WO2008056417A1 - Détecteur de température d'air ambiant et appareil de purification d'échappement - Google Patents

Détecteur de température d'air ambiant et appareil de purification d'échappement Download PDF

Info

Publication number
WO2008056417A1
WO2008056417A1 PCT/JP2006/322352 JP2006322352W WO2008056417A1 WO 2008056417 A1 WO2008056417 A1 WO 2008056417A1 JP 2006322352 W JP2006322352 W JP 2006322352W WO 2008056417 A1 WO2008056417 A1 WO 2008056417A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air temperature
outside air
engine
reducing agent
Prior art date
Application number
PCT/JP2006/322352
Other languages
English (en)
French (fr)
Inventor
Hideki Matsunaga
Original Assignee
Nissan Diesel Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Diesel Motor Co., Ltd. filed Critical Nissan Diesel Motor Co., Ltd.
Priority to PCT/JP2006/322352 priority Critical patent/WO2008056417A1/ja
Priority to EP06823239A priority patent/EP2080889A4/en
Priority to CN2006800532350A priority patent/CN101384813B/zh
Publication of WO2008056417A1 publication Critical patent/WO2008056417A1/ja
Priority to US12/173,791 priority patent/US7810320B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • F02D2200/0416Estimation of air temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the outside air temperature detecting device corrects the intake air temperature detected by the hot wire type air flow sensor capable of detecting the intake air flow rate and the intake air temperature based on the engine operating state. Estimate the outside air temperature. Further, the exhaust emission control device according to the present invention corrects the intake air temperature detected by a hot wire type air flow sensor capable of detecting the intake air flow rate and the intake air temperature based on the engine operating state to correct the outside air temperature. In addition, the electric heater attached to at least a part of the supply system of the reducing agent or its precursor is controlled based on the estimated outside air temperature.
  • the reducing agent supply device 28 is controlled by a control unit 30 having a built-in computer, and supplies the urea aqueous solution corresponding to the engine operation state to the injection nozzle 18 in a spray state mixed with air.
  • the reducing agent supply device 28 has a built-in pressure sensor so that the pressure pu of the urea aqueous solution supplied to the injection nozzle 18 can be detected, and its output is input to the control unit 30.
  • the intake pipe 34 connected to the intake manifold 32 of the engine 10 has an air cleaner 36 that filters out foreign substances such as dust from the atmosphere along the intake circulation direction, and a hot that detects the intake flow rate.
  • Wire-type air flow sensors (hereinafter referred to as “air flow sensors”) 38 are respectively provided.
  • the air flow sensor 38 indirectly detects the intake flow rate using the convective heat transfer phenomenon in which the amount of heat taken away from the heating element changes according to the intake flow rate.
  • the intake air temperature Ti can be detected at the same time.
  • an engine control unit 42 that detects the engine rotational speed Ne and the fuel supply amount q or a known sensor corresponds to the operating state detection device, while an outside air temperature is estimated by the control unit 30 that executes a control program.
  • An apparatus is implemented.
  • FIGS. 2 and 3 show the contents of the control program that is executed when the engine 10 is started and the warm-up is completed in 30 units of the control unit.
  • step 1 a subroutine for detecting the outside air temperature To from the intake air temperature Ti is called. It should be noted that the ambient temperature To can be detected. The details of one pin will be described later (the same applies hereinafter).
  • the predetermined values To and Tu are determined by the urea aqueous solution.
  • aqueous solution temperature Tu is less than the predetermined value Tu, go to step 3 to enter thawing mode.
  • step 3 a subroutine for detecting the outside air temperature To from the intake air temperature Ti is called.
  • step 4 the electric heater 44 is controlled with a heater output corresponding to the outside air temperature To with reference to a control map for realizing the electric heater control characteristic shown in FIG.
  • the control characteristics are linear, when a control value corresponding to the outside air temperature To is set in the control map, interpolation should be performed using a known interpolation technique!
  • step 5 it is determined whether or not the urea aqueous solution temperature Tu is not less than a predetermined value Tu.
  • the predetermined value Tu is a threshold value for determining whether or not the thawing of the urea aqueous solution is complete.
  • the temperature is set slightly higher than the freezing point (freezing temperature) of the urea aqueous solution. If the urea aqueous solution temperature Tu is equal to or higher than the predetermined value Tu, the process proceeds to step 6 (Yes).
  • step 6 the pump built in the reducing agent supply device 28 is controlled so as to increase and decrease the pressure of the urea aqueous solution supplied to the injection nozzle 18.
  • step 9 the outside air temperature To is less than the predetermined value To and the urea aqueous solution temperature Tu is predetermined.
