WO2013047031A1 - 尿素噴射scr制御システム - Google Patents

尿素噴射scr制御システム Download PDF

Info

Publication number
WO2013047031A1
WO2013047031A1 PCT/JP2012/071321 JP2012071321W WO2013047031A1 WO 2013047031 A1 WO2013047031 A1 WO 2013047031A1 JP 2012071321 W JP2012071321 W JP 2012071321W WO 2013047031 A1 WO2013047031 A1 WO 2013047031A1
Authority
WO
WIPO (PCT)
Prior art keywords
nox
amount
outside air
map
urea
Prior art date
Application number
PCT/JP2012/071321
Other languages
English (en)
French (fr)
Inventor
桂一 飯田
原田 伸一
正信 嶺澤
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201280046803.XA priority Critical patent/CN103842629B/zh
Priority to EP12835975.9A priority patent/EP2762694B1/en
Priority to US14/345,734 priority patent/US9440193B2/en
Publication of WO2013047031A1 publication Critical patent/WO2013047031A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0412Methods of control or diagnosing using pre-calibrated maps, tables or charts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/12Parameters used for exhaust control or diagnosing said parameters being related to the vehicle exterior
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a urea injection SCR control system in which an SCR device is connected to an exhaust pipe of an engine and injects urea according to the amount of NOx in engine exhaust gas.
  • the present invention relates to a urea injection SCR control system capable of accurately controlling injection.
  • Urea injection SCR Selective Catalytic Reduction control is performed so that an appropriate urea injection amount is obtained in accordance with the engine-out NOx emission detected by the NOx sensor (Patent Document 1). If the urea injection amount is excessive, ammonia as a toxic substance is discharged. If the urea injection amount is excessive, the NOx purification rate is lowered and the exhaust gas performance is affected.
  • Detecting the engine-out NOx amount with a NOx sensor is generally highly accurate, but the NOx sensor requires a certain amount of time from when the sensor is activated until the NOx amount can be sensed. Since the NOx sensor needs to keep a sensing part (hereinafter referred to as an element part) in a high temperature (for example, 800 ° C.) region due to its structure, heating control is performed. In addition, since ceramic is used for the element portion, if a water droplet or the like adheres to the element in a heating state, the element portion is damaged.
  • a sensing part hereinafter referred to as an element part
  • a high temperature for example, 800 ° C.
  • preheating control when there is no possibility of water droplet adhesion by preheating (hereinafter, this control is referred to as preheating control), the control is shifted to high temperature heating control, and then the amount of NOx is sensed (patent) References 2, 3).
  • the NOx model map (NOx amount map for each engine rotation and commanded injection amount) is used instead of the sensor for urea injection control during that period. Used to determine the injection amount.
  • the current NOx model map has two NOx map configurations with and without EGR (exhaust gas recirculation system) operation.
  • EGR exhaust gas recirculation system
  • the deviation of the urea injection amount has a problem of causing erroneous detection of failure diagnosis (diagnosticity of NOx sensor and NOx purification rate diagnosis).
  • an object of the present invention is to provide a urea injection SCR control system capable of controlling the appropriate urea injection amount in accordance with the engine-out NOx emission amount during the period in which the preliminary heating control is performed, solving the above-described problems. It is in.
  • the invention of claim 1 includes an SCR catalyst provided in an exhaust pipe of an engine, and a dosing valve for injecting urea water upstream of the SCR catalyst, and urea water from the dosing valve.
  • a urea injection SCR control system for controlling injection comprising a plurality of NOx model maps corresponding to atmospheric pressure conditions, outside air temperature, and engine water temperature, and detected values of atmospheric pressure detecting means, outside air temperature detecting means, and engine water temperature detecting means Is a NOx amount determined from each NOx model map, and the urea water injection amount from the dosing valve is controlled based on the determined NOx amount.
  • each of the NOx model maps is stored in a control unit, and the NOx amount is set for a plurality of outside air temperatures in which the NOx amount is set from the engine rotation and the commanded injection amount in accordance with the outside air temperature under the atmospheric pressure condition on a flat ground
  • a base map comprising an outside temperature map selection factor for selecting the outside temperature NOx map from the NOx map and the outside temperature-specific NOx map based on the actual outside temperature and interpolating the NOx value of the outside temperature NOx map is provided.
  • the map includes a correction map for correcting the NOx value from the base map under atmospheric pressure conditions at high altitude, and further includes an engine water temperature correction map for correcting the NOx value determined by the atmospheric pressure condition and the outside air temperature condition with the engine water temperature.
  • a urea injection SCR control system according to claim 1.
  • the invention according to claim 3 is the urea injection SCR control system according to claim 2, wherein each NOx model map when the EGR control is performed and when the EGR control is not performed is stored in the control unit.
  • the invention of claim 4 is provided with a NOx sensor for measuring the amount of NOx in the exhaust gas, and based on the detected values of the atmospheric pressure detecting means, the outside air temperature detecting means, and the engine water temperature detecting means during preliminary heating control of the NOx sensor.
