、電圧方向のアイ開口量の最大値が受信アイパターン波形の左右両 端にあるか否かを判定し (ステップ 410)、両端にあれば、パワー分岐比 γを 0. 5とし (ステップ 411)、両端になければ、パワー分岐比 γを 0とする(ステップ 412)。さらに 、受信アイパターン波形の左右の非対称度合いを、ルックアップデータテーブル 6の ルックアップデータと比較することで、偏波分散量を検出する (ステップ 413)。
[0079] その後、ァダプティブ補償量制御部 12では、分散量検出部 4で検出された偏波分 散量の検出結果を基に、電気分散補償器 9の最適な補償係数とクロックデータリカバ リ回路 10の識別閾値の最適値を決定し、決定した値を電気分散補償器 9とクロックデ 一タリ力バリ回路 10に設定する(ステップ 414)。
[0080] 上述したように本例においては、偏波分散に起因した波形劣化の典型的な特徴と V、える受信アイパターン波形の左右非対称度合レ、を基に偏波分散量を検出する。よ つて、波形劣化パターンと分散要因との対応マップを基に偏波分散量を推定する従 来技術と比較して、対応マップの元になる蓄積データが少なくてすむため、装置の小 型化が可能になる。さらに、対応マップの簡素化により高速での偏波分散量の検出 が可能になる。
[0081] 図 8は、図 4に示した分散検出装置を用いた自動分散補償システムの他の構成例 を示す図である。
[0082] 図 8を参照すると、本例の自動分散補償システムは、受信部として、上述の受信波 形モニタ処理部 1と、上述の分散量検出部 4と、光電変換回路 8と、クロックデータリカ ノ リ回路 10と、を有している。また、送信部として、マルチプレクサ(MUX : multiple xer) 22と、電気イコライザ回路 23と、光変調器ドライバ回路 24と、光変調器 25と、レ 一ザダイオード 26と、を有している。
[0083] 光電変換回路 8は、光ファイバ 27を伝送されてきた受信信号を光信号から電気信 号に変換する。
[0084] クロックデータリカバリ回路 10は、受信信号から、クロック信号の再生 '抽出および データ信号のリカバリを fiう。
[0085] 受信波形モニタ処理部 1は、光ファイバ 27から受信した受信波形をモニタし、分散 量検出部 4は、受信波形モニタ処理部 1にてモニタされた受信波形の偏波分散量を 検出する。なお、受信波形モニタ処理部 1および分散量検出部 4の構成および動作 は、図 5に示したものと同様であるため、詳細な説明を省略する。
[0086] マルチプレクサ 22は、送信先に送信する送信信号を並列直列変換する。
[0087] 電気イコライザ回路 23は、分散量検出部 4にて検出された偏波分散量の検出結果 を基に、送信信号の周波数特性を補正する。
[0088] 光変調器ドライバ回路 24は、電気イコライザ回路 23の出力信号を基に、光変調器
25を制御する。
[0089] 光変調器 25は、光変調器ドライバ回路 24の制御の基で、レーザダイオード 26から 発光した光信号を変調する。
[0090] 上述したように本例においては、受信部での偏波分散量の検出結果を送信部にフ イードバックし、予め波形の劣化量を見越して分散等化処理を施した送信信号を受 信先に送信することで補償量を最適化している。
[0091] (第 2の実施形態)
図 9は、本発明の第 2の実施形態の分散検出装置の構成を示すブロック図である。 本実施形態の分散検出装置は、伝送路である光ファイバにおける波長分散量と偏波 分散量とを分離して検出する。 [0092] 図 9を参照すると、本実施形態の分散検出装置は、光ファイバから受信した波形劣 化した受信波形をモニタする受信波形モニタ処理部 1と、受信波形モニタ処理部 1に てモニタされた受信波形の波長分散量と偏波分散量とを分離して検出する分散量検 出部 28とを有している。
[0093] 受信波形モニタ処理部 1は、図 4に示した第 1の実施形態と同様に、波形モニタ回 路 2と、ヒストグラム抽出回路 3と、を有している。
[0094] 波形モニタ回路 2は、受信波形をモニタし、モニタした受信波形からデータをサンプ
[0095] ヒストグラム抽出回路 3は、波形モニタ回路 2により得られたサンプリングデータを積 算、平均化することで、受信波形の電圧方向の強度分布を表すヒストグラムデータを 抽出する。
[0096] 一方、分散量検出部 28は、図 4に示した第 1の実施形態の分散量検出部 4と同様 に、電圧方向アイ開口検出部 5と、ルックアップデータテーブル 6と、偏波分散推定回 路 7と、を有している。さらに、分散量検出部 28は、位相方向アイ開口検出部 29と、ク ロスポイント変動検出部 30と、変動量演算回路 31と、波長分散推定回路 32と、を有 している。
[0097] 電圧方向アイ開口検出部 5は、受信波形モニタ処理部 1で抽出されたヒストグラム データを解析することで得られる、受信波形をアイパターン化した受信アイパターン 波形の電圧方向(振幅方向)のアイ開口量を検出する。
[0098] 位相方向アイ開口検出部 29は、受信波形モニタ処理部 1で抽出されたヒストグラム データを解析することで得られる、受信波形をアイパターン化した受信アイパターン 波形の位相方向(時間軸方向)のアイ開口量を検出する。
[0099] クロスポイント変動検出部 30は、受信波形モニタ処理部 1で抽出されたヒストグラム データを解析することで得られる、受信波形をアイパターン化した受信アイパターン 波形のクロスポイント(立上りエッジ曲線と立下りエッジ曲線との交差点)の中心位置 力、らの変動量を検出する。この変動量は、変動量演算回路 31にて演算処理した後 に、偏波分散推定回路 7および波長分散推定回路 32に入力される。
[0100] ルックアップデータテーブル 6は、偏波分散量とアイパターン波形の左右非対称度 合いとの相関関係を表すルックアップデータを予め格納する。さらに、ルックアップデ ータテーブル 6は、波長分散量とアイパターン波形の位相方向アイ開口量との相関 関係および波長分散量とクロスポイントの変動量との相関関係を表すルックアップデ ータを予め格納する。
[0101] 波長分散に起因する波形劣化は、図 10のアイパターン波形に示すように、偏波分 散での波形劣化とは対照的に、クロスポイントが中心位置から上側または下側に変 動し、かつアイパターン波形の位相方向余裕が減少するのが特徴である。
[0102] そのため、波長分散推定回路 32は、位相方向アイ開口検出部 29で検出された受 信アイパターン波形の位相方向のアイ開口量、および、クロスポイント変動検出部 30 で検出された受信アイパターン波形のクロスポイントの変動量を、ルックアップデータ テーブル 6のルックアップデータと比較することで、波長分散量を一意に推定すること ができる。
[0103] 偏波分散推定回路 7は、電圧方向アイ開口検出部 5にて検出された電圧方向の複 数のアイ開口量の検出結果を比較演算することで、受信アイパターン波形の左右で の非対称度合いを判定し、判定した左右非対称度合いを、ルックアップデータテー ブル 6のルックアップデータと比較することで、偏波分散量を一意に推定する。
[0104] 上述したように本実施形態では、 1つの分散検出装置で波長分散と偏波分散とを 分離して検出することが可能である。また、分散量の検出は、ルックアップデータテー ブル 6に予め格納されたルックアップデータを用いて行われることから、高速での検 出が可能となる。
[0105] また、本実施形態では、波長分散の場合は、その典型的な特徴といえる受信アイ パターン波形のクロスポイントの変動量および位相方向のアイ開口量を基に波長分 散量を検出し、また、偏波分散の場合は、その典型的な特徴といえる受信アイパター ン波形の左右非対称度合いを基に偏波分散量を検出する。よって、波形劣化パター ンと分散要因との対応マップを基に偏波分散量を推定する従来技術と比較して、対 応マップの元になる蓄積データが少なくてすむため、装置の小型化が可能になる。さ らに、対応マップの簡素化により高速での波長分散量 ·偏波分散量の分離検出が可 能になる。 [0106] 図 11は、図 9に示した分散検出装置を用いた自動分散補償システムの一構成例を 示す図である。
[0107] 図 11を参照すると、本例の自動分散補償システムは、上述の受信波形モニタ処理 部 1と、上述の分散量検出部 28と、光電変換回路 8と、電気分散補償器 9と、クロック データリカバリ回路(CDR) 10と、直並列変換回路 (DMX) 11と、ァダプティブ補償 量制御部 12と、を有している。
[0108] 光電変換回路 8は、光ファイバを伝送されてきた受信信号を光信号から電気信号 に変換する。
[0109] 電気分散補償器 9は、光電変換回路 8にて電気信号に変換された受信信号の偏波 分散および波長分散による波形劣化を補償する。
[0110] クロックデータリカバリ回路 10は、電気分散補償器 9を通過した信号から、クロック信 号の再生'抽出およびデータ信号のリカバリを行う。
[0111] デマルチプレクサ 11は、クロックデータリカバリ回路 10にて CDR処理された後のデ ータ信号を直並列変換する。
[0112] 波形モニタ回路 2は、識別器 13と、変動閾値制御回路 14と、位相インターポレータ
15と、位相コントローラ 16と、タイマー回路 17と、直並列変換回路 18と、カウンタ 19 と、を有している。
[0113] 波形モニタ回路 2では、識別器 13の識別閾値を変動閾値制御回路 14で電圧方向 に変化させながら、かつ識別器 13に与えるクロックの位相を位相インターポレータ 15 および位相コントローラ 16で変化させながら、電気分散補償器 9を通過した受信波形 のデータをサンプリングする。識別器 13により得られたサンプリングデータは、直並 列変換回路 18にて直並列変換される。カウンタ 19は、サンプリングデータのデータ 数をカウントし、タイマー回路 17は、カウンタ 19のカウント値に応じて、変動閾値制御 回路 14で識別閾値を変化させるタイミング、位相インターポレータ 15および位相コン トローラ 16で位相を変化させるタイミングを制御する。
[0114] ヒストグラム抽出回路 3は、波形モニタ回路 2により得られたサンプリングデータを積 算、平均化することで、ヒストグラムデータを抽出する時間微分回路 20を有している。
[0115] 分散量検出部 28では、上述のように、電圧方向アイ開口検出部 5が、受信波形モ ユタ処理部 1で得られた受信アイパターン波形の電圧方向のアイ開口量を検出し、 位相方向アイ開口検出部 29が、受信アイパターン波形の位相方向のアイ開口量を 検出し、クロスポイント変動検出部 30が、受信アイパターン波形のクロスポイントの中 心位置からの変動量を検出する。
[0116] 波長分散推定回路 32は、受信アイパターン波形のクロスポイントの変動量および 位相方向のアイ開口量をルックアップデータテーブル 6のルックアップデータと比較 することで、波長分散量を推定する。
[0117] 偏波分散推定回路 7は、受信アイパターン波形の左右非対称度合いを判定し、判 定した左右非対称度合いをルックアップデータテーブル 6のルックアップデータと比 較することで、偏波分散量を検出する。
[0118] ァダプティブ補償量制御部 12は、分散量検出部 28にて検出された波長分散量- 偏波分散量の検出結果を基に、電気分散補償器 9の最適な補償係数およびクロック データリカバリ回路 10の識別閾値の最適値を決定するァダプティブ補償量制御係数 決定回路 21を有している。補償係数および識別閾値の決定に際しては、例えば、波 長分散量'偏波分散量と補償係数および識別閾値との相関関係を表すルックアップ データをルックアップデータテーブルに予め格納しておき、このルックアップデータを 用いるとレ、う手法を採ることができる。
[0119] 図 12は、図 11に示した自動分散補償システムの概略動作を説明するフローチヤ一 トでめる。
[0120] 図 12を参照すると、まず、受信波形モニタ処理部 1では、電気分散補償器 9からの 受信波形が入力されると (ステップ 901)、受信波形を、識別閾値を電圧方向に変化 させながらサンプリングし (ステップ 902, 903)、ヒストグラムデータを抽出する(ステツ プ 904)。さらに、クロックの位相を変化させながら(ステップ 905)、ステップ 902〜90 4を繰り返す。
[0121] 次に、分散量検出部 28では、ヒストグラムデータを解析することで得られる、受信ァ ィパターン波形の電圧方向のアイ開口量を検出し (ステップ 906)、受信アイパターン 波形のクロスポイントの中心位置からの変動量を検出し (ステップ 907)、受信アイパ ターン波形の位相方向のアイ開口量を検出する(ステップ 908)。クロスポイントが変 動している場合は (ステップ 909)、波長分散量を検出するルーチンに移行し、受信 アイパターン波形のクロスポイントの変動量および位相方向のアイ開口量を、ノレックァ ップデータテーブル 6のルックアップデータと比較することで、波長分散量を検出する (ステップ 910)。クロスポイントが全く変動していない場合は、波長分散が存在しない と推定し、偏波分散量を検出するルーチンに移行する。偏波分散量を検出するルー チンでは、図 7で説明したステップ 407〜413と同様のステップ 91;!〜 917の処理に より、偏波分散量を検出する。
[0122] その後、ァダプティブ補償量制御部 12では、分散量検出部 4で検出された波長分 散量 ·偏波分散量の検出結果を基に、電気分散補償器 9の補償係数とクロックデー タリ力バリ回路 10の識別閾値の最適値を決定し、決定した値を電気分散補償器 9とク ロックデータリカバリ回路 10に設定する(ステップ 918)。
[0123] 図 13は、図 9に示した分散検出装置を用いた自動分散補償システムの他の構成例 を示す図である。
[0124] 図 13を参照すると、本例の自動分散補償システムは、受信部として、上述の受信 波形モニタ処理部 1と、上述の分散量検出部 28と、光電変換回路 8と、クロックデー タリ力バリ回路 10と、を有している。また、送信部として、マルチプレクサ(MUX) 22と 、電気イコライザ回路 23と、光変調器ドライバ回路 24と、光変調器 25と、レーザダイ オード 26と、を有している。
[0125] 光電変換回路 8は、光ファイバ 27を伝送されてきた受信信号を光信号から電気信 号に変換する。
[0126] クロックデータリカバリ回路 10は、受信信号から、クロック信号の再生'抽出および データ信号のリカバリを fiう。
[0127] 受信波形モニタ処理部 1は、光ファイバから受信した受信波形をモニタし、分散量 検出部 28は、受信波形モニタ処理部 1にてモニタされた受信波形の波長分散量と偏 波分散量とを分離して検出する。なお、受信波形モニタ処理部 1および分散量検出 部 28の構成および動作は、図 11に示したものと同様であるため、詳細な説明を省略 する。
[0128] マルチプレクサ 22は、送信先に送信する送信信号を並列直列変換する。 [0129] 電気イコライザ回路 23は、分散量検出部 28にて検出された波長分散量 ·偏波分散 量の検出結果を基に、送信信号の周波数特性を補正する。
[0130] 光変調器ドライバ回路 24は、電気イコライザ回路 23の出力信号を基に、光変調器
25を制御する。
[0131] 光変調器 25は、光変調器ドライバ回路 24の制御の基で、レーザダイオード 26から 発光した光信号を変調する。
[0132] 上述したように本例においては、受信部での波長分散量'偏波分散量の検出結果 を送信部にフィードバックし、予め波形の劣化量を見越して分散等化処理を施した送 信信号を受信先に送信することで補償量を最適化している。
[0133] (第 3の実施形態)
図 14は、本発明の第 3の実施形態の分散検出装置の構成を示すブロック図である 。本実施形態の分散検出装置は、伝送路である光ファイバにおける波長分散量およ び偏波分散量を検出するとともに、さらに偏波分散の中でも、群遅延量 (DGD)が受 信アイパターン波形の 1ユニットインターバル時間以上であることを検出する。
[0134] 図 14を参照すると、本実施形態の分散検出装置は、光ファイバから受信した受信 信号の波形劣化した受信波形をモニタする受信波形モニタ処理部 1と、受信波形モ ユタ処理部 1にてモニタされた受信波形の波長分散量と偏波分散量とを分離して検 出するとともに、偏波分散の群遅延量が受信アイパターン波形の 1ユニットインターバ ル時間以上であることを検出する分散量検出部 33と、を有している。
[0135] 波形モニタ処理部 1は、波形モニタ回路 2と、ヒストグラム抽出回路 3と、を有してい
[0136] 波形モニタ回路 2は、受信波形をモニタし、モニタした受信波形からデータをサンプ
[0137] ヒストグラム抽出回路 3は、波形モニタ回路 2により得られたサンプリングデータを積 算、平均化することで、受信波形の電圧方向の強度分布を表すヒストグラムデータを 抽出する。
[0138] 一方、分散量検出部 33は、図 9に示した第 2の実施形態の分散量検出部 28と同様 に、電圧方向アイ開口検出部 5と、ルックアップデータテーブル 6と、偏波分散推定回 路 7と、位相方向アイ開口検出部 29と、クロスポイント変動検出部 30と、変動量演算 回路 31と、波長分散推定回路 32と、を有している。さらに、分散量検出部 33は、クロ スポイント位置検出部 34と、群遅延量識別機能部 35と、を有している。
[0139] 電圧方向アイ開口検出部 5は、受信波形モニタ処理部 1で抽出されたヒストグラム データを解析することで得られる、受信波形をアイパターン化した受信アイパターン 波形の電圧方向(振幅方向)のアイ開口量を検出する。この電圧方向のアイ開口量 の情報は、偏波分散推定回路 7および群遅延量識別機能部 35に入力される。
[0140] 位相方向アイ開口検出部 29は、受信波形モニタ処理部 1で抽出されたヒストグラム データを解析することで得られる、受信波形をアイパターン化した受信アイパターン 波形の位相方向(時間軸方向)のアイ開口量を検出する。
[0141] クロスポイント変動検出部 30は、受信波形モニタ処理部 1で抽出されたヒストグラム データを解析することで得られる、受信波形をアイパターン化した受信アイパターン 波形のクロスポイント(立上りエッジ曲線と立下りエッジ曲線との交差点)の中心位置 力、らの変動量を検出する。この変動量は、変動量演算回路 31にて演算処理した後 に、偏波分散推定回路 7および波長分散推定回路 32に入力される。
[0142] クロスポイント位置検出部 34は、受信波形モニタ処理部 1で抽出されたヒストグラム データを解析することで得られる、受信アイパターン波形のクロスポイントのハイレべ ノレ側(マーク側)とローレベル側(スペース側)の中間電位付近での位置を検出する。
[0143] ルックアップデータテーブル 6は、偏波分散量とアイパターン波形の左右非対称度 合いとの相関関係を表すルックアップデータを予め格納する。さらに、ルックアップデ ータテーブル 6は、波長分散量とアイパターン波形の位相方向アイ開口量との相関 関係および波長分散量とクロスポイントの変動量との相関関係を表すルックアップデ ータを予め格納する。さらに、ルックアップデータテーブル 6は、群遅延量が 1ユニット インターバル以上である場合の偏波分散量と、アイパターン波形の 1ユニットインター バル時間内でのクロスポイントの存在の有無およびその場合の電圧方向のアイ開口 量と、の相関関係を表すルックアップデータを予め格納する。
[0144] 図 15は、受信アイパターン波形の群遅延量の違いによる劣化具合の違いをシミュ レーシヨンした結果を示す図である。 [0145] 図 15を参照すると、偏波分散に起因する波形劣化の中でも、群遅延量が受信アイ ノ ターン波形の 1ユニットインターバル時間以上となる場合の波形劣化は、受信アイ パターン波形のハイレベル側とローレベル側の中間電位付近のクロスポイント位置が 、受信アイパターン波形の 1ユニットインターバル内にも存在するような劣化形状にな ることが大きな特徴である。
[0146] そのため、群遅延量識別機能部 35は、クロスポイント位置検出部 34による検出結 果を基にして、受信アイパターン波形のアイ開口の内部(1ユニットインターバル内) に、クロスポイントが存在することを識別した場合、その際の電圧方向のアイ開口量を 、ルックアップデータテーブル 6のルックアップデータと比較することで、群遅延量が 1 ユニットインターバル時間以上であることを識別することができる。その逆に、群遅延 量識別機能部 35は、 1ユニットインターバル内にクロスポイントが存在しないことを識 別した場合は、群遅延量が 1ユニットインターバル時間未満であることを識別すること ができる。
[0147] また、波長分散に起因する波形劣化も存在する場合は、第 2の実施形態で述べた ように、クロスポイントが中心位置から上側または下側に変動し、かつアイパターン波 形の位相方向余裕が減少しているので、波長分散推定回路 32において、位相方向 アイ開口検出部 29で検出された受信アイパターン波形の位相方向のアイ開口量、 および、クロスポイント変動検出部 30で検出された受信アイパターン波形のクロスポ イントの変動量を、ルックアップデータテーブル 6のルックアップデータと比較すること で、波長分散量を一意に推定することができる。
[0148] また、偏波分散推定回路 7では、これも第 2の実施形態で述べたように、電圧方向 アイ開口検出部 5にて検出された電圧方向の複数のアイ開口量の検出結果を比較 演算することで、受信アイパターン波形の左右での非対称度合いを判定し、判定した 左右非対称度合レ、を、ルックアップデータテーブル 6のルックアップデータと比較す ることで、偏波分散量を一意に推定する。
[0149] 上述したように本実施形態では、 1つの分散検出装置で波長分散と偏波分散とを 分離して検出することが可能であり、さらには、偏波分散の中でも、群遅延量が受信 アイパターン波形の 1ユニットインターバル時間以上であることを検出することが可能 である。また、これらの検出は、ルックアップデータテーブル 6に予め格納されたルツ クアップデータを用いて行われることから、高速での検出が可能となる。
[0150] また、本実施形態では、波長分散の場合は、その典型的な特徴といえる受信アイ パターン波形のクロスポイントの変動量および位相方向のアイ開口量を基に波長分 散量を検出し、また、偏波分散の場合は、その典型的な特徴といえる受信アイパター ン波形の左右非対称度合いを基に偏波分散量を検出する。そして、受信アイパター ン波形の群遅延量が 1ユニットインターバル時間以上であることは、受信アイパターン 波形の内部にクロスポイントが入り込んでいるか否かの情報を基に識別している。こ れらは、波形劣化パターンと分散要因との対応マップを基に偏波分散量を推定する 従来技術と比較して、対応マップの元になる蓄積データが少なくてすむため、装置の 小型化が可能になる。さらに、対応マップの簡素化により高速での波長分散量 '偏波 分散量の分離検出が可能になる。
[0151] 図 16は、図 14に示した分散検出装置を用いた自動分散補償システムの一構成例 を示す図である。
[0152] 図 16を参照すると、本例の自動分散補償システムは、上述の受信波形モニタ処理 部 1と、上述の分散量検出部 33と、光電変換回路 8と、電気分散補償器 9と、クロック データリカバリ回路(CDR) 10と、直並列変換回路 (DMX) 11と、ァダプティブ補償 量制御部 12と、予等化器 36と、を有している。
[0153] 予等化器 36は、光電変換回路 8と電気分散補償器 9との間に配置されている。また 、予等化器 36は、可変 delay素子(可変遅延素子) 37と、重み付け回路 38と、加減 算回路 39と、を有している。ただし、予等化器 36は、トランスバーサルフィルタのよう な一般的なフィルタ回路を用いても力、まわなレ、。
[0154] 光電変換回路 8は、光ファイバを伝送されてきた受信信号を光信号から電気信号 に変換する。
[0155] 電気分散補償器 9は、光電変換回路 8にて電気信号に変換された受信信号の偏波 分散および波長分散による波形劣化を補償する。
[0156] クロックデータリカバリ回路 10は、電気分散補償器 9を通過した信号から、クロック信 号の再生'抽出およびデータ信号のリカバリを行う。 [0157] デマルチプレクサ 11は、クロックデータリカバリ回路 10にて CDR処理された後のデ ータ信号を直並列変換する。
[0158] 分散量検出部 33では、上述のように、電圧方向アイ開口検出部 5が、受信波形モ ユタ処理部 1で得られた受信アイパターン波形の電圧方向のアイ開口量を検出し、 位相方向アイ開口検出部 29が、受信アイパターン波形の位相方向のアイ開口量を 検出し、クロスポイント変動検出部 30が、受信アイパターン波形のクロスポイントの中 心位置からの変動量を検出する。また、クロスポイント位置検出部 34は、受信アイパ ターン波形のクロスポイントの中間電位付近での位置を検出する。
[0159] 波長分散推定回路 32は、受信アイパターン波形のクロスポイントの変動量および 位相方向のアイ開口量をルックアップデータテーブル 6のルックアップデータと比較 することで、波長分散量を推定する。
[0160] 偏波分散推定回路 7は、受信アイパターン波形の左右非対称度合いを判定し、判 定した左右非対称度合いをルックアップデータテーブル 6のルックアップデータと比 較することで、偏波分散量を検出する。
[0161] 群遅延量識別機能部 35は、受信アイパターン波形の 1ユニットインターバル時間内 に、クロスポイントが存在することを識別した場合は、その際の電圧方向のアイ開口量 情報を、ルックアップデータテーブル 6のルックアップデータと比較することで、群遅 延量が 1ユニットインターバル時間以上であることを識別する。その逆に、群遅延量 識別機能部 35は、受信アイパターン波形の 1ユニットインターバル時間内に、クロス ポイントが存在しないことを識別した場合は、群遅延量が 1ユニットインターバル時間 未満であることを識別する。
[0162] また、群遅延量識別機能部 35は、群遅延量が 1ユニットインターバル時間以上であ ることを識別した場合は、予等化器 36に対して制御信号を出力して、受信波形の最 初の 1ユニットインターバル時間相当の群遅延量による波形劣化分を補償するように 動作状態を設定する。そして、残りの波形劣化分は、次の段の電気分散補償器 9に て、波形整形処理が行われて補償されることになる。
[0163] 本実施形態においては、可変 delay素子 37に対して delay制御信号が出力され、 重み付け回路 38に対して重み付け制御信号が出力される。そして、可変 delay素子 37は、 delay制御信号を基に、光電変換回路 8にて電気信号に変換された受信信号 に対する遅延処理を行い、重み付け回路 38は、重み付け制御信号を基に、可変 del ay素子 37から出力された受信信号に対する重み付け処理を行い、加減算回路 39 は、可変 delay素子 37へ入力される前の受信信号と重み付け回路 38から出力され た受信信号との加減算処理を行う。これにより、受信波形の最初の 1ユニットインター バル時間相当だけ波形劣化を等化することが可能となる。
[0164] ァダプティブ補償量制御部 12は、分散量検出部 33にて検出された波長分散量- 偏波分散量の検出結果を基に、電気分散補償器 9の最適な補償係数およびクロック データリカバリ回路 10の識別閾値の最適値を決定するァダプティブ補償量制御係数 決定回路 21を有している。補償係数および識別閾値の決定に際しては、例えば、波 長分散量'偏波分散量と補償係数および識別閾値との相関関係を表すルックアップ データをルックアップデータテーブルに予め格納しておき、このルックアップデータを 用いるとレ、う手法を採ることができる。
[0165] 図 17は、図 14に示した分散検出装置を用いた自動分散補償システムの他の構成 例を示す図である。
[0166] 図 17を参照すると、本例の自動分散補償システムは、受信部として、上述の受信 波形モニタ処理部 1と、上述の分散量検出部 33と、光電変換回路 8と、クロックデー タリ力バリ回路 10と、を有している。また、送信部として、マルチプレクサ(MUX) 22と 、電気イコライザ回路 23と、光変調器ドライバ回路 24と、光変調器 25と、レーザダイ オード 26と、を有している。
[0167] 光電変換回路 8は、光ファイバ 27を伝送されてきた受信信号を光信号から電気信 号に変換する。
[0168] クロックデータリカバリ回路 10は、受信信号から、クロック信号の再生'抽出および データ信号のリカバリを fiう。
[0169] 受信波形モニタ処理部 1は、光ファイバから受信した受信波形をモニタし、分散量 検出部 33は、受信波形モニタ処理部 1にてモニタされた受信波形の波長分散量と偏 波分散量とを分離して検出する。さらに、分散量検出部 33は、偏波分散における群 遅延量が 1ユニットインターバル時間以上であること、すなわち偏波分散に起因する 波形劣化が極端な劣化形状になっていることも検出する。なお、分散量検出部 33の 構成および動作は、図 14に示したものと同様であるため、詳細な説明を省略する。
[0170] マルチプレクサ 22は、送信先に送信する送信信号を並列直列変換する。
[0171] 電気イコライザ回路 23は、分散量検出部 33にて検出された波長分散量 ·偏波分散 量、群遅延量の発生が 1ユニットインターバル以上か否かの検出結果を基に、送信 信号の周波数特性を補正する。
[0172] 光変調器ドライバ回路 24は、電気イコライザ回路 23の出力信号を基に、光変調器
25を制御する。
[0173] 光変調器 25は、光変調器ドライバ回路 24の制御の基で、レーザダイオード 26から 発光した光信号を変調する。
[0174] 上述したように本例においては、受信部での波長分散量'偏波分散量の検出結果
、および群遅延量の発生状況を送信部にフィードバックし、予め波形の劣化量を見 越して分散等化処理を施した送信信号を受信先に送信することで補償量を最適化し ている。
[0175] この出願 (ま、 2006年 11月 30曰 ίこ出願された曰本出願特願 2006— 323966およ び 2007年 7月 25日に出願された日本出願特願 2007— 193295を基礎とする優先 権を主張し、その開示の全てをここに取り込む。

Claims

請求の範囲
[1] 伝送路を伝送されてきた受信信号の受信波形からデータをサンプリングする波形 モニタ回路、および、前記波形モニタ回路により得られたサンプリングデータを基にし て前記受信波形の電圧方向の強度分布を表すヒストグラムデータを抽出するヒストグ ラム抽出回路を有する受信波形モニタ処理部と、
前記受信波形モニタ処理部にて抽出されたヒストグラムデータを解析することで得 られる前記受信波形の受信アイパターン波形の左右の非対称度合レ、を判定し、判定 した非対称度合いを基にして前記伝送路における偏波分散量を推定する偏波分散 推定回路を有する分散量検出部と、から構成される分散検出装置。
[2] 前記波形モニタ回路は、
前記受信波形から、外部から入力される識別クロックに基づくタイミングで、外部か ら設定される電圧方向の識別閾値以上のデータをサンプリングする識別器と、 前記識別器の識別閾値を設定する手段と、
前記識別器に入力する識別クロックの位相を変化させる手段と、を有し、 前記識別器の識別閾値を電圧方向に変化させ、さらに前記識別器に入力する識 別クロックの位相を変化させながら、前記受信波形から複数のデータを繰り返しサン プリングする、請求項 1に記載の分散検出装置。
[3] 前記ヒストグラム抽出回路は、前記識別閾値を固定した状態で一定時間受信波形 をサンプリングしたデータの積算値と、その後に前記識別閾値を一段階変化させた 状態で一定時間受信波形をサンプリングしたデータの積算値と、の差分を算出し、該 差分データを前記識別閾値を変更する度に蓄積することで前記受信波形の電圧方 向の強度分布を算出し、前記ヒストグラムデータとする、請求項 2に記載の分散検出 装置。
[4] 前記分散量検出部は、
前記受信波形モニタ処理部にて抽出されたヒストグラムデータを基にして前記受信 アイパターン波形の電圧方向のアイ開口量を検出する電圧方向アイ開口検出部をさ らに有し、
前記偏波分散推定回路は、前記識別クロックの位相を変更する度に、前記受信ァ ィパターン波形の電圧方向のアイ開口量の検出結果を取得し、該検出結果を比較 することで前記受信アイパターン波形の左右の非対称性度合レ、を判定し、判定した 非対称度合いを基にして前記偏波分散量を推定する、請求項 2に記載の分散検出 装置。
[5] 前記分散量検出部は、
偏波分散量とアイパターン波形の左右非対称度合いとの相関関係を表すルックァ ップデータを予め格納するルックアップデータテーブルをさらに有し、
前記偏波分散推定回路は、前記判定した前記受信アイパターン波形の左右の非 対称性度合レ、を、前記ルックアップデータテーブルのルックアップデータと比較する ことで前記偏波分散量を推定する、請求項 1に記載の分散検出装置。
[6] 前記分散量検出部は、
前記受信アイパターン波形のクロスポイントの中心位置からの変動量および位相方 向のアイ開口量を基にして前記伝送路における波長分散量を推定する波長分散推 定回路をさらに有する、請求項 1に記載の分散検出装置。
[7] 前記波形モニタ回路は、
前記受信波形から、外部から入力される識別クロックに基づくタイミングで、外部か ら設定される電圧方向の識別閾値以上のデータをサンプリングする識別器と、 前記識別器の識別閾値を設定する手段と、
前記識別器に入力する識別クロックの位相を変化させる手段と、を有し、 前記識別器の識別閾値を電圧方向に変化させ、さらに前記識別器に入力する識 別クロックの位相を変化させながら、前記受信波形から複数のデータを繰り返しサン プリングする、請求項 6に記載の分散検出装置。
[8] 前記ヒストグラム抽出回路は、前記識別閾値を固定した状態で一定時間受信波形 をサンプリングしたデータの積算値と、その後に前記識別閾値を一段階変化させた 状態で一定時間受信波形をサンプリングしたデータの積算値と、の差分を算出し、該 差分データを前記識別閾値を変更する度に蓄積することで前記受信波形の電圧方 向の強度分布を算出し、前記ヒストグラムデータとする、請求項 7に記載の分散検出 装置。
[9] 前記分散量検出部は、
前記受信アイパターン波形の電圧方向のアイ開口量を検出する電圧方向アイ開口 検出部をさらに有し、
前記偏波分散推定回路は、前記識別クロックの位相を変更する度に、前記受信ァ ィパターン波形の電圧方向のアイ開口量の検出結果を取得し、該検出結果を比較 することで前記受信アイパターン波形の左右の非対称性度合レ、を判定し、判定した 非対称度合いを基にして前記偏波分散量を推定する、請求項 7に記載の分散検出 装置。
[10] 前記分散量検出部は、
前記受信アイパターン波形のクロスポイントの中心位置からの変動量を検出するク ロスポイント変動検出部と、
前記受信アイパターン波形の位相方向のアイ開口量を検出する位相方向アイ開口 検出部と、をさらに有し、
前記波長分散推定回路は、前記受信アイパターン波形のクロスポイントの中心位 置からの変動量および位相方向のアイ開口量の検出結果を取得し、該検出結果を 基にして前記波長分散量を推定する、請求項 6に記載の分散検出装置。
[11] 前記分散量検出部は、
偏波分散量とアイパターン波形の左右非対称度合いとの相関関係を表すルックァ ップデータと、波長分散量とアイパターン波形の位相方向のアイ開口量およびクロス ポイントの変動量との相関関係を表すルックアップデータと、を予め格納するルックァ ップデータテーブルをさらに有し、
前記偏波分散推定回路は、前記判定した前記受信アイパターン波形の左右の非 対称性度合レ、を、前記ルックアップデータテーブルのルックアップデータと比較する ことで前記偏波分散量を推定し、
前記波長分散推定回路は、前記受信アイパターン波形のクロスポイントの中心位 置からの変動量および位相方向のアイ開口量を、前記ルックアップデータテーブル のルックアップデータと比較することで前記波長分散量を推定する、請求項 6に記載 の分散検出装置。
[12] 前記分散量検出部は、
前記受信アイパターン波形のハイレベル側とローレベル側の中間電位付近のクロ スポイントの位置と前記受信アイパターン波形の電圧方向のアイ開口量を基にして、 偏波分散の群遅延量が前記受信アイパターン波形の 1ユニットインターバル時間以 上であることを識別する群遅延量識別機能部と、をさらに有する請求項 6に記載の分 散検出装置。
[13] 前記波形モニタ回路は、
前記受信波形から、外部から入力される識別クロックに基づくタイミングで、外部か ら設定される電圧方向の識別閾値以上のデータをサンプリングする識別器と、 前記識別器の識別閾値を設定する手段と、
前記識別器に入力する識別クロックの位相を変化させる手段と、を有し、 前記識別器の識別閾値を電圧方向に変化させ、さらに前記識別器に入力する識 別クロックの位相を変化させながら、前記受信波形から複数のデータを繰り返しサン プリングする、請求項 12に記載の分散検出装置。
[14] 前記ヒストグラム抽出回路は、前記識別閾値を固定した状態で一定時間受信波形 をサンプリングしたデータの積算値と、その後に前記識別閾値を一段階変化させた 状態で一定時間受信波形をサンプリングしたデータの積算値と、の差分を算出し、該 差分データを前記識別閾値を変更する度に蓄積することで前記受信波形の電圧方 向の強度分布を算出し、前記ヒストグラムデータとする、請求項 13に記載の分散検出 装置。
[15] 前記分散量検出部は、
前記受信アイパターン波形の電圧方向のアイ開口量を検出する電圧方向アイ開口 検出部をさらに有し、
前記偏波分散推定回路は、前記識別クロックの位相を変更する度に、前記受信ァ ィパターン波形の電圧方向のアイ開口量の検出結果を取得し、該検出結果を比較 することで前記受信アイパターン波形の左右の非対称性度合レ、を判定し、判定した 非対称度合いを基にして前記偏波分散量を推定する、請求項 13に記載の分散検出 装置。
[16] 前記分散量検出部は、
前記受信アイパターン波形のクロスポイントの中心位置からの変動量を検出するク ロスポイント変動検出部と、
前記受信アイパターン波形の位相方向のアイ開口量を検出する位相方向アイ開口 検出部と、をさらに有し、
前記波長分散推定回路は、前記受信アイパターン波形のクロスポイントの中心位 置からの変動量および位相方向のアイ開口量の検出結果を取得し、該検出結果を 基にして前記波長分散量を推定する、請求項 12に記載の分散検出装置。
[17] 前記分散量検出部は、
前記受信アイパターン波形の電圧方向のアイ開口量を検出する電圧方向アイ開口 検出部と、
前記受信アイパターン波形のハイレベル側とローレベル側の中間電位付近のクロ スポイントの位置を検出するクロスポイント位置検出部と、をさらに有し、
前記群遅延量識別機能部は、前記受信アイパターン波形のアイ開口の内部にクロ スポイントが存在した場合、その際の電圧方向のアイ開口量に基づいて偏波分散の 群遅延量が前記受信アイパターン波形の 1ユニットインターバル時間以上であること を識別する、請求項 12に記載の分散検出装置。
[18] 前記分散量検出部は、
偏波分散量とアイパターン波形の左右非対称度合いとの相関関係を表すルックァ ップデータと、波長分散量とアイパターン波形の位相方向のアイ開口量およびクロス ポイントの変動量との相関関係を表すルックアップデータと、群遅延量力 ユニットィ ンターバル以上である場合の偏波分散量とアイパターンの 1ユニットインターバル時 間内でのクロスポイントの存在の有無およびその場合の電圧方向のアイ開口量との 相関関係を表すルックアップデータと、を予め格納するルックアップデータテーブル をさらに有し、
前記偏波分散推定回路は、前記判定した前記受信アイパターン波形の左右の非 対称性度合レ、を、前記ルックアップデータテーブルのルックアップデータと比較する ことで前記偏波分散量を推定し、 前記波長分散推定回路は、前記受信アイパターン波形のクロスポイントの中心位 置からの変動量および位相方向のアイ開口量を、前記ルックアップデータテーブル のルックアップデータと比較することで前記波長分散量を推定し、
前記群遅延量識別機能部は、前記受信アイパターン波形のアイ開口の内部にクロ スポイントが存在した場合、その際の電圧方向のアイ開口量を、前記ルックアップデ ータテーブルのルックアップデータと比較することで前記群遅延量が前記受信アイパ ターン波形の 1ユニットインターバル時間以上であることを識別する、請求項 12に記 載の分散検出装置。
[19] 請求項 1に記載の分散検出装置と、
前記伝送路を伝送されてきた受信信号を光信号から電気信号に変換する光電気 変換回路と、
前記光電変換回路にて電気信号に変換された受信信号の、偏波分散による波形 劣化を補償する電気分散補償器と、
前記電気分散補償器を通過した信号から、クロック信号の再生 '抽出およびデータ 信号のリカバリを行うクロックデータリカバリ回路と、
前記クロックデータリカバリ回路から出力されたデータ信号を直並列変換するデマ ノレチプレクサと、
前記分散検出装置にて検出された偏波分散量の検出結果を基に、前記電気分散 補償器の補償係数および前記クロックデータリカバリ回路の識別閾値を制御するァ ダブティブ補償量制御部と、力 構成され、
前記分散検出装置で、前記電気分散補償器を通過した受信信号の受信波形を基 にして前記偏波分散量を検出した後に、前記ァダプティブ補償量制御部で、前記電 気分散補償器に用いる最適な補償係数および前記クロックデータリカバリ回路の識 別閾値を自動で制御する、自動分散補償システム。
[20] 請求項 1に記載の分散検出装置を有する受信部と、
前記分散検出装置からフィードバックした偏波分散量の検出結果を基に、送信信 号となる光信号にあらかじめ分散等化処理を施してから送信する送信部とから構成さ れる、自動分散補償システム。
[21] 請求項 6に記載の分散検出装置と、
前記伝送路を伝送されてきた受信信号を光信号から電気信号に変換する光電気 変換回路と、
前記光電変換回路にて電気信号に変換された受信信号の偏波分散および波長分 散による波形劣化を補償する電気分散補償器と、
前記電気分散補償器を通過した信号から、クロック信号の再生 '抽出およびデータ 信号のリカバリを行うクロックデータリカバリ回路と、
前記クロックデータリカバリ回路から出力されたデータ信号を直並列変換するデマ ノレチプレクサと、
前記分散検出装置にて検出された偏波分散量および波長分散量の検出結果を基 に、前記電気分散補償器の補償係数および前記クロックデータリカバリ回路の識別 閾値を制御するァダプティブ補償量制御部と、力 構成され、
前記分散検出装置で、前記電気分散補償器を通過した受信信号の受信波形を基 にして前記偏波分散量および前記波長分散量を検出した後に、前記ァダプティブ補 償量制御部で、前記電気分散補償器に用いる最適な補償係数および前記クロック データリカバリ回路の識別閾値を自動で制御する、自動分散補償システム。
[22] 請求項 6に記載の分散検出装置を有する受信部と、
前記分散検出装置からフィードバックした偏波分散量の検出結果を基に、送信信 号となる光信号にあらかじめ分散等化処理を施してから送信する送信部とから構成さ れる、自動分散補償システム。
[23] 請求項 12に記載の分散検出装置と、
前記伝送路を伝送されてきた受信信号を光信号から電気信号に変換する光電気 変換回路と、
前記光電変換回路にて電気信号に変換された受信信号の偏波分散による波形劣 化を補償する電気分散補償器と、
前記電気分散補償器を通過した信号から、クロック信号の再生 '抽出およびデータ 信号のリカバリを行うクロックデータリカバリ回路と、
前記クロックデータリカバリ回路から出力されたデータ信号を直並列変換するデマ ノレチプレクサと、
前記分散検出装置にて検出された偏波分散量および波長分散量の検出結果を基 に、前記電気分散補償器の補償係数および前記クロックデータリカバリ回路の識別 閾値を制御するァダプティブ補償量制御部と、
前記光電気変換回路と前記電気分散補償器の間に配置され、前記分散検出装置 で前記群遅延量が前記受信アイパターン波形の 1ユニットインターバル時間以上で あることが識別された場合、受信信号の最初の 1ユニットインターバル時間相当の群 遅延量による波形劣化分を等化する予等化器と、力 構成され、
前記分散検出装置で、前記電気分散補償器を通過した受信信号の受信波形を基 にして前記偏波分散量および波長分散量を検出した後、前記群遅延量が 1ユニット インターバル時間以上であることが識別された場合は、はじめに前記予等化器を動 作させ、 1ユニットインターバル時間相当の群遅延量による波形劣化分を等化してお いた後に、前記ァダプティブ補償量制御部で、前記電気分散補償器に用いる最適な 補償係数および前記クロックデータリカバリ回路の識別閾値を自動で制御し、 前記分散検出装置で、前記電気分散補償器を通過した受信信号の受信波形を基 にして前記偏波分散量および波長分散量を検出した後、前記群遅延量が 1ユニット インターバル時間未満であることが識別された場合は、前記予等化器は動作させな い状態で、前記ァダプティブ補償量制御部で、前記電気分散補償器に用いる最適 な補償係数および前記クロックデータリカバリ回路の識別閾値を自動で制御する、自 動分散補償システム。
[24] 前記予等化器は、
前記分散検出装置の制御の基で、前記光電変換回路にて電気信号に変換された 受信信号に対する遅延処理を行う遅延素子と、
前記分散検出装置の制御の基で、前記遅延素子から出力された受信信号に対す る重み付け処理を行う重み付け回路と、
前記遅延素子へ入力される前の受信信号と前記重み付け回路から出力された受 信信号との加減算処理を行う加減算回路と、を有する、請求項 23に記載の自動分散 ネ甫償システム。 [25] 請求項 12に記載の分散検出装置を含む受信部と、
前記分散検出装置力 フィードバックした偏波分散量の検出結果と、群遅延量力 ユニットインターバル時間以上かどうかの判断結果と、を基に、送信信号となる光信 号にあらかじめ分散等化処理を施してから送信する送信部と、力も構成される、自動 分散補償システム。
PCT/JP2007/065900 2006-11-30 2007-08-15 Appareil de détermination de dispersion et système de compensation de dispersion automatique utilisant un tel appareil WO2008065784A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008546894A JP5012811B2 (ja) 2006-11-30 2007-08-15 分散検出装置およびそれを用いた自動分散補償システム
US12/514,766 US8488961B2 (en) 2006-11-30 2007-08-15 Dispersion determining apparatus and automatic dispersion compensating system using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-323966 2006-11-30
JP2006323966 2006-11-30
JP2007-193295 2007-07-25
JP2007193295 2007-07-25

Publications (1)

Publication Number Publication Date
WO2008065784A1 true WO2008065784A1 (fr) 2008-06-05

Family

ID=39467582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065900 WO2008065784A1 (fr) 2006-11-30 2007-08-15 Appareil de détermination de dispersion et système de compensation de dispersion automatique utilisant un tel appareil

Country Status (3)

Country Link
US (1) US8488961B2 (ja)
JP (1) JP5012811B2 (ja)
WO (1) WO2008065784A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188788A (ja) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp 送受信システム
WO2009144997A1 (ja) * 2008-05-27 2009-12-03 日本電気株式会社 光ファイバの分散検出装置およびそれを用いた自動分散補償システム
JP2013078000A (ja) * 2011-09-30 2013-04-25 Mitsubishi Electric Corp Ponシステムのcdr回路およびcdr回路におけるパルス幅歪自己検出方法とパルス幅歪自己補償方法
JP2019140666A (ja) * 2018-02-13 2019-08-22 日本電信電話株式会社 状態推定装置及び通信システム
WO2019159938A1 (ja) * 2018-02-13 2019-08-22 日本電信電話株式会社 状態推定装置及び通信システム
WO2022113268A1 (ja) * 2020-11-27 2022-06-02 日本電信電話株式会社 光伝送システム、光受信装置、光送信装置、制御方法およびプログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373500B2 (ja) * 2009-07-31 2013-12-18 富士通テレコムネットワークス株式会社 分散補償装置
US8543012B2 (en) * 2010-05-14 2013-09-24 Verizon Patent And Licensing Inc. Compensating for end-to-end group delay ripples
US9544051B2 (en) * 2011-05-06 2017-01-10 Ofs Fitel, Llc Methods and systems for bulk dispersion monitoring
EP2634942B1 (en) 2012-02-28 2019-04-10 Mitsubishi Electric R&D Centre Europe B.V. Method and device for determining whether a configuration of an optical transmission interface has to be adjusted
WO2013170910A1 (en) * 2012-05-16 2013-11-21 Telefonaktiebolaget L M Ericsson (Publ) Determining properties of an optical communications path in an optical communications network
US8873615B2 (en) * 2012-09-19 2014-10-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and controller for equalizing a received serial data stream
US10298813B2 (en) * 2017-03-03 2019-05-21 University Of Maryland Baltimore County High resolution turbulence free imaging
US11085870B2 (en) * 2019-05-17 2021-08-10 Northrop Grumman Systems Corporation Non-classical imaging
US10720995B1 (en) * 2019-08-21 2020-07-21 Cisco Technology, Inc. Unequal spacing on multilevel signals
WO2024143603A1 (ko) * 2022-12-28 2024-07-04 주식회사 포인투테크놀로지 수신 신호의 분산 측정을 위한 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028723A1 (fr) * 1997-11-28 1999-06-10 Fujitsu Limited Procede de mesure de la dispersion en mode de polarisation, dispositif de commande de compensation de dispersion et procede de commande de compensation de dispersion
JP2001094535A (ja) * 1999-09-24 2001-04-06 Kdd Submarine Cable Systems Inc 光伝送システム
JP2004222240A (ja) * 2002-12-25 2004-08-05 Nec Corp 光信号監視方法、及び光信号監視装置
JP2005159553A (ja) * 2003-11-21 2005-06-16 Nec Corp 分散補償方法、wdm光伝送システム、光伝送システム及び光伝送装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262444B2 (ja) 1994-02-08 2002-03-04 日本電信電話株式会社 自動等化器
JP3846918B2 (ja) 1994-08-02 2006-11-15 富士通株式会社 光伝送システム、光多重伝送システム及びその周辺技術
JP3464744B2 (ja) 1996-06-03 2003-11-10 日本電信電話株式会社 自動等化システム
JPH10276172A (ja) 1997-03-28 1998-10-13 Kokusai Denshin Denwa Co Ltd <Kdd> 波長分割光処理装置およびこの波長分割光処理装置を用いた光通信伝送路
JP4180738B2 (ja) 1999-06-14 2008-11-12 株式会社東芝 デジタル信号品質モニタ方法とこの方法を用いた通信装置
JP4582874B2 (ja) 2000-07-13 2010-11-17 富士通株式会社 偏波モード分散補償方法および偏波モード分散補償装置
US20020141692A1 (en) * 2000-10-16 2002-10-03 Henry Hung Optical network with dynamic balancing
JP4011290B2 (ja) 2001-01-10 2007-11-21 富士通株式会社 分散補償方法、分散補償装置および光伝送システム
JP3798640B2 (ja) 2001-03-02 2006-07-19 富士通株式会社 受信装置及び受信信号の波形劣化補償方法並びに波形劣化検出装置及び方法並びに波形測定装置及び方法
JP3856101B2 (ja) * 2001-09-03 2006-12-13 日本電気株式会社 受信波形整形機能を有する光受信装置
JP3923373B2 (ja) 2002-05-31 2007-05-30 富士通株式会社 自動分散補償装置および補償方法
JP4202778B2 (ja) * 2003-01-31 2008-12-24 株式会社ルネサステクノロジ 受信回路および送信回路
JP4468656B2 (ja) * 2003-05-27 2010-05-26 株式会社日立製作所 信号波形劣化補償器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028723A1 (fr) * 1997-11-28 1999-06-10 Fujitsu Limited Procede de mesure de la dispersion en mode de polarisation, dispositif de commande de compensation de dispersion et procede de commande de compensation de dispersion
JP2001094535A (ja) * 1999-09-24 2001-04-06 Kdd Submarine Cable Systems Inc 光伝送システム
JP2004222240A (ja) * 2002-12-25 2004-08-05 Nec Corp 光信号監視方法、及び光信号監視装置
JP2005159553A (ja) * 2003-11-21 2005-06-16 Nec Corp 分散補償方法、wdm光伝送システム、光伝送システム及び光伝送装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188788A (ja) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp 送受信システム
WO2009144997A1 (ja) * 2008-05-27 2009-12-03 日本電気株式会社 光ファイバの分散検出装置およびそれを用いた自動分散補償システム
JP5263289B2 (ja) * 2008-05-27 2013-08-14 日本電気株式会社 光ファイバの分散検出装置およびそれを用いた自動分散補償システム
JP2013078000A (ja) * 2011-09-30 2013-04-25 Mitsubishi Electric Corp Ponシステムのcdr回路およびcdr回路におけるパルス幅歪自己検出方法とパルス幅歪自己補償方法
JP2019140666A (ja) * 2018-02-13 2019-08-22 日本電信電話株式会社 状態推定装置及び通信システム
WO2019159938A1 (ja) * 2018-02-13 2019-08-22 日本電信電話株式会社 状態推定装置及び通信システム
JP7001920B2 (ja) 2018-02-13 2022-01-20 日本電信電話株式会社 状態推定装置及び通信システム
US11342990B2 (en) 2018-02-13 2022-05-24 Nippon Telegraph And Telephone Corporation State estimating device and communication system
WO2022113268A1 (ja) * 2020-11-27 2022-06-02 日本電信電話株式会社 光伝送システム、光受信装置、光送信装置、制御方法およびプログラム
JP7549258B2 (ja) 2020-11-27 2024-09-11 日本電信電話株式会社 光伝送システム、光受信装置、光送信装置、制御方法およびプログラム

Also Published As

Publication number Publication date
US20090317079A1 (en) 2009-12-24
JPWO2008065784A1 (ja) 2010-03-04
JP5012811B2 (ja) 2012-08-29
US8488961B2 (en) 2013-07-16

Similar Documents

Publication Publication Date Title
WO2008065784A1 (fr) Appareil de détermination de dispersion et système de compensation de dispersion automatique utilisant un tel appareil
US7433599B2 (en) Automatic dispersion compensation device and compensation method
US8145071B2 (en) Electrical-dispersion compensating apparatus, optical receiving apparatus, and optical receiving method
JP4783648B2 (ja) 中継装置及び中継方法
EP1895690B1 (en) Optical transmission apparatus
US9515763B2 (en) Digital coherent receiver and receiving method of optical signal
JP4011290B2 (ja) 分散補償方法、分散補償装置および光伝送システム
US7844144B2 (en) Adaptive optical signal processing with multimode waveguides
US7813655B2 (en) Signal waveform deterioration compensator
JP5015284B2 (ja) 光送信器、光送信方法、及び、光送受信システム
US7660537B2 (en) Simultaneous electrical pre-compensation of self-phase modulation and chromatic dispersion
US20050201757A1 (en) Method and arrangement for determining signal degradations in the presence of signal distortions
WO2007071104A1 (fr) Appareil et procede de compensation de dispersion auto-adaptative
JP5263289B2 (ja) 光ファイバの分散検出装置およびそれを用いた自動分散補償システム
JP5495120B2 (ja) 光受信装置、光受信方法及び光受信装置の制御プログラム
JP5025503B2 (ja) 分散補償装置
JP4669103B2 (ja) 光伝送システムにおける偏波分散補償装置および方法
EP0954126A1 (en) Optical dispersion compensation
KR20160050687A (ko) 다중 모드 광섬유 기반 광수신 장치 및 방법
JP2008311875A (ja) 光伝送装置および光伝送装置制御方法
CN101689937A (zh) 光发射机,光网络以及用于补偿偏振模色散的方法
Woodward et al. Demonstration of an electronic dispersion compensator in a 100-km 10-Gb/s ring network
JP4056846B2 (ja) 分散モニタ装置、分散モニタ方法および自動分散補償システム
Khanna et al. Adaptive transmitter pre-distortion using feedback from the far-end receiver
Kupfer et al. PMD compensation using electronic equalization particular maximum likelihood sequence estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12514766

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008546894

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07792535

Country of ref document: EP

Kind code of ref document: A1