  • step 10 proceeds to step 10 to enter the temperature mode (Yes), otherwise proceed to step 13 (No).
  • step 10 a subroutine for detecting the outside air temperature To from the intake air temperature Ti is called.
  • step 13 there is no possibility that the aqueous urea solution will freeze! Therefore, the electric heater 44 that prevents wasteful power consumption is turned off.
  • FIG. 5 shows the control contents of a subroutine for detecting the outside air temperature To. It should be noted that the outside temperature detecting device according to the present invention is realized by executing a powerful subroutine.
  • step 21 the intake air temperature Ti is read from the air flow sensor 38.
  • step 22 it is determined whether or not the intake air temperature Ti is within a temperature range in which it is necessary to correct the intake air temperature Ti in order to prevent inappropriate control from being executed due to the excessively corrected outside air temperature To. . That is, in order to control the electric heater 44 with high accuracy, it is sufficient to correct only a predetermined range near the freezing point of the aqueous urea solution. For example, it is possible not to use the outside temperature To that has been excessively corrected as a control variable. If it is necessary to correct the intake air temperature Ti, go to step 23 (Yes). On the other hand, when there is no need to correct, step Proceed to 29 (No), and let the intake air temperature Ti be the outside air temperature To.
  • step 23 the engine speed Ne and the fuel supply amount q are read from the engine control unit 42 as an engine operating state that enables highly responsive control.
  • step 24 the engine speed Ne and the fuel supply amount are read.
  • the dynamic temperature error due to the amount of heat generated around the engine is estimated.
  • a steady temperature error and a smoothing time constant of temperature change are calculated, respectively, and the steady temperature error is smoothed. Correct with to estimate the dynamic temperature error.
  • the steady temperature error can be obtained by referring to a map in which experimental values measured over a certain period of time are set.
  • the temperature change annealing time constant can be obtained by referring to a map in which a control value to which a known annealing technique is applied is set. For this reason, the dynamic temperature error can easily calculate the engine operating state force, and the increase in the calculation load can be suppressed.
  • step 25 based on the engine rotational speed Ne and the fuel supply amount q, a correction coefficient for a thermal effect that changes according to the intake air flow rate is calculated. That is, when the intake air flow rate is large, the mass flow rate is large, so the influence of the amount of heat generated around the engine is small. On the other hand, since the mass flow rate is small when the intake air flow rate is small, the influence of the heat generated around the engine becomes large. For this reason, a correction coefficient corresponding to the engine speed Ne and the fuel supply amount q is introduced to improve the final control accuracy.
  • step 27 the outside air temperature To is estimated by correcting the intake air temperature Ti with a dynamic temperature error.
  • step 28 the outside air temperature To is output as a return value.
  • the electric heater 44 operates with the heater output corresponding to the outside air temperature To, and the supply pipe
  • the aqueous urea solution in 26 is thawed.
  • thawing of urea aqueous solution is completed or running
  • the electric heater 44 is activated with the heater output corresponding to the outside air temperature To, and the urea aqueous solution in the reducing agent container 24 is within the predetermined temperature range (Tu).
  • the outside air temperature To is determined based on the engine rotation speed Ne and the fuel supply amount q as the engine operating state, and the intake air detected by the air flow sensor 38 can be prevented.
  • Estimated by correcting temperature Ti Specifically, a dynamic temperature error due to the amount of heat generated around the engine and a correction coefficient for the thermal effect that changes according to the intake air flow are calculated based on the engine operating state, respectively, and the dynamic temperature is calculated. After the error is corrected with the correction coefficient, the outside air temperature To is estimated by correcting the intake air temperature Ti with the temperature error.
  • the estimated outside air temperature To has a small difference from the actual outside air temperature, and its detection accuracy is sufficient. Further, by slightly changing the control content, a sensor for directly detecting the outside air temperature To becomes unnecessary, and an increase in cost due to the provision of the sensor can be suppressed.
  • an aqueous urea solution as a precursor was used in the present embodiment.
  • an aqueous ammonia solution, and light oil, petroleum, gasoline, and the like mainly containing hydrocarbon as a precursor thereof may be appropriately selected and used according to the characteristics of the NOx reduction catalyst 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