  • the urea injection SCR control system according to any one of claims 1 to 3, wherein the NOx amount is determined from each NOx model map, and the injection amount of urea water from the dosing valve is controlled based on the determined NOx amount.
  • the present invention reduces the deviation from the actual NOx amount by determining the engine-out NOx amount using a plurality of NOx model maps corresponding to environmental differences such as the preliminary heating control period, atmospheric pressure, and outside air temperature. it can. For this reason, it is possible to perform an appropriate urea injection control, and the exhaust gas performance is not affected, and it is possible to prevent the erroneous diagnosis of the fault diagnosis and further improve the diagnostic accuracy (threshold value). Demonstrate.
  • the exhaust manifold 13 and the intake manifold 11 are connected to an EGR (Exhaust Gas Recirculation) pipe 17 for returning part of the exhaust gas to the intake system of the engine 10 to reduce NOx, and the EGR cooler 18 is connected to the EGR pipe 17. Are connected to the EGR valve 19.
  • EGR exhaust Gas Recirculation
  • An exhaust brake valve 20 and an exhaust throttle valve 21 are connected to the exhaust pipe 14, and a diesel particulate filter 22 and an SCR catalyst 23 are provided downstream thereof.
  • Various detection means that is, a detection value of the rotation sensor 31 that detects the number of revolutions of the engine, a detection value of the vehicle speed sensor 32, a detection value of the outside air temperature sensor 33, and a detection value of the atmospheric pressure sensor 34 are input to the ECU 30. .
  • the ECU 30 controls the fuel injection amount in the fuel injector 35 according to the accelerator opening, controls the intake throttle valve 16, the exhaust brake valve 20, the exhaust throttle valve 21 as appropriate, and opens and closes the EGR valve 19.
  • the EGR amount is controlled.
  • the SCR system 40 stores an SCR catalyst 23 provided in the exhaust pipe 14 of the engine 10, a dosing valve 41 for injecting urea water upstream of the SCR catalyst 23 (upstream of exhaust gas), and urea water.
  • a supply module 43 having a urea tank 42, an SM pump that sucks up urea water in the urea tank 42 and supplies urea water to the dosing valve 41, and a reverting valve that returns excess urea water into the urea tank 42; 41 and a dosing control unit (DCU) 44 for controlling the supply module 43 and the like.
  • DCU dosing control unit
  • the ECU 30 outputs engine parameters to the dosing control unit 44 in accordance with the operating condition of the engine 10, and the dosing control unit 44 thereby controls the supply module 43 and the dosing valve 41 based on the detection values of each sensor described later. It is like that.
  • the exhaust pipe 14 on the upstream side of the dosing valve 41 is provided with an exhaust temperature sensor 45 that measures the temperature of the exhaust gas at the inlet of the SCR catalyst 23 (SCR inlet temperature).
  • An upstream NOx sensor 46 that detects the NOx concentration upstream of the SCR catalyst 23 is provided upstream of the SCR catalyst 23, and downstream of the SCR catalyst 23 is downstream of the SCR catalyst 23.
  • a downstream NOx sensor 47 that detects the NOx concentration is provided.
  • the urea tank 42 is provided with an SCR sensor 48 that measures the water level, quality, temperature, and the like of urea water.
  • a cooling line 49 for circulating cooling water for cooling the engine 10 is connected to the urea tank 42 and the supply module 43.
  • the cooling line 49 passes through the urea tank 42 and exchanges heat between the cooling water flowing through the cooling line 49 and the urea water in the urea tank 42.
  • the cooling line 49 is provided with a tank heater valve (coolant valve) 50 for switching whether or not to supply cooling water to the urea tank 42.
  • a cooling line 49 is also connected to the dosing valve 41.
  • the dosing valve 41 is configured to be supplied with cooling water regardless of whether the tank heater valve 50 is opened or closed.
  • cooling line 49 is provided so as to also cool the supply module 43.
  • DCU dosing control unit
  • the DCU 44 includes an upstream NOx sensor 46, a downstream NOx sensor 47, an SCR sensor 48 (water level sensor, temperature sensor and quality sensor), an exhaust temperature sensor 45, and an SM temperature sensor 51 of the supply module 43.
  • the detected value of the urea water pressure sensor 52 are input, and signals from the ECU 30 such as the outside air temperature, atmospheric pressure, and engine parameters (engine speed, fuel injection amount, engine water temperature, etc.) are input.
  • the DCU 44 controls the tank heater valve 50, the SM pump 53 and reverting valve 54 of the supply module 43, the dosing valve 41, the upstream NOx sensor heater 46H, and the downstream NOx sensor heater 47H.
  • the DCU 44 performs preliminary heating control on the upstream NOx sensor 46 and the downstream NOx sensor 47 when the engine is started. That is, after the upstream NOx sensor 46 and the downstream NOx sensor 47 are preliminarily heated by the upstream NOx sensor heater 46H and the downstream NOx sensor heater 47H, and thereafter the influence of condensed water such as moisture is eliminated, The upstream NOx sensor 46 and the downstream NOx sensor 47 are held at a high temperature to detect NOx.
  • the DCU 44 determines the basic urea water amount based on the value of the upstream NOx sensor 46, and uses this basic urea water amount as the detection value of the downstream NOx sensor 47, the engine parameter signal, and the like. And the amount of urea water to be injected from the dosing valve 41 to the SCR catalyst 23 is determined.
