WO2005085426A1 - 無フィ−ダ−分化用培地及び霊長類動物胚性幹細胞からの無フィ−ダ−分化方法 - Google Patents

無フィ−ダ−分化用培地及び霊長類動物胚性幹細胞からの無フィ−ダ−分化方法 Download PDF

Info

Publication number
WO2005085426A1
WO2005085426A1 PCT/JP2005/003474 JP2005003474W WO2005085426A1 WO 2005085426 A1 WO2005085426 A1 WO 2005085426A1 JP 2005003474 W JP2005003474 W JP 2005003474W WO 2005085426 A1 WO2005085426 A1 WO 2005085426A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
feeder
free
medium
embryonic stem
Prior art date
Application number
PCT/JP2005/003474
Other languages
English (en)
French (fr)
Inventor
Hong Zhang
Kumiko Saeki
Akira Yuo
Original Assignee
Tanabe Seiyaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co., Ltd. filed Critical Tanabe Seiyaku Co., Ltd.
Publication of WO2005085426A1 publication Critical patent/WO2005085426A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a culture medium for differentiating primate embryonic stem cells into blood cells or vascular endothelial cells, a culture system for shunting, a method for differentiating blood cells or vascular endothelial cells, blood cells or blood vessels.
  • the present invention relates to a method for producing endothelial cells and cells obtained thereby. More specifically, the present invention provides a medium for feeder-free differentiation from primate embryonic stem cells to blood cells or vascular endothelial cells, a culture system for feeder-free differentiation, a feeder-free differentiation method, a blood cell or
  • the present invention relates to a method for producing vascular endothelial cells and cells obtained thereby.
  • Embryonic stem cells were first established in mice in the 1980s, and have been mainly used to create disease model animals. On the other hand, there is a possibility that it can be used as a basic material in organ creation in the fields of regenerative medicine and transplantation medicine as a universal cell that divides into various cells. Therefore, establishment of human embryonic stem cells has been awaited. Then, in 1998, human embryonic stem cells were established in the United States. Research has been conducted on the division of embryonic stem cells obtained from experimental animal models such as mice (see Patent Document 1).
  • NK cells which are the basis of immunity, attack foreign substances invading the body, that NK cells are effective against cancer, etc., and that hematopoietic stem cells, etc. are effective in leukemia, etc.
  • hematopoietic stem cells are of great medical importance because of their fibroplastic plasticity and their ability to transdifferentiation into cells required for various diseases.
  • a large amount of blood cells can be produced from embryonic stem cells, for example, by factory production, the contribution to medical treatment is immense.
  • red blood cells and the like used for blood transfusion and the like can be obtained by the technique of dividing embryonic stem cell power, the problem of contamination such as AIDS and hepatitis C in blood donation can be solved.
  • neutrophils can be used for the immune system damaged by chemotherapy for cancer. The transfusion of leukocytes containing these can enhance immunity with reduced function, thus solving problems such as hospital-acquired infections.
  • blood cells have a profound effect on medicine and the medical industry, as they also lead to enhanced natural healing powers.
  • Non-Patent Document 1 a method of co-culturing embryonic stem cells using OP9 cells, which is a stromal cell line, as a feeder has been attempted (eg, , Non-Patent Document 1).
  • the Ca ⁇ mow fraction I ⁇ method after differentiated into mesodermal cells by culturing in seeding the embryonic stem cells on OP9 cells or embryoid bodies from embryonic stem cells; form (embry 0 id EB) After differentiation into mesodermal cells, the mesodermal cells are dissociated by trypsin treatment or the like, seeded again on OP9 cells, and cultured to separate blood cells.
  • Patent Document 1 International Publication No. 99Z20741 pamphlet
  • Non-Patent Document 1 Toru Nakano (Nakano T.) et al., ⁇ In vitro development of primitive and definitive erythrocytes from different precursors '', Science, Vol. 272, pp. 722-724 (1996) Disclosure of the Invention
  • a first aspect of the present invention is to differentiate primate embryonic stem cells into blood cells or vascular endothelial cells substantially without contaminating foreign animal cells, infecting foreign animal-derived viruses, and the like.
  • a second aspect of the present invention is to perform differentiation of primate embryonic stem cell blood cells into blood cells substantially without contaminating heterologous animal cells, transmitting a virus derived from a xenogeneic animal, and the like.
  • An object of the present invention is to provide a feeder-free culture system for one-sided feeding that enables the differentiation from blood stem cells into blood cells under high and strict control.
  • the third aspect of the present invention relates to contamination of foreign animal cells, Primate embryonic stem cell power without substantially involving staining etc., and at least the ability to differentiate into blood cells and to differentiate primate embryonic stem cells into blood cells with high and strict control.
  • a fourth aspect of the present invention is to differentiate primate embryonic stem cells into vascular endothelial cells substantially without contaminating foreign animal cells, infecting with foreign animal-derived viruses, and the like.
  • the fifth aspect of the present invention relates to a method for producing blood cells that enables at least one of obtaining high-purity blood cells, obtaining blood cells with excellent reproductivity over a long period of time, and the like. Is to provide a law.
  • a sixth aspect of the present invention is to provide a method for producing vascular endothelial cells, which enables high-purity vascular endothelial cells to be obtained.
  • a seventh aspect of the present invention is to provide a blood cell or a vascular endothelial cell exhibiting high purity and uniform properties.
  • An eighth aspect of the present invention is to provide a method for producing finger-like cells, which can efficiently obtain large quantities of finger-like cells that can be divided into blood cells, vascular endothelial cells, and the like.
  • a ninth aspect of the present invention is to provide finger-like cells capable of supplying blood cells, vascular endothelial cells, and the like suitable for clinical purposes and the like. Other objects of the present invention will be apparent from the description in this specification and the like.
  • the gist of the present invention is:
  • a feeder-free differentiation medium comprising a stromal cell conditioned medium
  • the site force-in is vascular endothelial growth factor, bone morphogenetic protein 4, stem cell factor, Fit
  • the stromal cells are irradiated stromal cells, the (1) one (4) medium without feeder according to any one of (1),
  • a feeder-free differentiation medium which is obtained by performing a process comprising:
  • ⁇ ' irradiating the cells obtained in the step A) with radiation, and culturing the obtained cells in a medium suitable for maintaining stromal cells and embryonic stem cells;
  • a feeder-free differentiation medium according to any one of (1) to (5), which is obtained by performing a process comprising:
  • a feeder-free fractionating medium comprising the feeder-free differentiation medium according to any one of [1] to [7] and a culture vessel coated with extracellular matrix.
  • a primate animal embryo wherein the primate animal embryonic stem cells are cultured under a feeder-free medium in the feeder-free differentiation medium according to any one of [1] to [7].
  • Feeder-free differentiation from stem cells to blood cells [12] Culturing primate embryonic stem cells in a feeder-free differentiation medium according to any one of [1] and [7] above, under a feeder-free condition, in a culture vessel coated with an extracellular matrix Feeder-free differentiation of primate embryonic stem cells into blood cells as described in [11] above, thereby generating finger-like cells and further culturing to produce blood cells.
  • a primate embryonic stem cell is cultured in a feeder-free differentiation medium according to any one of [1] and [7] above, under a feeder-free condition, in a culture vessel coated with an extracellular matrix. Then, finger-like cells are generated, and the finger-like cells are transferred to a culture vessel containing a new medium and coated with extracellular matrix, and further cultured to generate vascular endothelial cells.
  • a feeder-free differentiation method from primate embryonic stem cells to vascular endothelial cells
  • a primate embryonic stem cell is cultured in a culture vessel coated with an extracellular matrix in a feeder-free differentiation medium according to any one of [1] and [7] above and below a feeder-free. And then differentiating the embryonic stem cells into blood cells, and then detaching and isolating the blood cells,
  • the feeder-free differentiation medium described in any one of (1) to (7) above is added to the culture vessel after blood cell detachment, and further cultured under a feeder-free cell.
  • [17] Culturing a primate embryonic stem cell in a culture vessel coated with an extracellular matrix in a feeder-free medium for differentiation according to any one of [1] to [7] above and without a feeder Then, finger-like cells are generated, and the finger-like cells are transferred to a culture vessel containing a fresh medium and coated with extracellular matrix, and further cultured, whereby the embryonic stem cell capillar vascular endothelium is cultured.
  • a method for producing vascular endothelial cells which comprises differentiating the cells into cells and isolating the vascular endothelial cells;
  • a primate embryonic stem cell is cultured in a culture vessel coated with an extracellular matrix in a feeder-free differentiation medium according to any one of (1) to (7) above, under a feeder-free condition.
  • a primate animal embryonic stem cell which is substantially free from heterogeneous animal cell contamination, xenogeneic virus infection, etc. in the absence of xenogeneic animal cells. It has an excellent effect that blood cells can be separated. Further, according to the feeder-free medium for fractionation of the present invention, differentiation with excellent reproductivity can be performed, and further, blood cells or vascular endothelial cells can be obtained with high efficiency and high purity. !, Has excellent effect.
  • ADVANTAGE OF THE INVENTION According to the culture system for feeder-free fractionation of the present invention, the primate embryo which is substantially free from contamination of foreign animal cells, infection of foreign animal-derived virus, etc.
  • the separation can be carried out substantially without the contamination of foreign animal cells, infection of foreign animal-derived viruses, and the like. It has an excellent effect that it can be differentiated from primate embryonic stem cells into blood cells with high and strict control.
  • the method of feeder-free differentiation of primate embryonic stem cells into vascular endothelial cells of the present invention does not substantially involve the contamination of foreign animal cells, infection with a virus derived from a foreign animal, or the like.
  • the method for producing blood cells of the present invention it is possible to obtain high-purity blood cells that are long-lasting, have excellent reproductivity, and have an excellent effect. Further, according to the method for producing a vascular endothelial cell of the present invention, an excellent effect that high-purity vascular endothelial cells can be obtained is exhibited. According to the blood cells or vascular endothelial cells of the present invention, they exhibit high purity and homogenous properties, and are applied to blood for transfusion, a material for treating vascular damage, improving local blood flow, a transplant material, and the like. Shows suitable properties.
  • the manufacturing method of the finger-like cell of this invention the outstanding effect that the finger-like cell which can be differentiated into a blood cell, a vascular endothelial cell, etc. can be efficiently obtained in large quantities is produced.
  • the finger-like cells of the present invention It has an excellent effect of supplying blood cells, vascular endothelial cells, etc. suitable for the purpose of flooring.
  • FIG. 1 shows a lineage diagram of differentiation of hematopoietic stem cells into blood cells.
  • FIG. 2 shows embryonic stem cell colonies 7 days after the start of culture.
  • the scale bar indicates 10 ⁇ m.
  • FIG. 3 shows a partially enlarged view of an embryonic stem cell colony on day 18 after the start of culture.
  • the scale indicates:
  • FIG. 4 shows the ratio of CD34-positive cells.
  • FIG. 5 shows the ratio of CD45-positive cells.
  • FIG. 6 is a diagram showing the morphology of undifferentiated cynomolgus monkey embryonic stem cells and the expression of markers.
  • Panel A shows the results of observation with a phase contrast microscope. In panel A, the scale bar indicates 40 ⁇ m, and in panel A b, the scale bar indicates 40 ⁇ m. Nonel B shows the results of cell surface analysis by FACS.
  • Panel B shows the expression of SSEA-4, a marker of the undifferentiated pluripotency stage (SSEA4 in the figure) (a in panel B), and SSEA-1, a marker of the differentiation stage (SSEA1 in the figure). ”) (In panel B, b).
  • the black line shows the staining result of isotype control IgM or IgG3, and the green line shows the staining with anti-SSEA-1 antibody or anti-SSEA-4 antibody, respectively.
  • FIG. 7 is a diagram showing the results of examining finger-like cell force on blood cells.
  • Panel A shows the results of observation of finger-like cells with a phase contrast microscope.
  • the scale bar indicates 40 m.
  • Panel B shows the results of observation of budding finger-like cells (indicated by arrows) with a phase contrast microscope.
  • the scale bar indicates 40 m.
  • Panel C shows the results of phase contrast microscopy of a large number of hematopoietic progenitor cells generated by confluent culture of finger-like cells.
  • the scale bar indicates 40 m.
  • Panel D is a diagram showing the results of cell surface analysis by FACS.
  • Panel D a shows the expression of CD34, a stem cell marker, and b shows the expression of CD45, a hematopoietic system-specific marker.
  • the black line shows the staining result of isotype control IgG, and the green line shows the staining result of anti-CD34 or anti-CD45 antibody.
  • Panel E shows the results of Wright Giemsa staining of hematopoietic progenitor cells.
  • the scale bar indicates 40 m.
  • FIG. 8 shows the results of cell surface analysis of finger-like cells by FACS.
  • the black line shows the results of staining for the isotype control IgG
  • the green lines show the anti-CD34 antibody, anti-CD45 antibody, anti-VE-forcedherin ("VE-Cadherin” in the figure) antibody, anti-Flk-1 ( In the figure, staining with the “FLK-1”) antibody, anti-c kit antibody, anti-CD133 antibody or anti-CD151 antibody is shown.
  • FIG. 9 is a view showing the results of observation of the repetitive generation of hematopoietic progenitor cells using a phase-contrast microscope.
  • Panel A shows the remaining finger-like cells after trypsinization. Scale bar indicates 40 ⁇ m.
  • Panel B shows the results of observation of the cells after culturing for one week, and
  • Panel C shows the results of culturing for two weeks using a phase contrast microscope. The scale bar indicates 40 ⁇ m.
  • FIG. 10 is a diagram showing the results of examining the differentiation of finger-like cells into vascular endothelial cells.
  • Panel A shows the results of observation of vascular endothelial cells using a phase contrast microscope. The scale bar indicates 40 ⁇ m.
  • Panel B shows the results of cell surface analysis by FACS. In Panel B, a indicates CD34, b indicates CD45, and c indicates expression of an endothelial cell-specific marker, VE-force doherin.
  • the black line shows the staining result of isotype control IgG, and the green line shows the staining with anti-CD34 antibody, anti-CD45 antibody or anti-VE-force doherin antibody.
  • FIG. 11 shows the results obtained by exfoliating the finger-like cells by trypsin treatment, transferring the cells to a new culture dish, and then culturing the cells obtained after culturing in a feeder-free OP9 conditioned medium. It is a figure showing the result of having observed a form.
  • FIG. 12 is a diagram showing the results obtained by culturing finger-like cells obtained by further culturing the cells observed in FIG. 11 under conditions suitable for culturing vascular endothelial cells. is there.
  • FIG. 13 is a diagram showing the results of subjecting cells obtained by culturing finger-like cells under conditions suitable for culturing vascular endothelial cells to vascular structure formation assay.
  • FIG. 14 is a diagram showing the results of subjecting finger-like cells to vasculature formation assays.
  • FIG. 15 is a view showing the results of subjecting undifferentiated embryonic stem cells to vasculature formation assays.
  • FIG. 16 is a diagram showing the results of examining the division of finger-like cells into monocyte Z macrophages.
  • Panel A shows the results of Wright-Giemsa staining.
  • Panel B shows anti-CD14 antibody 5 shows the results of immunostaining using Panel B (a) shows the results using an anti-CD14 antibody, and (b) shows the results using an isotype control antibody as a control.
  • Panel C shows the result of examining the nitro blue tetrazolium reduction activity.
  • Panel C (a) shows the results using finger-like cell-derived cells, and (b) shows the results using HL60 cells as a control.
  • FIG. 17 is a view showing a blast colony.
  • the present invention provides a method for culturing primate embryonic stem cells in a culture vessel coated with an extracellular matrix in the presence of a conditioned medium for stromal cells, so that the blood cells Based on the knowledge of the present inventors that they can be separated. Therefore, according to the present invention, blood cells or vascular endothelium with a high degree of strict control, a differentiation without substantial contamination of foreign animal cells, infection with a virus derived from a foreign animal, etc. It is capable of producing cells, producing blood cells or vascular endothelial cells with high efficiency, producing high-purity blood cells or vascular endothelial cells, etc. Techniques and means for differentiating into vascular endothelial cells can be provided.
  • Examples of the primate embryonic stem cells include, for example, force-null monkey embryonic stem cells [Suemori, H., et al., "Power-Quizal blastocyst-derived embryos produced by IVF or ICSI". Establishment of emoryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI.), Dev. Dynamics ⁇ 222, 273-279 (2001) [Thomson, JA, et al., "Isolation of a primate embryonic stem cell line.”, Proc. Natl. Acad. Sci, USA, Vol. 92, P. 7844-1 p.
  • the present invention relates to a feeder-free separation medium (ie, a feeder-free embryonic stem cell blood fraction Erich medium) comprising a stromal cell conditioned medium.
  • a feeder-free separation medium ie, a feeder-free embryonic stem cell blood fraction Erich medium
  • Erich medium a feeder-free embryonic stem cell blood fraction
  • the feeder-free culture medium of the present invention contains a conditioned medium for stromal cells, it is possible to differentiate primate embryonic stem cells into blood cells without using heterologous animal cells as feeders. It has an excellent effect that it can be done. Therefore, blood cells can be obtained substantially without the contamination of foreign animal cells, infection of foreign animal-derived virus, and the like.
  • the feeder-free culture medium for feeder of the present invention After isolating blood cells obtained by culturing using the feeder-free differentiation medium of the present invention from the culture vessel, adding the new feeder-free differentiation medium, and culturing the cells. By doing so, surprisingly, it has an excellent effect of being able to reproduce blood cells. Therefore, the feeder-free culture medium for feeder of the present invention exhibits an excellent effect that blood cells with excellent reproductivity can be produced.
  • the feeder-free fractionating medium of the present invention since the conditioned medium is contained, it is excellent in that blood cells or vascular endothelial cells can be obtained with high efficiency and high purity. It exerts its effect.
  • the human embryonic stem cells had a high CD34 + CD45 + cell generation rate of 7.5 ⁇ 0.5%]. According to the medium, an excellent effect of being able to obtain cells that are almost 100% positive for CD34 specifically expressed on hematopoietic stem cells is exhibited.
  • vascular endothelial cells have been conventionally separated in a system different from that of blood cells.
  • vascular endothelial cells can be obtained by further culturing finger-like cells generated when embryonic stem cells are differentiated into blood cells in a new culture vessel in a new culture medium without feeder differentiation. If you can do it!
  • the "feeder-free" means that no feeder cell is used, or that no feeder cell is used.
  • the blood cells refer to all blood cells.
  • Examples of the blood cells include, for example, hematopoietic stem cells 0102, lymphoid stem cells 0133, lymphoid stellate cell precursors in the embryonic stem cell force blood cell distribution diagram shown in FIG.
  • Cell 0135 lymphoid adenocyte 0103, T lymphocyte precursor 0104, T cell 0105, B lymphocyte precursor 0106, B cell 0107, plasma cell 0108, NK precursor 0109, NK cell 0110, myeloid stem cell 0134 , Myeloid dendritic cell precursor 0111, myeloid dendritic cell 0112, mast cell progenitor cell 0113, mast cell 0114, basophil progenitor cell 0115, basophil 0116, eosinophil progenitor cell 0117, good Eosinophils 0118, granulocyte macrophage precursor cells 0119, macrophage precursor cells 0120, monocytes 0121, macrophages 0122, osteoclast precursor cells 0123, osteoclasts 0124, neutrophil precursor cells 0125, neutrophils 0126, megakaryocyte Sphere precursor cell 0127, megakaryocyte 0128, Platelets 0129, year erythroid progenitor cells 0130, late erythroid progenitor cells 0131, eryth
  • blood cells include hematopoietic stem cell progenitor cells; hematopoietic stem cell power, and all forms of blood cells present in all the processes of shunting until finally shunting to peripheral blood. It is.
  • the conditioned medium refers to a culture supernatant obtained by culturing cells.
  • the conditioned medium used in the present invention may contain factors and the like produced by the stromal cell line during culture.
  • the stromal cells may be any cell line that supports blood cells.
  • OP9 cell line S17 cell line (mouse bone marrow stromal cell), MS-5 cell line (mouse bone marrow stromal cell) And the like.
  • a mouse fetal yolk sac yolk sac
  • a mouse fetal liver a mouse, and the like may be used in place of the stromal cell line as long as the cells have the ability to support blood cells equivalent to the stromal cell line.
  • Primary cultured cells isolated from hematopoietic tissues such as fetal aorta-mesonephros (aorta-gonad-mesonephros; AGM) and endoderm (para-aortic splanchnopleura; PsP) along the fetal mouse aorta may be used.
  • AGM fetal aorta-mesonephros
  • PsP para-aortic splanchnopleura
  • the type of serum described below may be replaced with other animal serum, for example, poma serum, instead of poma serum, and the concentration of the serum may be changed. You may change it.
  • the culture supernatant is required for the separation of embryonic stem cell force and finger-like cells. However, during the separation of embryonic stem cell force into CD45-positive hematopoietic stem cells, the culture supernatant is used throughout the process. In some cases, it is not always necessary to use the culture supernatant temporarily in the process of dividing finger-like cell force into CD45-positive hematopoietic stem cells.
  • the stromal cells may be irradiated cells or untreated cells.
  • component adjustment can be performed.
  • the rate of proliferation of the stromal cell line is reduced, and the consumption rate of nutrient components contained in a culture solution used for culturing the stromal cell line is reduced. can do.