外気温度検出装置及び排気浄化装置
技術分野
[0001] 本発明は、ホットワイヤ式エアフローセンサを用いて、外気温度を高精度に検出す る技術に関する。また、本発明は、還元剤を用いて排気中の窒素酸ィ匕物 (NOx)を 還元浄化する排気浄化装置にお!ヽて、還元剤又はその前駆体の供給系に付設され た電気ヒータを外気温度に応じて高精度に制御する技術に関する。
背景技術
[0002] エンジン排気中の NOxを除去する触媒浄化システムとして、特開 2000— 27627 号公報 (特許文献 1)に記載された排気浄ィ匕装置が提案されている。カゝかる排気浄ィ匕 装置は、エンジン排気系に配設された還元触媒の排気上流に、エンジン運転状態に 応じた還元剤又はその前駆体を噴射供給することで、排気中の NOxと還元剤とを触 媒還元反応させて、 NOxを無害成分に浄ィ匕処理するものである。また、かかる排気 浄化装置では、温度センサにより検出された外気温度に基づいて、還元剤又はその 前駆体の供給系に付設された電気ヒータを制御し、還元剤又はその前駆体の凍結 防止及び解凍促進を図る技術が採用されている。
[0003] 一方、エンジン制御においても、特開 2005— 207321号公報(特許文献 2)に記載 されるように、外気温度を制御変数として用いるものがある。
外気温度は、温度センサにより検出することが一般的である力 ホットワイヤ式エア フローセンサを備えるものでは、その検出原理から吸気温度を検出可能であるため、 コスト低減などの要請から、吸気温度を外気温度として代用する技術が実用化されて いる。
特許文献 1:特開 2000— 27627号公報
特許文献 2 :特開 2005— 207321号公報
発明の開示
発明が解決しょうとする課題
[0004] ところで、ホットワイヤ式エアフローセンサは、エンジン近傍に配設されるので、ェン ジンからの熱を受けやす!/、と!/、う実情がある。ホットワイヤ式エアフローセンサでは、 ブリッジ回路により温度補償が行われるので、本来の検出対象たる吸気流量には影 響がない。しかし、ホットワイヤ式エアフローセンサから出力される温度信号は、ェン ジンからの熱の影響を受け、実際の外気温度との間に誤差が発生してしまうおそれ がある。
[0005] このような外気温度に応じて排気浄化装置の電気ヒータを制御すると、還元剤又は その前駆体が凍結していないのに電気ヒータを作動させたり、還元剤又はその前駆 体が凍結しているにもかかわらず電気ヒータを作動させないなど、各種不具合が発生 してしまうおそれがある。また、エンジン制御においては、想定外の制御が行われて しまう可能性があり、ホットワイヤ式エアフローセンサからの温度信号に基づいてェン ジン制御を行うことが困難でもあった。
[0006] そこで、本発明は以上のような従来の問題点に鑑み、エンジン運転状態に応じて、 ホットワイヤ式エアフローセンサ力 の温度信号を補正することで、外気温度の検出 精度を向上させた外気温度検出装置を提供することを目的とする。また、排気浄ィ匕 装置において、外気温度検出装置により検出された外気温度に応じて、還元剤又は その前駆体の供給系に付設された電気ヒータを制御することで、必要最小限の電力 により、還元剤又はその前駆体の凍結防止及び解凍促進を可能とした排気浄ィ匕装 置を提供することを目的とする。
課題を解決するための手段
[0007] このため、本発明に係る外気温度検出装置は、吸気流量及び吸気温度を検出可 能なホットワイヤ式のエアフローセンサにより検出された吸気温度を、エンジン運転状 態に基づいて補正して外気温度を推定する。また、本発明に係る排気浄化装置は、 吸気流量及び吸気温度を検出可能なホットワイヤ式のエアフローセンサにより検出さ れた吸気温度を、エンジン運転状態に基づ!、て補正して外気温度を推定すると共に 、推定された外気温度に基づいて、還元剤又はその前駆体の供給系の少なくとも一 部に付設された電気ヒータを制御する。
[0008] このとき、外気温度の推定は、エンジン周囲に発生する熱量の動的な温度誤差を、 吸気流量に応じて変化する熱影響の補正係数で補正すると共に、エアフローセンサ により検出された吸気温度を、補正された温度誤差で補正することで行われる。また 、動的な温度誤差は、定常的な温度誤差を、温度変化のなまし時定数で補正するこ とで演算される。
発明の効果
[0009] 本発明に係る外気温度検出装置によれば、エンジン運転状態に基づいて、エアフ ローセンサにより検出された吸気温度を補正して外気温度を推定することができる。 即ち、エアフローセンサはエンジン近傍に配設されるため、混合気の燃焼熱の影響 を受け、これにより検出される吸気温度が実際のものとは異なってしまうおそれがある 。しかし、エンジン運転状態に応じて吸気温度を補正すれば、燃焼熱の影響を排除 することが可能となり、エアフローセンサによる外気温度の検出精度を大幅に向上さ せることができる。