  • the DCU 44 determines that the engine parameter from the ECU 30 is the engine operating condition.
  • the urea injection amount is controlled according to the outside air temperature, atmospheric pressure, and engine water temperature.
  • FIG. 1 shows a configuration example of the NOx model map stored in the DCU 44 described with reference to FIG.
  • FIG. 1 is an example of a NOx model map when EGR control is performed, and includes three NOx model maps 60-1, 60-2, 60-3 according to atmospheric pressure conditions, and an engine water temperature correction map. 61 is comprised.
  • the first NOx model map 60-1 is a base map under the atmospheric pressure condition (1) on a flat ground
  • the second NOx model map is, for example, the correction map 1 under the atmospheric pressure condition (2) corresponding to an altitude of 1000 m
  • the third NOx model map 60-3 is under the atmospheric pressure condition (3) corresponding to, for example, an altitude of 2000 m. This is a correction map 2.
  • the first NOx model map 60-1 includes a plurality of NOx maps 62a1, 62b1, 62c1, 62d1 for each outside air temperature corresponding to the outside air temperature (for example, arbitrarily set in the range of ⁇ 40 ° C. to + 40 ° C.), and the outside air temperature. Is stored, and an outside air temperature map selection factor 63-1 for selecting two outside air temperature NOx maps from these outside air temperature NOx maps 62a1, 62b1, 62c1, 62d1 according to the outside air temperature is stored.
  • NOx maps 62a1, 62b1, 62c1, and 62d1 for each outside air temperature store the NOx amount determined for each engine rotation and the commanded fuel injection amount when the engine is operated at the set outside air temperature.
  • the map selection factor 63-1 is based on the detected outside air temperature-specific NOx maps 62 a 1, 62 b 1, 62 c 1, 62 d 1, and the outside air temperature-specific NO x map (for example, 62 b 1) set higher than the detected outside air temperature.
  • the second and third NOx model maps 60-2 and 60-3 include the set atmospheric pressure conditions (2) and (3) and the set outside air temperature.
  • correction maps 1 and 2 for correcting NOx values by separate NOx maps 62a2, 62a3, 62b2, 62b3, 62c2, 62c3, 62d2, and 62d3, and outside temperature map selection factors 63-2 and 63-3, and a NOx model
  • the atmospheric pressure correction maps 64-2 and 64-3 for further interpolating the corrected NOx values from the maps 60-2 and 60-3 with the actual atmospheric pressure are provided, and the NOx model maps 60-2 and 60-3 are provided.
  • the corrected NOx value from the above and the interpolated values of the atmospheric pressure correction maps 64-2 and 64-3 are input to the multipliers 65-2 and 65-3, and the corrected NOx is output to the adder 66.
  • NOx model maps 60-1, 60-2, 60-3 are first NOx model maps 60-1, which are based on the engine operating state (engine speed and commanded injection amount) and outside air temperature.
  • the value is determined, the NOx value is input to the adder 66, and the multipliers of the second and third NOx model maps 60-2 and 60-3 according to the atmospheric pressure conditions (2) and (3)
  • the corrected NOx value is input to the adder 66 from either 65-2 or 65-3, and the NOx value of the first NOx model map 60-1 is corrected by the atmospheric pressure conditions (2) and (3).
  • the multiplier 67 multiplies the correction value based on the engine water temperature from the engine water temperature correction map 61 and outputs the NOx value based on the atmospheric pressure, the outside air temperature, and the engine water temperature.
  • These three NOx model maps 60-1, 60-2, and 60-3 are map configuration examples when EGR control is performed, and the engine-out NOx value when EGR control is not performed is EGR controlled. Therefore, three NOx model maps 60 are separately stored in the DCU 44 in consideration of the absence of EGR control.
  • the DCU 44 is based on the NOx value determined based on the NOx model maps 60-1, 60-2, 60-3 and the engine water temperature correction map 61 with respect to the engine operating conditions (engine speed and command injection amount). The amount of urea injected from the dosing valve 41 is determined.
  • a NOx model map corresponding to environmental differences is stored in the DCU 44, and these environmental The deviation of the actual NOx amount can be eliminated by obtaining the NOx amount corresponding to the difference.
  • the larger the number of maps the higher the accuracy of the NOx amount.
  • the intermediate NOx amount is associated with an interpolation value as a certain number of multiple maps.
  • the present invention can reduce the deviation from the actual NOx amount by mapping the NOx model corresponding to the difference in environment, so that it does not affect the exhaust gas performance by the appropriate urea injection control, and the failure diagnosis This makes it possible to prevent misdiagnosis and improve diagnostic accuracy (threshold value).
  • the NOx model map 60 further reduces the atmospheric pressure condition to four or more.
  • four NOx maps by temperature may be used, but more than this may be used.
  • one of the three NOx model maps 60 is a base map and the other is a correction map has been described, but each may be configured as an independent base map under atmospheric pressure conditions.
  • NOx model map 60 is stored in the DCU 44
  • it may be stored in the ECU 30.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 予備ヒーティング制御を行っている期間に、エンジンアウトNOx排出量に合わせて適切な尿素噴射量を制御できる尿素噴射SCR制御システムを提供する。 エンジン10の排気管14に設けられたSCR触媒23と、SCR触媒23の上流側で尿素水を噴射するドージングバルブ41と、排ガス中のNOx量を測定するNOxセンサー46、47とを備え、ドージングバルブ41からの尿素水の噴射を制御する尿素噴射SCR制御システムであって、大気圧条件、外気温、エンジン水温に対応した複数のNOxモデルマップ60を備え、大気圧センサ、外気温センサ、エンジン水温センサの検出値に基づいて各NOxモデルマップ60からNOx量を決定し、その決定したNOx量に基づいてドージングバルブ41からの尿素水の噴射量を制御するものである。