  • the stromal cell line power is reduced in the amount of waste products to be excreted, and the stromal cell line is produced by the stromal cell line, which is necessary for dividing embryonic stem cells into blood cells or vascular endothelial cells.
  • the dose of the radiation is 40 Gy or more, and preferably 50 Gy or more, from the viewpoint of stably suppressing the growth rate of the stromal cells.
  • the viewpoint of sufficiently exerting the effect of differentiating embryonic stem cells into blood cells and vascular endothelial cells, and the above-mentioned necessity for the differentiation of embryonic stem cells into blood cells or vascular endothelial cells From the viewpoint of sufficiently obtaining factors and the like produced by stromal cells, it is 90 Gy or less, preferably 80 Gy or less, more preferably 70 Gy or less, particularly preferably 60 Gy or less. Is desirable.
  • Irradiation is performed using, for example, an X-ray irradiator [trade name: MBR-1520R-3, manufacturer: Hitachi Medical Corporation (English name: Hitachi Medical Corporation)], a tube voltage of 150 kV, and a tube current of 20 mA. Then, the filter can be set to 0.5AL + 0.1Cu, a culture dish of stromal cells can be set in the sample chamber, and irradiation can be performed.
  • an X-ray irradiator [trade name: MBR-1520R-3, manufacturer: Hitachi Medical Corporation (English name: Hitachi Medical Corporation)]
  • a tube voltage of 150 kV and a tube current of 20 mA.
  • the filter can be set to 0.5AL + 0.1Cu
  • a culture dish of stromal cells can be set in the sample chamber, and irradiation can be performed.
  • the conditioned medium prepared by reducing the growth rate of stromal cells by irradiation, irradiation, or another method capable of controlling the growth rate is used for the feeder-free culture medium of the present invention. May be used.
  • the conditioned medium used in the present invention may be an artificially synthesized conditioned medium having components equivalent to those of the conditioned medium obtained by culturing the stromal cells.
  • a component equivalent to a conditioned medium obtained by culturing stromal cells refers to a component or a derivative thereof contained in the conditioned medium obtained by culturing the stromal cells! Can be identified by analysis by an appropriate means, for example, mass spectrometry, various types of chromatography, NMR and the like.
  • the conditioned medium of the stromal cells includes, for example,
  • step C) a step of removing the cultured cala stromal cells obtained in the step B) Can be obtained. Further, when irradiating the stromal cells, the conditioned medium of the stromal cells,
  • ⁇ ′ irradiating the cells obtained in the step a) with radiation, and culturing the obtained cells in a medium suitable for maintaining stromal cells and embryonic stem cells;
  • OP9 cell culture medium 11 ⁇ composition: ⁇ - ⁇ , 20% by volume Activated fetal serum, ImM j8-mercaptoethanol, 1.6 mM L-glutamine, final concentration 100 U / ml penicillin, final concentration 100 gZml streptomycin ⁇ , OP9 cell culture medium 2-1 ⁇ Composition: ⁇ -MEM, 20 volumes % Heat-inactivated fetal calf serum, 0. ImM ⁇ -mercaptoethanol, ImML glutamine, final concentration lOUZml penicillin, final concentration 10 gZ ml streptomycin ⁇ .
  • the stromal cell culturing condition is a force that can be appropriately set depending on the type of the cell to be used.
  • the conditioned medium for stromal cells is, when OP9 cells are used,
  • OP9 cell culture medium 1-1 or 2-1 on a 10cm culture dish at 37 ° C, 5% by volume CO, subculture every 12 days, -60-70% confluent OP9 cell dish is irradiated with 46 Gy of ⁇ -ray for about 10 minutes, cultured at 37 ° C, 5% by volume CO for 4 hours, and then phosphate-buffered.
  • the dish is supplemented with 10 ml of the OP cell culture medium 1-2 or 2-2, and cultured at 37 ° C. and 5% by volume CO for about 12 hours.
  • the feeder-free culture medium of the present invention comprises, in one embodiment, the conditioned medium, a medium component for maintaining primate embryonic stem cells (eg, a culture solution), and a serum. And a cytokine-free feeder-containing medium.
  • the conditioned medium of such an embodiment may contain an antioxidant agent.
  • the "medium component for maintaining primate embryonic stem cells” may be any ordinary medium used for maintaining primate embryonic stem cells. Examples thereof include Iscove's modified Dulbecco's medium (IMDMZF12).
  • the serum is used to maintain embryonic stem cells.
  • a serum lot check refers to determining compatibility with the embryonic stem cells by performing a culture experiment.
  • a suitable serum lot may be different for each embryonic stem cell line. Further, in the present invention, the same components as those of the serum may be used.
  • the cytodynamic force used in the present invention is not particularly limited as long as it is a factor for dividing embryonic stem cells into blood cells and Z or vascular endothelial cells.
  • G-CSF Granulocyte colony stimulating factor
  • GM-CSF granulocyte macrophage colony stimulating factor
  • M-CSF macrophage colony stimulating factor
  • EPO erythropoietin
  • TPO thrombopoietin
  • Flt3 Ligand FL
  • interleukin IL
  • VEGF vascular endothelial growth factor
  • BMP bone morphogenetic protein
  • BMP bone morphogenetic protein
  • oncostatin M acidic and basic fibroblast growth factor (acidic FGF, basic FGF), angioboye Chin family (eg, Angiopoietin-1 and
  • Angiopoietin-2) and the like The G-CSF has a function of enhancing neutrophil production.
  • EPO erythropoietin
  • TPO thrombopoetin
  • NK cells natural killer cells
  • the present invention relates to a feeder-free culture system for feeder-free separation, comprising a feeder-free differentiation medium and a culture vessel coated with an extracellular matrix.
  • the feeder-free cultivation system for one part of the present invention is characterized by containing the culture medium for one part of the feeder of the present invention and a culture vessel coated with an extracellular matrix. is there. Therefore, according to the culture system for feeder-free fractionation of the present invention, in the absence of xenogeneic cells, primates that are substantially free from contamination of xenogeneic cells, infection with xenogene-derived viruses, and the like. Embryonic stem cells exerts an excellent effect of being able to differentiate into blood cells with high strict control.
  • Examples of the extracellular matrix include collagen, laminin, fibronectin, hyaluronic acid, and other components that are secreted extracellularly and promote cell adhesion. From the viewpoint of inducing differentiation into blood cells and vascular endothelial cells with high efficiency, collagen is preferred. Examples of the collagen include type IV collagen and the like.
  • the coating of the culture container with the extracellular matrix can be performed by a conventional method.
  • the coating with the extracellular matrix for example, the coating with collagen is formed into a three-dimensional structure, so that the embryonic stem cells can contact the collagen on the lateral and upper surfaces and interact with the collagen. It is thought that information exchange will increase and the survival rate and differentiation rate will improve.
  • the culture vessel may be a vessel usually used for culturing cells.
  • the culture system for feeder-free irrigation of the present invention is obtained from primate embryonic stem cells. It is suitable for use in performing shunting on cells.
  • the primate embryonic stem cells are cultured under a feeder-free medium using the feeder-free differentiation medium of the present invention, and the embryonic stem cells are separated into blood cells.
  • the present invention relates to a feeder-free differentiation method from primate embryonic stem cells to blood cells (hereinafter referred to as a feeder-free blood cell differentiation method).
  • the feeder-free blood cell sorting method of the present invention is characterized in that the feeder-free medium for differentiation of the present invention is used. Therefore, according to the feeder-free blood cell differentiation method of the present invention, since the feeder-free culture medium of the present invention is used, contamination of foreign animal cells, infection of foreign animal-derived virus, and the like can be substantially prevented. Primate embryonic stem cell force exerts an excellent effect of being able to divide into blood cells without any accompanying effect.
  • the feeder-free blood cell sorting method of the present invention is characterized in that the feeder-free medium for differentiation of the present invention and a culture vessel coated with an extracellular matrix are used. There is a unique feature. Therefore, according to the feeder-free blood cell sorting method of the present invention, blood cells can be differentiated from primate embryonic stem cells with high strict control! ⁇ ⁇ Excellent effect.
  • a primate embryonic stem cell is placed in a culture vessel coated with an extracellular matrix, under a feeder-free manner, under the present invention.
  • the cells are cultured in a feeder-free culture medium to generate finger-like cells, and further cultured to generate blood cells.
  • the "finger-like cell” refers to a cell that exhibits a morphology of a finger or joint-like structure, as shown in panel A of FIG.
  • vigorous “finger-like cells” are obtained by starting culturing of undifferentiated primate embryonic stem cells in the feeder-free culture medium of the present invention and then using the force-quizal embryonic stem cells for 1 day.
  • Hematopoietic endothelium has also been shown to have "hemangioblast” activity in mice that are positive for CD151, also known as a marker for vascular endothelial cells.
  • VE-force doherin which is one of the best, is negative and is positioned in primates as a novel cell population that exhibits hemangioblast activity.
  • Finger-like cells also have the characteristics of tissue stem cells, as they are positive for the undifferentiated mesoderm marker Flk-1 and the c kit expressed in immature cells in various tissues. Conceivable.
  • the “heman geoblast” activity refers to the ability of one cell to differentiate into a blood cell line or a vascular endothelial cell line depending on the culture conditions.
  • the present invention is characterized in that primate embryonic stem cells are cultured in a culture vessel coated with an extracellular matrix, under a feeder-free condition, and in the feeder-free fractionating medium. Methods for producing finger-like cells are also included.
  • the present invention also includes vigorous finger-like cells.
  • the finger-like cells of the present invention are obtained by culturing primate animal embryonic stem cells in a culture vessel coated with an extracellular matrix under a feeder-free medium under a feeder-free culture medium of the present invention. Cells.
  • the finger-like cells can be sorted and separated using, for example, the morphology of a finger or joint-like structure, the expression of a marker such as CD151, Flk-1, c kit, VE-force doherin as an index. .
  • a marker such as CD151, Flk-1, c kit, VE-force doherin as an index.
  • cell sorting by flow cytometry using an antibody against the marker for example, CD151, Flk-1, c-kit, VE-cadherin, etc.
  • cell sorting using magnetic beads carrying the antibody can be separated.
  • the finger-like cells allow, for example, blood cells and vascular endothelial cells, which are cells further downstream in the differentiation lineage, to be supplied for clinical purposes and basic research. That is, in the former, not only supply of material as cell therapy for a group of diseases accompanied by hematological diseases and vascular lesions, but also expansion stem cells or myeloid progenitor cells undergo cell fusion in various tissues or cross-transfer in such tissues. Since it is broadly involved in tissue regeneration through transdifferentiation, it is possible to supply an effective material for treatment in regenerative medicine in general.
  • the finger-like cells may be used to express the expression of markers such as VE-forcedherin and CD151, which are markers specific to vascular endothelial cells, for example, by using a specific antibody, a specific probe, a primer pair, or the like. It can be confirmed by showing that VE-force doherin negative CD151 positive.
  • markers such as VE-forcedherin and CD151, which are markers specific to vascular endothelial cells, for example, by using a specific antibody, a specific probe, a primer pair, or the like. It can be confirmed by showing that VE-force doherin negative CD151 positive.
  • the finger-like cells are activated, for example, by culturing them using the above-mentioned "medium suitable for maintaining stromal cells and embryonic stem cells” or a medium to which various cytokins are optionally added. Is amplified.
  • the same culture vessel is replenished with the above-mentioned medium and the culture is continued. During this period, the culture is maintained in the same culture vessel.
  • hematopoietic stem cells or hematopoietic progenitor cells are converted into cells that are positive for hematopoietic system-specific markers CD34 and CD45 (CD34-positive CD45-positive cells). Obtainable.
  • CD34-positive and CD45-positive cells obtained by the feeder-free blood cell sorting method of the present invention exhibit the property of having prominent nucleoli having a high nuclear Z cytoplasmic ratio.
  • colony assays using semi-solid media such as methylcellulose blastocysts were formed with high efficiency (plating efficiency> 80%) (see Fig. 17), and undifferentiated hematopoietic cells with extremely high hematopoietic ability It shows the property as.
  • CD34-positive CD45-positive cells hematopoietic stem cells, lymphoid stem cells, lymphoid dendritic cell precursor cells, lymphoid dendritic cells, T lymphocyte precursor cells, T cells, B lymphocyte precursor cells, B cells, plasma cells, NK progenitor cells, NK cells, myeloid stem cells, myeloid dendritic cell precursor cells, myeloid dendritic cells, mast cell progenitor cells, mast cells, basophil progenitor cells, Basophils, eosinophil precursor cells, eosinophils, granulocyte macrophage precursor cells, macrophage precursor cells, monocytes, macrophages, osteoclast precursor cells, osteoclasts, neutrophil precursor cells, neutrophils It can be divided into cells such as megakaryocyte precursor cells, megakaryocytes, platelets, early erythroid precursor cells, late erythroid precursor cells, and erythrocytes.
  • the undifferentiated embryonic stem cells at the center of the colony of embryonic stem cells maintained in an undifferentiated state on a culture dish are removed. If the population is removed and a 6 ⁇ eldish dish coated with type IV collagen is used as the culture vessel coated with extracellular matrix, 1 x 10 1 — 1 x 10 3 cells per 1 ml It is desirable that the cells are further seeded so as to have 1 ⁇ 10 2 cells.
  • the conditions for culturing primate embryonic stem cells in a feeder-free culture medium can be appropriately set according to the type of primate embryonic stem cells used. Conditions such as volume% CO are exemplified.
  • the medium may be appropriately replaced with a new feeder-free medium for culture according to the form and number of cells derived from primate embryonic stem cells.
  • the finger-like cells are transformed several days after the start of cultivation, for example, about 3 days in the case of virulent monkey embryonic stem cells. After being generated and confluent, circular cells are generated from the finger-like cells.
  • the circular cells obtained by the feeder-free blood cell sorting method of the present invention can be used to express, for example, the expression of markers such as stem cell marker CD34 and hematopoietic system-specific marker CD45. It can be confirmed by examining by a conventional method using a specific antibody, a specific probe, a primer pair and the like, and showing CD34 positive and CD45 positive.
  • primate embryonic stem cells are cultured in a feeder-free differentiation medium of the present invention in a culture vessel coated with an extracellular matrix under a feeder-free medium, Generating finger-like cells, transferring the finger-like cells to a culture vessel containing a fresh medium and coated with an extracellular matrix, and further culturing to generate vascular endothelial cells.
  • a feeder-free differentiation method from primate embryonic stem cells to vascular endothelial cells hereinafter referred to as a feeder-free vascular endothelial cell differentiation method).
  • the feeder-free vascular endothelial cell sorting method of the present invention is characterized in that the feeder-free medium for vascular endothelial cells of the present invention is used. Therefore, the fee-free of the present invention According to the vascular endothelial cell differentiation method, primate embryonic stem cell force can be differentiated into vascular endothelial cells without substantially contaminating foreign animal cells, infecting foreign animal-derived viruses, etc. It has an excellent effect.
  • steps up to the generation of finger-like cells are the same as in the feeder-free blood cell differentiation method.
  • Separation of finger-like cells from a culture vessel coated with an extracellular matrix can be performed by a conventional method used for detachment of cells from a culture vessel, for example, trypsin treatment.
  • the separated finger-like cells are transferred to a culture vessel coated with an extracellular matrix, which contains a new feeder-free separation medium, and is further cultured. .
  • the culture conditions for the finger-like cells may be the same as the culture conditions for the embryonic stem cells in the feeder-free blood cell differentiation method, for example, conditions of 37 ° C and 5% by volume CO.
  • vascular endothelial cells are negative for hematopoietic system-specific markers CD34 and CD45 and positive for endothelial cell-specific marker VE-cadherin.
  • CD34-negative, CD45-negative VE-cadherin-positive cells CD34-negative, CD45-negative VE-cadherin-positive cells.
  • the CD34-negative CD45-negative VE-force doherin-positive cells have a cobblestone shape.
  • the CD34-negative CD45-negative VE-force doherin-positive cells have excellent properties that can be passaged for several months in a new dish and can be stably amplified.
  • the CD34-negative CD45-negative VE-forced-herin-positive cells exhibiting the cobblestone shape are, for example, cells that can be passaged for several months in OP9-conditioned medium containing cytoforce. Yes, self-amplification is possible in vitro. Therefore, the use of powerful cells provides an excellent effect that large-scale preparation of a transplant is possible. Further, by culturing the CD34-negative CD45-negative VE-forced-herin-positive cells exhibiting the cobblestone shape in a medium suitable for culturing vascular endothelium, it is possible to obtain cord-like structural cells forming a vascular lumen. it can.
  • the cord-like cells forming such a blood vessel lumen are useful, for example, for preparing functional cells immediately before transplantation.
  • the vascular endothelial cells obtained by the feeder-free vascular endothelial cell sorting method of the present invention include, for example, CD34 and CD45, which are hematopoietic system-specific markers, and VE-forcedherin, which is an endothelial cell-specific marker.
  • CD34 and CD45 which are hematopoietic system-specific markers
  • VE-forcedherin which is an endothelial cell-specific marker.
  • the expression of such a marker can be confirmed by, for example, examining the expression of a marker using a conventional method using a specific antibody, a specific probe, a primer pair and the like, and showing CD34 negative CD45 negative VE-dherin positive.
  • the present invention provides a method for culturing a primate embryonic stem cell in a culture vessel coated with an extracellular matrix under a feeder-free medium under a feeder-free differentiation medium of the present invention.
  • the present invention relates to a method for producing blood cells, characterized in that the embryonic stem cells are differentiated into blood cells, and then the blood cells are detached and isolated.
  • the method for producing blood cells of the present invention has one significant feature in that the feeder-free culture medium of the present invention is used. Therefore, according to the method for producing blood cells of the present invention, it is possible to obtain high-purity blood cells without substantially contaminating foreign animal cells, infecting foreign animal-derived viruses, and the like. Demonstrate.
  • the method for producing blood cells of the present invention is based on the fact that primate embryonic stem cells are cultured in a culture vessel coated with an extracellular matrix in a feeder-free culture medium of the present invention. There is one major feature. Therefore, according to the method for producing blood cells of the present invention, if primate embryonic stem cells can be differentiated into vascular endothelial cells with a high degree of strict control, an excellent effect is exhibited.
  • the culture medium for feeder-free separation of the present invention is added to the culture vessel after blood cell separation, and the culture medium is further cultured under the feeder-free state. And a method for obtaining blood cells.
  • the feeder-free medium of the present invention is added to the culture vessel after the blood cells are detached, and the culture is further performed under the feeder-free.
  • the culture is further performed under the feeder-free. Therefore, blood cells can be obtained. Therefore, according to the method for producing blood cells of the present invention, an excellent effect that blood cells can be obtained with excellent reproductivity over a long period of time can be obtained.
  • the method for producing blood cells of the present invention can be carried out by the same procedure as the feeder-free blood cell sorting method of the present invention.
  • a feeder-free method that allows CD34-positive and CD45-positive cells to be further differentiated under appropriate conditions in accordance with the type of target blood cells.
  • the cytodynamic force in the medium for one-part dani may be appropriately changed.
  • examples of production of blood cells by various cytokins include differentiation into granulocytes by G-CSF and GM CSF, and monocyte Z macrophages by GM CSF and M CSF. Differentiation, differentiation into NK cells by IL-15, differentiation into erythrocytes by EPO, differentiation into megakaryocyte Z platelets by TPO, differentiation into dendritic cells by IL4 and GM-CSF, and the like.
  • the target blood cells are sorted using, for example, the expression of markers specific to the blood cells, for example, markers such as CD34 and CD45, as an index.
  • markers specific to the blood cells for example, markers such as CD34 and CD45
  • target blood cells are separated by cell sorting by flow cytometry using an antibody against the above-mentioned marker, for example, CD34, CD45, etc., cell sorting using magnetic beads holding the antibody, etc. can do.
  • the stromal cell force of a fibroblast cell line such as OP9 cells is obtained.
  • Macrophages can be produced by culturing the cells in a feeder-free medium, which has also obtained the stromal cell strength of a bone marrow cell line such as 5 cells.
  • Blood cells obtained by a powerful production method are also included in the present invention.
  • the blood cells of the present invention are obtained by the production method of the present invention, they exhibit excellent properties such that there is substantially no contamination with foreign animal cells, infection with foreign animal-derived viruses, and the like. Further, since the blood cells of the present invention are obtained by the production method of the present invention, they exhibit high purity and uniform properties. Therefore, the blood cells of the present invention can be used for blood for blood transfusion, for use in the production of blood for blood transfusion, and as materials for basic research relating to hematopoietic mechanisms.
  • the blood cells of the present invention can be maintained under a nitrogen gas freezing condition, for example, in a medium such as a cell cryopreservation liquid such as a cell banker (manufactured by Juji Kagaku).
  • a medium such as a cell cryopreservation liquid such as a cell banker (manufactured by Juji Kagaku).
  • the present invention provides that primate embryonic stem cells are coated with an extracellular matrix. Culturing in a feeder-free differentiation medium of the present invention under a feeder-free culture medium in a culture vessel prepared to generate finger-like cells, and the finger-like cells are filled with a new medium and coated with an extracellular matrix.
  • a method for producing vascular endothelial cells which comprises transferring the embryonic stem cells to vascular endothelial cells and isolating the vascular endothelial cells. .
  • the method for producing vascular endothelial cells of the present invention comprises culturing primate embryonic stem cells in a feeder-free differentiation medium of the present invention in a culture vessel coated with extracellular matrix, under a feeder-free condition. There is one major feature of generating finger-like cells. Therefore, according to the method for producing vascular endothelial cells of the present invention, it is possible to obtain vascular endothelial cells substantially free from contamination with foreign animal cells, infection with foreign animal-derived virus, and the like.
  • the method for producing vascular endothelial cells of the present invention has one great feature in that finger-like cells are transferred to a culture vessel containing a new medium and coated with an extracellular matrix for further culturing. . Therefore, according to the method for producing vascular endothelial cells of the present invention, it is surprising that vascular endothelial cells can be surprisingly obtained by high-precision control, and high-purity vascular endothelial cells can be obtained! / ⁇ ⁇ Excellent effect.
  • vascular endothelial cells can be separated and sorted using, for example, the expression of a marker such as VE-drugin or PECAM (CD31) as an index.
  • vascular endothelial cells are separated by cell sorting by flow cytometry using an antibody against a marker such as VE-cadherin or PECAM (CD31), cell sorting using magnetic beads holding the antibody, or the like. can do.
  • Vascular endothelial cells obtained by a powerful production method are also included in the present invention.
  • the vascular endothelial cell of the present invention since it is obtained by the production method of the present invention, it is excellent in that there is substantially no contamination with foreign animal cells, no infection with foreign animal-derived virus, and the like. Show properties.
  • the vascular endothelial cells of the present invention are obtained by the production method of the present invention, and thus exhibit high purity and uniform properties.
  • vascular endothelial cell of the present invention a material for treating vascular injury or improving local blood flow, a transplant material, a use for producing these materials, and a method for treating vascular endothelium. It can be used as a material in basic research on the mechanism of development and differentiation.
  • vascular endothelial cell of the present invention it is possible to obtain a three-dimensional vascular structure by, for example, culturing in a collagen gel or the like.
  • the vascular endothelial cells of the present invention can be maintained under a nitrogen gas freezing condition, for example, in a medium such as a cell banker (manufactured by Juji Kagaku Co., Ltd.) dedicated to cell freezing and storage.
  • a medium such as a cell banker (manufactured by Juji Kagaku Co., Ltd.) dedicated to cell freezing and storage.
  • the feeder-free culture medium for fractionation and the filtration method using the same according to the present invention are limited to the technique for fractionating embryonic stem cells into blood. Depending on the type of inn, it can be applied and developed as a technique for dividing into various cells.
  • OP9 cells which are stromal cells, were cultured in an OP9 cell culture medium 1-1 ⁇ composition: ⁇ -MEM (manufactured by Invitrogen Corp.), 20% by volume of heat-inactivated ⁇ fetal serum [P. Mbenow (PAA Laboratories GmbH)], lmM j8—mercaptoethanol (manufactured by Sigma Chemical Co.), 1.6 mM
  • OP9 cells were subcultured and maintained about every three days so as not to become confluent. Specifically, the OP9 cell culture medium of Zabu confluent was removed, and reacted with 0.25% by weight of trypsin-HBSS (Hanks balanced salt solution) solution for about 2 minutes to detach the cells. After washing the cells with the medium, reduce the cell density by a factor of several and resuspend the cells in the medium. The cells were sowing diameter 10cm culture dish, in a CO 2 incubator, and cultured at 37 ° C, 5 volume 0/0 CO.
  • trypsin-HBSS Hops balanced salt solution
  • the culture dish was irradiated with radiation (150 kV, 20 mA, 60 Gv, 10 minutes) before becoming confluent. Then, in the culture dish, 0.25 weight 0/0 Bok The cells were peeled off while adding lysin HBSS (Hanks balanced salt solution) solution and pipetting. The trypsin solution was removed from the solution containing the obtained cells, and the OP9 cell culture medium 1-2 ⁇ composition: Iscove's modified Dulbecco's medium (IMDM) [Sigma Chemical Co., Ltd.
  • IMDM Iscove's modified Dulbecco's medium
  • the cells were washed once with L-glutamine (manufactured by Invitrogen Corp.) ⁇ . Thereafter, the obtained cells were suspended in the OP9 cell culture medium 12 described above. The resulting cell suspension is placed on a 6-well flat-bottom multiwell plate at 3 x 10 4 cells per well and placed in a CO incubator.
  • undifferentiated primate embryonic stem cells undifferentiated monkey embryonic stem cells passaged from primary fibroblasts prepared from mouse embryos as a feeder cell were used. 0.25% by weight of trypsin HBSS solution was added to the culture dish of the undifferentiated sal embryonic stem cells, and the cells were peeled off. OP9 conditioned medium 1, final concentration 20 ngZml vascular endothelial growth factor (VEGF), final concentration 20 ngZml bone morphogenetic protein 4 (BMP-4), 20 ng stem cell factor (SCF), final concentration lOngZml Flt3-ligand ⁇ . The obtained cell suspension was seeded on a collagen-coated plate (Betaton Dickinson, 6-well multiwell plate coated with mouse type IV collagen). Then, the embryonic stem cells were placed in a CO incubator at 37 ° C and 5 volumes.
  • VEGF vascular endothelial growth factor
  • BMP-4 bone morphogenetic protein 4
  • SCF stem cell factor
  • FIG. 2 shows colonies of embryonic stem cell-derived cells on day 7 after the start of culture.
  • culture On the 7th day after the start, the culture medium was changed to a medium for inducing induction 1 2 ⁇ Composition: The above-mentioned feeder-free medium for OP9 conditioned medium 1, final concentration 20 ngZml VEGF, final concentration 20 ngZml BMP-4, final concentration 20 ⁇ g / ml SCF, final concentration 20ngZml Flt3—ligand, final concentration lOngZml interleukin 6 (IL-6), final concentration IngZml interleukin 3 (IL-3), final concentration IngZml granulocyte macrophage colony stimulating factor (GM—CSF) ⁇ And the culture was continued.
  • IL-6 lOngZml interleukin 6
  • IL-3 IngZml interleukin 3
  • GM—CSF granulocyte macrophage colony stimulating factor
  • the medium 12 was replaced with the differentiation-inducing medium 13 ⁇ the feeder-free differentiation-free OP9-conditioned medium 1, the final concentration of 20ngZml SCF, the final concentration of 20ngZml Flt3-ligand, the final concentration of lOngZml IL— 6.
  • the final concentration was replaced with IngZml IL-3 and the final concentration IngZml GM-CSF, and the culture was continued.
  • the culture dish 0.1 to ⁇ Ka ⁇ 25 weight 0/0 trypsin solution lml, while vigorously piperidines ting, by incubation at 37 ° C, the cells were harvested. The collected cells were washed with phosphate buffered saline (PBS). Then, 1 ⁇ 10 6 cells were incubated on ice for 30 minutes for primary antibodies against markers such as CD34 and CD45, ie, PE-conjugated anti-CD34 antibody (BD Biosciences) or FITC-conjugated anti-CD45 antibody. [BD Biosciences]. Thereafter, the expression level of each marker was analyzed using FACSCalibur (trade name, manufactured by BD Biosciences).
  • FACSCalibur trade name, manufactured by BD Biosciences.
  • FIG. 4 and FIG. 5 show the results.
  • FIG. 4 shows the ratio of CD34-positive cells.
  • FIG. 5 shows the ratio of CD45-positive cells.
  • CD45-positive cells were 70.60%, and CD34-positive cells were 92.60%. On average, CD45-positive cells accounted for 30-50%, and CD34-positive cells accounted for 70-90%.
  • OP9-conditioned medium for feeder-free one-part dani 2 The OP9 cells were cultured in an OP9 cell culture medium 2-1 ⁇ composition: ⁇ -MEM (manufactured by Invitrogen Corp.), 20% by volume of a selected lot of heat-inactivated ⁇ fetal serum [P. PAA Laboratories GmbH], 0. ImM j8-mercaptoethanol (manufactured by Sigma Chemical Co.), ImM L-glutamine (manufactured by Invitrogen Corp.), final concentration lOUZml ⁇ - A final concentration of 10 g Zml streptomycin [Invitrogen Corp.] ⁇ was added to the sample on a 10 cm culture dish.
  • the culture supernatant on the culture dish was aspirated, and 0.2% by weight trypsin Z0.02% by weight EDTA solution [Gibco (GIBCO) was added to the cells on the culture dish. CO), catalog number: 23200-072] 2 ml was added to the mixture and incubated at 37 ° C for 2-3 minutes. Thereafter, 2 to 18 ml of a new culture medium for OP9 cell culture was added to the suspension and well suspended. The resulting suspension was centrifuged to remove the supernatant. Thereafter, the OP9 cells were suspended in a new OP9 cell culture medium 2 to 110 ml so that the cell concentration of the culture was about 1Z3-1Z6. Transfer the resulting cell suspension onto a 10 cm culture dish,
  • a dish of OP9 cells that had become 60-70% confluent in a 10-cm culture dish was placed on the focus table surface of the product name: MBR-1520R-3 (manufactured by Hitachi Medical) at 290 mm, and 46 Gy gamma rays were used. For 4 hours. Thereafter, 9 cells were washed with phosphate buffered saline ( ⁇ S), and 10 ml of ⁇ cell culture medium 2-2 ⁇ composition: Iscove's modified Dulbecco's medium (IMDM) [Invitrogen Corp. )], 15% by weight of selected lot, heat-inactivated fetal serum [PAA Laboratories GmbH], 0.
  • IMDM Iscove's modified Dulbecco's medium
  • ImM j8-menolecaptoethanol [Sigma Chemical Co.] 3 mM L-glutamine (manufactured by Invitrogen Corp.), 5 M hydrocortisone, final concentration lOUZml ⁇ -sylin (manufactured by Invitrogen Corp., final concentration 10 gZml Streptomycin [Invitrogen Corp.] Manufactured). Then, OP9 cells In a CO 2 incubator, 37 ° C, 5 volume 0/0 CO in cultured for 12 hours, th 1st
  • the supernatant of the culture was collected.
  • Fetal mice at fetal age of 12.5-13.5 were removed from the uterus, and the brain, limbs, internal organs (gastrointestinal tract, liver, kidney, lung) and tail were removed, and only the trunk tissue was recovered. After that, the obtained trunk tissue was cut finely with dissecting scissors, and then the inside of the 18G needle was moved up and down several times to further divide it. The obtained divided tissue was transferred to a 50 ml tube containing 5 ml of glass beads, and 10 ml of a 0.25% by weight trypsin solution was further added. Thereafter, the divided tissues were incubated at 37 ° C with stirring every 10 minutes.
  • DMEM fetal bovine serum
  • a cell suspension was collected.
  • the cell suspension was passed through a sterile mesh (40 m pore, manufactured by BD Falcon, trade name: Cell Strainer) to remove cell aggregates and obtain a cell stock.
  • the obtained cells were frozen and stored as a frozen cell stock.
  • the frozen cell stock was thawed and cultured in a DMEM medium containing 10% by volume of fetal serum at 37 ° C and 5% by volume of CO. After one passage, when it becomes confluent,
  • Mitomycin C (manufactured by Sigma) was added to a final concentration of lOmgZl, and the mixture was incubated at 37 ° C for 3 hours. Thereafter, the cells were washed three times with PBS and collected to obtain mitomycin C-treated embryonic fibroblasts.
  • the obtained mitomycin C-treated embryonic fibroblasts were seeded on a 6 cm dish at 1 ⁇ 10 6 cells per dish, and then inoculated in a CO incubator at 37 ° C.
  • Kakar MEF The culture of Kakar MEF should be started at least 8 hours before seeding embryonic stem cells. did.
  • the force-quiz monkey embryonic stem cell line CMK-6 was used as a primate.
  • the supernatant was removed from the force-quizal embryonic stem cell culture dish, and the embryonic stem cells were washed once with PBS.
  • 1 ml of 0.25% by weight trypsin solution was added, and the embryonic stem cells were incubated at 37 ° C for 1 minute. Immediately thereafter, the side of the dish was tapped to suspend embryonic stem cells.
  • the suspended embryonic stem cells were added to a medium for maintaining undifferentiated embryonic stem cells ⁇ composition: MEMZF12 medium (manufactured by Invitrogen Corp.)], and 20% by volume heat-inactivated ⁇ fetal serum of the selected lot.
  • FBS (PAA Laboratories GmbH)
  • bFGF basic fibroblast growth factor
  • BMP-4 final concentration lOngZml bone formation Protein
  • LIF U / ml leukemia inhibitory factor
  • ImM j8- Mercaptoethanol manufactured by Sigma Chemical Co.
  • ImML-glutamine manufactured by Invitrogen Corp.
  • final concentration lOUZml penicillin manufactured by Invitrogen Corp.
  • the embryonic stem cells were collected in another tube.
  • the cells were well suspended in the embryonic stem cell undifferentiated maintenance medium, centrifuged, and the supernatant was removed.
  • the obtained cells were suspended in 20 ml of a new medium for maintaining undifferentiated embryonic stem cells.
  • the obtained embryonic stem cell suspension was placed on the mouse embryonic fibroblasts of the MEF dish for maintaining undifferentiated embryonic stem cells obtained in (1) above, in 5 ml portions in a single dish. Seeds on a single dish and incubate at 37 ° C, 5% CO in a CO incubator.
  • the cells were directly observed with a phase-contrast optical microscope (Olympus Corporation, trade name: 1X70). did.
  • the cells were examined for expression of markers such as SSEA-1 and SSEA-4 on the cell surface as follows. After the culture was completed, lml of 0.25% by weight trypsin solution was added to the dish, and the dish was incubated at 37 ° C for 1 minute. Then, the side of the dish was immediately hit to detach only embryonic stem cells. The collected cells were washed with an isotonic solution containing a bivalent ion chelating agent such as EDTA and at the same time the cells were loosened by pipetting.
  • markers such as SSEA-1 and SSEA-4
  • the cultured cells formed flat circular colonies having a polygonal cytoplasm and a single nucleus having a large nucleus.
  • the cells exhibited high levels of SSEA-4 and low levels of SSEA-1. Therefore, it was considered that most of the cells after culturing were maintained in an undifferentiated state.
  • the inside of the embryonic stem cell colony on the second day of the passage was roughly cut with a pasteur pipe (fine capillary) having a thin tip. Then, using a fine capillary, a population of unsegregated embryonic stem cells at the center of the colony was aspirated and removed under an optical microscope. As a result, contamination of mouse embryonic fibroblasts was substantially eliminated.
  • differentiation-inducing medium 2 ⁇ composition OP9-conditioned medium 2 for feeder-free differentiation, final concentration
  • VEGF vascular endothelial growth factor
  • SCF cell factor
  • lOngZml Flt3-ligand final concentration lOngZml IL-6
  • 20 ngZml IL-3 ⁇ was added to type IV collagen coat-6 ⁇ Eldish [BD Biosciences]
  • a culture dish was prepared in advance by adding the cells to be used for inducing differentiation of embryonic stem cells.
  • the undivided embryonic stem cell population was gently pipetted to partially loosen the culture dish, and the number of selected ES colonies was reduced to 1 ⁇ 10 2 per square well. Seeded. Thereafter, the embryonic stem cells were placed in a CO incubator at 37 ° C.
  • the cells were cultured in 5% by volume of CO to induce differentiation. Change the medium every 3-4 times
  • CD34 is a stem cell marker of various tissues such as hematopoietic cells, nerve cells, endothelial cells, etc. It was positive for the specific marker CD45.
  • FIG. 7 panel E the cells were shown to have prominent nucleoli with a high nuclear Z cytoplasmic ratio, indicating immature hematopoiesis. Characteristics of cells It matched the sign. Thus, almost all of the round cells were CD34-positive and CD45-positive, indicating that they were hematopoietic stem cells or hematopoietic progenitor cells.
  • Flk-1 which is a marker for immature mesoderm
  • CD34 and C kit which are markers for immature cells including hematopoietic stem cells
  • specific markers for blood cells in general was reacted with a primary antibody against a marker such as CD45, a vascular endothelial cell-specific marker, VE-forcedherin, and a vascular endothelial marker, CD151.
  • the secondary antibody reaction was continued.
  • the expression level of each marker was analyzed using FACSCalibur (trade name, manufactured by BD Biosciences).
  • PE-conjugated anti-CD34 antibody manufactured by BD Biosciences
  • FITC-conjugated anti-CD45 antibody manufactured by BD Biosciences
  • PE-conjugated anti-VE-forcedherin antibody [ Chemicon International, Inc.), PE-conjugated anti-CD 133 antibody (Miltenyi Biotech GmbH), PE-conjugated anti-Flk-1 antibody (BD Biosciences) Manufactured
  • PE-conjugated anti-c kit (CD117) antibody manufactured by BD Biosciences
  • anti-CD151 antibody manufactured by BD Biosciences
  • the “finger-like cells” were VE-active doherin-negative Flk-1 positive c kit-positive CD151-positive.
  • Example 4 (3) At 7-10 days after the differentiation induction in Example 4 (3), 0.25% by weight of trypsin solution was added to the culture dish containing the confluent finger-like cells, and pipetting was performed at room temperature. The finger-like cells were exfoliated while doing so.
  • Example 3 In Example 3 described above, at a stage 7 to 10 days after the induction of the shroud, a 0.25% by weight trypsin solution was added to the culture dish, and the finger-like cells were exfoliated while pipetting at room temperature. To the obtained finger-like cells, 22 ml of the OP-conditioned medium for feeder-free differentiation described in Example 3 above was added and sufficiently suspended. Then, the supernatant was removed by centrifugation, and the above-mentioned “medium suitable for culturing stoma cells and embryonic stem cells” was diluted so that the original cell density was about 1 Z3-1Z6. .
  • the obtained cell dilution was cultured on a new 6 ⁇ Eldish or collagen-coated 6 ⁇ Eldish at 37 ° C and 5% by volume CO.
  • the cobblestone cells were treated with a 0.02% by weight EDTA solution and collected, and the collected cells were Washed with PBS. Thereafter, 1 ⁇ 10 6 cells are allowed to react on ice for 30 minutes with a primary antibody against a marker 1 such as hematopoietic system-specific markers CD34 and CD45 and an endothelial cell-specific marker VE-forcedherin. The secondary antibody reaction was continued. Subsequently, the expression level of each marker was analyzed using FACSCalibur (trade name, manufactured by BD Biosciences).
  • a PE-conjugated anti-CD34 antibody manufactured by BD Biosciences
  • a FITC-conjugated anti-CD45 antibody manufactured by BD Biosciences
  • an anti-VE antibody [Chemicon International, Inc. (Chemicon International, Inc.)] was used.
  • the cobblestone cells were CD34-negative, CD45-negative VE-force doherin-positive. Therefore, it was suggested that the finger-like cells were differentiated into vascular endothelial cells. In addition, the cobblestone cells proliferated vigorously in vitro, could be passaged for several months in a new dish, and could be expanded stably and with good reproducibility.
  • Example 4 The finger-like cells obtained in Example 4 were also peeled off the dish force using trypsin ZEDTA (manufactured by GIBCO-BRL). Then, the obtained cells (0.5 ⁇ 10 6 —1 ⁇ 10 6 cells per square well) were placed on a 6-well flat bottom multi-well plate, and the OP9 conditioned medium for feeder-free fractionation described in Example 3 above was used. 22.5 ml or a medium suitable for culturing vascular endothelium [trade name: EGM-2 BulletKit (Code B3162), manufactured by Takara Bio Inc.] 2. Cultured in 5 ml at 37 ° C, 5% by volume CO for 3 days. Transfer the obtained cells to the phase
  • a PE-conjugated anti-VE-force doherin antibody which is an antibody against VE-force doherin which is a vascular endothelial cell-specific marker [Chemicon International, Inc. was used to determine the expression of VE-force doherin [0159]
  • it was positive for VE-force doherin indicating that it was distributed to vascular endothelial cells.
  • Example 7 In order to confirm that the cells obtained in Example 7 were endothelial cells, a vasculature formation assay was performed as follows.
  • Example 7 the product name: EGM-2 BulletKit [manufactured by Takara Bio Inc., Code
  • the product name: EGM-2 BulletKit [Takara Bio Inc. , Code B3162] the vascular endothelial cells obtained from the vascular endothelial cells were found to form a vasculature when subjected to a vasculature formation assay.
  • vasculature was partially formed, but they formed colonies and formed clumps. You can see that there are some that are. Therefore, it is suggested that the obtained cells are in an undivided stage compared to the mature vascular endothelium. Further, as shown in FIG. 15, when the undifferentiated embryonic stem cells were subjected to vasculature formation Atsusei, the formation of vasculature was almost invisible.
  • MS-5 cells a mouse bone marrow stromal cell line [purchased from Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ)], were selected from a selected lot of 10% heat-inactivated FBS [PAA Laboratories (PAA Laboratories). GmbH), 2 mM L-glutamine (Invitorgen Corp.), 2 mM sodium pyruvate (Invitorgen Corp.), and lOUZml penicillin (Invitrogen Corp.) And 10 g / ml streptomycin [Invitrogen Corp.], and maintained in a-MEM [Invitorgen Corp .;]. At subconfluence, these cells were treated with 46 Gy of ⁇ -irradiation. After washing with PBS, cells were harvested from selected lots of 15% heat-inactivated FBS (PAA Laboratories GmbH) and 0.1 lm Mj8-mercaptoethanol [Sigma Chemical Co.]. ] And 3 mM
  • the cells were positive for CD14, a component of the LPS receptor complex known as monocyte-Z macrophage-specific promoter, and were divided into macrophages. It was suggested that you do it.
  • the cells were subjected to a reduction assay of troblue tetrazolium salt (NBT) exhibiting active oxygen production activity, and the macrophage function was analyzed.
  • NBT troblue tetrazolium salt
  • 5 ⁇ 10 5 cells were collected, washed once with PBS, and suspended in 1 ml of differentiation-inducing medium. Then, 1 ml of NBT ⁇ solution [lmg NBT (manufactured by Nacalai Tester) Zml differentiation induction medium] was added, and the cells were incubated for 25 minutes in the presence of TPA 100 ng. Thereafter, the cells were washed with PBS and resuspended in 10 ⁇ l of PBS.
  • NBT troblue tetrazolium salt
  • the obtained cell suspension was dropped on a slide glass and covered with a cover glass. ⁇ The number of positive cells was counted using an optical microscope (Olinos, trade name: # 51). As a negative control, human leukemia cells HL-60 cells were used, and a similar reduction assay was performed. The results are shown in panel C of FIG.
  • the present invention it becomes possible to stably provide blood cells and vascular endothelial cells suitable for blood for transfusion, materials for transplantation, and the like on an industrial scale. Further, since the blood cells and the like of the present invention also lead to enhancement of natural healing power, their effects on medical treatment and the medical industry are enormous. Furthermore, if the production of safe and secure transfusion blood instead of the current blood donation is included, there is a possibility of expanding into the huge plant industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 異種動物細胞の混入、異種動物由来ウイルスの感染等を実質的に伴うことなく霊長類動物胚性幹細胞から血液細胞又は血管内皮細胞への分化を行なうことができる手段を提供すること。ストロマ細胞馴化培地を含有した無フィーダー分化用培地;該無フィーダー分化用培地と細胞外マトリックスでコートされた培養容器とを含有した無フィーダー分化用培養システム;該無フィーダー分化用培地を用いる、霊長類動物胚性幹細胞から血液細胞への無フィーダー分化方法、霊長類動物胚性幹細胞から血管内皮細胞への無フィーダー分化方法、血液細胞の製造方法、血管内皮細胞の製造方法及び指様細胞の製造方法;並びに該方法により得られる血液細胞、血管内皮細胞及び指様細胞。

Description

明 細 書
無フィーダ一分化用培地及び霊長類動物胚性幹細胞からの無フィーダ 一分化方法
技術分野
[0001] 本発明は、霊長類動物胚性幹細胞から血液細胞又は血管内皮細胞への分化用培 地、分ィ匕用培養システム、血液細胞又は血管内皮細胞への分化方法、血液細胞又 は血管内皮細胞の製造方法及びそれにより得られた細胞に関する。さらに詳しくは、 本発明は、霊長類動物胚性幹細胞から血液細胞又は血管内皮細胞への無フィーダ 一分化用培地、無フィーダ一分ィ匕用培養システム、無フィーダ一分化方法、血液細 胞又は血管内皮細胞の製造方法及びそれにより得られた細胞に関する。
背景技術
[0002] 胚性幹細胞は、早くはマウスにおいて 1980年代には榭立され、主として疾患モデ ル動物を作成するために利用されてきた。一方で、さまざまな細胞へ分ィ匕する万能 細胞として再生医療や移植医療の分野における臓器作成における基礎的な材料と して用いうる可能性がある。したがって、ヒト胚性幹細胞の榭立が待たれていた。そし て、 1998年に、米国にてヒト胚性幹細胞が榭立された。マウス等の実験動物モデル カゝら取得された胚性幹細胞の分ィ匕に関する研究が行われている(特許文献 1を参照 のこと)。
[0003] 一方、免疫の基本である血液細胞は、体内に侵入する異物を攻撃すること、癌等 に対して NK細胞が効果的であること、白血病等において造血幹細胞等が効果的で あること、さらに、造血幹細胞は、その糸且織可塑性からさまざまな疾患にて必要となる 細胞への横分化(transdifferentiation)が可能であること等の事情から、医療上の 重要性は多大なものがある。また、胚性幹細胞から、例えば、工場生産によって大量 の血液細胞を生産することができれば医療への貢献は計り知れないものがある。また 、輸血等に用いられる赤血球等も胚性幹細胞力 の分ィ匕技術によって得られることが できれば、献血におけるエイズ、 C型肝炎等の汚染の問題も解決することができる。さ らに、癌等における化学療法等においてダメージを受けた免疫系に対して、好中球 等を含む白血球を輸血することによって機能低下した免疫を強化ができるために院 内感染等の問題を解決することもできる。さらに、血液細胞は、自然治癒力の強化に もつながるために、その医療および医療産業へ及ぼす効果は甚大である。
[0004] し力しながら、胚性幹細胞のうち、特に霊長類動物胚性幹細胞から血液を分化させ る技術については、困難を極めるため世界的にもこうした研究は少ないのが現状で ある。
[0005] 従来、胚性幹細胞力 血液細胞への分ィ匕は、例えば、ストロマ細胞株である OP9 細胞をフィーダ一として用い、胚性幹細胞と共生培養する方法が試みられて 、る(例 えば、非特許文献 1を参照のこと)。カゝかる分ィ匕方法では、胚性幹細胞を OP9細胞上 に播種して培養することにより中胚葉系細胞に分化させた後に、または胚性幹細胞 から胚葉体 (embry0id;EB)を形成することで中胚葉系細胞へ分化させた後に、トリ プシン処理等により該中胚葉系細胞を解離させ、再度、 OP9細胞上に播種し、培養 することにより血液細胞に分ィ匕させる。
特許文献 1:国際公開第 99Z20741号パンフレット
非特許文献 1 :仲野徹 (Nakano T.)ら、「異なる前駆細胞由来の初期赤血球及び完全 赤血 ¾kのインヒ、、トロ発生 (In vitro development of primitive and definitive erythrocytes from different precursors)」、 Science,第 272卷、第 722頁—第 724頁(1996) 発明の開示
発明が解決しょうとする課題
[0006] 本発明の第 1の側面は、異種動物細胞の混入、異種動物由来ウィルスの感染等を 実質的に伴うことなく霊長類動物胚性幹細胞から血液細胞又は血管内皮細胞への 分化を行なうこと、再生産性に優れた分化を行なうこと、高効率かつ高純度で血液細 胞又は血管内皮細胞を得ること等の少なくとも 1つを可能にする無フィーダ一分ィ匕用 培地を提供することにある。本発明の第 2の側面は、異種動物細胞の混入、異種動 物由来ウィルスの感染等を実質的に伴うことなく霊長類動物胚性幹細胞力 血液細 胞への分化を行なうこと、霊長類胚性幹細胞から高!、厳密性での制御で血液細胞に 分化させること等を可能にする無フィーダ一分ィ匕用培養システムを提供することにあ る。また、本発明の第 3の側面は、異種動物細胞の混入、異種動物由来ウィルスの感 染等を実質的に伴うことなく霊長類動物胚性幹細胞力 血液細胞への分ィ匕を行なう こと、霊長類動物胚性幹細胞から高 、厳密性の制御で血液細胞に分化させること等 の少なくとも 1つを可能にする霊長類動物胚性幹細胞力 血液細胞への無フィーダ 一分化方法を提供することにある。さら〖こ、本発明の第 4の側面は、異種動物細胞の 混入、異種動物由来ウィルスの感染等を実質的に伴うことなく霊長類動物胚性幹細 胞から血管内皮細胞への分化を行なうこと、霊長類動物胚性幹細胞から高い厳密性 の制御で血管内皮細胞に分化させること等の少なくとも 1つを可能にする霊長類動 物胚性幹細胞力も血管内皮細胞への無フィーダ一分ィ匕方法を提供することにある。 また、本発明の第 5の側面は、高純度の血液細胞を得ること、長期持続的に、優れた 再生産性で血液細胞を得ること等の少なくとも 1つを可能にする血液細胞の製造方 法を提供することにある。さらに、本発明の第 6の側面は、高純度の血管内皮細胞を 得ること等を可能にする血管内皮細胞の製造方法を提供することにある。本発明の 第 7の側面は、高純度で均質な性質を示す、血液細胞又は血管内皮細胞を提供す ることにある。本発明の第 8の側面は、血液細胞、血管内皮細胞等に分ィ匕しうる指様 細胞を効率よく大量に得ることができる、指様細胞の製造方法を提供することにある。 本発明の第 9の側面は、臨床目的等に適した血液細胞、血管内皮細胞等の供給を 可能にする、指様細胞を提供することにある。本発明の他の課題は、本明細書の記 載等から明らかである。
課題を解決するための手段
すなわち、本発明の要旨は、
〔1〕 ストロマ細胞馴化培地を含有してなる、無フィーダ一分化用培地、
〔2〕 霊長類動物胚性幹細胞を維持するための培地成分と、血清と、サイト力インとを さらに含有してなる、前記〔1〕記載の無フィーダ一分化用培地、
〔3〕 該霊長類動物胚性幹細胞を維持するための培地成分が、イスコフ改変ダルべ ッコ培地を含有するものである、前記〔2〕記載の無フィーダ一分化用培地、
〔4〕 該サイト力インが、血管内皮成長因子、骨形成タンパク質 4、幹細胞因子、 Fit
3—リガンド、インターロイキン 6、インターロイキン 3及び顆粒球コロニー刺激因子 力もなる群より選ばれた少なくとも 1種である、前記〔2〕又は〔3〕記載の無フィーダ一 分化用培地、
〔5〕 ストロマ細胞が、放射線照射されたストロマ細胞である、前記〔1〕一〔4〕いずれ 力 1項に記載の無フィーダ一分ィ匕用培地、
〔6〕 該ストロマ細胞馴化培地が、
A)ストロマ細胞を維持するに適した培地でコンフルェントにならな 、ように培養する 工程、
B)前記工程 A)で得られた細胞を、ストロマ細胞及び胚性幹細胞を維持するに適し た培地で培養する工程、及び
C)前記工程 B)で得られた培養物カゝらストロマ細胞を除去する工程
を含むプロセスを行なうことにより得られたものである、前記〔1〕一〔4〕いずれか 1項に 記載の無フィーダ一分化用培地、
〔7〕 該ストロマ細胞馴化培地が、
A)ストロマ細胞を維持するに適した培地でコンフルェントにならな 、ように培養する 工程、
Β' )前記工程 A)で得られた細胞に放射線を照射し、得られた細胞を、ストロマ細胞 及び胚性幹細胞を維持するに適した培地で培養する工程、及び
C ' )前記工程 B' )で得られた培養物カゝらストロマ細胞を除去する工程
を含むプロセスを行なうことにより得られたものである、前記〔1〕一〔5〕いずれか 1項に 記載の無フィーダ一分化用培地、
〔8〕 前記〔1〕一〔7〕いずれか 1項に記載の無フィーダ一分化用培地と、細胞外マトリ ッタスでコートされた培養容器とを含有してなる、無フィーダ一分ィ匕用培養システム、
〔9〕 該細胞外マトリックス力 コラーゲンである、前記〔8〕記載の無フィーダ一分化用 培養システム、
〔10〕 該コラーゲンが、 IV型コラーゲンである、前記〔9〕記載の無フィーダ一分化用 培養システム、
〔11〕 前記〔1〕一〔7〕いずれか 1項に記載の無フィーダ一分化用培地で、霊長類動 物胚性幹細胞を無フィーダ一下に培養することを特徴とする、霊長類動物胚性幹細 胞から血液細胞への無フィーダ一分化方法、 〔12〕 霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無 フィーダ一下、前記〔1〕一〔7〕いずれか 1項に記載の無フィーダ一分化用培地で培 養して、指様細胞 (finger— like cell)を生成させ、さらに続けて培養して、血液細胞 を生成させる、前記〔11〕記載の霊長類動物胚性幹細胞から血液細胞への無フィー ダー分化方法、
〔13〕 霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無 フィーダ一下、前記〔1〕一〔7〕いずれか 1項に記載の無フィーダ一分化用培地で培 養して、指様細胞を生成させ、該指様細胞を、新たな培地が入り、かつ細胞外マトリ ッタスでコートされた培養容器に移してさらに培養して、血管内皮細胞を生成させるこ とを特徴とする、霊長類動物胚性幹細胞から血管内皮細胞への無フィーダ一分化方 法、
〔14〕 霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無 フィーダ一下、前記〔1〕一〔7〕いずれか 1項に記載の無フィーダ一分化用培地で培 養して、該胚性幹細胞から血液細胞へ分化させ、ついで、該血液細胞を剥離させて 単離することを特徴とする、血液細胞の製造方法、
〔15〕 血液細胞の剥離後の培養容器に前記〔1〕一〔7〕いずれか 1項に記載の無フィ ーダ一分化用培地を添加し、無フィーダ一下にさらに培養して、血液細胞を得る、前 記〔 14〕記載の血液細胞の製造方法、
〔16〕 前記〔14〕又は〔15〕記載の製造方法により得られる、血液細胞、
〔17〕 霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無 フィーダ一下、前記〔1〕一〔7〕いずれか 1項に記載の無フィーダ一分化用培地で培 養して、指様細胞を生成させ、該指様細胞を、新たな培地が入り、かつ細胞外マトリ ッタスでコートされた培養容器に移してさらに培養して、該胚性幹細胞カゝら血管内皮 細胞へ分化させ、該血管内皮細胞を単離することを特徴とする、血管内皮細胞の製 造方法、
〔18〕 前記〔17〕記載の製造方法により得られる、血管内皮細胞、
〔19〕 霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無 フィーダ一下、前記〔1〕一〔7〕いずれか 1項に記載の無フィーダ一分化用培地で培 養することを特徴とする、指様細胞の製造方法、並びに
〔20〕 前記〔19〕記載の製造方法により得られる、指様細胞、
に関する。
発明の効果
本発明の無フィーダ一分ィヒ用培地によれば、異種動物細胞の非存在下に、異種 動物細胞の混入、異種動物由来ウィルスの感染等を実質的に伴うことなぐ霊長類 動物胚性幹細胞力 血液細胞に分ィ匕させることができるという優れた効果を奏する。 また、本発明の無フィーダ一分ィ匕用培地によれば、再生産性に優れた分化を行なう ことができ、さらに、高効率かつ高純度で血液細胞又は血管内皮細胞を得ることがで きると!、う優れた効果を奏する。本発明の無フィーダ一分ィ匕用培養システムによれば 、異種動物細胞の非存在下に、異種動物細胞の混入、異種動物由来ウィルスの感 染等を実質的に伴うことなぐ霊長類胚性幹細胞力 高い厳密性での制御で血液細 胞に分化させることができるという優れた効果を発揮する。また、本発明の霊長類動 物胚性幹細胞から血液細胞への無フィーダ一分化方法によれば、異種動物細胞の 混入、異種動物由来ウィルスの感染等を実質的に伴うことなく分ィ匕を行なうことができ 、霊長類動物胚性幹細胞から高 、厳密性の制御で血液細胞への分化を行なうことが できるという優れた効果を奏する。さらに、本発明の霊長類動物胚性幹細胞から血管 内皮細胞への無フィーダ一分化方法によれば、異種動物細胞の混入、異種動物由 来ウィルスの感染等を実質的に伴うことなく分ィ匕を行なうことができ、霊長類動物胚性 幹細胞から高い厳密性の制御で血管内皮細胞に分ィ匕させることができるという優れ た効果を奏する。また、本発明の血液細胞の製造方法によれば、長期持続的で、優 れた再生産性で、高純度の血液細胞を得ることができると 、う優れた効果を奏する。 さらに、本発明の血管内皮細胞の製造方法によれば、高純度の血管内皮細胞を得 ることができるという優れた効果を奏する。本発明の血液細胞又は血管内皮細胞によ れば、高純度で均質な性質を示し、輸血用血液への応用、血管損傷の治療や局所 の血流の改善のための材料、移植材料等に適した性質を示す。本発明の指様細胞 の製造方法によれば、血液細胞、血管内皮細胞等に分化しうる指様細胞を効率よく 大量に得ることができるという優れた効果を奏する。本発明の指様細胞によれば、臨 床目的等に適した血液細胞、血管内皮細胞等の供給することができるという優れた 効果を奏する。
図面の簡単な説明
[0009] [図 1]図 1は、造血幹細胞から血液細胞への分化系統図を示す。
[0010] [図 2]図 2は、培養開始後、 7日目の胚性幹細胞コロニーを示す。スケールバーは、 1 0 μ mを示す。
[0011] [図 3]図 3は、培養開始後、 18日目の胚性幹細胞コロニーの部分拡大図を示す。スケ 一ルバ一は、 を示す。
[0012] [図 4]図 4は、 CD34陽性細胞の比率を示す。
[0013] [図 5]図 5は、 CD45陽性細胞の比率を示す。
[0014] [図 6]図 6は、未分化力二クイザル胚性幹細胞の形態及びマーカーの発現を示す図 である。パネル Aは、位相差顕微鏡による観察結果を示す。パネル Aの a中、スケー ルバ一は、 40 μ mを示し、パネル Aの b中、スケールバーは、 40 μ mを示す。ノネル Bは、 FACSによる細胞表面解析の結果を示す。パネル Bは、未分化多能性段階の マーカーである SSEA— 4 (図中、「SSEA4」)の発現 (パネル B中、 a)及び分化段階 のマーカーである SSEA— 1 (図中、「SSEA1」)の発現(パネル B中、 b)の発現を調 ベた結果を示す。黒線は、イソタイプである対照 IgM又は IgG3の染色結果を、緑線 は抗 SSEA— 1抗体又は抗 SSEA— 4抗体による染色をそれぞれ示す。
[0015] [図 7]図 7は、指様細胞力も血液細胞への分ィ匕を調べた結果を示す図である。パネル Aは、指様細胞の位相差顕微鏡による観察結果を示す。スケールバーは、 40 mを 示す。パネル Bは、出芽指様細胞 (矢印により図示)の位相差顕微鏡による観察結果 を示す。スケールバーは、 40 mを示す。パネル Cは、指様細胞の集密的培養によ り生じた大量の造血前駆細胞の位相差顕微鏡による観察結果を示す。スケールバー は、 40 mを示す。パネル Dは、 FACSによる細胞表面解析の結果を示す図である 。パネル Dの aは、幹細胞マーカーである CD34の発現、 bは、造血系特異的マーカ 一である CD45の発現を示す。黒線はイソタイプである対照 IgGの染色結果を示し、 緑線は抗 CD34又は抗 CD45抗体の染色結果を示す。パネル Eは、造血前駆細胞 のライト ギムザ染色の結果を示す。スケールバーは、 40 mを示す。 [0016] [図 8]図 8は、 FACSによる指様細胞の細胞表面解析の結果を示す図である。黒線は 、イソタイプである対照 IgGの染色結果を示し、緑線は、抗 CD34抗体、抗 CD45抗 体、抗 VE—力ドヘリン(図中、「VE— Cadherin」)抗体、抗 Flk— 1 (図中、「FLK— 1」) 抗体、抗 c kit抗体、抗 CD133抗体又は抗 CD151抗体による染色を示す。
[0017] [図 9]図 9は、造血前駆細胞の反復性生成について、位相差顕微鏡により観察した結 果を示す図である。パネル Aは、トリプシン処理後の残存指様細胞を示す。スケール バーは、 40 μ mを示す。パネル Bは、一週間培養後、パネル Cは、 2週間培養後の 細胞について、位相差顕微鏡により観察した結果を示す図である。スケールバーは、 40 μ mを示す。
[0018] [図 10]図 10は、指様細胞からの血管内皮細胞への分化を調べた結果を示す図であ る。パネル Aは、血管内皮細胞について、位相差顕微鏡により観察した結果を示す。 スケールバーは、 40 μ mを示す。パネル Bは、 FACSによる細胞表面解析の結果を 示す。パネル B中、 aは、 CD34、 bは、 CD45、 cは、内皮細胞特異的マーカーである VE—力ドヘリンの発現を示す。黒線は、イソタイプである対照 IgGの染色結果を示し、 緑線は、抗 CD34抗体、抗 CD45抗体又は抗 VE -力ドヘリン抗体による染色を示す
[0019] [図 11]図 11は、指様細胞をトリプシン処理により細胞を剥離して新しい培養皿にトラ ンスファーした後に無フィーダ一分ィ匕用 OP9馴化培地での培養後に得られた細胞の 形態を観察した結果を示す図である。
[0020] [図 12]図 12は、図 11で観察された細胞をさらに血管内皮細胞の培養に適した条件 下で指様細胞を培養して得られた細胞を観察した結果を示す図である。
[0021] [図 13]図 13は、血管内皮細胞の培養に適した条件下で指様細胞を培養して得られ た細胞を、脈管構造形成アツセィに供した結果を示す図である。
[0022] [図 14]図 14は、指様細胞を、脈管構造形成アツセィに供した結果を示す図である。
[0023] [図 15]図 15は、未分化胚性幹細胞を、脈管構造形成アツセィに供した結果を示す図 である。
[0024] [図 16]図 16は、指様細胞の単球 Zマクロファージへの分ィ匕を調べた結果を示す図で ある。パネル Aは、 Wright— Giemsa染色の結果を示す。パネル Bは、抗 CD14抗体 を用いた免疫染色の結果を示す。パネル Bの(a)は、抗 CD14抗体、(b)は、対照と して、イソタイプ対照抗体を用いた結果である。パネル Cは、ニトロブルーテトラゾリゥ ム還元活性を調べた結果を示す。パネル Cの(a)は、指様細胞由来の細胞、(b)は、 対照として、 HL60細胞を用いた結果である。
[0025] [図 17]図 17は、ブラストコロニーを示す図である。
符号の説明
[0026] 0101 胚性幹細胞
0102 造血幹細胞
0103 榭状細胞
0133 リンパ球系幹細胞
0134 骨髄系幹細胞
発明を実施するための最良の形態
[0027] 本発明は、霊長類動物胚性幹細胞を、ストロマ細胞の馴化培地の存在下、細胞外 マトリックスでコートされた培養容器で培養することにより、無フィーダ一条件であって も、血液細胞に分ィ匕させることができるという本発明者らの知見に基づく。したがって 、本発明によれば、異種動物細胞の混入、異種動物由来ウィルスの感染等を実質的 に伴わない分化、高い厳密性での制御での分化、高い再生産性での血液細胞又は 血管内皮細胞の製造、高効率での血液細胞又は血管内皮細胞の製造、高純度の 血液細胞又は血管内皮細胞の製造等を行なうことができる、無フィーダ一で、霊長類 動物胚性幹細胞から血液細胞又は血管内皮細胞への分化を行なうための手法、手 段等を提供することができる。
[0028] 前記霊長類動物胚性幹細胞としては、例えば、力二クイザル胚性幹細胞〔末森博 文 (Suemori, H.)ら、「IVF又は ICSIにより産生された力-クイザル胚盤胞由来胚性 幹糸田胞の樹 A (Establishment of emoryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI.)」、 Dev. Dynamicsゝ第 222卷、第 273頁—第 279頁(2001)〕、ァカゲザル胚性幹細胞〔トムソン (Thomson, J.A.)ら、「霊長類動物 胚'性幹糸田胞株の単離 (Isolation of a primate embryonic stem cell line.)」、 Proc. Natl . Acad. Sci, USA,第 92卷,第 7844頁一第 7848頁(1995)〕、マーモセッ卜胚性 幹細胞〔トムソン (Thomson, J.A.)ら、「コモンマーモセット胚盤胞由来の多能性細胞 ¾ (Plunpotent cell lines derived from common marmoset blastocysts.)、 Biolol. Re prod.、第 55頁、第 254頁-第 259頁(1996)〕、ヒト胚性幹細胞〔トムソン (Thomson, J.A.)ら、「ヒト胚盤胞由来の胚性幹細胞株 (Embryonic stem cell lines derived from human blastocysts.)] , Science,第 282卷、第 1145頁 第 1147頁(1998);ロイビノフ (Reubinoff, B.E.)ら、ヒト胚盤胞由来の胚性幹細胞:インビトロ体細胞分化 (Embryonic stem cell lines from human blastosysts: somatic difterentiation in vitro.八 Nat. Biot ech.、第 399頁-第 404頁(2000)〕等が挙げられる。
[0029] 本発明は、 1つの側面では、ストロマ細胞馴化培地を含有してなる、無フィーダ一分 化用培地 (すなわち、無フィーダ一胚性幹細胞の血液分ィヒ培地)に関する。
[0030] 本発明の無フィーダ一分ィ匕用培地は、ストロマ細胞馴化培地を含有しているため、 異種動物細胞をフィーダ一として用いることなぐ霊長類動物胚性幹細胞を血液細胞 に分化させることができるという優れた効果を発揮する。したがって、異種動物細胞の 混入、異種動物由来ウィルスの感染等を実質的に伴わずに血液細胞を得ることがで きる。
[0031] 本発明の無フィーダ一分化用培地を用 、て培養することにより得られた血液細胞を 前記培養容器中から単離した後、新しい前記無フィーダ一分化用培地を添加し、培 養することにより、驚くべく血液細胞を再生産することができるという優れた効果を発 揮する。したがって、本発明の無フィーダ一分ィ匕用培地によれば、再生産性に優れ た血液細胞の製造を行なうことができるという優れた効果を発揮する。
[0032] また、本発明の無フィーダ一分ィ匕用培地によれば、前記馴化培地を含有している ため、高効率かつ高純度で血液細胞又は血管内皮細胞を得ることができるという優 れた効果を発揮する。
[0033] 具体的には、本発明の無フィーダ一分ィ匕用培地を用いて霊長類動物胚性幹細胞 を培養することにより、例えば、図 7のパネル Cに示されるように、実質的に全ての細 胞が均一で同じ形態で分ィ匕し、特に、分ィ匕により得られた細胞は、血液細胞に特異 的に発現する CD45に対し、実質的に、ほぼ 100%陽性を示す。したがって、本発明 の無フィーダ一分ィヒ用培地によれば、極めて高効率で、胚性幹細胞を血液細胞に 分化させることができる。なかでも、従来、胚性幹細胞からは、 CD34陽性 CD45陽 性の造血幹細胞の産生力 約 5%程度〔例えば、チャドウイック(Chadwick)ら、 Blood 、第 102卷、第 906頁 第 915頁、(2003)の方法では、ヒト胚性幹細胞力もの CD3 4+CD45+細胞の発生率が 7. 5±0. 5%〕と困難であったにもかかわらず、本発明の 無フィーダ一分ィ匕用培地によれば、造血幹細胞に特異的に発現する CD34に対して 、ほぼ 100%陽性を示す細胞を得ることができるという優れた効果を発揮する。