[0010] また、本発明に係る排気浄化装置によれば、還元剤又はその前駆体が凍結してい な 、のに電気ヒータを作動させたり、還元剤又はその前駆体が凍結して 、るにもかか わらず電気ヒータを作動させな ヽなど、電気ヒータ制御に係る各種不具合を回避する ことができる。このため、適切な還元剤又はその前駆体の凍結防止及び解凍促進を 図ることができる。
図面の簡単な説明
[0011] [図 1]図 1は、本発明に係る排気浄ィ匕装置の一実施形態を示す構成図である。
[図 2]図 2は、電気ヒータを制御するメインルーチンのフローチャートである。
[図 3]図 3は、電気ヒータを制御するメインルーチンのフローチャートである。
[図 4]図 4は、電気ヒータ出力の制御特性の説明図である。
[図 5]図 5は、吸気温度から外気温度を間接的に検出するサブルーチンのフローチヤ ートである。
符号の説明
[0012] 10 エンジン
14 排気管
20 NOx還元触媒
24 還元剤容器 26 供給配管
28 還元剤供給装置
30 =ιントロールユニット
38 エアフローセンサ
42 エンジンコントローノレユニット
44 電気ヒータ
発明を実施するための最良の形態
[0013] 以下、添付された図面を参照して本発明を詳述する。
図 1は、本発明に係る外気温度検出装置を備えた排気浄化装置の全体構成を示 す。
エンジン 10の排気マ-フォールド 12に接続される排気管 14には、排気流通方向 に沿って、一酸ィ匕窒素 (NO)を二酸ィ匕窒素 (NO )へと酸化させる窒素酸化触媒 16
2
と、還元剤前駆体としての尿素水溶液を噴射供給する噴射ノズル 18と、尿素水溶液 力も得られるアンモニアを還元剤として用い NOxを還元浄ィ匕する NOx還元触媒 20 と、 NOx還元触媒 20を通過したアンモニアを酸ィ匕させるアンモニア酸ィ匕触媒 22と、 が夫々配設される。また、還元剤容器 24に貯蔵される尿素水溶液は、その底部で吸 込口が開口する供給配管 26を介して還元剤供給装置 28に供給される。そして、還 元剤供給装置 28は、コンピュータを内蔵したコントロールユニット 30により制御され、 エンジン運転状態に応じた尿素水溶液を空気と混合した噴霧状態で噴射ノズル 18 に供給する。なお、還元剤供給装置 28は、噴射ノズル 18に供給する尿素水溶液の 圧力 puを検出可能なように圧力センサを内蔵し、その出力がコントロールユニット 30 に入力される。
[0014] カゝかる排気浄ィ匕装置において、噴射ノズル 18から噴射供給された尿素水溶液は、 排気熱及び排気中の水蒸気により加水分解され、還元剤として機能するアンモニア を発生する。発生したアンモニアは、 NOx還元触媒 20において排気中の NOxと化 学反応し、水 (H O)及び無害な窒素ガス (N )〖こ浄化されることは知られたことである
2 2
。このとき、 NOx還元触媒 20による NOx浄ィ匕率を向上させるベぐ窒素酸化触媒 16 により NOが NOへと酸化され、排気中の NOと NOとの割合が触媒還元反応に適し たものに改善される。また、 NOx還元触媒 20を通過したアンモニアは、その排気下 流に配設されたアンモニア酸ィ匕触媒 22により酸ィ匕されるので、アンモニアがそのまま 大気中に排出されることを防止できる。
[0015] 一方、エンジン 10の吸気マ-フォールド 32に接続された吸気管 34には、吸気流通 方向に沿って、大気中から埃などの異物を濾過するエアクリーナ 36と、吸気流量を 検出するホットワイヤ式エアフローセンサ(以下「エアフローセンサ」と 、う) 38と、が夫 々配設される。ここで、エアフローセンサ 38は、吸気流量に応じて発熱体から奪われ る熱量が変化する対流熱伝達現象を利用して吸気流量を間接的に検出するもので あって、その吸気流量検出原理から吸気温度 Tiも同時に検出可能に構成されている
[0016] 排気浄ィ匕装置の制御系として、還元剤容器 24には、尿素水溶液の水溶液温度 Tu を検出する温度センサ 40が取り付けられ、その出力がコントロールユニット 30に入力 される。また、コントロールユニット 30は、 CAN (Controller Area Network)などのネッ トワークを介してエンジンコントロールユニット 42と通信可能に接続され、エンジン回 転速度 Ne及び燃料供給量 qを適宜読み込み可能に構成される。なお、エンジン回 転速度 Ne及び燃料供給量 qは、公知のセンサを用いて検出するようにしてもよい。そ して、コントロールユニット 30は、その ROM (Read Only Memory)に記憶された制御 プログラムによって、尿素水溶液の圧力 pu,尿素水溶液の温度 Tu,エンジン回転速 度 Ne,燃料供給量 q及び吸気温度 Tiに基づいて、供給配管 26に付設された電気ヒ ータ 44を適宜制御し、厳冬期における尿素水溶液の解凍促進及び凍結防止を図る
[0017] ここで、エンジン回転速度 Ne及び燃料供給量 qを検出するエンジンコントロールュ ニット 42又は公知のセンサが運転状態検出装置に該当する一方、制御プログラムを 実行するコントロールユニット 30により、外気温度推定装置が具現ィ匕される。
図 2及び図 3は、コントロールユニット 30〖こおいて、エンジン 10を始動して暖機が完 了したことを契機として実行される制御プログラムの内容を示す。
[0018] ステップ 1 (図では「S 1」と略記する。以下同様)では、吸気温度 Tiから外気温度 To を検出するためのサブルーチンをコールする。なお、外気温度 Toを検出するサブル 一チンの詳細にっ 、ては後述する(以下同様)。
ステップ 2では、外気温度 Toが所定値 To未満、かつ、尿素水溶液温度 Tuが所定
1
値 Tu未満であるカゝ否かを判定する。ここで、所定値 To及び Tuは、尿素水溶液が
1 1 1
凍結して!/、る可能性がある力否かを判定するための閾値であって、尿素水溶液の特 性などに応じて夫々設定される。そして、外気温度 Toが所定値 To未満、かつ、尿素
1
水溶液温度 Tuが所定値 Tu未満であれば、解凍モードに移行すべくステップ 3へと
1
進み (Yes)、それ以外であればステップ 8へと進む (No)。
[0019] ステップ 3では、吸気温度 Tiカゝら外気温度 Toを検出するためのサブルーチンをコー ルする。
ステップ 4では、図 4に示す電気ヒータ制御特性を実現する制御マップを参照し、外 気温度 Toに応じたヒータ出力で電気ヒータ 44を制御する。ここで、制御特性は線形 をなすため、外気温度 Toに応じた制御値が制御マップに設定されて ヽな ヽときには 、公知の補間技術により補間するようにすればよ!、。
[0020] ステップ 5では、尿素水溶液温度 Tuが所定値 Tu以上であるカゝ否かを判定する。こ
2
こで、所定値 Tuは、尿素水溶液の解凍が完了した力否かを判定するための閾値で
2
あって、尿素水溶液の凝固点 (凍結温度)より若干高い温度に設定される。そして、 尿素水溶液温度 Tuが所定値 Tu以上であればステップ 6へと進み (Yes)、尿素水溶
2
液温度 Tuが所定値 Tu未満であればステップ 3へと戻る(No)。
2
[0021] ステップ 6では、噴射ノズル 18に供給される尿素水溶液の圧力を昇圧及び減圧さ せるべく、還元剤供給装置 28に内蔵されたポンプを制御する。
ステップ 7では、尿素水溶液圧力 puに圧力変動があつたか否かを判定する。そして 、尿素水溶液圧力 puに圧力変動があれば、尿素水溶液の解凍が完了したと判断し てステップ 10へと進む (Yes)。一方、尿素水溶液圧力 puに圧力変動がなければ、尿 素水溶液の解凍が未完了であると判断してステップ 3へと戻る (No)。
[0022] ステップ 8では、吸気温度 Tiカゝら外気温度 Toを検出するためのサブルーチンをコー ルする。
ステップ 9では、外気温度 Toが所定値 To未満、かつ、尿素水溶液温度 Tuが所定
2
値 Tu未満であるカゝ否かを判定する。ここで、所定値 To及び Tuは、尿素水溶液が凍 結していないものの、走行風などによって凍結する可能性がある力否かを判定するた めの閾値であって、尿素水溶液の特性などに応じて夫々設定される。そして、外気温 度 Toが所定値 To未満、かつ、尿素水溶液温度 Tuが所定値 Tu未満であれば、保
2 3
温モードに移行すべくステップ 10へと進み (Yes)、それ以外であればステップ 13へ と進む(No)。
[0023] ステップ 10では、吸気温度 Tiカゝら外気温度 Toを検出するためのサブルーチンをコ ールする。
ステップ 11では、ステップ 4と同様な処理により、外気温度 Toに応じたヒータ出力で 電気ヒータ 44を制御する。
ステップ 12では、外気温度 Toが所定値 To以上、かつ、尿素水溶液温度 Tuが所
3
定値 Tu以上であるカゝ否かを判定する。ここで、所定値 To及び Tuは、走行風などに
4 3 4 晒されても尿素水溶液が凍結する可能性がないか否かを判定するための閾値であ つて、尿素水溶液の特性などに応じて夫々設定される。そして、外気温度 Toが所定 値 To以上、かつ、尿素水溶液温度 Tuが所定値 Tu以上であればステップ 13へと進
3 4
み (Yes)、それ以外であればステップ 10へと戻る(No)。
[0024] ステップ 13では、尿素水溶液が凍結する可能性がな!、ので、無駄な電力消費を防 止すベぐ電気ヒータ 44を OFFする。
図 5は、外気温度 Toを検出するためのサブルーチンの制御内容を示す。なお、力 かるサブルーチンを実行することで、本発明に係る外気温度検出装置が具現化され る。
ステップ 21では、エアフローセンサ 38から吸気温度 Tiを読み込む。
[0025] ステップ 22では、過度な補正がなされた外気温度 Toにより不適切な制御が実行さ れることを防止すべく、吸気温度 Tiを補正する必要がある温度範囲にあるか否かを 判定する。即ち、電気ヒータ 44を高精度に制御するためには、尿素水溶液の凝固点 付近の所定範囲のみ補正すれば足りるので、その所定範囲を逸脱した領域での外 気温度の推定を行わないことで、例えば、過度な補正がなされた外気温度 Toを制御 変数として使用しないようにすることができる。そして、吸気温度 Tiを補正する必要が あるときにはステップ 23へと進む (Yes)。一方、補正する必要がないときにはステップ 29へと進み (No)、吸気温度 Tiを外気温度 Toとする。
[0026] ステップ 23では、高応答性の制御を可能とするエンジン運転状態として、エンジン コントロールユニット 42からエンジン回転速度 Ne及び燃料供給量 qを夫々読み込む ステップ 24では、エンジン回転速度 Ne及び燃料供給量 qに基づいて、エンジン周 囲に発生する熱量による動的な温度誤差を推定する。具体的には、エンジン回転速 度 Ne及び燃料供給量 qに基づ ヽて、定常的な温度誤差及び温度変化のなまし時定 数を夫々演算し、定常的な温度誤差をなまし時定数で補正して動的な温度誤差を推 定する。ここで、定常的な温度誤差は、ある程度の時間をかけて測定した実験値が 設定されたマップを参照して求めることができる。また、温度変化のなまし時定数は、 公知のなまし技術を適用した制御値が設定されたマップを参照して求めることができ る。このため、動的な温度誤差は、エンジン運転状態力も容易に演算可能となり、そ の演算負荷の増大などを抑制することができる。
[0027] ステップ 25では、エンジン回転速度 Ne及び燃料供給量 qに基づいて、吸気流量に 応じて変化する熱影響の補正係数を演算する。即ち、吸気流量が大であるときには 質量流量が大きいため、エンジン周囲に発生する熱量による影響は小さくなる。一方 、吸気流量が小であるときには質量流量が小さいため、エンジン周囲に発生する熱 量による影響は大きくなつてしまう。このため、エンジン回転速度 Ne及び燃料供給量 qに応じた補正係数を導入し、最終的な制御精度を向上させている。ここで、吸気流 量は、エンジン運転状態の変化に対して応答遅れがあるため、エンジン回転速度 Ne 及び燃料供給量 qから演算することが望ま 、。
[0028] ステップ 26では、動的な温度誤差を補正係数で補正する。
ステップ 27では、吸気温度 Tiを動的な温度誤差で補正して外気温度 Toを推定す る。
ステップ 28では、外気温度 Toをリターン値として出力する。
力かる排気浄ィ匕装置によれば、暖機が完了したときに尿素水溶液が凍結している 可能性があれば、外気温度 Toに応じたヒータ出力で電気ヒータ 44が作動し、供給配 管 26内の尿素水溶液が解凍される。また、尿素水溶液の解凍が完了し、又は、走行 風などにより尿素水溶液が凍結する可能性があれば、外気温度 Toに応じたヒータ出 力で電気ヒータ 44が作動し、還元剤容器 24内の尿素水溶液が所定温度範囲 (Tuよ
3 り大かつ Tu以下)に保温される。一方、尿素水溶液が凍結しておらず、走行風など
4
により凍結する可能性がなければ、無駄な電力消費を防止すベぐ電気ヒータ 44の 作動が停止される。
[0029] 従って、尿素水溶液が凍結していないのに電気ヒータ 44を作動させたり、尿素水溶 液が凍結しているにもかかわらず電気ヒータ 44を作動させないなど、各種不具合が 発生することがなぐ適切な尿素水溶液の凍結防止及び解凍促進を図ることができる このとき、外気温度 Toは、エンジン運転状態としてのエンジン回転速度 Ne及び燃 料供給量 qに基づいて、エアフローセンサ 38により検出された吸気温度 Tiを補正し て推定される。具体的には、エンジン運転状態に基づいて、エンジン周囲に発生す る熱量による動的な温度誤差と、吸気流量に応じて変化する熱影響の補正係数と、 が夫々演算され、動的な温度誤差が補正係数で補正された後、吸気温度 Tiを温度 誤差で補正することで外気温度 Toが推定される。このため、推定された外気温度 To は、実際の外気温度との差が小さぐその検出精度が十分なものとなる。そして、制 御内容を若干変更するだけで、外気温度 Toを直接検出するためのセンサが不要と なり、センサを設けることによるコスト上昇を抑制することができる。
[0030] ここで、電気ヒータ 44は、供給配管 26に付設される構成に限らず、尿素水溶液の 供給系の少なくとも一部、即ち、還元剤容器 24と、これと噴射ノズル 18とを連通する 配管 (供給配管 26も含む)と、の少なくとも一方に付設される構成としてもよい。このよ うにすれば、外気に面して凍結が起こり易い部分を集中的に加熱又は保温すること が可能となり、効果的に尿素水溶液の解凍促進及び凍結防止を図ることができる。ま た、電気ヒータ 44の作動を制御するために、外気温度 To及び尿素水溶液温度 Tuを 制御変数とする構成に限らず、外気温度 Toのみを制御変数としてもょ ヽ。
[0031] さらに、外気温度検出装置を単独で使用するときには、図 5におけるステップ 22及 び 29の処理は不要である。
なお、還元剤としては、本実施形態ではその前駆体としての尿素水溶液を使用した 、アンモニア水溶液、並びに、その前駆体としての炭化水素を主成分とする軽油, 石油,ガソリンなどを、 NOx還元触媒 20の特性に応じて適宜選択使用してもよい。

Claims

請求の範囲
[1] 吸気流量及び吸気温度を検出可能なホットワイヤ式のエアフローセンサと、
エンジン運転状態を検出する運転状態検出装置と、
該運転状態検出装置により検出されたエンジン運転状態に基づいて、前記エアフ ローセンサにより検出された吸気温度を補正して外気温度を推定する外気温度推定 装置と、
を含んで構成されたことを特徴とする外気温度検出装置。
[2] 前記外気温度推定装置は、前記エンジン運転状態に基づいて、エンジン周囲に発 生する熱量による動的な温度誤差と、吸気流量に応じて変化する熱影響の補正係数 と、を夫々演算し、前記温度誤差を補正係数で補正すると共に、前記エアフローセン サにより検出された吸気温度を、補正された温度誤差で補正して外気温度を推定す ることを特徴とする請求項 1記載の外気温度検出装置。
[3] 前記外気温度推定装置は、前記エンジン運転状態に基づ!、て、定常的な温度誤 差と、温度変化のなまし時定数と、を夫々演算し、定常的な温度誤差をなまし時定数 で補正して動的な温度誤差を演算することを特徴とする請求項 2記載の外気温度検 出装置。
[4] 前記運転状態検出装置は、エンジン運転状態として、エンジン回転速度及び燃料 供給量を夫々検出することを特徴とする請求項 1記載の外気温度検出装置。
[5] エンジン排気系に配設された還元触媒の排気上流に、エンジン運転状態に応じた 還元剤又はその前駆体を噴射ノズルから噴射供給し、前記還元触媒にて還元剤を 用いた触媒還元反応により排気中の窒素酸化物を還元浄化する排気浄化装置にお いて、
前記還元剤又はその前駆体の供給系の少なくとも一部に付設された電気ヒータと、 吸気流量及び吸気温度を検出可能なホットワイヤ式のエアフローセンサと、 コンピュータを内蔵したコントロールユニットと、
を含んで構成され、
前記コントロールユニットは、エンジン運転状態に基づいて、前記エアフローセンサ により検出された吸気温度を補正して外気温度を推定すると共に、推定された外気 温度に基づ!/ヽて、前記電気ヒータを制御することを特徴とする排気浄化装置。
[6] 前記コントロールユニットは、前記エンジン運転状態に基づいて、エンジン周囲に 発生する熱量による動的な温度誤差と、吸気流量に応じて変化する熱影響の補正係 数と、を夫々演算し、前記温度誤差を補正係数で補正すると共に、前記エアフローセ ンサにより検出された吸気温度を、補正された温度誤差で補正して外気温度を推定 することを特徴とする請求項 5記載の排気浄化装置。
[7] 前記コントロールユニットは、前記エンジン運転状態に基づいて、定常的な温度誤 差と、温度変化のなまし時定数と、を夫々演算し、定常的な温度誤差をなまし時定数 で補正して動的な温度誤差を演算することを特徴とする請求項 6記載の排気浄化装 置。
[8] 前記コントロールユニットは、前記エアフローセンサにより検出された吸気温度が所 定範囲内にあるときに、外気温度を推定することを特徴とする請求項 5記載の排気浄 化装置。
[9] 前記電気ヒータは、前記還元剤又はその前駆体を貯蔵する還元剤容器と、該還元 剤容器と噴射ノズルとを連通する配管と、の少なくとも一方に付設されることを特徴と する請求項 5記載の排気浄化装置。
PCT/JP2006/322352 2006-11-09 2006-11-09 Détecteur de température d'air ambiant et appareil de purification d'échappement WO2008056417A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2006/322352 WO2008056417A1 (fr) 2006-11-09 2006-11-09 Détecteur de température d'air ambiant et appareil de purification d'échappement
EP06823239A EP2080889A4 (en) 2006-11-09 2006-11-09 AMBIENT AIR TEMPERATURE SENSOR AND EXHAUST PURIFICATION APPARATUS
CN2006800532350A CN101384813B (zh) 2006-11-09 2006-11-09 外界空气温度检测装置以及排气净化装置
US12/173,791 US7810320B2 (en) 2006-11-09 2008-07-15 Atmospheric temperature detecting apparatus and exhaust emission purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/322352 WO2008056417A1 (fr) 2006-11-09 2006-11-09 Détecteur de température d'air ambiant et appareil de purification d'échappement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/173,791 Continuation US7810320B2 (en) 2006-11-09 2008-07-15 Atmospheric temperature detecting apparatus and exhaust emission purification apparatus

Publications (1)

Publication Number Publication Date
WO2008056417A1 true WO2008056417A1 (fr) 2008-05-15

Family

ID=39364246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322352 WO2008056417A1 (fr) 2006-11-09 2006-11-09 Détecteur de température d'air ambiant et appareil de purification d'échappement

Country Status (4)