Description

尿素噴射SCR制御システム
 本発明は、エンジンの排気管にSCR装置を接続し、エンジン排ガス中のNOx量に応じて尿素を噴射する尿素噴射SCR制御システムに係り、特に、NOxセンサーがセンシング可能な状態になるまで、尿素噴射を的確に制御できる尿素噴射SCR制御システムに関するものである。
 尿素噴射SCR(Selective Catalytic Reduction)制御は、NOxセンサーで検出されたエンジンアウトNOx排出量に合わせて適切な尿素噴射量となるように制御を行っている(特許文献1)。この尿素噴射量が過多だと有毒物質のアンモニアを排出し、過少だとNOx浄化率の低下となり、排ガス性能に影響する。
 エンジンアウトNOx量は、NOxセンサーにより検知することが精度も高く一般的であるが、NOxセンサーは、センサー起動からNOx量をセンシング可能な状態にするまで、ある程度の時間を要する。NOxセンサーは構造上、センシング部(以下エレメント部)を高温(例えば800℃)域に保つ必要があるため、ヒーティング制御を行っている。また、エレメント部はセラミックが使われているため、ヒーティング状態で、エレメントに水滴等が付着すると、破損してしまう。よって、NOxセンサーを使用する場合、エンジン始動直後(暖気前)に排気ガス中に含まれている水分や、排気管内やNOxセンサー自体が結露等によって発生した水滴が無くなるまで、予備ヒーティングを行うようにしている。この予備ヒーティングは、エレメントに水滴が付着しても破損しない温度(例えば100度)でエレメントを加熱することで、結露によりセンサー内に発生した水滴を蒸発させるものである。このように予備ヒーティングで、水滴付着の可能性が無くなってから(以下この制御を予備ヒーティング制御と言う)、高温域のヒーティング制御に移行させ、その後NOx量をセンシングしている(特許文献2、3)。
 予備ヒーティング制御を行っている時間は、NOx量の検出が出来ないため、その期間の尿素噴射制御は、センサーの代替として、NOxモデルマップ(エンジン回転と指示噴射量ごとのNOx量マップ)を使って噴射量を決定している。
特開2000-303826号公報 特開2004-360526号公報 特開2010-174657号公報
 ところで、現状のNOxモデルマップは、EGR(排ガス再循環システム)の作動有無での2枚のNOxマップ構成となっている。ここで、実際のエンジン制御では、環境ごとに各制御パラメータが補正されるため、使用環境によりエンジンアウトNOx排出量も異なる。よって、現状のNOxモデルマップ構成では、使用環境の違いで、実NOx量とのズレが発生し、適切な尿素噴射制御することが出来ず、アンモニアスリップやNOx浄化率低下を招いてしまう。
 更に、この尿素噴射量のズレは、故障診断(NOxセンサーのたしからしさ診断や、NOx浄化率診断)の誤検出を引き起こしてしまう問題がある。
 そこで、本発明の目的は、上記課題を解決し、予備ヒーティング制御を行っている期間に、エンジンアウトNOx排出量に合わせて適切な尿素噴射量を制御できる尿素噴射SCR制御システムを提供することにある。
 上記目的を達成するために請求項1の発明は、エンジンの排気管に設けられたSCR触媒と、SCR触媒の上流側で尿素水を噴射するドージングバルブとを備え、ドージングバルブからの尿素水の噴射を制御する尿素噴射SCR制御システムであって、大気圧条件、外気温、エンジン水温に対応した複数のNOxモデルマップを備え、大気圧検出手段、外気温検出手段、エンジン水温検出手段の検出値に基づいて各NOxモデルマップからNOx量を決定し、その決定したNOx量に基づいてドージングバルブからの尿素水の噴射量を制御することを特徴とする尿素噴射SCR制御システムである。
 請求項2の発明は、前記各NOxモデルマップは、コントロールユニットに格納され、平地での大気圧条件における外気温に応じてエンジン回転と指示噴射量からNOx量が設定された複数の外気温別NOxマップとその外気温別NOxマップから実際の外気温で外気温別NOxマップを選択すると共にその外気温別NOxマップのNOx値を補間する外気温マップ選択ファクタからなるベースマップを備えると共に、ベースマップを高地での大気圧条件でベースマップからのNOx値を補正する補正マップとを備え、さらに大気圧条件と外気温条件で決定されたNOx値をエンジン水温で補正するエンジン水温補正マップを備える請求項1記載の尿素噴射SCR制御システムである。
 請求項3の発明は、コントロールユニットには、EGR制御をしているときとEGR制御していないときの各NOxモデルマップが格納されている請求項2記載の尿素噴射SCR制御システムである。
 請求項4の発明は、排ガス中のNOx量を測定するNOxセンサーを備え、そのNOxセンサーの予備ヒーティング制御時に、大気圧検出手段、外気温検出手段、エンジン水温検出手段の検出値に基づいて各NOxモデルマップからNOx量を決定し、その決定したNOx量に基づいてドージングバルブからの尿素水の噴射量を制御する請求項1~3いずれかに記載の尿素噴射SCR制御システムである。
 本発明は、予備ヒーティング制御期間、大気圧や外気温などの環境違いに対応した複数のNOxモデルマップを用いてエンジンアウトNOx量を決定することで、実NOx量とのズレを減らすことができる。このため、適切な尿素噴射制御が行え、排ガス性能に影響を与えることが無くなると共に、故障診断の誤診断防止、更には診断精度(閾値)を向上させることが出来るようになるという優れた効果を発揮する。
本発明の尿素噴射SCR制御システムにおけるNOxモデルマップの構成例を示す図である。 本発明を適用するSCRシステムの一例を示す概略図である。 DCUの入出力構成を示す図である。
 以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。
 先ず、図2によりエンジンの排ガス浄化システムについて説明する。
 図2において、ディーゼルエンジン10の吸気マニホールド11には、吸気管12が接続され、排気マニホールド13には排気管14が接続される。吸気管12には、吸気量を測定するエアフローセンサ15が設けられ、そのエアフローセンサ15で、吸気スロットルバルブ16の開度が制御されて吸気量が調整される。
 排気マニホールド13と吸気マニホールド11とは、排気ガスの一部をエンジン10の吸気系に戻してNOxを低減するためのEGR(Exhaust Gas Recirculation)管17が接続され、そのEGR管17にEGRクーラ18とEGRバルブ19とが接続される。
 排気管14には、排気ブレーキバルブ20、排気スロットルバルブ21が接続され、その下流に、ディーゼルパティキュレートフィルタ22、SCR触媒23が設けられる。
 ECU30には、各種検出手段、すなわち、エンジンの回転数を検出する回転センサ31の検出値、車速センサ32の検出値、外気温度センサ33の検出値、大気圧センサ34の検出値が入力される。
 ECU30は、走行中、アクセル開度に応じて燃料インジェクタ35での燃料噴射量を制御し、また適宜吸気スロットルバルブ16、排気ブレーキバルブ20、排気スロットルバルブ21を制御すると共にEGRバルブ19を開閉してEGR量を制御するようになっている。
 次に、エンジン10からの排気ガス中のNOxを処理するためのSCR触媒23からなるSCRシステム40を説明する。
 このSCRシステム40は、エンジン10の排気管14に設けられたSCR触媒23と、SCR触媒23の上流側(排気ガスの上流側)で尿素水を噴射するドージングバルブ41と、尿素水を貯留する尿素タンク42と、尿素タンク42内の尿素水を吸い上げてドージングバルブ41に尿素水を供給するSMポンプ及び余剰の尿素水を尿素タンク42内に戻すリバーティングバルブを有するサプライモジュール43と、ドージングバルブ41やサプライモジュール43などを制御するドージングコントロールユニット(DCU;Dosing Control Unit)44とを備える。
 ECU30は、エンジン10の運転状況に応じエンジンパラメータをドージングコントロールユニット44に出力し、これによりドージングコントロールユニット44が、後述する各センサーの検出値を基に、サプライモジュール43とドージングバルブ41を制御するようになっている。
 ドージングバルブ41の上流側の排気管14には、SCR触媒23の入口における排気ガスの温度(SCR入口温度)を測定する排気温度センサー45が設けられる。また、SCR触媒23の上流側には、SCR触媒23の上流側でのNOx濃度を検出する上流側NOxセンサー46が設けられ、SCR触媒23の下流側には、SCR触媒23の下流側でのNOx濃度を検出する下流側NOxセンサー47が設けられる。
 尿素タンク42には、尿素水の水位や品質、温度などを測定するSCRセンサー48が設けられる。
 尿素タンク42とサプライモジュール43には、エンジン10を冷却するための冷却水を循環する冷却ライン49が接続される。冷却ライン49は、尿素タンク42内を通り、冷却ライン49を流れる冷却水と尿素タンク42内の尿素水との間で熱交換するようにされる。
 冷却ライン49には、尿素タンク42に冷却水を供給するか否かを切り替えるタンクヒータバルブ(クーラントバルブ)50が設けられる。また、ドージングバルブ41にも冷却ライン49が接続されるが、ドージングバルブ41には、タンクヒータバルブ50の開閉に拘わらず、冷却水が供給されるように構成されている。
 なお、図2では図を簡略化しており示されていないが、冷却ライン49は、サプライモジュール43も冷却するように設けられる。
 次に、図3によりドージングバルブ41やサプライモジュール43を制御すドージングコントロールユニット(DCU)44の入出力構成について説明する。
 図3に示すように、DCU44には、上流側NOxセンサー46、下流側NOxセンサー47、SCRセンサー48(水位センサー、温度センサー及び品質センサー)、排気温度センサー45、サプライモジュール43のSM温度センサー51と尿素水圧力センサー52の検出値が入力され、またECU30から外気温、大気圧、エンジンパラメータ(エンジン回転数、燃料の指示噴射量、エンジン水温など)の信号が入力される。
 DCU44は、タンクヒータバルブ50、サプライモジュール43のSMポンプ53とリバーティングバルブ54、ドージングバルブ41、上流側NOxセンサー用ヒータ46H、及び下流側NOxセンサー用ヒータ47Hを制御するようになっている。
 このDCU44の基本的な制御を説明する。
 先ず、DCU44は、エンジン始動時などに上流側NOxセンサー46と下流側NOxセンサー47を予備ヒーティング制御を行う。すなわち上流側NOxセンサー用ヒータ46H及び下流側NOxセンサー用ヒータ47Hにて、上流側NOxセンサー46と下流側NOxセンサー47を予備ヒーティングし、その後、水分などの凝縮水の影響をなくした後、上流側NOxセンサー46と下流側NOxセンサー47を高温に保持してNOxの検出を行う。
 次に、予備ヒーティング制御後、DCU44は、上流側NOxセンサー46の値に基づいて基本の尿素水量を決定すると共に、この基本の尿素水量を下流側NOxセンサー47の検出値やエンジンパラメータ信号等に基づいて補正し、ドージングバルブ41からSCR触媒23に噴射する尿素水量を決定する。
 本発明においては、予備ヒーティング制御を行っている期間、上流側NOxセンサー46と下流側NOxセンサー47でのNOx検出が行われないため、DCU44が、ECU30からのエンジン運転条件であるエンジンパラメータと外気温、大気圧、エンジン水温に応じて尿素噴射量を制御するものである。
 この尿素噴射SCR制御システムを図1により説明する。
 図1は、図3で説明したDCU44に格納されるNOxモデルマップの構成例を示したものである。
 図1においては、EGR制御を行っているときのNOxモデルマップの例で、大気圧条件に応じて3つのNOxモデルマップ60-1、60-2、60-3を備え、さらにエンジン水温補正マップ61を備えて構成される。この3つのNOxモデルマップ60-1、60-2、60-3は、第1のNOxモデルマップ60-1が、平地における大気圧条件(1)でのベースマップであり、第2のNOxモデルマップ60-2が、例えば高度1000mに相当する大気圧条件(2)での補正マップ1であり、第3のNOxモデルマップ60-3が、例えば高度2000mに相当する大気圧条件(3)での補正マップ2である。
 先ず第1のNOxモデルマップ60-1は、外気温(例えば-40℃~+40℃の範囲で任意に設定)に応じた複数の外気温別NOxマップ62a1、62b1、62c1、62d1と、外気温が入力され、その外気温に応じて、これら外気温別NOxマップ62a1、62b1、62c1、62d1から2つの外気温別NOxマップを選択する外気温度マップ選択ファクタ63-1とが格納されている。
 これら外気温別NOxマップ62a1、62b1、62c1、62d1は、設定の外気温でエンジンが運転されるときのエンジン回転と燃料の指示噴射量ごとで決定されるNOx量が記憶されており、外気温度マップ選択ファクタ63-1は、検出された外気温から外気温別NOxマップ62a1、62b1、62c1、62d1のうち、検出された外気温に対して高く設定されている外気温別NOxマップ(例えば62b1)と、低く設定されている外気温別NOxマップ62c1とを選択し、これら外気温別NOxマップ62b1、62c1で決定されるNOx値を外気温で補間し、そのNOx値を加算器66に出力するようになっている。
 第1のNOxモデルマップ60-1に対して、第2、第3のNOxモデルマップ60-2、60-3は、設定された大気圧条件(2)、(3)と、設定の外気温別NOxマップ62a2、62a3、62b2、62b3、62c2、62c3、62d2、62d3と、外気温度マップ選択ファクタ63-2、63-3とでNOx値を補正する補正マップ1、2を備え、さらにNOxモデルマップ60-2、60-3からの補正NOx値を、さらに実際の大気圧で補間するための大気圧補正マップ64-2、64-3とを備え、NOxモデルマップ60-2、60-3からの補正NOx値と大気圧補正マップ64-2、64-3の補間値が乗算器65-2、65-3に入力されて補正NOxを加算器66に出力するようになっている。
 この3つのNOxモデルマップ60-1、60-2、60-3は、先ず第1のNOxモデルマップ60-1で、エンジン運転状態(エンジン回転数と指示噴射量)と外気温に基づいてNOx値が決定され、そのNOx値が加算器66に入力され、また大気圧条件(2)、(3)に応じて、第2、第3のNOxモデルマップ60-2、60-3の乗算器65-2、65-3のいずれかから補正NOx値が加算器66に入力され、第1のNOxモデルマップ60-1のNOx値が大気圧条件(2)、(3)で補正されて、乗算器67に出力され、乗算器67で、エンジン水温補正マップ61からのエンジン水温による補正値が乗算されて、大気圧、外気温、エンジン水温に基づいたNOx値が出力される。
 この3つのNOxモデルマップ60-1、60-2、60-3は、EGR制御しているときのマップ構成例であり、EGR制御していないときのエンジンアウトNOx値は、EGR制御しているときのNOx値と相違するため、別途EGR制御無しのときを考慮した3つのNOxモデルマップ60がDCU44に格納されている。
 DCU44は、エンジン運転条件(エンジン回転数と指示噴射量)に対して、NOxモデルマップ60-1、60-2、60-3、エンジン水温補正マップ61に基づいて決定されたNOx値に基づいてドージングバルブ41から噴射する尿素量を決定する。
 これにより、予備ヒーティング制御期間、NOxセンサー46、47からのNOx検出がなくても、適切な尿素噴射量の制御が行える。
 本発明においては、NOxモデルマップと実NOx量のズレを解消するために、環境の違い(大気圧、外気温、エンジン水温など)に対応したNOxモデルマップをDCU44に格納し、これらの環境の違いに対応してNOx量を求めることで実NOx量のズレを解消できる。また当然マップ数が多い方がNOx量の精度は上がるが、極端な複数マップ化は現実的ではないので、ある程度の複数マップ化として途中のNOx量は補間値にて対応させる。
 このように本発明は、環境違いに対応したNOxモデルマップ化により実NOx量とのズレを減らすことができるため、適切な尿素噴射制御により、排ガス性能に影響を与えることが無くなると共に、故障診断の誤診断防止、更には診断精度(閾値)を向上させることが出来るようになる。
 上述の実施の形態では、3つのNOxモデルマップ60とエンジン水温補正マップ61で、NOx値を決定する例を示したが、NOxモデルマップ60は、大気圧条件をさらに細かくして4つ以上にしてもよいし、温度別NOxマップも4つとしたが、これ以上であってもよい。さらに3つのNOxモデルマップ60のうち1つをベースマップとし、他を補正マップとする例で説明したが、それぞれ大気圧条件下で独立したベースマップで構成するようにしてもよい。
 また、NOxモデルマップ60をDCU44に格納する例で説明したがECU30に格納するようにしてもよい。
 10 エンジン
 14 排気管
 23 SCR触媒
 41 ドージングバルブ
 46 上流側NOxセンサー
 47 下流側NOxセンサー
 60-1~60-3 NOxモデルマップ

Claims (4)

  1.  エンジンの排気管に設けられたSCR触媒と、SCR触媒の上流側で尿素水を噴射するドージングバルブとを備え、ドージングバルブからの尿素水の噴射を制御する尿素噴射SCR制御システムであって、大気圧条件、外気温、エンジン水温に対応した複数のNOxモデルマップを備え、大気圧検出手段、外気温検出手段、エンジン水温検出手段の検出値に基づいて各NOxモデルマップからNOx量を決定し、その決定したNOx量に基づいてドージングバルブからの尿素水の噴射量を制御することを特徴とする尿素噴射SCR制御システム。
  2.  前記各NOxモデルマップは、コントロールユニットに格納され、平地での大気圧条件における外気温に応じてエンジン回転と指示噴射量からNOx量が設定された複数の外気温別NOxマップとその外気温別NOxマップから実際の外気温で外気温別NOxマップを選択すると共にその外気温別NOxマップのNOx値を補間する外気温マップ選択ファクタからなるベースマップを備えると共に、ベースマップを高地での大気圧条件でベースマップからのNOx値を補正する補正マップとを備え、さらに大気圧条件と外気温条件で決定されたNOx値をエンジン水温で補正するエンジン水温補正マップを備える請求項1記載の尿素噴射SCR制御システム。
  3.  前記コントロールユニットには、EGR制御をしているときとEGR制御していないときの各NOxモデルマップが格納されている請求項2記載の尿素噴射SCR制御システム。
  4.  排ガス中のNOx量を測定するNOxセンサーを備え、そのNOxセンサーの予備ヒーティング制御時に、大気圧検出手段、外気温検出手段、エンジン水温検出手段の検出値に基づいて各NOxモデルマップからNOx量を決定し、その決定したNOx量に基づいてドージングバルブからの尿素水の噴射量を制御する請求項1~3いずれかに記載の尿素噴射SCR制御システム。
PCT/JP2012/071321 2011-09-28 2012-08-23 尿素噴射scr制御システム WO2013047031A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280046803.XA CN103842629B (zh) 2011-09-28 2012-08-23 尿素喷射scr控制系统
EP12835975.9A EP2762694B1 (en) 2011-09-28 2012-08-23 Urea spray scr control system
US14/345,734 US9440193B2 (en) 2011-09-28 2012-08-23 Urea spray selective catalytic reduction control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-212943 2011-09-28
JP2011212943A JP5915058B2 (ja) 2011-09-28 2011-09-28 尿素噴射scr制御システム

Publications (1)

Publication Number Publication Date
WO2013047031A1 true WO2013047031A1 (ja) 2013-04-04

Family

ID=47995081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071321 WO2013047031A1 (ja) 2011-09-28 2012-08-23 尿素噴射scr制御システム

Country Status (5)

Country Link
US (1) US9440193B2 (ja)
EP (1) EP2762694B1 (ja)
JP (1) JP5915058B2 (ja)
CN (1) CN103842629B (ja)
WO (1) WO2013047031A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3011151A1 (en) * 2013-06-20 2016-04-27 Airqone Building Scandinavia AB Exhaust purification system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6049058B2 (ja) * 2012-10-09 2016-12-21 株式会社サンエー 流動体状態識別装置
EP3006689B1 (en) * 2013-05-30 2017-05-03 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus of exhaust gas purification apparatus
US9181835B2 (en) * 2013-08-13 2015-11-10 Caterpillar Inc. Supervisory model predictive selective catalytic reduction control method
JP6365099B2 (ja) * 2014-08-08 2018-08-01 いすゞ自動車株式会社 尿素水の温度管理システム及び尿素水の温度管理方法
CN204312169U (zh) * 2014-12-16 2015-05-06 天纳克(苏州)排放系统有限公司 尿素喷射系统
CN104632323B (zh) * 2014-12-18 2017-02-22 吉林大学 一种尿素scr氨覆盖率反馈跟踪控制方法
CN104612791B (zh) * 2015-01-28 2017-02-22 东风商用车有限公司 一种scr系统闭环控制尿素溶液喷射量方法及其系统
FR3032482B1 (fr) * 2015-02-10 2017-02-10 Peugeot Citroen Automobiles Sa Procede de depollution des oxydes d’azotes issus d'un moteur a combustion interne
KR101684135B1 (ko) * 2015-06-26 2016-12-08 현대자동차주식회사 Scr 시스템의 고장진단방법
WO2017014772A1 (en) * 2015-07-22 2017-01-26 Cummins Inc. System and method for controlling exhaust gas temperature
DE102015014312A1 (de) * 2015-11-05 2017-05-11 Tropinon Enterprises Ltd. Verfahren zur Minderung der NOx-Emission im Abgasstrang eines Fahrzeugs mit Verbrennungsmotor
US9909517B2 (en) * 2015-11-23 2018-03-06 Cummins Inc. Mult-mode controls for engines systems including SCR aftertreatment
GB2568439B (en) 2016-09-30 2023-01-18 Aclara Tech Llc Enhanced meter reading schema to improve functionality in a utility's communications system
DE102017201867B4 (de) * 2017-02-07 2023-03-02 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betrieb einer Heizung für eine Abgasreinigungsanlage
CN110953046A (zh) * 2019-12-24 2020-04-03 无锡威孚力达催化净化器有限责任公司 用于尿素泵的控制系统
JP2021179181A (ja) * 2020-05-12 2021-11-18 株式会社豊田自動織機 排気処理装置
KR20220080992A (ko) * 2020-12-08 2022-06-15 현대자동차주식회사 엔진의 egr 쿨러의 막힘 방지 방법 및 그 방지 장치
CN117189320B (zh) * 2023-10-31 2024-03-19 潍柴动力股份有限公司 一种尿素喷射控制方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726943A (ja) * 1993-06-24 1995-01-27 Mitsubishi Heavy Ind Ltd 脱硝装置の制御方法
JP2000303826A (ja) 1999-04-16 2000-10-31 Isuzu Motors Ltd ディーゼルエンジンの排ガス浄化装置
JP2003232213A (ja) * 2002-02-08 2003-08-22 Toyota Motor Corp 内燃機関
JP2004360526A (ja) 2003-06-03 2004-12-24 Hitachi Ltd ヒータ付き排気ガスセンサを備えた内燃機関の制御装置
JP2010174657A (ja) 2009-01-27 2010-08-12 Toyota Motor Corp 排気成分センサーのヒーター駆動制御方法
JP4668852B2 (ja) * 2006-06-12 2011-04-13 三浦工業株式会社 燃焼機器の脱硝装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299894A (ja) * 1993-04-16 1994-10-25 Toyota Motor Corp ディーゼル機関の燃料噴射制御装置
JPH11270382A (ja) * 1998-03-23 1999-10-05 Denso Corp 内燃機関の空燃比制御装置
JP4172576B2 (ja) * 2001-08-31 2008-10-29 本田技研工業株式会社 湿度センサの温度制御装置
GB0614445D0 (en) * 2006-07-20 2006-08-30 Ricardo Uk Ltd Control of selective catalytic reduction
DE102008036885A1 (de) * 2008-08-07 2010-02-11 Daimler Ag Verfahren zum Betreiben einer Abgasreinigungsanlage mit einem SCR-Katalysator
US8108154B2 (en) * 2008-12-10 2012-01-31 GM Global Technology Operations LLC NOx emission estimation systems and methods
DE102009012093A1 (de) * 2009-03-06 2010-09-09 Man Nutzfahrzeuge Ag Verfahren zur Einstellung der Dosierungen des Reduktionsmittels bei selektiver katalytischer Reduktion
WO2011118095A1 (ja) * 2010-03-25 2011-09-29 Udトラックス株式会社 エンジンの排気浄化装置及びエンジンの排気浄化方法
JP5533235B2 (ja) * 2010-05-17 2014-06-25 いすゞ自動車株式会社 NOxセンサ診断装置及びSCRシステム
US8762026B2 (en) * 2010-08-24 2014-06-24 GM Global Technology Operations LLC System and method for determining engine exhaust composition
US8745969B2 (en) * 2010-09-08 2014-06-10 GM Global Technology Operations LLC Methods for engine exhaust NOx control using no oxidation in the engine
US8881508B2 (en) * 2011-10-31 2014-11-11 Commins Inc. SCR control system utilizing a differential NH3 and NOx measurement using an exhaust gas sensor coupled with a micro SCR catalyst
US20130152545A1 (en) * 2011-12-14 2013-06-20 Caterpillar Inc. Diesel eission fluid quality detection system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726943A (ja) * 1993-06-24 1995-01-27 Mitsubishi Heavy Ind Ltd 脱硝装置の制御方法
JP2000303826A (ja) 1999-04-16 2000-10-31 Isuzu Motors Ltd ディーゼルエンジンの排ガス浄化装置
JP2003232213A (ja) * 2002-02-08 2003-08-22 Toyota Motor Corp 内燃機関
JP2004360526A (ja) 2003-06-03 2004-12-24 Hitachi Ltd ヒータ付き排気ガスセンサを備えた内燃機関の制御装置
JP4668852B2 (ja) * 2006-06-12 2011-04-13 三浦工業株式会社 燃焼機器の脱硝装置
JP2010174657A (ja) 2009-01-27 2010-08-12 Toyota Motor Corp 排気成分センサーのヒーター駆動制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2762694A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3011151A1 (en) * 2013-06-20 2016-04-27 Airqone Building Scandinavia AB Exhaust purification system
EP3011151A4 (en) * 2013-06-20 2017-03-29 Airqone Building Scandinavia AB Exhaust purification system

Also Published As

Publication number Publication date
CN103842629B (zh) 2016-05-18
EP2762694A4 (en) 2015-06-03
US9440193B2 (en) 2016-09-13
JP5915058B2 (ja) 2016-05-11
EP2762694B1 (en) 2017-07-26
JP2013072391A (ja) 2013-04-22
US20140227137A1 (en) 2014-08-14
EP2762694A1 (en) 2014-08-06
CN103842629A (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
WO2013047031A1 (ja) 尿素噴射scr制御システム
US7971426B2 (en) Reductant injection system diagnostics
US7954312B2 (en) Approach for detecting reductant availability and make-up
US10100695B2 (en) Exhaust fluid dosing control system and method
WO2011145574A1 (ja) NOxセンサ診断装置及びSCRシステム
JP5482446B2 (ja) Scrシステム
US10029210B2 (en) Exhaust gas purification apparatus and method for internal combustion engine
US8087234B2 (en) Exhaust emission purification control device for internal combustion engine
US9217351B2 (en) Method and device for operating an SCR system
US20150176453A1 (en) Urea solution injection device
US20150308321A1 (en) Exhaust emission prediction system and method
EP2940280B1 (en) Fuel-cetane-number estimation method and apparatus
US20110094208A1 (en) Method and device for controlling an exhaust gas post-treatment
CN104343560A (zh) 校正内燃发动机的操作设定点的方法
WO2014193333A1 (en) Upstream nox estimation
JP2010112220A (ja) 触媒の診断装置
US20100145628A1 (en) NOx EMISSION ESTIMATION SYSTEMS AND METHODS
WO2013161032A1 (ja) 内燃機関の排気浄化装置の異常判定システム
JP2008144711A (ja) NOx触媒の異常診断装置及び異常診断方法
CN108779722A (zh) 一种用于调整车辆中的燃气发动机的发动机控制的方法和系统
CN102235213A (zh) 用于运行内燃机的方法
JP6297996B2 (ja) エンジン
US8364420B2 (en) Combustion temperature estimation system and method for an engine management system
JP2014202077A (ja) 排気ガス浄化装置の制御装置
JP2018141398A (ja) 推定装置及び推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14345734

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012835975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012835975

Country of ref document: EP