[0034] さらに、従来、胚性幹細胞力 血管内皮細胞の分ィ匕は、血液細胞とは異なる系で 行なわれていたにもかかわらず、本発明の無フィーダ一分ィ匕用培地によれば、胚性 幹細胞を血液細胞に分化させる際に生成する指様細胞を、新たな培養容器中、新し い前記無フィーダ一分化用培地でさらに培養することにより、驚くべく血管内皮細胞 を得ることができると!/ヽぅ優れた効果を発揮する。
[0035] 本明細書において、前記「無フィーダ一」とは、フィーダ一細胞を用いないこと、ある いはフィーダ一細胞非存在下の条件を意味する。
[0036] 前記血液細胞とは、血液細胞全般を称する。前記血液細胞としては、具体的には、 例えば、図 1に示される胚性幹細胞力 血液細胞への分ィ匕系統図中における造血 幹細胞 0102、リンパ球系幹細胞 0133、リンパ球系榭状細胞前駆細胞 0135、リンパ 球系榭状細胞 0103、 Tリンパ球前駆細胞 0104、 T細胞 0105、 Bリンパ球前駆細胞 0106、 B細胞 0107、形質細胞 0108、 NK前駆細胞 0109、 NK細胞 0110、骨髄系 幹細胞 0134、骨髄系榭状細胞前駆細胞 0111、骨髄系榭状細胞 0112、肥満細胞 系前駆細胞 0113、肥満細胞 0114、好塩基球系前駆細胞 0115、好塩基球 0116、 好酸球系前駆細胞 0117、好酸球 0118、顆粒球マクロファージ系前駆細胞 0119、 マクロファージ前駆細胞 0120、単球 0121、マクロファージ 0122、破骨細胞前駆細 胞 0123、破骨細胞 0124、好中球前駆細胞 0125、好中球 0126、巨核球系前駆細 胞 0127、巨核球 0128、血小板 0129、前期赤芽球系前駆細胞 0130、後期赤芽球 系前駆細胞 0131、赤血球 0132等が挙げられる。また、前記「血液細胞」には、造血 幹細胞の前駆細胞;造血幹細胞力 最終的に末梢血に分ィ匕するまでの全ての分ィ匕 のプロセス上に存在する血液細胞の全ての形態が含まれる。
[0037] 前記馴化培地 (すなわち、培養上清)とは、細胞を培養し、得られた培養物の上清 をいう。特に、本発明に用いられる馴化培地は、培養中において、ストロマ細胞株が 産生する因子等を含有しうる。
[0038] 前記ストロマ細胞としては、血液細胞を支持する細胞株であればよぐ例えば、 OP 9細胞株、 S 17細胞株 (マウス骨髄ストロマ細胞)、 MS— 5細胞株 (マウス骨髄ストロマ 細胞)等が挙げられる。また、本発明においては、前記ストロマ細胞株と同等の血液 細胞を支持する能力を有する細胞であれば、前記ストロマ細胞株に代えて、マウス胎 仔卵黄嚢 (yolk sac)、マウス胎仔肝、マウス胎仔の大動脈生殖中腎領域( aorta- gonad- mesonephros; AGM)、マウス胎仔背大動脈に沿った内胚葉( para-aortic splanchnopleura; PsP)などの造血組織から分離された初代培養細胞を 用いてもよい。なお、これら細胞株および初代培養を用いるにあたっては、後述する 血清の種類を、ゥシ血清に代えて他の動物血清、例えば、ゥマ血清等に代えてもよく 、また、該血清の濃度を変えてもよい。
[0039] なお、前記培養上清は、胚性幹細胞力 指様細胞の分ィ匕には要求されるが、胚性 幹細胞力 CD45陽性の造血幹細胞への分ィ匕の際、全過程に渡って必ずしも必要 ではなぐ場合によっては指様細胞力 CD45陽性の造血幹細胞への分ィ匕過程にお いて一過性に前記培養上清の使用を省略することが可能である。
[0040] 本発明においては、前記ストロマ細胞は、放射線が照射された細胞であってもよぐ 未処理の細胞であってもよい。前記ストロマ細胞株に放射線を照射することにより、成 分調整を行うことができる。例えば、前記ストロマ細胞株に放射線を照射することによ り、前記ストロマ細胞株の増殖の速度を遅くして、前記ストロマ細胞株の培養に用いる 培養液中に含まれる栄養成分の消費率を低くすることができる。また、その結果とし て前記ストロマ細胞株力 排出される老廃物を少なくし、胚性幹細胞が血液細胞又 は血管内皮細胞に分ィ匕するために必要となる前記ストロマ細胞株により産生される養 分と前記栄養成分とを高い割合で抽出できる点で優れている。なお、本発明におい ては、放射線の照射に代えて、増殖の速度を制御できる他の手法を行なってもよい。 さらに増殖速度をコントロールせずに培養した場合にも、コンフルェントになる前に培 養上清を回収した上で、透析等の手法により、血液細胞又は血管内皮細胞に分ィ匕 するために必要となる因子を損なうことなぐ前記ストロマ細胞株により消費された栄 養成分の補給と、前記ストロマ細胞株により産生された養分と老廃物の除去とを行な つて得られた馴化培地を使用してもよい。
[0041] なお、前記放射線の線量は、前記ストロマ細胞の増殖速度を安定的に抑制する観 点から、 40Gy以上であり、好ましくは、 50Gy以上である。一方、前記ストロマ細胞の 馴化培地において、胚性幹細胞を血液細胞および血管内皮細胞へ分化させる効果 を十分に発揮させる観点及び胚性幹細胞力 血液細胞又は血管内皮細胞への分 化に必要となる前記ストロマ細胞が産生する因子等を十分に得る観点から、 90Gy以 下であり、好ましくは、 80Gy以下であり、より好ましくは、 70Gy以下であることが望ま しぐ特に好ましくは、 60Gy以下であることが望ましい。
[0042] 放射線の照射は、例えば、 X線照射装置〔商品名: MBR— 1520R— 3、製造元:株 式会社 日立メディコ(英語名: Hitachi Medical Corporation) ]を用い、管電圧 150kV、管電流 20mAで、フィルターを 0. 5AL + 0. lCuにセットし、試料室内にス トロマ細胞の培養ディッシュを設置し、照射することにより行なわれうる。
[0043] また、本発明の無フィーダ一分ィ匕用培地には、放射線照射、増殖の速度を制御で きる他の手法等により、ストロマ細胞の増殖の速度を遅くし、製造された馴化培地を 用いてもよい。
[0044] さらに、本発明に用いられる馴化培地は、前記ストロマ細胞を培養して得られた馴 化培地と同等の成分を有する人工的に合成された馴化培地であってもよい。ここで、 「ストロマ細胞を培養して得られた馴化培地と同等の成分」とは、前記ストロマ細胞を 培養して得られた馴化培地中に含まれる成分若しくはその誘導体を! ヽ、かかる成 分は、適切な手段、例えば、質量分析、各種クロマトグラフィー、 NMR等で分析する ことにより同定されうる。
[0045] 前記ストロマ細胞の馴化培地は、例えば、
A)ストロマ細胞を維持するに適した培地でコンフルェントにならな 、ように(すなわち 、コンフルェントになる前まで)培養する工程、
B)前記工程 A)で得られた細胞を、ストロマ細胞及び胚性幹細胞を維持するに適し た培地で培養する工程、及び
C)前記工程 B)で得られた培養物カゝらストロマ細胞を除去する工程 を含むプロセスにより得られうる。また、前記ストロマ細胞に放射線を照射する場合、 前記ストロマ細胞の馴化培地は、
A)ストロマ細胞を維持するに適した培地でコンフルェントにならな 、ように(すなわち 、コンフルェントになる前まで)培養する工程、
Β' )前記工程 a)で得られた細胞に放射線を照射し、得られた細胞を、ストロマ細胞及 び胚性幹細胞を維持するに適した培地で培養する工程、及び
C ' )前記工程 B' )で得られた培養物カゝらストロマ細胞を除去する工程
を含むプロセスにより得られうる。
[0046] 前記「ストロマ細胞を維持するに適した培地」としては、具体的には、 OP9細胞の場 合、例えば、 OP9細胞培養用培地 1 1 {組成: α -ΜΕΜ, 20体積% 熱不活化ゥシ 胎仔血清、 ImM j8—メルカプトエタノール、 1. 6mM L—グルタミン、終濃度 100U /ml ペニシリン、終濃度 100 gZml ストレプトマイシン }、 OP9細胞培養用培地 2— 1 {組成: α - MEM、 20体積% 熱不活化ゥシ胎仔血清、 0. ImM β—メルカプ トエタノール、 ImM L グルタミン、終濃度 lOUZml ペニシリン、終濃度 10 gZ ml ストレプトマイシン }等が挙げられる。
[0047] 前記「ストロマ細胞及び胚性幹細胞を維持するに適した培地」としては、後述の OP 9細胞培養用培地 1—2{組成:イスコフ改変ダルベッコ培地、 15体積% 熱不活化ゥ シ胎仔血清、 ImM j8—メルカプトエタノール、 2mM L グルタミン }、 OP細胞培養 用培地 2— 2 {組成:イスコフ改変ダルベッコ培地、 15体積% 熱不活化ゥシ胎仔血清 、0. ImM j8—メルカプトエタノール、 3mM L—グルタミン、 5 M ヒドロコルチゾ ン、終濃度 lOUZml ペニシリン、終濃度 10 gZml ストレプトマイシン }等が挙げ られる。
[0048] 前記馴化培地を製造する場合、ストロマ細胞の培養条件は、用いる細胞の種類に より適宜設定することができる力 例えば、 37°C、 5体積% COの条件が挙げられる
2
[0049] 前記ストロマ細胞の馴化培地は、より具体的には、 OP9細胞を用いる場合、
- 前記 OP9細胞培養用培地 1—1または 2—1で、 10cm培養ディッシュ上、 37°C、 5 体積% COで培養し、 1一 2日毎に継代し、 - 60— 70% コンフルェントになった OP9細胞のディッシュに、 10分程度の時間で 46Gyの γ線を照射し、 37°C、 5体積% COで 4時間培養した後、リン酸緩衝化生
2
理的食塩水もしくはエンドトキシンを含まな 、等張液、または「ストロマ細胞及び胚性 幹細胞を維持するに適した培地」、 OP9細胞培養用培地 1 1もしくは 2— 1で OP9細 胞を洗浄し、
- 該ディッシュに、 10mlの前記 OP細胞培養用培地 1—2または 2— 2を添カ卩し、 37 °C、 5体積% COで約 12時間培養した後、
2
遠心分離とそれに続くろ過により培養物力 上清が得られる。
[0050] 本発明の無フィーダ一分ィ匕用培地は、 1つの実施態様では、前記馴化培地と、霊 長類動物胚性幹細胞を維持するための培地成分 (例えば、培養液)と、血清と、サイ トカインとを含有した無フィーダ一分ィ匕用培地である。なお、かかる実施態様の馴化 培地は、酸ィ匕防止剤を含有していてもよい。
[0051] 前記「霊長類動物胚性幹細胞を維持するための培地成分」としては、霊長類動物胚 性幹細胞を維持するために用いられて 、る通常の培地であればよぐ具体的には、 例えば、イスコフ改変ダルベッコ培地(IMDMZF12)等が挙げられる。
[0052] 前記血清は、胚性幹細胞を維持するためのものであり、例えば、ヒト血清、ゥシ血清
、ゥシ胎仔結成、ゥマ血清等が挙げられる。なお、胚性幹細胞の培養においては、血 清のロットによる培養の成否のばらつきをなくす観点から、該血清のロットチェックを 行うことが望ましい。前記ロットチェックとは、培養実験を行うことによって前記胚性幹 細胞との適合性を決定することをいう。なお、本発明においては、胚性幹細胞株ごと に適合する血清のロットが異なってもよい。また、本発明においては、前記血清と同 等の成分を用いてもよい。
[0053] 本発明に用いられるサイト力インは、胚性幹細胞を血液細胞及び Z又は血管内皮 細胞に分ィ匕させるための因子であればよぐ特に限定されないが、例えば、幹細胞因 子(SCF)、顆粒球コロニー刺激因子(G— CSF)、顆粒球マクロファージコロニー刺 激因子(GM— CSF)、マクロファージコロニー刺激因子(M— CSF)、エリス口ポェチ ン(EPO)、トロンボポェチン(TPO)、 Flt3リガンド(FL)、インターロイキン(IL) (例え ば、インターロイキン 3、インターロイキン 6、インターロイキン 15、インターロイキ ンー 11等)、血管内皮成長因子 (VEGF)、骨形成タンパク質 (BMP ;例えば、 BMP - 4等)、オンコスタチン M、酸性および塩基性線維芽細胞増殖因子 (acidic FGF、 basic FGF)、アンギオボイエチンファミリー(例えば、 Angiopoietin- 1および
Angiopoietin-2)等が挙げられる。前記 G-CSFは、好中球の生産を強化する機能を 有する。また、 EPO (エリスロポエチン)は、酸素運搬作用を有する赤血球の産生を 誘導する。また、 TPO (トロンボポェチン)は、造血幹細胞の増幅、および止血作用( 血液を固めて出血を止める作用)を有する巨核球、血小板の産生を誘導する。また、 インターロイキン 15は、がん細胞などを攻撃するナチュラルキラー細胞 (NK細胞) を誘導する。
[0054] 本発明は、他の側面では、無フィーダ一分化用培地と、細胞外マトリックスでコート された培養容器とを含有してなる、無フィーダ一分ィ匕用培養システムに関する。
[0055] 本発明の無フィーダ一分ィ匕用培養システムは、本発明の無フィーダ一分ィ匕用培地 と、細胞外マトリックスでコートされた培養容器とを含有することに 1つの大きな特徴が ある。したがって、本発明の無フィーダ一分ィ匕用培養システムによれば、異種動物細 胞の非存在下に、異種動物細胞の混入、異種動物由来ウィルスの感染等を実質的 に伴うことなぐ霊長類胚性幹細胞力 高い厳密性での制御で血液細胞に分化させ ることができるという優れた効果を発揮する。
[0056] 前記細胞外マトリックスとしては、コラーゲン、ラミニン、フイブロネクチン、ヒアルロン 酸、その他の細胞外に分泌され細胞接着を増進する成分が挙げられる。血液細胞お よび血管内皮細胞への高効率での分化誘導の観点から、好ましくは、コラーゲンで ある。前記コラーゲンとしては、例えば、 IV型コラーゲン等が挙げられる。
[0057] なお、前記細胞外マトリックスによる培養容器のコーティングは、慣用の方法により 行なうことができる。また、本発明においては、前記細胞外マトリックスによるコーティ ング、例えば、コラーゲンによるコーティングを編み目立体構造にすることにより、胚 性幹細胞が、横や上の面でもコラーゲンと接触してコラーゲンとの相互作用、情報交 換が増し、生存率と分化率が向上すると考えられる。
[0058] 前記培養容器は、細胞の培養に通常用いられる容器であればょ ヽ。
[0059] 本発明の無フィーダ一分ィ匕用培養システムは、霊長類動物胚性幹細胞から血液細 胞への分ィ匕を行なうための使用に好適である。
[0060] 本発明は、他の側面では、本発明の無フィーダ一分化用培地で、霊長類動物胚性 幹細胞を無フィーダ一下に培養して、該胚性幹細胞力 血液細胞へ分ィ匕させること を特徴とする、霊長類動物胚性幹細胞から血液細胞への無フィーダ一分化方法 (以 下、無フィーダ一血液細胞分化方法という)に関する。
[0061] 本発明の無フィーダ一血液細胞分ィ匕方法は、本発明の無フィーダ一分化用培地 が用いられていることを 1つの大きな特徴とする。したがって、本発明の無フィーダ一 血液細胞分化方法によれば、本発明の無フィーダ一分ィ匕用培地が用いられているた め、異種動物細胞の混入、異種動物由来ウィルスの感染等を実質的に伴うことなく 霊長類動物胚性幹細胞力 血液細胞への分ィ匕を行なうことができるという優れた効 果を発揮する。
[0062] また、本発明の無フィーダ一血液細胞分ィ匕方法は、本発明の無フィーダ一分化用 培地と、細胞外マトリックスでコートされた培養容器とが用いられていることを 1つの大 きな特徴がある。したがって、本発明の無フィーダ一血液細胞分ィ匕方法によれば、霊 長類動物胚性幹細胞から高い厳密性での制御で血液細胞に分化させることができる と!ヽぅ優れた効果を発揮する。
[0063] 本発明の無フィーダ一血液細胞分ィ匕方法においては、具体的には、霊長類動物 胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無フィーダ一下、本発 明の無フィーダ一分ィ匕用培地で培養して、指様細胞 (finger— like cell)を生成させ 、さらに続けて培養して、血液細胞を生成させる。
[0064] 前記「指様細胞 (finger— like cell)」とは、図 7のパネル Aに示されるように、指又 は関節様の構造の形態を示す細胞をいう。また、力かる「指様細胞」は、未分化霊長 類動物胚性幹細胞を本発明の無フィーダ一分ィ匕用培地で培養開始後、力-クイザ ル胚性幹細胞を用いた場合、 1日力ら 7日(平均 3日)で出現する細胞であり、血液細 胞系及び血管内皮細胞系のいずれにも分化する能力を有する、いわゆる「へマンジ オブラスト」としての活性を持つ細胞集団である。また、血管内皮細胞のマーカーとし ても知られる CD151に対して陽性である力 マウスにぉ 、て「へマンジオブラスト」活 性を持つことが示されて ヽる血球産生性血管内皮 (hematopoietic endothelium)のマ 一力一である VE—力ドヘリンは陰性であり、霊長類にお!、てへマンジォブラスト活性 を示す新規な細胞集団として位置づけられる。また指様細胞は、未分化中胚葉マー カーである Flk— 1や、様々な組織における未熟細胞で発現して ヽる c kitが陽性で あることから、組織幹細胞としての特徴も持するものと考えられる。なお、前記「へマン ジオブラスト」活性とは、一つの細胞が培養条件によって血液細胞系または血管内皮 細胞系の ヽずれにも分化する能力を ヽぅ。
[0065] 本発明には、霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた培養容 器中、無フィーダ一下、前記無フィーダ一分ィ匕用培地で培養することを特徴とする、 指様細胞の製造方法も含まれる。
[0066] さらに、本発明には、力かる指様細胞も含まれる。本発明の指様細胞は、霊長類動 物胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無フィーダ一下、本 発明の無フィーダ一分ィ匕用培地で培養することにより得られる細胞である。
[0067] 前記指様細胞は、例えば、指又は関節様の構造の形態、 CD151、 Flk— 1、 c kit 、 VE—力ドヘリン等のマーカーの発現を指標としてソーティングし、分離することがで きる。具体的には、例えば、前記マーカー、例えば、 CD151、 Flk-1、 c-kit、 VE- カドヘリン等に対する抗体を用いたフローサイトメトリーによるセルソーティング、該抗 体を保持した磁気ビーズを用いるセルソーティング等により目的とする指様細胞を分 離することができる。
[0068] 前記指様細胞は、例えば、分化系譜上さらに下流の細胞である血液細胞および血 管内皮細胞の臨床目的並びに基礎研究を目的とした供給を可能にする。即ち、前 者においては血液疾患および血管性病変を伴なう疾患群に対する細胞療法として のマテリアルを供給することはもちろん、増結幹細胞または骨髄系前駆細胞が多様 な組織において細胞融合または当該組織における横分化 (transdifferentiation) を介して幅広 、組織の再生に関与して 、ることから、再生医療一般にお 、て治療の ための有効な材料を供給することができる。また、後者においては、霊長類の造血細 胞および血管内皮の分化'発生機構に関する基礎研究のための有効なマテリアルを 供給することはもちろん、特にこれまで研究が遅れて 、た初期造血機構 (生体を用い た解析はマウスにぉ ヽても不可能とされて 、る)の解析にぉ ヽても指様細胞はその分 子レベルでの解析を容易、正確、かつ包括的なものにする手段を提供することがで きる。
[0069] また、前記指様細胞は、血管内皮細胞特異的マーカーである VE—力ドヘリン、 CD 151等のマーカーの発現を、例えば、特異的抗体、特異的プローブ、プライマー対 等を用いた慣用の方法により調べ、 VE—力ドヘリン陰性 CD151陽性を示すことによ り確認されうる。
[0070] 前記指様細胞は、例えば、前記「ストロマ細胞及び胚性幹細胞を維持するのに適し た培地」、または場合によりこれに各種サイト力インを添加した培地を用いて培養する ことでアクティブに増幅される。また、トリプシン等により培養容器力 指様細胞を剥離 した後に、同じ培養容器に前記の培地を補充して培養を続けることにより、指様細胞 は、容易に再現性をもって増幅され、少なくとも 2ヶ月以上の間、同一の培養容器内 で培養維持される。
[0071] 本発明の無フィーダ一血液細胞分化方法によれば、造血幹細胞又は造血前駆細 胞を、造血系特異的マーカーである CD34及び CD45に陽性である細胞(CD34陽 性 CD45陽性細胞)として得ることができる。
[0072] 本発明の無フィーダ一血液細胞分ィ匕方法により得られる CD34陽性 CD45陽性細 胞は、核 Z細胞質比が高ぐ顕著な核小体を有するという性質を示す。また、メチル セルロース等の半固形培地を用いたコロニーアツセィにおいて、ブラストコ口-一を高 効率 (plating efficiency>80%)に形成(図 17参照)し、造血能力の非常に高い未分化 造血細胞としての性質を示す。したがって、前記 CD34陽性 CD45陽性細胞から、造 血幹細胞、リンパ球系幹細胞、リンパ球系榭状細胞前駆細胞、リンパ球系榭状細胞 、 Tリンパ球前駆細胞、 T細胞、 Bリンパ球前駆細胞、 B細胞、形質細胞、 NK前駆細 胞、 NK細胞、骨髄系幹細胞、骨髄系榭状細胞前駆細胞、骨髄系榭状細胞、肥満細 胞系前駆細胞、肥満細胞、好塩基球系前駆細胞、好塩基球、好酸球系前駆細胞、 好酸球、顆粒球マクロファージ系前駆細胞、マクロファージ前駆細胞、単球、マクロフ ァージ、破骨細胞前駆細胞、破骨細胞、好中球前駆細胞、好中球、巨核球系前駆 細胞、巨核球、血小板、前期赤芽球系前駆細胞、後期赤芽球系前駆細胞、赤血球 等の細胞に分ィ匕させることができる。 [0073] 霊長類動物胚性幹細胞を前記無フィーダ一分化用培地に播種する際、培養ディッ シュ上で未分化状態に維持された胚性幹細胞のコロニーの中央部の未分化胚性幹 細胞の集団を取り出し、細胞外マトリックスでコートされた培養容器として、 IV型コラ 一ゲンでコートされた 6ゥエルディッシュを用いる場合には、 1ゥエルあたり、 1 X 101— 1 X 103細胞となるように播種することが望ましぐさらに 1 X 102細胞となるように播種 することが望ましい。
[0074] 無フィーダ一分ィ匕用培地での霊長類動物胚性幹細胞の培養条件は、用いられる 霊長類動物胚性幹細胞の種類により適宜設定することができるが、例えば、 37°C、 5 体積% COの条件等が挙げられる。
2
[0075] また、培養中、培地は、霊長類動物胚性幹細胞に由来する細胞の形態や数に応じ 、適宜、新しい無フィーダ一分ィ匕用培地に交換すればよい。
[0076] 無フィーダ一分ィヒ用培地での霊長類動物胚性幹細胞の培養開始後、数日、例え ば、力二クイザル胚性幹細胞の場合、約 3日の時点で前記指様細胞が生成され、コ ンフルェントになった後、前記指様細胞から、円形細胞が生成される。
[0077] 前記円形細胞が出現した後は、栄養分の枯渴を防ぐという観点から、培地交換を 2 日後とに行なうことが望ましい。
[0078] 本発明の無フィーダ一血液細胞分ィ匕方法により得られた前記円形細胞は、例えば 、幹細胞マーカーである CD34、造血系特異的マーカーである CD45等のマーカー の発現を、例えば、特異的抗体、特異的プローブ、プライマー対等を用いた慣用の 方法により調べ、 CD34陽性 CD45陽性を示すことにより確認されうる。
[0079] 本発明は、別の側面では、霊長類動物胚性幹細胞を、細胞外マトリックスでコートさ れた培養容器中、無フィーダ一下、本発明の無フィーダ一分化用培地で培養して、 指様細胞を生成させ、該指様細胞を、新たな培地が入り、かつ細胞外マトリックスでコ ートされた培養容器に移してさらに培養して、血管内皮細胞を生成させることを特徴 とする、霊長類動物胚性幹細胞から血管内皮細胞への無フィーダ一分化方法 (以下 、無フィーダ一血管内皮細胞分化方法という)に関する。
[0080] 本発明の無フィーダ一血管内皮細胞分ィ匕方法は、本発明の無フィーダ一分ィ匕用 培地が用いられていることを 1つの大きな特徴とする。したがって、本発明の無フィー ダー血管内皮細胞分化方法によれば、異種動物細胞の混入、異種動物由来ウィル スの感染等を実質的に伴うことなく霊長類動物胚性幹細胞力 血管内皮細胞への分 化を行なうことができるという優れた効果を発揮する。
[0081] 本発明の無フィーダ一血管内皮細胞分ィ匕方法において、指様細胞を生成させるま での工程は、前記無フィーダ一血液細胞分化方法の場合と同様である。
[0082] 細胞外マトリックスでコートされた培養容器力ゝらの指様細胞の分離は、培養容器か らの細胞の剥離に用いられる慣用の方法、例えば、トリプシン処理等により行なわれ うる。
[0083] 細胞を培養容器から剥離させた後、分離された指様細胞を、新 ヽ無フィーダ一分 化用培地の入った、細胞外マトリックスでコートされた培養容器に移してさらに培養す る。
[0084] 指様細胞の培養条件は、前記無フィーダ一血液細胞分化方法における胚性幹細 胞の培養条件と同様であればよぐ例えば、 37°C、 5体積% COの条件等が挙げら
2
れる。
[0085] 本発明の無フィーダ一血管内皮細胞分化方法によれば、血管内皮細胞を、造血系 特異的マーカーである CD34及び CD45に陰性であり、内皮細胞特異的マーカーで ある VE-カドヘリンに陽性である細胞 (CD34陰性 CD45陰性 VE-カドヘリン陽性細 胞)として得ることができる。また、前記 CD34陰性 CD45陰性 VE—力ドヘリン陽性細 胞は、敷石状の形状を示す。また、前記 CD34陰性 CD45陰性 VE—力ドヘリン陽性 細胞は、新しいディッシュで数ケ月間継代を行なうことができ、安定的に増幅すること ができるという優れた性質を示す。具体的には、前記敷石状の形状を示す CD34陰 性 CD45陰性 VE—力ドヘリン陽性細胞は、例えば、サイト力インを含有する OP9馴化 培地で、数ケ月間継代を行なうことができる細胞であり、インビトロで自己増幅が可能 である。そのため、力かる細胞によれば、移植片の大量調製が可能になるという優れ た効果を発揮する。また、前記敷石状の形状を示す CD34陰性 CD45陰性 VE -力ド ヘリン陽性細胞を、血管内皮の培養に適した培地で培養することにより、血管内腔を 形成する索状構造細胞を得ることができる。かかる血管内腔を形成する索状構造細 胞は、例えば、移植直前の機能的細胞の調製に有用である。 [0086] 本発明の無フィーダ一血管内皮細胞分ィ匕方法により得られた血管内皮細胞は、例 えば、造血系特異的マーカーである CD34及び CD45、内皮細胞特異的マーカー である VE—力ドヘリン等のマーカーの発現を、例えば、特異的抗体、特異的プローブ 、プライマー対等を用いた慣用の方法により調べ、 CD34陰性 CD45陰性 VE—力ド ヘリン陽性を示すことにより確認されうる。
[0087] 本発明は、他の側面では、霊長類動物胚性幹細胞を、細胞外マトリックスでコートさ れた培養容器中、無フィーダ一下、本発明の無フィーダ一分化用培地で培養して、 該胚性幹細胞から血液細胞へ分化させ、ついで、該血液細胞を剥離させて単離す ることを特徴とする、血液細胞の製造方法に関する。
[0088] 本発明の血液細胞の製造方法は、本発明の無フィーダ一分ィ匕用培地が用いられ ていることに 1つの大きな特徴がある。したがって、本発明の血液細胞の製造方法に よれば、異種動物細胞の混入、異種動物由来ウィルスの感染等を実質的に伴うこと なぐ高純度の血液細胞を得ることができると 、う優れた効果を発揮する。
[0089] 本発明の血液細胞の製造方法は、霊長類動物胚性幹細胞を、細胞外マトリックス でコートされた培養容器中、本発明の無フィーダ一分ィ匕用培地で培養していることに 1つの大きな特徴がある。したがって、本発明の血液細胞の製造方法によれば、霊長 類動物胚性幹細胞から高い厳密性の制御で血管内皮細胞に分化させることができ ると!/ヽぅ優れた効果を発揮する。
[0090] また、本発明の血液細胞の製造方法の別の実施態様では、血液細胞の剥離後の 培養容器に本発明の無フィーダ一分ィ匕用培地を添加し、無フィーダ一下にさらに培 養して、血液細胞を得る方法に関する。
[0091] 力かる実施態様の血液細胞の製造方法によれば、血液細胞の剥離後の培養容器 に、本発明の無フィーダ一分ィ匕用培地を添加し、無フィーダ一下にさらに培養するこ とにより、血液細胞を得ることができる。したがって、本発明の血液細胞の製造方法に よれば、長期持続的に、優れた再生産性で血液細胞を得ることができるという優れた 効果を発揮する。
[0092] 本発明の血液細胞の製造方法は、本発明の無フィーダ一血液細胞分ィ匕方法と同 様の手順により行なわれうる。 [0093] なお、本発明の血液細胞の製造方法においては、目的とする血液細胞の種類に応 じて、 CD34陽性 CD45陽性細胞をさらに適切な条件下に分化させてもよぐ無フィ ーダ一分ィ匕用培地中のサイト力インを適宜変更してもよい。本発明の血液細胞の製 造方法において、種々のサイト力インによる血液細胞の製造の例としては、 G—CSF および GM CSFによる顆粒球への分化、 GM CSFおよび M CSFによる単球 Z マクロファージへの分化、 IL—15による NK細胞への分化、 EPOによる赤血球への 分化、 TPOによる巨核球 Z血小板への分化、 IL 4および GM— CSFによる榭状細 胞への分化等が挙げられる。
[0094] 本発明の血液細胞の製造方法において、目的とする血液細胞は、例えば、当該血 液細胞に特異的なマーカー、例えば、 CD34、 CD45等のマーカーの発現を指標と してソーティングし、分離することができる。具体的には、例えば、前記マーカー、例 えば、 CD34、 CD45等に対する抗体を用いたフローサイトメトリーによるセルソーティ ング、該抗体を保持した磁気ビーズを用いるセルソーティング等により目的とする血 液細胞を分離することができる。
[0095] なお、本発明の血液細胞の製造方法にお!、ては、 OP9細胞等の繊維芽細胞系の ストロマ細胞力 得られた無フィーダ一分ィ匕用培地での培養後、 MS— 5細胞等の骨 髄細胞系のストロマ細胞力も得られた無フィーダ一分ィ匕用培地での培養を行なうこと により、マクロファージを製造することができる。
[0096] 力かる製造方法により得られる血液細胞も本発明に含まれる。
[0097] 本発明の血液細胞は、本発明の製造方法により得られたものであるため、異種動 物細胞の混入、異種動物由来ウィルスの感染等が実質的にないという優れた性質を 示す。また、本発明の血液細胞は、本発明の製造方法により得られたものであるため 、高純度で均質な性質を示す。したがって、本発明の血液細胞は、輸血用血液、輸 血用血液の製造のための使用、および造血機構等に関する基礎研究における材料 等に用いることができる。
[0098] 本発明の血液細胞は、例えば、セルバンカー(十慈科学社製)などの細胞凍結保 存専用液等の培地で、窒素ガス凍結条件下で、維持されうる。
[0099] 本発明は、別の側面では、霊長類動物胚性幹細胞を、細胞外マトリックスでコートさ れた培養容器中、無フィーダ一下、本発明の無フィーダ一分化用培地で培養して、 指様細胞を生成させ、該指様細胞を、新たな培地が入り、かつ細胞外マトリックスでコ ートされた培養容器に移してさらに培養して、該胚性幹細胞カゝら血管内皮細胞へ分 化させ、該血管内皮細胞を単離することを特徴とする、血管内皮細胞の製造方法に 関する。
[0100] 本発明の血管内皮細胞の製造方法は、霊長類動物胚性幹細胞を、細胞外マトリツ タスでコートされた培養容器中、無フィーダ一下、本発明の無フィーダ一分化用培地 で培養して、指様細胞を生成させることに 1つの大きな特徴がある。したがって、本発 明の血管内皮細胞の製造方法によれば、異種動物細胞の混入、異種動物由来ウイ ルスの感染等を実質的に伴うことなぐ血管内皮細胞を得ることができる。
[0101] 本発明の血管内皮細胞の製造方法は、指様細胞を、新たな培地が入り、かつ細胞 外マトリックスでコートされた培養容器に移してさらに培養することに 1つの大きな特徴 力 Sある。したがって、本発明の血管内皮細胞の製造方法によれば、驚くべく血管内皮 細胞を高い厳密性での制御により得ることができ、さらに、高純度の血管内皮細胞を 得ることができると!/ヽぅ優れた効果を発揮する。
[0102] 本発明の血管内皮細胞の製造方法において、血管内皮細胞は、例えば、 VE—力 ドヘリン、 PECAM (CD31)等のマーカーの発現を指標としてソーティングし、分離 することができる。具体的には、例えば、前記 VE-カドヘリン、 PECAM (CD31)等 のマーカーに対する抗体を用いたフローサイトメトリーによるセルソーティング、該抗 体を保持した磁気ビーズを用いるセルソーティング等により血管内皮細胞を分離する ことができる。
[0103] 力かる製造方法により得られる血管内皮細胞も本発明に含まれる。
[0104] 本発明の血管内皮細胞によれば、本発明の製造方法により得られたものであるた め、異種動物細胞の混入、異種動物由来ウィルスの感染等が実質的にないという優 れた性質を示す。また、本発明の血管内皮細胞は、本発明の製造方法により得られ たものであるため、高純度で均質な性質を示す。
[0105] したがって、本発明の血管内皮細胞によれば、血管損傷の治療や局所の血流の改 善のための材料、移植材料、これらの材料の製造のための使用、および血管内皮の 発生 ·分化機構等に関する基礎研究における材料等に用いることができる。
[0106] また、本発明の血管内皮細胞によれば、例えば、コラーゲンゲル等中で培養するこ とにより、立体的な血管構造を得ることも可能である。
[0107] 本発明の血管内皮細胞は、例えば、セルバンカー(十慈科学社製)などの細胞凍 結保存専用液等の培地で、窒素ガス凍結条件下で、維持されうる。
[0108] なお、本発明の無フィーダ一分ィ匕用培地及びそれを用いる分ィ匕方法は、胚性幹細 胞の血液への分ィ匕技術に限定されるものでなぐ添加するサイト力インの種類によつ てはさまざまな細胞への分ィ匕技術として応用展開が可能である。
[0109] 以下、本発明を実施例に基づき詳細に説明するが、本発明はこれら実施例に限定 されるものではない。
実施例 1
[0110] ストロマ細胞の馴化培地の調製
ストロマ細胞である OP9細胞を、 OP9細胞培養用培地 1— 1 {組成: α— MEM〔イン ビトロジェン(Invitrogen Corp. )製〕、 20体積% 熱不活化ゥシ胎仔血清〔ピーェ 一エーラボラトリーズゲーェムベーノヽー (PAA Laboratories GmbH)〕、 lmM j8—メルカプトエタノール〔シグマケミカル(Sigma Chemical Co. )製〕、 1. 6mM
L—グルタミン〔インビトロジェン(Invitrogen Corp. )製〕、終濃度 lOOUZml ぺ -シリン〔インビトロジェン(Invitrogen Corp. )製〕、終濃度 ΙΟΟ gZml ストレプ トマイシン〔インビトロジェン(Invitrogen Corp. )製〕 }で、 10cm培養ディッシュ上、 COインキュベーターにおいて、 37°C、 5体積0 /0 COで培養した。
2 2
[0111] OP9細胞は、コンフルェントにならないように、約 3日毎に継代して維持した。具体 的には、ザブコンフルェントの OP9細胞力 培養液を除去し、 0. 25重量% トリプシ ンー HBSS (Hanks balanced salt solution)溶液で 2分程度反応させ細胞を剥 離し、前記 OP9細胞培養用培地で細胞を洗浄した後、数分の 1程度に細胞密度を 下げて前記培地に細胞を再懸濁する。当該細胞を、直径 10cm培養ディッシュに播 種し、 COインキュベーターにおいて、 37°C、 5体積0 /0 COで培養した。
2 2
[0112] 前記培地で培養中、コンフルェントになる前に、培養ディッシュに放射線を照射し た(150kV、 20mA, 60Gv、 10分間)。その後、培養ディッシュに、 0. 25重量0 /0 卜 リプシン HBSS (Hanks balanced salt solution)溶液を添カ卩し、ピペッティング しながら、細胞を剥がした。得られた細胞を含む溶液から、トリプシン溶液を除去して 、 OP9細胞培養用培地 1— 2{組成:イスコフ改変ダルベッコ培地(Iscove' s modifi ed Dulbecco ' s medium ;IMDM)〔シグマケミカノレ (Sigma Chemical Co. ) 製〕、 15重量% 熱不活ィ匕ゥシ胎仔血清〔ピーエーエーラボラトリーズグーエムベー ハー(PAA Laboratories GmbH)〕、 lmM j8—メルカプトエタノール〔シグマケミ カル(Sigma Chemical Co. )製〕、 2mM L—グルタミン〔インビトロジェン(Invitr ogen Corp. )製〕 }で細胞を 1回洗浄した。その後、得られた細胞を、前記 OP9細 胞培養用培地 1 2に懸濁した。得られた細胞懸濁液を、 6ゥエル平底マルチウエル プレート上、 1ゥエル当たり 3 X 104細胞でとなるように入れ、 COインキュベーターに
2
おいて、 37°C、 5体積% COで培養した。
2
[0113] 1日後、 2日後、 3日後に培養物の上清を採取し、新しい OP9細胞培養用培地 1 2 を添加した。前記培養物の上清を無フィーダ一分ィ匕用 OP9馴化培地 1とした。
実施例 2
[0114] 未分化霊長類動物胚性幹細胞から血液細胞への分化 1
未分化霊長類動物胚性幹細胞として、マウス胎仔から調製された初代線維芽細胞 をフィーダ一細胞として継代された未分ィ匕サル胚性幹細胞を用いた。前記未分化サ ル胚性幹細胞の培養ディッシュに、 0. 25重量% トリプシン HBSS溶液を添カロし、 該細胞を剥がし、分ィ匕誘導用培地 1-1 {組成:前記無フィーダ一分ィ匕用 OP9馴化培 地 1、終濃度 20ngZml 血管内皮成長因子 (VEGF)、終濃度 20ngZml 骨形成 タンパク質 4 (BMP— 4)、 20ng 幹細胞因子(SCF)、終濃度 lOngZml Flt3—リ ガンド}に懸濁した。得られた細胞懸濁液を、コラーゲンコートプレート(ベタトンディキ ンソン社製、マウス IV型コラーゲンでコートされた 6ウェルマルチウエルプレート)に播 種した。その後、前記胚性幹細胞を、 COインキュベーターにおいて、 37°C、 5体積
2
% COで培養した。
2
[0115] 培養開始後 4一 5日で、やや長形の細胞が縦方向に並んだ「川」のような構造が見 られ、血管系への分化が示唆された。
[0116] また、図 2に、培養開始後、 7日目の胚性幹細胞由来細胞のコロニーを示す。培養 開始後 7日で、培地を、分ィ匕誘導用培地 1 2{組成:前記無フィーダ一分ィ匕用 OP9 馴化培地 1、終濃度 20ngZml VEGF、終濃度 20ngZml BMP - 4、終濃度 20η g/ml SCF、終濃度 20ngZml Flt3—リガンド、終濃度 lOngZml インターロイ キン 6 (IL-6)、終濃度 IngZml インターロイキン 3 (IL— 3)、終濃度 IngZml 顆粒球マクロファージコロニー刺激因子 (GM— CSF) }に交換し、培養を続けた。
[0117] 培養開始後 10— 14日で、「川」のような構造物の周りに細胞増殖塊ができ、血液系 への分ィ匕が示唆された。
[0118] 培養開始 14日後、培地 1 2を、分化誘導用培地 1 3{前記無フィーダ一分化用 O P9馴化培地 1、終濃度 20ngZml SCF、終濃度 20ngZml Flt3-リガンド、終濃 度 lOngZml IL— 6、終濃度 IngZml IL— 3、終濃度 IngZml GM—CSF}に交 換し、培養を続けた。
[0119] 図 3に示されるように、培養開始後、 18日ぐらいで血液細胞への完全な分ィ匕が見ら れた。
[0120] また、培養ディッシュに、 0. 25重量0 /0 トリプシン液 lmlを添カ卩し、激しくピぺティン グしながら、 37°Cでインキュベーションすることにより、細胞を回収した。回収した細 胞を、リン酸緩衝ィ匕生理的食塩水(PBS)で洗浄した。その後、 1 X 106細胞を、氷上 で 30分間、 CD34、 CD45等のマーカーに対する一次抗体、すなわち、 PE結合抗 C D34抗体〔ビーディーバイオサイエンシーズ(BD Biosciences)製〕又は FITC結合 抗 CD45抗体〔ビーディーバイオサイエンシーズ(BD Biosciences)製〕と反応させ た。その後、各マーカーの発現レベルを、商品名: FACSCalibur〔ビーディーバイオ サイエンシーズ (BD Biosciences)製〕を用いて解析した。
[0121] 図 4及び図 5に結果を示す。図 4は、 CD34陽性細胞の比率を示す。また、図 5は、 CD45陽性細胞の比率を示す。
[0122] 図 4及び図 5に示されるように、 CD45陽性細胞は、 70. 60%、 CD34陽性細胞は 92. 60%であった。平均的には CD45陽性細胞は、 30— 50%、 CD34陽性細胞は 70— 90%となった。
実施例 3
[0123] 無フィーダ一分ィ匕用 OP9馴化培地の調製 2 OP9細胞は、 OP9細胞培養用培地 2— 1 {組成: α— MEM〔インビトロジェン(Invitr ogen Corp. )製〕、選択されたロットの 20体積% 熱不活化ゥシ胎仔血清〔ピーェ 一エーラボラトリーズゲーェムベーノヽー (PAA Laboratories GmbH) ] , 0. ImM j8—メルカプトエタノール〔シグマケミカル(Sigma Chemical Co. )製〕、 ImM L—グルタミン〔インビトロジェン(Invitrogen Corp. )製〕、終濃度 lOUZml ぺ-シ リン〔インビトロジェン(Invitrogen Corp. )製〕、終濃度 10 gZml ストレプトマイ シン〔インビトロジェン(Invitrogen Corp. )製〕 }で、 10cm培養ディッシュ上、 COィ
2 ンキュベータ一において、 37°C、 5体積0 /0 COで培養した。コンフルェントになる前
2
に、 1一 2日毎に継代を行なった。
[0124] 継代に際して、まず、培養ディッシュ上の培養物カゝら培養上清を吸引し、培養ディッ シュ上の細胞に、 0. 2重量% トリプシン Z0. 02重量% EDTA溶液〔ギブコ(GIB CO)製、カタログ番号: 23200—072〕 2mlを添カ卩し、 37°Cで 2— 3分間インキュべ ーシヨンした。その後、新しい OP9細胞培養用培地 2— 1 8mlを添カ卩し、よく懸濁した 。得られた懸濁物を遠心分離して上清を除去した。その後、 OP9細胞を、前記培養 物の 1Z3-1Z6程度の細胞濃度となるように、新しい OP9細胞培養用培地 2-1 1 0mlに懸濁した。得られた細胞懸濁物を、 10cm培養ディッシュ上に移し、 COイン
2 キュベータ一において、 37°C、 5体積0 /0 COで培養した。
2
[0125] ついで、 10cm培養ディッシュにて 60— 70% コンフルェントになった OP9細胞の ディッシュを、商品名: MBR-1520R-3 (日立メディコ製)の焦点テーブル面 290m mに置き、 46Gyの γ線を 4時間照射した。その後、リン酸緩衝化生理的食塩水(ΡΒ S)で ΟΡ9細胞を洗浄し、前記ディッシュに、 10mlの ΟΡ細胞培養用培地 2 - 2{組成 :イスコフ改変ダルベッコ培地(IMDM)〔インビトロジェン(Invitrogen Corp. )製〕 、選択されたロットの 15重量% 熱不活ィ匕ゥシ胎仔血清〔ピーエーエーラボラトリーズ ゲーェムベーハー(PAA Laboratories GmbH) ] , 0. ImM j8—メノレカプトエタ ノール〔シグマケミカル(Sigma Chemical Co. )製、 3mM L—グルタミン〔インビト ロジェン(Invitrogen Corp. )製〕、 5 M ヒドロコルチゾン、終濃度 lOUZml ぺ -シリン〔インビトロジェン(Invitrogen Corp. )製、終濃度 10 gZml ストレプトマ イシン〔インビトロジェン(Invitrogen Corp. )製〕を添カロした。その後、 OP9細胞を、 COインキュベーターにおいて、 37°C、 5体積0 /0 COで 12時間培養し、第 1回目の
2 2
培養物の上清を回収した。
[0126] その後、残部の OP9細胞に、新しい OP細胞培養用培地 2-2を添加して、前記と同 様に培養した。 12時間後、第 2回目の培養物の上清を回収した。得られた上清を回 収し、すぐに 0. 22 /z m孔のフィルターで濾過し、無フィーダ一分ィ匕用 OP9馴化培地 2を得た。なお、得られた無フィーダ一分ィ匕用 OP9馴化培地 2を、 4°Cで保存した。 実施例 4
[0127] 霊長類動物胚性幹細胞から血液細胞への分化 2
(1)霊長類動物胚性幹細胞未分化維持用 MEFディッシュの調製
胎齢 12. 5-13. 5日の胎仔マウスを子宮より取り出し、脳、四肢、内臓 (消化管、肝 臓、腎臓、肺)、尾を除去して、体幹組織だけを回収した。その後、得られた体幹組織 を解剖用ハサミで細力べ裁断し、ついで、 18G針の内部を数回上下させてさらに細か く分断した。得られた分断組織を、ガラスビーズ 5ml容量を入れた 50ml容チューブ に移し、さら〖こ 0. 25重量% トリプシン液 10mlを添加した。その後、前記分断組 織を、 37°Cで 10分毎に撹拌しながらインキュベーションした。 30分後、前記チューブ に、 10体積% ゥシ胎仔血清を含む DMEM 40mlを添カ卩し、細胞浮遊液を回収し た。前記細胞浮遊液を、滅菌メッシュ (40 m孔、 BD Falcon社製、商品名: Cell Strainer社製)に通して、細胞凝集塊を除去し、細胞ストックを得た。なお、得られた 細胞を、凍結させ、凍結細胞ストックとして保存した。
[0128] 前記凍結細胞ストックを解凍し、 10体積% ゥシ胎仔血清を含む DMEM培地で、 37°C、 5体積% COで培養した。一回継代した後、コンフルェントになった時点で、
2
マイトマイシン C〔シグマ社製〕を、終濃度 lOmgZlとなるように添加し、 37°Cで 3時間 インキュベーションした。その後、細胞を、 PBSで 3回洗浄し、回収し、マイトマイシン C処理胚性線維芽細胞を得た。
[0129] ついで、得られたマイトマイシン C処理胚性線維芽細胞を、 6cmディッシュに 1枚の ディッシュあたり 1 X 106個となるように、播種し、 COインキュベーターにおいて、 37
2
°C、 5体積% COでインキュベーションし、胚性幹細胞未分化維持用 MEFディッシ
2
ュを得た。なお、カゝかる MEFの培養は、胚性幹細胞を播種する 8時間以上前に開始 した。
[0130] (2)霊長類動物胚性幹細胞の未分化維持培養
霊長類動物として、力-クイザル胚性幹細胞 CMK— 6株を用いた。前記力-クイザ ル胚性幹細胞の培養ディッシュから、上清を除去し、胚性幹細胞を PBSで 1回洗浄 した。ディッシュ上の洗浄後の胚性幹細胞に、 0. 25重量% トリプシン液 1mlを添 加し、該胚性幹細胞を 37°Cで 1分間インキュベーションした。その後、すぐにディッシ ュの側面を叩 ヽて胚性幹細胞を浮遊させた。
[0131] 浮遊させた胚性幹細胞に、胚性幹細胞未分化維持用培地 {組成: MEMZF12培 地〔インビトロジェン(Invitrogen Corp. )製〕、選択されたロットの 20体積% 熱不 活化ゥシ胎仔血清(FBS)〔ピーエーエーラボラトリーズゲーェムベーハー(PAA La boratories GmbH)製〕、終濃度 8ngZml 塩基性線維芽細胞成長因子 (bFGF) 〔インビトロジ ン (Invitrogen Corp. )製〕、終濃度 lOngZml 骨形成タンパク質( BMP— 4)〔アールアンドディーシステムズ (R&D Systems Inc. )〕、終濃度 1000 U/ml 白血病阻害因子(LIF)〔ケミコンインターナショナル(Chemicon Internat ional, Inc. )製〕、 0. ImM j8—メルカプトエタノール〔シグマケミカル(Sigma Ch emical Co. )製〕、 ImM L—グルタミン〔インビトロジェン(Invitrogen Corp. )製 〕、終濃度 lOUZml ペニシリン〔インビトロジヱン(Invitrogen Corp. )製〕、終濃 ¾10 μ g/ ml ストレフ。トマづンン〔インヒ、、トロシェン (Invitrogen Corp. )製〕 lml を添加して、それにより、トリプシンを失活させた。
[0132] その後、胚性幹細胞を別チューブに回収した。細胞を、前記胚性幹細胞未分化維 持用培地によく懸濁し、遠心分離して、上清を除去した。得られた細胞を、新しい前 記胚性幹細胞未分化維持用培地 20mlに懸濁した。
[0133] 得られた胚性幹細胞懸濁物を、前記(1)で得られた胚性幹細胞未分化維持用 ME Fディッシュのマウス胚性線維芽細胞上に 1枚のディッシュに 5mlずつ、 4枚のディッ シュに播種し、 COインキュベーターにおいて、 37°C、 5体積% COでインキュベー
2 2
シヨンした。その後、胚性幹細胞を 2— 3日毎に継代し、 2週間程度で維持培養を終 了させた。
[0134] 細胞を、位相差光学顕微鏡〔ォリンパス株式会社製、商品名:1X70〕により直接観 した。
[0135] また、前記細胞について、以下のように、細胞表面における SSEA— 1、 SSEA-4 等のマーカーの発現を調べた。培養終了後のディッシュに、 0. 25重量% トリプシン 液 lmlを添カ卩し、 37°C1分間インキュベーションした後、速やかにディッシュの側面を たたいて胚性幹細胞だけを剥離させた。回収した細胞を、 EDTAなどの 2価のイオン キレート剤を含む等張液で洗浄すると同時にピペッティングにより細胞をほぐした。そ の後、 1 X 106細胞を、氷上で 30分間、 SSEA— 1、 SSEA— 4等のマーカーに対する 一次抗体、すなわち、抗 SSEA— 1抗体〔ケミコンインターナショナル(Chemicon In ternational, Inc. )製〕又は抗 SSEA— 4抗体〔ケミコンインターナショナル(Chemic on International, Inc. )製〕と反応させた。ついで、 SSEA— 1の発現を調べる場 合、二次抗体として、抗マウス IgM抗体〔ァイシーェヌバイオメディカルズ (ICN Bio medicals, Inc. )製〕を用い、 SSEA— 4の発現を調べる場合、二次抗体として、抗マ ウス IgG抗体〔ァイシーェヌバイオメディカルズ(ICN Biomedicals, Inc. )製〕を用 いて、二次抗体反応を行なった。その後、各マーカーの発現レベルを、商品名: FA CSCalibur〔ビーディーバイオサイエンシーズ (BD Biosciences)製〕を用いて解析 した。
[0136] その結果、図 6のパネル Aに示されるように、培養後の細胞は、多角形の細胞質及 び大きな核を有する単一種類の細胞集団力もなる平坦な円形コロニーを形成した。 また、図 6のパネル Bに示されるように、前記細胞は、高レベルの SSEA— 4及び低レ ベルの SSEA— 1を示した。したがって、培養後の細胞の大部分は、未分化の状態で 維持されていると考えられた。
[0137] (3)霊長類動物胚性幹細胞から血液細胞 (造血系細胞)への分化誘導
継代 2日目の胚性幹細胞のコロニーの内部を、先端を細く加工したパスツールピぺ ット (微細キヤピラリー)で大まかに切れ目を入れた。ついで、微細キヤピラリーを用い 、光学顕微鏡下、コロニー中央部にある未分ィ匕胚性幹細胞の集団を吸引し、取り出 した。これにより、マウス胚性線維芽細胞の混入を実質的に排除した。
[0138] 一方、分化誘導用培地 2{組成:前記無フィーダ一分化用 OP9馴化培地 2、終濃度
20ng/ml 血管内皮成長因子 (VEGF)、終濃度 20ngZml BMP— 4、 20ng 幹 細胞因子(SCF)、終濃度 lOngZml Flt3-リガンド、終濃度 lOngZml IL—6、終 濃度 20ngZml IL— 3} 5mlを、 IV型コラーゲンコート— 6ゥエルディッシュ〔ビーディ 一バイオサイエンシーズ(BD Biosciences)〕〖こ添加し、胚性幹細胞の分化誘導に 用いるための培養ディッシュを予め調製してぉ 、た。
[0139] 前記未分ィ匕胚性幹細胞の集団を静かにピペッティングすることにより、部分的にほ ぐし、選択した ESコロニーを、 1ゥエルあたり 1 X 102個になるように前記培養ディッシ ュに播種した。その後、 COインキュベーターにおいて、前記胚性幹細胞を、 37°C
2 、
5体積% COで培養し、分化誘導を行なった。なお、培地を 3— 4目毎に交換して
2
培養を続けた。
[0140] 分化誘導後約 3日で、図 7のパネル A中、矢頭で示されるように、これらは、一端か ら他端まで、比較的一定の幅を有し、矢印で示されるように、所々に、おそらく隣接細 胞間の融合によるものと考えられる関節様構造を示す独特の形態をした細胞 (指様 細胞)が出現した。
[0141] 分化誘導後、 7— 10日目にはコンフルェントになり、培地交換をしながらさらに培養 を続けた結果、指様細胞から出芽したような形態で「円形細胞」が出現した。前記円 形細胞が出現した時期から、 2日毎に培地を交換しながら培養を続けた。その結果、 円形細胞は徐々に増加し、図 7のパネル Cに示されるように、 1週間半から 2週間後に はほぼゥエルの全面が、前記出芽娘細胞に由来する緩く接着したクラスター又はほと んど浮遊する円形細胞で 、つぱいになった。
[0142] ディッシュに、 0. 25重量% トリプシン液 lmlを添カ卩し室温でピペッティングしなが ら円形細胞を回収した。
[0143] 力かる細胞について、前記実施例 2と同様に、細胞表面における CD34、 CD45等 のマーカーの発現を調べ、分化段階を調べた。
[0144] その結果、図 7のパネル Dに示すように、ほとんど全ての円形細胞は、造血細胞、 神経細胞、内皮細胞等の種々の組織の幹細胞マーカーである CD34について陽性 であり、かつ造血系特異的マーカーである CD45について陽性であった。また、ライト ギムザ染色後の形態を調べた結果、図 7のパネル Eに示されるように、前記細胞は 、核 Z細胞質比が高ぐ顕著な核小体を有することが示され、未成熟造血細胞の特 徴と一致した。したがって、円形細胞のほとんど全てが、 CD34陽性 CD45陽性であ り、造血幹細胞又は造血前駆細胞であることがわ力つた。
[0145] さらに、前記「指様細胞」について、未成熟中胚葉のマーカーである Flk— 1、造血 幹細胞をはじめとする未熟な細胞のマーカーである CD34および C kit、血液細胞 全般に対する特異的マーカーである CD45、血管内皮細胞特異的マーカーである V E—力ドヘリン、血管内皮マーカーである CD151等のマーカーに対する一次抗体と 反応させ、場合によっては、二次抗体反応を続けた。ついで、各マーカーの発現レ ベルを、商品名: FACSCalibur〔ビーディーバイオサイエンシーズ (BD Bioscienc es)製〕を用いて解析した。なお、一次抗体として、 PE結合抗 CD34抗体〔ビーディー バイオサイエンシーズ(BD Biosciences)製〕、 FITC結合抗 CD45抗体〔ビーディ 一バイオサイエンシーズ(BD Biosciences)製〕、 PE結合抗 VE—力ドヘリン抗体〔ケ ミコンインターナショナル(Chemicon International, Inc. )製〕、 PE結合抗 CD 133抗体〔ミルテューバイオテック ゲーェムベーハー(Miltenyi Biotech GmbH )製〕、 PE結合抗 Flk— 1抗体〔ビーディーバイオサイエンシーズ(BD Biosciences) 製〕、 PE結合抗 c kit (CD117)抗体〔ビーディーバイオサイエンシーズ(BD Biosc iences)製〕、抗 CD 151抗体〔ビーディーバイオサイエンシーズ(BD Biosciences) 製〕を用いた。
[0146] その結果、図 8に示されるように、前記「指様細胞」は、 VE—力ドヘリン陰性 Flk— 1 陽性 c kit陽性 CD151陽性であった。
実施例 5
[0147] 残存指様細胞による血液細胞の再産生
前記実施例 4の(3)における分化誘導後 7— 10日の段階で、コンフルェントの状態 の指様細胞を含む培養ディッシュに、 0. 25重量% トリプシン液を添カ卩し、室温でピ ペッティングしながら該指様細胞を剥離させた。
[0148] その結果、図 9のパネル Aに示されるように、激しいピペッティングしながら、トリプシ ンで処理したにもかかわらず、わずかに指様細胞が残存した。
[0149] 残存した少量の指様細胞に、前記分化誘導培地 2. 5mlを新たに添加し、 3— 4日 毎に培地交換しながら、 COインキュベータ一中、 37°C、 5体積% COで培養した [0150] その結果、再び指様細胞が盛んに増殖した。さらに、約 1週間でコンフルェントにな り、円形細胞が出現した。以後、 2日毎に培地を交換して培養を続けた結果、図 9の パネル B及び Cに示されるように、 1週間半一 2週間後には円形細胞力 培養ディッシ ュのゥエルの全面を覆う状態になった。また、これらの細胞について、前記実施例 4の (3)と同様に表面マーカーを解析した結果、 CD34陽性 CD45陽性の造血幹細胞 Z 前駆細胞であることがわ力つた。
[0151] ついで、前記培養ディッシュのゥエルに、 0. 25重量% トリプシン液を添カ卩し、室温 でピペッティングしながら、該指様細胞を剥離させた。前記と同様に、残存した少量 の指様細胞を再び新しい分化誘導培地で培養した。その結果、前記と同様に、指様 細胞が盛んに増殖した。また、約 1週間でコンフルェントになり、 1週間半一 2週間後 には、再び血球が大量に産生された。なお、このような残存指様細胞力 の血液細 胞への分ィ匕は、少なくとも 3回は繰り返して観察され、造血幹細胞 Z前駆細胞は、同 じディッシュから 2ヶ月以上の間、安定して生じた。
実施例 6
[0152] 霊長類動物胚性幹細胞から血管内皮細胞への分化誘導
前記実施例 3において、分ィ匕誘導後 7— 10日の段階で、培養ディッシュに、 0. 25 重量% トリプシン液を添加し、室温でピペッティングしながら、指様細胞を剥離させ た。得られた指様細胞に、前記実施例 3に記載の無フィーダ一分化用 OP馴化培地 2 2mlを添加し、十分に懸濁した。その後、遠心分離により上清を除去し、前記「スト口 マ細胞および胚性幹細胞を培養するのに適した培地」を用いてもとの細胞密度の 1 Z3— 1Z6程度になるように希釈した。
[0153] 得られた細胞希釈物を、新しい 6ゥエルディッシュ又はコラーゲンコート 6ゥエルデ イツシュ上、 37°C、 5体積% COで培養した。
2
[0154] その結果、細胞は、盛んに増殖をしながら、次第に「敷石状」に形態を変化し、図 1 0のパネル Aに示されるように、数日のうちに敷石状細胞がゥヱルの全面を覆うように なった。
[0155] 前記敷石状細胞を、 0. 02重量% EDTA液で処理して回収し、回収した細胞を、 PBSで洗浄した。その後、 1 X 106細胞を、氷上で 30分間、造血系特異的マーカー である CD34、 CD45、内皮細胞特異的マーカーである VE—力ドヘリン等のマーカ 一に対する一次抗体と反応させ、場合によっては、二次抗体反応を続けた。ついで、 各マーカーの発現レベルを、商品名: FACSCalibur〔ビーディーバイオサイェンシ ーズ (BD Biosciences)製〕を用いて解析した。なお、一次抗体として、 PE結合抗 C D34抗体〔ビーディーバイオサイエンシーズ(BD Biosciences)製〕、 FITC結合抗 CD45抗体〔ビーディーバイオサイエンシーズ(BD Biosciences)製〕、抗 VE—力ド ヘリン抗体〔ケミコンインターナショナノレ (Chemicon International, Inc. )製〕を 用いた。
[0156] その結果、図 10のパネル Bに示されるように、前記敷石状細胞は、 CD34陰性 CD 45陰性 VE—力ドヘリン陽性であった。したがって、指様細胞が、血管内皮細胞に分 化したことが示唆された。また、前記敷石状細胞はインビトロで活発に増殖し、新しい ディッシュで数ケ月間継代を行なうことができ、安定して再現性よく増幅できた。
実施例 7
[0157] 前記実施例 4で得られた指様細胞をトリプシン ZEDTA〔ギブコービーアールエル ( GIBCO— BRL)社製〕を用いて、ディッシュ力も剥離させた。その後、得られた細胞( 1ゥエルあたり 0. 5 X 106— 1 X 106細胞)を、 6ゥエル平底マルチウエルプレート上、 前記実施例 3に記載の無フィーダ一分ィ匕用 OP9馴化培地 2 2. 5ml又は血管内皮 の培養に適した培地〔商品名: EGM— 2 BulletKit (Code B3162)、タカラバイオ 社製〕 2. 5ml中、 37°C、 5体積% COで 3日間培養した。得られた細胞を、位相
2
差光学顕微鏡〔ォリンパス株式会社製、商品名:1X70〕により観察した。前記無フィー ダ一分ィ匕用 OP9馴化培地 2での培養後に得られた細胞の形態を観察した結果を図 11に示し、前記商品名: EGM—2 BulletKitによる培地での培養後に得られた細 胞の形態を観察した結果を図 12に示す。
[0158] また、得られた細胞につ!、て、血管内皮細胞特異的マーカーである VE—力ドヘリン に対する抗体である PE結合抗 VE—力ドヘリン抗体〔ケミコンインターナショナル (Che micon International, Inc. )製〕を用いて、 VE—力ドヘリンの発現の有無を調べた [0159] その結果、前記無フィーダ一分ィ匕用 OP9馴化培地 2での培養後に得られた細胞及 び前記商品名: EGM— 2 BulletKitによる培地での培養後に得られた細胞のいず れも、 VE—力ドヘリン陽性であり、血管内皮細胞に分ィ匕したことがわかる。
[0160] また、図 11に示されるように、前記無フィーダ一分ィ匕用 OP9馴化培地 2で培養した 場合、前記指様細胞から敷石状細胞を生じたが、図 12に示されるように、前記商品 名: EGM— 2 BulletKitによる培地で培養した場合、前記指様細胞から生じた細胞 は、血管内腔を形成する索状構造を示した。また、得られた細胞は、いずれも、トリプ シン ZEDTA〔ギブコービーアーノレエノレ (GIBCO-BRL)社製〕を用いて、ディッシュ から剥離させ、等量以上の OP9馴化培地などを添加してトリプシンを失活させたのち 遠心して上清を除去したのち、商品名: EGM— 2 BulletKitで適当な希釈を行ない 、商品名: EGM—2 BulletKitで培養することにより、 2回までの ϋ代には耐えて自 己増幅することが確認され、 3回以上の継代は確認できな力つた。
実施例 8
[0161] 実施例 7で得られた細胞が、内皮細胞であることを確認するため、以下のように、脈 管構造形成アツセィを行なった。
[0162] 商品名:マトリゲル〔ビーディーバイオサイエンシーズ(BD Biosciences)製〕を、 1 ゥエルあたり 95 1となるように、 24ゥエルディッシュに入れ、 37°Cで 30分間インキュ ベーシヨンしてゲル化させた。
[0163] 前記実施例 7において、商品名: EGM—2 BulletKit〔タカラバイオ社製、 Code
B3162]で培養して得られた血管内皮細胞 1 X 104細胞を、前記商品名: EGM— 2 BulletKitによる培地 0. 5mlに浮遊させ、各ゥヱルに入れた。炭酸ガス培養装置 内で、前記細胞を、 37°C、 5体積% COで 1
2 一 2晚日間培養し、経時的に、細胞形 態を位相差顕微鏡で観察した。なお、対照として、前記実施例 4で得られた指様細 胞及び未分ィ匕胚性幹細胞のそれぞれを用いて、同様の操作を行なった。商品名: E GM-2 BulletKit〔タカラバイオ社製、 Code B3162〕で培養して得られた血管内 皮細胞の結果を図 13、指様細胞の結果を図 14、未分化胚性幹細胞の結果を図 15 に示す。
[0164] その結果、図 13に示されるように、商品名: EGM— 2 BulletKit〔タカラバイオ社製 、 Code B3162〕で培養して得られた血管内皮細胞を、脈管構造形成アツセィに供 した場合、脈管構造を形成することがわかる。
[0165] 一方、図 14に示されるように、指様細胞を、脈管構造形成アツセィに供した場合、 一部に脈管構造の形成が見られるが、コロニー状に集塊を形成しているものもあるこ とがわかる。したがって、得られた細胞は、成熟血管内皮よりも未分ィ匕な段階にあるこ とが示唆される。また、図 15に示されるように、未分化胚性幹細胞を、脈管構造形成 アツセィに供した場合、脈管構造の形成は、ほぼ見られな力つた。
[0166] したがって、以上の結果より、胚性幹細胞から得られた指様細胞を、内皮細胞の培 養に適した条件下に維持することにより、血管内皮細胞に分化させることができ、脈 管構造を形成させうることが示唆される。
実施例 9
[0167] マウス骨髄ストロマ細胞株である MS— 5細胞 [Deutsche Sammlung von Mik roorganismen und Zellkulturen GmbH (DSMZ)から購入〕を、選ばれたロッ トの 10% 熱不活化 FBS〔ピーエーエーラボラトリーズ(PAA Laboratories Gmb H)社製〕と 2mM L グルタミン〔インビトロジェン(Invitorgen Corp. )社製〕と 2m M ピルビン酸ナトリウム〔インビトロジェン(Invitorgen Corp. )社製〕と、 lOUZml ペニシリン〔インビトロジェン(Invitorgen Corp. )社製〕と 10 g/ml ストレプト マイシン〔インビトロジェン(Invitorgen Corp. )社製〕とを含む a—MEM〔インビトロ ジェン(Invitorgen Corp.;)〕で維持した。サブコンフルェントで、これらの細胞を 46 Gyの γ—照射で処理した。 PBSでの洗浄後、細胞を、選ばれたロットの 15% 熱不 活化 FBS〔ピーエーエーラボラトリーズ(PAA Laboratories GmbH)製〕と 0. lm M j8—メルカプトエタノール〔シグマケミカル(Sigma Chemical Co. )製〕と 3mM
L グルタミン〔インビトロジェン(Invitrogen Corp. )製〕と 5 M ヒドロコルチゾン 、 lOUZml ペニシリン〔インビトロヘン(Invitrogen Corp. )製〕と、 10 gZml ストレプトマイシン〔インビトロジェン(Invitrogen Corp. )製〕とを含むイスコフ改変ダ ルべッコ培地(IMDM)〔インビトロジェン(Invitrogen Corp. )製〕で培養した。さら に、 37°Cで 20時間インキュベーションした後、上清を回収し、 0. 22 mディスクフィ ルター〔コーユング (Corning INC. )製〕に通し、馴化培地を得た。 [0168] 前記実施例 4で得られた指様細胞を、 rhG— CSFを含む前記 MS— 5細胞馴化培地 でさらに 2— 3週間培養した。培養により、丸い細胞は、シート状形状となり、全体的 にディッシュから解離しはじめた。これらの解離した細胞を回収し、 Wright— Giemsa 染色を行なった。結果を図 16のパネル Aに示す。
[0169] その結果、パネル Aに示されるように、前記細胞は、大きな不規則の細胞質と変わ つた配置の核とを有する成熟マクロファージの形態学的な特徴を示した。
[0170] つ!、で、前記細胞を、商品名: Cytospin2〔シャンドン(SHANDON)社製〕を用い て、アセトン Zメタノール(1 : 3)溶液でスライドグラス上に固定させた。その後、抗 CD 14抗体〔ビーディーバイオサイエンシーズ(BD Biosciences)製〕を用いて免疫染 色を行なった。なお、対照として、イソタイプ対照抗体を用いた。結果を図 16のパネ ノレ Bに示す。
[0171] その結果、パネル Bに示されるように、前記細胞は、単球 Zマクロファージ特異的マ 一力一として知られている LPSレセプター複合体の成分である CD14に陽性であり、 マクロファージに分ィ匕して 、ることが示唆された。
[0172] さらに、前記細胞を、活性酸素産生活性を示す-トロブルーテトラゾリゥム塩 (NBT )還元アツセィに供し、マクロファージ機能を解析した。前記細胞 5 X 105細胞を回 収し、 PBSで一回洗浄し、分化誘導用培地 1mlに懸濁させた。ついで、 NBT^液 lml [lmg NBT (ナカライテスタ社製) Zml 分化誘導用培地〕を添加し、細胞を、 TPA lOOngの存在下に 25分間インキュベーションした。その後、細胞を、 PBSで 洗浄し、 PBS 10 μ 1に再懸濁させた。得られた細胞懸濁物を、スライドグラスに滴下 し、カバーグラスでカバーした。 ΝΒΤ陽性細胞の数を、光学顕微鏡〔オリンノス社製 、商品名: ΒΧ51〕を用いてカウントした。なお、陰性対照として、ヒト白血病細胞 HL— 60細胞を用い、同様に ΝΒΤ還元アツセィを行なった。結果を図 16のパネル Cに示 す。
[0173] その結果、図 16のパネル Cに示されるように、胚性幹細胞由来のマクロファージは 、 ΝΒΤ還元活性で実際に陽性であった。したがって、指様細胞から、機能的な成熟 マクロファージに少なくとも分ィ匕しうる造血芽細胞を効率よく産生されうることがわかる 産業上の利用可能性
本発明によれば、輸血用血液、移植用材料等に適した血液細胞、血管内皮細胞を 安定的に工業的スケールで提供することが可能になる。さらに、本発明の血液細胞 等は、自然治癒力の強化にもつながるために、その医療及び医療産業へ及ぼすイン ノ^トは絶大なものがある。さらに、現在の献血に変わる安心安全な輸血用血液の製 造も含めれば、巨大プラント産業に展開する可能性も考えられる。

Claims

請求の範囲
[1] ストロマ細胞馴化培地を含有してなる、無フィーダ一分化用培地。
[2] 霊長類動物胚性幹細胞を維持するための培地成分と、血清と、サイト力インとをさら に含有してなる、請求項 1記載の無フィーダ一分ィ匕用培地。
[3] 該霊長類動物胚性幹細胞を維持するための培地成分が、イスコフ改変ダルベッコ 培地を含有するものである、請求項 2記載の無フィーダ一分化用培地。
[4] 該サイト力インが、血管内皮成長因子、骨形成タンパク質 4、幹細胞因子、 Flt3— リガンド、インターロイキン 6、インターロイキン 3及び顆粒球コロニー刺激因子から なる群より選ばれた少なくとも 1種である、請求項 2又は 3記載の無フィーダ一分ィ匕用 培地。
[5] ストロマ細胞が、放射線照射されたストロマ細胞である、請求項 1一 4いずれか 1項 に記載の無フィーダ一分ィ匕用培地。
[6] 該ストロマ細胞馴化培地が、
A)ストロマ細胞を維持するに適した培地でコンフルェントにならな 、ように培養する 工程、
B)前記工程 A)で得られた細胞を、ストロマ細胞及び胚性幹細胞を維持するに適し た培地で培養する工程、及び
C)前記工程 B)で得られた培養物カゝらストロマ細胞を除去する工程
を含むプロセスを行なうことにより得られたものである、請求項 1一 4いずれか 1項に記 載の無フィーダ一分化用培地。
[7] 該ストロマ細胞馴化培地が、
A)ストロマ細胞を維持するに適した培地でコンフルェントにならな 、ように培養する 工程、
Β' )前記工程 A)で得られた細胞に放射線を照射し、得られた細胞を、ストロマ細胞 及び胚性幹細胞を維持するに適した培地で培養する工程、及び
C ' )前記工程 B' )で得られた培養物カゝらストロマ細胞を除去する工程
を含むプロセスを行なうことにより得られたものである、請求項 1一 5いずれか 1項に記 載の無フィーダ一分化用培地。
[8] 請求項 1一 7いずれ力 1項に記載の無フィーダ一分ィ匕用培地と、細胞外マトリックス でコートされた培養容器とを含有してなる、無フィーダ一分ィ匕用培養システム。
[9] 該細胞外マトリックス力 コラーゲンである、請求項 8記載の無フィーダ一分ィ匕用培 養システム。
[10] 該コラーゲン力 IV型コラーゲンである、請求項 9記載の無フィーダ一分化用培養 システム。
[11] 請求項 1一 7いずれ力 1項に記載の無フィーダ一分ィ匕用培地で、霊長類動物胚性 幹細胞を無フィーダ一下に培養することを特徴とする、霊長類動物胚性幹細胞から 血液細胞への無フィーダ一分化方法。
[12] 霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無フィー ダー下、請求項 1一 7いずれか 1項に記載の無フィーダ一分ィ匕用培地で培養して、指 様細胞 (finger— like cell)を生成させ、さらに続けて培養して、血液細胞を生成さ せる、請求項 11記載の霊長類動物胚性幹細胞から血液細胞への無フィーダ一分化 方法。
[13] 霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無フィー ダー下、請求項 1一 7いずれか 1項に記載の無フィーダ一分ィ匕用培地で培養して、指 様細胞を生成させ、該指様細胞を、新たな培地が入り、かつ細胞外マトリックスでコー トされた培養容器に移してさらに培養して、血管内皮細胞を生成させることを特徴と する、霊長類動物胚性幹細胞から血管内皮細胞への無フィーダ一分化方法。
[14] 霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無フィー ダー下、請求項 1一 7いずれか 1項に記載の無フィーダ一分ィ匕用培地で培養して、該 胚性幹細胞から血液細胞へ分化させ、ついで、該血液細胞を剥離させて単離するこ とを特徴とする、血液細胞の製造方法。
[15] 血液細胞の剥離後の培養容器に請求項 1一 7いずれか 1項に記載の無フィーダ一 分化用培地を添加し、無フィーダ一下にさらに培養して、血液細胞を得る、請求項 1 4記載の血液細胞の製造方法。
[16] 請求項 14又は 15記載の製造方法により得られる、血液細胞。
[17] 霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無フィー ダー下、請求項 1一 7いずれか 1項に記載の無フィーダ一分ィ匕用培地で培養して、指 様細胞を生成させ、該指様細胞を、新たな培地が入り、かつ細胞外マトリックスでコー トされた培養容器に移してさらに培養して、該胚性幹細胞カゝら血管内皮細胞へ分ィ匕 させ、該血管内皮細胞を単離することを特徴とする、血管内皮細胞の製造方法。
[18] 請求項 17記載の製造方法により得られる、血管内皮細胞。
[19] 霊長類動物胚性幹細胞を、細胞外マトリックスでコートされた培養容器中、無フィー ダー下、請求項 1一 7いずれか 1項に記載の無フィーダ一分ィ匕用培地で培養すること を特徴とする、指様細胞の製造方法。
[20] 請求項 19記載の製造方法により得られる、指様細胞。
PCT/JP2005/003474 2004-03-04 2005-03-02 無フィ−ダ−分化用培地及び霊長類動物胚性幹細胞からの無フィ−ダ−分化方法 WO2005085426A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004061470 2004-03-04
JP2004-061470 2004-03-04
JP2004-365221 2004-12-17
JP2004365221 2004-12-17

Publications (1)

Publication Number Publication Date
WO2005085426A1 true WO2005085426A1 (ja) 2005-09-15

Family

ID=34921691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003474 WO2005085426A1 (ja) 2004-03-04 2005-03-02 無フィ−ダ−分化用培地及び霊長類動物胚性幹細胞からの無フィ−ダ−分化方法

Country Status (2)

Country Link
TW (1) TW200540270A (ja)
WO (1) WO2005085426A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056779A1 (fr) * 2006-11-09 2008-05-15 Japan As Represented By The President Of International Medical Center Of Japan Procédé destiné à la culture et au passage d'une cellule souche embryonnaire de primate, et procédé destiné à induire la différenciation de la cellule souche embryonnaire
US20090222936A1 (en) * 2005-11-08 2009-09-03 Timothy Richmond Recombinant Expression of Multiprotein Complexes Using Polygenes
JP2014102147A (ja) * 2012-11-20 2014-06-05 Dastech Inc 生体試料の切断装置及び切断方法並びに細胞観察方法
JP2016119910A (ja) * 2009-12-04 2016-07-07 ステム セル アンド リジェネレイティブ メディスン インターナショナル, インコーポレイテッド ヒト胚性幹細胞由来血管芽細胞からナチュラルキラー細胞および樹状細胞を生成する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037471A (ja) * 1999-07-28 2001-02-13 Kirin Brewery Co Ltd 移植可能な造血細胞の産生法
JP2001520036A (ja) * 1997-10-23 2001-10-30 ジェロン・コーポレーション フィーダー細胞を含まない培養物中で、霊長類由来始原幹細胞を増殖させるための方法および材料
WO2002044343A2 (en) * 2000-11-22 2002-06-06 Geron Corporation Tolerizing allografts of pluripotent stem cells
WO2003042384A1 (fr) * 2001-11-15 2003-05-22 Kyowa Hakko Kogyo Co., Ltd. Inducteur de differentiation pour cellules souches d'embryon, procede d'obtention dudit inducteur et utilisation
JP2003530828A (ja) * 2000-01-11 2003-10-21 ジェロン・コーポレーション ヒト多能性幹細胞の増殖および分化のための技術

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520036A (ja) * 1997-10-23 2001-10-30 ジェロン・コーポレーション フィーダー細胞を含まない培養物中で、霊長類由来始原幹細胞を増殖させるための方法および材料
JP2001037471A (ja) * 1999-07-28 2001-02-13 Kirin Brewery Co Ltd 移植可能な造血細胞の産生法
JP2003530828A (ja) * 2000-01-11 2003-10-21 ジェロン・コーポレーション ヒト多能性幹細胞の増殖および分化のための技術
WO2002044343A2 (en) * 2000-11-22 2002-06-06 Geron Corporation Tolerizing allografts of pluripotent stem cells
WO2003042384A1 (fr) * 2001-11-15 2003-05-22 Kyowa Hakko Kogyo Co., Ltd. Inducteur de differentiation pour cellules souches d'embryon, procede d'obtention dudit inducteur et utilisation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETO K. ET AL: "Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling", PROC NATL ACAD SCI USA, vol. 99, no. 20, 2002, pages 12819 - 12824, XP002988267 *
PALACIOS R. ET AL: "In vitro generation of hematopoietic stem cells from an embryonic stem cell line", PROC NATL ACAD SCI USA, vol. 92, no. 16, August 1995 (1995-08-01), pages 7530 - 7534, XP000941683 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090222936A1 (en) * 2005-11-08 2009-09-03 Timothy Richmond Recombinant Expression of Multiprotein Complexes Using Polygenes
US9512443B2 (en) * 2005-11-08 2016-12-06 Eth Zurich Recombinant expression of multiprotein complexes using polygenes
WO2008056779A1 (fr) * 2006-11-09 2008-05-15 Japan As Represented By The President Of International Medical Center Of Japan Procédé destiné à la culture et au passage d'une cellule souche embryonnaire de primate, et procédé destiné à induire la différenciation de la cellule souche embryonnaire
JP2016119910A (ja) * 2009-12-04 2016-07-07 ステム セル アンド リジェネレイティブ メディスン インターナショナル, インコーポレイテッド ヒト胚性幹細胞由来血管芽細胞からナチュラルキラー細胞および樹状細胞を生成する方法
JP2019083819A (ja) * 2009-12-04 2019-06-06 ステム セル アンド リジェネレイティブ メディスン インターナショナル, インコーポレイテッド ヒト胚性幹細胞由来血管芽細胞からナチュラルキラー細胞および樹状細胞を生成する方法
JP2014102147A (ja) * 2012-11-20 2014-06-05 Dastech Inc 生体試料の切断装置及び切断方法並びに細胞観察方法

Also Published As

Publication number Publication date
TW200540270A (en) 2005-12-16

Similar Documents

Publication Publication Date Title
AU2020264375B2 (en) Method for developing natural killer cells from stem cells
US20200131475A1 (en) Method of generating natural killer cells and dendritic cells from human embryonic stem cell-derived hemangioblasts
US7811821B2 (en) Method of forming dendritic cells from embryonic stem cells
JP5067949B2 (ja) 霊長類動物胚性幹細胞の培養及び継代方法、並びにその分化誘導方法
US20050221482A1 (en) Methods and compositions for obtaining hematopoietic stem cells derived from embryonic stem cells and uses thereof
JP5283120B2 (ja) Es細胞からの造血前駆細胞を内包する構造物、及び該構造物を用いた血球細胞の調製方法。
KR20150126943A (ko) 규정된 조건하에서 인간 만능성 줄기 세포의 조혈내피세포 분화를 위한 방법 및 재료
WO2005085426A1 (ja) 無フィ−ダ−分化用培地及び霊長類動物胚性幹細胞からの無フィ−ダ−分化方法
Moon et al. Differentiation of hESCs into mesodermal subtypes: vascular-, hematopoietic-and mesenchymal-lineage cells
Tian et al. Hematopoietic development of human embryonic stem cells in culture
JP4809940B2 (ja) 血液から分離した単核細胞を試験管内で増幅させる方法
Y Ivashchenko Human embryonic and induced pluripotent stem cells in cardiovascular drug discovery: Patents and patented uses
KR20060016133A (ko) 인간 배아줄기세포 및 배아체로부터 조혈모세포로의 분화를위한 인간 태반기질세포 생산 및 인간 배아줄기세포 및배아체로부터 조혈모세포로의 분화배양 기술
JP2007508023A (ja) 間葉幹細胞由来の血液生成物
Cerdan et al. Hematopoietic Differentiation
WO2012103098A2 (en) Compositions and methods for treating hematological cytopenias

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP