WO2008056779A1 - Procédé destiné à la culture et au passage d'une cellule souche embryonnaire de primate, et procédé destiné à induire la différenciation de la cellule souche embryonnaire - Google Patents

Procédé destiné à la culture et au passage d'une cellule souche embryonnaire de primate, et procédé destiné à induire la différenciation de la cellule souche embryonnaire Download PDF

Info

Publication number
WO2008056779A1
WO2008056779A1 PCT/JP2007/071811 JP2007071811W WO2008056779A1 WO 2008056779 A1 WO2008056779 A1 WO 2008056779A1 JP 2007071811 W JP2007071811 W JP 2007071811W WO 2008056779 A1 WO2008056779 A1 WO 2008056779A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
embryonic stem
culture
blood
Prior art date
Application number
PCT/JP2007/071811
Other languages
English (en)
French (fr)
Inventor
Akira Yuo
Kumiko Tobe
Koichi Saeki
Masako Nakahara
Naoko Nakamura
Yoshiko Yogisashi
Satoko Matsuyama
Asako Yoneda
Original Assignee
Japan As Represented By The President Of International Medical Center Of Japan
Mitsubishi Tanabe Pharma Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan As Represented By The President Of International Medical Center Of Japan, Mitsubishi Tanabe Pharma Corporation filed Critical Japan As Represented By The President Of International Medical Center Of Japan
Priority to JP2008543145A priority Critical patent/JP5067949B2/ja
Priority to EP07831542A priority patent/EP2088190A4/en
Priority to US12/514,207 priority patent/US20110151554A1/en
Publication of WO2008056779A1 publication Critical patent/WO2008056779A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/70Undefined extracts
    • C12N2500/80Undefined extracts from animals
    • C12N2500/84Undefined extracts from animals from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/105Insulin-like growth factors [IGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/26Flt-3 ligand (CD135L, flk-2 ligand)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Definitions

  • the present invention relates to a method for culturing and subculturing primate embryonic stem cells in an undifferentiated state, and inducing differentiation of the cells into various cells such as blood cells and vascular endothelial precursor cells.
  • the present invention relates to a method, a method for expanding and regenerating the obtained cells, blood cells, vascular endothelial progenitor cells and the like.
  • Embryonic stem cells as universal cells that can be differentiated into various cells were established in the 1980s in mice, and their culture and passage methods are known. However, there has not yet been established a method for continuously culturing and substituting embryonic stem cells derived from primates including humans in an undifferentiated state.
  • Human embryonic stem cells are extremely important in research in the biological and medical fields, and in the clinical field. In particular, a stable supply is required as a basic material for organ preparation in the fields of regenerative medicine and transplantation medicine.
  • organs and tissues created from human embryonic stem cells are expected not only to be used in transplantation and regenerative medicine, but also to enable preclinical studies using human organs that have been limited in practice. .
  • various organs can be produced from human embryonic stem cells, it will be possible to estimate the effects of drugs on the fetus by conducting pharmacological tests during the production process! It has been.
  • Patent Document 1 discloses an embryonic stem cell that is essentially free of feeder cells and is obtained by culturing primate embryonic stem cells using an extracellular matrix prepared from mouse embryonic fibroblasts (MEF). Containing cultures are described.
  • the above established human embryonic stem cells induce chromosomal aberrations after a short passage (specifically, accumulation of chromosomal abnormalities is confirmed after more than a dozen passages). The risk in clinical application has been pointed out (Non-patent Document 1)).
  • Non-patent Document 3 human embryonic stem cell lines were established in Australia and Sweden, and it has been reported that chromosomal abnormalities are extremely rare even after one year or more after establishment. These human embryonic stem cells have the ability to be maintained without feeders S, special culture equipment and special culture skills are required for culturing, subculturing, and freezing, and handling of large amounts of cells is practical It is difficult (Non-Patent Document 3). In addition, feeder-free culturing of these heterologous animal-derived cells without using a conditioned medium requires the use of a large amount of synthetic site force-in, which places a great economic burden on the research itself. Therefore, with regard to human embryonic stem cells, a stable feeder-free culture technique has been established!
  • a method for culturing and passaging primate embryonic stem cells including humans without using a conditioned medium of a heterologous animal-derived cell, a feeder cell, and a synthetic site force-in.
  • a simple basic culture technique allows safe passage without causing chromosomal abnormalities for long periods of time.
  • Such technologies are expected to contribute greatly to the promotion of extensive research, clinical medicine related to transplantation and regeneration, and the development of perinatal medicine.
  • the desired progenitor cells and mature cells can be produced in large quantities and used for various purposes.
  • differentiation of embryonic stem cells can be effectively induced.
  • the method of subculture has been studied.
  • One of the differentiation lines of embryonic stem cells is differentiation into blood-related cells such as blood vessels and blood cells (see Figure 11).
  • Vascular endothelial cells are the basic elements that make up blood vessels. Blood vessels are distributed in almost all living tissues except for some tissues such as cartilage and sclera, and play an extremely important role in supplying nutrients and removing waste products. Therefore, vascular endothelial cells are useful for angiogenesis therapy in obstructive vascular disorders associated with arteriosclerosis, which is a disease of life-style related diseases that have been increasing in recent years. In addition, it is known that the direction of vascular endothelial cells is important for the movement of tissue-specific stem cells (such as neural stem cells) to the appropriate position in the regeneration process of various tissues including the brain. .
  • tissue-specific stem cells such as neural stem cells
  • vascular endothelial cells have played an important role in blood cell production since the embryonic period as vascular endothelial cells function as precursors of blood cells, and in adults, they also play an important role as a hematopoietic stem cell sachet (holding place). Is responsible.
  • vascular endothelial cells are extremely important not only as vascular components but also in general tissue regeneration, including nerves and blood cells. When considering regenerative medicine in general, the control of vascular endothelial cell production is important. It is a problem.
  • vascular endothelial progenitor cells obtained from biological tissues has been attempted S.
  • An example of directly confirming regeneration of vascular endothelial cells from transplanted cells is Absent.
  • mature vascular endothelial cells obtained from living organisms have already lost their proliferative capacity, and basic research on vascular endothelial cells has been extremely delayed in primates where it is difficult to prepare large specimens.
  • primary cultured vascular endothelial cells obtained from a human body especially commercially available primary cultured vascular endothelial cells that have been frozen and thawed have inherent properties in vivo.
  • the differentiation efficiency from mouse embryonic stem cells to vascular endothelial progenitor cells is 90% or more, whereas primate embryonic stem cells differentiate into vascular endothelial progenitor cells.
  • the efficiency is extremely low at 2% or less (Non-Patent Document 4 and Non-Patent Document 5).
  • a method for producing vascular endothelial progenitor cells that can be subcultured in feeder-free culture not only for primate embryonic stem cells but also for mouse embryonic stem cells has not been established.
  • vascular endothelial progenitor cells and mature vascular endothelial cells that can be stably subcultured and freeze-thawed in a feeder-free culture are efficiently produced and cultured from primate embryonic stem cells.
  • Establishing high-volume production technology is necessary for the advancement of regenerative transplant technology, basic medical research on blood vessels, and the development of new pharmacological / toxicological studies that will be effective tools for preclinical trials. Has become an urgent need worldwide.
  • the development of such technology is extremely useful in the medical industry such as basic medical research, clinical medical development and drug discovery.
  • blood (blood cell) cells play an important role in the immune system and are resistant to foreign substances that enter the body, effects on cancer (NK cells), effects on leukemia (hematopoietic stem cells, etc.) Etc.
  • NK cells effects on cancer
  • leukemia hematopoietic stem cells, etc.
  • hematopoietic stem cells are capable of transdifferentiation into cells required for various diseases because of their tissue plasticity, and leukocyte progenitor cells The importance of medical treatment is enormous, for example, by promoting tissue regeneration through fusion.
  • hematopoietic stem cells bone marrow blood, umbilical cord blood, etc.
  • the amount used in transplantation medicine is limited (specimen from one donor). Can only be administered to a single patient) and is virtually impossible to use in basic medical research, including culture experiments.
  • basic research is much slower in primates where it is difficult to prepare large amounts of specimens than in experimental animals such as mice. [0013] Therefore, in addition to application to regenerative medicine, disease treatment, etc., in terms of research, blood cells and hematopoietic stem cells are produced safely and efficiently from human embryonic stem cells by feeder-free culture. There is a long-awaited way to maintain the passage.
  • Blood cells such as erythrocytes thus obtained are useful for improving the safety of treatment free from contamination by AIDS, hepatitis C virus, and the like. Furthermore, transfusion of leukocytes including neutrophils derived from embryonic stem cells can be used to solve problems such as nosocomial infections in order to strengthen the immune system whose function has been reduced by chemotherapy or the like in cancer. In addition, since blood cells lead to an increase in natural healing power, the production of blood cells from embryonic stem cells is thought to provide tremendous benefits for medical care.
  • hematopoietic stem cells can be used for transplantation as well as for the production of blood cells.
  • the efficiency of inducing differentiation from primate embryonic stem cells including humans into blood cells in a feeder-free environment is sufficiently high, and the amount of blood cells produced is also limited.
  • the production efficiency of hematopoietic stem cells is very low (the production efficiency of hematopoietic stem cells is about 5%) (Non-patent Document 6).
  • Non-patent Document 6 Non-patent Document 6
  • stromal cells are indispensable for hematopoiesis in the living body, and the function of hematopoietic stromal cells obtained from living bodies (fetal liver, adult bone marrow, etc.) is rapidly lost by passage or freeze-thawing. Due to the problems, the use in transplantation / regenerative medicine is very limited and in vitro culture is virtually impossible. Therefore, it is essential to establish a technique for producing hematopoietic stromal cells from embryonic stem cells in order to develop transplantation medicine in blood diseases and basic medical research on hematopoietic stromal cells. However, the production of hematopoietic stromal cells from all embryonic stem cells, including mice! /, Has not been successful.
  • the above blood-related cells are useful for elucidating the "hematopoietic mechanism" in primates including humans.
  • hematopoietic mechanisms especially early hematopoiesis in development.
  • common progenitor cells hemangioblasts
  • vascular endothelial cells and blood cells which has been suggested for a long time in the developmental process of mice, has become very recently (September 2006).
  • Zebrafish has only been demonstrated (Non-Patent Document 7). Understanding the hematopoietic function once the technology to produce this “common progenitor cell” from human embryonic stem cells has the only potential in humans to correctly mimic early hematopoiesis in vivo It will be useful for research and medical development.
  • blood-related cells manufactured from primate embryonic stem cells including humans
  • blood-related cells that are capable of stable passage maintenance, expansion reproduction, and freeze-thawing in a feeder-free culture with high efficiency.
  • Blood stem cells mature blood cells, vascular endothelial cells and “common progenitor cells of blood cells”, vascular endothelial cells, hematopoietic stroma cells, etc. It is widely demanded for the development of new pharmacological / toxicity studies that are effective means of preclinical trials.
  • Patent Document 1 International Publication No. 99/20741 Pamphlet
  • Non-Patent Document 1 Draper et al., Nature Biotechnology, Vol. 22, p. 53, p. 54, (2004)
  • Non-Patent Document 2 Ludwig et al., Nature Biotechnology, Vol. 24, 185, 187, (2006)
  • Non-Patent Document 3 Buzzard, Nature Biotechnology, Vol. 22, p. 381, p. 382, (2004)
  • Non-Patent Document 4 Sone et al., Circulation, Vol. 107, p. 2085, p. 2088, (2003)
  • Non-Patent Document 5 Levenberg, Proceeding of National Academy of Science, USA 99, 4391, 4396, (2002)
  • Non-Patent Document 6 Chadwick et al., Blood, Vol. 102, 906, 915, ((22000033))
  • Patent Literature Reference 77 VVooggeellii et al., NNaattuurree, Vol. 444433, pp. 333377, 333399, ((22000066)) My disclosure
  • This invention invents varieties such as primate primate animal and animal embryo embryonic stem stem cell vesicles, chromosomal abnormalities, etc. This is the place where you can provoke the safety and safety of your body. The purpose of this is to provide and provide a method of scrutiny. .
  • the present invention remains unaffected, the primate animal animal embryo embryonic stem stem cell vesicles are efficiently and safely fed into the blood vessel endothelium endothelial cell cysts, Intravascular preendodermis progenitor cell cell, blood blood fluid cell cell, bone marrow medullary cell cell cell, hematopoietic hematopoietic stem cell cell, etc.
  • This place which provides and provides the method of how to skate, is considered to be a white and white fox. .
  • the present invention is related to the blood vessel endothelium endothelial cell cell obtained by the method described above, blood blood fluid cell cell, bone marrow For the purpose of providing and providing medullary cells, hematopoietic hematopoietic stem cells, etc. ! // .
  • the inventors of the present invention have developed a sufficient number of primate animal and animal embryonic stem stem cell vesicles suitable for clinical clinical use. In addition to applying the appropriate amount, various kinds of fine cell vesicles, organ organs, etc.
  • primate animals and embryos embryonic stem stem cell vesicles continue to be maintained in a stable and stable manner. To find out what is held here and where it is guided to the induction of differentiation into various cell vesicles in an appropriate and appropriate manner. As a result, the present invention has been completed. .
  • the gist of the present invention includes the following. .
  • (AA) Primate primate animal embryo embryonic stem stem cell vesicles in a container that has been co-coated with extra-cellular extracellular mammary trix cox. Steps for culturing and cultivating in a culture medium containing protein protein components under a non-fidelity feeder and a non-satisfaction force,
  • step ((CC)) The heart of the embryonic stem stem cell vesicle obtained in the above step ((BB)) A culture medium containing a protein protein component in a container that has been co-coated with a non-fidelity and non-satisfaction force.
  • step (A) The culture and subculture method according to [1] above, wherein the primate embryonic stem cell colony is cultured in step (A) until the colony size is about 2 to about 4 times.
  • step (B) The culture and subculture according to any one of [1] to [3] above, wherein the cell detachment agent in step (B) is at least one selected from the group consisting of trypsin, collagenase, and dispase. Method.
  • step (A) Human collagen, human laminin, human vitronectin, human fibronectin and human serum, and a degradation product thereof, and one kind selected from the group consisting of these synthetic peptides, The culture and subculture method according to any one of [1] to [4].
  • step (B) Step for producing specific progenitor cells including floating cells and adherent cells by adhesion culture of the embryoid body or embryoid body-like cell aggregate obtained in step (A) in the presence of site force-in.
  • step (C) A method for producing blood cells and / or vascular endothelial progenitor cells from primate embryonic stem cells, comprising a step of separating floating cells and adherent cells from the specific progenitor cells obtained in step (B).
  • step (A) The culturing of step (A) is carried out until an embryoid body-like cell aggregate is formed.
  • Cytotensity levels are vascular endothelial growth factor (VEGF), bone morphogenetic protein 4 (BMP4), stem cell factor (SCF), Flt3—ligand (FU, interleukin 6 (IL6), interleukin 3 (IL3), It consists of granulocyte colony stimulating factor (G—CSF), megakaryocyte growth factor (TPO), oncostatin M (OSM), fibroblast growth factor 2 (FGF2) and granulocyte macrophage colony stimulating factor (GM—CSF). At least one selected from the group, 6.
  • a method for producing vascular endothelial progenitor cells and / or blood cells from primate embryonic stem cells according to [7].
  • step (C) The primate according to any one of [6] to [8] above, wherein a cell detachment agent is used in step (C) to separate adherent cells of specific cell precursor cells.
  • a cell detachment agent is used in step (C) to separate adherent cells of specific cell precursor cells.
  • step (B) a step of producing specific precursor cells including floating cells and adherent cells by adhesion culture of the embryoid body or embryoid body-like cell aggregate obtained in step (A) in the presence of site force-in, and
  • step (C) a blood cell, a myeloid cell, a hematopoietic stroma cell and / or a primate embryonic stem cell comprising a step of culturing the specific progenitor cell obtained in step (B) while separating floating cells.
  • a method for producing hematopoietic stem cells comprising a step of culturing the specific progenitor cell obtained in step (B) while separating floating cells.
  • step (A) The culture in step (A) is carried out until the formation of embryoid bodies, blood cells, myeloid cells, hematopoietic stroma cells and / or primate embryonic stem cells according to [11] above.
  • a method for producing hematopoietic stem cells is carried out until the formation of embryoid bodies, blood cells, myeloid cells, hematopoietic stroma cells and / or primate embryonic stem cells according to [11] above.
  • Cytotensity is vascular endothelial growth factor (VEGF), bone morphogenetic protein 4 (BMP4), stem cell factor (SCF), Flt3—ligand (FU, interleukin 6 (IL6), interleukin 3 (IL3) , Granulocyte colony stimulating factor (G—CSF), megakaryocyte growth factor (TPO), oncostatin M (OSM), fibroblast growth factor 2 (FGF2) and granulocyte macrophage colony stimulating factor (GM—CSF)
  • VEGF vascular endothelial growth factor
  • BMP4 stem cell factor
  • SCF stem cell factor
  • Flt3—ligand FU
  • IL6 interleukin 6
  • IL3 interleukin 3
  • G—CSF Granulocyte colony stimulating factor
  • TPO megakaryocyte growth factor
  • OSM oncostatin M
  • FGF2 fibroblast growth factor 2
  • GM—CSF granulocyte macrophage colony stimulating factor
  • step (C) cell detachment is performed to separate adherent cells of specific progenitor cells.
  • a substantially isolated vascular endothelial progenitor cell which is induced to differentiate from a primate embryonic stem cell by the production method according to any one of [6] to [; 10].
  • [17] A substantially isolated blood cell that is induced to differentiate from a primate embryonic stem cell by the production method according to any one of [6] to [; 14].
  • a substantially isolated hematopoietic stem cell which is induced to differentiate from a primate embryonic stem cell by the production method according to [1], [11] to [;
  • a substantially isolated myeloid cell which is induced to differentiate from a primate embryonic stem cell by the production method according to any one of [11] to [; 14].
  • a composition comprising substantially isolated vascular endothelial progenitor cells, blood cells, hematopoietic stroma cells or hematopoietic stem cells according to any one of [16] to [; 19].
  • a primate embryonic stem cell can be safely put in an undifferentiated state by a simple apparatus and method that does not cause cell damage such as chromosomal aberration. It can be maintained and cultured. Further, according to the method of the present invention, primate embryonic stem cells can be maintained in an undifferentiated manner at low cost, and it is possible to widely meet demands in regenerative medicine and research fields.
  • specific cell precursor cells as “common precursor cells” such as vascular endothelial cells and blood cells can be produced safely and with high efficiency.
  • vascular endothelial cells blood cells, hematopoietic stem cells, myeloid cells and the like that can be stably subcultured and frozen and thawed with high reproductivity.
  • a highly safe blood product for blood transfusion including hematopoietic stem cell transplantation, granulocyte transfusion, myeloid cell administration, etc.
  • a material for treatment of vascular injury and improvement of local blood flow is possible to easily supply various cells as materials suitable for the purpose of clinical use for the purpose of promoting the regeneration of various other tissues!
  • the present invention it is possible for the first time to provide a large number of cell groups having a property of correctly mimicking a primate, particularly a human biological tissue. Since these cells can be used appropriately in drug effect assessment tests and toxicity tests, they can greatly contribute to the development of the medical industry as well as clinical medicine.
  • FIG. 1 shows a culture coated with a Matrigel (registered trademark) matrix according to the “undifferentiated maintenance passage method under feeder-free and site-free force-in” of the present invention shown in Example 1. It is a photograph which shows the colony of the power two cynomolgus embryonic stem cell cultured using the dish. A shows cells that were passaged 20 and B was frozen at thirty-five passages and thawed one more time after thawing. The scale bar indicates 100.
  • Matrigel registered trademark
  • Fig. 2 shows a culture coated with a Matrigel (registered trademark) matrix according to the "method of maintaining undifferentiation under feeder-free and site-free force-in" according to the present invention shown in Example 1.
  • This is a result of measuring the expression of SSEA-4 and Oct-4, which are undifferentiation maintenance markers, by flow cytometry in the 20th-generation force cynomolgus embryonic stem cells cultured in a dish. In both cases, very high! /, Expression (> 95%) is confirmed.
  • Fig. 3 shows a culture coated with a Matrigel (registered trademark) matrix according to the "method of maintaining undifferentiation under feeder-free and site-free force-in" of the present invention shown in Example 1. It is the photograph which showed the expression of Tra-1_60, Tra-l_81, and Nanog which is an undifferentiation maintenance marker by the immuno-staining in the 20th-passage force cynomolgus embryonic stem cell culture
  • the scale bar indicates 1 00 ⁇ m.
  • Fig. 4 shows a culture coated with a Matrigel (registered trademark) matrix according to the "undifferentiated maintenance passaging method under feeder-free and site-free force-in" of the present invention shown in Example 1.
  • 3 immunodeficient mice with 21-second-powered cynomolgus embryonic stem cells cultured in a dish It is a photograph of the testis two months after transplantation under the testicular membrane of (SCID mouse). As shown in FIG. 4, tumor formation was confirmed in all three animals.
  • Fig. 5 is a tissue sample of the above tumor (hematoxylin 'eosin staining). Neural epithelium, teeth, secretory gland, intestinal tract-like epithelium, smooth muscle, etc. are observed as described.
  • Fig. 6 shows a culture coated with a Matrigel (registered trademark) matrix by the "undifferentiated maintenance passaging method under feeder-free and site-free force-in" of the present invention shown in Example 2.
  • a phase-contrast photomicrograph of a colony of human embryonic stem cells of passage 24 cultured using a dish is shown.
  • the scale bar indicates 100 ⁇ u m.
  • Fig. 7 shows a culture coated with a Matrigel (registered trademark) matrix according to the "method of maintaining undifferentiation under feeder-free and site-free force-in" of the present invention shown in Example 2.
  • This is a result of measuring the expression of SSEA-4 and Oct-4, which are undifferentiation maintenance markers, in cultured human embryonic stem cells in passage 20 using flow dishes by flow cytometry. In both cases, a very high level and expression (> 95%) were confirmed.
  • Fig. 8 shows a culture coated with a Matrigel (registered trademark) matrix according to the "undifferentiated maintenance passage method under feeder-free and site-free force-in" of the present invention shown in Example 2. It is the photograph which showed the expression of the undifferentiation maintenance marker Oct-4 (A) and Nanog (B) in the human embryonic stem cell of the 25th passage cultured using the dish by the immuno-staining. It is confirmed that both proteins are expressed in almost all cells.
  • the scale bar indicates 100 ⁇ .
  • FIG. 9 is a chromosome analysis diagram (G band method) of human embryonic stem cells.
  • the left is maintained with the conventional culture method recommended by the establishment organization (co-culture method using fetal mouse fountain fibroblasts as one feeder cell)! This is the result of the 20th passage in the “Culture method using site-free force-in”. It was confirmed that no chromosomal abnormality occurred.
  • FIG. 10A shows human-derived fibronectin (5 H g / cm 2 ) according to the “method of maintaining undifferentiation under feeder-free and site-free force-in” of the present invention shown in Example 3.
  • 4 is a phase contrast micrograph of human embryonic stem cells in passage 4 cultured using a culture dish coated only with Resolve the ability to hold undifferentiated forms.
  • FIG. 10B shows the results of measuring the expression of SSEA-4 and Oct-4, which are undifferentiation maintenance markers, in the cells of FIG. 10A by flow cytometry. High expression of both markers was confirmed.
  • FIG. 10C shows a culture dish coated only with human type AB serum according to the “non-differentiation maintenance passaging method under feeder-free and site-free force-in” of the present invention shown in Example 3.
  • Fig. 5 is a phase contrast micrograph of human embryonic stem cells cultured at passage 4 after culturing V. Resolve the ability to hold undifferentiated forms.
  • FIG. 10D shows the results of measuring the expression of SSEA-4 and Oct-4, which are undifferentiation maintenance markers, in the cells of FIG. 10C by flow cytometry. High expression of both markers was confirmed.
  • FIG. 11 shows a differentiation lineage diagram from hematopoietic stem cells to blood cells.
  • FIG. 12 shows the presence of fetal bovine serum from forceped cynomolgus embryonic stem cells by the technique of inducing differentiation and expanding reproduction of vascular endothelial cells' blood cells using a feeder-free feeder of the present invention shown in Example 4.
  • the “specific progenitor cells” structures consisting of sac-like structures and spherical cell populations) that are common to vascular endothelial progenitor cells and blood cells are shown.
  • the scale bar indicates 100 ⁇ m.
  • Fig. 13 shows Wright-Giemsa staining (A) and special staining (myoperoxidase staining (B) and esterase) of mature blood cells produced from spherical cells among the above "specific progenitor cells”. Double staining (C)) is shown. Various myeloid cells are observed, ie cells at each stage of differentiation ranging from myeloblasts to mature blood cells (neutrophils and macrophages). The scale bar indicates 20 m.
  • FIG. 14 shows the expression of VE-cadherin, a vascular endothelial cell-specific marker, and N-cadherin, which is one of vascular endothelial cell markers, of vascular endothelial cells produced from the above-mentioned “specific progenitor cells”.
  • VE-cadherin a vascular endothelial cell-specific marker
  • N-cadherin which is one of vascular endothelial cell markers, of vascular endothelial cells produced from the above-mentioned “specific progenitor cells”.
  • the scale bar indicates 50 m.
  • FIG. 15 shows the expression of PECAM1, which is a marker of mature vascular endothelium, in vascular endothelial cells produced from the above-mentioned “specific progenitor cells” and VE, which is a vascular endothelium-specific marker. This was confirmed by flow cytometry by double staining with -cadherin.
  • the horizontal axis represents PECAM1, and the vertical axis represents the expression intensity of VE-cadherin. 40% or more In both cells, the expression of both is confirmed.
  • FIG. 16 shows the code-forming ability (A) and acetylated low-density lipoprotein (AC-LDL) for confirming the maturation function of vascular endothelial cells produced from the above-mentioned “specific progenitor cells”. This is an investigation of uptake capacity (B). V, it ’s too high! / Is very high!
  • FIG. 17 is a serum-free culture from a forceless cynomolgus embryonic stem cell according to the “method for inducing differentiation into vascular endothelial cells and blood cells without a feeder” of the present invention shown in Example 4. Shows Wright-Giems a staining (A) and special staining (myelin peroxidase staining (B) and esterase double staining (C)) of mature blood cells prepared under conditions (using KNOCKOUT (registered trademark) SR) . Various myeloid cells are observed, ie cells at each stage of differentiation ranging from myeloblasts to mature blood cells (neutrophils and macrophages). The scale bar indicates 20.
  • FIG. 18 shows the serum-free condition from a forceless cynomolgus embryonic stem cell according to the “method for inducing differentiation into vascular endothelial cells and blood cells without a feeder” of the present invention shown in Example 5.
  • the expression of VE-cadherin and PECAM1 in the vascular endothelial cells prepared in (using K NOCKOUT (registered trademark) SR) was confirmed by flow cytometry.
  • K NOCKOUT registered trademark
  • PECAM1 cell membrane expression was confirmed with an efficiency of more than several percent, which was believed to be the inability to induce differentiation of endodermal cells without serum.
  • FIG. 19 is a graph showing fetal bovine serum obtained from force-fed cynomolgus embryonic stem cells according to the “method for inducing differentiation into vascular endothelial cells and blood cells without feeder” shown in Example 6.
  • the scale bar indicates 100.
  • Fig. 20 is a phase-contrast photomicrograph showing the situation in which expanded reproduction of blood cells is performed by culturing the above-mentioned “specific progenitor cells”. Both hematopoietic stroma cells (adherent cells) and blood cells produced from them (floating cells) are confirmed.
  • the scale bar is 10 0 u m.
  • Fig. 21A-D shows the Wright-Giemsa stained image (A) of the blood cells (floating cells) collected during the process of expanding and regenerating the blood cells described above, and special staining (Mie mouth peroxidase staining). (B), esterase double staining (C), neutrophilic alkaline phosphatase staining (D)) Indicates. Various myeloid cells are observed, ie cells at each stage of differentiation ranging from myeloblasts to mature blood cells (neutrophils and macrophages). The scale bar indicates 20.
  • FIG. 21E shows the results of confirming the expression of CD34, which is one hematopoietic stem cell marker, in the blood cells (floating cells) of FIGS. 21A-D by flow cytometry.
  • FIG. 21F shows the results of confirming the expression of CD45 (F), which is a pan-blood cell marker, in the blood cells (floating cells) in FIGS. 21A-D by flow cytometry.
  • FIG. 22A is a phase contrast micrograph (a scale bar indicates 100 m) of a “passable hematopoietic stroma cell” produced from the above-mentioned “specific progenitor cells”.
  • FIG. 22B shows the results of the flow cytometry of the expression of CD34 and CD45 of the passable “hematopoietic stroma cells” produced from the above-mentioned “specific progenitor cells”.
  • Both the pancytopenic marker CD45 and the hematopoietic stem cell marker CD34 are almost negative (small positive cells are considered to be contaminated with hematopoietic stem cells adhering to hematopoietic stroma cells).
  • Fig. 23A shows “CD34-positive and CD45-positive” produced by long-term culture (> 100 days) of “passable hematopoietic stem / progenitor cells” produced from the above-mentioned “specific progenitor cells”. It is a phase-contrast micrograph of “cells”. Although floating cells and adherent cells coexist, they can migrate to each other and are considered to be equivalent cell populations (ie, hematopoietic stem cells and equivalents). The scale bar indicates 100.
  • Fig. 23B shows “CD34-positive and CD45-positive” produced by long-term culture (> 100 days) of “passable hematopoietic stem / progenitor cells” produced from the above-mentioned “specific progenitor cells”. The results of confirming the expression of CD34 and CD45 with respect to the floating cells and adherent cells in “cells” by flow cytometry are shown.
  • FIG. 24 is a phase-contrast micrograph of the situation in which the suspension was frozen and thawed and the culture was resumed in the situation where the above-mentioned “expanded reproduction of blood cells” was performed. In all cases, the presence of hematopoietic stromal cells (adherent cells) and blood cells (floating cells) produced therefrom were confirmed just as before freezing. The scale bar indicates 100 ⁇ .
  • Fig. 25 shows the vascular endothelial cells and feeder-free cells of the present invention shown in Example 7.
  • A Wright-Giemsa stained image (A) of blood cells prepared from serum-free cynomolgus embryonic stem cells under serum-free conditions (using K NOCKOUT (registered trademark) SR) Staining (shows myelin peroxidase staining (B), double staining of esterase (C). Various myeloid cells are observed. Scale bar indicates 20.
  • FIG. 26 shows vascular endothelial progenitor cells from human embryonic stem cells according to the “method for inducing differentiation into vascular endothelial cells and blood cells without a feeder” of the present invention shown in Example 8. And “specific progenitor cells” of blood cells (structures consisting of sac-like structures and spherical cell populations).
  • the scale bar indicates 100 ⁇ u m.
  • Fig.27 shows Wright-Giemsa staining image (A) of mature blood cells (floating cells) produced from the above-mentioned "specific progenitor cells” and special staining (esterase double staining (B), Neutrophil alkaline phosphatase staining (C)).
  • A mature blood cells
  • B specific progenitor cells
  • C Neutrophil alkaline phosphatase staining
  • Various myeloid cells are observed, ie cells at each stage of differentiation ranging from myeloblasts to mature blood cells (neutrophils and macrophages).
  • the scale lever shows 20.
  • Fig. 28 shows the results of the method of inducing differentiation into vascular endothelial cells and blood cells without feeders shown in Example 8 in Example 8 in the presence of fetal bovine serum from human embryonic stem cells.
  • the expression of CD34 and CD45 in the floating cells prepared in step 1 was confirmed by flow cytometry. It can be seen that almost all cells express the panblood cell marker CD45, and blood cell differentiation is induced with very high efficiency. Also, since about 10% of CD34 positive cells are detected, hematopoietic stem cells are also present!
  • FIG. 29 shows a lymphoprep (registration) from blood cells produced by the “method of inducing differentiation into vascular endothelial cells and blood cells without a feeder” of the present invention shown in Example 8.
  • This is the result of concentrating neutrophils by density gradient centrifugation using a trademark (made by Daiichi Chemicals Co., Ltd.).
  • B concentration
  • A force
  • neutrophils are stained blue-purple by neutrophil alkaline phosphatase staining.
  • FIG. 30 shows serum-free conditions (KNOCKOU) from human embryonic stem cells according to the “method for inducing differentiation into vascular endothelial cells and blood cells without feeder” shown in Example 9.
  • Flow cytometry analysis of CD45 expression in suspension cells made with T (registered trademark) SR It was confirmed by one. It can be seen that almost all cells express CD45, which is a pan-blood cell marker, and blood cell differentiation is induced with very high efficiency.
  • Figure 31 shows N-cad herin in three types of human primary cultured vascular endothelial cells (human umbilical vein endothelial cells (HUVE C), human microvascular endothelial cells (HMVEC), and human aortic endothelial cells (HAEC)).
  • the intracellular expression pattern of was examined by immunostaining. While vascular endothelial cells prepared from primate embryonic stem cells clearly show cell membrane localization (in Figure 14), N-cadherin cell membrane localization has already been lost in primary human vascular endothelial cells.
  • the power S is understood.
  • the scale bar shows 50 01.
  • FIG. 32 is a tumor tissue specimen (hematoxylin eosin staining) shown in Example 10.
  • Ectodermal component neuroepithelial cell; Fig. A, tooth enamel epithelium; Fig. D), mesoderm component (smooth muscle; Fig. B, dentin; Fig. D), endoderm component (gut epithelium; Fig.) b, secretory gland tissue; the three germ layers of Fig. c) are observed.
  • FIG. 33 is a tumor tissue specimen (hematoxylin eosin staining) shown in Example 11.
  • Ectodermal component neuroepithelial cell; Fig. A, pigment epithelium; Fig. B, sebaceous gland: Fig. H), mesoderm component (bone; Fig. D, adipocyte; Fig. E, cartilage; Fig. F), endoderm
  • Fig. C and Fig. G There are three germ layer components (secretory glands; Fig. C and Fig. G).
  • FIG. 34 shows VE-cadherin expression examined by immunostaining after fixing the sac structure shown in Example 12 with an acetone / methanol mixture.
  • the localization of VE-cadherin at the intercellular boundary is clear. Paving stone cells become distant and motility increases, and the membrane localization of VE-cadherin is unclear.
  • VE-cadherin is expressed intracellularly. These VE-cadherin-positive cells are! /, And the power of PCNA, which is a proliferation marker, is positive.
  • the large cells (arrows) of VE-cadherin-negative cells are negative for PCNA and do not proliferate! / I understand.
  • the scale bar indicates 100 ⁇ m.
  • FIG. 35 shows the expression of VE-cadherin by immunostaining in the structure shown in Example 12 in which the structure shown in FIG. 34 was peeled and collected as a lump and subcultured. is there .
  • the scale bar indicates 20.
  • FIG. 36 shows subcultures of the sac-like structure and paving stone cells shown in Example 12, and the expression of VE-cadherin and PECAM1 was measured with a flow cytometer over time. Is. The initial passage is;! ⁇ 20%, but as the number of passages progresses, the VE-cadherin / PECAMl positive rate increases.
  • FIG. 37A shows immunostaining of monkey embryonic stem cell-derived endothelial cells and human aortic smooth muscle cells shown in Example 12 with anti-smooth muscle actin (ACTA2) antibody or control IgG (FIG. 37A, upper panel).
  • the lower part of FIG. 37A shows a differential interference image of the cell.
  • the population of monkey embryonic stem cell-derived endothelial cells was ACTA2-negative, confirming that perisite was not contaminated.
  • the scale bar indicates 20.
  • FIG. 37B shows immunostaining of monkey embryonic stem cell-derived endothelial cells and human aortic smooth muscle cells shown in Example 12 with anti-platelet-derived growth factor receptor ⁇ (PDGFR ⁇ antibody or control IgG).
  • Figure 37B, upper panel shows a differential interference image of the cells, and the population of monkey embryonic stem cell-derived endothelial cells is PDGFR ⁇ -negative, and it is confirmed that the perisite is not contaminated.
  • the scale bar shows 20 ⁇ m.
  • FIG. 38A shows immunostaining of monkey embryonic stem cell-derived endothelial cells and undifferentiated embryonic stem cells shown in Example 12 with anti-human Nanog antibody (Reprocell) or control IgG (FIG. 38A, upper panel). ).
  • the lower part of FIG. 38A shows a differential interference image of the cell.
  • the monkey embryonic stem cell-derived endothelial cell population was Nanog-negative, and it was confirmed that undifferentiated embryonic stem cells were not contaminated.
  • the scale bar indicates 20.
  • FIG. 38B shows the anti-human Nanog antibody (left) using the lysate of human umbilical vein endothelial cells (HUVEC), monkey embryonic stem-derived endothelial cells and undifferentiated embryonic stem cells shown in Example 12. Western blotting was performed with anti- ⁇ -tubulin antibody (right). The population of monkey embryonic stem-derived endothelial cells was Nanog-negative, confirming that the undifferentiated embryonic stem cells were not contaminated.
  • HUVEC human umbilical vein endothelial cells
  • monkey embryonic stem-derived endothelial cells undifferentiated embryonic stem cells shown in Example 12.
  • Western blotting was performed with anti- ⁇ -tubulin antibody (right).
  • the population of monkey embryonic stem-derived endothelial cells was Nanog-negative, confirming that the undifferentiated embryonic stem cells were not contaminated.
  • FIG. 39A shows the results of FACSAria (BD Bioscience) after the passage of the sac-like structure shown in Example 12, after the JrL ⁇ E-cadherinirL body (Beckman Coulter, Clone Using TEA1.31), the VE-cadherin positive and negative fractions are sorted.
  • VE_ca Even when the dherin-positive fraction (Fig. 39A) was subcultured, VE-cadherin expression was stably maintained (Fig. 39B), and it was confirmed that the cells were amplified about 160 times by subculture for 5 times. It was.
  • FIG. 39C shows the expression of VE-cadherin by immunostaining using an anti-VE-cadherin antibody (BD, clone 75) after subculture of the VE-cadherin positive fraction shown in Example 12. It was confirmed. The localization of VE-cadherin was confirmed at the intercellular junction of all cells.
  • the scale bar shows 10 01.
  • FIG. 40 shows the results of sorting the sac-like structures shown in Example 12 into VE-cadherin positive and negative fractions using FACSAria (BD Bioscience) after one passage. It is.
  • the VE-cadherin negative fraction does not express VE-cadherin on the cell surface (Fig. A)
  • VE-cadherin is expressed in the cell, coding ability (Fig. B), and low acetylation.
  • Specific gravity lipoprotein (Ac-LDL) uptake capacity Di (Ac-LDL; fluorescently labeled Ac_LDL.
  • LDL is unlabeled LDL as a negative control
  • Figure C committed to vascular endothelial cells It was confirmed to be a cell.
  • the scale bar indicates 100.
  • FIG. 41a is a tumor tissue specimen of rat Dariooma transplanted into mice shown in Example 13.
  • the tumor is rich in large blood vessels and easily bleeding.
  • FIG. 41b shows the histological examination after fixing the tumor tissue of FIG. 41a with formalin, preparing a sliced slice, and performing hematoxylin-eosin staining (HE staining). . It can be seen that co-transplanted cynomolgus embryonic stem cell-derived vascular endothelial cells show a structure rich in blood vessels.
  • the scale bar in Figure 41b shows 100 mm.
  • Fig. 41c shows immunostaining of tumor cells formed by co-transplantation of rat Dario cell and cynomolgus monkey embryonic stem cell-derived vascular endothelial cells using anti-human HLA-A, B, and C antibodies. This is the result.
  • Endothelial cells lining the intratumoral neovascularization are derived from primates, that is, derived from vascular endothelial cells derived from power bicyno embryonic stem cells.
  • FIG. 42a shows the results of analysis of the expression of VE-cadherin and PECAM1 on the cell surface of the vascular endothelial cells induced in human embryonic stem cells shown in Example 14 using a flow cytometer.
  • the proportion of VE-cadherin / PECAMl double positive cells is about 20% in the early passage, but it reaches 70% in the later passage.
  • FIG. 42b is an in vitro functional evaluation of human embryonic stem cell-derived vascular endothelial cells shown in Example 14. It can be seen that both acetylated low density lipoprotein uptake and code formation are positive.
  • the scale bar indicates 100 m.
  • FIG. 42c shows the results of plug assembly for evaluating the function of human embryonic stem cell-derived vascular endothelial cells shown in Example 14 in vivo.
  • Collagen plugs transplanted with human embryonic stem cell-derived vascular endothelial cells were collected, fixed in formalin, and then immunostained with human HLA-A, B, C antibodies and human PECAM1 antibodies. It can be seen that the new blood vessels formed in the plug are derived from primates, ie, human embryonic stem cell-derived vascular endothelial cells.
  • the scale bar indicates 40 ⁇ m.
  • FIG. 43 shows the analysis of the expression of blood cell markers centered on neutrophils shown in Example 15 by flow cytometry.
  • FIG. 44 shows the results of measuring the positive rate of human-derived neutrophils by flow cytometry using anti-human CD66b antibody shown in Example 16.
  • the present invention is basically intended for the inventors to reduce the stress on cells and achieve the inherent controlled differentiation of cells during culture and passage of primate embryonic stem cells. It was achieved as a result of finding appropriate conditions. Specifically, as described later, the present inventors have found conditions for reducing or eliminating stress on embryonic stem cells, differentiated progenitor cells and mature cells of primates, and thereby the embryos. Achieving sustained and stable maintenance of sex stem cells, and at the same time, safely producing target cells that are efficient from embryonic stem cells The method to complete was completed.
  • the method of the present invention for culturing and passaging primate embryonic stem cells in an undifferentiated state comprises the following steps.
  • step (B) exfoliating the embryonic stem cell colonies formed in step (A) in the presence of a cell exfoliating agent
  • the embryonic stem cell colony obtained in the above step (B) is seeded in a medium containing a protein component in a container coated with an extracellular matrix under a feeder-free and site-free force-in.
  • the present inventors have experimentally confirmed that primate embryonic stem cells are in an undifferentiated state without supplementation with external specific factors (factors secreted by feeder cells, synthesis site force-in, etc.). It is based on having acquired the knowledge that it has the ability to maintain. Based on these findings, primate embryonic cells, which were difficult or impossible in the past, can be transformed into feeder-free, site-free by selecting an appropriate medium, culturing and subculturing with appropriate procedures. It was possible to maintain the undifferentiated state under force-in, and to continue to pass stably over a long period of several tens of times without causing chromosomal abnormalities.
  • the "primate embryonic stem cell” means an embryonic stem cell derived from any primate animal. Primate embryonic stem cells and methods for their preparation are known, for example, force cynomolgus monkey embryonic stem cells [Suemori, S., et al., “Strengthened cynomolgus blastocysts produced by IVF or ICSI. TeTA bstablishment or embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSL), Dev. Dynamic s Vol. 222, Brother pp. 273 p.
  • primary embryonic stem cell in the context of the present invention means an undifferentiated primate embryonic stem cell.
  • Confirmation that the primate embryonic stem cells are in an undifferentiated state can be performed by a known evaluation method. For example, expression of molecular markers (expression measurement by flow cytometry such as SSEA-4, Oct-4, immunostaining of Oct_4, Nanog, etc.), confirmation of pluripotent differentiation in in vitro experiments, immunodeficient mice, etc. Confirmation of the formation of teratomas by transplantation into the cerebral organ is performed by methods known to those skilled in the art.
  • the primate embryonic stem cell culture and passaging method uses a normal medium (with no addition of cytodynamic force) used to maintain primate embryonic stem cells. You can power s . Specifically, for example, Iskov modified Dulbecco medium (IMDM / Ham's F-12) and the like can be mentioned.
  • IMDM Iskov modified Dulbecco medium
  • the seeding of embryonic stem cells in the medium is performed according to the method described below. It should be noted that the medium used for the passage may not be necessarily the same as long as the embryonic stem cells can be maintained in an undifferentiated state. Specifically, the culture media in step (A) and step (C) may be the same or different.
  • the protein component used in the above-mentioned "method for maintaining undifferentiated primate embryonic stem cells” may be "other than animal serum” used to maintain primate embryonic stem cells.
  • animal serum used to maintain primate embryonic stem cells.
  • serum albumin for example, serum albumin, human type AB serum and the like can be mentioned.
  • commercially available serum-free additives suitable for maintenance and proliferation of embryonic stem cells such as KNOCK OUT (registered trademark) SR (manufactured by Invitrogen), can also be used.
  • the "extracellular matrix” includes the extracellular matrix components secreted by cells (Matrigel (registered trademark) Matrix (manufactured by BD), etc.) and other extracellularly secreted cells. Components that enhance, collagen, laminin, fibronectin, vitronectin, hyaluronic acid obtained from living organisms including humans, and artificially synthesized products of these proteins and polysaccharides (including degradation products and fragmented products), from living organisms including humans Examples thereof include serum and plasma obtained and products separated or purified from these.
  • the culture vessel can be coated with the extracellular matrix by a conventional method.
  • the extracellular matrix is preferably derived from primates including humans. In addition, it is preferable to use the latter when the extracellular matrix is obtained from both a heterogeneous animal and a human, and the latter is inferior to the former.
  • a method described below which is preferably performed by a method that does not induce cell stress to the maximum extent.
  • a culture dish coated with a Matrigel (registered trademark) matrix is used, desvases and the like are preferable, but it is not limited to this as long as there is no cell stress or it has been confirmed that it is sufficiently low.
  • the stress applied to the cells is easily determined based on the number of dead cells and the rate of cell proliferation. It is necessary to confirm that a chromosomal abnormality has been induced, etc.
  • the culture vessel may be any vessel that is usually used for cell culture.
  • the cell density when seeding primate embryonic stem cells in culture vessels is chosen to minimize stress on the cells. Control of cell density is achieved by appropriate selection of colony size and number of primate embryonic stem cells.
  • the size of a colony when seeded in a culture vessel of primate embryonic stem cells is easy to confirm by observation using a microscope (such as an inverted phase contrast microscope) and is highly effective. It may be confirmed by a method (visual observation, measurement of the amount of side scattered light, measurement of solution turbidity, etc.).
  • the optimal colony size is determined for each individual primate embryonic stem cell.For example, in the case of cynomolgus monkey embryonic stem cells or human embryonic stem cells, The diameter is about 100 m to about 2000 m, preferably about 300 m to about 1000 m, more preferably about 500 ⁇ m.
  • Control of the size of colonies when primate embryonic stem cells are seeded in a culture vessel is achieved by appropriately performing a cell detachment operation.
  • Cell detachment is preferably performed under conditions that minimize stress on the cells.
  • the release agent at least one selected from the group consisting of trypsin, collagenase and dispase is preferred, and dispase alone or a combination of dispase and other release agent is preferable.
  • a commercially available cell detachment agent (cell detachment solution for primate embryonic stem cells (Librocell)) or the like can also be used.
  • a suitable exfoliation method is a force determined for each primate embryonic stem cell.
  • the method shown in Example 1 described below is recommended.
  • a feeder-free culture of cynomolgus monkey embryonic stem cells In cell detachment at the time of passage, only extracellular matrix is used rather than collagenase solution (which may degrade cell membrane proteins).
  • collagenase solution which may degrade cell membrane proteins.
  • cell stress can be greatly suppressed, which is preferable, but not necessarily limited thereto.
  • the number of colonies when seeding in a primate embryonic stem cell culture vessel can be easily confirmed by observation with a microscope (such as an inverted phase contrast microscope). You can also use a calculator)!
  • the optimal value for the number of colonies (density) when seeded in a primate embryonic stem cell culture vessel is determined for each individual primate embryonic stem cell, but the colonies do not interact during the culture period. It is necessary to make it less than the density that does not fuse. For example, in the case of force cynomolgus embryonic stem cells or human embryonic stem cells, the methods shown in the examples described below (particularly Examples;! To 3) are recommended.
  • Passage frequency (timing) of primate embryonic stem cells is determined for each primate embryonic stem cell.
  • the colony diameter reaches approximately twice that of the seeding time. Is easy.
  • the methods shown in the examples described later are recommended. That is, the colony size is about 200 ⁇ m to about 4000 ⁇ m, preferably about 600 ⁇ m to about 2000 ⁇ m, more preferably about 1000 ⁇ m. When it reaches, it is peeled off and sown again.
  • exfoliation operation according to the method shown in Examples 1 to 3 is performed, colonies are dispersed into uniform colonies having an average diameter of about 500 m.
  • the primate embryonic stem cells are maintained in an undifferentiated state by exchanging the medium based on the above-mentioned colony size.
  • the specific frequency varies depending on the origin of embryonic stem cells, culture conditions, etc., and is adjusted as appropriate.
  • a good undifferentiated state is maintained by exchanging the medium 4 times or more, preferably 5 times or more, more preferably 6 times or more per week (7 days). Is done.
  • Culture conditions for primate embryonic stem cells may be any conditions suitable for culturing embryonic stem cells, for example, 37 ° C, 5% by volume, etc. The concentration may be changed.
  • Method for culturing and passage of primate animal cells” of the present invention can be cryopreserved by a conventional method.
  • a conventional method for example, in the case of cynomolgus monkey embryonic stem cells or human embryonic stem cells, the method shown in Example 1 described below is recommended.
  • the culturing operation in the method of the present invention is extremely simple and does not require special equipment or special skills, so it can be performed immediately at any facility in the world.
  • the primate embryonic stem cell undifferentiated maintenance culture method according to the present invention can be widely implemented in the three fields of “clinical medicine”, “medical industry”, and “basic medical biology research”. It can contribute greatly to these developments.
  • the present invention relates to a method for producing blood cells, myeloid cells, vascular endothelial progenitor cells, stromal cells, hematopoietic stem cells and the like from primate embryonic stem cells without a feeder.
  • the method for producing blood cells and / or vascular endothelial progenitor cells using the feeder-free device of the present invention comprises the following steps.
  • step (B) Step for producing specific progenitor cells including floating cells and adherent cells by adhesion culture of the embryoid body or embryoid body-like cell aggregate obtained in step (A) in the presence of site force-in.
  • step (C) Step of separating floating cells and adherent cells from the specific progenitor cells obtained in step (B).
  • the method for producing blood cells, hematopoietic stromal cells and / or hematopoietic stem cells with the feeder-free device of the present invention comprises the following steps.
  • step (B) a step of producing specific precursor cells including floating cells and adherent cells by adhesion culture of the embryoid body or embryoid body-like cell aggregate obtained in step (A) in the presence of site force-in, and
  • step (C) A step of culturing the specific progenitor cells obtained in step (B) while separating floating cells.
  • "Suspension culture” in the above-described method of the present invention means culturing cells while maintaining a floating state using a low-adsorption culturing vessel or the like (low-attachment plat es et.).
  • the “adhesion culture” in the above-mentioned method of the present invention is a culture using a normal cell culture vessel in a state in which adhesion of cells to the culture vessel is ensured.
  • the above-described methods (1) and (2) of the present invention basically consisted of the present inventors' "formation of embryoid stem cells or similar cell aggregates from embryonic stem cells. Under the conditions, it is based on the finding that, when adhesion culture is performed with an appropriate technique in an appropriate differentiation medium containing cytoforce-in, differentiation control into cells of the target series can be achieved. It has become possible to produce and expand reproduction of blood cells, vascular endothelial progenitor cells, stromal cells, hematopoietic stem cells, myeloid cells, etc. from primate embryonic stem cells that were difficult or impossible in the past.
  • embryonic stem cells differentiate into vascular endothelial cells and blood cells via undifferentiated mesoderm, common precursor cells of vascular endothelial cells / blood cells (for example, Jun Yamashita, Inflammatory Disease) .Reproduction 22, Vol. 509, 2002).
  • blood cells refer to all blood cells.
  • specific examples of the blood cells include, for example, hematopoietic stem cells 0102, lymphoid stem cells 0133, and lymphoid dendritic cells in the differentiation system from embryonic stem cells to blood cells shown in FIG.
  • the “blood cell” includes a progenitor cell of a hematopoietic stem cell; It includes all forms of blood cells that exist on all differentiation processes up to differentiation into treetop blood.
  • myeloid cells examples include myeloblasts, promyelospheres, myelospheres, retromyelocytes, neutrophils, monocytes, macrophages and the like.
  • the origin of the primate embryonic stem cells that are the starting material is not particularly limited, and is maintained by passage according to the method described in I above and, if necessary, cryopreserved! I'll use it with power.
  • the culture technique in the above-mentioned "11. Method for inducing differentiation of primate embryonic stem cells without feeder” is the formation of embryoid body or embryoid body-like cell aggregate by suspension culture of primate embryonic stem cells. And a step related to the adhesion culture of a cell aggregate of embryoid body or embryoid body-like body.
  • the “cell aggregate similar to embryoid body” means a cell aggregate in the middle of formation of an embryoid body from embryonic stem cells.
  • Examples of methods for forming a cell aggregate of embryoid bodies or embryoid body-like cells include a conventional hanging drop method, a culture using a conventional non-adhesive culture dish, and a culture using a conventional semi-solid medium.
  • the present invention is not limited thereto as long as a definitive body or a cell aggregate similar to a definitive body is formed.
  • the period of suspension culture for producing embryoid body or embryoid body-like cell aggregates varies depending on the cells, culture conditions, and desired product. Usually, it is about 2 days to 2 weeks. The shorter the period, the greater the ratio of cell clumps to embryoid bodies.
  • the pulmonary lobe or similar cell aggregates are adhered and cultured in an optimized differentiation medium as they are. This is different from the conventional method of refining and separating the “progenitor cell population” that has been differentiated in the preferred direction after loosening to the cellular level from the embryoid body or similar cell aggregates by enzyme treatment etc. It is epoch-making in that differentiation induction can be achieved simply and safely with high efficiency.
  • the target series can be obtained with extremely high efficiency (efficiency of almost 100% for both vascular endothelial cells and blood cells) Differentiation control is achieved. This shows that the maintenance of “controlled differentiation” in the development process of individual animals is achieved.
  • “Differentiation medium” means a medium in which at least one cytodynamic in is added to a medium for culturing the above-described primate embryonic stem cells in an undifferentiated state.
  • the medium may contain other suitable additives as desired, as long as they do not adversely affect cell maintenance and differentiation.
  • the "site force in” can be appropriately selected according to the purpose, and such a cytokin is known to those skilled in the art.
  • the cyto force-in that can be used in the present invention is not particularly limited as long as it is a factor for differentiating embryonic stem cells into blood cells and / or vascular endothelial cells.
  • stem cell factor SCF
  • G—CSF granulocyte colony Stimulating factor
  • GM—CSF granulocyte macrophage colony stimulating factor
  • M—CSF macrophage colony stimulating factor
  • EPO erythropoietin
  • TPO thrombopoietin
  • FL Flt3 ligand
  • IL interleukin
  • VEGF vascular endothelial growth factor
  • BMP bone morphogenetic protein
  • BMP eg BMP-4, etc.
  • oncostatin M acidic and basic fibroblast growth factor (acidic) FGF, basic FGF), angioboyetin family (for example, Angiopoietin-1 and Angiopoietin-2), and the like.
  • the G-CSF has a function of enhancing neutrophil production.
  • EPO erythropoietin
  • TPO thrombopoietin
  • NK cells natural killer cells
  • the basic culture component used in the above-mentioned "11. Method for inducing differentiation of primate embryonic stem cells without feeder” according to the present invention is as described above from primate embryonic stem cells to vascular endothelial cells.
  • Specific examples of the medium that can be used for inducing differentiation into blood cells include Iskov modified Dulbecco medium (MDM).
  • Method for inducing differentiation of primate embryonic stem cells without feeder includes primate embryonic stem cells to vascular endothelial cells 'blood cells'
  • fetal calf serum, human serum (reducing the risk of inducing immune rejection, type AB serum should be used if it is suitable for inducing differentiation into Are preferable)
  • KNOCKOUT (registered trademark) SR manufactured by Invitrogen, and the like.
  • the coating component of the culture dish used in the above-mentioned "11. Method for inducing differentiation of primate embryonic stem cells without feeder” includes primate embryonic stem cells to vascular endothelial cells and blood cells.
  • a specific example is gelatin that is suitable for inducing differentiation.
  • the culture vessel may be any vessel that is usually used for cell culture.
  • the primate embryonic stem cell culture conditions may be any conditions suitable for culturing embryonic stem cells, for example, 37 ° C, 5% by volume, etc. You may be fi.
  • the culture conditions in the “method for inducing differentiation of primate embryonic stem cells without feeder” according to the present invention are appropriately set according to the type of primate embryonic stem cells used.
  • Force can S, for example, 37 ° C, 5% by volume Ji ⁇ second conditions.
  • adhesion culture is performed until “specific progenitor cells” are formed.
  • the medium exchange and detachment operation are performed according to the description in “1. Method for inducing differentiation of primate embryonic stem cells without feeder”.
  • Specific progenitor cells refer to embryoid bodies or cells that contain floating cells (spherical or near-spherical cells that have the property of floating in the culture medium) and adherent cells (cells that adhere to the culture vessel). Means a progenitor cell differentiated from an agglomerate-like cell aggregate. This may form a sac-like structure containing spherical cell populations and adherent cells as floating cells (containing the spherical cell population inside), but sac-like structures are not necessarily formed. As described in the examples below, by culturing embryoid bodies or cell aggregates similar to embryoid bodies under the appropriate conditions in the presence or absence of serum, the sac structure is included or not included. Specific precursor cells can be formed.
  • spherical cell When a sac-like structure is formed, floating cells (spherical cells) are released not only in the structure but also in the culture solution. If the sac-like structure is not formed, it exists in a suspended state in the culture medium. Therefore, in this specification, the phrase “spherical cell” or “floating cell” broadly refers to both forms of cells. Blood cells (such as hematopoietic progenitors and mature blood cells committed to myeloid cells) can be derived from floating cells (spherical cells) of specific progenitor cells, and vascular endothelial progenitor cells and hematopoietic cells can be derived mainly from adherent cells. Stromal cells can be induced. Hematopoietic stem cells are derived from both floating cells and adherent cells.
  • the selection of “progenitor cell population” that is being differentiated into a specific lineage is preferably performed based on observation of the tissue morphology of cells under a phase contrast microscope. Achieving “correctly controlled and effective differentiation induction” by a method based on the tissue morphology rather than the conventional method of sorting cells using a cell sorter such as a cell sorter using specific antibodies against molecular markers That power S. That is, in the case of the conventional method based on molecular markers, there is a problem that cells are damaged by the use of a cell separation device whose specificity is always high.
  • the various embryonic morphology is determined by observing under a phase-contrast microscope while continuing adhesion culture in a new culture dish without destroying the embryoid body. And sort.
  • the sac-like shape as shown in Fig. 12, Fig. 19 and Fig. 26
  • the “structure” and the spherical cells (floating cells) contained therein are the precursors of vascular endothelial cells and blood cells.
  • the method for producing blood cells and / or vascular endothelial progenitor cells without feeders according to (1) Floating cells and adherent cells are separated from specific progenitor cells including vascular and adherent cells, and blood cells and vascular endothelial progenitor cells are prepared from each.
  • the floating cells in the culture solution and the spherical cells in the sac structure are separated by centrifugation or the like. Separation of the spherical cells from the sac-like structure is carried out by providing an opening in the sac-like structure and suspending the spherical cells by an appropriate method. This operation is preferably performed before the sac-like structure is completely filled with cells. Normally, the opening of the sac-like structure is closed again by culture, and the inside is filled with spherical cells.
  • the method for producing blood cells, myeloid cells, hematopoietic stromal cells and / or hematopoietic stem cells without feeders in (2) can be performed by appropriately separating floating cells released into the culture medium. And culturing specific progenitor cells having a sac-like structure containing floating cells and adherent cells as they are.
  • the suspension cells are separated by centrifugation or the like.
  • blood cells are continuously cultured in a mixed state of adherent cell populations containing sac-like structures and floating cell populations while appropriately releasing floating cells without separating spherical cells from sac-like structures.
  • hematopoietic stem cells can be obtained. Formation of the generated stromal cells or hematopoietic stem cells can be confirmed by detection of each cell marker. Such markers are generally known to those skilled in the art.
  • an adherent cell (blood cell progenitor) is obtained by a method in which a blood cell progenitor cell (such as a spherical cell in a sac-like structure) produced by adhesion culture of embryoid body cells is further cultured and subcultured.
  • a culture method for expanding and reproducing blood cells is also included, while maintaining the situation where cells, hematopoietic stroma cells) and floating cells (blood cells) are mixed.
  • the present invention provides for the first time a method for producing “hematopoietic stromal cells” from embryonic stem cells. It has also been clarified that the hematopoietic stem cells produced according to the present invention have not only properties as floating cells but also properties as adherent cells (see FIG. 23).
  • the vascular endothelial cells, blood cells, myeloid cells, hematopoietic stromal cells, hematopoietic stem cells, etc. of the present invention are, for example, a medium such as a cell cryopreservation solution such as bun bunker (manufactured by Nippon Genetics), and nitrogen. Maintained under gas freezing conditions.
  • a cell cryopreservation solution such as bun bunker (manufactured by Nippon Genetics)
  • bun bunker manufactured by Nippon Genetics
  • Vascular endothelial cells, blood cells, myeloid cells, hematopoietic stromal cells, hematopoietic stem cells and the like obtained by such a production method are substantially free from contamination with heterologous animal cells, infection with heterologous animal-derived viruses, and the like. Excellent properties are shown.
  • the vascular endothelial cells, blood cells, and hematopoietic stroma cells according to the present invention all exhibit high purity and homogeneous properties. Accordingly, the vascular endothelial cells according to the present invention relate to materials for the treatment of vascular injury and improvement of local blood flow, transplant materials, the use for the production of these materials, and the generation and differentiation mechanism of vascular endothelial cells.
  • the blood cells according to the present invention can be used as blood for transfusion, use for production of blood for transfusion, and materials for basic research on hematopoietic mechanism.
  • the hematopoietic stromal cells according to the present invention can be used as materials for transplantation medicine for hematopoietic disorder and basic research on hematopoietic mechanisms.
  • myeloid cells are considered useful for the treatment of bone marrow injury.
  • vascular endothelial precursors From the cells, a cell population with a higher maturity can be separated as a VE-cadherin-positive PECAM1-positive double-positive population on the cell membrane surface by cell sorter or bead sedimentation. Specifically, vascular endothelial cells are separated by, for example, cell sorting by flow cytometry using a specific antibody against a marker such as VE-cadherin or PECAM1, cell sorting using a magnetic bead holding the antibody, etc. Can do.
  • vascular structure it is also possible to obtain a three-dimensional vascular structure by culturing in, for example, a collagen gel using the vascular endothelial cell of the present invention. It is also possible to form a new vascular network in vivo by transplanting the vascular structure thus constructed to an animal.
  • a flow using an antibody against a lineage-specific marker using blood cells produced by the method for producing blood cells without a feeder of the present invention.
  • Cell sorting by cytometry, cell sorting using magnetic beads holding the antibody, etc. can be applied to separate and concentrate only a specific series of blood cells such as hematopoietic stem cells, neutrophils, monocytes, lymphocytes, etc. it can.
  • hematopoietic stem cells are separated and concentrated by collecting a CD34 positive CD45 positive double positive cell fraction using CD34 antibody and CD45 antibody.
  • a feeder-free differentiation medium in which hematopoietic stem / progenitor cells may be further differentiated under appropriate conditions according to the type of the target blood cell or the like. You may change the inside site power in appropriately.
  • examples of blood cell production by various site force-in include differentiation into granulocytes by G-CSF and GM-CSF, and simple production by GM-CSF and M-CSF.
  • Sphere / Macropha Differentiation into NK cells by IL 15 differentiation into red blood cells by EPO, differentiation into megakaryocytes / platelets by TPO, differentiation into dendritic cells by IL 4 and GM-CSF, etc. It is done.
  • the method for maintaining undifferentiated primate embryonic stem cells under feeder-free and site-free force-in, and differentiation into vascular endothelial cells, blood cells, etc. without feeders according to the present invention.
  • the induction method is not limited to use with embryonic stem cells, and various cells (such as testicular stem cells, adult stem cells, etc. that retain pluripotent differentiation potential) can be modified by modifying the culture conditions. Application development is possible as a differentiation technique to group).
  • a primate animal can be obtained by a simple culturing operation and using only an inexpensive culturing device without being substantially contaminated with a heterologous animal cell or infected with a heterologous animal-derived virus.
  • embryonic stem cells From embryonic stem cells, vascular endothelial cells that can be maintained for passage, blood cells that can be expanded and regenerated (including hematopoietic stem cells to mature blood cells), hematopoietic stroma cells, etc. are all very high and efficient (almost) It is possible to create it near 100%!
  • the “method for inducing differentiation into vascular endothelial cells and blood cells without a feeder” according to the present invention has very high differentiation efficiency, no cell damage, and high feasibility. Implemented promptly around the world, the benefits are enormous.
  • Forced Cynomolgus Embryonic Stem Cell is an undifferentiated maintenance culture solution 1 1 (composition: DMEM / H ⁇ S F-12 (manufactured by Kojin Bio), 20 vol% KNOCKOUT (registered trademark) SR (Invitrogen Corp.) ImM L gnoretamine (Invitrogen Corp.), 2 mM non-essential amino acid solution (Invitrogen Corp.), ImM sodium pyruvate (Invitrogen Corp.), final concentration 100 U / ml Penicillin (Invitrogen Corp.), final concentration 100 g / ml 10 cm culture dish coated with leptomycin (manufactured by Invitrogen Corp.) using Matrigel® matrix (manufactured by BD (BD Biosciences)) diluted 30 times at room temperature for 15-30 minutes The cells were cultured on a top or on a 78 cm 2 culture dish in a CO incubator at 37 ° C and 5 volumes 0 / oCO.
  • Forced cynomolgus embryonic stem cells have a relatively uniform colony size of 500 m in diameter, and are in the field of view of a 4 ⁇ objective lens (10 ⁇ eyepiece) of a phase contrast microscope; ! ⁇ Seeding at a density of about 2 pieces.
  • the medium is changed on the next day. Further, since the size of the colony becomes about 1000 on the next day, it is detached with dispase ⁇ 0 (80 Biosciences)] and subcultured to a new culture vessel coated with Matrigel (registered trademark) matrix.
  • the force cynomolgus embryonic stem cells can be fed to the above-mentioned culture medium without adding feeders that do not allow colonies to join, and to which the synthetic site force-in is not added. It is possible to carry out amplification culture while maintaining an undifferentiated state appropriately.
  • the undifferentiated maintenance state was maintained appropriately. Specifically, the cell morphology preferred as an undifferentiated state (see FIG. 1) and the high level of undifferentiated maintenance markers SS EA-4, Oct-4, Nanog, Tra-1-60, Tra-1-81 Expression (see FIGS. 2 and 3) and tumor formation in immunodeficient mice (SCID mice) (see FIGS. 4 and 5) were confirmed.
  • FIG. 1 shows colonies of force cynomolgus embryonic stem cells cultured by the above method.
  • A shows cells that were passaged 20 and B was frozen at thirty-five passages and thawed one more time after thawing.
  • Fig. 2 shows the expression of SSEA-4 and Oct-4, which are undifferentiated maintenance markers, in flow cytometry in the 20th-generation force-drunken monkey embryonic stem cells cultured by the above method. It is the result measured by Lee. In both cases, very high! /, Expression (> 95%) is confirmed.
  • Figure 3 shows the expression of undifferentiated maintenance markers, Tra-1_60, Tra-l_81, and Nanog, by immunostaining in the 20th-passed force-ducked monkey embryonic stem cells cultured as described above. It is a thing. The expression of both markers is confirmed in almost all cells.
  • Figure 4 shows the testis photographed two months after transplanting the 21st-generation viable cynomolgus embryonic stem cells cultured by the above method under the testis capsule of three immunodeficient mice (SCID mice). It is. Teratoma formation was confirmed in all three animals.
  • Fig. 5 is a tissue specimen of the above tumor (hematoxylin eosin staining). Neural epithelium, teeth, secretory glands, gut-like epithelium, smooth muscle, etc. are observed as described.
  • Example 4 and Example 7 it is possible to produce vascular endothelial cells and expand and regenerate blood cells and hematopoietic stromal cells from the power-dwelling monkey embryonic stem cells maintained undifferentiated according to the present invention.
  • Thaw frozen cells in the following procedure add 1 ml of the medium for maintaining undifferentiation that has been pre-warmed to 37 ° C to a freezing cynomolgus embryonic stem cell freezing tube, rapidly thaw by pipetting, and then add 15 ml conical to the cell suspension. Transfer to a tube and collect cells by sedimentation (1000 rpm, 5 minutes, 4 ° C). After suspending the cells in an undifferentiated maintenance medium, The state of the cells is confirmed with a microscope and cultured in a culture vessel coated with Matrigel (registered trademark) matrix in a CO incubator at 37 ° C, 5 volumes 0 / oCO.
  • Matrigel registered trademark
  • Human embryonic stem cells consist of undifferentiated maintenance culture medium 12 (composition: DMEM / Ham's F_12 (manufactured by Kojin Bio), 20 vol% KNOCKOUT (registered trademark) SR (manufactured by Invitrogen Corp.), ImM L glutamine (Invitrogen) (Manufactured by Invitrogen Corp.), 2 mM non-essential amino acid solution (manufactured by Invitrogen Corp.), 0.1 M 2-mercaptoethanol (manufactured by Sigma Chemical Co.), final concentration lOUU / ml penicillin (invitrogen) (Manufactured by Invitrogen Corp.) and a final concentration of 100 g / ml streptomycin (manufactured by Invitrogen Corp.)) and Matrigel (registered trademark) Matritus (manufactured by BD Biosciences) diluted 30-fold.
  • the cells were cultured on a 10 cm culture dish or
  • Human embryonic stem cells have a relatively uniform colony size of 500 m in diameter, and have a field of view of a 4 ⁇ objective lens (10 ⁇ eyepiece) of a phase contrast microscope. Seed at a density of about three, and thereafter change the medium daily. After 3 to 4 days, the colony size force S reaches about 1000 m.
  • the stripping solution 1 composition: 0.25% trypsin solution (Invitrogen Corp.)
  • 1 mg / ml collagenase IV [Invitrogen (Invitrogen Corp.), 1% KNOCKOUT® SR (manufactured by Invitrogen Corp.), 1 mM calcium chloride (manufactured by Sigma Chemical Co.) based on phosphate buffer, or Peel off with primate embryonic stem cell detachment solution (Librocell) and pass to a new culture container coated with Matrigel® matrix
  • the specific procedure for peeling is as follows. Immerse the exfoliation solution in human embryonic stem cells from which the culture medium has been removed and react at 37 ° C for 5 minutes.
  • Fig. 6 shows a phase contrast micrograph of colonies of human embryonic stem cells of passage 24 cultured by the above method.
  • FIG. 7 shows the results of measurement of the expression of SSEA-4 and Oct-4, which are undifferentiated maintenance markers, in human embryonic stem cells of the 20th passage cultured by the above method by flow cytometry. In both cases, very high! /, Expression (> 95%) is confirmed.
  • FIG. 8 shows the expression of Oct-4 (A) and Nanog (B), which are undifferentiated maintenance markers, in human embryonic stem cells of the 25th passage cultured by the above method by immunostaining. It is confirmed that almost all cells have the ability to express both proteins!
  • FIG. 9 is a chromosome analysis diagram (G band method) of human embryonic stem cells.
  • the left is maintained by the conventional culture method recommended by the establishment organization (co-culture method using fetal mouse fountain fibroblasts as one feeder cell)! This is the result of the 20th passage in the “Culture method with one site-free force-in”. It was confirmed that no chromosomal abnormality occurred.
  • cryopreservation and thawing in liquid nitrogen can be performed by the method described in Example 1 using a commercially available cryopreservation solution for primate embryonic stem cells (Ribrocell).
  • a commercially available cryopreservation solution for primate embryonic stem cells Rosettacell
  • the human embryonic stem cells maintained undifferentiated in Example 2 proliferate while maintaining an undifferentiated maintenance state well after freezing and thawing.
  • Example 2 The medium described in Example 2 was used.
  • Human embryonic stem cells have a relatively uniform colony size of 500 m in diameter, and have a field of view of a 4 ⁇ objective lens (10 ⁇ eyepiece) of a phase contrast microscope. Seed at a density of about three, and thereafter change the medium daily. After 3 to 4 days, the colony size force S reaches about 1000 m.
  • the stripping solution 1 composition: 0.25% trypsin solution (Invitrogen Corp.)
  • 1 mg / ml collagenase IV [Invitrogen (Invitrogen Corp.), 1% KNOCKOUT® SR (manufactured by Invitrogen Corp.), 1 mM calcium chloride (manufactured by Sigma Chemical Co.) based on phosphate buffer, or
  • human AB serum which is exfoliated with primate embryonic stem cell detachment solution (Librocell) and coated with 5 gm 2 of fibronectin (BD) obtained from human plasma New culture container coated with laminin (Sigma) obtained from human placenta with 5 gm 2 and vitronectin (BD) obtained from human plasma 0.2 ⁇ g New coated with m 2
  • a new culture vessel, or a new culture vessel coated with 5 ag m 2 of type IV collagen (BD) obtained from human placenta is subcultured.
  • the specific procedure for peeling is as follows. Immerse the human embryonic stem cells after removing the culture medium and incubate the exfoliation solution at 37 ° C for 5 minutes. Then, aspirate the exfoliation solution and add DMEM / Ham's F-12. Allow to react for minutes. The cells are then detached and suspended by tapping the culture vessel and then suspended twice with a 1000 a 1 pipette tip. Collect the vesicles in a centrifuge tube, and sediment the cells by centrifugation (1000 rpm, 5 minutes, 4 ° C). Through the above operations, colonies of human embryonic stem cells are dispersed in a relatively uniform size of 500 m in diameter. By performing the above operation twice a week, human embryonic stem cells were appropriately maintained in an undifferentiated state in the culture medium described in Example 2 with no feeder and no addition of synthetic site force-in. Passage maintenance is possible.
  • the undifferentiated maintenance state is appropriately maintained even after the fourth passage.
  • the cell morphology preferred as an undifferentiated state and high expression of SSEA-4 and Oct-4 as undifferentiated maintenance markers were confirmed. See Figure 10.
  • FIG. 10 shows a culture dish (A) coated only with human-derived fibronectin (5 gm 2 ) and a culture dish (C) coated only with human AB serum by the above method.
  • 4 is a phase contrast micrograph of human embryonic stem cells at the 4th passage. V, the ability to hold the undifferentiated shape of the gap S
  • SSEA-4 and Oct-4 was measured by flow cytometry in these cells, high expression of both markers was confirmed in both cells (B, D).
  • IMDM Iscove's modified Dulbeccos medium
  • PAA Heat inactivated Fetal bovine serum
  • lmM / 3-Menolecaptoethanol Sigma Chemical Co.
  • 2 mM L-glutamine Invitrogen Corp.
  • VEGF vascular endothelial growth factor
  • BMP—4 20 ng / ml bone morphogenetic protein 4
  • SCF stem cell factor
  • 10 ng / ml Flt3 ligand The final concentration of 20 ng / ml interleukin 3 (IL 3) and the final concentration of 10 ng / ml interleukin 6 (IL6) ⁇ were added.
  • the culture was further filled with sterilized water, and suspended in a CO incubator at 37 ° C and 5 vol% CO for 3 days. After 3 days, the formation of cell clumps can be confirmed macroscopically, so that the lid surface of the culture dish was washed and collected, and coated with 0.1% gelatin (manufactured by Sigma Chemical Co.). Adhesion culture was performed on a culture dish (diameter 10 cm or 6 cm) at 37 ° C and 5% by volume in a CO incubator using differentiation medium 11 (added with site force in). Thereafter, the medium was changed every 3 to 4 days.
  • FIG. 12 shows vascular endothelial progenitor cells and blood cells created from cynomolgus monkey embryonic stem cells in the presence of fetal calf serum using a feeder-free vascular endothelial cell and blood cell differentiation induction and expanded reproduction technology.
  • Specific progenitor cells structures consisting of sac-like structures and globular cell populations).
  • the structure of the sac structure itself is not destroyed using a microknife (Stem eel 1 knife, manufactured by SweMed, etc.).
  • a microknife Stem eel 1 knife, manufactured by SweMed, etc.
  • the inner spherical cells were released slowly into the culture medium.
  • the viability of the spherical cells decreases.
  • the supernatant is collected by centrifuging and collecting the culture supernatant, while the sac-like structure and cells spreading from it are trypsin / EDTA solution (manufactured by Invitrogen Corp.)).
  • the strip was collected by reacting at 5 ° C for 5 minutes.
  • spherical cells were collected using a colony assembly kit (Methocult (registered trademark) GF + H4535 (Stemcell Technologies In) using a semi-solid medium containing methylcellulose. Blood cell production was confirmed by performing hematopoietic colony assembly (see FIG. 13).
  • Fig. 13 shows spherical cell force, Wright-Giemsa staining (A), special staining (myeloperoxidase staining (B) and esterase double staining (C)) of mature blood cells produced! .
  • Various myeloid cells are observed, ie cells in each stage of differentiation ranging from myeloblasts to mature blood cells (neutrophils and macrophages).
  • the collected sac-like structures and the cells spreading in the periphery are a new culture dish (diameter 10 cm or 6 cm) coated with 0.1% gelatin (manufactured by Sigma Chemical Co.). —1 (Site force-in added) was used for culture. Thereafter, the cells were detached every 3 to 4 days with trypsin / EDTA solution and subcultured 8 times with a dilution of about 1/3 (see FIGS. 14 to 16).
  • Figure 14 immunizes the expression of VE-cadherin, a vascular endothelial cell-specific marker, and N-cadherin, a vascular endothelial cell marker, of vascular endothelial cells produced from the above-mentioned "specific progenitor cells". It is the result examined by the dyeing test. As shown in FIG. 14, expression of VE-cadherin, a vascular endothelial cell-specific marker, was confirmed in almost all cells after 2 passages. Furthermore, as shown in this figure, N-cadherin, an adhesion factor known to be expressed in vascular endothelial cells, is also expressed in almost all cells by immunostaining and has a clear cell membrane localization. It was shown to admit. This is a very interesting finding as shown in Fig. 31 because the primary vascular endothelial cells obtained from the living body have been lost (see Fig. 14 and Fig. 31 for comparison).
  • Figure 31 shows N-cadherin in three types of commercially available human primary cultured vascular endothelial cells (human umbilical vein endothelial cells (HUV EC), human microvascular endothelial cells (HMVEC), and human aortic endothelial cells (HAEC)). It is the result of investigating the intracellular expression mode by immunostaining. From Fig. 31, it can be seen that the cell membrane localization of N-cadherin has already disappeared in commercially available human primary cultured vascular endothelial cells. On the other hand, vascular endothelial cells produced by the method of the present invention show clear cell membrane localization and correctly reflect the properties of vascular endothelial cells in the living body. (In Figure 14).
  • HMVEC human umbilical vein endothelial cells
  • HMVEC human microvascular endothelial cells
  • HAEC human aortic endothelial cells
  • Figure 15 shows the expression of PECAM1, which is a mature vascular endothelial cell marker, in vascular endothelial cells produced from the above-mentioned "specific progenitor cells". This was confirmed by flow cytometry by double staining with VE-cadherin, an experimental marker.
  • the horizontal axis represents PECAM1, and the vertical axis represents the expression intensity of VE-cadherin.
  • 40% of cells express both proteins, VE-cadherin, a pancreatic endothelial cell marker-specific marker for vascular endothelial cells, and PECAM1, a mature vascular endothelial cell marker, at the cell membrane level. It was confirmed that the above existed.
  • Figure 16 shows the code-forming ability (A) and the uptake ability of acetylated low-density lipoprotein (B) to confirm the maturation function of vascular endothelial cells produced from the above-mentioned “specific progenitor cells”. It is. In both cases, the acquisition of mature function is confirmed with high efficiency. Based on the above, the expression of VE-cadherin and PECAM1 is maintained even after 8 passages, and as shown in Fig. 16, vascular endothelium such as code-forming ability, acetylated low-density lipoprotein uptake ability, etc. Functional maturation of the cells was also confirmed.
  • IMDM Iscove's modified Dulbecco's medium
  • SR Invitrogen Corp.
  • ImM / 3-mercaptoethanol Sigma Chemical Co.
  • 2 mM L-Glutamine Invitrogen Corp. ⁇ 20 ng / ml vascular endothelial growth factor (VEGF), final concentration 20 ng / ml bone morphogenetic protein 4 (BMP—4), 20 ng stem cell factor (SCF), final concentration 10 ng / ml Flt3—ligand, final concentration 20 ng / ml interleukin 3
  • IL3 medium supplemented with
  • a cell aggregate cluster similar to the embryoid body is prepared by a hanging 'drop method using differentiation medium 1 2 (added with site force in). Specifically, after collecting force cynomolgus embryonic stem cells with a stripping solution, further react with 0.25% trypsin solution (manufactured by Invitrogen Corp.) at 37 ° C for 5 minutes to obtain a single cell level. To disperse. Suspend 3000 force cynomolgus monkey embryonic stem cells in 30 1 differentiation medium 1-2 (with site force in) and use a micropipette to place the back of the lid of a 10 cm diameter culture dish. Spot (2030 spots can be spotted in one culture dish).
  • the culture was further filled with sterilized water, and suspended in a CO incubator at 37 ° C and 5 vol% CO for 3 days. After 3 days, the formation of cell agglomerates can be confirmed macroscopically, so that the lid surface of the culture dish was washed and collected, and coated with 0.1% gelatin (manufactured by Sigma Chemical Co.). Adhesion culture was performed on a culture dish (diameter 10 cm or 6 cm) in a CO incubator using differentiation medium 12 (added with cyto force in) at 37 ° C and 5% by volume. Thereafter, the medium was changed every 3 to 4 days. Agglomerates of cynomolgus monkey embryonic stem cells continued to grow while spreading on a flat surface.
  • FIG. 17 shows mature blood cells created from serum-free cynomolgus embryonic stem cells in serum-free culture conditions (using KNOCKOUT® SR).
  • A Wright-Giemsa staining
  • B myelin peroxidase staining
  • C esterase double staining
  • FIG. 18 shows the results of the flow cytometry test at the third passage. It has been confirmed that there are several% or more cells in which VE-cadherin and PECAM1 are expressed in the cell membrane, which was previously considered to be unable to induce differentiation of endothelial cells without serum (see Fig. 18).
  • Differentiation medium 1 3 Composition: Knockout D-MEM (Invitrogen Corp., 20 wt% heat-inactivated fetal bovine serum (PAA Laboratories GmbH)], 0.1 mM / 3—Menolecaptoethanol (Sigma Chemical Co.), 1% non-essential amino acid solution (Invitrogen Corp.), ImM L gnoretamine (Invitrogen Corp.) Manufactured)] at a final concentration of 50 ng / ml bone morphogenetic protein 4 (BMP-4), 300 ng / ml stem cell factor (SCF), final concentration of 300 ng / ml Flt3 ligand, final concentration of 10 ng / ml interleukin 3 (IL3), A final concentration of 10 ng / ml interleukin 6 (IL6) and a concentration of 50 ⁇ g / ml granulocyte colony-stimulating factor (G-CSF)) were added.
  • BMP-4 bone morph
  • Example 1 Forced cynomolgus embryonic stem cells maintained undifferentiated in Example 1 were treated with collagenase IV (room temperature, 20 minutes) followed by chelating agent treatment (non-enzymatic cell dissociati on buffer [Invitrogen Corp. manufactured by Invitrogen Corp.) ] At room temperature for 20 minutes), and the force of the culture vessel coated with Matrigel (registered trademark) was peeled off. By this operation, the force cynomolgus embryonic stem cells were loosened in a state close to the individual cell level.
  • collagenase IV room temperature, 20 minutes
  • chelating agent treatment non-enzymatic cell dissociati on buffer [Invitrogen Corp. manufactured by Invitrogen Corp.)
  • Matrigel registered trademark
  • differentiation medium 1-3 non-adhesive culture vessels (6 cm diameter culture dish, etc.) coated with poly (2-hydoxyethyl metha crylate) (Sigma), or Hydrocell (CellSeed was used for suspension culture all day and night.
  • the medium is changed to the differentiation medium 1-3 added with the above-mentioned cyto force in (without the addition of cyto force in), and floating culture is further performed for about 2 weeks, so that the embryoid body (or a cell aggregate similar to embryoid body) is obtained.
  • the embryoid body or a cell aggregate similar to embryoid body
  • the embryoid body or cell aggregates similar to the embryoid body) collect the culture supernatant, centrifuge the cell components, and newly prepare the differentiation medium 1
  • the suspension was suspended in —3 (non-supplemented calorie) and transferred to a newly prepared non-adhesive culture vessel to continue suspension culture.
  • the embryoid body formed above is collected from the culture supernatant by centrifugation and differentiated on a culture dish (24-well multi-well dish) coated with 0.1% gelatin (manufactured by Sigma Chemical Co.). Using culture medium 13 (added with cyto force in), adhesion culture was performed at 37 ° C and 5% by volume in a CO incubator. Thereafter, the medium was changed every 3 to 4 days. Aggregates of force cynomolgus embryonic stem cells continue to grow while spreading on a flat surface, and after about 2 weeks, as shown in Fig. 19B, "specific precursor cells" (A structure consisting of a sac-like structure and a spherical cell population contained therein) was formed (one was formed for each aggregate). Fig.
  • FIG. 19 shows a phase contrast micrograph of embryoid somatic cells prepared in the presence of fetal bovine serum from a power quiz monkey embryonic stem cell according to the above-mentioned "Method for inducing differentiation into vascular endothelial cells and blood cells without feeder".
  • A and “specific progenitor cells” (structures consisting of sac-like structures and spherical cell populations)
  • B common to vascular endothelial progenitor cells and blood cells obtained by adhesion culture of embryoid bodies are shown.
  • the culture dish containing the “specific progenitor cells” formed in Procedure 2 above is treated with trypsin / EDTA solution (manufactured by Invitrogen Corp.), so that all cells in the culture dish are detached and collected. Then, adhesion culture was continued using differentiation medium 13 (added with cyto force-in) on a new culture dish (diameter 6 cm) coated with gelatin. Adherent cells proliferate actively And in 2 days it reached confluence. Further, after 2 days, production of floating cells became clear as shown in FIG. FIG. 20 is a phase contrast photomicrograph showing the situation in which enlarged reproduction of blood cells is being performed. Both hematopoietic stromal cells (adherent cells) and blood cells produced from them (floating cells) are confirmed.
  • cell culture was continued at a pace of twice a week while changing the medium.
  • the floating cells were collected by centrifugation and returned to the culture dish.
  • Adherent cells are detached once a week using trypsin / EDTA solution (manufactured by Invitrogen Corp.) and mixed with suspension culture in the culture supernatant. Subculture was performed while diluting 1/3.
  • Figure 21 confirms the production of cells in various stages of differentiation of myeloid cells (including myeloblasts, promyelocytes, myelocytes, retromyelocytes, neutrophils, monocytes, macrophages, etc.) .
  • CD45 antigen which is a pan-blood cell marker
  • FIG. 21F shows the expression of CD45 antigen, which is a pan-blood cell marker
  • An almost pure population consisting only of blood cells is obtained. It was confirmed.
  • CD34 positive ie, CD34 positive CD45 positive double positive cells
  • hematopoietic stem cells or hematopoietic progenitor cells equivalent to hematopoietic stem cells
  • FIG. 24 is a phase-contrast micrograph of the situation in which suspended cells and adherent cells were frozen and thawed and culture was resumed in the expanded reproduction of blood cells.
  • the presence of hematopoietic stromal cells (adherent cells) and blood cells (floating cells) produced therefrom were confirmed just as before freezing.
  • Figure 22 shows phase contrast micrographs of passable ⁇ hematopoietic stromal cells '' produced by the method described above (A), and the results of CD34 and CD45 expression examined by flow cytometry (B). Is. Both pancreatic cell marker CD45 and hematopoietic stem cell marker CD34 were almost negative and confirmed to be non-hematopoietic cells (a small amount of positive cells adhered to hematopoietic stroma cells! /, It is thought that hematopoietic stem cells are contaminated).
  • the adherent cells formed in Procedure 3 described above hardly expressed the CD45 antigen, which is a pan-blood cell marker (see FIG. 22), and were confirmed to be non-hematopoietic cells.
  • the cell morphology was heterogeneous, all of which were relatively flat, star-shaped, elongated, and contained short pseudopods and multinucleated large cells. This state was morphologically very similar to a heterogeneous cell population called “hematopoietic stroma”, which is an adherent cell obtained by culturing bone marrow blood.
  • Figure 23 shows a phase contrast micrograph of “CD34-positive and CD45-positive cells” produced by long-term culture (> 100 days) of passable “hematopoietic stem / progenitor cells” produced by the method described above.
  • True A
  • the force of mixing floating cells and adherent cells can migrate to each other, and is considered to be an equivalent cell population (ie, hematopoietic stem cells and equivalents).
  • Figure 23B shows the results of CD34 and CD45 expression on floating cells and adherent cells confirmed by flow cytometry.
  • hematopoietic stem cells are said to be “CD34-positive and CD45-positive cells”, and in hematopoietic stem cell transplantation, the cells are isolated and purified from bone marrow blood or umbilical cord blood and transplanted.
  • both floating cells and adherent cells are in the same cell lineage as hematopoietic stem cells or hematopoietic progenitor cells equivalent to hematopoietic stem cells, and hematopoietic stem cells (or hematopoietic progenitor cells equivalent to hematopoietic stem cells). ) Is not only a floating cell but also an adherent cell.
  • Differentiation medium 13 Composition: Knockout D-MEM (Knockout D-MEM (Invitrogen Corp.), 20 wt% KNOCKOUT (registered trademark) SR (Invitrogen Corp.)), O. lmM / 3 —Mercaptoethanol (manufactured by Sigma Chemical Co.), 1% non-essential amino acid solution (manufactured by Invitrogen Corp.), ImM L glutamine (manufactured by Invitrogen Corp.)) at a final concentration of 5 Ong / ml bone morphogenetic protein-4 (8 ⁇ [?
  • Example 1 After exfoliating the forceless cynomolgus embryonic stem cells maintained undifferentiated in Example 1 from the culture vessel coated with Matrigel (registered trademark) matrix in accordance with the method described in Example 6, using differentiation medium 1-4 Float overnight using a non-adhesive culture vessel (6 cm diameter culture dish, etc.) coated with poly (2-hydoxyethyl metha crylate) (Sigma) or Hydrocell (CellSeed). Cultured. The next day, the medium is changed to the differentiation medium 1–4 (without addition of cyto force in) containing the above-mentioned cytokin, and floating culture is further performed for about 2 weeks. ) Was created. The medium was changed every 3-4 during the 2-week culture period.
  • Matrigel registered trademark
  • V which is suspended in the medium, and the embryoid body or cell aggregates similar to the embryoid body) collect the culture supernatant to centrifuge the cell components, and newly prepare the differentiation medium 1
  • the suspension was suspended in 3 (no addition of site force in) and transferred to a newly prepared non-adhesive culture vessel to continue the culture.
  • the embryoid body formed in Procedure 1 above is recovered from the culture supernatant by centrifugal sedimentation, and 0.1% On a culture dish (24-well multi-well dish) coated with latin (manufactured by Sigma Chemical Co.) using differentiation medium 14 (added with cyto force in) in a CO incubator, Adhesion culture was performed at 37 ° C and 5% by volume. Thereafter, the medium was changed every 3 to 4 days.
  • the culture dish containing the “specific progenitor cells” formed in Procedure 2 above is treated with trypsin / EDTA solution (manufactured by Invitrogen Corp.), so that all cells in the culture dish are detached and collected. Then, the culture was continued on a new culture dish (diameter 6 cm) coated with gelatin using differentiation medium 1-4 (site force-in added). Adherent cells gradually grew and reached confluence after a few days. Further culturing revealed the production of floating cells.
  • Figure 25 shows a Wright-Giemsa stained image (A) and a special staining (myelin peroxidase staining (B), esterase doubled) of blood cells prepared from serum-free cynomolgus embryonic stem cells by the above method under serum-free conditions.
  • Staining (C) shows a variety of myeloid cells.
  • non-adhesive culture vessel (6 cm diameter culture dish) coated with poly (2-hydoxyethyl methacrylate) (Sigma) Etc.), or HydrocelKCellSeed) was used for suspension culture using the above-described differentiation medium (added with site force in). After 3 to 8 days, embryoid bodies (or cell aggregates similar to embryoid bodies) were formed.
  • the embryoid body (or a cell aggregate similar to embryoid body) formed in the procedure 1 was collected from the culture supernatant by centrifugation and cultured with 0.1% gelatin (manufactured by Sigma Chemical Co.). Adhesion culture was performed on a dish (culture dish having a diameter of 6 cm or 10 cm) in the CO incubator at 37 ° C and 5% by volume using the differentiation medium (site force-in added). Thereafter, the medium was changed every 3 to 4 days. Aggregates of human embryonic stem cells continue to grow while spreading on a plane, and about two weeks later, from around the center of the area where the aggregates originally existed, as shown in Fig.
  • FIG. 26 shows the production of vascular endothelial progenitor cells and “specific progenitor cells” of blood cells (structures consisting of sac-like structures and globular cell populations) from human embryonic stem cells by the method described above.
  • the sac-like structure itself is structured using a micro knife (Stem cell knife (manufactured by Swemed)). By making a small notch near the bottom of the sac-like structure that destroys the Some spherical cells were released slowly into the culture medium. When the sac-like structure is completely filled with spherical cells, the viability of the spherical cells decreases. Cultivation was continued by exchanging the medium every 3 to 4 days while collecting the spherical cells by centrifugal sedimentation of the culture supernatant.
  • Figure 27 shows the Wright-Giemsa staining image (A) of mature blood cells (floating cells) produced by the above method, and special staining (esterase double staining (B), neutrophilic alkaline phosphatase). Staining (C)).
  • A Wright-Giemsa staining image
  • B floating cells
  • C neutrophilic alkaline phosphatase
  • FIG. 28 shows the results of confirming the expression of floating cells CD34 and CD45 by flow cytometry prepared from human embryonic stem cells in the presence of fetal bovine serum by the above method. It can be seen that almost all cells express CD45, which is a pan-blood cell marker, and blood cell differentiation is induced with very high efficiency. Moreover, since about 10% of CD34 positive cells were detected, it was confirmed that hematopoietic stem cells were also present.
  • Neutrophils were concentrated from blood cells produced by the method described in Procedure 3 above by density gradient centrifugation using Lymphoprep (registered trademark) (Daiichi Chemical Co., Ltd.). When neutrophils were colored blue-violet by staining with neutrophilic alkaline phosphatase and observed under a microscope, as shown in FIG. 29, almost all of the neutrophils after concentration (B) compared to before concentration (A). Cells were confirmed to consist of neutrophils.
  • Lymphoprep registered trademark
  • FIG. 29 shows the results of concentrating neutrophils from the blood cells produced by the above method by density gradient centrifugation using Lymphoprep (registered trademark) (Daiichi Chemical Co., Ltd.).
  • Lymphoprep registered trademark
  • neutrophils are stained blue-purple by neutrophil alkaline phosphatase staining, but almost all cells are neutrophils after concentration (B) compared to before concentration (A).
  • B neutrophil alkaline phosphatase staining
  • Human embryonic stem cells consist of a differentiation medium 1 2 ⁇ Composition: Iscove's modified Dulbeccos medium (IMDM) (manufactured by Sigma Chemical Co.)], 15 wt% KNOCKOUT (registered trademark) SR [ Invitrogen (manufactured by Invitrogen Corp.), ImM ⁇ mercaptoethanol (Sigma Chemical)
  • IMDM Iscove's modified Dulbeccos medium
  • KNOCKOUT registered trademark
  • SR Invitrogen (manufactured by Invitrogen Corp.), ImM ⁇ mercaptoethanol (Sigma Chemical)
  • a non-adhesive culture vessel (6 cm diameter culture dish, etc.) coated with poly (2-hydoxyethyl methacrylate) (Sigma), Alternatively, suspension culture was performed using Hydrocell (manufactured by CellSeed) using the above-described differentiation medium (added with cyto force in). After 3 to 8 days, embryoid bodies (or cell aggregates similar to embryoid bodies) were formed.
  • the embryoid body (or a cell aggregate similar to embryoid body) formed in the procedure 1 was collected from the culture supernatant by centrifugation and cultured with 0.1% gelatin (manufactured by Sigma Chemical Co.). Adhesion culture was performed on a dish (culture dish having a diameter of 6 cm or 10 cm) in the CO incubator at 37 ° C and 5% by volume using the differentiation medium (site force-in added). Thereafter, the medium was changed every 3 to 4 days. Aggregates of human embryonic stem cells continue to grow while spreading on a flat surface, and after about two weeks, “specific progenitor cells” (capsular structures and globular cell populations) appear from around the center of the area where the aggregates originally existed. A structure consisting of
  • Fig. 30 shows the result of confirming CD45 expression in floating cells prepared from human embryonic stem cells using serum-free conditions (using KNOCKOUT (registered trademark) SR) by flow cytometry. It is. It can be seen that almost all cells express CD45, which is a pan-blood cell marker, and blood cell differentiation is induced with very high efficiency. Thus, the expression of the CD45 antigen, which is a pan-blood cell marker, was almost 100%, and in serum-free culture, an almost pure population consisting of only blood cells with very high blood cell differentiation efficiency was obtained.
  • KNOCKOUT registered trademark
  • the ectoderm component neuroepithelial cell; Fig. A, tooth enamel epithelium; Fig. D), mesoderm component (smooth muscle; Fig. B, dentin; Fig. D), endoderm component ( Since it has the three germ layers of intestinal epithelium; b, secretory gland tissue; c), it was confirmed that the tumor formed in the testis was teratoma.
  • khES-1 Human embryonic stem cells (khES-1) (3 ⁇ 10 6 cells) passaged 20 times by the undifferentiated maintenance culture method of Example 2 were transplanted into quadriceps muscles of immunodeficient mice (SICD mice). Gross tumor formation was confirmed in the quadriceps of all mice transplanted 8 weeks later. After these tumors were taken out and fixed in formalin, thin sections were prepared and subjected to hematoxylin-eosin staining (HE staining), followed by histological examination. As a result, as shown in Fig. 33, the ectoderm component (neuroepithelial cell; Fig. A, pigment epithelium; Fig. B, sebaceous gland: Fig.
  • HE staining hematoxylin-eosin stain stain staining
  • the human embryonic stem cells subcultured by the undifferentiated maintenance culture method of Example 2 have the ability to form teratoma, and that pluripotent differentiation ability is maintained! .
  • a cell agglomerate similar to the embryoid body is prepared by the hanging-drop method using the differentiation medium 1 1 (added with the site force in) using the differentiation medium of Example 4. Specifically, after collecting force quizal embryonic stem cells with a stripping solution, further react with 0.25% trypsin solution (manufactured by Invitrogen Corp.) at 37 ° C for 5 minutes. Disperse to the cellular level. Suspend 3000 force cynomolgus embryonic stem cells in 30 1 differentiation medium 1-1 (added with site force in) and use a micropipette to place it on the back of the lid of a 10 cm diameter culture dish. Pot it! /, (You can spot about 2030 spots in a single culture dish!).
  • the culture was further filled with sterilized water, and suspended in a CO incubator at 37 ° C and 5% by volume for 3 days. After 3 days, the formation of cell agglomerates can be confirmed macroscopically, so that the lid surface of the culture dish was collected and recovered, and the culture was coated with 0.1% gelatin (manufactured by Sigma Chemical Co.). Adhesion culture was performed on a dish (diameter 10 cm or 6 cm) using a differentiation medium 11 (added with cyto force in) in a CO incubator at 37 ° C and 5% by volume. Thereafter, the medium was changed every 3 to 4 days.
  • a microknife (Stem cell knif e, SweMed, etc.) to release the spherical cells in the culture medium by making a small cut near the bottom of the sac structure without destroying the structure of the sac structure itself. was released.
  • the viability of the spherical cells decreases.
  • the spherical cells were collected by sedimentation by collecting and centrifuging the culture supernatant.
  • the collected spherical cells were subjected to hematopoietic colony assembly using a colony assembly kit (Methocult (registered trademark) GF + H4535 (Stemcell Technologies In)) using a semi-solid medium containing methylcellulose.
  • a colony assembly kit Metal-Giemsa staining (A)
  • special staining myelin peroxidase staining (B)
  • Various myeloid cells were observed, ie cells at each stage of differentiation ranging from myeloblasts to mature blood cells (neutrophils and macrophages).
  • a paving stone-like cell group spread over the entire surface of the sac-like structure over time.
  • These paving stone cells and wall cells of sac-like structures are VE-cadherin, a cell indirect adhesion molecule known as a “panvascular endothelial cell marker” and a “vascular endothelial cell specific marker” as shown in the upper part of FIG. Is expressed at the intercellular junction of all cells. Note that Lampugnani et al.
  • VE-cadherin is a cell group in the “front region” where cell movement is thriving. Cell membrane localization became obscure, and a cytoplasmic expression pattern was adopted (Fig. 34, right column). On the outer side, large flat cells not expressing VE-cadherin were scattered (Fig. 34, lower right diagram, arrow). These small amounts of “non-vascular endothelial cells” are proliferating cell nu clear antigen (PCNA) -negative and no cell proliferation has occurred. In fact, over time, these VE-cadherin-negative “non-vascular endothelial cells” were quickly expelled by paving stone cells, which are VE-cadherin-positive “vascular endothelial cells”.
  • PCNA cell nu clear antigen
  • vascular endothelial cells with active proliferating ability were dominated in the culture dish within a few days. Therefore, when cells in the culture dish were collected as a lump and subculture continued, “amplification culture of vascular endothelial cells” Is possible.
  • the specific subculture procedure is as follows. Using trypsin / EDTA solution (manufactured by Invitrogen Corp.) for 5 minutes at 37 ° C, the cells were detached and recovered, and coated with 0.1% gelatin (Sigma Chemical Co.). In a new culture dish (diameter 10 cm or 6 cm), the cells were cultured using differentiation medium 11 (added with cytodynamic force in). Thereafter, the cells were subcultured every 3 to 4 days while being detached with trypsin / EDTA solution and diluted about 1/3.
  • VE-cadherin As shown in Fig. 35, it was confirmed from immunostaining that VE-cadherin was expressed at least "intracellularly" in all cells subcultured by the above procedure. Furthermore, as shown in Fig. 35, N-cadherin, an adhesion factor known to be expressed in vascular endothelial cells, is also expressed in almost all cells by immunostaining and has a clear cell membrane localization. Was shown to admit. This is a very interesting finding, as shown in Fig. 31, because the primary vascular endothelial cells obtained from the living body have been lost (see Fig. 35 and Fig. 31 for comparison).
  • VE-cadherin and PECAM1 which is a marker of mature vascular endothelial cell, express cells in S "cell membrane”. It was about 40% in the latter period and about 80% in the latter period.
  • VE-cadherin / PECAMl-positive mature vascular endothelial cells are present at an overwhelmingly higher concentration than conventional methods (2%) at any stage.
  • VE-cadherin-positive vascular endothelial cells that disappear rapidly, it is reported that amplification culture is not possible! /, In contrast to this method, VE-cadherin / PEC AMI-positive cells are passaged Concentrated with! /, It was revealed that it has distinctive features.
  • VE-cadherin As described above, all the cell populations induced to differentiate by this method express VE-cadherin at least in the cells, and there is no contamination of perisite or undifferentiated ES cells. “Mature vascular endothelial cells” that express VE-cadherin and PECAM1 in the cell membrane are produced with a purity of at least 10% in the early passage and nearly 90% in the late culture.
  • FIG. 39 and FIG. 40 show the results of sorting VE-cadherin positive cells by FACSAria (BD Biosciences) after one passage of the sac-like structure.
  • VE-cadherin positive fraction cells continue to express VE-cadherin stably in the cell membrane even after repeated passages, and after approximately 5 passages, VE-cadherin positive cells increase approximately 160 times.
  • FIG. 39B Immunostaining also confirmed the localization of VE-cadherin protein at the cell-cell junction in all cells (Fig. 39C).
  • VE-cadherin-negative cells did not express VE-cadherin on the cell membrane, but expressed VE-cadherin in the cells as described above. Furthermore, it was confirmed to be a cell population committed to vascular endothelial cells, having code-forming ability (FIG. 40B) and acetylated low-density lipoprotein uptake ability (FIG. 40C).
  • the lumen of the blood vessel is lined by immunostaining with anti-human HLA-A, B, and C monoclonal antibodies (clone W6 / 32, BioLegend), which have been confirmed to broadly cross primates. It was confirmed that vascular endothelial cells were stained (FIG. 41c). In other words, it was confirmed that the new blood vessels in the glioma tissue were formed by vascular endothelial cells derived from the force cynomolgus monkey embryonic stem cells.
  • vascular endothelial cells created from force cynomolgus monkey embryonic stem cells contribute to tumor angiogenesis in mouse transplantation experiments.
  • human embryonic stem cells (khES-3) (for one 10 cm culture dish) in an undifferentiated maintenance culture under feeder-free and site-free force-in were detached as described in Example 2. Liquid 1 Alternatively, the cells were peeled and recovered with a cell detachment solution for primate embryonic stem cells (Ribrocell). The embryo germ is obtained by performing floating culture using a general-purpose low-adsorption culture dish (one 6 cm culture dish) in the differentiation medium 11 (added with cyto force-in) using the differentiation medium of Example 4. A body-like cell aggregate was created.
  • vascular endothelial cells can be produced from human embryonic stem cells overwhelmingly more efficiently than the conventional method (2 — 7 harm IJ), and the proportion of VE-cadherin / PECAMl dual positive cells increased with passage (see Figure 42a).
  • human embryonic stem cell-derived vascular endothelial cells could be subcultured about 8 10 times as well as cynomolgus embryonic stem cell-derived vascular endothelial cells.
  • vascular endothelial cells such as code-forming ability and acetylated low density lipoprotein uptake was confirmed (see Fig. 42b).
  • the in vivo functions of the human embryonic stem cell-derived vascular endothelial cells thus prepared were evaluated.
  • a suspension of human embryonic stem cell-derived vascular endothelial cells (passage 4), several pieces of approximately 1 mm square honeycomb-like collagen sponge are repeatedly compressed and relaxed several times. Sex stem cell-derived vascular endothelial cells were filled. The cells were cultured for 2 days and then transplanted into the peritoneal cavity of an immune deficient mouse (SICD mouse) (about several pieces / mouse).
  • ISD mouse immune deficient mouse
  • FITC-labeled polymer dextran was injected from the tail vein, and a few minutes later, the collagen sponge was collected from the abdominal cavity. After formalin fixation, immunostaining was performed using anti-human HLA-A, B, C antibodies (clone W6 / 32, BioLegend) and anti-human PECAM1 antibody (Santa Cruz, sc-8306).
  • FIG. 42c when the human embryonic cell-derived vascular endothelial cells were transplanted, a “luminal structure in which the lumen was filled with FITC dextran” was confirmed in the collagen sponge.
  • This luminal structure consists of human HLA-A, B, and C antibodies that specifically recognize primates including humans without reacting with mouse cells ( Figure 42c left), and human PECAM1 antibody that is a vascular endothelial cell marker (In Fig. 42c), both stained positively. Since the human PECAM1 antibody did not stain the vascular structure of the mouse (Fig. 42c, right), this luminal structure must be a “new blood vessel composed of human embryonic stem cell-derived vascular endothelial cells” that is linked to systemic circulation. Is confirmed It is.
  • vascular endothelial cells created from human embryonic stem cells by a novel vascular endothelial cell differentiation induction method are directly involved in the formation of “functional new blood vessels linked to systemic circulation” in vivo (in new blood vessels). It was confirmed that it was incorporated).
  • Human embryonic stem cells were induced to differentiate by the method of Example 8, and cells floating in the medium were collected on day 30, and the expression of blood cell markers centered on neutrophils was analyzed by flow cytometry.
  • CD34 which is a hematopoietic stem / progenitor cell marker
  • pancreatic cell marker CD45 pancreatic cell marker CD45
  • panleukocyte marker CD33 panleukocyte marker CD33
  • neutrophil / monocyte cell marker CDl lb neutrophil / monocyte cell marker CDl lb.
  • the expression of is very high, i.e. (> 90%).
  • granulocyte markers CD66b and GPI-80 were about 60 to 80%, and expression of neutrophil specific marker CD16b was more than 30%.
  • cells positive for lactoferrin contained in the neutrophil tertiary granules were also detected.
  • hematopoietic cells prepared from human embryonic stem cells express neutrophil markers at a high rate.
  • Human embryonic stem cells were induced to differentiate by the method of Example 8, and blood cells floating in the medium on the 30th day (CD66b positive rate was about 60 to 80%) were collected.
  • About 1 ⁇ 10 6 cells were intravenously injected into NOD / SCID / ⁇ c nu11 (NOG) mice, which had previously been inflated with sterile air under the skin.
  • NOG NOG
  • zymosan A l mg / ml
  • HI-1 ⁇ 10 ng / ml
  • neutrophils prepared from human embryonic stem cells have the ability to migrate in vivo.
  • the present invention it is possible to stably provide blood cells and vascular endothelial cells suitable for blood for transfusion, transplantation materials and the like on an industrial scale. Furthermore, since the blood cells and the like of the present invention lead to the enhancement of natural healing power, the impact on the medical care and medical industry is enormous. Furthermore, if the production of safe and transfused blood that replaces the current blood donation is included, there is a possibility of expanding into the giant plant industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

明 細 書
霊長類動物胚性幹細胞の培養及び継代方法、並びにその分化誘導方 法
技術分野
[0001] 本発明は、霊長類動物胚性幹細胞を未分化状態に維持して培養し、継代するため の方法、同細胞を血液細胞、血管内皮前駆細胞等の種々の細胞に分化誘導する方 法、得られた細胞を拡大再生産する方法、並びに血球、血管内皮前駆細胞等に関 する。
背景技術
[0002] さまざまな細胞へ分化しうる万能細胞としての胚性幹細胞は、マウスにおいて 1980 年代に樹立され、その培養及び継代方法は既知である。しかし、ヒトを含む霊長類由 来の胚性幹細胞を、未分化状態に維持して持続的に培養、継代する方法は未だ確 立されていない。
ヒト胚性幹細胞は、生物及び医学分野における研究、並びに臨床の分野で極めて 重要である。とりわけ再生医療や移植医療の分野における臓器作成における基礎的 材料として安定的な供給が求められている。例えば、ヒト胚性幹細胞から作成された 臓器および組織は移植 ·再生医療における使用のみならず、これまで実施が限られ ていたヒト臓器を用いた前臨床試験を可能にするものと期待されている。また、ヒト胚 性幹細胞から様々な臓器を産生することができれば、その産生過程にお!/、て薬理試 験を実施することにより、胎児への薬剤の影響を推定することが可能となると考えられ ている。現在は、胎児 (妊娠母体)に対する薬物等の毒性試験は倫理的観点から行 われておらず、偶発例の蓄積のみが唯一のドラッグ 'インフォメーションとなっている ため、薬剤安全性に対する情報不足により危険な薬剤投与が見逃される恐れがある 。しかしながら、ヒト胚性幹細胞から様々な臓器を産生することができれば、その産生 過程において薬理試験を実施することにより、そのような危険性を回避することも可 能となる。
このように、ヒト胚性幹細胞の樹立およびその安全な培養及び継代方法の確立は、 臓器作成技術等の研究開発の進展を促し、移植 ·再生に関する医療の研究および 応用、創薬等の医療産業並びに周産期医療の発展に大いに貢献することが期待さ れる。
[0003] ヒト胚性幹細胞は、 1998年に米国の Thomsonらにより初めて樹立され、以後は培 養方法や、様々な組織への分化誘導に関する研究が行われてきた。例えば、特許 文献 1には、霊長類胚性幹細胞をマウス胚線維芽細胞(MEF)から調製される細胞 外マトリックスを用いて培養することにより得られる、本質的にフィーダ細胞を含まない 胚性幹細胞含有培養物が記載されている。し力もながら、上記の樹立されたヒト胚性 幹細胞は短期間の継代後に染色体異常が誘発される(具体的には十数回以上の継 代の後、染色体異常の蓄積が確認されるため、臨床応用における危険性が指摘され ている (非特許文献 1) )。
[0004] しかし、ヒト胚性幹細胞の培養にマウス等の異種動物由来のフィーダ等を使用する ことは、ヒトへの臨床適用にとって好ましくない。そこで、 2006年にはノレードヴイツヒら により、異種動物由来成分を限りなく除去した無フィーダ一培養方法が報告された。 しかしながら、この方法は大量の合成サイト力インのカクテルに加えて、 4種類もの高 価なヒト由来細胞外マトリックスを大用量で使用するため(非特許文献 2)経済的観点 からも臨床応用には適さな!/、。
[0005] その後、オーストラリアやスウェーデンでもヒト胚性幹細胞株が樹立され、樹立後 1 年以上経過した後にも染色体異常は極めて稀であると報告されている(非特許文献 3)。これらのヒト胚性幹細胞は無フィーダ一で継代維持できる力 S、培養 ·継代 ·凍結保 存に、特殊培養器具と特殊培養技能を要し、大量細胞の取扱 (ハンドリング)は実質 的に困難である(非特許文献 3)。また、これらの異種動物由来細胞の馴化培地を用 いない無フィーダ一培養では、大量の合成サイト力インの使用が必要であり、研究自 体に大きな経済的負担が強いられる。したがって、ヒト胚性幹細胞に関しては、いま だ安定した無フィーダ一培養の技術は、確立されて!/、な!/、。
[0006] 以上の通り、ヒトを含む霊長類動物胚性幹細胞の培養、継代方法であって、異種動 物由来細胞の馴化培地、フィーダ一細胞、および合成サイト力インを使用せずに、簡 便な基本的培養手技により長期間染色体異常を惹起することなく安全に継代するこ とができ、凍結融解が可能でありかつ解凍後の生存率が高い、安全、低コストかつ高 フィージビリティな方法の開発が世界的に急務となっている。上記のような技術は、広 範な研究の促進、移植 ·再生に関する臨床医療、周産期医療の発展等に大いに貢 献することが期待される。
[0007] 霊長類動物胚性幹細胞を適切に分化誘導すれば、 目的の前駆細胞や成熟細胞を 大量に製造し、様々な用途に利用できることから、胚性幹細胞を効果的に分化誘導 し、さらには継代する方法が検討されてきた。胚性幹細胞の分化系列の一つとして、 血管や血球等の血液関連細胞への分化がある(図 1 1参照)。
[0008] 血管内皮細胞は血管を構築する基本的要素である。血管は軟骨や強膜など一部 の組織を除くほぼ全ての生体組織に分布し、栄養分の供給と老廃物の除去に極め て重要な役割を果たしている。従って、血管内皮細胞は、近年、増加傾向にある生 活習慣病の一疾病である動脈硬化に伴う閉塞性血管障害における血管新生療法に 有用である。加えて、脳を含めた様々な組織の再生過程において、組織特異的幹細 胞 (神経幹細胞など)の適正位置への移動に血管内皮細胞の方向指示が重要であ ることが知られている。また、血管内皮細胞は、胎生期より血管内皮細胞は血液細胞 の前駆組織として機能し血球産生に重要な役割を担っており、成体においては造血 幹細胞の二ッシェ (保持場所)としても重要な役割を担っている。即ち、血管内皮細胞 は単なる血管構成因子としてのみならず、神経や血液細胞などを含めた、組織再生 全般において極めて重要であり、再生医療全般を考える際に血管内皮細胞の産生 制御は、重要な課題である。
[0009] 生体組織 (末梢血、骨髄血)から得られた血管内皮前駆細胞を用いた血管新生療 法が試みられてきた力 S、移植細胞からの血管内皮細胞の再生を直接確認した例はな い。また、生体から得られた成熟血管内皮細胞はすでに増殖能を喪失しており、大 量検体の調製が難しい霊長類では、血管内皮細胞に関する基礎的研究が非常に遅 れている。さらに、後述するように、ヒト生体から得られた初代培養血管内皮細胞(特 に市販の凍結融解済みの初代培養血管内皮細胞)は、生体内で持っていた細胞本 来の性質が体外での培養増幅の過程で喪失されることが多々あるので、生体内での 血管内皮細胞の性質を正しく反映していない、という欠点がある。従って、研究およ び血管等の再生医療の発展のためには、ヒト胚性幹細胞から無フィーダ一培養によ り、安全に、かつ効率良く血管内皮前駆細胞および成熟血管内皮細胞を産生し、継 代維持する方法が待望されて!/、る。
[0010] しかし、従来の方法の場合、マウス胚性幹細胞から血管内皮前駆細胞への分化効 率は 90%以上であるのに対して、霊長類動物胚性幹細胞の血管内皮前駆細胞へ の分化効率は 2%以下と極端に低いという問題がある(非特許文献 4、および非特許 文献 5)。また、霊長類胚性幹細胞のみならずマウスの胚性幹細胞でさえ、無フィー ダー培養で継代培養が可能な血管内皮前駆細胞を作成する方法は確立されていな い。
[0011] 以上の通り、霊長類動物胚性幹細胞から、無フィーダ一培養において、安定した継 代培養および凍結融解が可能な、血管内皮前駆細胞および成熟血管内皮細胞を効 率良く産生し、培養し、大量に生産する技術を確立することは、再生'移植医療の進 歩、血管に関する基礎医学的研究、および前臨床治験の有効な手段となる新たな薬 効/毒性試験の開発のために、世界的に急務となっている。また、そのような技術の 開発は、基礎医学研究、臨床医療の発展および創薬等の医療産業において極めて 有用である。
[0012] 一方、血液(血球)細胞は免疫系に重要な役割を果たしており、体内に侵入する異 物に対する抵抗、癌等に対する効果 (NK細胞)、白血病等における効果(造血幹細 胞等)等を有する。さらに、造血幹細胞はその組織可塑性 (tissue plasticity)からさま ざまな疾患にて必要となる細胞への横分化(transdifferentiation)が可能であること、 また白血球系前駆細胞は傷害を受けた組織の細胞と融合することで組織再生を促 すこと等などから、医療上の重要性は多大なものがある。
しかしながら、生体から得られた造血幹細胞(骨髄血、臍帯血など)は体外培養で 増幅させることはほとんど不可能であるため、移植医療における使用量が限られてお り(一人のドナーからの検体は一人の患者にしか投与できないなど)、培養実験を含 む基礎医学研究における使用は実質的に不可能である。また成熟血球に関しても、 マウスなどの実験動物に比べて、大量検体の調製が難しい霊長類では基礎的研究 が非常に遅れている。 [0013] 従って、再生医療や疾患の治療等への応用のみならず、研究面でも、ヒト胚性幹細 胞から無フィーダ一培養により、安全に、かつ効率良く血液細胞、造血幹細胞を産生 し、継代維持する方法が待望されている。
そのようにして得られる赤血球等の血液細胞は、エイズや C型肝炎ウィルス等によ る汚染がなぐ治療の安全性向上に有用である。さらに癌等における化学療法等に より機能低下した免疫系の強化に、胚性幹細胞由来の好中球等を含む白血球を輸 血することにより、院内感染等の問題を解決することもできる。また、血液細胞は、自 然治癒力の強化にもつながるために、胚性幹細胞からの血液細胞の製造は医療に 多大な利益を提供すると考えられる。
さらに、造血幹細胞は、それ自体移植に利用できるほか、血液細胞の生産にも利 用可能である。し力もながら、無フィーダ一における、ヒトを含む霊長類動物胚性幹細 胞から血球細胞への分化誘導効率は充分に高くなぐ産生される血球量も限られて いる。特に、造血幹細胞の産生効率は非常に低い(造血幹細胞の産生効率は 5%程 度)(非特許文献 6)。し力、も、充分量の血球細胞を確保するためには何十回、何百 回とレ、う実験を繰り返して実施する必要がある力 従来の方法による分化誘導は一過 性であり、これらの方法を、再生 ·移植医療に実際に応用することは不可能といっても よい。
[0014] 即ち、霊長類動物胚性幹細胞から、血液細胞(造血幹細胞および成熟血球等)を 安全に分化誘導し、維持し、大量生産する技術を確立することは、医療応用の観点 のみならず、基礎医学研究、さらには薬効分析などの薬理学研究において重要な課 題となっている。そのような技術の開発は、臨床医療への応用、基礎医学研究、およ び創薬等の医療産業において極めて有用である。
[0015] また、生体における造血にはストロマ細胞が不可欠である力 S、生体 (胎児肝、成体 骨髄等)から得られた造血ストロマ細胞は継代や凍結融解により機能が速やかに消 失するという問題があるので、移植 ·再生医療における使用が非常に限られているの みならず、インビトロでの培養は実質的に不可能である。従って、血液疾患における 移植医療の発展、造血ストロマ細胞に関する基礎医学的研究の発展のためには、胚 性幹細胞から造血ストロマ細胞を産生する技術を確立することが必須となっている。 し力、し、マウスを含めた全ての胚性幹細胞からの造血ストロマ細胞の産生は!/、まだ成 功例がない。
[0016] さらに、上記の血液関連細胞(血液細胞、造血幹細胞等)は、ヒトを含めた霊長類に おける「造血機構」の解明に有用である。現在でも、造血機構、特に発生における初 期造血に関する知見は皆無である。例えば、マウスの発生過程において長い間示唆 されてきた、血管内皮細胞と血液細胞の「共通前駆細胞(へマンジオブラスト)」の存 在も、ごく最近(2006年、 9月 )になって魚類 (ゼブラフィッシュ)においてようやく実証 されたに過ぎない(非特許文献 7)。ヒトにおいて唯一、生体での初期造血を正しく模 倣 (ミミック)できる可能性を持つ、ヒト胚性幹細胞から、この「共通前駆細胞」を産生す る技術が確立されれば、造血機能への理解を深め、研究、医療の発展に役立つと考 X_られる。
[0017] このように、ヒトを含む霊長類動物胚性幹細胞から、無フィーダ一培養において、高 い効率で、安定した継代維持、拡大再生産、凍結融解が可能な、血液関連細胞(造 血幹細胞、成熟血球、血管内皮細胞と血液細胞の「共通前駆細胞」、血管内皮細胞 、造血ストロマ細胞等)を作成 ·製造する方法は、再生'移植医療の進歩、造血機構 に関する基礎研究、および前臨床治験の有効手段となる新たな薬効/毒性試験の 開発等のために、広く求められている。
特許文献 1:国際公開第 99/20741号パンフレット
非特許文献 1:ドラパー(Draper)ら、 Nature Biotechnology誌、第 22巻、第 53頁 第 5 4頁、 (2004)
非特許文献 2 :ルードヴイツヒ(Ludwig)ら、 Nature Biotechnology誌、第 24巻、第 185頁 第 187頁、 (2006)
非特許文献 3 :バザード(Buzzard)、 Nature Biotechnology誌、第 22巻、 381頁 第 382 頁、 (2004)
非特許文献 4 :曾根ら、 Circulation誌、第 107巻、第 2085頁 第 2088頁、(2003) 非特許文献 5:レーへンノヽーク (Levenbergノり、 Proceeding of National Academy of S cience, USA誌、第 99巻、第 4391頁 第 4396頁、(2002)
非特許文献 6 :チャドウイック(Chadwick)ら、 Blood誌、第 102巻、第 906頁 第 915頁、 ((22000033))
非非特特許許文文献献 77 ::ボボゲゲリリ((VVooggeellii))らら、、 NNaattuurree誌誌、、第第 444433巻巻、、第第 333377頁頁 第第 333399頁頁、、((22000066)) 発発明明のの開開示示
発発明明がが解解決決ししょょううととすするる課課題題
[[00001188]] 本本発発明明はは、、霊霊長長類類動動物物胚胚性性幹幹細細胞胞をを、、染染色色体体異異常常等等のの変変化化をを惹惹起起ささせせるるここととななぐぐ 安安全全かかつつ長長期期的的にに未未分分化化状状態態をを維維持持ししてて、、継継代代すするる方方法法をを提提供供すするるここととをを目目的的ととしし てていいるる。。
本本発発明明ははままたた、、霊霊長長類類動動物物胚胚性性幹幹細細胞胞をを効効率率よよぐぐ安安全全にに血血管管内内皮皮細細胞胞、、血血管管内内 皮皮前前駆駆細細胞胞、、血血液液細細胞胞、、骨骨髄髄系系細細胞胞、、造造血血幹幹細細胞胞等等にに分分化化誘誘導導すするる方方法法をを提提供供すす るるここととをを目目白白勺勺ととししてていいるる。。
ささららにに、、本本発発明明はは、、上上記記のの方方法法でで得得らられれたた血血管管内内皮皮細細胞胞、、血血液液細細胞胞、、骨骨髄髄系系細細胞胞 、、造造血血幹幹細細胞胞等等をを提提供供すするるここととをを目目的的ととししてて!!//、、るる。。
本本発発明明ののそそのの他他のの目目的的はは、、明明細細書書をを通通ししてて明明ららかかととななるるででああろろうう。。
課課題題をを解解決決すするるたためめのの手手段段
[[00001199]] 本本発発明明者者ららはは、、臨臨床床適適用用にに適適ししたた霊霊長長類類動動物物胚胚性性幹幹細細胞胞をを十十分分量量適適用用すするるとと共共 にに、、霊霊長長類類動動物物胚胚性性幹幹細細胞胞かからら様様々々なな細細胞胞、、臓臓器器をを効効率率よよくく安安全全にに製製造造すするるたためめのの 方方法法をを確確立立すするるたためめにに鋭鋭意意研研究究をを重重ねね、、一一定定のの条条件件下下でで、、霊霊長長類類動動物物胚胚性性幹幹細細胞胞 がが持持続続ししてて安安定定的的にに維維持持さされれるるこことと、、おおよよびび適適切切にに様様々々なな細細胞胞にに分分化化誘誘導導さされれるるこことと をを見見出出しし、、本本発発明明をを完完成成すするるにに至至っったた。。
すすななわわちち、、本本発発明明のの要要旨旨はは、、以以下下をを含含むむ。。
〔〔11〕〕 霊霊長長類類動動物物胚胚性性幹幹細細胞胞のの培培養養おおよよびび継継代代方方法法ででああっってて、、
((AA))霊霊長長類類動動物物胚胚性性幹幹細細胞胞をを、、細細胞胞外外ママトトリリッッククススででココーートトさされれたた容容器器中中、、無無フフィィーーダダ 一一おおよよびび無無ササイイトト力力イインン下下、、蛋蛋白白成成分分をを含含有有すするる培培地地でで培培養養すするるスステテッッププ、、
((BB))前前記記スステテッッププ ((AA))でで形形成成さされれたた胚胚性性幹幹細細胞胞ののココロロニニーーをを細細胞胞剥剥離離剤剤のの存存在在下下、、 剥剥離離すするるスステテッッププ、、おおよよびび
((CC))前前記記スステテッッププ((BB))でで得得らられれたた胚胚性性幹幹細細胞胞ののココロロニニーーをを細細胞胞外外ママトトリリッッククススででココーートト さされれたた容容器器中中、、無無フフィィーーダダ一一おおよよびび無無ササイイトト力力イインン下下、、蛋蛋白白成成分分をを含含有有すするる培培地地にに播播
Figure imgf000008_0001
〔2〕 ステップ (A)において、霊長類動物胚性幹細胞のコロニーの大きさが約 2倍 〜約 4倍となるまで培養する、前記〔1〕記載の培養および継代方法。
〔3〕 ステップ (A)における蛋白成分が血清アルブミンである前記〔1〕又は〔2〕記載 の培養および継代方法。
〔4〕 ステップ (B)における細胞剥離剤が、トリプシン、コラゲナーゼ、デイスパーゼ からなる群から選ばれた少なくとも 1種類である、前記〔1〕〜〔3〕のいずれか 1項記載 の培養および継代方法。
〔5〕 ステップ (A)における細胞外マトリックス力 ヒトコラーゲン、ヒトラミニン、ヒトビト ロネクチン、ヒトフイブロネクチンおよびヒト血清、並びにこれらの分解物およびこれら 合成ペプチドからなる群から選ばれた 1種類である、前記〔1〕〜〔4〕のいずれか 1項 記載の培養および継代方法。
〔6〕 (A)霊長類動物胚性幹細胞を、サイト力インの存在下、血清もしくは血清代替 物を含むまたは無血清培地で浮遊培養し、胚葉体または胚葉体類似細胞凝集塊を 製造するステップ、
(B)ステップ (A)で得られた胚葉体または胚葉体類似細胞凝集塊を、サイト力イン の存在下、接着培養して浮遊細胞と接着細胞とを含む特定前駆細胞を製造するステ ップ、および
(C)ステップ (B)で得られた特定前駆細胞から浮遊細胞と接着細胞を分離するステ ップ、を含む霊長類動物胚性幹細胞からの血液細胞および/または血管内皮前駆 細胞の製造方法。
〔7〕 ステップ (A)の培養を、胚葉体様細胞凝集体が形成されるまで行う、前記〔6〕 に記載の霊長類動物胚性幹細胞からの血管内皮前駆細胞および/または血液細 胞の製造方法。
〔8〕 サイト力インが、血管内皮成長因子 (VEGF)、骨形成タンパク質 4 (BMP4)、 幹細胞因子(SCF)、 Flt3—リガンド(FU、インターロイキン 6 (IL6)、インターロイキ ン 3 (IL3)、顆粒球コロニー刺激因子(G— CSF)、巨核球増殖因子(TPO)、オンコ スタチン M (OSM)、線維芽細胞成長因子 2 (FGF2)および顆粒球マクロファージコ ロニー刺激因子(GM— CSF)からなる群より選ばれた少なくとも 1種類である、前記〔 6〕または〔7〕に記載の霊長類動物胚性幹細胞からの血管内皮前駆細胞および/ま たは血液細胞の製造方法。
〔9〕 ステップ (C)にお!/、て、特定細胞前駆細胞の接着細胞の分離に細胞剥離剤 を用いる、前記〔6〕〜〔8〕の!/、ずれか 1項記載の霊長類動物胚性幹細胞からの血管 内皮前駆細胞および/または血液細胞の製造方法。
〔10〕 細胞剥離剤がトリプシン、コラゲナーゼ、デイスパーゼからなる群から選ばれ た少なくとも 1種類である、前記〔9〕記載の霊長類動物胚性幹細胞からの血管内皮 前駆細胞および/または血液細胞の製造方法。
[11] (A)霊長類動物胚性幹細胞を、サイト力インの存在下、血清もしくは血清代 替物を含むまたは無血清培地で浮遊培養し、胚葉体または胚葉体類似細胞凝集塊 を製造するステップ、
(B)ステップ (A)で得られた胚葉体または胚葉体類似細胞凝集塊を、サイト力イン の存在下、接着培養して浮遊細胞と接着細胞を含む特定前駆細胞を製造するステツ プ、および
(C)ステップ (B)で得られた特定前駆細胞を、浮遊細胞を分離しながら培養するス テツプ、を含む霊長類動物胚性幹細胞からの血液細胞、骨髄系細胞、造血ストロマ 細胞および/または造血幹細胞の製造方法。
〔12〕 ステップ (A)の培養を、胚葉体が形成されるまで行う、前記〔11〕に記載の霊 長類動物胚性幹細胞からの血液細胞、骨髄系細胞、造血ストロマ細胞および/また は造血幹細胞の製造方法。
〔13〕 サイト力インが、血管内皮成長因子 (VEGF)、骨形成タンパク質 4 (BMP4) 、幹細胞因子(SCF)、 Flt3—リガンド(FU、インターロイキン 6 (IL6)、インターロイ キン 3 (IL3)、顆粒球コロニー刺激因子(G— CSF)、巨核球増殖因子(TPO)、オン コスタチン M (OSM)、線維芽細胞成長因子 2 (FGF2)および顆粒球マクロファージ コロニー刺激因子(GM— CSF)からなる群より選ばれた少なくとも 1種類である、前 記〔11〕または〔12〕に記載の霊長類動物胚性幹細胞からの血液細胞、骨髄系細胞、 造血ストロマ細胞および/または造血幹細胞の製造方法。
〔14〕 ステップ (C)において、特定細胞前駆細胞の接着細胞の分離に細胞剥離 剤を用いる、前記〔 11〕〜〔; 13〕の!/、ずれか 1項記載の霊長類動物胚性幹細胞からの 血液細胞、骨髄系細胞、造血ストロマ細胞および/または造血幹細胞の製造方法。
〔15〕 細胞剥離剤がトリプシン、コラゲナーゼ、デイスパーゼからなる群から選ばれ た少なくとも 1種類である、前記〔14〕記載の霊長類動物胚性幹細胞からの血液細胞 、骨髄系細胞、造血ストロマ細胞および/または造血幹細胞の製造方法。
[16] 前記〔6〕〜〔; 10〕いずれか 1項記載の製造方法により霊長類動物胚性幹細 胞から分化誘導されてなる、実質的に単離された血管内皮前駆細胞。
〔17〕 前記〔6〕〜〔; 14〕いずれか 1項記載の製造方法により霊長類動物胚性幹細 胞から分化誘導されてなる、実質的に単離された血液細胞。
〔18〕 前記〔 11〕〜〔; 14〕レ、ずれ力、 1項記載の製造方法により霊長類動物胚性幹細 胞から分化誘導されてなる、実質的に単離された造血ストロマ細胞。
〔19〕 前記〔 11〕〜〔; 14〕レ、ずれ力、 1項記載の製造方法により霊長類動物胚性幹細 胞から分化誘導されてなる、実質的に単離された造血幹細胞。
〔20〕 前記〔11〕〜〔; 14〕いずれか 1項記載の製造方法により霊長類動物胚性幹細 胞から分化誘導されてなる、実質的に単離された骨髄系細胞。
〔21〕 前記〔16〕〜〔; 19〕いずれか 1項記載の実質的に単離された血管内皮前駆 細胞、血液細胞、造血ストロマ細胞または造血幹細胞を含有する組成物。
発明の効果
本発明の霊長類動物胚性幹細胞の培養および継代方法によれば、染色体異常等 の細胞障害を惹起することなぐ簡便な装置および方法により、安全に霊長類動物胚 性幹細胞を未分化状態を維持して培養することができる。また、本発明方法によれば 、霊長類動物胚性幹細胞を、低コストで未分化維持培養することができ、再生医療や 研究分野での需要に広く応えることが可能となる。
本発明によれば、血管内皮細胞、血液細胞等の「共通前駆細胞」としての「特定細 胞前駆細胞」を安全かつ高効率で産生することができる。
また、本発明によれば、再生産性が高く安定した継代培養と凍結融解が可能であ る血管内皮細胞、血液細胞、造血幹細胞や骨髄系細胞等を大量生産することが可 能となる。 さらに、本発明によれば、安全性の高い輸血用血液製剤(造血幹細胞移植、顆粒 球輸血、骨髄系細胞投与などを含む)、血管損傷の治療や局所の血流の改善のた めの材料、他の様々な組織の再生促進を目的とした医療にお!/、て臨床使用目的に 適した材料としての各種細胞を容易に供給することができる。
さらに、本発明によれば、霊長類、特にヒト生体組織を正しく模倣 (ミミック)した性質 を持つ細胞群の大量提供を初めて可能するものである。これらの細胞は、薬剤効果 判定試験や毒性試験にも適切に使用できるため、臨床医療のみならず医療産業の 発展に大いに貢献しうる。
図面の簡単な説明
[図 1]図 1は、実施例 1に示した、本発明の「無フィーダ一および無サイト力イン下での 未分化維持継代方法」により、マトリゲル (登録商標)マトリックスでコートされた培養 皿を用いて培養された力二クイザル胚性幹細胞のコロニーを示す写真である。 Aは 2 0継代め、 Bは 35継代の時点で凍結し、融解した後にさらに 1継代した細胞を示す。 スケールバーは 100 を示す。
[図 2]図 2は、実施例 1に示した、本発明の「無フィーダ一および無サイト力イン下での 未分化維持継代方法」により、マトリゲル (登録商標)マトリックスでコートされた培養 皿を用いて培養された 20継代めの力二クイザル胚性幹細胞における、未分化維持 マーカーである SSEA-4および Oct-4の発現をフローサイトメトリーで測定した結果で ある。両者にぉレ、て非常に高!/、発現(〉 95%)が確認される。
[図 3]図 3は、実施例 1に示した、本発明の「無フィーダ一および無サイト力イン下での 未分化維持継代方法」により、マトリゲル (登録商標)マトリックスでコートされた培養 皿を用いて培養された 20継代めの力二クイザル胚性幹細胞における、未分化維持 マーカーである Tra-1_60、 Tra-l_81、および Nanogの発現を免疫染色で示した写真 である。ほぼ全ての細胞でいずれのマーカーも発現が確認される。スケールバーは 1 00 〃mを示す。
[図 4]図 4は、実施例 1に示した、本発明の「無フィーダ一および無サイト力イン下での 未分化維持継代方法」により、マトリゲル (登録商標)マトリックスでコートされた培養 皿を用いて培養された 21継代めの力二クイザル胚性幹細胞を 3匹の免疫不全マウス (SCIDマウス)の精巣皮膜下に移植した 2ヶ月後の精巣の写真である。図 4に示すよう に、 3匹全てにおいて腫瘍形成を確認した。
園 5]図 5は上記の腫瘍の組織標本 (へマトキシリン'ェォジン染色)である。記載のご とぐ神経上皮、歯、分泌腺、腸管様上皮、平滑筋などが認められる。
[図 6]図 6は、実施例 2に示した、本発明の「無フィーダ一および無サイト力イン下での 未分化維持継代方法」により、マトリゲル (登録商標)マトリックスでコートされた培養 皿を用いて培養された 24継代めのヒト胚性幹細胞のコロニーの位相差顕微鏡写真 を示す。スケールバーは 100 ^u mを示す。
[図 7]図 7は、実施例 2に示した、本発明の「無フィーダ一および無サイト力イン下での 未分化維持継代方法」により、マトリゲル (登録商標)マトリックスでコートされた培養 皿を用いて、培養された 20継代めのヒト胚性幹細胞における未分化維持マーカーで ある SSEA-4および Oct-4の発現をフローサイトメトリーで測定した結果である。両者に ぉレ、て非常に高レ、発現(〉 95%)が確認される。
[図 8]図 8は、実施例 2に示した、本発明の「無フィーダ一および無サイト力イン下での 未分化維持継代方法」により、マトリゲル (登録商標)マトリックスでコートされた培養 皿を用いて培養された 25継代めのヒト胚性幹細胞における未分化維持マーカーで ある Oct-4 (A)と Nanog (B)の発現を免疫染色で示した写真である。ほぼ全ての細胞 において、両者の蛋白が発現していることが確認される。スケールバーは 100 μ τηを 示す。
[図 9]図 9は、ヒト胚性幹細胞の染色体分析図(Gバンド法)である。左は、樹立機関で 推奨している従来の培養法 (胎仔マウス泉維芽細胞をフィーダ一細胞とする共培養 法)で維持して!/、る状況、右は本発明による「無フィーダ一無サイト力インによる培養 法」で 20回継代した状況における結果である。全く染色体異常が起きていないことが 確認された。
[図 10A]図 10Aは、実施例 3に示した、本発明の「無フィーダ一および無サイト力イン 下での未分化維持継代方法」により、ヒト由来フイブロネクチン(5 H g/cm2)のみでコ ートされた培養皿を用いて培養された 4継代めでのヒト胚性幹細胞の位相差顕微鏡 写真である。未分化な形態を保持してレ、ること力 S解る。 [図 10B]図 10Bは、図 10Aの細胞において未分化維持マーカーである SSEA-4と Oct -4の発現をフローサイトメトリーで測定した結果である。両マーカーの高発現が確認 された。
園 10C]図 10Cは、実施例 3に示した、本発明の「無フィーダ一および無サイト力イン 下での未分化維持継代方法」により、ヒト AB型血清のみでコートされた培養皿、を用 V、て培養された 4継代めでのヒト胚性幹細胞の位相差顕微鏡写真である。未分化な 形態を保持してレ、ること力 S解る。
[図 10D]図 10Dは、図 10Cの細胞において未分化維持マーカーである SSEA-4と Oc t-4の発現をフローサイトメトリーで測定した結果である。両マーカーの高発現が確認 された。
[図 11]図 11は、造血幹細胞から血液細胞への分化系統図を示す。
[図 12]図 12は、実施例 4に示した、本発明の無フィーダ一での血管内皮細胞'血球 の分化誘導と拡大再生産の技術による、力二クイザル胚性幹細胞から牛胎児血清存 在下で作成した、血管内皮前駆細胞と血液細胞に共通の『特定前駆細胞』 (嚢状構 造物と球状細胞集団からなる構造物)を示す。スケールバーは 100 ^ mを示す。
[図 13]図 13は、上記『特定前駆細胞』のうち、球状細胞から産生された成熟血球細 胞の Wright-Giemsa染色(A)と特殊染色(ミエ口ペルォキシダーゼ染色(B)とエステラ ーゼ二重染色(C) )を示す。様々な骨髄系細胞、即ち、骨髄芽球から成熟血球 (好 中球およびマクロファージ)に至る各分化段階の細胞が観察される。スケールバーは 20 mを示す。
[図 14]図 14は、上記『特定前駆細胞』のから産生された血管内皮細胞の、血管内皮 細胞特異的マーカーである VE-cadherinと、血管内皮細胞マーカーの一つである N- cadherin発現を免疫染色で調べたものである。ほぼ全ての細胞にお!/、て VE_cadheri nと N-cadherinの発現が確認される。スケールバーは 50 mを示す。
[図 15]図 15は、上記『特定前駆細胞』から産生された血管内皮細胞の、成熟血管内 皮細胞マーカーである PECAM1の発現を、汎血管内皮細胞マーカーかっ血管内皮 特異的マーカーである VE-cadherinとの二重染色によるフローサイトメトリーで確認し たものである。横軸は PECAM1を、縦軸は VE-cadherinの発現強度を表す。 4割以上 の細胞で両者の発現が確認される。
[図 16]図 16は、上記『特定前駆細胞』から産生された血管内皮細胞の成熟機能の確 認のために、コード形成能 (A)とァセチル化低比重リポ蛋白(AC-LDL)の取込能(B) を調べたものである。 V、ずれにお!/、ても高!/、効率で成熟機能の獲得が確認される。
[図 17]図 17は、実施例 4に示した、本発明の「無フィーダ一での血管内皮細胞およ び血液細胞への分化誘導方法」による、力二クイザル胚性幹細胞から無血清培養条 件(KNOCKOUT (登録商標) SRを使用)で作成された成熟血球細胞の Wright-Giems a染色 (A)と特殊染色(ミエ口ペルォキシダーゼ染色(B)とエステラーゼ二重染色(C) )を示す。様々な骨髄系細胞、即ち、骨髄芽球から成熟血球 (好中球およびマクロフ ァージ)に至る各分化段階の細胞が観察される。スケールバーは 20 を示す。
[図 18]図 18は、実施例 5に示した、本発明の「無フィーダ一での血管内皮細胞およ び血液細胞への分化誘導方法」による、力二クイザル胚性幹細胞から無血清条件 (K NOCKOUT (登録商標) SRを使用)で作成された血管内皮細胞における VE-cadherin と PECAM1の発現をフローサイトメトリーで確認したものである。従来、無血清では内 皮細胞の分化誘導はできないと信じれられていた力 数%以上の効率で VE-cadheri nと PECAM1の細胞膜発現が確認される。
[図 19]図 19は、実施例 6に示した、本発明の「無フィーダ一での血管内皮細胞およ び血液細胞への分化誘導方法」による、力二クイザル胚性幹細胞から牛胎児血清存 在下で作成した胚葉体細胞の位相差顕微鏡写真 (A)と、胚葉体を接着培養して得ら れる血管内皮前駆細胞と血液細胞に共通の『特定前駆細胞』 (嚢状構造物と球状細 胞集団からなる構造物)(B)を示す。スケールバーは 100 を示す。
園 20]図 20は、上記『特定前駆細胞』を培養することで得られた、血液細胞の拡大再 生産がなされている状況を示す位相差顕微鏡写真である。造血ストロマ細胞 (接着 細胞)とそこから産生された血球(浮遊細胞)の両者が確認される。スケールバーは 10 0 u mを不す。
[図 21A-D]図 21A— Dは、上記した血球の拡大再生産過程において回収された血 球細胞(浮遊細胞)の Wright-Giemsa染色像(A)と、特殊染色(ミエ口ペルォキシダー ゼ染色(B)、エステラーゼ二重染色(C)、好中球性アルカリホスファターゼ染色(D) ) を示す。様々な骨髄系細胞、即ち、骨髄芽球から成熟血球 (好中球およびマクロファ ージ)に至る各分化段階の細胞が観察される。スケールバーは 20 を示す。
[図 21E]図 21Eは、図 21A— Dの血球細胞(浮遊細胞)における造血幹細胞マーカ 一である CD34の発現をフローサイトメトリーで確認した結果を示す。
[図 21F]図 21Fは、図 21A— Dの血球細胞(浮遊細胞)における汎血球細胞マーカ 一である CD45 (F)の発現をフローサイトメトリーで確認した結果を示す。
園 22A]図 22Aは、上記した『特定前駆細胞』のから産生された、継代可能な「造血ス トロマ細胞」の位相差顕微鏡写真(スケールバーは 100 mを示す)である。
園 22B]図 22Bは、上記した『特定前駆細胞』のから産生された、継代可能な「造血ス トロマ細胞」の CD34、 CD45の発現をフローサイトメトリーで調べた結果、である。汎血 球マーカーである CD45、造血幹細胞のマーカーである CD34はともにほぼ陰性であ る(少量の陽性細胞は造血ストロマ細胞に接着している造血幹細胞の混入と考えら れる)。
園 23A]図 23Aは、上記した『特定前駆細胞』のから産生された、「継代可能な造血 幹/前駆細胞」の長期間培養(〉 100日)により作成された「CD34陽性かつ CD45陽性 細胞」の位相差顕微鏡写真である。浮遊細胞と接着細胞が混在しているが、両者は 互いに移行可能であり、同等な細胞集団(即ち、造血幹細胞と対等物)と考えられる 。スケールバーは 100 を示す。
園 23B]図 23Bは、上記した『特定前駆細胞』のから産生された、「継代可能な造血幹 /前駆細胞」の長期間培養(〉 100日)により作成された「CD34陽性かつ CD45陽性細 胞」における浮遊細胞、および接着細胞に関する、 CD34、 CD45の発現をフローサイ トメトリーで確認した結果を示す。
[図 24]図 24は、上記した「血液細胞の拡大再生産」が行われている状況における、 浮遊細胞と接着細胞をそれぞれ凍結解凍して培養を再開した状況の位相差顕微鏡 写真である。いずれにおいても、凍結前と全く同様に、造血ストロマ細胞 (接着細胞) とそこから産生される血球(浮遊細胞)の存在が確認された。スケールバーは 100 μ ΐη を示す。
[図 25]図 25は、実施例 7に示した、本発明の「無フィーダ一での血管内皮細胞およ び血液細胞への分化誘導方法」により、力二クイザル胚性幹細胞から無血清条件 (K NOCKOUT (登録商標) SRを使用)で作成された血球細胞の Wright-Giemsa染色像( A)と、特殊染色(ミエ口ペルォキシダーゼ染色(B)、エステラーゼ二重染色(C)を示 す。様々な骨髄系細胞が観察される。スケールバーは 20 を示す
[図 26]図 26は、実施例 8に示した、本発明の「無フィーダ一での血管内皮細胞およ び血液細胞への分化誘導方法」による、ヒト胚性幹細胞からの血管内皮前駆細胞お よび血液細胞の『特定前駆細胞』 (嚢状構造物と球状細胞集団からなる構造物)を示 す。スケールバーは 100 ^u mを示す。
[図 27]図 27は、上記した『特定前駆細胞』のから産生された成熟血球細胞(浮遊細 胞)の Wright-Giemsa染色像 (A)と、特殊染色(エステラーゼ二重染色(B)、好中球性 アルカリホスファターゼ染色(C) )を示す。様々な骨髄系細胞、即ち、骨髄芽球から成 熟血球 (好中球およびマクロファージ)に至る各分化段階の細胞が観察される。スケ 一ノレバーは 20 を示す。
[図 28]図 28は、実施例 8に示した、本発明の「無フィーダ一での血管内皮細胞およ び血液細胞への分化誘導方法」により、ヒト胚性幹細胞から牛胎児血清存在下で作 成された、浮遊細胞の CD34、 CD45の発現をフローサイトメトリーで確認したものであ る。ほぼ全ての細胞で汎血球マーカーである CD45が発現しており、非常に高い効率 で血球細胞分化が誘導されていることが解る。また 1割程度の CD34陽性細胞が検出 されることから、造血幹細胞も存在して!/、ること力 S確認される。
[図 29]図 29は、実施例 8に示した、本発明の「無フィーダ一での血管内皮細胞およ び血液細胞への分化誘導方法」により産生された血球細胞から、リンホプレップ (登 録商標)(第一化学薬品株式会社製)を用いた密度勾配遠心法により好中球を濃縮 した結果である。ここでは好中球性アルカリホスファターゼ染色により好中球が青紫 色に染色されている力 濃縮前 (A)に比べて、濃縮後(B)ではほぼ全ての細胞が好 中球となっている。
[図 30]図 30は、実施例 9に示した、本発明の「無フィーダ一での血管内皮細胞およ び血液細胞への分化誘導方法」により、ヒト胚性幹細胞から無血清条件(KNOCKOU T (登録商標) SRを使用)で作成された、浮遊細胞の CD45の発現をフローサイトメトリ 一で確認したものである。ほぼ全ての細胞で汎血球マーカーである CD45が発現して おり、非常に高い効率で血球細胞分化が誘導されていることが解る。
[図 31]図 31は、 3種類のヒト初代培養血管内皮細胞(ヒト臍帯静脈内皮細胞(HUVE C)、ヒト微小血管内皮細胞(HMVEC)、ヒト大動脈内皮細胞(HAEC) )における N-cad herinの細胞内発現様式を免疫染色で調べたものである。霊長類動物胚性幹細胞か ら作成された血管内皮細胞において明瞭な細胞膜局在を認めるのに対して(図 14 中)、ヒト初代培養血管内皮細胞では N-cadherinの細胞膜局在はすでに消失されて いること力 S解る。スケールバーは 50 01を示す。
[図 32]図 32は、実施例 10に示した、腫瘍の組織標本 (へマトキシリン'ェォジン染色) である。記載のごとぐ外胚葉成分 (神経上皮細胞;図 a、歯エナメル上皮;図 d)、中胚 葉成分 (平滑筋;図 b、歯象牙質;図 d)、内胚葉成分 (腸管上皮;図 b、分泌腺組織; 図 c)の三胚葉成分が認められる。
[図 33]図 33は、実施例 11に示した、腫瘍の組織標本 (へマトキシリン'ェォジン染色) である。記載のごとぐ外胚葉成分 (神経上皮細胞;図 a、色素上皮;図 b、皮脂腺:図 h )、中胚葉成分 (骨;図 d、脂肪細胞;図 e、軟骨;図 f)、内胚葉成分 (分泌腺;図 cおよ び図 g)の三胚葉成分が認められる。
[図 34]図 34は、実施例 12に示した、嚢状構造物をアセトン/メタノール混合液で固定 し、免疫染色法で VE-cadherin発現を調べたものである。「嚢壁の細胞」とその周囲に 広がる「近位の敷石細胞」では細胞間境界における VE-cadherinの局在が明瞭であ る。敷石細胞は、遠位になり運動性が増すとともに、 VE-cadherinの細胞膜局在は不 明瞭になる。最も運動性の高い front領域では VE-cadherinは細胞内主体に発現する 。これらの VE-cadherin陽性細胞では!/、ずれも増殖マーカーである PCNAが陽性であ る力 VE-cadherin陰性細胞の大型細胞(矢印)では PCNAは陰性であり、増殖して!/、 ないことが解る。スケールバーは 100〃mを示す。
[図 35]図 35は、実施例 12に示した、図 34で示した構造物を一塊として剥離回収し、 継代培養を行ったものにおいて免疫染色で VE-cadherinの発現を調べたものである 。ここでも全ての細胞において、少なくとも細胞内での VE-cadherinの発現が確認さ れる。スケールバーは 20 を示す。 [図 36]図 36は、実施例 12に示した、嚢状構造物と敷石細胞からなるものを継代培養 し、時間経過を追って、 VE-cadherinおよび PECAM1の発現をフローサイトメーターで 測定したものである。継代初期は;!〜 2割程度だが、継代回数が進むに従って、 VE- cadherin/PECAMl陽性率は上昇することが解る。
[図 37A]図 37Aは、実施例 12に示した、サル胚性幹細胞由来内皮細胞およびヒト大 動脈平滑筋細胞を、抗平滑筋ァクチン (ACTA2)抗体またはコントロール IgGで免疫 染色した(図 37A上段)ものである。図 37A下段は、細胞の微分干渉像を示す。サル 胚性幹細胞由来内皮細胞の集団は ACTA2陰性であり、ペリサイトがコンタミネーショ ンしていないことが確認された。スケールバーは 20 を示す。
[図 37B]図 37Bは、実施例 12に示した、サル胚性幹細胞由来内皮細胞およびヒト大 動脈平滑筋細胞を、抗 platelet-derived growth factor receptor β (PDGFR β 抗体 またはコントロール IgGで免疫染色した(図 37Β上段)。図 37B下段は、細胞の微分干 渉像を示す。サル胚性幹細胞由来内皮細胞の集団は、 PDGFR β陰性であり、ペリ サイトがコンタミネーシヨンしていないことが確認された。スケールバーは 20〃mを示 す。
[図 38A]図 38Aは、実施例 12に示した、サル胚性幹細胞由来内皮細胞および未分 化胚性幹細胞を抗ヒト Nanog抗体(リプロセル社)またはコントロール IgGで免疫染色し た(図 38A上段)。図 38A下段は細胞の微分干渉像を示す。サル胚性幹細胞由来 内皮細胞の集団は Nanog陰性であり、未分化胚性幹細胞がコンタミネーシヨンしてい ないことが確認された。スケールバーは 20 を示す。
園 38B]図 38Bは、実施例 12に示した、ヒト臍帯静脈内皮細胞(HUVEC)、サル胚性 幹由来内皮細胞および未分化胚性幹細胞の溶解液を用いて、抗ヒト Nanog抗体 (左) および抗 β -tubulin抗体(右)で Western blottingを行った。サル胚性幹由来内皮細 胞の集団は Nanog陰性であり、未分化胚性幹細胞がコンタミネーシヨンしていないこと が確認された。
[図 39A-B]図 39Aは、実施例 12に示した、嚢状構造物を 1回継代した後に、 FACSAr ia(BD Bioscience社) ίこより JrL\ E—cadherinirL体 (Beckman Coulter社、 Clone TEA1.31 )を用いて、 VE-cadherin陽性分画と陰性分画にソーティングしたものである。 VE_ca dherin陽性分画(図 39A)を継代培養しても VE-cadherinの発現は安定に保持され( 図 39B)、 5回の継代培養により約 160倍に細胞が増幅されたことが確認された。
[図 39C]図 39Cは、実施例 12に示した、 VE-cadherin陽性分画を継代培養したのち 抗 VE-cadherin抗体(BD社、 clone75)を用いて VE-cadherinの発現を免疫染色で確認 したものである。全ての細胞の細胞間接着部にお!/、て VE-cadherinの局在が確認さ れた。スケールバーは 10 01を示す。
[図 40]図 40は、実施例 12に示した、嚢状構造物を 1回継代した後に、 FACSAria(BD Bioscience社)を用いて VE-cadherin陽性分画および陰性分画にソーティングしたも のである。 VE-cadherin陰性分画は細胞表面に VE-cadherinを表出はしていないが( 図 A)、細胞内には VE-cadherinは発現しており、コード形成能(図 B)、ァセチル化低 比重リポ蛋白(Ac-LDL)取込能(Di卜 Ac-LDL;蛍光標識 Ac_LDL。 LDLは陰性コント ロールとしての非標識 LDL) (図 C)を持しており、血管内皮細胞にコミットメントされた 細胞であることが確認された。スケールバーは 100 を示す。
[図 41a]図 41aは、実施例 13に示した、マウスへ移植されたラットダリオ一マの腫瘍組 織標本である。力二クイザル胚性幹細胞由来血管内皮細胞を共移植したものでは、 腫瘍が大きぐ血管に富み、易出血性であることが解る。
[図 41b]図 41bは、図 41aの腫瘍組織をホルマリン固定したのち、薄切切片を作成し てへマトキシリン .ェォジン染色(HE染色)を施した後、組織学的検査を行ったもので ある。力二クイザル胚性幹細胞由来血管内皮細胞を共移植したものでは、血管に富 んだ構造を示すことが解る。図 41bのスケールバーは 100〃mを示す。
[図 41c]図 41cは、ラットダリオ一マ細胞と力二クイザル胚性幹細胞由来血管内皮細胞 を共移植して形成された腫瘍細胞の、抗ヒト HLA-A, B, C抗体を用いた免疫染色の 結果である。腫瘍内新生血管を裏打ちする内皮細胞は、霊長類動物由来であること 、即ち力二クイザル胚性幹細胞由来血管内皮細胞に由来する。
園 42a]図 42aは、実施例 14に示した、ヒト胚性幹細胞から分化誘導した血管内皮細 胞の、フローサイトメーターによる VE-cadherinおよび PECAM1の細胞表面における 発現の解析結果である。継代初期には VE-cadherin/PECAMl二重陽性細胞の割合 は 2割程度であるが、継代後期には 7割に達することが解る。 [図 42b]図 42bは、実施例 14に示した、ヒト胚性幹細胞由来血管内皮細胞の in vitro での機能評価である。ァセチル化低比重リポ蛋白取込能およびコード形成能ともに 陽性であることが解る。スケールバーは、 100〃 mを示す。
[図 42c]図 42cは、実施例 14に示した、ヒト胚性幹細胞由来血管内皮細胞の in vivoで の機能評価を目的としたプラグアツセィの結果である。ヒト胚性幹細胞由来血管内皮 細胞を移植したコラーゲンプラグを回収し、ホルマリン固定したのちヒト HLA-A, B, C 抗体およびヒト PECAM1抗体を用いて免疫染色を行った。プラグ内に形成された新 生血管は霊長類由来、即ち、ヒト胚性幹細胞由来血管内皮細胞に由来することが解 る。スケールバーは、 40 μ mを示す。
[図 43]図 43は、実施例 15に示した、好中球を中心とする血球マーカーの発現をフロ 一サイトメトリーにより解析したものである。
[図 44]図 44は、実施例 16に示した、抗ヒト CD66b抗体を用いたフローサイトメトリーに よりヒト由来好中球の陽性率を測定したものである。
符号の説明
0101 胚性幹細胞
0102 造血幹細胞
0103 樹状細胞
0104 Tリンパ球前駆細胞
0105 T細胞
0106 Bリンパ球前駆細胞
0107 B細胞
0108 形質細胞
0109 NK前駆細胞
0110 NK細胞
0111 樹状細胞系前駆細胞
0112 樹状細胞
0113 肥満細胞系前駆細胞
0114 肥満細胞 0115 好塩基球系前駆細胞
0116 好塩基球
0117 好酸球系前駆細胞
0118 好酸球
0119 顆粒球マクロファージ系前駆細胞
0120 マクロファージ前駆細胞
0121 単球
0122 マクロファージ
0123 破骨細胞前駆細胞
0124 破骨細胞
0125 好中球前駆細胞
0126 好中球
0127 巨核球系前駆細胞
0128 巨核球
0129 i小板
0130 前期赤芽球系前駆細胞
0131 後期赤芽球系前駆細胞
0132 赤 jfll球
0133 リンパ系幹細胞
0134 骨髄系幹細胞
0135 樹状細胞前駆細胞
発明を実施するための最良の形態
本発明は、基本的には、本発明者らが、霊長類胚性幹細胞の培養および継代に際 して、細胞へのストレスを軽減し、細胞本来の制御された分化を達成する上で適切な 条件を見出した結果、達成されたものである。具体的には、本発明者らは、後述する ように、霊長類動物の胚性幹細胞、分化後の前駆細胞及び成熟細胞等へのストレス を軽減ないし解消するための条件を見出し、それにより胚性幹細胞の持続的で安定 な維持を達成すると同時に、胚性幹細胞から効率良ぐ 目的の細胞を安全に製造す る方法を完成したのである。
[0024] I. 霊長穎動物胚性幹細胞の培着および継代方法
本発明の、第一の態様である霊長類動物胚性幹細胞を未分化状態に維持して培 養、継代するための方法は、以下の工程からなる。
(A)霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた容器中、無フィーダ 一および無サイト力イン下、蛋白成分を含有する培地で培養するステップ、
(B)前記ステップ (A)で形成された胚性幹細胞のコロニーを細胞剥離剤の存在下、 剥離するステップ、および
(C)前記ステップ(B)で得られた胚性幹細胞のコロニーを細胞外マトリックスでコート された容器中、無フィーダ一および無サイト力イン下、蛋白成分を含有する培地に播 本発明の上記方法は、本発明者らが、実験的に霊長類動物胚性幹細胞は、外部 からの特定因子(フィーダ一細胞が分泌する因子、および合成サイト力イン等)の補 充なしに、未分化状態に維持する能力を有するとの知見を得たことに基づいている。 このような知見に基づいて、適切な培地を選択し適切な手技で培養、継代を行うこと により、従来困難または不可能であった霊長類動物胚性細胞を、無フィーダ一、無サ イト力イン下で未分化状態に維持し、染色体異常等を引き起こすことなぐ数十回以 上という長期間にわたって安定に継代し続けることが可能となった。
[0025] 本明細書、図面および特許請求の範囲を通して、本発明に係る「霊長類動物胚性 幹細胞」は、任意の霊長類動物由来の胚性幹細胞を意味する。霊長類動物胚性幹 細胞およびその調製方法は既知であり、例えば、力二クイザル胚性幹細胞〔末森博 文(Suemori, Η·)ら、「IVF又は ICSIにより産生された力二クイザル胚盤胞由来胚性 幹細胞の teTA bstablishment or embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSL)」、 Dev. Dynamic s 第 222巻、弟 273頁一 第 279頁(2001)〕、ァカゲザル胚性幹細胞〔トムソン(Thomson, J.A.)ら、「霊長類動 物胚性幹細胞株の単離 (Isolation of a primate embryonic stem cell line.)」、 Proc. N atl. Acad. Sci, USA,第 92巻,第 7844頁—第 7848頁(1995)〕、マーモセッ卜胚 性幹細胞〔トムソン (Thomson, J.A.)ら、「コモンマーモセット胚盤胞由来の多能性細 月包株 (Pluripotent cell lines derived from common marmoset blastocysts.) 、 Biolol. Reprod.、第 55頁、第 254頁 第 259頁(1996)〕、ヒト胚性幹細胞〔トムソン(Thom son, J.A.)ら、「ヒト胚盤胞由来の胚性幹細胞株 (Embryonic stem cell lines derived fro m human blastocysts.)] , Science,第 282巻、第 1145頁—第 1147頁(1998);ロイビ ノフ(Reubinoff, B.E.)ら、ヒト胚盤胞由来の胚性幹細胞:インビトロ体細胞分化 (Embry onic stem cell lines rrom human blastosysts: somatic differentiation in vitro.八 Nat. Biotech.、第 399頁 第 404頁(2000)〕等を挙げることができる。
また、特記しない限り、本発明に関して「霊長類動物胚性幹細胞」という語句は、未 分化状態の霊長類動物胚性幹細胞を意味する。
[0026] 霊長類動物胚性幹細胞が未分化状態であることの確認は、既知の評価方法で行う こと力 Sできる。例えば、分子マーカーの発現(SSEA-4, Oct-4などのフローサイトメトリ 一による発現測定、 Oct_4、 Nanogなどの免疫染色、など)、インビトロ実験における多 能性分化の確認、および免疫不全マウス等への移植によるテラトーマ形成の確認、 等の当業者既知の方法によりなされる。
[0027] 前記霊長類動物胚性幹細胞の培養および継代方法には、霊長類動物胚性幹細 胞を維持するために用いられてレ、る通常の培地(サイト力イン非添加)を使用すること 力 sできる。具体的には、例えば、イスコフ改変ダルベッコ培地(IMDM/Ham' s F-12) 等が挙げられる。培地への胚性幹細胞の播種は後述の方法に従って行う。なお、一 連の継代において用いる培地は必ずしも同一でなくてもよぐ胚性幹細胞を未分化 状態に維持することができるかぎり、異なる培地であってもよい。具体的にはステップ (A)とステップ(C)の培地は同一でも、異なっていてもよい。
[0028] 前記「霊長類動物胚性幹細胞の未分化維持継代方法」に用いる蛋白成分としては 、霊長類動物胚性幹細胞を維持するために用いられている「動物血清以外のもの」 であればよぐ例えば、血清アルブミン、ヒト AB型血清等が挙げられる。また、 KNOCK OUT (登録商標) SR (インビトロジェン社製)等の、胚性幹細胞の維持と増殖に適した 血清不含の市販されてレ、る添加物を用いることもできる。
[0029] 前記「細胞外マトリックス」としては、細胞が分泌する前記細胞外マトリックス成分(マ トリゲル (登録商標)マトリック (BD社製)等)、その他の細胞外に分泌され細胞接着を 増進する成分、ヒトを含む生体から得られたコラーゲン、ラミニン、フイブロネクチン、 ビトロネクチン、ヒアルロン酸、およびこれらの蛋白や多糖体(分解物、断片化産物を 含む)の人工合成物、ヒトを含む生体から得られた血清や血漿、およびこれらから分 離または精製された産物等が挙げられる。また前記細胞外マトリックスによる培養容 器のコーティングは、慣用の方法により行なうことができる。なお細胞外マトリックスは ヒトを含む霊長類動物由来であることが好ましい。また、前記細胞外マトリックスが異 種動物とヒトとの両方から得られ、効果にぉレ、て後者が前者に劣らな!/、場合は後者を 用いるのが好ましい。
[0030] 細胞外マトリックスでコートされた培養容器からの霊長類動物胚性幹細胞の分離は 、最大限に細胞ストレスを惹起しない方法で行うことが好ましぐ後述の方法が適当で ある。一例として、マトリゲル (登録商標)マトリックスでコートした培養皿を使用する際 はデイスバーゼ等が好ましいが、細胞ストレスがないか、十分に低いことが確認された ものであればよぐこれに限定されない。
また、ピペッティング操作など、細胞傷害を惹起する危険性がある操作や処理は極 力省くことが好ましい。
[0031] 霊長類動物胚性幹細胞の培養操作において、細胞が受けるストレスの判定は、死 細胞数や細胞増殖速度により簡便になされるが、定期的(半年毎など)に染色体検 查(Gバンド染色法による判定など)を実施し、染色体異常が惹起されてレ、な!/、ことを 確認することが必要である。
[0032] 前記培養容器は、細胞の培養に通常用いられる容器であればよい。
霊長類動物胚性幹細胞を培養容器に播種する際の細胞密度は、細胞へのストレス を最小限にするよう、選択する。細胞密度の制御は、霊長類動物胚性幹細胞のコロ ニーの大きさと数を適切に選択することにより達成される。
霊長類動物胚性幹細胞の培養容器に播種する際のコロニーの大きさは、顕微鏡( 倒立型位相差顕微鏡など)を用いた観察により確認するのが簡便であり実効性も高 いが、他の方法(肉眼的観察、側方散乱光量の測定、溶液濁度の測定など)で確認 してもよい。コロニーの大きさの最適値は個々の霊長類動物胚性幹細胞ごとに決定 するものであるが、例えば、カクニイザル胚性幹細胞やヒト胚性幹細胞の場合は、直 径が約 100 m〜約 2000 m、好ましくは約 300 m〜約 1000 m、より好ましくは 500 β m程度でめる。
[0033] 霊長類動物胚性幹細胞を培養容器に播種する際のコロニーの大きさの制御は、細 胞剥離操作を適切に実施することで達成される。
細胞の剥離は、細胞に対するストレスをできるだけ少なくするような条件下で行うこと が好ましい。剥離剤としては、トリプシン、コラゲナーゼ、デイスパーゼからなる群から 選ばれた少なくとも 1種類が好ましぐデイスパーゼ単独またはデイスパーゼと他の剥 離剤との組み合わせが好ましい。また、市販の細胞剥離剤(霊長類動物胚性幹細胞 用細胞剥離液(リブロセル社) )等を使用することもできる。
好適な剥離方法(時間、温度、剥離剤の種類等)は個々の霊長類動物胚性幹細胞 ごとに決定されるものである力 例えば、後述の実施例 1に示した方法が推奨される。 例えば、力二クイザル胚性幹細胞の無フィーダ一培養にお!/、て、継代時の細胞剥離 においては、コラゲナーゼ液(細胞膜蛋白を分解する可能性がある)よりも、細胞外マ トリックスのみを分解するデイスパーゼを使用すると、細胞ストレスが大幅に抑制でき、 好ましいが、必ずしもこれに限定されない。
[0034] 霊長類動物胚性幹細胞の培養容器に播種する際のコロニーの数は、顕微鏡 (倒立 型位相差顕微鏡など)を用いた観察により確認するのが簡便である力 細胞数測定 装置 (血球計算盤など)を用いてもよ!/、。
霊長類動物胚性幹細胞の培養容器に播種する際のコロニーの数 (密度)に関する 最適値は、個々の霊長類動物胚性幹細胞ごとに決定するものであるが、培養期間中 にコロニー同志が決して融合することがない密度以下にする必要がある。例えば、力 クニィザル胚性幹細胞やヒト胚性幹細胞の場合は、後述の実施例(特に実施例;!〜 3 )に示した方法が推奨される。
[0035] 霊長類動物胚性幹細胞の継代頻度(タイミング)は、個々の霊長類動物胚性幹細 胞ごとに決定するものである力 コロニーの直径が播種時の約 2倍に達した時点が目 安になる。例えば、カクニイザル胚性幹細胞やヒト胚性幹細胞の場合は、後述の実施 例(特に実施例 1〜3)に示した方法が推奨される。即ち、コロニーの大きさが約 200 μ m〜約 4000 μ m、好ましくは約 600 μ m〜約 2000 μ m、より好ましくは約 1000 μ mに 達すれば、剥離し、再度播種する。なお実施例 1〜3に示した方法に準じた剥離操作 を実施すれば、コロニーは直径が平均 500 m程度の均一なコロニーに分散される。
[0036] 霊長類動物胚性幹細胞は、上記のコロニーの大きさを目安に培地交換することに より、未分化状態に維持される。具体的な頻度は、胚性幹細胞の起源、培養条件等 により異なり、適宜調整される。例えば、カクニイザル胚性幹細胞やヒト胚性幹細胞の 場合、 1週間(7日)に 4回以上、好ましくは 5回以上、より好ましくは 6回以上培地交換 を行うことで良好な未分化状態が維持される。
[0037] 霊長類動物胚性幹細胞の培養条件は、胚性幹細胞に培養に適した条件であれば よぐ例えば、 37°C、 5体積%じ〇の条件等が挙げられるが、適宜、酸素濃度を変更 してもよい。
[0038] 本発明の、「1.霊長穎動物呸件榦細胞の培着および継代方法 Iにより未分化維持さ れた霊長類動物胚性幹細胞は、慣例の方法で凍結保存が可能である。例えば、カク ニイザル胚性幹細胞やヒト胚性幹細胞の場合は、後述の実施例 1に示した方法が推 奨される。
[0039] 上記の本発明方法で霊長類動物胚性幹細胞を培養し、継代することにより得られ る細胞は凍結融解後も正常であり、さらに継代することも可能である。また、後述の実 施例に記載の通り、少なくとも 27継代後でも染色体異常は全く検出されていない(後 述の実施例 2)。これは、従来技術 (十数回以上の継代に際して染色体異常が惹起さ れる。非特許文献 1を参照)と比較して、本発明方法が格段に優れた培養技術である ことを示している。
また、本発明方法によれば合成サイト力イン等の添加物が不要であるため培養系が 簡素化(シンプリファイ)され、分子レベルでの解析が容易になり、基礎研究の発展に とって大きなメリットとなる。また、培養の費用も大幅に節減することができる。
また本発明方法における培養操作は至極簡便なものであり、特殊器具や特殊技能 を要さないことから、世界中のあらゆる施設ですぐに実施が可能である。即ち、本発 明による霊長類動物胚性幹細胞の未分化維持培養方法は、「臨床医療」、「医療産 業」、「基礎医学生物学研究」という 3つの分野において、広範に実施可能であり、そ れらの発展に大いに寄与し得る。 [0040] 本発明の、霊長類動物胚性幹細胞を未分化状態に維持して培養、継代する方法 に係る本発明は、霊長類動物胚性幹細胞のための、未分化維持用培地、培養器の コート法、継代時の細胞剥離法、培養時の細胞密度の制御方法、継代頻度(タイミン グ)の制御方法、凍結融解法を包含しており、培養技術の提供 (公開、指導)、培地 等の作成のための情報の提供、および培地等の提供を含む。
[0041] II.霊長穎動物胚性幹細胞の無フィーダ一での分化誘導方法
他の態様において、本発明は霊長類動物胚性幹細胞から、無フィーダ一で血液細 胞、骨髄系細胞、血管内皮前駆細胞、ストロマ細胞、造血幹細胞等を製造する方法 に関する。
( 1 )本発明の無フィーダ一で血液細胞および/または血管内皮前駆細胞を製造す る方法は以下の工程からなる。
(A)霊長類動物胚性幹細胞を、サイト力インの存在下、血清もしくは血清代替物を 含むまたは無血清培地で浮遊培養し、胚葉体または胚葉体類似細胞凝集塊を製造
(B)ステップ (A)で得られた胚葉体または胚葉体類似細胞凝集塊を、サイト力イン の存在下、接着培養して浮遊細胞と接着細胞とを含む特定前駆細胞を製造するステ ップ、および
(C)ステップ (B)で得られた特定前駆細胞から浮遊細胞と接着細胞を分離するステ ップ。
(2)また、本発明の無フィーダ一で血液細胞、造血ストロマ細胞および/または造血 幹細胞を製造する方法は、以下の工程からなる。
(A)霊長類動物胚性幹細胞を、サイト力インの存在下、血清もしくは血清代替物を含 むまたは無血清培地で浮遊培養し、胚葉体または胚葉体類似細胞凝集塊を製造す
(B)ステップ (A)で得られた胚葉体または胚葉体類似細胞凝集塊を、サイト力イン の存在下、接着培養して浮遊細胞と接着細胞を含む特定前駆細胞を製造するステツ プ、および
(C)ステップ (B)で得られた特定前駆細胞を、浮遊細胞を分離しながら培養するス [0042] 本発明の上記方法の「浮遊培養」とは、低吸着性培養容器等(low-attachment plat es ete.)を用いて、浮遊状態を保ったままで細胞を培養することである。また、本発明 の上記方法の「接着培養」とは、通常の細胞培養専用容器を用いた培養により、細胞 の培養容器への接着性が担保された状態で培養することである。
[0043] 本発明の上記方法(1)および(2)は、基本的には、本発明者らの、「胚性幹細胞か ら胚葉体またはそれに類似した細胞凝集体を形成し、無フィーダ一条件下、サイト力 インを含有する適切な分化培地で適切な手技で接着培養を行うと、 目的系列の細胞 への分化制御が達成される、という知見に基づいている。このような知見により、従来 困難または不可能であった霊長類動物胚性幹細胞からの血液細胞、血管内皮前駆 細胞、ストロマ細胞、造血幹細胞、骨髄系細胞等の製造及び拡大再生産が可能とな つた。
[0044] 胚性幹細胞は、未分化中胚葉、血管内皮細胞/血液細胞の共通前駆細胞を経て、 血管内皮細胞および血液細胞へと分化することが知られている(例えば、山下潤、炎 症.再生 22巻、 509頁、 2002)。
本発明方法に関して、血液細胞とは、血液細胞全般を称する。前記血液細胞とし ては、具体的には、例えば、図 11に示される胚性幹細胞から血液細胞への分化系 統図中における造血幹細胞 0102、リンパ球系幹細胞 0133、リンパ球系樹状細胞前 駆細胞 0135、リンパ球系樹状細胞 0103、 Tリンパ球前駆細胞 0104、 T細胞 0105、 Bリンパ球前駆細胞 0106、 B細胞 0107、形質細胞 0108、 NK前駆細胞 0109、 NK 細胞 0110、骨髄系幹細胞 0134、骨髄系樹状細胞前駆細胞 0111、骨髄系樹状細 胞 0112、肥満細胞系前駆細胞 0113、肥満細胞 0114、好塩基球系前駆細胞 0115 、好塩基球 0116、好酸球系前駆細胞 0117、好酸球 0118、顆粒球マクロファージ 系前駆細胞 0119、マクロファージ前駆細胞 0120、単球 0121、マクロファージ 0122 、破骨細胞前駆細胞 0123、破骨細胞 0124、好中球前駆細胞 0125、好中球 0126 、巨核球系前駆細胞 0127、巨核球 0128、血小板 0129、前期赤芽球系前駆細胞 0 130、後期赤芽球系前駆細胞 0131、赤血球 0132等が挙げられる。
また、前記「血液細胞」には、造血幹細胞の前駆細胞;造血幹細胞から最終的に末 梢血に分化するまでの全ての分化のプロセス上に存在する血液細胞の全ての形態 が含まれる。
また、前記「骨髄系細胞」として、骨髄芽細胞、前骨髄球、骨髄球、後骨髄球、好中 球、単球、マクロファージなどが挙げられる。
[0045] 本発明に係る「11.霊長類動物胚性幹細胞の無フィーダ一での分化誘導方法」に おいて原料としての霊長類動物胚性幹細胞並びに該細胞および分化した前駆細胞 や成熟細胞等の培養法は、原則として、霊長類動物胚性幹細胞を未分化で継代維 持するための上記「1. 霊長類動物胚性幹細胞の培養および継代方法」において記 載したものと同様である。即ち、培養容器、培地、蛋白成分等の添加物、細胞外マト リックス、培地からの細胞の剥離、継代の方法、時期等にかかる条件は、上記した条 件に準ずる。
出発物質である霊長類胚性幹細胞の起源は特に限定されておらず、上記 Iに記載 の方法に従って継代維持され、要すれば凍結保存されて!、る霊長類動物胚性幹細 月包あ使用すること力でさる。
[0046] 前記「11.霊長類動物胚性幹細胞の無フィーダ一での分化誘導方法」における培養 手技は、霊長類動物胚性幹細胞の浮遊培養による胚葉体または胚葉体類似の細胞 凝集塊の形成に関するステップと、胚葉体または胚葉体類似の細胞凝集塊の接着 培養に関するステップを含む。ここで、「胚葉体類似の細胞凝集塊」とは、胚性幹細 胞から胚葉体が形成される途中の細胞凝集体を意味する。
胚葉体または胚葉体類似の細胞凝集塊を形成する方法としては、慣例のハンギン グ 'ドロップ法、慣例の非接着性培養皿を用いた培養、慣例の半固形培地を用いた 培養などが挙げられるが、胚葉体または胚葉体類似の細胞凝集塊が形成される限り 、これらに限定されない。
[0047] 胚葉体または胚葉体類似細胞凝集塊を製造するための浮遊培養の期間は、細胞 や培養条件、 目的の生成物により異なる力 通常、 2日〜2週間程度である。期間が 短いほど、胚葉体に対する細胞凝集塊の比率が増す。上記(1)の血液細胞および /または血管内皮細胞への分化誘導法の出発物質に用いる場合、充分に細胞凝集 塊を形成するまで培養することが好ましい。具体的には、力二クイザル胚性幹細胞や ヒト胚性幹細胞においては、実施例 4または 5に示した方法が推奨される。一方、上 記(2)の血液細胞、造血ストロマ細胞、骨髄関連細胞、および/または造血幹細胞 等への分化誘導法の出発物質に用いる場合、成熟血液細胞のみの分化誘導を目 的とする際には細胞凝集体の形成が充分になさせて!/、ればよ!/、が(実施例 8および 9を参照)、造血ストロマ細胞、骨髄関連細胞、および/または造血幹細胞等の分化 誘導を目的とする際には充分な胚葉体を形成するまで培養することが好ましレヽ(実施 例 6および 7を参照)。
[0048] 前記「霊長類動物胚性幹細胞の無フィーダ一での分化誘導方法」において、肺葉 体又は類似細胞凝集体は、くずさずにそのまま最適化された分化培地で接着培養 する。これは、従来の、胚葉体またはそれに類似した細胞凝集体から酵素処理等に より細胞レベルにほぐした後、好ましい方向に分化しつつある「前駆細胞集団」を精 製分離する方法とは異なり、簡便かつ安全に高効率で分化誘導を達成できるとうい 点で画期的である。
本発明方法に従い、胚葉体細胞をくずさずに、「最適化された分化培地」を用いて そのまま接着培養を行うと、極めて高い効率(血管内皮細胞、血球ともにほぼ 100%の 効率)で目的系列への分化制御が達成される。これは、動物個体の発生過程におけ る「制御された分化」の維持が達成されてレ、ることを示すものである。
[0049] 「分化培地」は、上記の霊長類動物胚性幹細胞を未分化状態で培養するための培 地に、少なくとも一種のサイト力インを添加した培地を意味する。該培地は、所望によ り、細胞の維持および分化に悪影響を及ぼさない限り、適切な他の添加物を含有し ていてよい。
[0050] 前記「サイト力イン」は、 目的に応じて適宜選択することができ、そのようなサイトカイ ンは当業者にとって既知である。本発明に使用できるサイト力インは、胚性幹細胞を 血液細胞および/又は血管内皮細胞に分化させるための因子であればよぐ特に限 定されないが、例えば、幹細胞因子(SCF)、顆粒球コロニー刺激因子(G— CSF)、 顆粒球マクロファージコロニー刺激因子(GM— CSF)、マクロファージコロニー刺激 因子(M— CSF)、エリスロポエチン(EPO)、トロンボポェチン(TPO)、 Flt3リガンド( FL)、インターロイキン(IL) (例えば、インターロイキン 3、インターロイキン 6、ィ ンターロイキン— 15、インターロイキン— 11等)、血管内皮成長因子(VEGF)、骨形 成タンパク質(BMP ;例えば、 BMP— 4等)、オンコスタチン M、酸性および塩基性 線維芽細胞増殖因子(acidic FGF、 basic FGF)、アンギオボイエチンファミリー(例え ば、 Angiopoietin-1および Angiopoietin-2)等が挙げられる。前記 G— CSFは、好中 球の生産を強化する機能を有する。また、 EPO (エリスロポエチン)は、酸素運搬作 用を有する赤血球の産生を誘導する。また、 TPO (トロンボポェチン)は、造血幹細 胞の増幅、および止血作用(血液を固めて出血を止める作用)を有する巨核球、血 小板の産生を誘導する。また、インターロイキン 15は、がん細胞などを攻撃するナ チュラルキラー細胞(NK細胞)を誘導する。
[0051] 本発明の前記「11.霊長類動物胚性幹細胞の無フィーダ一での分化誘導方法」に 用いる基本培養成分としては、上記の通り、霊長類動物胚性幹細胞から血管内皮細 胞 '血球への分化を誘導するのに適した培地であればよぐ具体的には、例えば、ィ スコフ改変ダルベッコ培地(MDM)等が挙げられる。
[0052] 前記「11.霊長類動物胚性幹細胞の無フィーダ一での分化誘導方法」に用いる基 本培養成分に添加する蛋白成分としては、霊長類動物胚性幹細胞から血管内皮細 胞 '血球への分化を誘導するに適したものであればよぐ具体的には、例えば、牛胎 児血清、ヒト血清 (免疫拒絶反応を誘発する危険性の少なレ、AB型血清を使用するこ とが好ましい)、 KNOCKOUT (登録商標) SR (インビトロジェン社製)等が挙げられる。
[0053] また、前記「11.霊長類動物胚性幹細胞の無フィーダ一での分化誘導方法」に用い る培養皿のコート成分としては、霊長類動物胚性幹細胞から血管内皮細胞 ·血球へ の分化を誘導するに適したものであればよぐ具体的には、例えば、ゼラチン等が挙 げられる。
[0054] 前記培養容器は、細胞の培養に通常用いられる容器であればよい。
霊長類動物胚性幹細胞の培養条件は、胚性幹細胞に培養に適した条件であれば よぐ例えば、 37°C、 5体積%じ〇の条件等が挙げられるが、適宜、酸素濃度の変更 を fiつてもよい。
本発明の、前記「霊長類動物胚性幹細胞の無フィーダ一での分化誘導方法」にお ける培養条件は、用いられる霊長類動物胚性幹細胞の種類により適宜設定すること ができる力 S、例えば、 37°C、 5体積%じ〇2の条件等が挙げられる。
[0055] まず、「特定前駆細胞」が形成されるまで接着培養を行う。培地交換や剥離操作等 は上記の「1.霊長類動物胚性幹細胞の無フィーダ一での分化誘導方法」における記 載に準じて行う。
「特定前駆細胞」とは、浮遊細胞 (培養液中に浮遊する性質を有する球状または球 状に近!/、形状の細胞)と接着細胞 (培養容器に接着する細胞)を含む、胚葉体また は胚葉体類似の細胞凝集塊から分化した前駆細胞を意味する。これは、浮遊細胞と しての球状細胞集団と接着細胞を含む嚢状構造物(内部に球状細胞集団を含有す る)を形成する場合があるが、嚢状構造物は必ずしも形成されない。後述の実施例に 記載の通り、胚葉体または胚葉体類似の細胞凝集塊を血清の存在下または非存在 下、適当な条件下で培養することにより、嚢状構造物を含む、又は含まない、特定前 駆細胞を形成することができる。浮遊細胞(球状細胞)は嚢状構造物が形成される場 合、該構造物中のみならず培養液中に放出されて存在する。また、嚢状構造物が形 成されない場合は培養液中に浮遊した状態で存在する。従って、本明細書中、「球 状細胞」または「浮遊細胞」という語句は、広義には、両形態の細胞を意味する。 特定前駆細胞の浮遊細胞(球状細胞)から、主として血液細胞(骨髄系細胞にコミツ トメントされた造血前駆細胞および成熟血球など)を誘導することができ、接着細胞か ら主として血管内皮前駆細胞および造血ストロマ細胞を誘導することができる。なお 造血幹細胞は浮遊細胞と接着細胞の両者から誘導される。
[0056] 特定系列へ分化しつつある「前駆細胞集団」の選択は、位相差顕微鏡下、細胞の 組織的形態の観察に基づいて行うことが好ましい。従来の、分子マーカーに対する 特異抗体を使用し、セルソーター等の「細胞分離装置」によって細胞を選別する方法 ではなぐ組織的形態に基づく方法により「正しく制御された効果的な分化誘導」を達 成すること力 Sできる。即ち、従来の分子マーカーに基づく方法の場合は、特異性が必 ずしも高くなぐ細胞分離装置の使用により細胞が傷害される等の問題がある。一方 、組織的形態に基づく本発明の前駆細胞集団の選別法の場合、胚葉体を崩さずに 新しい培養皿で接着培養を続けながら、位相差顕微鏡下で観察し、様々な組織的 形態を判定し選別する。力、かる選別の結果、図 12、図 19、図 26に示すような「嚢状 構造物」とその中に包含される球状細胞(浮遊細胞)が、おのおの血管内皮細胞と血 液細胞の前駆体であることが明らかになった。
顕微鏡下での観察に基づく前駆細胞集団の同定は、(1)細胞に侵襲を与えること なくリアルタイムで細胞分化の状況をチェックすることができる、 (2)顕微鏡下でのマ イク口ピペット操作により、 目的とする前駆細胞集団に傷を与えることなく取り出す(マ ニピユレーシヨン)ことができるという利点に加えて、特殊な設備や高価な試薬を必要 としないため、 feasibilityが高ぐ多くの施設ですぐに実施可能であるという優れた点を 有する。
[0057] 本発明の、霊長類動物胚性幹細胞の無フィーダ一での分化誘導方法に係る、(1 ) の無フィーダ一での血液細胞および/または血管内皮前駆細胞の製造方法では、 浮遊細胞と接着細胞とを含む特定前駆細胞から、浮遊細胞と接着細胞を分離し、各 々から血液細胞および血管内皮前駆細胞を調製する。
培養液中の浮遊細胞および嚢状構造物中の球状細胞を遠心等で分離する。嚢状 構造物からの球状細胞の分離は、適当な方法で該嚢状構造物に開口部を設けて球 状細胞を浮遊させることで行う。この操作は、嚢状構造物中に細胞が完全に充満す る前に行うことが好ましい。なお、通常、嚢状構造物の開口部は培養により再度閉鎖 され、その内部には球状細胞が充満してくる。
嚢状構造物が形成されない場合には、浮遊細胞と接着細胞を適宜分離する。
[0058] また、(2)の無フィーダ一での血液細胞、骨髄系細胞、造血ストロマ細胞および/ または造血幹細胞の製造方法は、培養液中に放出される浮遊細胞を適宜分離して 血液細胞を得ると共に、浮遊細胞と接着細胞を含む嚢状構造の特定前駆細胞をそ のまま継続的に培養することからなる。
浮遊細胞の分離は遠心等で行う。一方、嚢状構造物から球状細胞を分離すること なぐ浮遊細胞を適宜放出させながら、嚢状構造物を含む接着細胞集団と浮遊細胞 集団とを混合した状態で持続的に培養することにより、血液細胞とストロマ細胞を得る こと力 Sできる。さらに継代を継続すると造血系幹細胞が得られる。生成されたストロマ 細胞または造血系幹細胞の形成は、それぞれの細胞マーカーの検出により確認す ること力 Sできる。そのようなマーカーは当業者にとって概ね既知である。 [0059] 上記のようにして胚葉体構成細胞から分離'精製された前駆細胞集団を接着培養 することにより、血球を拡大再生産することができる。即ち、本発明方法には、胚葉体 細胞の接着培養により産生された血球前駆細胞(嚢状構造物内の球状細胞等)を、 さらに接着培養して継代する方法により、接着細胞(血球前駆細胞と造血ストロマ細 胞)と浮遊細胞(血球)が混在する状況を保持したまま、この細胞集団を継代し増幅 培養し、血球の拡大再生産のための培養方法も包含される。
本発明は、「造血ストロマ細胞」の胚性幹細胞からの産生方法を初めて提供するも のである。また本発明により産生された造血幹細胞は浮遊細胞としての性質だけで なぐ接着細胞としての性質も併せ持つことも明らかとなった(図 23を参照)。
[0060] 本発明の血管内皮細胞、血液細胞、骨髄系細胞、造血ストロマ細胞、造血幹細胞 等は、例えば、バンバンカー(日本ジェネティックス社製)などの細胞凍結保存専用液 等の培地で、窒素ガス凍結条件下で、維持される。また少なくとも、血液細胞、造血 ストロマ細胞に関しては、凍結融解ののちにも、凍結前と同様に、長期持続的に、優 れた再生産性で血液細胞および造血ストロマ細胞を得ることができという優れた効果 を発揮する。
[0061] かかる製造方法により得られた血管内皮細胞、血液細胞、骨髄系細胞、造血スト口 マ細胞、造血幹細胞等は、実質上、異種動物細胞の混入、異種動物由来ウィルスの 感染等がないという優れた性質を示す。また本発明による血管内皮細胞、血液細胞 、および造血ストロマ細胞はいずれも高純度で均質な性質を示す。従って、本発明 による血管内皮細胞は、血管損傷の治療や局所の血流の改善のための材料、移植 材料、これらの材料の製造のための使用、および血管内皮細胞の発生'分化機構等 に関する基礎研究における材料などに使用することができる。また、本発明による血 液細胞は輸血用血液、輸血用血液の製造のための使用、および造血機構に関する 基礎研究における材料等に使用することができる。さらに、本発明による造血ストロマ 細胞は造血障害性疾患に対する移植医療、および造血機構に関する基礎研究にお ける材料等に使用すること力できる。また、骨髄系細胞は骨髄損傷における治療に 有用と考えられる。
[0062] 本発明の無フィーダ一での、血管内皮細胞の製造方法に従えば、血管内皮前駆 細胞から、より成熟傾向のある細胞集団を、セルソーターやビーズ沈降法などにより 細胞膜表面での VE-cadherin陽性 PECAM1陽性の二重陽性集団として分離すること 力できる。具体的には、例えば、前記 VE-cadherin、 PECAM1等のマーカーに対する 特異的抗体を用いたフローサイトメトリーによるセルソーティング、該抗体を保持した 磁気ビーズを用いるセルソーティング等により血管内皮細胞を分離することができる。
[0063] また、本発明の血管内皮細胞を用いて、例えば、コラーゲンゲル等中で培養するこ とにより、立体的な血管構造を得ることも可能である。また、そのようにして構築された 血管構造物を動物に移植することで、新たな血管網を生体内で形成させることも可 能である。
[0064] 本発明の無フィーダ一での血球細胞の製造方法により産生された血球(造血幹細 胞から様々な系列の成熟血球を含む)を用いて、系列特異的マーカーに対する抗体 を用いたフローサイトメトリーによるセルソーティング、該抗体を保持した磁気ビーズを 用いたセルソーティング等適用することで、造血幹細胞、好中球、単球、リンパ球など 、特定系列の血球細胞だけを分離濃縮することができる。具体的には、例えば、造血 幹細胞は CD34抗体および CD45抗体を用いて、 CD34陽性 CD45陽性の二重陽性細 胞分画を回収することで分離濃縮される。
[0065] 上記の血球(造血幹細胞から様々な系列の成熟血球を含む)の中から、細胞傷害 を与えることなく特定系列を分離濃縮する手段として、密度勾配遠心法や、遠心対抗 水流細胞分離法 (エルトリエータ(日立社製)等を使用)を用いた分離法が挙げられる 。これらの方法により好中球、単球、リンパ球など、特定系列の血球細胞だけを分離 すること力 Sできる。例えば、図 28に示すように、リンホプレップ (登録商標)(第一化学 薬品株式会社製)を用いた密度勾配遠心法により、ヒト胚性幹細胞から産制された好 中球を効果的に分離濃縮することが可能である。
[0066] 本発明の血液細胞の製造方法においては、 目的とする血液細胞等の種類に応じ て、造血幹/前駆細胞をさらに適切な条件下に分化させてもよぐ無フィーダ一分化 用培地中のサイト力インを適宜変更してもよい。本発明の血液細胞の製造方法にお いて、種々のサイト力インによる血液細胞の製造の例としては、 G— CSFおよび GM — CSFによる顆粒球への分化、 GM— CSFおよび M— CSFによる単球/マクロファ ージへの分化、 IL 15による NK細胞への分化、 EPOによる赤血球への分化、 TP Oによる巨核球/血小板への分化、 IL 4および GM— CSFによる樹状細胞への分 化等が挙げられる。
[0067] また、本発明の、霊長類動物胚性幹細胞の無フィーダ一および無サイト力イン下で の未分化維持継代方法、および無フィーダ一での血管内皮細胞、血液細胞等への 分化誘導方法は、胚性幹細胞に対する使用に限定されるものでなぐ培養条件に多 少の改変を加えるなどの工夫により、さまざまな細胞(精巣幹細胞、成体幹細胞など 、多能性分化能を保持する細胞群)への分化技術として応用展開が可能である。
[0068] 以上、本発明によれば、異種動物細胞の混入、異種動物由来ウィルスの感染等を 実質的に伴わずに、単純な培養操作で、安価な培養器具のみの使用により、霊長類 動物胚性幹細胞から、継代維持可能な血管内皮細胞、拡大再生産することが可能 な血球(造血幹細胞から成熟血球までを含む)、造血ストロマ細胞等を、いずれも非 常に高レ、効率(ほぼ 100%に近!/、)で作成することが可能である。
従って、本発明による、「無フィーダ一での血管内皮細胞および血液細胞への分化 誘導方法」は、非常に高い分化効率で、細胞損傷を伴わず、かつ高い feasibilityを持 つものであることから、世界中で速やかに実施され、その利益は甚大である。
[0069] 以下、本発明を実施例に基づき詳細に説明するが、本発明はこれら実施例に限定 されるものではない。
実施例 1
[0070] 力二クイザル胚性幹細胞の無フィーダ一および無サイト力イン下での未分化維持培 董
(1)未分化維持培養液の調製
力二クイザル胚性幹細胞は、未分化維持培養液 1 1 (組成: DMEM/H讓' S F-12 ( コージンバイオ製〕、 20体積% KNOCKOUT (登録商標) SR〔インビトロジェン(Invit rogen Corp. )製〕、 ImM L グノレタミン〔インビトロジェン (Invitrogen Corp. ) 製〕、 2mM 非必須アミノ酸液〔インビトロジェン(Invitrogen Corp. )製〕、 ImM ピルビン酸ナトリウム〔インビトロジェン(Invitrogen Corp. )製〕、終濃度 100U/ml ペニシリン〔インビトロジェン(Invitrogen Corp. )製〕、終濃度 100 g/ml スト レプトマイシン〔インビトロジェン(Invitrogen Corp. )製〕)で、 30倍希釈したマトリゲ ル (登録商標)マトリックス〔BD (BD Biosciences)社製〕を用いて室温で 15分から 30 分程度コートした 10 cm培養ディッシュ上、または 78 cm2培養ディッシュ上で、 COィ ンキュベータ一において、 37°C、 5体積0 /oCOで培養した。
[0071] (2)未分化維持培養の手技
力二クイザル胚性幹細胞は、コロニーの大きさとしては直径 500 mの比較的均一 の大きさの状態で、位相差顕微鏡の対物レンズ 4倍 (接眼レンズ 10倍)の視野にぉレ、 て;!〜 2個程度の密度で播種する。翌日には培地交換する。さらに翌日にはコロニー の大きさが 1000 程度になるので、デイスパーゼ©0 (80 Biosciences)製〕で剥離 して、マトリゲル (登録商標)マトリックスでコートされた新しい培養容器に継代する。デ イスパーゼ処理は、培養液を除去した力二クイザル胚性幹細胞にデイスパーゼ液を 浸し入れて、すぐにこれを吸引して 37°Cで 5分間反応させたのち、 DMEM/Ham's F- 12を注ぎ入れ、ピペッティングを極力しないように注意しながら細胞を遠沈管に回収 して、上清を遠心(1000 rpm、 5分、 4°C)して細胞を沈降させる。以上の操作により、 力二クイザル胚性幹細胞のコロニーは直径 500 H mの比較的均一の大きさに分散さ れている。以上、継代操作を 2日毎に繰り返すことで、力二クイザル胚性幹細胞はコロ ニー同志が接合することなぐ無フィーダ一、かつ合成サイト力インを添加しない前記 した培養液にぉレ、て、未分化状態を適切に保持したまま増幅培養することが可能で ある。
[0072] (3)細胞形態
少なくとも 43継代した後にも未分化維持状態は適切に保たれていた。具体的には 、未分化状態として好ましい細胞形態(図 1を参照)と、未分化維持マーカーである SS EA-4, Oct-4, Nanog, Tra-1-60, Tra-1-81の高発現(図 2および図 3を参照)、免疫 不全マウス(SCIDマウス)での腫瘍形成(図 4、図 5を参照)が確認された。
[0073] 図 1は、上記の方法で培養された力二クイザル胚性幹細胞のコロニーを示す。 Aは 2 0継代め、 Bは 35継代の時点で凍結し、融解した後にさらに 1継代した細胞を示す。 図 2は、上記の方法で培養された培養された 20継代めの力二クイザル胚性幹細胞 における、未分化維持マーカーである SSEA-4および Oct-4の発現をフローサイトメト リーで測定した結果である。両者にぉレ、て非常に高!/、発現(〉95%)が確認される。 図 3は、上記の方法で培養された培養された 20継代めの力二クイザル胚性幹細胞 における、未分化維持マーカーである Tra-1_60、 Tra-l_81、および Nanogの発現を 免疫染色で示したものである。ほぼ全ての細胞でいずれのマーカーも発現が確認さ れる。
図 4は、上記の方法で培養された培養された 21継代めの力二クイザル胚性幹細胞 を 3匹の免疫不全マウス(SCIDマウス)の精巣皮膜下に移植した 2ヶ月後に精巣の写 真である。 3匹全てにおいてテラトマ形成を確認した。図 5は上記の腫瘍の組織標本 (へマトキシリン .ェォジン染色)である。記載のごとぐ神経上皮、歯、分泌腺、腸管 様上皮、平滑筋などが認められる。
なお、実施例 4 実施例 7に示すように、本発明により未分化維持した力二クイザル 胚性幹細胞から、血管内皮細胞の産生と、血球および造血ストロマ細胞の拡大再生 産が可能である。
[0074] (4)力二クイザル胚性幹細胞の凍結保存
前記した未分化維持培養方法で継代培養された力二クイザル胚性幹細胞は、凍結 保存液 1 (2 M DMSO、 1 M Acetamide, 3 M Propylene glycol/ヒト ES細胞用培地)、ま たは市販の霊長類動物胚性幹細胞用凍結保存液(リブロセル社)を用いて、液体窒 素内での凍結保存が可能である。まず、以下の手順で細胞の凍結ストックを作成す る。即ち、上記した方法で力二クイザル胚性幹細胞を沈降回収したのち、氷上で冷や した凍結保存液 200 1加え、穏やかに懸濁したのち、できる限り速やかに(15秒以内 )、予め準備した凍結保存用チューブに移して、液体窒素につける。液体窒素中で、 30秒から 1分間凍結して、内部まで完全に凍らせた後に、液体窒素保存容器に移す
[0075] (5)凍結力二クイザル胚性幹細胞の解凍
凍結保存した細胞の解凍は以下の手順で行う。即ち、力二クイザル胚性幹細胞の 凍結チューブに、あらかじめ 37°Cに温めた未分化維持用培地を 1 ml加え、ピぺッティ ングを行うことで急速解凍し、細胞懸濁液を 15 mlコニカルチューブへ移して細胞を沈 降回収する(1000 rpm、 5分、 4°C)。未分化維持用培地で細胞を懸濁させた後、顕 微鏡で細胞の状態を確認し、マトリゲル (登録商標)マトリックスでコートされた培養容 器にて、 COインキュベーターにおいて、 37°C、 5体積0 /oCOで培養する。
以上の操作により、前記した未分化維持した力二クイザル胚性幹細胞は凍結融解 後にも未分化維持状態を良好に保持したまま増殖している。
実施例 2
[0076] ヒト^个牛餘細胞の無フィーダ一および無サイト力イン下での未分化維持接着 (マトリゲ ル (登 標)マトリックスコート ^^ fflすろ 去)
(1)未分化維持培養液の調製
ヒト胚性幹細胞は、未分化維持培養液 1 2 (組成: DMEM/Ham's F_12 (コージン バイオ製)、 20体積% KNOCKOUT (登録商標) SR〔インビトロジェン(Invitrogen Corp. )製〕、 ImM L グルタミン〔インビトロジェン(Invitrogen Corp. )製〕、 2m M 非必須アミノ酸液〔インビトロジェン(Invitrogen Corp. )製〕、 0.1 M 2-merca ptethanol〔シグマ(Sigma Chemical Co.)製〕、終濃度 lOOU/ml ペニシリン〔インビト ロジェン(Invitrogen Corp. )製〕、終濃度 100 g/ml ストレプトマイシン〔インビ トロジヱン(Invitrogen Corp. )製〕)で、 30倍希釈したマトリゲル(登録商標)マトリツ タス〔BD (BD Biosciences)社製〕を用いて室温で 15分から 30分程度コートした 10 cm 培養ディッシュ上、または 78 cm2培養ディッシュ上で、 COインキュベーターにおいて 、 37°C、 5体積0 /oCOで培養した。
[0077] (2)未分化維持培養の手技
ヒト胚性幹細胞は、コロニーの大きさとしては直径 500 mの比較的均一の大きさの 状態で、位相差顕微鏡の対物レンズ 4倍 (接眼レンズ 10倍)の視野にお!/、て 2〜3個 程度の密度で播種し、以後は毎日培地交換を行う。 3〜4日後にはコロニーの大きさ 力 S 1000 m程度になるので、剥離液 1 (組成: 0.25%トリプシン液〔インビトロジェン(I nvitrogen Corp. )製〕、 1 mg/mlコラゲナーゼ IV〔インビトロジェン (Invitrogen Corp. )製〕、 1 %KNOCKOUT (登録商標) SR〔インビトロジェン(Invitrogen Corp • )製〕、 1 mM塩化カルシウム〔シグマ(Sigma Chemical Co.)製〕をリン酸バッファーを ベースに作成する)、または霊長類動物胚性幹細胞用細胞剥離液(リブロセル社)で 剥離して、マトリゲル (登録商標)マトリックスでコートされた新しい培養容器に継代す る。剥離の具体的手順は以下の通りである。培養液を除去したヒト胚性幹細胞に剥 離液を浸し入れて 37°Cで 5分間反応させたのち、剥離液を吸引して DMEM/H讓' S F-12を添加してさらに 37°Cで 10分間反応させる。その後、培養容器をタッピングす ることで細胞を剥離浮遊させてから 1000 H 1のピペットチップで 2回サスペンドしなが ら細胞を遠沈管に回収し、遠心操作(1000 rpm、 5分、 4°C)により細胞を沈降させる。 以上の操作により、ヒト胚性幹細胞のコロニーは直径 500 mの比較的均一の大きさ に分散されている。以上の操作を毎週 2回行うことで、ヒト胚性幹細胞は、無フィーダ 一、かつ合成サイト力インを添加しない、上記した培養液内で、未分化状態を適切に 保持したまま継代維持が可能である。
(3)細胞形態
25回継代した後にも未分化維持状態は適切に保たれていた。具体的には、未分 化状態として好ましい細胞形態、未分化維持マーカーである SSEA-4, Oct-4, Nanog の高発現が確認された。また 27継代後における染色体分析において、正常染色体 核型の維持が確認された(図 6、図 7、図 8、および図 9を参照)。
[0078] 図 6は、上記の方法で培養された 24継代めのヒト胚性幹細胞のコロニーの位相差 顕微鏡写真を示す。
図 7は、上記の方法で培養された 20継代めのヒト胚性幹細胞における未分化維持 マーカーである SSEA-4および Oct-4の発現をフローサイトメトリーで測定した結果で ある。両者にぉレ、て非常に高!/、発現(〉 95%)が確認される。
図 8は、上記の方法で培養された 25継代めのヒト胚性幹細胞における未分化維持 マーカーである Oct-4 (A)と Nanog (B)の発現を免疫染色で示したものである。ほぼ全 ての細胞にお!/、て、両者の蛋白が発現して!/、ること力 S確認される。
図 9は、ヒト胚性幹細胞の染色体分析図(Gバンド法)である。左は、樹立機関で推 奨している従来の培養法 (胎仔マウス泉維芽細胞をフィーダ一細胞とする共培養法) で維持して!/、る状況、右は本発明による「無フィーダ一無サイト力インによる培養法」 で 20回継代した状況における結果である。全く染色体異常が起きていないことが確 認された。
[0079] (4)ヒト胚性幹細胞の凍結保存および解凍 前記した未分化維持培養方法で継代培養されたヒト胚性幹細胞は、凍結保存液 1
、または市販の霊長類動物胚性幹細胞用凍結保存液(リブロセル社)を用いて、前記 実施例 1に記載した方法により、液体窒素内での凍結保存および解凍が可能である 。以上の操作により、実施例 2で未分化維持したヒト胚性幹細胞は凍結融解後にも未 分化維持状態を良好に保持したまま増殖している。
実施例 3
[0080] ヒト^† ^細胞の無フィーダ一および無サイト力イン下での未分化維持接着(1禾重額 のヒト ά成 でコートした ^^^^ fflすろ 去)
(1)未分化維持培養液の調製
実施例 2に記載した培地を使用した。
[0081] (2)未分化維持培養の手技
ヒト胚性幹細胞は、コロニーの大きさとしては直径 500 mの比較的均一の大きさの 状態で、位相差顕微鏡の対物レンズ 4倍 (接眼レンズ 10倍)の視野にお!/、て 2〜3個 程度の密度で播種し、以後は毎日培地交換を行う。 3〜4日後にはコロニーの大きさ 力 S 1000 m程度になるので、剥離液 1 (組成: 0.25%トリプシン液〔インビトロジェン(I nvitrogen Corp. )製〕、 1 mg/mlコラゲナーゼ IV〔インビトロジェン (Invitrogen Corp. )製〕、 1 %KNOCKOUT (登録商標) SR〔インビトロジェン(Invitrogen Corp • )製〕、 1 mM塩化カルシウム〔シグマ(Sigma Chemical Co.)製〕をリン酸バッファーを ベースに作成する)、または霊長類動物胚性幹細胞用細胞剥離液(リブロセル社)で 剥離して、ヒト血漿から得られたフイブロネクチン (BD社製)を 5 gん m2でコートした 新しい培養容器、ヒト AB型血清を用いてコートした新しい培養容器、ヒト胎盤から得ら れたラミニン (シグマ社製)を 5 gん m2でコートした新しい培養容器、ヒト血漿から得ら れたビトロネクチン (BD社製)を 0.2 ^ gん m2でコートした新しい培養容器、またはヒト 胎盤から得られた IV型コラーゲン (BD社製)を 5 a gん m2でコートした新しい培養容器 、に継代する。剥離の具体的手順は以下の通りである。培養液を除去したヒト胚性幹 細胞に剥離液を浸し入れて 37°Cで 5分間反応させたのち、剥離液を吸引して DMEM /Ham's F-12を添加してさらに 37°Cで 10分間反応させる。その後、培養容器をタツピ ングすることで細胞を剥離浮遊させてから 1000 a 1のピペットチップで 2回サスペンド しながら胞を遠沈管に回収し、遠心操作(1000 rpm、 5分、 4°C)により細胞を沈降さ せる。以上の操作により、ヒト胚性幹細胞のコロニーは直径 500 mの比較的均一の 大きさに分散されている。以上の操作を毎週 2回行うことで、ヒト胚性幹細胞は、無フ ィーダ一、かつ合成サイト力インを添加しない、実施例 2に記載した培養液内で、未 分化状態を適切に保持したまま継代維持が可能である。
[0082] 4回の継代後にも未分化維持状態は適切に保たれている。未分化状態として好ま しい細胞形態と、未分化維持マーカーである SSEA-4, Oct-4の高発現が確認された 。図 10参照。
図 10は、上記の方法により、ヒト由来フイブロネクチン(5 gん m2)のみでコートされ た培養皿 (A)、ヒト AB型血清のみでコートされた培養皿(C)、を用いて培養された 4 継代めでのヒト胚性幹細胞の位相差顕微鏡写真である。 V、ずれも未分化な形態を保 持していること力 S解る。またこれらの細胞において未分化維持マーカーである SSEA-4 と Oct-4の発現をフローサイトメトリーで測定したところ、いずれにおいても両マーカ 一の高発現が確認された (B、 D)。
実施例 4
[0083] 力二クイザル胚性幹細胞力、らの無フィーダ一での血管内皮細胞/血液細胞への分化
( ^S台 i'清を fflする )
(1)分化培地の調製
力二クイザル胚性幹細胞は、分化培地 1 1 {組成:イスコフ改変ダルベッコ培地(Is cove s modified Dulbecco s medium; IMDM)〔シグマク^カノレ (Sigma Ch emical Co. )製〕、 15重量% 熱不活化ゥシ胎仔血清〔ピーエーエーラボラトリーズ グーエムベーノヽー (PAA Laboratories GmbH)〕、 lmM /3—メノレカプトェタノ ール〔シグマケミカル(Sigma Chemical Co. )製〕、 2mM L グルタミン〔インビト ロジェン(Invitrogen Corp. )製〕 }に、終濃度 20ng/ml 血管内皮成長因子(VE GF)、終濃度 20ng/ml 骨形成タンパク質 4 (BMP— 4)、 20ng 幹細胞因子(S CF)、終濃度 10ng/ml Flt3 リガンド、終濃度 20ng/ml インターロイキン 3 (IL 3)、終濃度 10ng/ml インターロイキン 6 (IL6) }のサイト力インを添加した。
[0084] (2)分化誘導の手技 分化培地 1 1 (サイト力イン添加済)用いたハンギング 'ドロップ法により、胚葉体類 似の細胞凝集塊細胞を作成する。具体的には、力二クイザル胚性幹細胞を剥離液で 回収したのち、さらに 0.25 %トリプシン液〔インビトロジェン(Invitrogen Corp. )製〕) で 37°C、 5分反応させることで 1個の細胞レベルに分散させる。 3000個の力二クイザ ル胚性幹細胞を 30 1の分化培地 1 1 (サイト力イン添加済)に懸濁させて、マイクロ ピペットを用いて、直径 10 cmの培養皿の蓋の裏面にスポットしていく(1枚の培養皿 において 2030個程度のスポッティングが可能である)。乾燥を防ぐために、培養さら に滅菌水を満たして、 COインキュベーターにおいて、 37°C、 5体積%COで 3日間 浮遊培養した。 3日後には肉眼的に細胞凝集塊の形成が確認できるので、培養皿の 蓋面を洗うようにしてこれを回収し、 0.1 %ゼラチン〔シグマケミカル(Sigma Chemic al Co. )製〕でコートした培養皿(直径 10 cmまたは 6 cm)の上で、分化培地 1 1 (サ イト力イン添加済)を用いて、 COインキュベーターにおいて、 37°C、 5体積%じ〇で 接着培養した。以後は 3〜4日ごとに培地を交換した。力二クイザル胚性幹細胞の凝 集塊は平面上に広がりながら生長を続け、約 2週間後には、もと凝集塊のあった領域 の中央付近から、特定前駆細胞 (嚢状構造物と球状細胞集団からなる構造物)が形 成された(各凝集塊につき 1個形成された)(図 12参照)。図 12は、無フィーダ一での 血管内皮細胞 ·血球の分化誘導と拡大再生産の技術による、力二クイザル胚性幹細 胞から牛胎児血清存在下で作成した、血管内皮前駆細胞と血液細胞に共通の特定 前駆細胞 (嚢状構造物と球状細胞集団からなる構造物)を示す。
[0085] 嚢状構造物の中に球状細胞が完全に充満してしまう前に、マイクロナイフ(Stem eel 1 knife, SweMed社製等)を用いて、嚢状構造物そのもの構造を破壊することなぐ嚢 状構造物の底面付近に少量の切れ込みを入れることで、内部の球状細胞を培養液 中に緩除に放出させた。嚢状構造物内に球状細胞が完全に充満すると球状細胞の 生存性が低下する。培養上清を回収して遠心することでこの球状細胞を沈降回収す る一方、嚢状構造物とそこから広がる細胞はトリプシン/ EDTA液〔インビトロジェン (In vitrogen Corp. )製〕)を用いて 37°C、 5分反応させることで剥離回収した。
[0086] 回収した球状細胞を、メチルセルロースを含有した半固形培地によるコロニーアツ セィ.キット(Methocult (登録商標) GF+H4535 (Stemcell Technologies In )を用いて 造血コロニーアツセィを行うことにより血球産生の確認を行った(図 13参照)。図 13は 、球状細胞力、ら産生された成熟血球細胞の Wright-Giemsa染色(A)、特殊染色(ミエ 口ペルォキシダーゼ染色(B)およびエステラーゼ二重染色(C) )を示して!/、る。様々 な骨髄系細胞、即ち、骨髄芽球から成熟血球 (好中球およびマクロファージ)に至る 各分化段階の細胞が観察される。
[0087] 回収した嚢状構造物と周辺に広がる細胞は、 0.1 %ゼラチン〔シグマケミカル(Sigm a Chemical Co. )製〕でコートした新しい培養皿(直径 10 cmまたは 6 cm)で、分化 培地 1—1 (サイト力イン添加済)を用いて培養した。以後は 3〜4日ごとに細胞をトリプ シン/ EDTA液を用いて剥離しながら、 1/3程度の希釈で 8回継代を行った(図 14〜 図 16参照)。
図 14は、上記『特定前駆細胞』から産生された血管内皮細胞の、血管内皮細胞特 異的マーカーである VE-cadherinと、血管内皮細胞マーカーの一つである N-cadheri nの発現を免疫染色検査で調べた結果である。図 14に示すように、 2継代後から血 管内皮細胞特異的マーカーである VE-cadherinの発現がほぼ全ての細胞で確認さ れた。さらにこの図で示すように、血管内皮細胞において発現していることが知られる 接着因子である N-cadherinも、免疫染色にてほぼ全ての細胞において発現しており 、かつ明瞭な細胞膜局在を認めることが示された。これは図 31に示すように、生体か ら得られた初代血管内皮細胞が喪失してしまっている性質であり、非常に興味深い 知見である(図 14と図 31を比較参照のこと)。
図 31は、 3種類の市販のヒト初代培養血管内皮細胞 (ヒト臍帯静脈内皮細胞 (HUV EC)、ヒト微小血管内皮細胞(HMVEC)およびヒト大動脈内皮細胞(HAEC) )におけ る N-cadherinの細胞内発現様式を免疫染色で調べた結果である。図 31から、市販の ヒト初代培養血管内皮細胞ではすでに N-cadherinの細胞膜局在が消失してしまって いること力 S分力、る。一方、本発明方法によって産生された血管内皮細胞は、明瞭な細 胞膜局在を示し、生体における血管内皮細胞の性質を正しく反映している。 (図 14 中)。
[0088] 図 15は、上記『特定前駆細胞』から産生された血管内皮細胞の、成熟血管内皮細 胞マーカーである PECAM1の発現を、汎血管内皮細胞マーカーかっ血管内皮特異 的マーカーである VE-cadherinとの二重染色によるフローサイトメトリーで確認したも のである。横軸は PECAM1を、縦軸は VE-cadherinの発現強度を表す。図 15に示す ように、汎血管内皮細胞マーカーかっ血管内皮細胞特異的マーカーである VE-cadh erinと、成熟血管内皮細胞マーカーである PECAM1との両蛋白が細胞膜レベルで発 現する細胞が 4割以上も存在することが確認された。
図 16は、上記『特定前駆細胞』から産生された血管内皮細胞の成熟機能の確認の ために、コード形成能 (A)とァセチル化低比重リポ蛋白の取込能(B)を調べたもので ある。いずれにおいても高い効率で成熟機能の獲得が確認される。以上から、 8回の 継代の後にも VE-cadherinと PECAM1の発現は保持され、かつ図 16に示すように、コ ード形成能、ァセチル化低比重リポプロテイン取込能などの、血管内皮細胞の機能 的成熟も確認された。
[0089] 以上より、少なくとも 8回の継代操作の間、安定した増殖能と成熟機能を保持し、か つ生体内におけると同様の明瞭な N-cadherinの細胞膜局在を示す、血管内皮細胞 力 S力二クイザル胚性幹細胞から作成された。 実施例 5
[0090] 力二クイザル胚性幹細胞からの無フィーダ一での血管内皮細胞/血液細胞への分化
( i'清 地,を する )
(1)分化培地の調製
力二クイザル胚性幹細胞は、分化培地 1 2 {組成:イスコフ改変ダルベッコ培地(Is cove s modified Dulbecco s medium; IMDM)〔シグマク^カノレ (Sigma Ch emical Co. )製〕、 15重量% KNOCKOUT (登録商標) SR〔インビトロジヱン(Invit rogen Corp. )製〕、 ImM /3—メルカプトエタノール〔シグマケミカル(Sigma Ch emical Co. )製〕、 2mM L グルタミン〔インビトロジェン(Invitrogen Corp. )製 〕 }に、終濃度 20ng/ml 血管内皮成長因子 (VEGF)、終濃度 20ng/ml 骨形成 タンパク質 4 (BMP— 4)、 20ng 幹細胞因子(SCF)、終濃度 10ng/ml Flt3— リガンド、終濃度 20ng/ml インターロイキン 3 (IL3)、終濃度 10ng/ml インター口 ィキン 6 (IL6) }のサイト力インを添加した培地を用いて分化誘導を行った。
[0091] (2)分化誘導の手技 分化培地 1 2 (サイト力イン添加済)を用いたハンギング 'ドロップ法により、胚葉体 類似の細胞凝集塊細胞を作成する。具体的には、力二クイザル胚性幹細胞を剥離液 で回収したのち、さらに 0.25 %トリプシン液〔インビトロジェン(Invitrogen Corp. )製 〕)で 37°C、 5分反応させることで 1個の細胞レベルに分散させる。 3000個の力二クイ ザル胚性幹細胞を 30 1の分化培地 1—2 (サイト力イン添加済)に懸濁させて、マイ クロピペットを用いて、直径 10 cmの培養皿の蓋の裏面にスポットしていく(1枚の培養 皿において 2030個程度のスポッティングが可能である)。乾燥を防ぐために、培養さ らに滅菌水を満たして、 COインキュベーターにおいて、 37°C、 5体積%COで 3日 間浮遊培養した。 3日後には肉眼的に細胞凝集塊の形成が確認できるので、培養皿 の蓋面を洗うようにしてこれを回収し、 0.1 %ゼラチン〔シグマケミカル(Sigma Chemi cal Co. )製〕でコートした培養皿(直径 10 cmまたは 6 cm)の上で、分化培地 1 2 ( サイト力イン添加済)を用いて、 COインキュベーターにおいて、 37°C、 5体積%じ〇 で接着培養した。以後は 3〜4日ごとに培地を交換した。力二クイザル胚性幹細胞の 凝集塊は平面上に広がりながら生長を続けた。牛胎児血清存在下での実験 (実施例 4)と異なり嚢状構造物の形成は見られな力、つた力 S、約 2週間後に接着細胞の増殖と 浮遊細胞(球状細胞)の産生が確認された。培養上清を回収して遠心することで浮遊 細胞(球状細胞)を沈降回収する一方、接着細胞はトリプシン/ EDTA液〔インビトロジ ェン(Invitrogen Corp. )製〕)を用いて 37°C、 5分反応させることで剥離回収した。
[0092] 回収した浮遊細胞(球状細胞)に関しては、メチルセルロースを含有した半固形培 地によるコロニーアツセィ ·キット(Methocult (登録商標) GF+H4535 (Stemcell Technol ogies Inc.)を用いて造血コロニーアツセィを行うことにより血球産生の確認を行った( 図 17参照)。図 17は、力二クイザル胚性幹細胞から無血清培養条件(KNOCKOUT ( 登録商標) SRを使用)で作成された成熟血球細胞の Wright-Giemsa染色 (A)と特殊 染色(ミエ口ペルォキシダーゼ染色(B)とエステラーゼ二重染色(C) )を示す。様々な 骨髄系細胞、即ち、骨髄芽球から成熟血球 (好中球およびマクロファージ)に至る各 分化段階の細胞の賛成が観察された。
[0093] 回収した接着細胞に関しては、 0.1 %ゼラチン〔シグマケミカル(Sigma Chemical
Co. )製〕でコートした新しい培養皿(直径 10 cmまたは 6 cm)で、分化培地 1 2 (サ イト力イン添加済)を用いて接着培養を行った。以後は 3〜4日ごとに細胞をトリプシン /EDTA液を用いて剥離しながら、 1/2〜 1/3程度の希釈で継代を行った。 3継代めに おけるフローサイトメトリー検査の結果を図 18に示す。従来、無血清では内皮細胞の 分化誘導はできないとされていた力 VE-cadherinおよび PECAM1が細胞膜で発現し ている細胞が数%以上存在することが確認された(図 18参照)。これは従来、無血清 培養では霊長類動物胚性幹細胞から血管内皮細胞は産生されないと信じられてき たこと、また既存の報告では血清存在下でも霊長類動物胚性幹細胞から血管内皮 細胞の産生効率が 2%以下であることを考えると、画期的な成果である。
実施例 6
[0094] 力二クイザル呸件榦細朐からの「血液細朐(造血榦細朐および成熟血球)への分化
^ i - 「 スト pマ糸田朐'の¾ し 「 田朐 Ή告 スト pマ糸田朐,の ¾ ι ( (υ培地調製
分化培地 1 3 {組成:ノックァゥト D- MEM (Knockout D-MEM〔インビトロジェン(Inv itrogen Corp. )、 20重量% 熱不活化ゥシ胎仔血清〔ピーエーエーラボラトリーズ グーエムベーノヽー (PAA Laboratories GmbH)〕、 0.1mM /3—メノレカプトェタノ ール〔シグマケミカル(Sigma Chemical Co. )製〕、 1 %非必須アミノ酸液〔インビ トロジェン (Invitrogen Corp. )製〕、 ImM L グノレタミン〔インビトロジェン (Invitr ogen Corp. )製〕〕に、終濃度 50ng/ml 骨形成タンパク質 4 (BMP— 4)、 300 ng/ml 幹細胞因子(SCF)、終濃度 300ng/ml Flt3 リガンド、終濃度 10ng/ ml インターロイキン 3 (IL3)、終濃度 10ng/ml インターロイキン 6 (IL6)、濃度 50η g/ml 顆粒球コロニー刺激因子(G— CSF) )のサイト力インを添加した。
[0095] (2)分化誘導の手技 1 (胚葉体形成のステップ)
実施例 1により未分化維持された力二クイザル胚性幹細胞を、コラゲナーゼ IV処理( 室温、 20分)および、それに引き続いてキレート剤処理(non-enzymatic cell dissociati on buffer〔インビトロジェン(Invitrogen Corp. )製〕で室温にて 20分反応)を行い、 マトリゲル (登録商標)マトリックスコートした培養容器力 剥離した。この操作により力 二クイザル胚性幹細胞は個々の細胞レベルに近い状態でほぐれた。これを回収して 、分化培地 1—3用いて、ポリヒドロキエチルメタタリレート(poly (2-hydoxyethyl metha crylate),シグマ社製)でコートした非接着性培養容器 (直径 6 cm培養皿等)、または Hydrocell (CellSeed社製)を用いて、一昼夜浮遊培養した。翌日、上記サイト力インを 添加した分化培地 1—3 (サイト力イン非添加)に培地を交換し、さらに 2週間ほど浮遊 培養を行うことで、胚葉体 (または胚葉体類似の細胞凝集塊)が作成された(図 19A を参照)。なお 2週間の培養期間中は 3〜4毎に培地交換を行った。この際に、培地 中に浮遊して!/、る胚葉体ほたは胚葉体類似の細胞凝集塊)は培養上清を回収して 細胞成分を遠心沈降させ、これを新しく調製した分化培地 1—3 (サイト力イン非添カロ )に懸濁し、新しく用意した非接着性培養容器に移し入れて浮遊培養を続行した。
[0096] (3)分化誘導の手技 2 (『特定前駆細胞』 (嚢状構造物と球状細胞集団からなる構造 物)の形成のステップ)
上記で形成された胚葉体を遠心沈降により培養上清から回収して、 0.1 %ゼラチン〔 シグマケミカル(Sigma Chemical Co. )製〕でコートした培養皿(24穴マルチゥェ ル皿)の上で、分化培地 1 3 (サイト力イン添加済み)を用いて、 COインキュベータ 一内で、 37°C、 5体積%じ〇で接着培養した。以後は 3〜4日ごとに培地を交換した 。力二クイザル胚性幹細胞の凝集塊は平面上に広がりながら生長を続け、約 2週間 後には、もと凝集塊のあった領域の中央付近から、図 19Bに示すように『特定前駆細 胞』 (嚢状構造物とそれに含有される球状細胞集団からなる構造物)が形成された( 各凝集塊につき 1個形成された)。図 19は、上記の「無フィーダ一での血管内皮細胞 および血液細胞への分化誘導方法」による、力二クイザル胚性幹細胞から牛胎児血 清存在下で作成した胚葉体細胞の位相差顕微鏡写真 (A)と、胚葉体を接着培養し て得られる血管内皮前駆細胞と血液細胞に共通の『特定前駆細胞』 (嚢状構造物と 球状細胞集団からなる構造物)(B)を示す。
[0097] (4)分化誘導の手技 3 (血球の拡大再生産のステップ)
上記手技 2で形成された『特定前駆細胞』を含む培養皿を、トリプシン/ EDTA液〔ィ ンビトロジェン(Invitrogen Corp. )製〕)での処理を行うことで、培養皿にある細胞 を全て剥離回収し、ゼラチンをコートした新しい培養皿(直径 6 cm)の上で、分化培地 1 3 (サイト力イン添加済み)を用いて接着培養を続行した。接着細胞は活発に増殖 し、 2日後にはコンフルェントに達した。さらに 2日後には図 20に示すように、浮遊細 胞の産生が明らかとなった。図 20は、血液細胞の拡大再生産がなされている状況を 示す位相差顕微鏡写真である。造血ストロマ細胞 (接着細胞)とそこから産生された 血球(浮遊細胞)の両者が確認される。
以後は週 2回のペースで、培地交換をしながら細胞培養を続行した。なお培地交 換の際には浮遊細胞を遠心回収して培養皿に戻した。また接着細胞は週 1回のぺ ースで、トリプシン/ EDTA液〔インビトロジェン(Invitrogen Corp. )製〕)を用いて剥 離し、培養上清中の浮遊培養と混合した上で、 1/2〜1/3に希釈しながら継代培養を 行った。
培養上清中力も回収された浮遊細胞については、(1)造血コロニーアツセィ(Meth ocult (登録商標) GF+H4535 (Stemcell Technologies Inc.)を使用)によるコロニー形成 能、(2)Wright_Giemsa染色による形態観察、(3)ミエ口ペルォキシダーゼ染色 (POX 染色)、エステラーゼ二重染色、好中球性アルカリホスファターゼ染色(NAP染色)等 の特殊染色による特異的酵素活性の有無、(4)フローサイトメトリーによる各種マーカ ー(じ034 045 01113等)の細胞表面での発現の確認することで、血液細胞として の評価を行った。結果を図 21A〜図 21Fに示す。
上記した血球の拡大再生産過程にお!/、て回収された血球細胞(浮遊細胞)の Wrig ht-Giemsa染色像(A)と、特殊染色(ミエ口ペルォキシダーゼ染色(B)、エステラーゼ 二重染色(C)、好中球性アルカリホスファターゼ染色(D) )を示す。様々な骨髄系細 胞、即ち、骨髄芽球から成熟血球 (好中球およびマクロファージ)に至る各分化段階 の細胞が観察される。さらに、これらの血球細胞(浮遊細胞)における造血幹細胞マ 一力一である CD34 (E)と汎血球細胞マーカーである CD45 (F)の発現をフローサイト メトリーで確認した結果を示す。
図 21から、骨髄系細胞の様々な分化段階にある細胞(骨髄芽細胞、前骨髄球、骨 髄球、後骨髄球、好中球、単球、マクロファージなどを含む)の産生が確認された。ま た汎血球細胞マーカーである CD45抗原の発現はほぼ 100%であり(図 21Fを参照)、 血球分化効率は非常に高ぐほぼ血球細胞のみからなるほぼ純粋な集団が得られて V、ることが確認された。また CD34陽性(即ち、 CD34陽性 CD45陽性の二重陽性細胞) も数%存在しており(図 21E参照)、造血幹細胞(または造血幹細胞と同等の造血前 駆細胞)が産生されて!/、ることが確認された。
[0099] 継代に際しては、接着細胞だけを継代しても、浮遊細胞だけを継代しても、両者を 混合して継代しても、いずれにおいても継代後には、接着細胞と浮遊細胞からなる、 継代前と同様の状態が再現された。この状況は、約 80継代までの培養期間(約 3ヶ月 )において安定に保持され、造血幹細胞から成熟血球までの様々な血液細胞の産生 が持続して確認された。また接着細胞だけを凍結しても、浮遊細胞だけを凍結しても 、両者を混合して凍結しても、いずれにおいても融解して細胞を培養すると、凍結前 と同様の状態が再現された(図 24を参照)。図 24は、血液細胞の拡大再生産におけ る、浮遊細胞と接着細胞をそれぞれ凍結解凍して培養を再開した状況の位相差顕 微鏡写真である。いずれにおいても、凍結前と全く同様に、造血ストロマ細胞 (接着 細胞)とそこから産生される血球 (浮遊細胞)の存在が確認された。
[0100] (5)分化誘導の手技 4 (造血ストロマ細胞の拡大再生産のステップ)
図 22は、上記した方法で産生された、継代可能な「造血ストロマ細胞」の位相差顕 微鏡写真 (A)と、 CD34、 CD45の発現をフローサイトメトリーで調べた結果 (B)、である 。汎血球マーカーである CD45、造血幹細胞のマーカーである CD34はともにほぼ陰 性であり、非血球系細胞であることが確認された(少量の陽性細胞は造血ストロマ細 胞に接着して!/、る造血幹細胞の混入と考えられる)。
上記手技 3で形成された接着細胞は、汎血球マーカーである CD45抗原はほとんど 発現しておらず(図 22を参照)、非血球系細胞であることが確認された。細胞形態は 、どれも比較的扁平ではある力 星型であったり、細長かったり、中には短い偽足をも つものや多核大型細胞も含まれており不均質であった。この状態は、骨髄血を培養 して得られる接着細胞である「造血ストロマ」と呼ばれる、不均質な細胞集団に形態的 に酷似していた。これらの細胞が存在する限り、上記手技 3に記載したように、骨髄系 の様々な分化段階にある血球が持続的に産生されること、また後述のように、この細 胞が消失すると、産生された血球は造血幹細胞(または造血幹細胞と同等の造血前 駆細胞)に限定される傾向を増すことから、機能的にも造血ストロマ細胞であると判断 される。なおこの接着細胞は、上記したように、約 80継代(約 3ヶ月の培養)までは形 態および機能が安定に保持され、拡大再生産が可能であった。
今後、この接着細胞を様々な角度から解析することで、今もって実体がほぼわかつ て!/、な!/、造血ストロマ細胞につ!/、ての理解が大いに深まることが期待され、移植医療 や造血機構に関する基礎研究において甚大な効果がある。
[0101] (6)分化誘導の手技 5 (造血幹細胞の拡大再生産のステップ)
図 23は、上記した方法で産生された、継代可能な「造血幹/前駆細胞」の長期間培 養(〉 100日)により作成された「CD34陽性かつ CD45陽性細胞」の位相差顕微鏡写 真である (A)。浮遊細胞と接着細胞が混在している力 両者は互いに移行可能であ り、同等な細胞集団(即ち、造血幹細胞と対等物)と考えられる。図 23Bに浮遊細胞、 および接着細胞に関する、 CD34、 CD45の発現をフローサイトメトリーで確認した結果 を示す。なお、ヒトでは造血幹細胞は「CD34陽性かつ CD45陽性細胞」であるとされ、 造血幹細胞の移植医療では骨髄血や臍帯血から該細胞を分離精製して移植される
前記手技 4で形成された接着細胞は、前述したように、約 80継代 (約 3ヶ月の培養) までは、その殆どが造血ストロマ細胞であった。しかし、それ以後の約 10継代の期間 中に徐々に造血ストロマ細胞は減少し、総計約 100継代めには、接着細胞は「厚みの ある紡錘形で、均一な細胞集団」に置換された(図 23Aを参照)。この細胞はフローサ ィトメトリーによる細胞表面マーカーの解析から、 CD34陽性かつ CD45陽性であり(図 23B、下段の 2つのパネルを参照)、造血幹細胞ほたは造血幹細胞と同等の造血前 駆細胞)であった。同時に、この段階では浮遊細胞のほとんどが CD34陽性かつ CD4 5陽性の造血幹細胞ほたは造血幹細胞と同等の造血前駆細胞)になっていた(図 2 3B、上段の 2つのパネルを参照)。即ち、この段階では浮遊細胞と接着細胞はどちら もが造血幹細胞ほたは造血幹細胞と同等の造血前駆細胞)という同一の細胞系列 になっており、造血幹細胞(または造血幹細胞と同等の造血前駆細胞)が浮遊細胞と しての性質だけではなく接着細胞としての性質も併せ持つことが明らかとなった。
[0102] 上記の状態は、その後、 140回を超す継代ののちにも、安定して保持されている。ま た凍結融解後にも同様の状態が再現されている。即ち、この細胞を培養することで、 安定した造血幹細胞(または造血幹細胞と同等の造血前駆細胞)の拡大再生産が可 能となった。
実施例 7
[0103] 無フィーダ一での力二クイザル呸件榦細朐からの「血液細胞への分化誘導 I (無血清
( υ培地調製
分化培地 1 3 {組成:ノックァゥト D- MEM (Knockout D-MEM〔インビトロジェン(Inv itrogen Corp. )、 20重量% KNOCKOUT (登録商標) SR〔インビトロジェン(Invitr ogen Corp. )製〕、 O. lmM /3—メルカプトエタノール〔シグマケミカル(Sigma Ch emical Co. )製〕、 1 %非必須アミノ酸液〔インビトロジヱン(Invitrogen Corp. ) 製〕、 ImM L グルタミン〔インビトロジェン(Invitrogen Corp. )製〕〕に、終濃度 5 Ong/ml 骨形成タンパク質ー4 (8^ [?— 4)、 3001¾/1111 幹細胞因子(SCF)、終 濃度 300ng/ml Flt3 リガンド、終濃度 10ng/ml インターロイキン 3 (IL3)、終 濃度 10ng/ml インターロイキン 6 (IL6)、濃度 50ng/ml 顆粒球コロニー刺激因 子(G— CSF) )のサイト力インを添加した。
[0104] (2)分化誘導の手技 1 (胚葉体形成のステップ)
実施例 1により未分化維持された力二クイザル胚性幹細胞を、実施例 6に記載した 方法に則ってマトリゲル (登録商標)マトリックスコートした培養容器から剥離したのち 、分化培地 1—4用いて、ポリヒドロキエチルメタタリレート(poly (2-hydoxyethyl metha crylate),シグマ社製)でコートした非接着性培養容器 (直径 6 cm培養皿等)、または Hydrocell (CellSeed社製)を用いて、一昼夜浮遊培養した。翌日、上記したサイトカイ ンを添加した分化培地 1—4 (サイト力イン非添加)に培地を交換し、さらに 2週間ほど 浮遊培養を行うことで、胚葉体 (または胚葉体類似の細胞凝集塊)が作成された。な お 2週間の培養期間中は 3〜4毎に培地交換を行った。この際に、培地中に浮遊して V、る胚葉体ほたは胚葉体類似の細胞凝集塊)は培養上清を回収して細胞成分を遠 心沈降させ、これを新しく調製した分化培地 1 3 (サイト力イン非添加)に懸濁し、新 しく用意した非接着性培養容器に移し入れて培養を続行した。
[0105] (3)分化誘導の手技 2 (『特定前駆細胞』形成のステップ)
前記手技 1で形成された胚葉体を遠心沈降により培養上清から回収して、 0.1 %ゼ ラチン〔シグマケミカル(Sigma Chemical Co. )製〕でコートした培養皿(24穴マル チウエル皿)の上で、分化培地 1 4 (サイト力イン添加済み)を用いて、 COインキュ ベータ一内で、 37°C, 5体積%じ〇で接着培養した。以後は 3〜4日ごとに培地を交 換した。力二クイザル胚性幹細胞の凝集塊は平面上に広がりながら生長を続け、約 2 週間後には、もと凝集塊のあった領域の中央付近から、実施例 6で示したものと同様 の『特定前駆細胞』 (嚢状構造物とそれに含有される球状細胞集団からなる構造物) が形成された。
[0106] (4)分化誘導の手技 3 (血球の拡大再生産のステップ)
前記手技 2で形成された『特定前駆細胞』を含む培養皿を、トリプシン/ EDTA液〔ィ ンビトロジェン(Invitrogen Corp. )製〕)での処理を行うことで、培養皿にある細胞 を全て剥離回収し、ゼラチンをコートした新しい培養皿(直径 6 cm)の上で、分化培地 1— 4 (サイト力イン添加済み)を用いて培養を続行した。接着細胞は徐々に増殖し、 数日後にはコンフルェントに達した。さらに培養を続けると浮遊細胞の産生が明らか となった。図 25は、上記の方法で力二クイザル胚性幹細胞から無血清条件下に作成 された血球細胞の Wright-Giemsa染色像(A)と、特殊染色(ミエ口ペルォキシダーゼ 染色(B)、エステラーゼ二重染色(C)を示す。様々な骨髄系細胞が観察される。図 2 5力、ら、浮遊細胞は、 Wright-Giemsa染色、ミエ口ペルォキシダーゼ染色 (POX染色)、 エステラーゼ二重染色等により、骨髄系細胞の様々な分化段階にある細胞 (骨髄芽 細胞、前骨髄球、骨髄球、後骨髄球、好中球、単球、マクロファージなどを含む)であ ることが確認された。
実施例 8
[0107] 無フィーダ一でのヒト胚性幹細胞力、らの、血液細胞(造血幹細胞および成熟血球)の
^iv . の (Φί¾台 . ^ m)
(1)分化用培地の調製
分化培地 1一; 1 {組成:イスコフ改変ダルベッコ培地(Iscove ' s modified Dulbec co ' s medium ; IMDM)〔シグマケミカノレ(Sigma Chemical Co. )製〕、 15重量 % 熱不活化ゥシ胎仔血清〔ピーエーエーラボラトリーズグーエムベーハー(PAA Laboratories GmbH)〕、 lmM /3—メノレカプトエタノーノレ〔シグマケミカノレ(Sigm a Chemical Co. )製〕、 2mM L—グルタミン〔インビトロジェン(Invitrogen Cor P. )製〕 }に、終濃度 20ng/ml 血管内皮成長因子 (VEGF)、終濃度 20ng/ml インスリン様増殖因子 2 (IGF2)、終濃度 10ng/ml 骨形成タンパク質— 4 (BMP— 4)、終濃度 5ng/ml オンコスタチン M (OSM)、終濃度 5ng/ml 線維芽細胞増殖 因子(FGF2)、 50ng 幹細胞因子(SCF)、終濃度 50ng/ml Flt3—リガンド、濃 度 50ng/ml 顆粒球コロユー刺激因子(G— CSF) ) }のサイト力インを添加した。
[0108] (2)分化誘導の手技 1 (胚葉体形成のステップ)
ヒト胚性幹細胞のコロニーを剥離液で回収したのち、ポリヒドロキシェチルメタクリレ 一ト(poly (2-hydoxyethyl methacrylate)、シグマ社製)でコートした非接着性培養容 器(直径 6 cm培養皿等)、または HydrocelKCellSeed社製)を用いて、上記した分化 培地(サイト力イン添加済)を用いて、浮遊培養を行った。 3日〜 8日後には胚葉体( または胚葉体類似の細胞凝集塊)が形成された。
[0109] (3)分化誘導の手技 2 (『特定前駆細胞』 (嚢状構造物と球状細胞集団からなる構造 物)の形成のステップ)
前記手技 1で形成された胚葉体 (または胚葉体類似の細胞凝集塊)を遠心沈降に より培養上清から回収して、 0.1 %ゼラチン〔シグマケミカル(Sigma Chemical Co. )製〕でコートした培養皿(直径 6cmまたは 10cmの培養皿)の上で、上記した分化培 地(サイト力イン添加済)を用いて、 COインキュベーター内で、 37°C、 5体積%じ〇 で接着培養した。以後は 3〜4日ごとに培地を交換した。ヒト胚性幹細胞の凝集塊は 平面上に広がりながら生長を続け、約 2週間後には、もと凝集塊のあった領域の中央 付近から、図 26に示すように『特定前駆細胞』 (嚢状構造物と球状細胞集団からなる 構造物)が形成された (各凝集塊につき 1個形成された)。図 26は、上記の方法によ る、ヒト胚性幹細胞からの血管内皮前駆細胞および血液細胞の『特定前駆細胞』(嚢 状構造物と球状細胞集団からなる構造物)の産生を示す。
[0110] (4)分化誘導の手技 3 (血球再生産のステップ)
前記手技 3で形成された『嚢状構造物』の中に球状細胞が完全に充満する前に、 マイクロナイフ(Stem cell knife (Swemed社製)等)を用いて、嚢状構造物そのもの構 造を破壊することなぐ嚢状構造物の底面付近に少量の切れ込みを入れることで、内 部の球状細胞を培養液中に緩除に放出させた。嚢状構造物内に球状細胞が完全に 充満すると球状細胞の生存性が低下する。培養上清を遠心沈降することで球状細胞 を回収しつつ、 3〜4日毎に培地交換を行いながら培養を続けた。培養上清から回収 された浮遊細胞については、適宜、(1)造血コロニーアツセィ (Methocult (登録商標) GF+H4535 (Stemcell Technologies In )を使用)によるコロニー形成能、(2)Wright_G iemsa染色による形態観察、(3)ミエ口ペルォキシダーゼ染色 (POX染色)、エステラー ゼ二重染色、好中球性アルカリホスファターゼ染色(NAP染色)等の特殊染色による 特異的酵素活性の有無、(4)フローサイトメトリーによる各種マーカー(CD34,CD45 等)の細胞表面での発現の確認することで、血液細胞としての評価を行った。結果を 図 27, 28に示す。
[0111] 図 27は、上記の方法で産生された成熟血球細胞(浮遊細胞)の Wright-Giemsa染 色像 (A)と、特殊染色(エステラーゼ二重染色(B)、好中球性アルカリホスファターゼ 染色(C) )を示す。様々な骨髄系細胞、即ち、骨髄芽球から成熟血球 (好中球および マクロファージ)に至る各分化段階の細胞が観察される。
図 28は、上記の方法で、ヒト胚性幹細胞から牛胎児血清存在下で作成された、浮 遊細胞の CD34、 CD45の発現をフローサイトメトリーで確認した結果である。ほぼ全て の細胞で汎血球マーカーである CD45が発現しており、非常に高い効率で血球細胞 分化が誘導されていることが解る。また 1割程度の CD34陽性細胞が検出されることか ら、造血幹細胞も存在していることが確認された。
即ち、骨髄系細胞の様々な分化段階にある細胞(骨髄芽細胞、前骨髄球、骨髄球 、後骨髄球、好中球、単球、マクロファージなどを含む)の産生が確認された(図 27 参照)。また汎血球細胞マーカーである CD45抗原の発現はほぼ 100%であり(図 28を 参照)、血球分化効率は非常に高ぐほぼ血球細胞のみからなるほぼ純粋な集団が 得られていることが確認された。また CD34陽性(即ち、 CD34陽性 CD45陽性の二重 陽性細胞)も 1割弱存在しており(図 28参照)、造血幹細胞ほたは造血幹細胞と同 等の造血前駆細胞)が産生されて!/、ることが確認された。
[0112] なお『嚢状構造物』をマイクロナイフで微細切開することで球状細胞を放出させても 、切開部は速やかに閉じ、培養を続けると数日程度で再び『嚢状構造物』に球状細 胞が充満した。そこで球状細胞が完全に充満してしまう前に、再びマイクロナイフで『 嚢状構造物』を微細切開して球状細胞を放出させた。この様な操作は繰り返して実 施することが可能であり、即ち、浮遊細胞(血球細胞)は再生産され続けた。
[0113] (5)分化誘導の手技 4 (特定系列の血球細胞の分離濃縮のステップ)
前記手技 3に記載した方法により産生された血球細胞から、リンホプレップ (登録商 標)(第一化学薬品株式会社製)を用いた密度勾配遠心法により好中球を濃縮した。 好中球性アルカリホスファターゼ染色により好中球を青紫色に発色させて顕微鏡下 で観察したところ、図 29に示すように、濃縮前 (A)に比べて、濃縮後(B)では、ほぼ 全ての細胞が好中球からなることが確認された。
図 29は、上記の方法で産生された血球細胞から、リンホプレップ (登録商標)(第一 化学薬品株式会社製)を用いた密度勾配遠心法により好中球を濃縮した結果である 。ここでは好中球性アルカリホスファターゼ染色により好中球が青紫色に染色されて いるが、濃縮前 (A)に比べて、濃縮後(B)ではほぼ全ての細胞が好中球となっている 実施例 9
[0114] 無フィーダ一でのヒト胚性幹細胞力、らの、血液細胞(造血幹細胞および成熟血球)の 分化誘導 血球の再生産(無血清培地を使用)
(1)分化用培地の調製
ヒト胚性幹細胞は、分化培地 1 2 {組成:イスコフ改変ダルベッコ培地(Iscove ' s modified Dulbecco s medium ; IMDM)〔シクマケ カノレ (Sigma Chemical Co. )製〕、 15重量% KNOCKOUT (登録商標) SR〔インビトロジヱン(Invitrogen Corp. )製〕、 ImM β メルカプトエタノール〔シグマケミカル(Sigma Chemical
Co. )製〕、 2mM L グルタミン〔インビトロジェン(Invitrogen Corp. )製〕 }に、 終濃度 20ng/ml 血管内皮成長因子(VEGF)、終濃度 20ng/ml インスリン様 増殖因子 2 (IGF2)、終濃度 10ng/ml 骨形成タンパク質ー4 (BMP— 4)、終濃度 5ng/ml オンコスタチン M (OSM)、終濃度 5ng/ml 線維芽細胞増殖因子(FGF2 )、 50ng 幹細胞因子(SCF)、終濃度 50ng/ml Flt3 リガンド、濃度 50ng/ml 顆粒球コロニー刺激因子(G— CSF) ) }のサイト力インを添加した。 [0115] (2)分化誘導の手技 1 (胚葉体形成のステップ)
ヒト胚性幹細胞のコロニーを剥離液で回収したのち、ポリヒドロキエチルメタクリレー ト(poly (2-hydoxyethyl methacrylate),シグマ社製)でコートした非接着性培養容器( 直径 6 cm培養皿等)、または Hydrocell (CellSeed社製)を用いて、上記した分化培地 (サイト力イン添加済)を用いて、浮遊培養を行った。 3日〜 8日後には胚葉体(または 胚葉体類似の細胞凝集塊)が形成された。
[0116] (3)分化誘導の手技 2 (『特定前駆細胞』 (嚢状構造物と球状細胞集団からなる構造 物)の形成のステップ)
前記手技 1で形成された胚葉体 (または胚葉体類似の細胞凝集塊)を遠心沈降に より培養上清から回収して、 0.1 %ゼラチン〔シグマケミカル(Sigma Chemical Co. )製〕でコートした培養皿(直径 6cmまたは 10cmの培養皿)の上で、上記した分化培 地(サイト力イン添加済)を用いて、 COインキュベーター内で、 37°C、 5体積%じ〇 で接着培養した。以後は 3〜4日ごとに培地を交換した。ヒト胚性幹細胞の凝集塊は 平面上に広がりながら生長を続け、約 2週間後には、もと凝集塊のあった領域の中央 付近から、『特定前駆細胞』 (嚢状構造物と球状細胞集団からなる構造物)が形成さ れ 。
[0117] (5)分化誘導の手技 3 (血球再生産のステップ)
前記手技 2で形成された『嚢状構造物』の中に球状細胞が完全に充満する前に、 マイクロナイフ(Stem cell knife (Swemed社製)等)を用いて、嚢状構造物の底面に少 量の切れ込みを入れ、内部の球状細胞を培養上清中に放出させた。嚢状構造物内 に球状細胞が完全に充満すると球状細胞の生存性が低下する。培養上清を遠心沈 降することで球状細胞を回収しつつ、 3〜4日毎に培地交換を行いながら培養を続け た。培養上清から回収された浮遊細胞については、(1)造血コロニーアツセィ(Metho cult (登録商標) GF+H4535 (Stemcell Technologies Inc.)を使用)によるコロニー形成 能、(2) Wright_Giemsa染色による形態観察、(3)ミエ口ペルォキシダーゼ染色 (POX 染色)、エステラーゼ二重染色、好中球性アルカリホスファターゼ染色(NAP染色)等 の特殊染色による特異的酵素活性の有無、(4)フローサイトメトリーによる各種マーカ 一(CD34,CD45等)の細胞表面での発現の確認することで、血液細胞としての評価を 行った。結果を図 30に示す。
[0118] 図 30は、上記の方法で、ヒト胚性幹細胞から無血清条件(KNOCKOUT (登録商標 ) SRを使用)で作成された、浮遊細胞における CD45の発現をフローサイトメトリーで確 認したものである。ほぼ全ての細胞で汎血球マーカーである CD45が発現しており、 非常に高い効率で血球細胞分化が誘導されていることが解る。このように、汎血球細 胞マーカーである CD45抗原の発現はほぼ 100%であり、無血清培養において、血球 分化効率は非常に高ぐほぼ血球細胞のみからなるほぼ純粋な集団が得られた。 実施例 10
[0119] カュクイザル 8不个牛 糸田朐,の 食 牛 ,食 平価
実施例 1の未分化維持培養方法にて、 22回継代した力二クイザル胚性幹細胞(IX 106個)を免疫不全マウス(SICDマウス)の精巣皮膜下に移植した。 8週後に移植を行 つた全てのマウスの精巣内で肉眼的な腫瘍形成が確認された。これらの腫瘍を取り 出し、ホルマリン固定したのち、薄切切片を作成してへマトキシリン ·ェォジン染色(H E染色)を施した後、組織学的検査を行った。
その結果、図 32に示す通り、外胚葉成分 (神経上皮細胞;図 a、歯エナメル上皮;図 d)、中胚葉成分 (平滑筋;図 b、歯象牙質;図 d)、内胚葉成分 (腸管上皮;図 b、分泌 腺組織;図 c)の三胚葉成分を持つことから、精巣内で形成された腫瘍はテラトマであ ることが確認された。
したがって、実施例 1の未分化維持培養方法にて継代維持した力二クイザル胚性 幹細胞は、テラトマ形成能を持つことが確認され、多能性分化能が保持されているこ とが実証された。
実施例 11
[0120] ヒト 8不个牛 》の 食 牛 ,食 平
実施例 2の未分化維持培養方法にて 20回継代したヒト胚性幹細胞 (khES-1) (3X1 06個)を免疫不全マウス(SICDマウス)の大腿四頭筋中に移植した。 8週後に移植を 行った全てのマウスの大腿四頭筋内で肉眼的な腫瘍形成が確認された。これらの腫 瘍を取り出してホルマリン固定したのち、薄切切片を作成してへマトキシリン ·ェォジ ン染色(HE染色)を施した後、組織学的検査を行った。 その結果、図 33に示す通り、外胚葉成分 (神経上皮細胞;図 a、色素上皮;図 b、皮 脂腺:図 h)、中胚葉成分 (骨;図 d、脂肪細胞;図 e、軟骨;図 f)、内胚葉成分 (分泌腺; 図 cおよび図 g)の三胚葉成分を持つことから、大腿四頭筋内で形成された腫瘍はテ ラトマであることが確認された。
したがって、実施例 2の未分化維持培養方法にて継代維持したヒト胚性幹細胞がテ ラトマ形成能と持つことが確認され、多能性分化能が保持されて!、ることが実証され た。
実施例 12
[0121] 力二クイザル呸件榦細朐から無フィーダ一での血管内皮細朐 /血液細胞への分化
*¾ ( ^台 ^青》 すろ
実施例 4の分化培地を用いた分化培地 1 1 (サイト力イン添加済)用いたハンギン グ-ドロップ法により、胚葉体類似の細胞凝集塊を作成する。具体的には、力二クイザ ル胚性幹細胞を剥離液で回収したのち、さらに 0.25 %トリプシン液〔インビトロジェン (I nvitrogen Corp. )製〕)で 37°C、 5分反応させることで 1個の細胞レベルに分散さ せる。 3000個の力二クイザル胚性幹細胞を 30 1の分化培地 1—1 (サイト力イン添 加済)に懸濁させて、マイクロピペットを用いて、直径 10 cmの培養皿の蓋の裏面にス ポットして!/、く(1枚の培養皿にお!/、て 2030個程度のスポッティングが可能である)。 乾燥を防ぐために、培養さらに滅菌水を満たして、 COインキュベーターにおいて、 3 7°C、 5体積%じ〇で 3日間浮遊培養した。 3日後には肉眼的に細胞凝集塊の形成 が確認できるので、培養皿の蓋面を洗うようにしてこれを回収し、 0.1 %ゼラチン〔シグ マケミカル(Sigma Chemical Co. )製〕でコートした培養皿(直径 10 cmまたは 6 c m)の上で、分化培地 1 1 (サイト力イン添加済)を用いて、 COインキュベーターに おいて、 37°C、 5体積%じ〇で接着培養した。以後は 3〜4日ごとに培地を交換した 。力二クイザル胚性幹細胞の凝集塊は平面上に広がりながら生長を続け、約 2週間 後には、図 12と同様に、もと凝集塊のあった領域の中央付近から、特定前駆細胞( 嚢状構造物と球状細胞集団からなる構造物)が形成された (各凝集塊につき 1個形 成された)。
[0122] 嚢状構造物の中に球状細胞が完全に充満する前に、マイクロナイフ(Stem cell knif e, SweMed社製等)を用いて、嚢状構造物そのものの構造を破壊することなぐ嚢状 構造物の底面付近に少量の切れ込みを入れることで、内部の球状細胞を培養液中 に緩除に放出させた。嚢状構造物内に球状細胞が完全に充満すると球状細胞の生 存性が低下する。培養上清を回収して遠心することでこの球状細胞を沈降回収した
[0123] 回収した球状細胞を、メチルセルロースを含有した半固形培地によるコロニーアツ セィ.キット(Methocult (登録商標) GF+H4535 (Stemcell Technologies In )を用いて 造血コロニーアツセィを行うことにより血球産生の確認を行った。図 13と同様に、球状 細胞から産生された成熟血球細胞の Wright-Giemsa染色(A)、特殊染色(ミエ口ペル ォキシダーゼ染色(B)およびエステラーゼ二重染色(C) )を示した。様々な骨髄系細 胞、即ち、骨髄芽球から成熟血球 (好中球およびマクロファージ)に至る各分化段階 の細胞が観察された。
[0124] 嚢状構造物の「壁面」および「基幹部」を構成する細胞群は活発に増殖をするため 、時間経過とともに嚢状構造物の周囲一面には敷石状の細胞群が広がった。これら の敷石細胞および嚢状構造物の壁面細胞では、図 34の上段に示すように「汎血管 内皮細胞マーカー」かつ「血管内皮細胞特異的マーカー」として知られる細胞間接 着分子である VE-cadherinが、全ての細胞の細胞間接合部において発現している。 なお、 Lampugnaniらカ幸告して!/ヽるように( Journal of Cell Biology, volume 129, p20 3-217, 1995)、細胞運動が盛んな「front領域」の細胞群では、 VE-cadherinの細胞膜 局在は不明瞭になり、細胞質主体の発現パターンをとるようになった(図 34、右カラ ム)。そのさらに外側には、 VE-cadherinを発現していない大きく平たい細胞が散在し た(図 34、右下図、矢印)。これらの少量の「非血管内皮細胞」は proliferating cell nu clear antigen (PCNA)陰性であり細胞増殖がおきていないことが解る。実際に時間経 過とともにこれらの VE-cadherin陰性の「非血管内皮系細胞」は VE-cadherin陽性の「 血管内皮細胞」である敷石細胞により速やかに駆逐された。
[0125] 以上、培地交換をしながら嚢状構造物の培養を続けると、数日程度で培養皿の中 は「活発な増殖能を持つ血管内皮細胞」がドミネートした状態となった。そこで培養皿 にある細胞を一塊として回収して継代培養を続けると、「血管内皮細胞の増幅培養」 が可能となる。なお、具体的な継代培養の手順は以下の通りである。トリプシン/ EDT A液〔インビトロジェン(Invitrogen Corp. )製〕)を用いて 37°C、 5分反応させること で細胞を剥離回収し、 0.1 %ゼラチン〔シグマケミカル(Sigma Chemical Co. )製〕 でコートした新しい培養皿(直径 10 cmまたは 6 cm)で、分化培地 1 1 (サイト力イン 添加済)を用いて培養した。以後は 3〜4日ごとに細胞をトリプシン/ EDTA液を用いて 剥離しながら、 1/3程度の希釈しながら継代培養を行った。
[0126] 図 35に示すように、前記手順により継代培養した細胞では、その全てにおいて、少 なくとも「細胞内」で VE-cadherinが発現していることが免疫染色から確認された。さら に図 35で示すように、血管内皮細胞で発現していることが知られる接着因子である N -cadherinも、免疫染色にてほぼ全ての細胞で発現しており、かつ明瞭な細胞膜局在 を認めることが示された。これは図 31に示すように、生体から得られた初代血管内皮 細胞が喪失してしまっている性質であり、非常に興味深い知見である(図 35と図 31を 比較参照のこと)。
[0127] さらに「細胞膜」における VE-cadherinの局在を確認するために、フローサイトメトリー による解析を施行した。図 36に示すように、 VE-cadherin、および成熟血管内皮細胞 マーカーである PECAM1の両蛋白力 S「細胞膜」において発現する細胞は、継代培養 初期には;!〜 2割程度である力 中期には 4割程度、後期には 8割程度と、継代に伴 つて著明に上昇した。即ち、「VE-cadherin/PECAMl陽性の成熟血管内皮細胞」は、 いずれの段階でも従来法 (く 2%)よりも圧倒的に高濃度に存在するだけでなぐ従来 法では継代培養に伴って VE-cadherin陽性血管内皮細胞が速やかに消失するため 増幅培養ができな!/、と報告されて!/、たのとは対照的に、本法では VE-cadherin/PEC AMI陽性細胞は継代に伴って濃縮されて!/、くとレ、う、他に類を見な!/、際立った特長 を持つことが明らかとなった。
[0128] なお、本法で分化誘導した血管内皮細胞の中には、従来法ではその大量のコンタ ミネーシヨンにより血管内皮細胞の増幅培養を不可能にしていたとされるペリサイトは 全く存在しないことが確認されている。即ち、図 37に示すように、ペリサイトのマーカ 一で、ある platelet— derived growth factor receptor β (PD FR βノねょ ~0、actin, alpna- 2, smooth muscle, aorta (ACTA2)の発現は検出されない。また、図 38に示すように、 未分化胚性幹細胞のコンタミネーシヨンもないことは、未分化胚性幹細胞のマーカー である Nanog発現が認められないことから確認される。
[0129] 以上、本法により分化誘導された細胞集団は、その全てが少なくとも細胞内で VE-c adherinを発現するものであり、ペリサイトや未分化 ES細胞のコンタミネーシヨンない。 また細胞膜に VE-cadherinと PECAM1を発現する「成熟血管内皮細胞」は、継代初期 に少なくとも 1割以上、培養後期には 9割近くにも達する純度で産生される。
継代初期に VE-cadherin陽性細胞をセルソーターで回収することで、継代初期より 高純度で血管内皮細胞を濃縮することが可能である。図 39および図 40は、嚢状構 造物を 1回継代した後に、 FACSAria (BD Biosciences社)により VE-cadherin陽性細 胞をソーティングした結果を示す。図 39に示すように、 VE-cadherin陽性分画の細胞 は継代を繰り返しても安定に細胞膜に VE-cadherinを発現し続け、 5回の継代後には 約 160倍に VE-cadherin陽性細胞が増幅されることが確認された(図 39B)。また免疫 染色により、全ての細胞において、細胞間接着部での VE-cadherin蛋白の局在も確 認された(図 39C)。
[0130] 一方、図 40に示すように、 VE-cadherin陰性分画の細胞は、細胞膜に VE-cadherin は表出していないものの、前述したように、細胞内において VE-cadherinを発現して おり、かつコード形成能(図 40B)、ァセチル化低比重リポ蛋白取込能(図 40C)を持 しており、血管内皮細胞にコミットメントされた細胞集団であることが確認された。
[0131] 以上より、少なくとも 8回の継代操作の間、安定した増殖能と成熟機能を保持し、か つ生体内におけると同様の明瞭な N-cadherinの細胞膜局在を示す、血管内皮細胞 力 S力二クイザル胚性幹細胞から作成された。 実施例 13
[0132] カュクイザル 8不个牛 細 細 の移械 験
C6 rat glioma cellsと力二クイザル胚性幹細胞由来血管内皮細胞(5継代目)とを IX 106個ずつ混合して一昼夜培養した。得られた混合細胞を免疫不全マウス(SICDマウ ス)の背部皮下に移植し、またコントロールとして C6 rat glioma cellsのみの移植を行 つた。その結果、下記表 1の通り、 3週間後に移植を行った全てのマウスの皮下で肉 眼的な腫瘍形成が確認された。これらの腫瘍を取り出し、腫瘍の計測(大きさ、重量) と外見の観察(図 41a)を行ったのち、ホルマリン固定したのち、薄切切片を作成して へマトキシリン ·ェォジン染色(HE染色)を施した後、組織学的検査(図 41b)を行った
[0133] [表 1] 新規血管内皮細胞誘導法: in / びでの機能評価
Figure imgf000064_0001
[0134] 以上から、 C6 rat glioma cellsを単独で移植した場合に比して、 C6 rat glioma cells と力二クイザル ES細胞由来血管内皮細胞を混合培養して移植した場合は、形成され た腫瘍は大きぐ色は喑紅色を帯び、周囲との癒着が強ぐかつ易出血性であるとい う特徴が見られた。また、組織学的にも、前者が血管成分に乏しい、ダリオ一マ細胞 力 なる充実性の腫瘍組織像を示したに対し(図 41b左)、後者は血管成分(内腔に 赤血球の充填を認める)に富んだ腫瘍組織像を示すことが確認された(図 41b右)。 さらに後者においては、霊長類に広く交差することが確認されている抗ヒト HLA-A, B , Cモノクローナル抗体(クローン W6/32, BioLegend社)を用いた免疫染色により、血 管内腔を裏打ちする血管内皮細胞が染色されることが確認された(図 41c)。即ち、グ リオ一マ組織内の新生血管は力二クイザル胚性幹細胞由来血管内皮細胞により形 成されたことが確認された。
従って、力二クイザル胚性幹細胞から作成された血管内皮細胞は、マウスへの移植 実験において腫瘍血管新生に寄与することが実証された。
実施例 14
[0135] ヒト呸件 朐 i 皮 田朐,の移植 ,験
実施例 2の方法により、無フィーダ一および無サイト力イン下で未分化維持培養中 のヒト胚性幹細胞 (khES-3) (10 cm培養皿 1枚分)を、実施例 2に記載した剥離液 1ま たは霊長類動物胚性幹細胞用細胞剥離液(リブロセル社)により剥離回収した。これ を実施例 4の分化培地を用いた分化培地 1 1 (サイト力イン添加済)の中で、汎用の 低吸着培養皿( 6 cm培養皿 1枚)を用いて浮遊培養を行うことで胚葉体類似の細胞 凝集塊を作成した。この細胞凝集塊を、実施例 4に記載した方法により、接着培養(1 0 cm培養皿 2枚に培養)、およびその後の継代培養を行うことで、血管内皮細胞の 分化誘導を行った。実施例 4および実施例 12に記載した力二クイザル胚性幹細胞を 用いた例と同様に、ヒト胚性幹細胞からも従来法よりも圧倒的に高効率に血管内皮 細胞が産生されること(2— 7害 IJ)、および継代に伴い VE-cadherin/PECAMl二重陽 性細胞の割合が増加することが確認された(図 42a参照)。また、力二クイザル胚性幹 細胞由来血管内皮細と同様に、ヒト胚性幹細胞由来血管内皮細胞も 8 10回程度 の継代培養が可能であった。またコード形成能、ァセチル化低比重リポ蛋白取込能 などの、血管内皮細胞の機能的成熟も確認された(図 42b参照)。次にこうして作成さ れたヒト胚性幹細胞由来血管内皮細胞の in vivoでの機能の評価を行った。即ち、ヒト 胚性幹細胞由来血管内皮細胞(4継代目)の浮遊液中にて数片の約 1 mm角の蜂巣 状コラーゲンスポンジを複数回の圧縮弛緩を繰り返すことで、コラーゲンスポンジ内 にヒト胚性幹細胞由来血管内皮細胞を充満させた。この細胞を 2日間培養した後、免 疫不全マウス(SICDマウス)の腹腔に移植した (数片程度/匹)。約 1ヶ月後に FITCラ ベルした高分子デキストランを尾静脈より注射し、数分後に腹腔内からコラーゲンス ポンジを回収した。ホルマリン固定したのち抗ヒト HLA-A, B, C抗体(クローン W6/32, BioLegend社)および抗ヒト PECAM1抗体(Santa Cruz社、 sc-8306)を用いて免疫染 色を行った。
その結果、図 42cに示す通り、ヒト胚性細胞由来血管内皮細胞を移植したものでは 、コラーゲンスポンジ内部に「内腔に FITCデキストランが充満した管腔構造」が確認さ れた。この管腔構造は、マウス細胞と反応せずにヒトを含める霊長類動物を特異的に 認識するヒト HLA-A, B, C抗体(図 42c左)、および血管内皮細胞マーカーであるヒト PECAM1抗体(図 42c中)、の両者により陽性に染色された。なお、ヒト PECAM1抗体 はマウスの血管構造を染色しなかった(図 42c右)ことから、この管腔構造は体循環と 繋がった「ヒト胚性幹細胞由来血管内皮細胞からなる新生血管」であることが確認さ れ 。
従って、新規血管内皮細胞分化誘導法によりヒト胚性幹細胞から作成された血管 内皮細胞は、 in vivoにおいて「体循環と繋がった機能的な新生血管」の形成に直接 的に関与する(新生血管に取り込まれる)ことが確認された。
実施例 15
[0137] 血球の表面マーカー角 ¾析
実施例 8の方法により、ヒト胚性幹細胞を分化誘導し、 30日目に培地中に浮遊する 細胞を回収し、フローサイトメトリーにより好中球を中心とする血球マーカーの発現を 解析した。
その結果、図 43に示す通り、造血幹/前駆細胞マーカーである CD34の発現は少な ぐ汎血球マーカーである CD45および汎白血球マーカーである CD33、好中球/単球 系細胞マーカーである CDl lbの発現は非常に高力、つた(〉9割)。また、顆粒球マー カーである CD66bや GPI-80も 6〜8割程度であり、好中球特異的マーカーである CD1 6bの発現も 3割以上であった。またさらに、好中球の三次顆粒中に含まれる lactoferri nが陽性の細胞も検出された。
従って、ヒト胚性幹細胞から作成された造血細胞は、好中球マーカーを高率に発現 している。
実施例 16
[0138] ヒト 牛 糸田朐, Ψ の移械 ,験
実施例 8の方法により、ヒト胚性幹細胞を分化誘導し、 30日目に培地中に浮遊する 血球(CD66b陽性率は 6〜8割程度)を回収した。約 1X106個の細胞を、あらかじめ皮 下に滅菌空気を注入することで空気嚢を作成しておいた NOD/SCID/ γ cnu11 ( NOG) マウスに静注した。その直後に空気嚢内に zymosan A(l mg/ml)とヒ HL-1 β (10 ng/ ml)を投与し、 16時間後に空気嚢内から細胞を回収し、抗ヒト CD66b抗体(注:ヒト好中 球とのみ反応し、マウス好中球とは反応しないことを確認済)を用いたフローサイトメト リーによりヒト由来好中球の陽性率を測定した。
その結果、図 44に示す通り、非移植群ではヒト CD66b陽性細胞は検出されなかつ た力 ヒト ES細胞由来血球の移植群ではヒト CD66b陽性率は 0.42土 0.13%であった。 この値は、「ヒト臍帯血 CD34陽性細胞(造血幹細胞)をマウス OP9と共培養することで 作成した白血球(CD66b=65%)」を用いて行った同様の実験における値(0.41 %)と同 等(またはそれ以上)であった。
従って、ヒト胚性幹細胞から作成された好中球は、 in vivoにおいて遊走能を持つこ とが確認された。
産業上の利用可能性
本発明によれば、輸血用血液、移植用材料等に適した血液細胞、血管内皮細胞を 安定的に工業的スケールで提供することが可能になる。さらに、本発明の血液細胞 等は、自然治癒力の強化にもつながるために、その医療および医療産業へ及ぼすィ ンパクトは絶大なものがある。さらに、現在の献血に変わる安心安全な輸血用血液の 製造も含めれば、巨大プラント産業に展開する可能性も考えられる。

Claims

請求の範囲
[1] 霊長類動物胚性幹細胞の培養および継代方法であって、
(A)霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた容器中、無フィーダ 一および無サイト力イン下、蛋白成分を含有する培地で培養するステップ、
(B)前記ステップ (A)で形成された胚性幹細胞のコロニーを細胞剥離剤の存在下、 剥離するステップ、および
(C)前記ステップ(B)で得られた胚性幹細胞のコロニーを細胞外マトリックスでコート された容器中、無フィーダ一および無サイト力イン下、蛋白成分を含有する培地に播 種するステップを含む方法。
[2] ステップ (A)にお!/、て、霊長類動物胚性幹細胞のコロニーの大きさが約 2倍〜約 4 倍となるまで培養する、請求項 1記載の培養および継代方法。
[3] ステップ (A)における蛋白成分が血清アルブミンである請求項 1または 2記載の培 養および継代方法。
[4] ステップ (B)における細胞剥離剤が、トリプシン、コラゲナーゼ、デイスパーゼからな る群から選ばれた少なくとも 1種類である、請求項 1〜3のいずれ力、 1項記載の培養お よび継代方法。
[5] ステップ (A)における細胞外マトリックス力 ヒトコラーゲン、ヒトラミュン、ヒトビトロネ クチン、ヒトフイブロネクチンおよびヒト血清、並びにこれらの分解物およびこれら合成 ペプチドからなる群から選ばれた 1種類である、請求項;!〜 4のいずれか 1項記載の 培養および継代方法。
[6] (A)霊長類動物胚性幹細胞を、サイト力インの存在下、血清もしくは血清代替物を 含むまたは無血清培地で、浮遊培養し、胚葉体または胚葉体類似細胞凝集塊を製
(B)ステップ (A)で得られた胚葉体または胚葉体類似細胞凝集塊を、サイト力イン の存在下、接着培養して特定前駆細胞を製造するステップ、および
(C)ステップ (B)で得られた特定前駆細胞から浮遊細胞と接着細胞を分離するステ ップ、を含む霊長類動物胚性幹細胞からの血液細胞および/または血管内皮前駆 細胞の製造方法。 [7] ステップ (A)の培養を、胚葉体様細胞凝集体が形成されるまで行う、請求項 6記載 の霊長類動物胚性幹細胞からの血管内皮前駆細胞および/または血液細胞の製 造方法。
[8] サイト力インが、血管内皮成長因子 (VEGF)、骨形成タンパク質 4 (BMP4)、幹細 胞因子(SCF)、 Flt3—リガンド(FU、インターロイキン 6 (IL6)、インターロイキン 3 (I L3)、顆粒球コロニー刺激因子(G— CSF)、巨核球増殖因子 (TPO)、オンコスタチ ン M (OSM)、 泉維芽細胞成長因子 2 (FGF2)および顆粒球マクロファージコロニー 刺激因子(GM— CSF)からなる群より選ばれた少なくとも 1種類である、請求項 6また は 7に記載の霊長類動物胚性幹細胞からの血管内皮前駆細胞および/または血液 細胞の製造方法。
[9] ステップ(C)にお!/、て、特定細胞前駆細胞の接着細胞の分離に細胞剥離剤を用い る、請求項 6〜8のいずれ力、 1項記載の霊長類動物胚性幹細胞からの血管内皮前駆 細胞および/または血液細胞の製造方法。
[10] 細胞剥離剤がトリプシン、コラゲナーゼ、デイスパーゼからなる群から選ばれた少な くとも 1種類である、請求項 9記載の霊長類動物胚性幹細胞からの血管内皮前駆細 胞および/または血液細胞の製造方法。
[11] (A)霊長類動物胚性幹細胞を、サイト力インの存在下、血清もしくは血清代替物を 含むまたは無血清培地で浮遊培養し、胚葉体または胚葉体類似細胞凝集塊を製造
(B)ステップ (A)で得られた胚葉体または胚葉体類似細胞凝集塊を、サイト力イン の存在下、接着培養して浮遊細胞と接着細胞を含む特定前駆細胞を製造するステツ プ、および
(C)ステップ (B)で得られた特定前駆細胞を、浮遊細胞を分離しながら培養するス テツプ、を含む霊長類動物胚性幹細胞からの血液細胞、骨髄系細胞、造血ストロマ 細胞および/または造血幹細胞の製造方法。
ステップ (A)の培養を、胚葉体が形成されるまで行う、請求項 11記載の霊長類動 物胚性幹細胞からの血液細胞、骨髄系細胞、造血ストロマ細胞および/または造血 幹細胞の製造方法。 [13] サイト力インが、血管内皮成長因子 (VEGF)、骨形成タンパク質 4 (BMP4)、幹細 胞因子(SCF)、 Flt3—リガンド(FU、インターロイキン 6 (IL6)、インターロイキン 3 (I L3)、顆粒球コロニー刺激因子(G— CSF)、巨核球増殖因子 (TPO)、オンコスタチ ン M (OSM)、 泉維芽細胞成長因子 2 (FGF2)および顆粒球マクロファージコロニー 刺激因子(GM— CSF)からなる群より選ばれた少なくとも 1種類である、請求項 11ま たは 12記載の霊長類動物胚性幹細胞からの血液細胞、骨髄系細胞、造血ストロマ 細胞および/または造血幹細胞の製造方法。
[14] ステップ(C)にお!/、て、特定細胞前駆細胞の接着細胞の分離に細胞剥離剤を用い る、請求項 11〜; 13のいずれ力、 1項記載の霊長類動物胚性幹細胞からの血液細胞、 骨髄系細胞、造血ストロマ細胞および/または造血幹細胞の製造方法。
[15] 細胞剥離剤がトリプシン、コラゲナーゼ、デイスパーゼからなる群から選ばれた少な くとも 1種類である、請求項 14記載の霊長類動物胚性幹細胞からの血液細胞、骨髄 系細胞、造血ストロマ細胞および/または造血幹細胞の製造方法。
[16] 請求項 6〜; 10のいずれか 1項記載の製造方法により霊長類動物胚性幹細胞から 分化誘導されてなる、実質的に単離された血管内皮前駆細胞。
[17] 請求項 6〜; 14いずれか 1項記載の製造方法により霊長類動物胚性幹細胞から分 化誘導されてなる、実質的に単離された血液細胞。
[18] 請求項 11〜; 14いずれか 1項記載の製造方法により霊長類動物胚性幹細胞から分 化誘導されてなる、実質的に単離された造血ストロマ細胞。
[19] 請求項 11〜; 14いずれか 1項記載の製造方法により霊長類動物胚性幹細胞から分 化誘導されてなる、実質的に単離された造血幹細胞。
[20] 請求項 11〜; 14いずれか 1項記載の製造方法により霊長類動物胚性幹細胞から分 化誘導されてなる、実質的に単離された骨髄系細胞。
[21] 請求項 16〜; 19いずれ力、 1項記載の実質的に単離された血管内皮前駆細胞、血液 細胞、造血ストロマ細胞または造血幹細胞を含有する組成物。
PCT/JP2007/071811 2006-11-09 2007-11-09 Procédé destiné à la culture et au passage d'une cellule souche embryonnaire de primate, et procédé destiné à induire la différenciation de la cellule souche embryonnaire WO2008056779A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008543145A JP5067949B2 (ja) 2006-11-09 2007-11-09 霊長類動物胚性幹細胞の培養及び継代方法、並びにその分化誘導方法
EP07831542A EP2088190A4 (en) 2006-11-09 2007-11-09 METHOD FOR THE CULTURE AND PASSAGE OF PRIMATE EMBRYONIC STRAIN CELL, AND METHOD FOR INDUCING DIFFERENTIATION OF EMBRYONIC STEM CELL
US12/514,207 US20110151554A1 (en) 2006-11-09 2007-11-09 Method for culturing and subculturing primate embryonic stem cell, as well as method for inducing differentiation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006303929 2006-11-09
JP2006-303929 2006-11-09

Publications (1)

Publication Number Publication Date
WO2008056779A1 true WO2008056779A1 (fr) 2008-05-15

Family

ID=39364589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071811 WO2008056779A1 (fr) 2006-11-09 2007-11-09 Procédé destiné à la culture et au passage d'une cellule souche embryonnaire de primate, et procédé destiné à induire la différenciation de la cellule souche embryonnaire

Country Status (4)

Country Link
US (1) US20110151554A1 (ja)
EP (1) EP2088190A4 (ja)
JP (1) JP5067949B2 (ja)
WO (1) WO2008056779A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131373A (ja) * 2008-10-30 2010-06-17 Japan Health Science Foundation 血管平滑筋細胞増殖を抑制する血管狭窄部挿入用基材
WO2010110596A2 (en) * 2009-03-24 2010-09-30 Korea Institute Of Science And Technology Method for differentiation of stem cells into vascular cells and the induction of angiogenesis using the same
WO2011115308A1 (en) * 2010-03-18 2011-09-22 Kyoto University Method for inducing differentiation of pluripotent stem cells into mesodermal cells
WO2012105505A1 (ja) * 2011-01-31 2012-08-09 独立行政法人国立国際医療研究センター 多能性幹細胞由来高機能肝細胞とその製造方法及び薬剤代謝毒性試験方法
JP2012519005A (ja) * 2009-02-27 2012-08-23 セルラー ダイナミクス インターナショナル, インコーポレイテッド 多能性細胞の分化
JP2012175962A (ja) * 2011-01-31 2012-09-13 National Institute Of Biomedical Innovation ヒト多能性幹細胞の培養方法
KR101330327B1 (ko) 2010-05-07 2013-11-14 한국생명공학연구원 줄기세포로부터 생성된 배아체를 대량 증식 및 유지하는 방법
WO2014030749A1 (ja) 2012-08-24 2014-02-27 独立行政法人理化学研究所 網膜色素上皮細胞シートの製造方法
US9644183B2 (en) 2009-03-24 2017-05-09 Korea Institute Of Science And Technology Method for differentiation of stem cells into vascular cells and the induction of angiogenesis using the same
CN107182610A (zh) * 2017-05-25 2017-09-22 兰溪市沉默生物科技有限公司 一种提高杜鹃花成苗率栽培基质及其制备方法
JP2019083819A (ja) * 2009-12-04 2019-06-06 ステム セル アンド リジェネレイティブ メディスン インターナショナル, インコーポレイテッド ヒト胚性幹細胞由来血管芽細胞からナチュラルキラー細胞および樹状細胞を生成する方法
WO2020130068A1 (ja) * 2018-12-20 2020-06-25 住友化学株式会社 胚型赤芽球を含む細胞集団及びその製造方法、細胞培養組成物並びに化合物試験法
CN113631699A (zh) * 2018-10-24 2021-11-09 赫贝细胞股份有限公司 用于生产造血谱系细胞的方法和系统

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007120811A2 (en) 2006-04-14 2007-10-25 Advanced Cell Technology, Inc. Hemangio-colony forming cells
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
US9096832B2 (en) 2007-07-31 2015-08-04 Lifescan, Inc. Differentiation of human embryonic stem cells
MX2010005805A (es) 2007-11-27 2010-06-09 Lifescan Inc Diferenciacion de celulas madre embrionarias humanas.
JP5733986B2 (ja) 2008-02-21 2015-06-10 ヤンセン バイオテツク,インコーポレーテツド 細胞の付着、培養、及び剥離のための方法、表面改質されたプレート、並びに組成物
CN109988749B (zh) 2008-03-27 2023-06-16 阿斯特利亚斯生物治疗股份公司 使灵长类多能干细胞分化成为造血谱系细胞
KR101829310B1 (ko) 2008-06-30 2018-02-14 얀센 바이오테크 인코포레이티드 만능 줄기 세포의 분화
RU2528861C2 (ru) 2008-10-31 2014-09-20 Сентокор Орто Байотек Инк. Дифференцирование человеческих эмбриональных стволовых клеток в линию панкреатических эндокринных клеток
CN107904201B (zh) 2008-10-31 2021-11-16 詹森生物科技公司 人胚胎干细胞向胰腺内分泌谱系的分化
WO2010059775A1 (en) 2008-11-20 2010-05-27 Centocor Ortho Biotech Inc. Pluripotent stem cell culture on micro-carriers
ES2584053T3 (es) 2008-11-20 2016-09-23 Janssen Biotech, Inc. Métodos y composiciones para la unión de células y cultivo en sustratos planos
CN102482643B (zh) 2009-07-20 2016-06-29 詹森生物科技公司 人胚胎干细胞的分化
DK2516625T3 (da) 2009-12-23 2024-09-09 Janssen Biotech Inc Differentiering af humane embryonale stamceller
KR101928299B1 (ko) 2010-03-01 2018-12-12 얀센 바이오테크 인코포레이티드 만능 줄기 세포로부터 유래된 세포의 정제 방법
CN102884176B (zh) 2010-05-12 2017-09-05 詹森生物科技公司 人胚胎干细胞的分化
AU2011296381B2 (en) 2010-08-31 2016-03-31 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
PL2611910T3 (pl) 2010-08-31 2018-06-29 Janssen Biotech, Inc Różnicowanie ludzkich embrionalnych komórek macierzystych
DK2785359T3 (en) 2011-11-30 2018-10-29 Astellas Inst For Regenerative Medicine MESENKYMAL STROMACELLES AND APPLICATIONS RELATED
KR102203056B1 (ko) 2011-12-22 2021-01-14 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 단일 인슐린 호르몬 양성 세포로의 분화
KR20140131999A (ko) 2012-03-07 2014-11-14 얀센 바이오테크 인코포레이티드 만능 줄기 세포의 증폭 및 유지를 위한 한정 배지
SG10201610313WA (en) 2012-06-08 2017-02-27 Janssen Biotech Inc Differentiation of human embryonic stem cells into pancreatic endocrine cells
JPWO2013183777A1 (ja) 2012-06-08 2016-02-01 国立研究開発法人理化学研究所 ヒトes細胞用培養容器
CN105101979B (zh) 2012-12-21 2021-10-08 安斯泰来再生医药协会 由多能干细胞制备血小板的方法及其组合物
CN105705634A (zh) 2012-12-31 2016-06-22 詹森生物科技公司 用于分化成胰腺内分泌细胞的人多能细胞的悬浮和群集
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
KR102084561B1 (ko) 2012-12-31 2020-03-04 얀센 바이오테크 인코포레이티드 췌장 내분비 세포로의 분화를 위한 공기-액체 계면에서의 인간 배아 줄기세포의 배양
DK2938723T3 (da) 2012-12-31 2023-02-20 Janssen Biotech Inc Differentiering af humane embryonale stamceller til pancreatiske endokrine celler under anvendelse af hb9-regulatorer
KR20180128529A (ko) * 2013-11-01 2018-12-03 얀센 바이오테크 인코포레이티드 췌장 내분비 세포로의 분화를 위한 인간 만능 줄기세포의 현탁 및 클러스터링
DK3143127T3 (da) 2014-05-16 2021-09-13 Janssen Biotech Inc Anvendelse af små molekyler til at forstærke mafa-ekspression i endokrine pankreasceller
KR20170084495A (ko) * 2016-01-12 2017-07-20 건국대학교 글로컬산학협력단 줄기세포 유래 혈관세포 및 혈액모세포 비정제 동시 분화 방법
MA45479A (fr) 2016-04-14 2019-02-20 Janssen Biotech Inc Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen
EP3869194B1 (en) * 2018-10-17 2024-01-10 Mandom Corporation Method for observing sebaceous gland and utilization thereof
US20220125854A1 (en) * 2019-03-06 2022-04-28 Public University Corporation Nagoya City University Preparation and extended culture of vascular endothelial progenitor cell
CN116688233A (zh) * 2022-02-25 2023-09-05 上海软馨生物科技有限公司 一种组织工程软骨颗粒移植物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020741A1 (en) 1997-10-23 1999-04-29 Geron Corporation Methods and materials for the growth of primate-derived primordial stem cells
WO2005065354A2 (en) * 2003-12-31 2005-07-21 The Burnham Institute Defined media for pluripotent stem cell culture
WO2005085426A1 (ja) * 2004-03-04 2005-09-15 Tanabe Seiyaku Co., Ltd. 無フィ−ダ−分化用培地及び霊長類動物胚性幹細胞からの無フィ−ダ−分化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020741A1 (en) 1997-10-23 1999-04-29 Geron Corporation Methods and materials for the growth of primate-derived primordial stem cells
WO2005065354A2 (en) * 2003-12-31 2005-07-21 The Burnham Institute Defined media for pluripotent stem cell culture
WO2005085426A1 (ja) * 2004-03-04 2005-09-15 Tanabe Seiyaku Co., Ltd. 無フィ−ダ−分化用培地及び霊長類動物胚性幹細胞からの無フィ−ダ−分化方法

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
BUZZARD, NATURAL BIOTECHNOLOGY, vol. 22, 2004, pages 381 - 382
CHADWICK ET AL., BLOOD, vol. 102, 2003, pages 906 - 915
DING V. ET AL.: "Deciphering the importance of three key media components in human embryonic stem cell cultures", BIOTECHNOL. LETT., vol. 28, April 2006 (2006-04-01), pages 491 - 495, XP019231244 *
DRAPER ET AL., NATURE BIOTECHNOLOGY, vol. 22, 2004, pages 53 - 54
JUN YAMASHITA, INFLAMMATION/REGENERATION, vol. 22, 2002, pages 509
KAUFMAN D.S. ET AL.: "Functional endothelial cells derived from rhesus monkey embryonic stem cells", BLOOD, vol. 103, 2004, pages 1325 - 1332, XP008109928 *
LAMPUGNAMI ET AL., JOURNAL OF CELL BIOLOGY, vol. 129, 1995, pages 203 - 217
LEVENBERG ET AL., PROCEEDING OF NATURAL ACADEMY OF SCIENCE, USA, vol. 99, 2002, pages 4391 - 4396
LUDWIG ET AL., NATURE BIOTECHNOLOGY, vol. 24, 2006, pages 185 - 187
NAKAHARA N. ET AL.: "Kanikuizaru Oyobi Hito ES Saibo kara no Feeder-free Baiyo ni yoru Zoketsu Saibo Bunka", SAISEI IRYO, vol. 6, no. SUPPL., 19 February 2007 (2007-02-19), pages 207 + ABSTR. NO. P-009, XP008117024 *
NAKAMURA N. ET AL.: "Kanikuizaru ES Saibo kara no Feeder-free Baiyo Jokenka ni Okeru Keidai Baiyo Kano na Kekkan Naihi Saibo eno Bunka Yudo", SAISEI IRYO, vol. 6, no. SUPPL., 19 February 2007 (2007-02-19), pages 207 + ABSTR. NO. O-11-2 P-010, XP003025829 *
REUBINOFF. B. E. ET AL.: "Embryonic stem cell lines from a human blastcysts: somatic differentiation in vitro.", NAT. BIOTECH., 2000, pages 399 - 404, XP002195338, DOI: doi:10.1038/74447
See also references of EP2088190A4
SONE ET AL., CIRCULATION, vol. 107, 2003, pages 2085 - 2088
SUEMORI, H. ET AL.: "Establishment of embryonic stem cell lines from cynomolgus monkey blastcysts produced by IVF or ICSI.", DEV. DYNAMICS, vol. 222, 2001, pages 273 - 279
TOMSON, J. A. ET AL.: "Embryonic stem cell lines derived from human blastcysts", SCIENCE, vol. 282, 1998, pages 1145 - 1147
TOMSON, J.A. ET AL.: "Isolation of a primate embryonic stem cell line.", PROC. NATL. ACAD. SCI, USA, vol. 92, 1995, pages 7844 - 7848
TOMSON, J.A. ET AL.: "Pluripotent cell lines derived from common marmoset blastcysts.", BIOLOL. REPROD., vol. 55, 1996, pages 254 - 259
UMEDA K. ET AL.: "Identification and characterization of hemoangiogenic progenitors during cynomolgus monkey embryonic stem cell differentiation", STEM CELLS, vol. 24, January 2006 (2006-01-01), pages 1348 - 1358, XP002483684 *
VOGELI ET AL., NATURE, vol. 443, 2006, pages 337 - 339
WANG L. ET AL.: "Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties", IMMUNITY, vol. 21, no. 1, 2004, pages 31 - 41, XP002484358 *
YUO A.: "Reichorui ES Saibo no Feeder-free, Mukessei Baiyo o Mochiita Atarashii Mibunka Iji Zoshoku Baiyoho to Ketsueki Saibo Bunka Seigyokei no Kaihatsu", HEISEI 17 NENDO SOYAKUTO HUMAN SCIENCE KENKYU JUTEN KENKYU HOKOKUSHO, July 2006 (2006-07-01), pages 511 - 515, XP003025831 *
ZHAN X. ET AL.: "Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro", LANCET, vol. 364, 2004, pages 163 - 171, XP005070191 *
ZHANG H. ET AL.: "Efficient and repetitive production of hematopoietic and endothelial cells from feeder-free monolayer culture system of primate embryonic stem cells", BIOL. REPROD., vol. 74, February 2006 (2006-02-01), pages 295 - 306, XP008109929 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131373A (ja) * 2008-10-30 2010-06-17 Japan Health Science Foundation 血管平滑筋細胞増殖を抑制する血管狭窄部挿入用基材
JP2012519005A (ja) * 2009-02-27 2012-08-23 セルラー ダイナミクス インターナショナル, インコーポレイテッド 多能性細胞の分化
US9644183B2 (en) 2009-03-24 2017-05-09 Korea Institute Of Science And Technology Method for differentiation of stem cells into vascular cells and the induction of angiogenesis using the same
WO2010110596A3 (en) * 2009-03-24 2011-03-10 Korea Institute Of Science And Technology Method for differentiation of stem cells into vascular cells and the induction of angiogenesis using the same
WO2010110596A2 (en) * 2009-03-24 2010-09-30 Korea Institute Of Science And Technology Method for differentiation of stem cells into vascular cells and the induction of angiogenesis using the same
JP2022027790A (ja) * 2009-12-04 2022-02-14 アステラス インスティテュート フォー リジェネレイティブ メディシン ヒト胚性幹細胞由来血管芽細胞からナチュラルキラー細胞および樹状細胞を生成する方法
JP2019083819A (ja) * 2009-12-04 2019-06-06 ステム セル アンド リジェネレイティブ メディスン インターナショナル, インコーポレイテッド ヒト胚性幹細胞由来血管芽細胞からナチュラルキラー細胞および樹状細胞を生成する方法
JP7343984B2 (ja) 2009-12-04 2023-09-13 アステラス インスティテュート フォー リジェネレイティブ メディシン ヒト胚性幹細胞由来血管芽細胞からナチュラルキラー細胞および樹状細胞を生成する方法
US8652845B2 (en) 2010-03-18 2014-02-18 Kyoto University Method for producing mesodermal cells by culturing under adherent conditions and without co-culture with cells from a different species in a serum-free medium
WO2011115308A1 (en) * 2010-03-18 2011-09-22 Kyoto University Method for inducing differentiation of pluripotent stem cells into mesodermal cells
KR101330327B1 (ko) 2010-05-07 2013-11-14 한국생명공학연구원 줄기세포로부터 생성된 배아체를 대량 증식 및 유지하는 방법
WO2012105505A1 (ja) * 2011-01-31 2012-08-09 独立行政法人国立国際医療研究センター 多能性幹細胞由来高機能肝細胞とその製造方法及び薬剤代謝毒性試験方法
JP2012175962A (ja) * 2011-01-31 2012-09-13 National Institute Of Biomedical Innovation ヒト多能性幹細胞の培養方法
WO2014030749A1 (ja) 2012-08-24 2014-02-27 独立行政法人理化学研究所 網膜色素上皮細胞シートの製造方法
CN107182610A (zh) * 2017-05-25 2017-09-22 兰溪市沉默生物科技有限公司 一种提高杜鹃花成苗率栽培基质及其制备方法
CN113631699A (zh) * 2018-10-24 2021-11-09 赫贝细胞股份有限公司 用于生产造血谱系细胞的方法和系统
JP2022512810A (ja) * 2018-10-24 2022-02-07 ヒービセル コーポレイション 造血系統細胞を製造するための方法およびシステム
JPWO2020130068A1 (ja) * 2018-12-20 2021-11-04 住友化学株式会社 胚型赤芽球を含む細胞集団及びその製造方法、細胞培養組成物並びに化合物試験法
WO2020130068A1 (ja) * 2018-12-20 2020-06-25 住友化学株式会社 胚型赤芽球を含む細胞集団及びその製造方法、細胞培養組成物並びに化合物試験法
JP7446242B2 (ja) 2018-12-20 2024-03-08 住友化学株式会社 胚型赤芽球を含む細胞集団及びその製造方法、細胞培養組成物並びに化合物試験法

Also Published As

Publication number Publication date
US20110151554A1 (en) 2011-06-23
JPWO2008056779A1 (ja) 2010-02-25
EP2088190A4 (en) 2011-01-05
EP2088190A1 (en) 2009-08-12
JP5067949B2 (ja) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5067949B2 (ja) 霊長類動物胚性幹細胞の培養及び継代方法、並びにその分化誘導方法
JP6943937B2 (ja) 幹細胞培養のためのマイクロキャリア
US20210395684A1 (en) Methods and systems for manufacturing hematopoietic lineage cells
Cheng et al. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities
JP4146802B2 (ja) 単球を起源に持つ、脱分化したプログラム可能な幹細胞およびそれらの製造と使用
US11261426B2 (en) Pluripotent stem cell that can be isolated from body tissue
TWI535377B (zh) Storage, culture and application of umbilical cord tissue and its derived cells
US7247477B2 (en) Methods for the in-vitro identification, isolation and differentiation of vasculogenic progenitor cells
WO2012133948A1 (ja) 生体組織から単離できるssea-3陽性の多能性幹細胞を含む他家移植用細胞治療用組成物
WO2021049617A1 (ja) ヒト造血幹細胞を培養するために適したアルブミンフリーの無血清培地およびアルブミンフリーの培養方法
KR20100084620A (ko) 조직 재생을 위한 세포 조성물
Flippe et al. Rapid and reproducible differentiation of hematopoietic and T cell progenitors from pluripotent stem cells
WO2018038242A1 (ja) 特定のラミニン上での多能性幹細胞の培養方法
Kitagawa et al. Differentiation of mesodermal cells from pluripotent stem cells
Moon et al. Differentiation of hESCs into mesodermal subtypes: vascular-, hematopoietic-and mesenchymal-lineage cells
US10542743B2 (en) Isolation, expansion and characterization of wharton's jelly mesenchymal stem cells
KR100773253B1 (ko) 성체줄기세포와의 공동배양을 통한 조혈모세포의 배양 및증식방법
WO2005085426A1 (ja) 無フィ−ダ−分化用培地及び霊長類動物胚性幹細胞からの無フィ−ダ−分化方法
JP2008141973A (ja) 心筋細胞の培養増殖法
Kelley et al. Collection and Expansion of Stem Cells
EP3564363A1 (en) Production of megakaryocytes in bioreactors
Espinha Bioprocess engineering of induced pluripotent stem cells for application in cell therapy and pre-clinical research
Wang Scalable expansion and erythrocyte production of human induced pluripotent stem cells
KR20090008652A (ko) 옥트(Oct)-4 발현능을 가지는 피부 유래 다분화능 성체줄기세포 및 그의 제조방법
EP2749640A1 (en) Processes for Producing Ectodermal, Mesodermal and Endodermal Cells as well as Pluripotent Stem Cells, Haematopoietic Stem Cells, Side Population Cells and Mesenchymal Stem Cells, and a Method of De-differentiating Peripheral Blood Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008543145

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007831542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12514207

Country of ref document: US