Country Link
US (1) US7810320B2 (ja)
EP (1) EP2080889A4 (ja)
CN (1) CN101384813B (ja)
WO (1) WO2008056417A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013596A1 (ja) * 2012-07-19 2014-01-23 トヨタ自動車 株式会社 内燃機関の添加剤供給装置
JP2015074999A (ja) * 2013-10-07 2015-04-20 トヨタ自動車株式会社 エンジンの添加剤供給装置
JP2019183685A (ja) * 2018-04-04 2019-10-24 株式会社デンソー 還元剤添加システム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7614213B2 (en) * 2003-09-19 2009-11-10 Nissan Diesel Motor Co., Ltd. Engine exhaust emission purification apparatus
US20110030343A1 (en) * 2009-08-06 2011-02-10 Caterpillar Inc. Scr reductant deposit removal
DE102010024021A1 (de) * 2010-06-16 2011-12-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Bereitstellung eines Reduktionsmittels mit Systemheizung
US8857157B2 (en) * 2010-08-30 2014-10-14 GM Global Technology Operations LLC Temperature estimation systems and methods
CN102808680A (zh) * 2012-07-27 2012-12-05 潍柴动力股份有限公司 一种scr系统低温解冻的控制方法
FR3018851B1 (fr) * 2014-03-18 2016-09-30 Peugeot Citroen Automobiles Sa Procede de detection d'un degel d'un agent reducteur
CN105022904B (zh) * 2014-04-16 2019-05-24 上海通用汽车有限公司 基于发动机进气温度的车辆外界环境温度计算方法
US9534546B2 (en) * 2014-05-14 2017-01-03 Caterpillar Inc. System and method for operating engine
SE540140C2 (en) 2016-07-14 2018-04-10 Scania Cv Ab Method and system for diagnosing an aftertreatment components subjected to an exhaust gas stream
SE541557C2 (en) 2016-07-14 2019-10-29 Scania Cv Ab Method and system for diagnosing an aftertreatment system
SE540088C2 (en) * 2016-07-14 2018-03-20 Scania Cv Ab Method and system for use when correcting supply of an additive to an exhaust gas stream
SE540087C2 (en) 2016-07-14 2018-03-20 Scania Cv Ab A system and a method for diagnosing the performance of two NOx sensors in an exhaust gas processing configuration comprising two SCR units
WO2018110143A1 (ja) * 2016-12-13 2018-06-21 ボッシュ株式会社 ヒータ制御装置及びヒータ制御方法
US10810805B2 (en) * 2017-02-24 2020-10-20 Moc Products Company, Inc. Method for cleaning engine deposits
FR3088676B1 (fr) * 2018-11-15 2020-12-11 Continental Automotive France Module de dosage d'un agent reducteur avec pont thermique elastique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306740A (ja) * 1997-05-09 1998-11-17 Toyota Motor Corp 熱式エアフローメータを有する内燃機関の制御装置
JP2000027627A (ja) 1998-07-13 2000-01-25 Hino Motors Ltd 排気ガス浄化触媒用還元剤保温装置及びそれを組込んだ排気ガス浄化装置
JP2005207321A (ja) 2004-01-22 2005-08-04 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569978B2 (ja) * 1991-02-26 1997-01-08 三菱電機株式会社 内燃機関の制御装置
DE19933798C2 (de) * 1999-07-19 2001-06-21 Siemens Ag Vorrichtung und Verfahren zur Abgasnachbehandlung bei einer Brennkraftmaschine
JP3784747B2 (ja) 2002-05-17 2006-06-14 本田技研工業株式会社 蒸発燃料処理系の漏れ診断装置
JP2004346913A (ja) 2003-05-26 2004-12-09 Toyota Motor Corp 内燃機関の吸気湿度算出装置
JP4152833B2 (ja) * 2003-07-30 2008-09-17 日産ディーゼル工業株式会社 エンジンの排気浄化装置
JP2007113403A (ja) * 2005-10-18 2007-05-10 Nissan Diesel Motor Co Ltd 外気温度検出装置及び排気浄化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306740A (ja) * 1997-05-09 1998-11-17 Toyota Motor Corp 熱式エアフローメータを有する内燃機関の制御装置
JP2000027627A (ja) 1998-07-13 2000-01-25 Hino Motors Ltd 排気ガス浄化触媒用還元剤保温装置及びそれを組込んだ排気ガス浄化装置
JP2005207321A (ja) 2004-01-22 2005-08-04 Toyota Motor Corp 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2080889A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013596A1 (ja) * 2012-07-19 2014-01-23 トヨタ自動車 株式会社 内燃機関の添加剤供給装置
JP5915747B2 (ja) * 2012-07-19 2016-05-11 トヨタ自動車株式会社 内燃機関の添加剤供給装置
JPWO2014013596A1 (ja) * 2012-07-19 2016-06-30 トヨタ自動車株式会社 内燃機関の添加剤供給装置
JP2015074999A (ja) * 2013-10-07 2015-04-20 トヨタ自動車株式会社 エンジンの添加剤供給装置
JP2019183685A (ja) * 2018-04-04 2019-10-24 株式会社デンソー 還元剤添加システム
JP7035737B2 (ja) 2018-04-04 2022-03-15 株式会社デンソー 還元剤添加システム

Also Published As

Publication number Publication date
EP2080889A1 (en) 2009-07-22
CN101384813A (zh) 2009-03-11
CN101384813B (zh) 2012-07-25
US7810320B2 (en) 2010-10-12
EP2080889A4 (en) 2011-02-09
US20080271437A1 (en) 2008-11-06

Similar Documents

Publication Publication Date Title
WO2008056417A1 (fr) Détecteur de température d'air ambiant et appareil de purification d'échappement
JP2007113403A (ja) 外気温度検出装置及び排気浄化装置
JP4692911B2 (ja) NOxセンサの出力較正装置及び出力較正方法
WO2006046339A1 (ja) 排気浄化装置
JP4706659B2 (ja) アンモニア酸化触媒におけるn2o生成量推定方法および内燃機関の排気浄化システム
WO2006132364A1 (ja) エンジンの排気浄化装置
WO2006006481A1 (ja) 排気浄化装置の制御方法
WO2013047031A1 (ja) 尿素噴射scr制御システム
JP4305643B2 (ja) 内燃機関の排気浄化装置
JPH10274032A (ja) NOxトラップの触媒効率を維持する方法
WO2009141918A1 (ja) NOxセンサの異常診断装置及び異常診断方法
JP2006037771A (ja) 排気浄化装置のNOx低減率測定方法
JP2008196340A (ja) 内燃機関の排気浄化装置及び排気浄化方法
US20120079812A1 (en) Exhaust gas purification apparatus of engine and exhaust gas purification method of engine
JP2008240716A (ja) 内燃機関の排気浄化装置
JP5910759B2 (ja) 内燃機関の排気浄化システム
WO2013161032A1 (ja) 内燃機関の排気浄化装置の異常判定システム
JP4419150B2 (ja) NOx触媒の異常診断装置及び異常診断方法
JP2009156159A (ja) 排気ガス浄化システムの異常部位の判定装置
WO2014097393A1 (ja) 内燃機関の排気浄化装置
JP4781151B2 (ja) 内燃機関の排気浄化システム
WO2013153606A1 (ja) 内燃機関の排気浄化装置
EP2896799B1 (en) Additive supply device
JP5570188B2 (ja) エンジンの排気浄化装置
US5816231A (en) Controller for heater of air-fuel-ratio sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006823239

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06823239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200680053235.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP