WO2008065757A1 - Appareil et procédé permettant de compresser un courant d'appel d'excitation d'un transformateur - Google Patents

Appareil et procédé permettant de compresser un courant d'appel d'excitation d'un transformateur Download PDF

Info

Publication number
WO2008065757A1
WO2008065757A1 PCT/JP2007/001328 JP2007001328W WO2008065757A1 WO 2008065757 A1 WO2008065757 A1 WO 2008065757A1 JP 2007001328 W JP2007001328 W JP 2007001328W WO 2008065757 A1 WO2008065757 A1 WO 2008065757A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
transformer
magnetic flux
circuit breaker
voltage
Prior art date
Application number
PCT/JP2007/001328
Other languages
English (en)
French (fr)
Inventor
Tadashi Koshiduka
Minoru Saito
Susumu Nishiwaki
Nobuyuki Takahashi
Koichi Futagami
Yoshimasa Sato
Tsuyoshi Kokumai
Hiroshi Kusuyama
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to US12/516,717 priority Critical patent/US8310106B2/en
Priority to CA 2670907 priority patent/CA2670907C/en
Priority to EP18167323.7A priority patent/EP3367409A1/en
Priority to EP07828105.2A priority patent/EP2091058A4/en
Priority to CN200780047474XA priority patent/CN101563744B/zh
Publication of WO2008065757A1 publication Critical patent/WO2008065757A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • H02H9/002Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off limiting inrush current on switching on of inductive loads subjected to remanence, e.g. transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H9/563Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle for multipolar switches, e.g. different timing for different phases, selecting phase with first zero-crossing

Definitions

  • the present invention relates to a magnetizing inrush current suppressing device and method for suppressing magnetizing inrush current generated when a transformer is turned on.
  • Non-Patent Document 1 (For example, see Non-Patent Document 1).
  • Patent Document 1 JP-A-2002-751 45 “Gas Circuit Breaker with Excitation Current Suppressor”
  • Non-Patent Document 1 IEEE Trans. Vol. 1 6, No. 2 2001 "Elimi nation of Transformer Inrush Currents by Controlled Switching -Part Theoretical Considerations"
  • the residual magnetic flux of the transformer core is obtained by integrating the voltage. For example, in the case of Y connection, if the voltage between each terminal and the neutral point is measured and integrated, the residual magnetic flux of the transformer core can be accurately measured without being affected by the DC voltage. It can be calculated.
  • a voltage measuring device that measures a voltage by dividing a high voltage into a low voltage, such as an instrument transformer (VT, PT) or a capacitor-type instrument transformer (PD), Connected between the ground.
  • VT, PT instrument transformer
  • PD capacitor-type instrument transformer
  • What can be measured with such a voltage measuring device is the voltage to ground of each terminal of the transformer, and integrating that voltage will include the above DC voltage, and the integrated value will diverge. Accurate residual magnetic flux is not required.
  • the present invention has been made in view of the prior art described above, and its purpose is to accurately calculate the residual magnetic flux when a transformer installed in an electric power system is interrupted by a circuit breaker.
  • the transformer for the phase is turned on simultaneously with three single-phase circuit breakers or when it is turned on with a three-phase batch operation type circuit breaker, It is an object of the present invention to provide an apparatus and method for suppressing the inrush current of a transformer that can be suppressed without adding equipment such as a circuit breaker.
  • the invention according to claim 1 is a three-phase circuit in which the primary winding is connected to the Y connection and the secondary winding or the tertiary winding is ⁇ -connected.
  • the transformer inrush current suppression method that suppresses the excitation inrush current that occurs at the start of excitation by turning on each phase terminal of the transformer to a three-phase power supply with a three-phase circuit breaker.
  • the steady-state magnetic flux of each phase of the transformer is calculated by integrating the phase voltage or line voltage on the primary side, secondary side, or tertiary side when AC voltage is applied in a steady state.
  • phase and the magnitude of the residual magnetic flux of each phase of the transformer after the transformer is shut off are calculated, and the phase where the polarity of the steady magnetic flux of each phase of the transformer is the same as the polarity of the residual magnetic flux of each phase is 3
  • the three-phase circuit breakers are turned on simultaneously To.
  • each phase terminal of the three-phase transformer in which the primary winding is connected to the Y connection and the secondary winding or the tertiary winding is ⁇ -connected.
  • the breaker is opened at least once, Sometimes, measure the relationship between the circuit breaker's breaking phase and the transformer's residual magnetic flux in advance from the voltage measured by the voltage measuring device connected to the primary, secondary, or tertiary terminal of the transformer.
  • the residual magnetic flux of the transformer is estimated from the above relationship by controlling the opening phase of the breaker so that it always has the same breaking phase.
  • a three-phase AC voltage is The three-phase circuit breakers are simultaneously turned on within the range where the phase of the steady magnetic flux of each phase when applied in the same state and the estimated phase of the residual magnetic flux of each phase are the same for three phases. It is characterized by this.
  • the invention according to claims 18 to 21 is a three-phase transformation in which the primary winding is connected to the Y connection and the secondary winding or the tertiary winding is ⁇ -connected.
  • Each phase end In the method for suppressing the excitation inrush current of the transformer that suppresses the excitation inrush current generated at the start of excitation by turning on the child to the three-phase power supply by the three-phase circuit breaker, the three-phase AC voltage is in a steady state in the transformer The voltage when applied at is measured to determine the steady magnetic flux between the lines, and the polarity and magnitude of the residual magnetic flux between each line of the transformer after the circuit breaker interrupts the transformer are calculated.
  • the three-phase circuit breaker is turned on simultaneously when the phase where the polarity of the steady magnetic flux between each line and the phase of the residual magnetic flux between the lines is the same is in the range of three phases.
  • the following different methods are adopted as methods for measuring the voltage and obtaining the steady magnetic flux between the lines.
  • the primary phase voltage is measured and converted to a line voltage, and the line voltage is integrated to calculate a steady magnetic flux between the lines.
  • the steady-state magnetic flux at each terminal of the transformer is calculated by measuring and integrating the phase voltage on the primary side, and the steady-state magnetic flux at each terminal of the transformer is converted into a steady-state magnetic flux between the lines.
  • the steady-state magnetic flux between each line of the transformer is calculated by measuring and integrating the line voltage on the primary side.
  • the steady magnetic flux between each line of the transformer is calculated by measuring and integrating the three relative ground voltages of the connected secondary winding or tertiary winding.
  • each phase terminal of the three-phase transformer in which the primary winding is connected to the Y-connection and the secondary winding or the tertiary winding is ⁇ -connected to the three-phase
  • the circuit breaker is opened at least once and then the transformer is transformed. Measure the relationship between the circuit breaker's breaking phase and the transformer's residual magnetic flux in advance from the voltage measured by the voltage measuring device connected to the primary, secondary, or tertiary terminal.
  • the residual magnetic flux of the transformer is estimated from the above relationship by controlling the opening phase of the circuit breaker so that it always has the same breaking phase, and then the transformer is turned on.
  • the three-phase AC voltage on the transformer is in steady state Apply a three-phase circuit breaker at the same time within the range where the phase of the steady magnetic flux between each line when applied and the phase of the estimated residual magnetic flux between each line are the same for three phases. It is characterized by.
  • the residual magnetic flux when the transformer installed in the power system is interrupted by the circuit breaker is accurately calculated, and the three-phase transformer is used as a power source by three single-phase circuit breakers.
  • the magnetizing inrush current that can be suppressed without adding equipment such as a breaker with a resistor when the power is turned on at the same time or when it is turned on with a three-phase batch operation type circuit breaker. Suppression devices and methods can be provided.
  • FIG. 1 is a block diagram showing a connection relationship among a three-phase transformer, a three-phase circuit breaker, and a magnetizing inrush current suppressing device according to Embodiment 1 of the present invention.
  • FIG. 2 is a waveform diagram showing the relationship between the three-phase power supply phase voltage, the steady-state magnetic flux of the three-phase transformer, and the residual magnetic flux of the transformer core in Embodiment 1 of the present invention.
  • FIG. 3 Waveform diagram showing residual magnetic flux, applied phase, and applied magnetic flux when a single-phase transformer is applied with a single-phase circuit breaker.
  • FIG. 4 Waveform diagram when the relationship between the power phase voltage, the steady magnetic flux of the transformer, and the residual magnetic flux of the transformer core is different from that in Fig. 1.
  • FIG. 5 is a waveform diagram showing a relationship between a phase voltage, a steady magnetic flux, and a residual magnetic flux when a three-phase transformer is turned on in Embodiment 2 of the present invention.
  • FIG. 6 is a waveform diagram showing the relationship between phase voltage, steady magnetic flux, and residual magnetic flux when the three-phase transformer is turned on in Embodiment 2 of the present invention.
  • FIG. 7 is a waveform diagram showing the relationship between phase voltage, steady magnetic flux, and residual magnetic flux when the three-phase transformer is turned on in Embodiment 2 of the present invention.
  • FIG. 8 is a waveform diagram showing the relationship between phase voltage, steady magnetic flux, and residual magnetic flux when the three-phase transformer is turned on in Embodiment 3 of the present invention.
  • FIG. 9 is a waveform diagram showing the relationship between the phase voltage, steady magnetic flux, and residual magnetic flux when the three-phase transformer is turned on in Embodiment 3 of the present invention.
  • FIG. 10 is a waveform diagram showing the relationship between phase voltage, steady magnetic flux, and residual magnetic flux when a three-phase transformer is turned on in Embodiment 3 of the present invention.
  • FIG. 11 is a block diagram showing a connection relationship among a three-phase transformer, a three-phase circuit breaker, and a magnetizing inrush current suppressing device in Embodiment 4 of the present invention.
  • FIG. 12 shows an example of calculation results of the breaking phase and residual magnetic flux of each phase when three single-phase transformers in Embodiment 4 of the present invention are connected to the Y connection _ ⁇ connection and disconnected by the circuit breaker. Figure.
  • FIG. 13 is a block diagram showing a connection relationship among a three-phase transformer, a three-phase circuit breaker, and a magnetizing inrush current suppression device in Embodiment 6 of the present invention.
  • FIG. 14 The three-phase power supply phase voltage and the steady-state magnetic flux of the three-phase transformer, the residual magnetic flux of the transformer core, the line voltage and the steady magnetic flux between the lines, and the residual between the lines in Embodiment 6 of the present invention
  • the wave form diagram which shows the relationship of magnetic flux.
  • FIG. 15 is a connection diagram showing a three-phase transformer of ⁇ _ ⁇ connection installed in an ineffective grounding system in Embodiment 6 of the present invention.
  • FIG. 16 is a waveform diagram showing that a DC voltage is generated at the neutral point of the transformer after the three-phase transformer of FIG. 15 in Embodiment 6 of the present invention is cut off.
  • FIG. 17 is a waveform diagram showing the setting of input target in the seventh embodiment of the present invention.
  • FIG. 18 is a connection diagram showing a three-phase transformer of ⁇ _ ⁇ connection installed in an ineffective grounding system in Embodiment 7 of the present invention.
  • FIG. 19 is a waveform diagram for explaining voltage changes in other phases when a single-phase circuit breaker is turned on in the three-phase transformer in FIG. 18 according to Embodiment 7 of the present invention.
  • FIG.20 Three-phase power supply phase voltage and steady-state magnetic flux of three-phase transformer, residual flux of transformer core, line voltage and steady-state magnetic flux between lines, and residual between lines in Embodiment 7 of the present invention
  • the wave form diagram which shows the relationship of magnetic flux.
  • FIG. 21 is a waveform diagram showing the relationship between the phase voltage and line voltage on the primary side of the three-phase transformer and the ground voltage and line voltage on the secondary or tertiary ⁇ side in Embodiment 8 of the present invention.
  • FIG. 22 shows the relationship between the phase voltage and line voltage on the primary ⁇ side of the three-phase transformer in Embodiment 8 of the present invention, and the ground voltage and line voltage on the secondary or tertiary ⁇ side. Waveform diagram showing a phase sequence relationship different from 1.
  • FIG. 23 is a block diagram showing a connection relationship among the three-phase transformer, the three-phase circuit breaker, and the magnetizing inrush current suppressing device according to the ninth embodiment of the present invention.
  • FIG. 24 shows an example of calculation results of the breaking phase and the residual magnetic flux between each line when three single-phase transformers in Embodiment 9 of the present invention are connected to the Y-connection and ⁇ -connection and interrupted by the circuit breaker. Figure.
  • FIGS. 1 to 4 are diagrams for explaining the first embodiment.
  • FIG. 1 is a block diagram showing a connection relationship between a three-phase transformer, a three-phase circuit breaker, and a magnetizing inrush current suppressing device.
  • Fig. 2 is a waveform diagram showing the relationship between the power supply phase voltage, the steady-state magnetic flux of the transformer, and the residual magnetic flux of the transformer core
  • Fig. 3 is the residual magnetic flux and the input phase when the single-phase transformer is turned on by a single-phase circuit breaker.
  • Fig. 4 is a waveform diagram when the relationship between the power phase voltage, the steady-state magnetic flux of the transformer, and the residual magnetic flux of the transformer core is different from Fig. 1.
  • 100 is a power system bus (also called a power bus), and 200 is a three-phase collective circuit breaker (three-phase circuit breaker) in which the main contacts of each phase are collectively operated.
  • 3 0 0 is a three-phase transformer that is turned on or off by the three-phase circuit breaker 2 0 0 to the power bus 1 0 0, and its primary winding 3 0 1 and secondary winding 3 0 2 are Y-connected.
  • the tertiary winding 3 0 3 is ⁇ -connected.
  • Z n 1 and Z n 2 are impedances for grounding the neutral point of the primary winding 30 1 and secondary winding 30 2, respectively.
  • the three-phase circuit breaker 200 may be a single-phase circuit breaker for each of the three phases, and the single-phase circuit breakers for each phase may be turned on or off simultaneously for three phases.
  • the single-phase circuit breakers for each phase may be turned on or off simultaneously for three phases.
  • the single-phase circuit breakers for each phase
  • 4 0 0 is a power supply voltage measuring device composed of VT or the like for measuring the voltage (U, V, W) of each phase of the power bus 1 0 0, and 5 0 0 is a three-phase transformer 3 Primary phase of 0 0 (U, V, W) Transformer composed of VT etc. for measuring terminal voltage Terminal voltage measuring equipment 6 0 0 is the main contact of circuit breaker 2 0 0 Is a closing control device that outputs a closing command, and constitutes an inrush current suppression device. [0022] In the input control device 6 0 0, 6 0 1 is a power source for measuring the power supply voltage of each phase (U, V, W phase) output from the power supply voltage measuring device 4 0 0 such as VT.
  • a voltage measuring means 60 2 is a steady magnetic flux calculating means for calculating a steady-state magnetic flux for each phase by integrating each phase voltage measured by the power supply voltage measuring means 60 1.
  • 6 0 3 is a transformer terminal voltage measuring device that takes in and measures the transformer terminal voltage of each phase (U, V, W phase) output from 500 0
  • Stage 6 0 4 is a residual magnetic flux calculating means for calculating the residual magnetic flux of the iron core of the transformer for each phase by integrating each phase voltage measured by the transformer terminal voltage measuring means 60 3. It is.
  • 6 0 5 inputs the output signal of the steady magnetic flux calculating means 6 0 2 and the output signal of the steady magnetic flux calculating means 6 0 4 for each phase (U, V, W phase), Transformer Phase detection means for detecting the phase where the residual magnetic flux of the iron core has the same polarity.
  • 6 06 inputs the output signal of this phase detection means 6 05 for three phases so that the main contact of the circuit breaker 2 0 0 is electrically turned on within the range in which the logical product of the three phases is established.
  • This is a closing instruction output means for outputting a closing instruction to the operating mechanism that drives the main contact of the breaker 200.
  • reference numerals 1 to 3 denote power source phase (U, V, W phase) voltages measured by the power source voltage measuring means 60 1. 4 to 6, each of which is calculated by integrating the voltage measured by the power source voltage measuring means 6 0 1 by the steady magnetic flux calculating means 6 0 2 when a three-phase voltage is applied to the transformer in a steady state.
  • Phase (U, V, W phase) The steady magnetic flux of the iron core. 7 to 9 represent transformer phases (U, V, W phases) calculated by integrating the voltage measured by the transformer terminal voltage measuring means 60 3 by the residual magnetic flux calculating means 60 4. It is a residual magnetic flux.
  • the residual magnetic flux 7 of the transformer U-phase iron core is positive and has the largest residual magnetic flux
  • the residual magnetic flux 8 of the V-phase iron core and the residual magnetic flux 9 of the W-phase iron core are negative and negative.
  • the phases of the residual magnetic flux 7 and the steady magnetic flux 4 of the iron core are in the phase range indicated by 10.
  • the residual magnetic flux 8 and the steady magnetic flux 5 have the same polarities in the range of 11.1
  • the residual magnetic flux 9 in the iron core and the stationary magnetic flux 6 have the same polarity. Is in the range of 1.
  • phase ranges 10, 11, and 12 in which the polarities of the residual magnetic flux and the steady magnetic flux coincide with each other are detected by the phase detection means 60 5.
  • the phase range in which the polarities of the steady magnetic flux and the residual magnetic flux coincide with each other in the three phases is the range shown in 13, and the phase ranges 10, 11, and 12
  • the AND condition is obtained by the logical product of the signals output from the phase detection means 60 5 for each phase.
  • This phase range 13 is the input target phase range of the 3-phase circuit breaker 200.
  • Figure 3 is a waveform diagram showing the residual magnetic flux, the applied phase, and the applied magnetic flux when the single-phase transformer is applied with a single-phase circuit breaker.
  • 15 shows the steady magnetic flux when the power supply voltage 14 is constantly applied to the transformer.
  • the phase is 90 ° behind the phase of the voltage.
  • this input phase is a condition in which the magnetizing inrush current flows to the maximum when the residual magnetic flux of the transformer is zero.
  • the transformer has a residual magnetic flux of 17 and the circuit breaker is turned on at a phase of 180 °, the magnetic flux is 18 and the maximum value is 2 pu + the residual magnetic flux of 17 .
  • the difference between the maximum values of magnetic flux 1 8 and magnetic flux 1 6 is equivalent to the residual magnetic flux 1 7, but the current-flux characteristic of the transformer core is a saturation characteristic.
  • the magnitude of the excitation inrush current is significantly greater than the difference in the residual magnetic flux 17 under the magnetic flux 18 condition compared to the magnetic flux 16 condition.
  • 19 is the magnetic flux when the residual magnetic flux is 17 and the phase is applied at 90 °.
  • the maximum value of magnetic flux in this case is 1 PU + residual magnetic flux 17 .
  • the maximum value of the magnetic flux after being turned on will be at least less than 2 pu.
  • the magnetic flux is never larger than 16.
  • the magnitude of the inrush current will be 0 However, it can be made smaller than the maximum magnetizing inrush current that flows when the breaker 200 is turned on.
  • a secondary or tertiary winding is ⁇ -connected, and in the example of Fig. 1, the tertiary winding is ⁇ -connected.
  • the sum of the residual magnetic flux for each phase after the three-phase transformer 3 0 0 is shut off by the circuit breaker 2 0 0 is always 0 due to the secondary or tertiary winding being wound. Therefore, if the residual magnetic flux of one phase with a three-phase transformer is the largest in the positive polarity, for example, the residual magnetic fluxes in the other two phases are both negative values, or the one phase is the negative and the largest, the remaining One phase of is zero.
  • Fig. 2 shows the relationship between the residual magnetic fluxes in the three-phase transformer, that is, the sum of the residual magnetic fluxes of the three phases is 0, the residual magnetic flux of the U phase is positive and the maximum, and the residual magnetic fluxes of the other two phases are Both have negative polarity values.
  • the residual magnetic flux 7 and the steady magnetic flux 4 have the same polarity in the range of 10. Therefore, if the circuit breaker 2 0 0 is turned on in the phase range 1 0, at least the U-phase excitation inrush current can be made smaller than the maximum excitation inrush current in the residual magnetic flux 0.
  • the residual magnetic fluxes of the V and W phases are negative values.
  • the residual magnetic flux 8 and the steady magnetic flux 5 have the same polarity in the phase range 11.
  • the residual magnetic flux 9 and the steady magnetic flux 6 have the same polarity in the phase range 12.
  • phase range 13 the phase range 10 in which the U-phase residual magnetic flux 7 and the stationary magnetic flux 4 have the same polarity, and the phase range in which the V-phase residual magnetic flux 8 and the stationary magnetic flux 5 have the same polarity. 1 All the phase ranges 1 and 2 where the residual magnetic flux 9 and the steady magnetic flux 6 of the 1 and W phases have the same polarity overlap. Therefore, if the three breakers are turned on simultaneously within the phase range 13, the magnetizing inrush current can be suppressed for all three phases.
  • FIG. 4 assumes a condition in which the residual magnetic flux of one phase is 0 and the other two phases are maximum in positive polarity and negative polarity.
  • the phase where the value of residual magnetic flux 9 is 0 is the W phase. Since the residual magnetic flux 9 in the W phase has a value of 0, the phase at which the stationary magnetic flux 6 and the residual magnetic flux 9 have the same polarity may be set to _180 ° to 0 ° or 0 ° to 180 °.
  • phase range in which the three-phase residual magnetic flux and the steady magnetic flux all have the same polarity is 20 or 2 1. Therefore, if the breaker 2 0 0 is turned on simultaneously for 3 phases within the phase range 2 0 or 2 1, the magnetizing inrush current can be suppressed for all 3 phases.
  • the three-phase transformer used in the power system has a secondary or tertiary winding that is ⁇ -connected, so after the three-phase transformer 3 0 0 is shut off by the circuit breaker 2 0 0 The sum of the residual magnetic flux of each phase is always 0 due to the ⁇ connection. This is not affected by the grounding method at the neutral point of the primary Y-connection.
  • the input phase range 13 can be set, and the three-phase batch operation type
  • the transformer 300 is turned on by the circuit breaker 200 or by simultaneous operation of single-phase circuit breakers for each of the three phases, it is possible to suppress the magnetizing inrush current by the closing phase control method described above. Needless to say.
  • FIGS. 5 to 7 are diagrams for explaining the second embodiment.
  • FIGS. 5 to 7 are waveform diagrams showing the relationship between the phase voltage, the steady magnetic flux, and the residual magnetic flux when the three-phase transformer is turned on. It is assumed that the remaining magnetic flux remains different.
  • the connection relationship between the three-phase transformer, the three-phase circuit breaker, and the magnetizing inrush current suppression device is the same as that in the first embodiment, so the block diagram corresponding to FIG. Omitted.
  • the intersection 22 of the steady magnetic flux and the residual magnetic flux is set as the input target point of the three-phase circuit breaker 200.
  • the input control device 6 0 0 is set as follows.
  • Fig. 5 shows that the residual magnetic flux 7 of U phase is the maximum with the positive polarity, and the residual magnetic fluxes 8 and 9 of V phase and W phase are both under the condition that the sum of the residual magnetic flux of each phase of the three-phase transformer is 0. Since the values differ depending on the negative polarity and there is a relationship of residual magnetic flux 8> residual magnetic flux 9, the W phase is the smallest phase of the residual magnetic flux. Therefore, in the case of Fig. 5, the closing target point of the 3-phase circuit breaker 200 is set with the intersection 22 of the steady magnetic flux 6 and the residual magnetic flux 9 in the W phase as the breaker closing target point.
  • FIG. 6 shows the case where the U and V phase residual magnetic fluxes are maximum for positive polarity and negative polarity, respectively, and the W phase is 0.
  • the W phase is the phase with the smallest residual magnetic flux
  • the intersection 22 of the steady magnetic flux 6 and residual magnetic flux 9 in the W phase is taken as the breaker closing target point, and the closing target point of the three-phase breaker 2 0 0 Set.
  • FIG. 7 shows the case where the residual magnetic fluxes 8 and 9 in the V and W phases are 1/2 of the U-phase residual magnetic flux 7.
  • the residual magnetic flux 8 of the V phase and the residual magnetic flux 9 of the W phase are clearly distinguished and drawn so that the residual magnetic flux does not overlap.
  • the target point for closing the three-phase circuit breaker 2 0 0 is set with the intersection 22 of the steady magnetic flux 6 and residual magnetic flux 9 in the W phase as the circuit breaker charging target point.
  • the breaker closing target point 2 2 is in the closing target phase range 1 3 (_30 ° to 30 °) shown in FIG. In both cases, the difference between the residual magnetic flux of each phase and the steady magnetic flux is reduced.
  • the difference between the steady magnetic flux and the residual magnetic flux of each phase can be reduced, and the transformer 3 0 0 is excited by turning on the 3-phase circuit breaker 2 0 0 at the closing target point 2 2. By doing so, it is possible to suppress a large excitation inrush current from flowing.
  • FIGS. 8 to 10 are diagrams for explaining the third embodiment.
  • Figs. 8 to 10 are waveform diagrams showing the relationship between the phase voltage, steady magnetic flux, and residual magnetic flux when the three-phase transformer is turned on, assuming that the residual magnetic flux remains different. Yes.
  • the connection relationship among the three-phase transformer, the three-phase circuit breaker, and the excitation inrush current suppressing device is the same as in the first and second embodiments described above. The block diagram is omitted.
  • the steady-state magnetic flux in the phase with the largest residual magnetic flux when the three-phase transformer is turned on, the steady-state magnetic flux has a peak value, that is, the phase voltage 0 point advanced by 90 ° from the steady-state magnetic flux.
  • the closing control device 6 0 0 is set to be the closing target point of the circuit breaker 2 0 0.
  • the appearance of the residual magnetic flux in FIGS. 8 to 10 is the same as that in FIGS.
  • Figure 8 shows that the U-phase residual magnetic flux 7 is the largest in the positive polarity, and the V and W-phase residual magnetic fluxes 8 and 9 are both negative. Since the relationship is residual magnetic flux 7> residual magnetic flux 8> residual magnetic flux 9, the U phase is the phase with the largest residual magnetic flux. Therefore, in the case of Fig. 8, the crest value of the steady magnetic flux 4 in the U phase is set as the breaker closing target point 2 3 and the closing target of the 3 phase breaker 2 0 0 Set a point.
  • the U and V phase residual magnetic fluxes are maximum for positive polarity and negative polarity, respectively, and the W phase is 0.
  • the U phase is the phase with the largest residual magnetic flux
  • the target value of the three-phase circuit breaker 200 is set with the crest value of the steady magnetic flux 4 in the U phase as the circuit breaker input target point 23.
  • FIG. 10 shows the case where V and W phase residual magnetic fluxes 8 and 9 assume 1/2 of U phase residual magnetic flux 7.
  • the residual magnetic flux 8 of V phase and the residual magnetic flux 9 of W phase are drawn so that the residual magnetic flux does not overlap consciously for easy understanding.
  • the target value of the three-phase circuit breaker 200 is set by setting the peak value of the steady magnetic flux 4 in the U-phase as the circuit breaker closing target point 23.
  • the breaker closing target point 23 is within the closing target phase range 13 shown in FIG. The difference from the magnetic flux is reduced.
  • the difference between the steady magnetic flux and the residual magnetic flux of each phase can be reduced.
  • the three-phase circuit breaker 200 can be turned on to excite the transformer 300. If so, it is possible to suppress a large excitation inrush current.
  • FIG. 11 to FIG. 12 are diagrams for explaining the fourth embodiment.
  • FIG. 11 is a block diagram showing a connection relationship among a three-phase transformer, a three-phase circuit breaker, and an excitation inrush current suppressing device.
  • Fig., Fig. 1 2 shows the residual magnetic flux when three single-phase transformers are connected to Y connection _ ⁇ connection, and the transformer for the three phases is interrupted by the circuit breaker. It is a figure which shows the example calculated
  • the power system configuration is the same as in Fig. 1, but the difference from Fig. 1 is that the secondary winding 3 0 2 of transformer 3 0 0 is ⁇ -connected, and transformer 3 In the normal operation state of 0 0, when the transformer terminal voltage measuring device 5 0 0 is not installed in any of the primary side terminal, secondary side terminal or tertiary side terminal, the primary side terminal Temporary connection transformer terminal voltage measuring device 5 0 0 A is connected and the output voltage is input. ⁇ Opening control device 6 0 0 A transformer terminal voltage measuring means 6 0 3 is input. In the point.
  • This closing / opening control device 6 0 0 A is provided in place of the closing control device 6 0 0 of the first embodiment, and constitutes an inrush current suppression device.
  • the components from the means 6 0 1 to the input command output means 6 0 6 are the same as those of the input control device 6 0 0 of the first embodiment, but the breaking phase ⁇ residual magnetic flux relation measurement holding means 6 0 7, An opening phase control means 6 0 8 and an opening command output means 6 0 9 are added.
  • Breaking phase ⁇ Residual magnetic flux related measuring and holding means 6 0 7 is a transformer terminal voltage measuring device 5 0 OA is temporarily connected at least once (generally multiple times) with OA temporarily connected.
  • the voltage cutoff phase output from the transformer terminal voltage measuring means 60 3 and the magnetic flux signal output from the residual magnetic flux calculating means 6 0 4 are input, and the relationship between the cutoff phase and the residual magnetic flux is determined. It has the function to measure and hold.
  • the opening phase control means 6 0 8 inputs the output of the power supply voltage measuring means 6 0 1 and the output of the interrupting phase / residual magnetic flux relation measurement holding means 6 0 7 to determine the opening phase of the main contact. It has a function to control.
  • the opening command output means 6 09 is a function for receiving an output signal from the opening phase control means 6 08 and outputting an opening instruction to the operating mechanism that drives the main contact of the circuit breaker 20 00. It has.
  • FIG. 6 is a diagram showing the residual magnetic flux obtained when 0 is interrupted by the circuit breaker 2 0 0 by calculation while changing the interruption phase.
  • the transformer terminal voltage measuring device 5 0 0 can be connected to any of the primary terminal, the secondary terminal, or the tertiary terminal.
  • the circuit breaker 20 0 is shut off at least once (generally multiple times) with the OA temporarily connected to the transformer terminal voltage measuring device, equivalent to Fig. 12
  • the characteristics of the residual magnetic flux of each phase of the transformer with respect to the breaking phase of the breaker to be measured are measured in advance. 2 4 in the figure indicates that the residual magnetic flux of one phase is maximized.
  • the transformer terminal voltage measuring device 5 0 0 A is temporarily connected to measure the characteristics of the residual magnetic fluxes 7 ', 8' and 9 ', and is removed in the normal operation state.
  • a transformer terminal voltage measuring device 5 0 0 A may be installed permanently. Since it is only necessary to obtain the relationship between the breaking phase and the residual magnetic flux, it is not always necessary to measure the residual magnetic flux characteristics in detail as shown in Fig. 12.
  • the opening command output means 6 0 9 controls the opening phase of the circuit breaker so that the interruption phase is always the same. Shut off. As a result, it is possible to estimate that the residual magnetic flux of each phase is 24, for example, from the characteristics of the residual magnetic flux corresponding to Fig. 12 measured in advance.
  • the circuit conditions of the power system (in the case of Fig. 1 1, the circuit conditions from the power system 1 0 0 to the transformer 3 0 0 ) Is always the same, so if the phase when the breaker 2 0 breaks is always the same, the residual magnetic flux value of each phase of the transformer 3 0 0 must always be the same.
  • the steady magnetic flux of the transformer that is, the magnetic flux when a voltage is applied to the transformer in a steady state, is also obtained by integrating the voltage measured by the power supply voltage measuring device installed on the bus or the like. be able to.
  • the transformer terminal voltage measuring device 5 0 OA for temporary connection is connected to the primary terminal of the transformer 300. Connecting and turning on the output voltage ⁇ Opening control device 60 0
  • the present invention is not limited to this, and the transformer 3 0 It can also be applied when voltage measurement equipment is connected to any of the primary, secondary, and tertiary terminals in the 0 operating state.
  • the means for obtaining the relationship between the breaker phase of the breaker and the residual magnetic flux of the transformer is not necessarily built in the synchronous switching controller 60OA of FIG. Obtain the relationship between the breaker's breaking phase and the transformer's residual magnetic flux at another unit Even if only the synchronous opening / closing control device 60 OA is stored, the same effect can be obtained.
  • a transformer voltage is measured with a general-purpose measuring instrument using a VT that is already installed or a VT that is temporarily connected, and the circuit breaker phase and the transformer phase are determined from the measured data. It is generally considered that the relationship of residual magnetic flux is calculated using a personal computer.
  • FIGS. 13 to 16 are diagrams for explaining the sixth embodiment.
  • FIG. 13 is a block diagram showing a connection relationship between the three-phase transformer, the three-phase circuit breaker, and the magnetizing inrush current suppressing device.
  • Figure 14 is a waveform diagram showing the relationship between the power supply phase voltage and the transformer's steady magnetic flux, the transformer core's residual flux, the line voltage and the steady flux between the lines, and the residual flux between the lines
  • Fig. 1 Fig. 5 is a connection diagram showing a three-phase transformer with ⁇ _ ⁇ connection installed in an ineffective grounding system.
  • Fig. 16 shows a DC at the neutral point on the transformer ⁇ side after the three-phase transformer in Fig. 15 is shut off. It is a wave form diagram which shows that a voltage appears.
  • the connection relationship of the three-phase transformer, the three-phase circuit breaker, and the magnetizing inrush current suppression device is the same as in the first to third embodiments described above, but is different from the first to third embodiments.
  • the closing control device 6 00 constituting the excitation inrush current suppressing device instead of the steady magnetic flux calculating means 6 0 2 for calculating the steady-state magnetic flux for each phase, the steady-state magnetic flux for calculating the steady-state magnetic flux between the lines is calculated.
  • residual magnetic flux calculating means 6 0 4 A for calculating residual magnetic flux between lines is provided. There is in point.
  • the steady magnetic flux calculating means 6 0 2 A integrates the power supply voltage of each phase (U, V, W phase) measured by the power supply voltage measuring means 6 0 It is a means to calculate the magnetic flux of each phase and convert the magnetic flux of each phase into the magnetic flux between lines.
  • the residual magnetic flux calculation means 60 04 A integrates the transformer terminal voltage of each phase (U, V, W phase) measured by the transformer terminal voltage measurement means 60 3, so that each terminal of the transformer It is a means to calculate the residual magnetic flux of and convert it to the residual magnetic flux between the lines.
  • each phase voltage measured by the power supply voltage measuring means 6 0 1 is converted into a line voltage by the steady magnetic flux calculating means 6 0 2 A, and integrated to obtain a magnetic flux between the lines. You may ask for.
  • each phase voltage measured by the transformer terminal voltage measuring means 6 0 3 is converted into a line voltage by the residual magnetic flux calculating means 6 0 4 A, and integrated to convert the magnetic flux between the lines. You may ask for it.
  • some voltage measuring devices such as VT have a function of converting a ground voltage into a line voltage in the device, so such a voltage measuring device is installed.
  • the line voltage is measured by the transformer terminal voltage measurement means 63, so the residual magnetic flux is calculated.
  • the means 6 0 4 A may integrate the line voltage to obtain the magnetic flux between the lines.
  • the phase detecting means 6 0 5 , VW, and WU phases Input the steady magnetic flux calculation means 60 2 A output signal and the steady magnetic flux calculation means 6 0 4 A output signal so that the steady magnetic flux and the residual magnetic flux between the transformer lines are the same. Detect the phase that becomes polar.
  • the input command output means 6 0 6 inputs the output signal of this phase detection means 6 0 5 for 3 lines (UV, VW, WU phase) and breaks the circuit breaker 2 within the range where the logical product for 3 lines is established.
  • a closing command is output to the operating mechanism that drives the main contact of the circuit breaker 2 0 0 so that the 0 0 main contact is electrically turned on.
  • reference numerals 1 to 3 denote power supply phase (U, V, W phase) voltages measured by the power supply voltage measuring means 6 0 1. 4 to 6, when the three-phase voltage 1 to 3 is applied to the transformer in the steady state, the voltage is integrated by the steady magnetic flux calculation means 6 0 2 A The steady-state magnetic flux of each phase of the transformer (u, V, W phase) calculated as above.
  • 3 1 to 3 3 are the voltages between the lines (between UV, VW, and WU) obtained by converting the three-phase voltages 1 to 3 by the steady magnetic flux calculation means 6 0 2 A
  • 3 4 to 3 6 are The magnetic flux between each line obtained by integrating the line voltage 3 1 to 3 3 by the steady magnetic flux calculating means 60 2 A or by converting the steady magnetic flux 4 to 6 of each phase. is there.
  • 3 7 to 39 are residual magnetic fluxes between transformer lines (between U V, VW and W U) calculated by the residual magnetic flux calculating means 60 4 A.
  • the residual magnetic flux 3 7 between the transformer UVs is positive and has the maximum value
  • the residual magnetic flux 3 8 between VW and the residual magnetic flux 3 9 between WU are negative and the same. Indicates the value status.
  • the residual magnetic flux 38 between VW and the residual magnetic flux 39 between WU are clearly distinguished so that they are intentionally drawn so that they do not overlap.
  • each phase of transformer (U, V, W phase)
  • the residual magnetic flux 7-9 of the iron core is the distance between each transformer line (between UV, VW, WU) calculated by residual magnetic flux calculation means 6 0 4 A )
  • residual magnetic flux 3 7 to 3 9 or residual magnetic flux 3 7 to 3 9 between transformer wires (between UV, VW and WU) is calculated using residual magnetic flux calculation means 6 0 4 A Therefore, it is obtained by integrating and calculating each phase voltage 1-3.
  • phase range 40 is the input target phase range of the three-phase circuit breaker 20 0.
  • the transformer primary ground voltage is integrated to calculate the residual magnetic flux of each phase iron core, and the residual magnetic flux and the steady magnetic flux of each phase are shown in Fig. 14.
  • Find the range 4 2 (corresponding to range 1 3 in Fig. 2 and range 2 0 and 2 1 in Fig. 4) where the residual magnetic flux and steady-state magnetic polarity of each phase are the same for all three phases. It was shown that if a three-phase circuit breaker 200 is used as the target phase range, a large magnetizing inrush current can be suppressed.
  • the input target phase range 40 set from the magnetic flux between the lines in Fig. 14 Within the range 4 2 '' where the polarities of the residual magnetic flux and the steady magnetic flux are the same for all three phases, and in this target phase range 40, the three-phase circuit breaker 2 0 0 is turned on to excite the transformer 3 0 0 By doing so, a large magnetizing inrush current can be suppressed.
  • Fig. 16 shows the transformer primary voltage when the primary side is Y-connected and the neutral point is ungrounded with a three-phase circuit breaker 200, as shown in Fig. 15. It shows the magnetic flux calculated by integrating the ground voltage, the line voltage, and the magnetic flux calculated by integrating the voltage.
  • the DC voltage 43 is integrated in order to calculate the residual magnetic flux after the interruption, so the residual magnetic flux of each phase 7 ⁇ 9 increases with time and eventually diverges. For this reason, it is clear that the residual flux cannot be calculated accurately by calculating the residual flux by integrating the terminal voltage.
  • the line voltage between UVs is obtained by subtracting the V relative ground voltage from the U relative ground voltage.
  • the ground voltage of each phase of the transformer primary after circuit breaker breaking is the same level of DC voltage. For this reason, the influence of this DC voltage does not appear in the line voltages 31 to 33 calculated by subtracting the primary ground voltage. Integrating such line voltage 3 "! ⁇ 3 3 as shown in Fig. 16 as residual magnetic flux 3 7 ⁇ 3 9 between lines
  • the magnetic flux does not diverge, an accurate residual magnetic flux can be obtained without being affected by the DC voltage 22. Therefore, if the line voltage is integrated to obtain the relationship between the steady magnetic flux and the residual magnetic flux, even if a DC voltage is generated at the neutral point after the transformer is shut off, the circuit breaker is not affected by the DC voltage.
  • the input phase can be determined.
  • the line voltage is the difference between the ground voltages as described above, and the magnetic flux is the product of the voltages. Therefore, even if the ground voltage is converted into line voltage and then integrated to calculate the magnetic flux, or the ground voltage is integrated to calculate the magnetic flux of each phase and the magnetic flux is differentiated, Needless to say, the residual magnetic flux between the lines can be calculated without being affected by the DC voltage at the neutral point.
  • 1 0 1 indicates the power system
  • 1 0 2 indicates the power source side neutral point impedance.
  • there is no impedance at the transformer neutral point but there may be an impedance connected to the transformer neutral point in a non-effective grounding system.
  • the impedance connected to the neutral point is often a resistor having a large value, and even in this case, since a DC voltage appears at the neutral point of the transformer, the same effect can be obtained by the first embodiment.
  • FIG. 17 to FIG. 20 are diagrams for explaining the seventh embodiment.
  • FIG. 17 shows the waveform of FIG. The shape is deleted.
  • Fig. 18 is a connection diagram showing a ⁇ - ⁇ connection three-phase transformer installed in the non-effective grounding system, and
  • Fig. 19 shows a one-phase circuit breaker when the three-phase transformer shown in Fig. 18 is turned on. It is a figure explaining the voltage change of the other phase after putting only.
  • Figure 20 is a waveform diagram showing the relationship among the power supply phase voltage, line voltage, steady magnetic flux, and residual magnetic flux when the three-phase transformer is turned on.
  • connection relationship among the three-phase transformer, the three-phase circuit breaker, and the magnetizing inrush current suppression device is the same as that in the sixth embodiment described above, and therefore a block diagram corresponding to FIG. Is omitted.
  • the steady magnetic flux has the maximum value in the range where the polarities of the steady magnetic flux and the residual magnetic flux coincide between the lines with the largest residual magnetic flux among the lines of the three-phase transformer 300.
  • the closing control device 6 0 0 is set so that the point, that is, the voltage zero point 41 between the lines, becomes the closing target point of the 3-phase circuit breaker 2 0 0.
  • reference numeral 47 denotes a break generation voltage when the circuit breaker 200 is turned on.
  • a pre-discharge called pre-arc occurs before the circuit breaker contacts are mechanically contacted, and the circuit may be turned on electrically.
  • the voltage at which pre-arcing occurs increases as the distance between the contacts increases. Therefore, as shown in Fig. 17, the pre-arcing voltage 47 when the circuit breaker is turned on decreases along the time axis.
  • the voltage generated by such a break shows a variation 48.
  • the setting condition of the closing target point 41 in FIG. 17 indicates that the breaker can be electrically turned on at the peak value of the W-phase breaker interelectrode voltage 4 6.
  • the values of the U-phase and V-phase circuit breaker pole voltages 45, 46, which are the other phases, are 0.5 p.U.
  • the U-phase and V-phase charging times are delayed, and the circuit breaker is not switched on simultaneously for the three phases.
  • FIG. 19 a 3.3 kV_ 4 1 5 V—30 O kVA transformer is illustrated.
  • FIG. 20 is a waveform diagram showing the circuit breaker injection target when the state of the residual magnetic flux is set to a condition different from that in FIG.
  • the residual magnetic flux between UV 3 7 is positive and maximum
  • the residual magnetic flux between VW 3 8 is 0,
  • the residual magnetic flux between WU 3 9 is negative
  • its absolute value is the residual magnetic flux between UV 3 Same condition as 7.
  • the input target point 41 is set by the residual magnetic flux 37 between UV and the steady magnetic flux 34 between UV.
  • the closing target point 4 1 ′ is set by the residual magnetic flux 39 between W U and the steady magnetic flux 36 between W U.
  • the W relative ground voltage 3 has a peak value, which means that the breaker W-phase interpole voltage has a peak value.
  • the V relative ground voltage has a peak value, which means that the voltage between the breaker V-phase poles has a peak value. That is, it is clear that the time difference between the three circuit breaker phases can be reduced as described above, regardless of whether the target points 4 1 and 4 1 ′ are input targets.
  • the seventh embodiment it is possible to reduce the charging variation of each phase when the circuit breaker is turned on, and at this charging target point 41, the three-phase circuit breaker 2 0 0 is turned on to excite the transformer 3 0 0. By doing so, it is possible to suppress a large excitation inrush current from flowing.
  • FIGS. 21 to 22 are diagrams for explaining the eighth embodiment.
  • the connection relationship between the three-phase transformer, the three-phase circuit breaker, and the magnetizing inrush current suppressing device is the same as in the sixth and seventh embodiments described above.
  • the block diagram is omitted. [0106] (Configuration)
  • the primary side line voltage is measured by measuring the ground voltage on the secondary or tertiary ⁇ connection side. It is what.
  • Figure 21 shows the case where the phase sequence relationship between the Y side and the ⁇ side is +30 degrees.
  • the ⁇ side W relative ground voltage 5 6 is opposite to the primary Y side V W line voltage 3 2 in the direction of the vector.
  • the relationship between ⁇ side relative ground voltage 5 5 and Y side U V line voltage 3 1, and ⁇ side re relative ground voltage 5 4 and Y side W U line voltage 3 3 is the same. That is, if the ground voltage on the ⁇ side is measured and the polarity of the voltage is reversed for all three phases, the phase will be the same as the line voltage on the primary Y side.
  • the DC voltage (4 3 in Fig. 16) that appears at the neutral point after the transformer is shut off is a zero-phase voltage, and it is clear from the symmetric coordinate method that it does not affect the ⁇ side. is there. Therefore, by measuring and integrating the ⁇ side ground voltage, the same result as that obtained by integrating the primary Y side line voltage and calculating the magnetic flux was obtained, as shown in Fig. 14, Fig. 17, and Fig. 20.
  • the target point 41 can be set as follows.
  • Fig. 21 shows the force when the phase order relationship between the Y side and the ⁇ side is +30 degrees. The same effect is obtained when the phase order relation is 130 degrees as shown in Fig. 22. It goes without saying that you can get it.
  • the heel side relative ground voltage 5 5 is the vector with the primary Y side UV line voltage 3 1 Are in the same direction.
  • the relationship between ⁇ side U relative ground voltage 5 4 and Y side W U line voltage 3 3 and ⁇ side W relative ground voltage 5 6 and Y side VW line voltage 3 2 are also the same. Therefore, if the ground voltage on the ⁇ side is measured and the voltage is the same polarity for all three phases, the phase will be the same as the line voltage on the primary Y side.
  • the eighth embodiment even when no voltage divider is installed on the primary side of the transformer, it is possible to calculate the magnetic flux between each line on the primary side and to set the circuit breaker input target. Therefore, it is possible to suppress a large excitation inrush current from flowing.
  • the DC voltage 4 3 appearing in the transformer primary ground voltage shown in Fig. 6 is a zero-phase voltage, so add the three-phase ground voltage, and then reduce it to one third to obtain the original ground voltage. By subtracting from the voltage, the DC voltage of the ground voltage can be made zero. Needless to say, if the magnetic flux is calculated and the breaker input target is set, a large magnetizing inrush current can be suppressed without the influence of the DC voltage appearing at the neutral point.
  • FIGS. 23 to 24 are diagrams for explaining the ninth embodiment.
  • FIG. 23 is a block diagram showing a connection relationship among the three-phase transformer, the three-phase circuit breaker, and the magnetizing inrush current suppressing device.
  • Figure 24 shows the connection of three single-phase transformers to Y connection _ ⁇ connection, and the residual magnetic flux between the lines when the transformer for the three phases is interrupted with a circuit breaker. It is a figure which shows the example calculated
  • Fig. 23 the power system configuration is the same as in Fig. 13. However, the difference from Fig. 13 is that the secondary winding 3 0 2 of transformer 3 0 0 is ⁇ -connected, and When the transformer terminal voltage measurement device 5 0 0 is not installed in the primary side terminal, secondary side terminal, or tertiary side terminal in the normal operation state of 300, Transformer terminal voltage measuring device for temporary connection 5 0 0 A is connected and its output voltage is input. ⁇ Opening control device 6 0 0 A voltage measurement means 6 0 3 is there. As a modification, a transformer terminal voltage measuring device 50 O A may be connected to the secondary or tertiary terminal.
  • This closing / opening control device 6 0 0 A is provided in place of the closing control device 6 0 0 of the sixth embodiment, and the power supply voltage measuring means 6 0 1 to the closing command output means 6 0
  • the components up to 6 are the same as those of the closing control device 6 0 0 of the embodiment 6, but the breaking phase ⁇ remaining magnetic flux relation measurement holding means 6 0 7, opening phase control means 6 0 8 and opening command Addition of output means 6 0 9 makes it possible to input the fourth embodiment.
  • Opening control device The configuration is in accordance with 6 0 0 A.
  • the opening control device 6 0 0 A of the ninth embodiment is the same as the closing control device 6 0 OA of the fourth embodiment.
  • a steady magnetic flux calculation means 6 0 2 A for calculating the magnetic flux in the steady state between the lines
  • a residual magnetic flux calculation means 6 for calculating the residual magnetic flux for each phase 6
  • a residual magnetic flux calculating means 6 0 4 A for calculating the residual magnetic flux between the lines is provided.
  • FIG. 5 is a diagram in which the residual magnetic flux between lines when 0 0 is interrupted by a circuit breaker 2 0 0 is obtained by calculation while changing the interruption phase.
  • transformer terminal voltage measuring device 5 0 can be connected to any of the primary side terminal, the secondary side terminal, or the tertiary terminal.
  • transformer terminal voltage measuring device 5 0 Break off circuit breaker 2 0 0 at least once (generally multiple times) with OA temporarily connected. Measure the characteristics of the residual magnetic flux between each transformer line in advance with respect to the breaking phase of the corresponding breaker.
  • the transformer terminal voltage measuring device 5 0 O A is connected to measure the characteristics of the residual magnetic flux between the lines corresponding to Fig. 24, and removed in the normal operation state.
  • a transformer terminal voltage measuring device 50 O A may be permanently installed. Since it is only necessary to obtain the relationship between the interrupting phase and the residual magnetic flux, it is not always necessary to measure the residual magnetic flux characteristics in detail as shown in Fig. 24.
  • the opening command output means 6 0 9 controls the opening phase of the circuit breaker so that the interruption phase is always the same. Shut off. This makes it possible to estimate the residual magnetic flux between each line from the characteristics of the residual magnetic flux corresponding to Fig. 24 measured in advance.
  • the circuit conditions of the power system in the case of Fig. 2 3, from the power system 1 0 0 to the transformer 3 0 0 Since the circuit conditions are always the same, if the phase when the breaker 2 0 breaks is always the same, the residual magnetic flux between the transformers 3 0 0 should always be the same. .
  • the information on the residual magnetic flux after the circuit breaker shuts off the transformer has been clarified in advance by the measurement that temporarily connected the voltage measuring device, so even if the transformer terminal voltage cannot be measured every time the circuit breaker is turned on, The relationship between the residual magnetic flux and the steady magnetic flux can be obtained, and by applying the phase detection method of Embodiments 6 to 8 described above, when the transformer 300 is turned on with the circuit breaker 200 A large excitation inrush current can be suppressed.
  • the steady magnetic flux of the transformer that is, the magnetic flux when a voltage is applied to the transformer in a steady state, is also obtained by integrating the voltage measured by the power supply voltage measuring device installed on the bus or the like. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Protection Of Transformers (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)
  • Transformers For Measuring Instruments (AREA)

Description

明 細 書
変圧器の励磁突入電流抑制装置および方法
技術分野
[0001] 本発明は、 変圧器を電源に投入する際に生じる励磁突入電流を抑制するた めの励磁突入電流抑制装置および方法に関する。
背景技術
[0002] 変圧器鉄心に残留磁束がある状態で電源投入により無負荷励磁を行うと、 大きな励磁突入電流が流れる。 この励磁突入電流の大きさは変圧器の定格負 荷電流の数倍になることが一般に知られている。
このように大きな励磁突入電流が流れると、 系統電圧が変動し、 その電圧 変動が大きい場合需要者に影響を与えることがある。
[0003] 従来、 励磁突入電流を抑制する方法として、 投入抵抗と接点とを直列に接 続してなる抵抗体付き遮断器を、 遮断器主接点のいずれかと並列接続し、 当 該抵抗体付き遮断器を遮断器主接点に先行して投入するようにした励磁突入 電流抑制方法が知られている (例えば特許文献 1を参照) 。
[0004] また、 他の抑制方法として、 直接接地系の 3相変圧器を 3台の単相型遮断 器で投入する際、 任意の 1相を先行投入し、 その後に残りの 2相を投入させ るようにして励磁突入電流を抑制する方法も既に知られているところである
(例えば、 非特許文献 1を参照) 。
特許文献 1 :特開 2002-751 45 「励磁突入電流抑制装置付きガス遮断 器」
非特許文献 1 : IEEE Trans. Vol. 1 6、 No. 2 2001 "El i mi nation of Tra nsformer Inrush Currents by Controlled Switching -Part に Theoretical Considerations"
発明の開示
発明が解決しょうとする課題
[0005] 上述の特許文献 1に記載されている抵抗体付き遮断器による励磁突入電流 抑制方法では、 通常の遮断器に対して抵抗体付き遮断器を特別に付加する必 要があるため、 遮断器全体としてみた場合、 大型化は否めない。
[0006] また、 周知のように遮断器には、 一つの操作機構で 3相の遮断器の投入 - 開極動作を同時に操作するようにした 3相一括操作型遮断器が存在するが、 この 3相一括操作型遮断器は、 非特許文献 1に記載されている励磁突入電流 抑制方法に適用できないという欠点がある。
[0007] 一方、 上述の非特許文献 1に記載されているように、 変圧器投入時の励磁 突入電流抑制に際しては、 変圧器を遮断したときの残留磁束の大きさを把握 しておくことが重要である。
[0008] 非有効接地系に設置された無負荷変圧器に流れる励磁電流を遮断器がその 零点で遮断するときには、 第 1相遮断後に零相電圧が発生し、 第 2、 3相遮 断後、 その零相電圧が直流電圧となって変圧器に残留する。 そのため、 遮断 器で遮断する側の変圧器各端子の対地電圧を電圧測定装置によって測定して いる場合には、 遮断後に上述の直流電圧が計測されることになる。
[0009] 変圧器鉄心の残留磁束は電圧を積分することで求められる。 例えば、 Y結 線の場合には、 各端子と中性点との間の電圧を測定してそれを積分すれば、 上記の直流電圧の影響を受けずに変圧器鉄心の残留磁束を正確に算出するこ とができる。
[0010] しかし、 一般に、 計器用変圧器 (V T , P T ) やコンデンサ形計器用変圧 器 (P D ) といった高電圧を低電圧に分圧して電圧を測定する電圧測定装置 は、 変圧器各端子と大地間に接続される。 このような電圧測定装置によって 測定できるのは、 変圧器各端子の対地電圧であり、 その電圧を積分すると、 上記の直流電圧を含んで積分することになり、 積分値が発散してしまうため 、 正確な残留磁束が求められない。
[001 1 ] 本発明は、 以上述べた従来技術に鑑みなされたものであり、 その目的は、 電力系統に設置された変圧器を遮断器で遮断したときの残留磁束を正確に算 出し、 3相分の変圧器を単相型遮断器 3台で電源に同時投入した際、 もしく は 3相一括操作型遮断器で投入した際に生じる励磁突入電流を、 抵抗体付き 遮断器等の設備を付加せずに抑制することを可能にした変圧器の励磁突入電 流抑制装置および方法を提供することにある。
課題を解決するための手段
[0012] 上記の目的を達成するために、 請求項 1に係る発明は、 1次巻線が Y結線 に接続され、 かつ、 2次巻線または 3次巻線が Δ結線された 3相の変圧器の 各相端子を 3相遮断器により 3相電源に投入して励磁開始時に発生する励磁 突入電流を抑制するようにした変圧器の励磁突入電流抑制方法において、 前 記変圧器に 3相交流電圧が定常状態で印加されたときの 1次側もしくは 2次 側または 3次側の相電圧もしくは線間電圧を積分することにより変圧器各相 の定常磁束を算出し、 前記遮断器が変圧器を遮断した後の当該変圧器各相の 残留磁束の極性および大きさを算出し、 前記変圧器各相の定常磁束の極性と 、 前記各相の残留磁束の極性が同一となる位相が 3相分重なる範囲内にある とき、 前記 3相の遮断器を同時に投入させることを特徴とする。
[0013] また、 請求項 7に係る発明は、 1次巻線が Y結線に接続され、 かつ、 2次 巻線または 3次巻線が Δ結線された 3相の変圧器の各相端子を 3相遮断器に より 3相電源に投入して励磁開始時に発生する励磁突入電流を抑制するよう にした変圧器の励磁突入電流抑制方法において、 前記遮断器を少なくとも 1 回以上開放操作し、 そのときに変圧器 1次もしくは 2次または 3次端子に接 続した電圧計測用機器によつて測定した電圧から、 遮断器の遮断位相と変圧 器の残留磁束の関係をあらかじめ計測しておき、 遮断器が変圧器を遮断する ときは、 常に同じ遮断位相となるように遮断器の開極位相を制御して遮断す ることにより、 前記の関係から変圧器の残留磁束を推定し、 その後に変圧器 を投入させるときは、 変圧器に 3相交流電圧が定常状態で印加されたときの 各相の定常磁束の極性と、 前記推定された各相の残留磁束の極性が同一とな る位相が 3相分重なる範囲内で 3相の遮断器を同時に投入させることを特徴 とする。
[0014] また、 請求項 1 8乃至請求項 2 1に係る発明は、 1次巻線が Y結線に接続 され、 かつ、 2次巻線または 3次巻線が Δ結線された 3相の変圧器の各相端 子を 3相遮断器により 3相電源に投入して励磁開始時に発生する励磁突入電 流を抑制するようにした変圧器の励磁突入電流抑制方法において、 前記変圧 器に 3相交流電圧が定常状態で印加されたときの電圧を測定して線間の定常 磁束を求め、 前記遮断器が変圧器を遮断した後の当該変圧器各線間の残留磁 束の極性および大きさを算出し、 前記変圧器各線間の定常磁束の極性と、 前 記各線間の残留磁束の極性が同一となる位相が 3相分重なる範囲内にあると き、 前記 3相の遮断器を同時に投入させることを特徴とする。 そして、 請求 項 1 8〜請求項 2 1は、 電圧を測定して線間の定常磁束を求める手法として 、 それぞれ次のような異なる手法を採用している。 請求項 1 8では、 1次側 の相電圧を測定して線間電圧に変換し、 その線間電圧を積分して線間の定常 磁束を算出する。 請求項 1 9では、 1次側の相電圧を測定して積分すること により変圧器各端子の定常磁束を算出し、 その変圧器各端子の定常磁束を線 間の定常磁束に変換する。 請求項 2 0では、 1次側の線間電圧を測定して積 分することにより変圧器各線間の定常磁束を算出する。 請求項 2 1では、 △ 結線された 2次巻線または 3次巻線の 3相対地電圧を測定して積分すること により変圧器各線間の定常磁束を算出する。
また、 請求項 2 4に係る発明は、 1次巻線が Y結線に接続され、 かつ、 2 次巻線または 3次巻線が Δ結線された 3相の変圧器の各相端子を 3相遮断器 により 3相電源に投入して励磁開始時に発生する励磁突入電流を抑制するよ うにした変圧器の励磁突入電流抑制方法において、 前記遮断器を少なくとも 1回以上開放操作し、 そのときに変圧器 1次もしくは 2次または 3次端子に 接続した電圧計測用機器によつて測定した電圧から、 遮断器の遮断位相と変 圧器の残留磁束の関係をあらかじめ計測しておき、 遮断器が変圧器を遮断す るときは、 常に同じ遮断位相となるように遮断器の開極位相を制御して遮断 することにより、 前記の関係から変圧器の残留磁束を推定し、 その後に変圧 器を投入させるときは、 変圧器に 3相交流電圧が定常状態で印加されたとき の各線間の定常磁束の極性と、 前記推定された各線間の残留磁束の極性が同 一となる位相が 3相分重なる範囲内で 3相の遮断器を同時に投入させること を特徴とする。
発明の効果
[0016] 本発明によれば、 電力系統に設置された変圧器を遮断器で遮断したときの 残留磁束を正確に算出し、 3相分の変圧器を単相型遮断器 3台で電源に同時 投入した際、 もしくは 3相一括操作型遮断器で投入した際に生じる励磁突入 電流を、 抵抗体付き遮断器等の設備を付加せずに抑制することを可能にした 変圧器の励磁突入電流抑制装置および方法を提供することができる。
図面の簡単な説明
[0017] [図 1 ]本発明の実施の形態 1における 3相変圧器、 3相遮断器および励磁突入 電流抑制装置の接続関係を示すプロック図。
[図 2]本発明の実施の形態 1における 3相の電源相電圧と 3相変圧器の定常磁 束および変圧器鉄心の残留磁束の関係を示す波形図。
[図 3]単相変圧器を単相の遮断器で投入するときの残留磁束と投入位相および 投入後の磁束を示す波形図。
[図 4]電源相電圧と変圧器の定常磁束および変圧器鉄心の残留磁束の関係が図 1 とは異なる場合の波形図。
[図 5]本発明の実施の形態 2における 3相変圧器投入時の相電圧および定常磁 束、 残留磁束の関係を示す波形図。
[図 6]本発明の実施の形態 2における 3相変圧器投入時の相電圧および定常磁 束、 残留磁束の関係を示す波形図。
[図 7]本発明の実施の形態 2における 3相変圧器投入時の相電圧および定常磁 束、 残留磁束の関係を示す波形図。
[図 8]本発明の実施の形態 3における 3相変圧器投入時の相電圧および定常磁 束、 残留磁束の関係を示す波形図。
[図 9]本発明の実施の形態 3における 3相変圧器投入時の相電圧および定常磁 束、 残留磁束の関係を示す波形図。
[図 10]本発明の実施の形態 3における 3相変圧器投入時の相電圧および定常 磁束、 残留磁束の関係を示す波形図。 [図 1 1 ]本発明の実施の形態 4における 3相変圧器、 3相遮断器および励磁突 入電流抑制装置の接続関係を示すプロック図。
[図 12]本発明の実施の形態 4における単相変圧器 3台を Y結線 _△結線に接 続し、 遮断器で遮断したときの遮断位相と各相の残留磁束の計算結果例を示 す図。
[図 13]本発明の実施の形態 6における 3相変圧器、 3相遮断器および励磁突 入電流抑制装置の接続関係を示すプロック図。
[図 14]本発明の実施の形態 6における 3相の電源相電圧と 3相変圧器の定常 磁束、 変圧器鉄心の残留磁束、 線間電圧と線間の定常磁束、 および線間の残 留磁束の関係を示す波形図。
[図 15]本発明の実施の形態 6における非有効接地系に設置された Υ _ Δ結線 の 3相変圧器を示す結線図。
[図 16]本発明の実施の形態 6における図 1 5の 3相変圧器を遮断した後に変 圧器中性点に直流電圧が発生することを示す波形図。
[図 17]本発明の実施の形態 7における投入目標設定を示す波形図。
[図 18]本発明の実施の形態 7における非有効接地系に設置された Υ _ Δ結線 の 3相変圧器を示す結線図。
[図 19]本発明の実施の形態 7における図 1 8の 3相変圧器において、 1相だ け遮断器を投入したときの他相の電圧変化を説明する波形図。
[図 20]本発明の実施の形態 7における 3相の電源相電圧と 3相変圧器の定常 磁束、 変圧器鉄心の残留磁束、 線間電圧と線間の定常磁束、 および線間の残 留磁束の関係を示す波形図。
[図 21 ]本発明の実施の形態 8における 3相変圧器 1次 Υ側の相電圧と線間電 圧、 および 2次もしくは 3次 Δ側の対地電圧と線間電圧の関係を示す波形図
[図 22]本発明の実施の形態 8における 3相変圧器 1次 Υ側の相電圧と線間電 圧、 および 2次もしくは 3次△側の対地電圧と線間電圧の関係を、 図 2 1 と は異なる相順関係で示す波形図。 [図 23]本発明の実施の形態 9における 3相変圧器、 3相遮断器および励磁突 入電流抑制装置の接続関係を示すプロック図。
[図 24]本発明の実施の形態 9における単相変圧器 3台を Y結線— Δ結線に接 続し、 遮断器で遮断したときの遮断位相と各線間の残留磁束の計算結果例を 示す図。
符号の説明
1〜3…電源相電圧 (U相、 V相、 W相) 、 4〜 6…変圧器各相の定常磁束 (U相、 V相、 W相) 、 7〜9…変圧器各相鉄心の残留磁束 (U相、 V相、 W相) 、 1 0〜1 2…各相の残留磁束と定常磁束の極性が一致する範囲 (U 相、 V相、 W相) 、 1 3、 20〜 21…各相の残留磁束と定常磁束の極性が 3相とも一致する範囲 (投入目標位相範囲) 、 22〜23…遮断器投入目標 点、 31〜33…線間電圧 (UV間、 VW間、 WU間) 、 34〜36…線間 の定常磁束 (UV間、 VW間、 WU間) 、 37〜39…線間の残留磁束 (U V間、 VW間、 WU間) 、 40…各線間の定常磁束と残留磁束の極性が 3線 間で一致する範囲 (投入目標位相範囲) 、 41…遮断器投入目標点、 42··· 各相の残留磁束と定常磁束の極性が 3相とも一致する範囲、 43…直流電圧 、 44〜46…遮断器極間電圧 (U相、 V相、 W相) 、 51〜53…変圧器 Δ側線間電圧 ( U V間、 V W間、 W U間) 、 54〜 56■■ '変圧器△側各相対 地電圧 (U相、 V相、 W相) 、 57〜59…遮断位相を変えたときの線間の 残留磁束 (UV間、 VW間、 WU間) 、 1 00…電力系統、 200— 3相遮 断器、 300— 3相変圧器、 400…電圧計測機器、 500…変圧器端子電 圧計測用機器、 500 A…仮接続用の変圧器端子電圧計測用機器 500 A、 600…投入制御装置、 600 A…投入■開極制御装置、 601…電源電圧 計測手段、 602…各相の定常磁束算出手段、 602 A…線間の定常磁束算 出手段、 603…変圧器端子電圧計測手段、 604…各相の残留磁束算出手 段、 604 A…線間の残留磁束算出手段、 605…位相検出手段、 606— 投入指令出力手段、 607…遮断位相■残留磁束関係計測保持手段、 608 …開極位相制御手段、 609…開極指令出力手段。 発明を実施するための最良の形態
[001 9] 以下、 本発明の実施の形態について図面を参照して説明する。 なお、 各図 を通して同一部分には同一符号を付けることにより重複した説明は適宜省略 する。
(実施の形態 1 )
図 1乃至図 4は、 本実施の形態 1を説明するための図であり、 特に、 図 1 は 3相変圧器、 3相遮断器および励磁突入電流抑制装置の接続関係を示すブ ロック図、 図 2は電源相電圧と変圧器の定常磁束および変圧器鉄心の残留磁 束の関係を示す波形図、 図 3は単相変圧器を単相の遮断器で投入するときの 残留磁束と投入位相および投入後の磁束を示す波形図、 図 4は電源相電圧と 変圧器の定常磁束および変圧器鉄心の残留磁束の関係が図 1 とは異なる場合 の波形図である。
[0020] (構成)
図 1において、 1 0 0は電力系統の母線 (電源母線ともいう) 、 2 0 0は 各相の主接点が一括操作される 3相一括操作型遮断器 (3相遮断器) である 。 3 0 0は 3相遮断器 2 0 0によって電源母線 1 0 0に投入または遮断され る 3相変圧器であり、 その 1次巻線 3 0 1および 2次巻線 3 0 2は Y結線さ れ、 3次巻線 3 0 3は△結線されている。 Z n 1、 Z n 2はそれぞれ 1次巻 線 3 0 1、 2次巻線 3 0 2の中性点を接地するためのインピーダンスである 。 なお、 変形例として、 3相遮断器 2 0 0を 3相各相の単相型遮断器とし、 各相の単相型遮断器を 3相同時に投入または遮断操作しても良いことは言う までもない。
[0021 ] 4 0 0は前記電源母線 1 0 0の各相 (U、 V、 W) 電圧を計測するための V T等で構成された電源電圧計測用機器、 5 0 0は 3相変圧器 3 0 0の 1次 側各相 (U、 V、 W) 端子電圧を計測するための V T等で構成された変圧器 端子電圧計測用機器、 そして、 6 0 0は遮断器 2 0 0の主接点に対して投入 指令を出力する投入制御装置であり、 励磁突入電流抑制装置を構成している [0022] 投入制御装置 6 0 0において、 6 0 1は V T等の電源電圧計測用機器 4 0 0から出力された各相 (U、 V、 W相) の電源電圧を取り込んで計測する電 源電圧計測手段、 6 0 2はこの電源電圧計測手段 6 0 1で計測された各相電 圧をそれぞれ積分することにより各相ごとの定常時の磁束を算出する定常磁 束算出手段である。
[0023] —方、 6 0 3は変圧器端子電圧計測用機器 5 0 0から出力された各相 (U 、 V、 W相) の変圧器端子電圧を取り込んで計測する変圧器端子電圧計測手 段、 6 0 4はこの変圧器端子電圧計測手段 6 0 3で計測された各相電圧をそ れぞれ積分することにより変圧器の鉄心の残留磁束を各相毎に算出する残留 磁束算出手段である。
[0024] 6 0 5は各相 (U、 V、 W相) 毎に前記定常磁束算出手段 6 0 2の出力信 号および定常磁束算出手段 6 0 4の出力信号を入力し、 定常磁束と、 変圧器 鉄心の残留磁束とが同一極性になる位相を検出する位相検出手段である。 6 0 6は、 この位相検出手段 6 0 5の出力信号を 3相分入力し、 3相分の論理 積が成立する範囲で遮断器 2 0 0の主接点が電気的に投入されるように、 遮 断器 2 0 0の主接点を駆動する操作機構に対して投入指令を出力する投入指 令出力手段である。
[0025] (作用)
図 2において、 1〜3は、 電源電圧計測手段 6 0 1によって計測された電 源各相 (U、 V、 W相) 電圧である。 4〜 6は変圧器に定常状態で 3相電圧 が印加されたとき、 前記電源電圧計測手段 6 0 1によって計測された電圧を 定常磁束算出手段 6 0 2で積分して算出された変圧器各相 (U、 V、 W相) 鉄心の定常磁束である。 そして、 7〜 9は変圧器端子電圧計測手段 6 0 3に よって計測された電圧を残留磁束算出手段 6 0 4で積分して算出された変圧 器各相 (U、 V、 W相) 鉄心の残留磁束である。
[0026] なお、 図示の例では、 変圧器 U相鉄心の残留磁束 7が正極性で最大の残留 磁束、 V相鉄心の残留磁束 8および W相鉄心の残留磁束 9が負極性でかつそ れぞれ異なる値の状態を示している。 [0027] 図 2から明らかなように、 U相で鉄心の残留磁束 7と定常磁束 4との極性 がー致するのは 1 0に示す位相範囲である。 同様に、 V相で鉄心の残留磁束 8と定常磁束 5との極性が一致するのは 1 1の範囲であり、 W相で鉄心の残 留磁束 9と定常磁束 6との極性が一致するのは 1 2の範囲である。 これら残 留磁束と定常磁束との極性が一致する位相範囲 1 0、 1 1および 1 2はそれ ぞれ位相検出手段 6 0 5により検出される。 そして、 これらの位相範囲 1 0 〜1 2のうち、 3相とも定常磁束と残留磁束との極性が一致する位相範囲は 1 3に示す範囲であり、 位相範囲 1 0、 1 1および 1 2のアンド条件すなわ ち、 各相毎の位相検出手段 6 0 5から出力された信号の論理積で求まる。 こ の位相範囲 1 3は 3相遮断器 2 0 0の投入目標位相範囲である。
[0028] (効果)
図 3は単相変圧器を単相の遮断器で投入するときの残留磁束と投入位相お よび投入後の磁束を示す波形図である。 1 5は電源電圧 1 4が定常的に変圧 器に印加されたときの定常磁束を示している。 前述したように磁束は電圧を 積分したものであるから、 その位相は電圧の位相から位相が 9 0 ° 遅れてい る。
[0029] 変圧器の残留磁束が 0の場合、 図 3において、 — 1 8 0 ° の位相で遮断器 が投入すると、 変圧器の磁束は 1 6となる。 このとき磁束 1 6は、 位相 0 ° において最大となり、 その値は 2 p. u.となる。 すなわちこの投入位相は変圧 器の残留磁束が 0のときに励磁突入電流が最大に流れる条件である。
[0030] また、 変圧器に残留磁束 1 7がある場合、 位相— 1 8 0 ° で遮断器が投入 すると、 磁束は 1 8となり、 その最大値は 2 p. u. +残留磁束 1 7の大きさと なる。 磁束 1 8と磁束 1 6との最大値の差は残留磁束 1 7相当分であるが、 変圧器の鉄心の電流一磁束の特性は飽和特性であり、 残留磁束 0で一 1 8 0 ° の位相で投入したとき磁束 1 6の条件に比べて、 磁束 1 8の条件では、 励 磁突入電流の大きさは残留磁束 1 7の差以上に著しく大きくなる。
[0031 ] —方、 1 9は残留磁束が 1 7のときに、 位相一 9 0 ° で投入したときの磁 束である。 この場合の磁束の最大値は 1 P. U. +残留磁束 1 7の大きさである 。 すなわち残留磁束 1 7と定常磁束 1 5が同じ極性となる位相範囲一 9 0 ° 〜 9 0 ° で遮断器 2 0 0を投入すれば、 投入後の磁束の最大値は少なくとも 2 p. u.より小さくなり、 磁束 1 6よりも大きくなることは無い。 従って、 残 留磁束 1 7と定常磁束 1 5が同じ極性となる位相範囲で遮断器 2 0 0を投入 すれば、 励磁突入電流の大きさは、 残留磁束 1 7があっても、 残留磁束 0に おいて遮断器 2 0 0を投入したときに流れる最大の励磁突入電流よりも小さ くすることができる。
[0032] 一般に電力系統に用いられる 3相変圧器では、 2次もしくは 3次巻線が△ 結線されており、 図 1の例では 3次巻線が Δ結線されている。 3相変圧器 3 0 0を遮断器 2 0 0で遮断した後の各相分の残留磁束の総和は、 2次もしく は 3次巻線が厶結線されていることによって必ず 0となる。 従って、 3相変 圧器のある 1相の残留磁束が例えば正極性で最大の場合、 他の 2相の残留磁 束はともに負極性の値となるか、 もしくは 1相が負極性で最大、 残りの 1相 は 0となる。
[0033] 図 2は、 3相変圧器における前記の残留磁束の関係すなわち 3相の残留磁 束の総和が 0で、 U相の残留磁束が正極性で最大、 他の 2相の残留磁束がと もに負極性の値となっている状態としている。
[0034] U相において、 残留磁束 7と定常磁束 4が同極性となるのは 1 0の範囲で ある。 従って、 位相範囲 1 0において遮断器 2 0 0が投入すれば、 少なくと も U相の励磁突入電流は、 残留磁束 0における最大の励磁突入電流よりも小 さくすることができる。
[0035] 3相変圧器 3 0 0の定常磁束 4、 5、 6は 1 2 0 ° ずつ位相がずれている 。 このため、 U相の残留磁束 7と定常磁束 4とが同極性となる位相範囲 1 0 において、 遮断器を 3相同時に投入した場合、 他の V、 W相の励磁突入電流 は必ずしも小さくなるとは限らない。
[0036] し力、し、 前述したように 3相の残留磁束の関係から、 図 2に示したように 、 V、 W相の残留磁束は負の値となっている。 このとき、 V相については、 残留磁束 8と定常磁束 5とが同極性となるのは位相範囲 1 1である。 同様に W相については、 残留磁束 9と定常磁束 6とが同極性となるのは位相範囲 1 2となる。
[0037] ここで、 位相範囲 1 3において、 U相の残留磁束 7と定常磁束 4が同極性 となる位相範囲 1 0、 V相の残留磁束 8と定常磁束 5が同極性となる位相範 囲 1 1および W相の残留磁束 9と定常磁束 6が同極性となる位相範囲 1 2の 全てが重なっている。 従って、 位相範囲 1 3内で遮断器を 3相同時に投入さ せれば、 3相とも励磁突入電流を抑制することができる。
[0038] 図 4は 1相の残留磁束が 0で他の 2相が正極性および負極性の最大となつ た条件を想定している。 残留磁束 9の値が 0の相を W相としている。 W相の 残留磁束 9は値が 0のため、 定常磁束 6と残留磁束 9とが同極性となる位相 を _ 1 8 0 ° 〜0 ° としても、 0 ° 〜1 8 0 ° としても良い。
[0039] この場合でも、 3相の残留磁束と定常磁束がすべて同極性となる位相範囲 が 2 0もしくは 2 1 となる。 従って、 位相範囲 2 0もしくは 2 1内において 遮断器 2 0 0を 3相同時に投入させれば、 3相とも励磁突入電流を抑制でき る。
[0040] 前述した通り、 電力系統に用しゝられる 3相変圧器は 2次もしくは 3次巻線 が△結線されるため、 3相変圧器 3 0 0を遮断器 2 0 0で遮断した後の各相 の残留磁束は△結線によって、 その総和が必ず 0となる。 これは 1次側 Y結 線の中性点の接地方式には影響されない。 従って、 有効接地系に設置された 3相変圧器においても、 非有効接地系に設置された 3相変圧器においても、 前記の投入位相範囲 1 3を設定することができ、 3相一括操作型遮断器 2 0 0で、 もしくは 3相各相の単相型遮断器の同時操作で変圧器 3 0 0を投入す るときに前記の投入位相制御方法で励磁突入電流を抑制することができるこ とは言うまでもない。
[0041 ] 遮断器 2 0 0の投入において、 主接点間に発生するプレアークと呼ばれる 先行放電や、 操作機構の動作ばらつきなどに起因する投入時間のばらつきが 存在する。 前記プレアークによる投入ばらつきや、 遮断器投入時のばらつき は、 あらかじめその特性を取得しておくことにより、 位相制御を行う制御装 置で補正することが可能であり、 これらのばらつきがあっても、 遮断器 2 0 0の投入を図 2における投入目標位相範囲 1 3内もしくは図 4における投入 目標位相範囲 2 0、 2 1内とすることが可能であることは言うまでもない。
[0042] (実施の形態 2 )
図 5乃至図 7は、 本実施の形態 2を説明するための図であり、 図 5乃至図 7は、 3相変圧器投入時の相電圧および定常磁束、 残留磁束の関係を示す波 形図であり、 残留磁束の残り方がそれぞれ異なる場合を想定して示している 。 なお、 本実施の形態 2では、 3相変圧器、 3相遮断器および励磁突入電流 抑制装置の接続関係は前述の実施の形態 1の場合と同じであるため、 図 1相 当のブロック図は省略する。
[0043] (構成)
本実施の形態 2は、 3相変圧器 3 0 0の各相の中で残留磁束の最も小さな 相において、 定常磁束と残留磁束の交点 2 2を 3相遮断器 2 0 0の投入目標 点とするように投入制御装置 6 0 0を設定したものである。
[0044] (作用)
図 5は 3相変圧器の各相の残留磁束の和が 0の条件のもと、 U相の残留磁 束 7が正極性で最大であり、 V、 W相の残留磁束 8、 9がともに負極性で異 なる値で、 残留磁束 8 >残留磁束 9の関係にあるため、 W相が残留磁束の最 も小さな相である。 従って、 図 5の場合は W相における定常磁束 6と残留磁 束 9の交点 2 2を遮断器投入目標点として 3相遮断器 2 0 0の投入目標点を 設定する。
[0045] 図 6は U、 V相残留磁束をそれぞれ正極性、 負極性で最大、 W相を 0とし た場合である。 この場合も、 W相が残留磁束の最も小さな相であり、 W相に おける定常磁束 6と残留磁束 9の交点 2 2を遮断器投入目標点として 3相遮 断器 2 0 0の投入目標点を設定する。
[0046] 図 7は V、 W相の残留磁束 8、 9が U相残留磁束 7の 1 / 2を想定した場 合である。 なお、 図 7では V相の残留磁束 8と、 W相の残留磁束 9とを区別 して明示するため、 意識的に両残留磁束が重ならないように描いている。 こ の図 7の場合も W相における定常磁束 6と残留磁束 9の交点 2 2を遮断器投 入目標点として 3相遮断器 2 0 0の投入目標点を設定する。
[0047] 図 5乃至図 7から明らかなように、 遮断器投入目標点 2 2は図 2に示した 投入目標位相範囲 1 3 ( _ 3 0 ° 〜3 0 ° ) に入っており、 3相とも各相の 残留磁束と定常磁束との差が小さくなる。
[0048] (効果)
本実施の形態 2によれば、 各相の定常磁束と残留磁束との差を小さくでき 、 この投入目標点 2 2において 3相の遮断器 2 0 0を投入させて変圧器 3 0 0を励磁させれば、 大きな励磁突入電流が流れるのを抑制できる。
[0049] (実施の形態 3 )
図 8乃至図 1 0は、 本実施の形態 3を説明するための図である。 特に、 図 8乃至図 1 0は、 3相変圧器投入時の相電圧および定常磁束、 残留磁束の関 係を示す波形図であり、 残留磁束の残り方がそれぞれ異なる場合を想定して 示している。 なお、 本実施の形態 3では、 3相変圧器、 3相遮断器および励 磁突入電流抑制装置の接続関係は前述の実施の形態 1、 2の場合と同じであ るため、 図 1相当のブロック図は省略する。
[0050] (構成)
本実施の形態 3は、 3相変圧器投入時の残留磁束の最も大きな相において 、 定常磁束が波高値にあるとき、 すなわち定常磁束よりも 9 0 ° 進んでいる 相電圧の 0点を 3相遮断器 2 0 0の投入目標点とするように投入制御装置 6 0 0を設定したものである。 なお、 図 8乃至図 1 0の残留磁束の様相は図 5 乃至図 7と同一である。
[0051 ] (作用)
図 8は 3相変圧器各相の残留磁束の和が 0の条件のもと、 U相の残留磁束 7が正極性で最大であり、 V、 W相の残留磁束 8、 9がともに負極性で異な る値であり、 残留磁束 7 >残留磁束 8 >残留磁束 9の関係にあるため、 U相 が残留磁束の最も大きい相である。 従って、 図 8の場合は U相における定常 磁束 4の波高値を遮断器投入目標点 2 3として 3相遮断器 2 0 0の投入目標 点を設定する。
[0052] 図 9の場合は U、 V相残留磁束をそれぞれ正極性、 負極性で最大、 W相を 0とした場合である。 この場合も、 U相が残留磁束の最も大きな相であり、 U相における定常磁束 4の波高値を遮断器投入目標点 2 3として 3相遮断器 2 0 0の投入目標点を設定する。
[0053] 図 1 0は V、 W相の残留磁束 8、 9が U相残留磁束 7の 1 / 2を想定した 場合である。 なお、 図 1 0では V相の残留磁束 8と、 W相の残留磁束 9と見 やすくするため、 意識的に両残留磁束が重ならないように描いている。 この 図 1 0の場合も U相における定常磁束 4の波高値を遮断器投入目標点 2 3と して 3相遮断器 2 0 0の投入目標点を設定する。
[0054] 図 8乃至図 1 0から明らかなように、 遮断器投入目標点 2 3では、 図 2に 示した投入目標位相範囲 1 3に入っており、 3相とも各相の残留磁束と定常 磁束との差が小さくなる。
[0055] (効果)
本実施の形態 3によれば、 各相の定常磁束と残留磁束との差を小さくでき 、 この投入目標 2 3において 3相遮断器 2 0 0を投入させて変圧器 3 0 0を 励磁させれば、 大きな励磁突入電流が流れるのを抑制できる。
[0056] (変形例)
なお、 以上述べた実施の形態 1乃至 3では、 変圧器 3 0 0の 1次側が Y結 線された場合で説明したが、 図 2、 図 4乃至図 1 0に示した相電圧を線間電 圧とし、 その線間電圧の積分値を磁束とすれば、 変圧器 3 0 0の 1次側が△ 結線された変圧器投入の条件となる。 この場合でも同様の投入位相制御方法 で大きな励磁突入電流を抑制できることは言うまでもない。
[0057] (実施の形態 4 )
図 1 1乃至図 1 2は、 本実施の形態 4を説明するための図であり、 特に、 図 1 1は 3相変圧器、 3相遮断器および励磁突入電流抑制装置の接続関係を 示すブロック図、 図 1 2は、 単相変圧器 3台を Y結線 _△結線に接続し、 そ の 3相分の変圧器を遮断器で遮断したときの残留磁束を、 遮断位相を変えて 計算で求めた例を示す図である。
[0058] (構成)
図 1 1において、 電力系統構成は図 1の場合と同じであるが、 図 1 と異な るのは、 変圧器 3 0 0の 2次巻線 3 0 2が△結線され、 さらに、 変圧器 3 0 0の通常の運用状態において 1次側端子、 2次側端子または 3次側端子のい ずれにも変圧器端子電圧計測用機器 5 0 0が設置されていない場合に、 1次 側端子に仮接続用の変圧器端子電圧計測用機器 5 0 0 Aを接続し、 その出力 電圧を投入■開極制御装置 6 0 0 Aの変圧器端子電圧計測手段 6 0 3に入力 するようにしている点にある。
[0059] この投入■開極制御装置 6 0 0 Aは、 実施の形態 1の投入制御装置 6 0 0 に替えて設けたもので、 励磁突入電流抑制装置を構成しており、 電源電圧計 測手段 6 0 1から投入指令出力手段 6 0 6までの構成要素については、 実施 の形態 1の投入制御装置 6 0 0と共通であるが、 遮断位相■残留磁束関係計 測保持手段 6 0 7、 開極位相制御手段 6 0 8および開極指令出力手段 6 0 9 を追加した構成としている。
[0060] 遮断位相■残留磁束関係計測保持手段 6 0 7は、 変圧器端子電圧計測用機 器 5 0 O Aを仮接続した状態で遮断器を少なくとも 1回以上 (一般的には複 数回) 遮断し、 そのとき変圧器端子電圧計測手段 6 0 3から出力される電圧 遮断位相と、 残留磁束算出手段 6 0 4から出力される磁束信号とを入力して 、 遮断位相と残留磁束の関係を計測し保持する機能を備えている。
[0061 ] 開極位相制御手段 6 0 8は、 電源電圧計測手段 6 0 1の出力と、 遮断位相 •残留磁束関係計測保持手段 6 0 7の出力とを入力して主接点の開極位相を 制御する機能を備えている。 そして、 開極指令出力手段 6 0 9は、 開極位相 制御手段 6 0 8の出力信号を受けて遮断器 2 0 0の主接点を駆動する操作機 構に対して開極指令を出力する機能を備えている。
[0062] 図 1 2は例として 3 . 3 kV_ 4 1 5 V—3 0 O kVAの単相変圧器を 3台、 Y結 線 _△結線に接続し、 その 3相分の変圧器 3 0 0を遮断器 2 0 0で遮断した ときの残留磁束を、 遮断位相を変えて計算により求めた図である。 [0063] 前述したように、 3相変圧器 3 0 0が通常の運用状態において、 1次側端 子、 2次側端子または 3次端子のいずれにも変圧器端子電圧計測用機器 5 0 0が設置されていない場合に、 変圧器端子電圧計測用機器 5 0 O Aを仮接続 した状態で遮断器 2 0 0を少なくとも 1回以上 (一般的には複数回) 遮断し 、 図 1 2に相当する遮断器の遮断位相に対する変圧器各相の残留磁束の特性 をあらかじめ測定しておく。 図中の 2 4は 1相の残留磁束が最大となるよう
Figure imgf000019_0001
に遮断位相を設定したときの各相の残留磁束を示し、 , 、 8 '、 9 'はそ れぞれ U相、 V相、 W相の残留磁束である。
[0064] 変圧器端子電圧計測用機器 5 0 0 Aはこの残留磁束 7 '、 8 '、 9 'の特 性を測定するために仮接続し、 通常の運用状態においては取り外す。 もちろ ん恒久的に変圧器端子電圧計測用機器 5 0 0 Aを設置してもよい。 遮断位相 と残留磁束の関係が得られればよいので、 図 1 2に示すように詳細に残留磁 束の特性を測定する必要は必ずしもない。
[0065] 通常の運用において遮断器 2 0 0で変圧器 3 0 0を遮断する際、 開極指令 出力手段 6 0 9は遮断位相が常に同じになるように遮断器の開極位相を制御 して遮断する。 これによつて、 あらかじめ測定した図 1 2に相当する残留磁 束の特性から、 各相の残留磁束は例えば 2 4であると推定することが可能と なる。
[0066] (作用)
電力系統に遮断器 2 0 0および変圧器 3 0 0を一旦設置した後は、 当該電 力系統の回路条件 (図 1 1の場合、 電力系統 1 0 0から変圧器 3 0 0までの 回路条件) は常に同じであるから、 遮断器 2 0 0が遮断するときの位相を常 に同じにしておけば、 変圧器 3 0 0各相の残留磁束の値も常に同じになるは ずである。
[0067] 従って、 変圧器 3 0 0の 1次側端子乃至 3次側端子のいずれにも電圧計測 用機器が常時接続していない場合においても、 所定の位相で遮断器 2 0 0が 遮断した後の変圧器 3 0 0の残留磁束の情報は常に得ることができる。
[0068] ところで、 変電所では母線等には必ず母線電圧計測用機器等の電源電圧計 測用機器が設置されている。 この電源電圧計測用機器の電圧情報があれば、 変圧器端子電圧計測用機器が設置されていなくても、 変圧器の定常磁束を算 出することができる。 従って、 変圧器端子電圧計測用機器が無くても、 遮断 器 2 0 0の位相制御投入が可能となる。
[0069] (効果)
遮断器が変圧器を遮断した後の残留磁束の情報は、 電圧計測用機器を仮接 続した測定によってあらかじめ明らかになっているから、 遮断の都度、 変圧 器端子電圧を計測しなくても、 残留磁束と定常磁束との関係を得ることがで き、 上述した実施の形態 1乃至 3の位相検出方法を適用することによって、 遮断器 2 0 0で変圧器 3 0 0を電源に投入したときに大きな励磁突入電流が 流れるのを抑制できる。
[0070] また、 変圧器の定常磁束、 すなわち変圧器に定常状態で電圧が印加された ときの磁束は、 母線等に設置された電源電圧計測用機器によって測定された 電圧を積分することでも求めることができる。
[0071 ] (実施の形態 5 )
上述した実施の形態 4では、 遮断位相を制御して、 残留磁束を推定する方 法について、 変圧器 3 0 0の 1次側端子に仮接続用の変圧器端子電圧計測用 機器 5 0 O Aを接続し、 その出力電圧を投入■開極制御装置 6 0 O Aの変圧 器端子電圧計測手段 6 0 3に入力するようにしたが、 本発明はこれに限定さ れるものではなく、 変圧器 3 0 0の運用状態で 1次、 2次および 3次側端子 のいずれかに電圧計測用機器が接続されている場合にも適用可能である。
[0072] このように、 変圧器 3 0 0側の電圧計測用機器がある場合に、 あえてこの 形態をとる理由は、 コントローラへの変圧器側の電圧計測用機器の入力が不 要になるため、 コントローラの簡素化■ コストダウンが図れるという効果を 奏することができるからである。
[0073] また、 遮断器の遮断位相と変圧器の残留磁束の関係を取得する手段は、 必 ずしも、 図 1 1の同期開閉制御装置 6 0 O Aに内蔵されている必要はない。 別のュニッ卜で遮断器の遮断位相と変圧器の残留磁束の関係を取得し、 結果 のみを同期開閉制御装置 6 0 O Aに記憶させるようにしても同様の効果を奏 することができる。
[0074] 実際の運用においては、 既に設置されている V T、 または仮に接続する V Tを使用して、 汎用計測器で変圧器電圧を計測し、 その計測データから遮断 器の遮断位相と変圧器の残留磁束の関係をパソコン等で算出するような形態 が一般的と考えられる。
[0075] (実施の形態 6 )
図 1 3乃至図 1 6は、 本実施の形態 6を説明するための図であり、 特に、 図 1 3は 3相変圧器、 3相遮断器および励磁突入電流抑制装置の接続関係を 示すブロック図、 図 1 4は電源相電圧と変圧器の定常磁束、 変圧器鉄心の残 留磁束、 線間電圧と線間の定常磁束、 および線間の残留磁束の関係を示す波 形図、 図 1 5は非有効接地系に設置された Υ _ Δ結線の 3相変圧器を示す結 線図、 図 1 6は図 1 5の 3相変圧器を遮断した後に変圧器 Υ側中性点に直流 電圧が現れることを示す波形図である。
[0076] (構成)
図 1 3において、 3相変圧器、 3相遮断器および励磁突入電流抑制装置の 接続関係は前述の実施の形態 1乃至 3の場合と同じであるが、 実施の形態 1 乃至 3と異なるのは、 励磁突入電流抑制装置を構成する投入制御装置 6 0 0 において、 各相ごとの定常時の磁束を算出する定常磁束算出手段 6 0 2に替 えて、 線間の定常時の磁束を算出する定常磁束算出手段 6 0 2 Αを設けると ともに、 各相ごとの残留磁束を算出する残留磁束算出手段 6 0 4に替えて、 線間の残留磁束を算出する残留磁束算出手段 6 0 4 Aを設けた点にある。
[0077] ここで、 定常磁束算出手段 6 0 2 Aは、 電源電圧計測手段 6 0 1で計測さ れた各相 (U、 V、 W相) の電源電圧を積分することにより、 定常時の各相 の磁束を算出し、 各相の磁束を線間の磁束に変換する手段である。 また、 残 留磁束算出手段 6 0 4 Aは、 変圧器端子電圧計測手段 6 0 3で計測された各 相 (U、 V、 W相) の変圧器端子電圧を積分することで変圧器各端子の残留 磁束を算出し、 それを線間の残留磁束に変換する手段である。 [0078] なお、 変形例として、 電源電圧計測手段 6 0 1で計測された各相電圧を定 常磁束算出手段 6 0 2 Aにより線間電圧に変換し、 それを積分して各線間の 磁束を求めてもよい。 同様に、 変形例として、 変圧器端子電圧計測手段 6 0 3で計測された各相電圧を残留磁束算出手段 6 0 4 Aにより線間電圧に変換 し、 それを積分して各線間の磁束を求めてもよい。
[0079] また、 V T等の電圧計測用機器では、 機器内で対地電圧を線間電圧に変換 する機能を有しているものもあるため、 そのような電圧計測用機器が設置さ れている場合には、 定常磁束算出手段 6 0 2 Aや残留磁束算出手段 6 0 4 A により各相電圧を線間電圧に変換する必要がなくなる。 すなわち、 電源電圧 計測用機器 4 0 0内で対地電圧を線間電圧に変換する場合には、 電源電圧計 測手段 6 0 1で線間電圧が計測されるため、 定常磁束算出手段 6 0 2 Aは、 線間電圧を積分して各線間の磁束を求めればよい。 同様に、 変圧器端子電圧 計測用機器 5 0 0内で対地電圧を線間電圧に変換する場合には、 変圧器端子 電圧計測手段 6 0 3で線間電圧が計測されるため、 残留磁束算出手段 6 0 4 Aは、 線間電圧を積分して各線間の磁束を求めればよい。
[0080] また、 定常磁束算出手段 6 0 2 Aおよび残留磁束算出手段 6 0 4 Aが、 そ れぞれ線間の磁束を算出することから、 位相検出手段 6 0 5は、 各線間 (U V、 VW、 W U相) 毎に定常磁束算出手段 6 0 2 Aの出力信号および定常磁 束算出手段 6 0 4 Aの出力信号を入力し、 定常磁束と、 変圧器各線間の残留 磁束とが同一極性になる位相を検出する。 投入指令出力手段 6 0 6は、 この 位相検出手段 6 0 5の出力信号を 3線間 (U V、 VW、 W U相) 分入力し、 3線間分の論理積が成立する範囲で遮断器 2 0 0の主接点が電気的に投入さ れるように、 遮断器 2 0 0の主接点を駆動する操作機構に対して投入指令を 出力する。
[0081 ] (作用)
図 1 4において、 1〜3は、 電源電圧計測手段 6 0 1によって計測された 電源各相 (U、 V、 W相) 電圧である。 4〜6は、 変圧器に定常状態で 3相 電圧 1〜3が印加されたとき、 その電圧を定常磁束算出手段 6 0 2 Aで積分 して算出された変圧器各相 (u、 V、 W相) の定常磁束である。
[0082] 3 1〜3 3は、 定常磁束算出手段 6 0 2 Aによって 3相電圧 1〜3を変換 して得られた各線間 (U V、 VW、 W U間) 電圧、 3 4〜3 6は、 定常磁束 算出手段 6 0 2 Aによって各線間電圧 3 1〜3 3を積分して算出することで 、 もしくは、 各相の定常磁束 4〜6を変換することで得られた各線間の磁束 である。 3 7〜3 9は、 残留磁束算出手段 6 0 4 Aで算出された変圧器各線 間 (U V、 VW、 W U間) の残留磁束である。
[0083] なお、 図 1 4の例では、 変圧器 U V間の残留磁束 3 7が正極性で最大値、 VW間の残留磁束 3 8および W U間の残留磁束 3 9が負極性でかつそれぞれ 同じ値の状態を示している。 また、 図 1 4では、 VW間の残留磁束 3 8と、 W U間の残留磁束 3 9とを区別して明示するため、 意識的に両残留磁束が重 ならないように描いている。
[0084] また、 変圧器各相 (U、 V、 W相) 鉄心の残留磁束 7〜 9は、 残留磁束算 出手段 6 0 4 Aで算出された変圧器各線間 (U V、 VW、 W U間) の残留磁 束 3 7〜3 9から推定することで、 もしくは、 残留磁束算出手段 6 0 4 Aに よって変圧器各線間 (U V、 VW、 W U間) の残留磁束 3 7〜3 9を算出す るために各相電圧 1〜3を積分して算出することで得られたものである。
[0085] 図 1 4から明らかなように、 3線間 (3相分) とも定常磁束と残留磁束と の極性が一致するのは、 4 0に示す位相範囲であり、 各線間毎に位相検出手 段 6 0 5から出力された信号の論理積で求まる。 この位相範囲 4 0は、 3相 遮断器 2 0 0の投入目標位相範囲である。
[0086] 前述した実施の形態 1乃至 4においては、 変圧器 1次対地電圧を積分し、 各相鉄心の残留磁束を算出し、 その残留磁束と各相の定常磁束とから図 1 4 に示すような各相の残留磁束と定常磁束の極性が 3相とも一致する範囲 4 2 (図 2の範囲 1 3、 図 4の範囲 2 0、 2 1に相当) を求め、 この範囲 4 2を 投入目標位相範囲として 3相遮断器 2 0 0を投入すれば、 大きな励磁突入電 流を抑制できることを示した。
[0087] 図 1 4において線間の磁束から設定した投入目標位相範囲 4 0は 「各相の 残留磁束と定常磁束の極性が 3相とも一致する範囲 4 2」 の範囲内であり、 この投入目標位相範囲 4 0で 3相遮断器 2 0 0を投入して変圧器 3 0 0を励 磁させれば、 大きな励磁突入電流を抑制できる。
[0088] 遮断器 2 0 0の投入において、 操作機構の動作ばらつきなどに起因する投 入時間のばらつきが存在する。 遮断器投入時のばらつきは、 あらかじめその 特性を取得しておくことにより、 位相制御を行う制御装置で補正することが 可能であり、 これらのばらつきがあっても、 遮断器 2 0 0の投入を図 1 4に おける投入目標位相範囲 4 0内とすることが可能であることは言うまでもな い。
[0089] (効果)
図 1 6は、 図 1 5に示すような、 1次側が Y結線で、 その中性点が非接地 の変圧器を 3相遮断器 2 0 0で遮断したときの変圧器 1次対地電圧、 対地電 圧を積分して算出した磁束、 線間電圧、 およびその電圧を積分して算出した 磁束を示している。
[0090] 図 1 6においては、 3相遮断器 2 0 0が電流を遮断した後、 変圧器 1次側 対地電圧に直流電圧 4 3が現れている。 Y結線された中性点の電圧は、 直流 電圧 4 3と同じになっている。
[0091 ] 変圧器端子電圧を積分して残留磁束を算出する場合には、 遮断後の残留磁 束を算出するために直流電圧 4 3を積分することになるので、 各相の残留磁 束 7〜 9は時間とともに増加し、 最終的には発散する。 このため、 端子電圧 を積分して残留磁束を算出したのでは、 残留磁束が正確に算出できないこと が明らかである。
[0092] 一方で、 線間電圧を考慮すると、 例えば、 U V間の線間電圧は U相対地電 圧から V相対地電圧を引き算したものである。 図 1 6に示す直流電圧 2 2か ら明らかなように、 遮断器遮断後の変圧器 1次各相の対地電圧は同じ大きさ の直流電圧となっている。 そのため、 1次対地電圧を差分して算出する線間 電圧 3 1〜3 3にはこの直流電圧の影響は現れない。 このような線間電圧 3 "!〜 3 3を積分すれば、 図 1 6に線間の残留磁束 3 7〜 3 9として示すよう に、 磁束が発散することはないので、 直流電圧 2 2の影響を受けることなく 、 正確な残留磁束を求めることができる。 従って、 線間電圧を積分して定常 磁束と残留磁束との関係を求めれば、 変圧器が遮断された後に中性点に直流 電圧が発生しても、 直流電圧の影響を受けずに遮断器投入位相を決定するこ とができる。
[0093] 線間電圧は、 前記のように対地電圧の差分であり、 また、 磁束は電圧の積 分である。 そのため、 対地電圧を線間電圧に変換した後、 それを積分して磁 束を算出した場合でも、 あるいは、 対地電圧を積分して各相の磁束を算出し 、 その磁束を差分した場合でも、 中性点の直流電圧の影響を受けることなく 線間の残留磁束を算出できることは言うまでもない。
[0094] なお、 図 1 5の例において、 1 0 1は、 電力系統、 1 0 2は、 電源側中性 点インピーダンスを示している。 この例では、 変圧器中性点のインピーダン スがない状態を示しているが、 非有効接地系で、 変圧器中性点にインピーダ ンスが接続される場合がある。 中性点に接続されるインピーダンスは、 大き な値の抵抗であることが多く、 この場合でも変圧器中性点に直流電圧が現れ るため、 本実施の形態 1により同様の効果が得られる。
[0095] (実施の形態 7 )
図 1 7乃至図 2 0は、 本実施の形態 7を説明するための図であり、 図 1 7 は、 図 1 4の波形のうち、 対地電圧を遮断器極間電圧に書き直し、 磁束の波 形を削除したものである。 図 1 8は、 非有効接地系に設置された Υ— Δ結線 の 3相変圧器を示す結線図、 図 1 9は、 図 1 8の 3相変圧器を投入するとき 、 遮断器が 1相だけ投入した後の、 他相の電圧変化を説明する図である。 図 2 0は、 3相変圧器投入時の電源相電圧、 線間電圧、 定常磁束、 および残留 磁束の関係を示す波形図であり、 図 1 7とは線間の残留磁束の残り方が異な る場合を想定して示している。 なお、 本実施の形態 7では、 3相変圧器、 3 相遮断器および励磁突入電流抑制装置の接続関係は前述の実施の形態 6の場 合と同じであるため、 図 1 3相当のブロック図は省略する。
[0096] (構成) 本実施の形態 7は、 3相変圧器 3 0 0の各線間の中で残留磁束の最も大き な線間において、 定常磁束と残留磁束の極性が一致する範囲で定常磁束が最 大値となる点、 すなわち、 線間の電圧零点 4 1を、 3相遮断器 2 0 0の投入 目標点とするように投入制御装置 6 0 0を設定したものである。
[0097] (作用)
図 1 7において、 4 7は遮断器 2 0 0投入時のブレア一ク発生電圧を示し ている。 遮断器極間に電圧が引加された状態で遮断器を投入するとき、 遮断 器接点が機械的に接触する前にプレアークと呼ばれる先行放電が発生し、 電 気的に投入状態となることが知られている。 プレアークが発生する電圧は、 接点間距離が大きいほど大きくなる。 従って、 図 1 7に示すように、 遮断器 投入時のプレアーク発生電圧 4 7は、 時間軸に沿って低下する。 また、 この ようなブレア一ク発生電圧が、 ばらつき 4 8を示すことは良く知られている
[0098] 図 1 7における投入目標点 4 1の設定条件は、 W相の遮断器極間電圧 4 6 の波高値で遮断器を電気的に投入できることを示している。 しかし、 この投 入目標点 4 1において、 他相である U相と V相の遮断器極間電圧 4 5、 4 6 の値は、 0 . 5 p. U.であるため、 このままでは他相である U相と V相の投入 時間が遅れてしまい、 遮断器は 3相同時に投入状態とはならない。
[0099] これに対して、 図 1 9では、 3 . 3 kV_ 4 1 5 V—3 0 O kVAの変圧器を図
1 8に示すように Υ— Δ結線に接続した条件で、 投入目標点 4 1で遮断器 2 0 0が 1相だけ投入状態となったときの他相の遮断器極間電圧の変化 4 9、 5 0を計算で求めた結果波形を示している。
[0100] 図 1 9において、 遮断器極間電圧の変化 4 9、 5 0として示すように、 他 相の極間電圧は、 投入目標点 4 1で遮断器 2 0 0が 1相だけ投入状態となつ た後、 過渡振動を伴い, 急な立上りで大きくなることが明らかとなった。 こ れは、 非投入相の変圧器端子から、 変圧器 1次端子と遮断器間の漂遊の静電 容量 (図 1 8の 3 5 0 ) が投入相の電圧によって充電されるためであると考 えられる。 なお、 過渡振動が収束した後、 他相の極間電圧は、 3 p. U.の大 きさになる。
[0101 ] これにより、 図 1 7の投入目標点 4 1において 3相遮断器を投入させると き、 1相の先行放電によって投入状態となった後、 すぐに他相も先行放電で 投入状態となり、 3相遮断器投入の時間差を非常に小さくできることが明ら かとなつた。
[0102] 図 2 0は、 残留磁束の様相を図 1 7とは異なる条件としたときの遮断器投 入目標を示す波形図である。 図 2 0では、 U V間残留磁束 3 7が正極性で最 大、 VW間残留磁束 3 8が 0であり、 W U間残留磁束 3 9が負極性でかつそ の絶対値が U V間残留磁束 3 7と同じ、 という条件としている。 このとき、 U V間残留磁束 3 7と U V間定常磁束 3 4によって投入目標点 4 1が設定さ れる。 一方、 W U間残留磁束 3 9と W U間定常磁束 3 6によって投入目標点 4 1 ' が設定される。
[0103] 図 2 0において、 投入目標点 4 1では、 W相対地電圧 3が波高値となって おり、 これは、 遮断器 W相極間電圧が波高値となることである。 一方、 投入 目標点 4 1 ' では、 V相対地電圧が波高値となっており、 これは、 遮断器 V 相極間電圧が波高値となることである。 すなわち、 投入目標点 4 1、 4 1 ' のいずれを投入目標としても、 前記の通り、 遮断器 3相間の投入の時間差を 小さくすることができることは明らかである。
[0104] (効果)
本実施の形態 7によれば、 遮断器投入時の各相の投入ばらつきを小さくで き、 この投入目標点 4 1において 3相の遮断器 2 0 0を投入させて変圧器 3 0 0を励磁させれば、 大きな励磁突入電流が流れるのを抑制できる。
[0105] (実施の形態 8 )
図 2 1乃至図 2 2は、 本実施の形態 8を説明するための図であり、 1次 Y 側相電圧、 線間電圧と 2次もしくは 3次 Δ側の対地電圧、 線間電圧の位相関 係を示している。 なお、 本実施の形態 8では、 3相変圧器、 3相遮断器およ び励磁突入電流抑制装置の接続関係は前述の実施の形態 6、 7の場合と同じ であるため、 図 1 3相当のブロック図は省略する。 [0106] (構成)
本実施の形態 8は、 変圧器 1次 Y側に電圧分圧装置が設置されていない場 合に、 2次もしくは 3次の Δ結線側の対地電圧を計測することで、 1次側線 間電圧とするものである。
[0107] (作用)
図 2 1は、 Y側と△側の相順関係が + 3 0度の場合を示している。 この図 2 1において、 △側 W相対地電圧 5 6は、 1次 Y側 V W間線間電圧 3 2とべ ク トルの向きが逆になつている。 厶側 相対地電圧 5 5と Y側 U V間線間電 圧 3 1、 厶側リ相対地電圧 5 4と Y側 W U間線間電圧 3 3の関係も同様であ る。 すなわち、 Δ側の対地電圧を計測し、 その電圧の極性を 3相とも反転さ せれば、 1次 Y側の線間電圧と同じ位相となる。
[0108] ここで、 変圧器遮断後の中性点に現れる前述の直流電圧 (図 1 6の 4 3 ) は零相電圧であり、 対称座標法から、 Δ側には影響しないことが明らかであ る。 従って、 Δ側対地電圧を計測し、 積分することによって、 1次 Y側線間 電圧を積分し磁束を算出したのと同じ結果が得られ、 図 1 4、 図 1 7、 図 2 0に示したような投入目標点 4 1を設定することができる。
[0109] また、 図 2 1は Y側と△側の相順関係が + 3 0度の場合である力 図 2 2 に示すように相順関係が一 3 0度の場合も同様の作用が得られることは言う までもない。
[01 10] すなわち、 図 2 2に示すように、 相順関係が— 3 0度の場合には、 厶側 相対地電圧 5 5は、 1次 Y側 U V間線間電圧 3 1 とべク トルが同じ向きにな つている。 △側 U相対地電圧 5 4と Y側 W U間線間電圧 3 3、 Δ側 W相対地 電圧 5 6と Y側 VW間線間電圧 3 2の関係も同様である。 従って、 △側の対 地電圧を計測し、 その電圧を 3相とも同極性とすれば、 1次 Y側の線間電圧 と同じ位相となる。
[0111 ] (効果)
本実施の形態 8によれば、 変圧器 1次側に電圧分圧装置が設置されていな い場合でも、 1次側各線間の磁束を算出でき、 遮断器の投入目標を設定する ことができるので、 大きな励磁突入電流が流れるのを抑制できる。
[0112] (変形例)
図 1 6に示した変圧器 1次対地電圧に現れる直流電圧 4 3は零相電圧であ るため、 3相の対地電圧を足し算し、 さらにそれを 3分の 1にして、 もとの 対地電圧から引き算することで対地電圧の直流電圧を 0とすることが可能で ある。 その上で磁束を算出し、 遮断器投入目標を設定すれば、 中性点に現れ る直流電圧の影響なく大きな励磁突入電流を抑制できることは言うまでもな い。
[0113] (実施の形態 9 )
図 2 3乃至図 2 4は、 本実施の形態 9を説明するための図であり、 特に、 図 2 3は 3相変圧器、 3相遮断器および励磁突入電流抑制装置の接続関係を 示すブロック図、 図 2 4は、 単相変圧器 3台を Y結線 _△結線に接続し、 そ の 3相分の変圧器を遮断器で遮断したときの線間の残留磁束を、 遮断位相を 変えて計算で求めた例を示す図である。
[0114] (構成)
図 2 3において、 電力系統構成は図 1 3の場合と同じであるが、 図 1 3と 異なるのは、 変圧器 3 0 0の 2次巻線 3 0 2が△結線され、 さらに、 変圧器 3 0 0の通常の運用状態において 1次側端子、 2次側端子または 3次側端子 のいずれにも変圧器端子電圧計測用機器 5 0 0が設置されていない場合に、 1次側端子に仮接続用の変圧器端子電圧計測用機器 5 0 0 Aを接続し、 その 出力電圧を投入■開極制御装置 6 0 0 Aの電圧計測手段 6 0 3に入力するよ うにしている点にある。 変形例として、 2次もしくは 3次側端子に変圧器端 子電圧計測用機器 5 0 O Aを接続してもよい。
[01 15] この投入■開極制御装置 6 0 0 Aは、 実施の形態 6の投入制御装置 6 0 0 に替えて設けたもので、 電源電圧計測手段 6 0 1から投入指令出力手段 6 0 6までの構成要素については、 実施の形態 6の投入制御装置 6 0 0と共通で あるが、 遮断位相■残留磁束関係計測保持手段 6 0 7、 開極位相制御手段 6 0 8および開極指令出力手段 6 0 9を追加することで、 実施の形態 4の投入 ■開極制御装置 6 0 0 Aに準ずる構成としたものである。
[01 16] 言い換えれば、 本実施の形態 9の投入■開極制御装置 6 0 0 Aは、 実施の 形態 4の投入■開極制御装置 6 0 O Aにおいて、 各相ごとの定常時の磁束を 算出する定常磁束算出手段 6 0 2に替えて、 線間の定常時の磁束を算出する 定常磁束算出手段 6 0 2 Aを設けるとともに、 各相ごとの残留磁束を算出す る残留磁束算出手段 6 0 4に替えて、 線間の残留磁束を算出する残留磁束算 出手段 6 0 4 Aを設けたものである。
[01 17] 図 2 4は例として 3 . 3 kV_ 4 1 5 V—3 0 O kVAの単相変圧器を 3台、 Y結 線 _△結線に接続し、 その 3相分の変圧器 3 0 0を遮断器 2 0 0で遮断した ときの線間の残留磁束を、 遮断位相を変えて計算により求めた図である。
[01 18] 前述したように、 3相変圧器 3 0 0が通常の運用状態において、 1次側端 子、 2次側端子または 3次端子のいずれにも変圧器端子電圧計測用機器 5 0 0が設置されていない場合に、 変圧器端子電圧計測用機器 5 0 O Aを仮接続 した状態で遮断器 2 0 0を少なくとも 1回以上 (一般的には複数回) 遮断し 、 図 2 4に相当する遮断器の遮断位相に対する変圧器各線間の残留磁束の特 性をあらかじめ測定しておく。
[01 19] 変圧器端子電圧計測用機器 5 0 O Aは、 この図 2 4に相当する線間の残留 磁束の特性を測定するために接続し、 通常の運用状態においては取り外す。 もちろん恒久的に変圧器端子電圧計測用機器 5 0 O Aを設置してもよい。 遮 断位相と残留磁束の関係が得られればよいので、 図 2 4に示すように詳細に 残留磁束の特性を測定する必要は必ずしもない。
[0120] 通常の運用において遮断器 2 0 0で変圧器 3 0 0を遮断する際、 開極指令 出力手段 6 0 9は遮断位相が常に同じになるように遮断器の開極位相を制御 して遮断する。 これによつて、 あらかじめ測定した図 2 4に相当する残留磁 束の特性から、 各線間の残留磁束を推定することが可能となる。
[0121 ] (作用)
電力系統に遮断器 2 0 0および変圧器 3 0 0を一旦設置した後は、 当該電 力系統の回路条件 (図 2 3の場合、 電力系統 1 0 0から変圧器 3 0 0までの 回路条件) は常に同じであるから、 遮断器 2 0 0が遮断するときの位相を常 に同じにしておけば、 変圧器 3 0 0各線間の残留磁束の値も常に同じになる はずである。
[0122] 従って、 変圧器 3 0 0の 1次側端子乃至 3次側端子のいずれにも電圧計測 用機器が常時接続していない場合においても、 所定の位相で遮断器 2 0 0が 遮断した後の変圧器 3 0 0の残留磁束の情報は常に得ることができる。
[0123] 前述したように、 変電所に必ず設置されている母線電圧計測用機器等の電 源電圧計測用機器の電圧情報があれば、 変圧器端子電圧計測用機器が設置さ れていなくても、 変圧器の定常磁束を算出することができる。 従って、 変圧 器端子電圧計測用機器が無くても、 遮断器 2 0 0の位相制御投入が可能とな る。
[0124] (効果)
遮断器が変圧器を遮断した後の残留磁束の情報は、 電圧計測用機器を仮接 続した測定によってあらかじめ明らかになっているから、 遮断の都度、 変圧 器端子電圧が計測できなくても、 残留磁束と定常磁束との関係を得ることが でき、 上述した実施の形態 6乃至 8の位相検出方法を適用することによって 、 遮断器 2 0 0で変圧器 3 0 0を電源に投入したときに大きな励磁突入電流 が流れるのを抑制できる。
[0125] また、 変圧器の定常磁束、 すなわち変圧器に定常状態で電圧が印加された ときの磁束は、 母線等に設置された電源電圧計測用機器によって測定された 電圧を積分することでも求めることができる。

Claims

請求の範囲
[1 ] 1次巻線が Y結線に接続され、 かつ、 2次巻線または 3次巻線が Δ結線さ れた 3相の変圧器の各相端子を 3相遮断器により 3相電源に投入して励磁開 始時に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑 制方法において、
前記変圧器に 3相交流電圧が定常状態で印加されたときの 1次側もしくは 2次側または 3次側の相電圧もしくは線間電圧を積分することにより変圧器 各相の定常磁束を算出し、
前記遮断器が変圧器を遮断した後の当該変圧器各相の残留磁束の極性およ び大きさを算出し、
前記変圧器各相の定常磁束の極性と、 前記各相の残留磁束の極性が同一と なる位相が 3相分重なる範囲内にあるとき、 前記 3相の遮断器を同時に投入 させることを特徴とする変圧器の励磁突入電流抑制方法。
[2] 残留磁束が最も小さな相の定常磁束が残留磁束と交差する点を投入目標と して 3相の遮断器を同時に投入させることを特徴とする請求項 1記載の変圧 器の励磁突入電流抑制方法。
[3] 残留磁束が最も大きな相の相電圧零点を投入目標として 3相の遮断器を同 時に投入させて 3相変圧器を励磁することを特徴とする請求項 1記載の変圧 器の励磁突入電流抑制方法。
[4] 非有効接地系に設置されるとともに、 1次巻線が厶結線に接続され、 力、つ 、 2次巻線または 3次巻線が Δ結線された 3相の変圧器の各相端子を 3相遮 断器により 3相電源に投入して励磁開始時に発生する励磁突入電流を抑制す るようにした変圧器の励磁突入電流抑制方法において、
前記変圧器に 3相交流電圧が定常状態で印加されたときの 1次側もしくは 2次側または 3次側の線間電圧を積分することにより変圧器各相の定常磁束 を算出し、
前記遮断器が変圧器を遮断した後の当該変圧器各相の残留磁束の極性およ び大きさを算出し、 前記変圧器各相の定常磁束の極性と、 前記各相の残留磁束の極性が同一と なる位相が 3相分重なる範囲内にあるとき、 前記 3相の遮断器を同時に投入 させることを特徴とする変圧器の励磁突入電流抑制方法。
[5] 残留磁束が最も小さな相の定常磁束が残留磁束と交差する点を投入目標と して 3相の遮断器を同時に投入させることを特徴とする請求項 4記載の変圧 器の励磁突入電流抑制方法。
[6] 残留磁束が最も大きな相の線間電圧零点を投入目標として 3相の遮断器を 同時に投入させて 3相変圧器を励磁することを特徴とする請求項 4記載の変 圧器の励磁突入電流抑制方法。
[7] 1次巻線が Y結線に接続され、 かつ、 2次巻線または 3次巻線が Δ結線さ れた 3相の変圧器の各相端子を 3相遮断器により 3相電源に投入して励磁開 始時に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑 制方法において、
前記遮断器を少なくとも 1回以上開放操作し、 そのときに変圧器 1次もし くは 2次または 3次端子に接続した電圧計測用機器によつて測定した電圧か ら、 遮断器の遮断位相と変圧器の残留磁束の関係をあらかじめ計測しておき 遮断器が変圧器を遮断するときは、 常に同じ遮断位相となるように遮断器 の開極位相を制御して遮断することにより、 前記の関係から変圧器の残留磁 束を推定し、
その後に変圧器を投入させるときは、 変圧器に 3相交流電圧が定常状態で 印加されたときの各相の定常磁束の極性と、 前記推定された各相の残留磁束 の極性が同一となる位相が 3相分重なる範囲内で 3相の遮断器を同時に投入 させることを特徴とする変圧器の励磁突入電流抑制方法。
[8] 残留磁束が最も小さな相の定常磁束が残留磁束と交差する点を投入目標と して 3相の遮断器を同時に投入させることを特徴とする請求項 7記載の変圧 器の励磁突入電流抑制方法。
[9] 残留磁束が最も大きな相の相電圧零点を投入目標として 3相の遮断器を同 時に投入させて 3相変圧器を励磁することを特徴とする請求項 7記載の変圧 器の励磁突入電流抑制方法。
[10] 非有効接地系に設置されるとともに、 1次巻線が Δ結線に接続され、 かつ 、 2次巻線または 3次巻線が Δ結線された 3相の変圧器の各相端子を 3相遮 断器により 3相電源に投入して励磁開始時に発生する励磁突入電流を抑制す るようにした変圧器の励磁突入電流抑制方法において、
前記遮断器を少なくとも 1回以上開放操作し、 そのときに変圧器 1次もし くは 2次または 3次端子に接続した電圧計測用機器によつて測定した電圧か ら、 遮断器の遮断位相と変圧器の残留磁束の関係をあらかじめ計測しておき 遮断器が変圧器を遮断するときは、 常に同じ遮断位相となるように遮断器 の開極位相を制御して遮断することにより、 前記の関係から変圧器の残留磁 束を推定し、
その後に変圧器を投入させるときは、 変圧器に 3相交流電圧が定常状態で 印加されたときの各相の定常磁束の極性と、 前記推定された各相の残留磁束 の極性が同一となる位相が 3相分重なる範囲内で 3相の遮断器を同時に投入 させることを特徴とする変圧器の励磁突入電流抑制方法。
[1 1 ] 残留磁束が最も小さな相の定常磁束が残留磁束と交差する点を投入目標と して 3相の遮断器を同時に投入させることを特徴とする請求項 1 0記載の変 圧器の励磁突入電流抑制方法。
[12] 残留磁束が最も大きな相の線間電圧零点を投入目標として 3相の遮断器を 同時に投入させて 3相変圧器を励磁することを特徴とする請求項 1 0記載の 変圧器の励磁突入電流抑制方法。
[13] 3相の遮断器を 3相一括操作型遮断器としたことを特徴とする請求項 1乃 至 1 2のいずれか 1項に記載の変圧器の励磁突入電流抑制方法。
[14] 1次巻線が Y結線に接続され、 かつ、 2次巻線または 3次巻線が Δ結線さ れた 3相の変圧器の各相端子を 3相遮断器により 3相電源に投入して励磁開 始時に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑 制装置において、
前記変圧器に 3相交流電圧が定常状態で印加されたときの 1次側もしくは 2次側または 3次側の相電圧もしくは線間電圧を積分することにより変圧器 各相の定常磁束を算出する定常磁束算出手段と、
前記遮断器が変圧器を遮断した後の当該変圧器各相の残留磁束の極性およ び大きさを算出する残留磁束算出手段と、
前記変圧器各相の定常磁束の極性と、 前記変圧器各相の残留磁束の極性が 同一となる位相が 3相分重なる範囲を検出して出力を生じる位相検出手段と 前記位相検出手段の出力により前記 3相の遮断器を同時に投入させる投入 手段と、
を備えたことを特徴とする変圧器の励磁突入電流抑制装置。
[15] 非有効接地系に設置されるとともに、 1次巻線が Δ結線に接続され、 かつ 、 2次巻線または 3次巻線が Δ結線された 3相の変圧器の各相端子を 3相遮 断器により 3相電源に投入して励磁開始時に発生する励磁突入電流を抑制す るようにした変圧器の励磁突入電流抑制装置において、
前記変圧器に 3相交流電圧が定常状態で印加されたときの 1次側もしくは 2次側または 3次側の線間電圧を積分することにより変圧器各相の定常磁束 を算出する定常磁束算出手段と、
前記遮断器が変圧器を遮断した後の当該変圧器各相の残留磁束の極性およ び大きさを算出する手段と、
前記変圧器各相の定常磁束の極性と、 前記変圧器各相の残留磁束の極性が 同一となる位相が 3相分重なる範囲を検出して出力を生じる位相検出手段と 前記位相検出手段の出力により前記 3相の遮断器を同時に投入させる投入 手段と、
を備えたことを特徴とする変圧器の励磁突入電流抑制装置。
[16] 1次巻線が Y結線に接続され、 かつ、 2次巻線または 3次巻線が Δ結線さ れた 3相の変圧器の各相端子を 3相遮断器により 3相電源に投入して励磁開 始時に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑 制装置において、
前記遮断器の遮断位相と変圧器の残留磁束の関係を保持する遮断位相■残 留磁束関係計測保持手段と、
遮断器が変圧器を遮断するときは、 常に同じ遮断位相となるように遮断器 の開極位相を制御する開極位相制御手段と、
前記開極位相制御手段の出力により遮断器に開極指令を出力する手段と、 その後に変圧器を投入させるときは、 変圧器に 3相交流電圧が定常状態で 印加されたときの各相の定常磁束の極性と、 前記遮断位相■残留磁束関係計 測保持手段に保持されている各相の残留磁束の極性が同一となる位相が 3相 分重なる範囲を検出して出力を生じる位相検出手段と、
前記位相検出手段の出力により前記 3相の遮断器を同時に投入させる投入 手段と、
を備えたことを特徴とする変圧器の励磁突入電流抑制装置。
[17] 前記遮断位相■残留磁束関係計測保持手段は、 前記遮断器を少なくとも 1 回以上開放操作し、 そのときに変圧器 1次もしくは 2次または 3次端子に接 続した電圧計測用機器によつて測定された電圧から、 遮断器の遮断位相と変 圧器の残留磁束の関係をあらかじめ計測し保持することを特徴とする請求項 1 6に記載の変圧器の励磁突入電流抑制装置。
[18] 1次巻線が Y結線に接続され、 かつ、 2次巻線または 3次巻線が Δ結線さ れた 3相の変圧器の各相端子を 3相遮断器により 3相電源に投入して励磁開 始時に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑 制方法において、
前記変圧器に 3相交流電圧が定常状態で印加されたときの 1次側の相電圧 を測定し、
前記測定された相電圧を線間電圧に変換し、 その線間電圧を積分して線間 の定常磁束を算出し、 前記遮断器が変圧器を遮断した後の当該変圧器各線間の残留磁束の極性お よび大きさを算出し、
前記変圧器各線間の定常磁束の極性と、 前記各線間の残留磁束の極性が同 一となる位相が 3相分重なる範囲内にあるとき、 前記 3相の遮断器を同時に 投入させることを特徴とする変圧器の励磁突入電流抑制方法。
[19] 1次巻線が Y結線に接続され、 かつ、 2次巻線または 3次巻線が Δ結線さ れた 3相の変圧器の各相端子を 3相遮断器により 3相電源に投入して励磁開 始時に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑 制方法において、
前記変圧器に 3相交流電圧が定常状態で印加されたときの 1次側の相電圧 を測定し、
前記測定された相電圧を積分することにより変圧器各端子の定常磁束を算 出し、 その変圧器各端子の定常磁束を線間の定常磁束に変換し、
前記遮断器が変圧器を遮断した後の当該変圧器各線間の残留磁束の極性お よび大きさを算出し、
前記変圧器各線間の定常磁束の極性と、 前記各線間の残留磁束の極性が同 一となる位相が 3相分重なる範囲内にあるとき、 前記 3相の遮断器を同時に 投入させることを特徴とする変圧器の励磁突入電流抑制方法。
[20] 1次巻線が Y結線に接続され、 かつ、 2次巻線または 3次巻線が Δ結線さ れた 3相の変圧器の各相端子を 3相遮断器により 3相電源に投入して励磁開 始時に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑 制方法において、
前記変圧器に 3相交流電圧が定常状態で印加されたときの 1次側の線間電 圧を測定し、
前記測定された線間電圧を積分することにより変圧器各線間の定常磁束を 算出し、
前記遮断器が変圧器を遮断した後の当該変圧器各線間の残留磁束の極性お よび大きさを算出し、 前記変圧器各線間の定常磁束の極性と、 前記各線間の残留磁束の極性が同 一となる位相が 3相分重なる範囲内にあるとき、 前記 3相の遮断器を同時に 投入させることを特徴とする変圧器の励磁突入電流抑制方法。
[21 ] 1次巻線が Y結線に接続され、 かつ、 2次巻線または 3次巻線が Δ結線さ れた 3相の変圧器の各相端子を 3相遮断器により 3相電源に投入して励磁開 始時に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑 制方法において、
前記変圧器に 3相交流電圧が定常状態で印加されたときの Δ結線された巻 線の 3相対地電圧を測定し、
前記測定された対地電圧を積分することにより変圧器各線間の定常磁束を 算出し、
前記遮断器が変圧器を遮断した後の当該変圧器各線間の残留磁束の極性お よび大きさを算出し、
前記変圧器各線間の定常磁束の極性と、 前記各線間の残留磁束の極性が同 一となる位相が 3相分重なる範囲内にあるとき、 前記 3相の遮断器を同時に 投入させることを特徴とする変圧器の励磁突入電流抑制方法。
[22] 残留磁束が最も大きな線間において、 線間電圧が前記残留磁束と同極性か ら逆極性へ遷移する電圧零点を電気的な投入目標として 3相の遮断器を同時 に投入させることを特徴とする請求項 1 8乃至請求項 2 1のいずれか 1項に 記載の変圧器の励磁突入電流抑制方法。
[23] 線間電圧の電圧零点を相電圧の位相に換算し、 換算した相電圧の位相を電 気的な投入目標として 3相の遮断器を同時に投入させることを特徴とする請 求項 2 2記載の変圧器の励磁突入電流抑制方法。
[24] 1次巻線が Y結線に接続され、 かつ、 2次巻線または 3次巻線が Δ結線さ れた 3相の変圧器の各相端子を 3相遮断器により 3相電源に投入して励磁開 始時に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑 制方法において、
前記遮断器を少なくとも 1回以上開放操作し、 そのときに変圧器 1次もし くは 2次または 3次端子に接続した電圧計測用機器によつて測定した電圧か ら、 遮断器の遮断位相と変圧器の残留磁束の関係をあらかじめ計測しておき 遮断器が変圧器を遮断するときは、 常に同じ遮断位相となるように遮断器 の開極位相を制御して遮断することにより、 前記の関係から変圧器の残留磁 束を推定し、
その後に変圧器を投入させるときは、 変圧器に 3相交流電圧が定常状態で 印加されたときの各線間の定常磁束の極性と、 前記推定された各線間の残留 磁束の極性が同一となる位相が 3相分重なる範囲内で 3相の遮断器を同時に 投入させることを特徴とする変圧器の励磁突入電流抑制方法。
[25] 残留磁束が最も大きな線間において、 線間電圧が前記残留磁束と同極性か ら逆極性へ遷移する電圧零点を電気的な投入目標として 3相の遮断器を同時 に投入させることを特徴とする請求項 2 4記載の変圧器の励磁突入電流抑制 方法。
[26] 線間電圧の電圧零点を相電圧の位相に換算し、 換算した相電圧の位相を電 気的な投入目標として 3相の遮断器を同時に投入させることを特徴とする請 求項 2 5記載の変圧器の励磁突入電流抑制方法。
[27] 非有効接地系に設置されるとともに、 1次巻線が Y結線に接続され、 かつ 、 2次巻線または 3次巻線が Δ結線された 3相の変圧器の各相端子を 3相遮 断器により 3相電源に投入して励磁開始時に発生する励磁突入電流を抑制す るようにした変圧器の励磁突入電流抑制方法において、
前記変圧器に 3相交流電圧が定常状態で印加されたときの 1次側の相電圧 を測定し、
前記測定された 3相の相電圧の総和を 3分の 1にすることで零相電圧を算 出し、
各相の相電圧から前記零相電圧を引き算することで 3相の変圧器の各巻線 電圧を算出し、
前記算出された各巻線電圧を積分することにより変圧器各巻線の定常磁束 を算出し、
前記遮断器が変圧器を遮断した後の当該変圧器各巻線の残留磁束の極性お よび大きさを算出し、
その後に変圧器を投入させるときは、 変圧器に 3相交流電圧が定常状態で 印加されたときの各巻線の定常磁束の極性と、 前記算出された各巻線の残留 磁束の極性が同一となる位相が 3相分重なる範囲内で 3相の遮断器を同時に 投入させることを特徴とする変圧器の励磁突入電流抑制方法。
[28] 非有効接地系に設置されるとともに、 1次巻線が Y結線に接続され、 かつ 、 2次巻線または 3次巻線が Δ結線された 3相の変圧器の各相端子を 3相遮 断器により 3相電源に投入して励磁開始時に発生する励磁突入電流を抑制す るようにした変圧器の励磁突入電流抑制方法において、
前記変圧器に 3相交流電圧が定常状態で印加されたときの Δ結線された巻 線の線間電圧を測定し、
前記測定された線間電圧を積分することにより変圧器各巻線の定常磁束を 算出し、
前記遮断器が変圧器を遮断した後の当該変圧器各線間の残留磁束の極性お よび大きさを算出し、
その後に変圧器を投入させるときは、 変圧器に 3相交流電圧が定常状態で 印加されたときの各巻線の定常磁束の極性と、 前記算出された各巻線の残留 磁束の極性が同一となる位相が 3相分重なる範囲内で 3相の遮断器を同時に 投入させることを特徴とする変圧器の励磁突入電流抑制方法。
[29] 1次巻線が Y結線に接続され、 かつ、 2次巻線はたは 3次巻線が Δ結線さ れた 3相の変圧器の各相端子を 3相遮断器により 3相電源に投入して励磁開 始時に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑 制装置において、
前記変圧器に 3相交流電圧が定常状態で印加されたときの 1次側もしくは 2次側または 3次側の相電圧もしくは線間電圧を積分することにより変圧器 各線間の定常磁束を算出する定常磁束算出手段と、 前記遮断器が変圧器を遮断した後の当該変圧器各線間の残留磁束の極性お よび大きさを算出する残留磁束算出手段と、
前記変圧器各線間の定常磁束の極性と、 前記変圧器各線間の残留磁束の極 性が同一となる位相が 3相分重なる範囲を検出して出力を生じる位相検出手 段と、
前記位相検出手段の出力により前記 3相の遮断器を同時に投入させる投入 手段と、
を備えたことを特徴とする変圧器の励磁突入電流抑制装置。
1次巻線が Y結線に接続され、 かつ、 2次巻線または 3次巻線が Δ結線さ れた 3相の変圧器の各相端子を 3相遮断器により 3相電源に投入して励磁開 始時に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑 制装置において、
前記遮断器を少なくとも 1回以上開放操作し、 そのときに変圧器 1次もし くは 2次または 3次端子に接続した電圧計測用機器によつて測定した電圧か ら、 遮断器の遮断位相と変圧器の残留磁束の関係をあらかじめ計測し保持す る手段と、
遮断器が変圧器を遮断するときは、 常に同じ遮断位相となるように遮断器 の開極位相を制御する開極位相制御手段と、
前記開極位相制御手段の出力により遮断器に開極指令を出力する手段と、 その後に変圧器を投入させるときは、 変圧器に 3相交流電圧が定常状態で 印加されたときの各線間の定常磁束の極性と、 前記保持されている各線間の 残留磁束の極性が同一となる位相が 3相分重なる範囲を検出して出力を生じ る位相検出手段と、
前記位相検出手段の出力により前記 3相の遮断器を同時に投入させる投入 手段と、
を備えたことを特徴とする変圧器の励磁突入電流抑制装置。
PCT/JP2007/001328 2006-11-29 2007-11-29 Appareil et procédé permettant de compresser un courant d'appel d'excitation d'un transformateur WO2008065757A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/516,717 US8310106B2 (en) 2006-11-29 2007-11-29 Magnetizing inrush current suppression device and method for transformer
CA 2670907 CA2670907C (en) 2006-11-29 2007-11-29 Magnetizing inrush current suppression device and method for transformer
EP18167323.7A EP3367409A1 (en) 2006-11-29 2007-11-29 Apparatus and method for compressing exciting inrush current of transformer
EP07828105.2A EP2091058A4 (en) 2006-11-29 2007-11-29 Apparatus and method for compressing exciting inrush current of transformer
CN200780047474XA CN101563744B (zh) 2006-11-29 2007-11-29 变压器的励磁涌流抑制装置和方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006321624 2006-11-29
JP2006-321624 2006-11-29
JP2007-309398 2007-11-29
JP2007309398A JP4896858B2 (ja) 2006-11-29 2007-11-29 変圧器の励磁突入電流抑制装置および方法

Publications (1)

Publication Number Publication Date
WO2008065757A1 true WO2008065757A1 (fr) 2008-06-05

Family

ID=39660623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001328 WO2008065757A1 (fr) 2006-11-29 2007-11-29 Appareil et procédé permettant de compresser un courant d'appel d'excitation d'un transformateur

Country Status (6)

Country Link
US (1) US8310106B2 (ja)
EP (2) EP3367409A1 (ja)
JP (1) JP4896858B2 (ja)
CN (1) CN101563744B (ja)
CA (1) CA2670907C (ja)
WO (1) WO2008065757A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004686A (ja) * 2008-06-20 2010-01-07 Toshiba Corp 変圧器の励磁突入電流抑制装置及びその制御方法
WO2010103741A1 (ja) * 2009-03-13 2010-09-16 株式会社 東芝 過電圧抑制装置
CN102163841A (zh) * 2010-02-19 2011-08-24 株式会社东芝 过电压抑制装置
JP4762378B1 (ja) * 2010-12-17 2011-08-31 三菱電機株式会社 突入電流抑制装置
WO2012023524A1 (ja) * 2010-08-20 2012-02-23 株式会社 東芝 励磁突入電流抑制装置
JP2012043744A (ja) * 2010-08-23 2012-03-01 Toshiba Corp 励磁突入電流抑制装置
WO2013015356A1 (ja) * 2011-07-27 2013-01-31 株式会社 東芝 励磁突入電流抑制装置
JP2013037767A (ja) * 2011-08-03 2013-02-21 Toshiba Corp 励磁突入電流抑制装置
WO2013038919A1 (ja) * 2011-09-14 2013-03-21 株式会社 東芝 励磁突入電流抑制装置

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8779634B2 (en) 2008-09-26 2014-07-15 Mitsubishi Electric Corporation Transformer inrush current suppression apparatus with function of determining target closing phase of three-phase transformer based on pre-arc characteristic and variation in closing time of the three-phase circuit breaker
US8467164B2 (en) * 2010-01-27 2013-06-18 Cooper Technologies Company Self optimizing electrical switching device
JP5459666B2 (ja) 2010-01-28 2014-04-02 株式会社東芝 励磁突入電流抑制装置
WO2011116488A1 (en) * 2010-03-22 2011-09-29 Siemens Aktiengesellschaft Method and apparatus for suppressing an inrush current of a trans former
JP5646237B2 (ja) * 2010-07-26 2014-12-24 株式会社東芝 変圧器の残留磁束推定方法及び残留磁束推定装置
CN102959669B (zh) * 2010-07-27 2015-12-16 三菱电机株式会社 相位控制开关装置
JP5444162B2 (ja) * 2010-08-20 2014-03-19 株式会社東芝 励磁突入電流抑制装置
JP5547013B2 (ja) * 2010-09-22 2014-07-09 株式会社東芝 突入電流抑制装置
JP5651508B2 (ja) 2011-03-17 2015-01-14 株式会社東芝 突入電流抑制装置
FR2974939B1 (fr) * 2011-05-03 2013-06-28 Alstom Grid Sas Procede de commande d'un appareil d'interruption de courant dans un reseau electrique haute tension
CN102299514A (zh) * 2011-08-19 2011-12-28 青岛特锐德电气股份有限公司 一种抑制励磁涌流的自动投切式变压器运行控制方法
JP5343118B2 (ja) 2011-12-07 2013-11-13 株式会社興電舎 励磁突入電流抑制装置
EP2608357B1 (en) * 2011-12-19 2014-07-23 Vetco Gray Controls Limited Protecting against transients in a communication system
US8878391B2 (en) 2012-01-10 2014-11-04 Schweitzer Engineering Laboratories, Inc System, apparatus, and method for reducing inrush current in a three-phase transformer
US9008982B2 (en) * 2012-03-09 2015-04-14 Schweitzer Engineering Laboratories, Inc. Systems and methods for determining residual flux in a power transformer
JP5908336B2 (ja) 2012-05-08 2016-04-26 株式会社東芝 励磁突入電流抑制装置及び励磁突入電流抑制方法
JP5858871B2 (ja) * 2012-06-11 2016-02-10 株式会社東芝 励磁突入電流抑制装置
JP6099896B2 (ja) 2012-07-19 2017-03-22 株式会社東芝 励磁突入電流抑制装置及びその抑制方法
CN103078517A (zh) * 2012-12-27 2013-05-01 保定天威集团有限公司 一种三相变压器励磁涌流的产生装置及方法
US10096993B2 (en) * 2013-12-08 2018-10-09 Vizimax Inc. Controlled switching devices and method of using the same
CN106415969B (zh) * 2014-06-09 2018-10-26 三菱电机株式会社 相位控制装置
CA2922990C (en) * 2014-07-02 2016-06-28 Vizimax Inc. Controlled switching devices and method of using the same
CN105469930A (zh) * 2015-12-17 2016-04-06 中磁科技股份有限公司 磁材压机充退磁系统
CN105914710B (zh) * 2016-04-22 2018-03-06 国网山东省电力公司检修公司 基于合闸电压频率控制的变压器励磁涌流抑制系统及方法
US10802054B2 (en) 2017-09-22 2020-10-13 Schweitzer Engineering Laboratories, Inc. High-fidelity voltage measurement using a capacitance-coupled voltage transformer
US11038342B2 (en) 2017-09-22 2021-06-15 Schweitzer Engineering Laboratories, Inc. Traveling wave identification using distortions for electric power system protection
CN111108399A (zh) 2017-09-22 2020-05-05 施瓦哲工程实验有限公司 使用电容耦合电压互感器中的电阻分压器的高保真度电压测量
JP6362756B1 (ja) * 2017-11-10 2018-07-25 株式会社興電舎 励磁突入電流抑制装置
CN108899871B (zh) * 2018-05-08 2019-11-19 广东电网有限责任公司 一种励磁涌流的识别方法、装置和计算机可读介质
CN108847653B (zh) * 2018-07-12 2019-11-19 广东电网有限责任公司 一种基于波形变化率的变压器励磁涌流识别方法及装置
CN109100666A (zh) * 2018-07-23 2018-12-28 大连理工大学 一种用于空载变压器相控开关的剩磁测算交互平台及方法
CN109448952B (zh) * 2018-12-19 2023-11-24 卧龙电气南阳防爆集团股份有限公司 一种高压大功率整流装置的低压预充磁系统及方法
US11187727B2 (en) 2019-04-29 2021-11-30 Schweitzer Engineering Laboratories, Inc. Capacitance-coupled voltage transformer monitoring
CN111600295B (zh) * 2019-08-09 2023-08-08 青岛鼎信通讯股份有限公司 一种应用于可控逆变的工频变压器励磁涌流抑制策略
CN111431151B (zh) * 2020-04-10 2022-05-06 南方电网科学研究院有限责任公司 一种隔直的副边短路的变压器形中性点接地装置及方法
US11233389B1 (en) * 2020-10-30 2022-01-25 Schweitzer Engineering Laboratories, Inc. Controlled three-pole close for transformers
CN112564039B (zh) * 2020-11-25 2023-05-12 国能神福(石狮)发电有限公司 一种自适应变压器涌流抑制方法
CN112787316B (zh) * 2020-12-30 2023-06-23 广东电网有限责任公司电力科学研究院 变压器励磁涌流的抑制装置
US11996688B2 (en) 2021-05-12 2024-05-28 Schweitzer Engineering Laboratories, Inc. Method of controlled switching for transformers using transformer residual flux
CN113991606B (zh) * 2021-10-18 2024-01-02 国电南瑞科技股份有限公司 一种变压器的励磁涌流防误动方法及装置
CN114204532A (zh) * 2021-10-25 2022-03-18 北京无线电测量研究所 一种用于减小雷达系统中变压器启动冲击电流的配电电路
CN114264989B (zh) * 2021-12-27 2023-11-03 中国科学院电工研究所 一种超导-软磁复合式磁通聚集器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001218354A (ja) * 1999-11-25 2001-08-10 Mitsubishi Electric Corp 位相制御開閉装置
JP2002075145A (ja) 2000-09-04 2002-03-15 Hitachi Ltd 励磁突入電流抑制装置付きガス遮断器
JP2004208394A (ja) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp 変圧器励磁突入電流抑制装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685574B2 (ja) * 1988-09-06 1997-12-03 中部電力株式会社 変圧器励磁突流抑制装置
US5627712A (en) * 1990-04-19 1997-05-06 General Electric Company Transformer differential relay
ATE107809T1 (de) * 1990-04-30 1994-07-15 Fraunhofer Ges Forschung Verfahren und vorrichtung zur reduzierung des einschaltstromstosses beim betreiben einer induktivitätsbehafteten last.
JPH11345546A (ja) * 1998-06-01 1999-12-14 Kyushu Electric Power Co Inc 変圧器励磁突入電流抑制方法及びその装置
FI111200B (fi) * 2001-05-25 2003-06-13 Abb Oy Menetelmä ja sovitelma sähköverkon rasitusten pienentämiseksi
JP4508759B2 (ja) * 2004-07-22 2010-07-21 三菱電機株式会社 位相制御開閉装置
JP4407561B2 (ja) * 2005-03-31 2010-02-03 三菱電機株式会社 残留磁束測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001218354A (ja) * 1999-11-25 2001-08-10 Mitsubishi Electric Corp 位相制御開閉装置
JP2002075145A (ja) 2000-09-04 2002-03-15 Hitachi Ltd 励磁突入電流抑制装置付きガス遮断器
JP2004208394A (ja) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp 変圧器励磁突入電流抑制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2091058A4

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8217536B2 (en) 2008-06-20 2012-07-10 Kabushiki Kaisha Toshiba Magnetizing inrush current suppression device for transformer and control method of same
JP2010004686A (ja) * 2008-06-20 2010-01-07 Toshiba Corp 変圧器の励磁突入電流抑制装置及びその制御方法
CN101609983B (zh) * 2008-06-20 2012-09-12 株式会社东芝 变压器的励磁突入电流抑制装置及其控制方法
WO2010103741A1 (ja) * 2009-03-13 2010-09-16 株式会社 東芝 過電圧抑制装置
JP2010218727A (ja) * 2009-03-13 2010-09-30 Toshiba Corp 過電圧抑制装置
CN102165551A (zh) * 2009-03-13 2011-08-24 株式会社东芝 过电压抑制装置
US8680713B2 (en) 2009-03-13 2014-03-25 Kabushiki Kaisha Toshiba Over-voltage suppression apparatus
CN102163841A (zh) * 2010-02-19 2011-08-24 株式会社东芝 过电压抑制装置
WO2012023524A1 (ja) * 2010-08-20 2012-02-23 株式会社 東芝 励磁突入電流抑制装置
JP2012043712A (ja) * 2010-08-20 2012-03-01 Toshiba Corp 励磁突入電流抑制装置
US9197057B2 (en) 2010-08-23 2015-11-24 Kabushiki Kaisha Toshiba Magnetizing inrush current suppression apparatus
WO2012026423A1 (ja) * 2010-08-23 2012-03-01 株式会社 東芝 励磁突入電流抑制装置
JP2012043744A (ja) * 2010-08-23 2012-03-01 Toshiba Corp 励磁突入電流抑制装置
US20130193946A1 (en) * 2010-12-17 2013-08-01 Mitsubishi Electric Corporation Inrush current suppressing device
JP4762378B1 (ja) * 2010-12-17 2011-08-31 三菱電機株式会社 突入電流抑制装置
US9170597B2 (en) 2010-12-17 2015-10-27 Mitsubishi Electric Corporation Inrush current suppressing device
WO2012081129A1 (ja) * 2010-12-17 2012-06-21 三菱電機株式会社 突入電流抑制装置
JP2013030301A (ja) * 2011-07-27 2013-02-07 Toshiba Corp 励磁突入電流抑制装置
WO2013015356A1 (ja) * 2011-07-27 2013-01-31 株式会社 東芝 励磁突入電流抑制装置
US9583934B2 (en) 2011-07-27 2017-02-28 Kabushiki Kaisha Toshiba Excitation inrush current suppression device
JP2013037767A (ja) * 2011-08-03 2013-02-21 Toshiba Corp 励磁突入電流抑制装置
WO2013038919A1 (ja) * 2011-09-14 2013-03-21 株式会社 東芝 励磁突入電流抑制装置
JP2013062196A (ja) * 2011-09-14 2013-04-04 Toshiba Corp 励磁突入電流抑制装置
US9385525B2 (en) 2011-09-14 2016-07-05 Kabushiki Kaisha Toshiba Magnetizing inrush current suppression device

Also Published As

Publication number Publication date
CA2670907A1 (en) 2008-06-05
EP2091058A1 (en) 2009-08-19
CN101563744A (zh) 2009-10-21
EP3367409A1 (en) 2018-08-29
CN101563744B (zh) 2011-11-30
EP2091058A4 (en) 2017-07-26
JP2008160100A (ja) 2008-07-10
US20100141235A1 (en) 2010-06-10
CA2670907C (en) 2012-10-30
US8310106B2 (en) 2012-11-13
JP4896858B2 (ja) 2012-03-14

Similar Documents

Publication Publication Date Title
WO2008065757A1 (fr) Appareil et procédé permettant de compresser un courant d'appel d'excitation d'un transformateur
JP5208593B2 (ja) 変圧器の励磁突入電流抑制装置及びその制御方法
JP5459666B2 (ja) 励磁突入電流抑制装置
JP4835870B2 (ja) 突入電流抑制装置
JP5487051B2 (ja) 励磁突入電流抑制装置
KR20140108742A (ko) 여자 돌입 전류 억제 장치
JP5148435B2 (ja) 変圧器の励磁突入電流抑制装置及びその制御方法
WO2013038919A1 (ja) 励磁突入電流抑制装置
JP5472920B2 (ja) 励磁突入電流抑制装置
JP5414254B2 (ja) 変圧器の励磁突入電流抑制装置および方法
JP5444162B2 (ja) 励磁突入電流抑制装置
JP6054163B2 (ja) 励磁突入電流抑制システム
WO2014014081A1 (ja) 励磁突入電流抑制装置及びその抑制方法
JP5908336B2 (ja) 励磁突入電流抑制装置及び励磁突入電流抑制方法
JP5740240B2 (ja) 励磁突入電流抑制装置
JP5762870B2 (ja) 励磁突入電流抑制装置
JP6202897B2 (ja) 励磁突入電流抑制装置および方法
JP2013257993A (ja) 励磁突入電流抑制装置
JP2014143049A (ja) 励磁突入電流抑制装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780047474.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828105

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2670907

Country of ref document: CA

Ref document number: 2977/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007828105

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12516717

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)