WO2008053921A1 - Procédé d'analyse d'aimantation, dispositif d'analyse d'aimantation et programme informatique - Google Patents

Procédé d'analyse d'aimantation, dispositif d'analyse d'aimantation et programme informatique Download PDF

Info

Publication number
WO2008053921A1
WO2008053921A1 PCT/JP2007/071232 JP2007071232W WO2008053921A1 WO 2008053921 A1 WO2008053921 A1 WO 2008053921A1 JP 2007071232 W JP2007071232 W JP 2007071232W WO 2008053921 A1 WO2008053921 A1 WO 2008053921A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetization
magnetic field
region
permanent magnet
analysis
Prior art date
Application number
PCT/JP2007/071232
Other languages
English (en)
French (fr)
Inventor
Hidenari Shimamura
Mitsutoshi Natsumeda
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to EP07830966.3A priority Critical patent/EP2098880B1/en
Priority to US12/447,354 priority patent/US8169213B2/en
Priority to CN2007800396308A priority patent/CN101529265B/zh
Priority to JP2008542155A priority patent/JP4915419B2/ja
Publication of WO2008053921A1 publication Critical patent/WO2008053921A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1215Measuring magnetisation; Particular magnetometers therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1223Measuring permeability, i.e. permeameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/123Measuring loss due to hysteresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets

Definitions

  • Magnetization analysis method Magnetization analysis apparatus, magnetization analysis apparatus, and computer program
  • the present invention relates to a magnetization analysis method, a magnetization analysis apparatus, and a computer program for analyzing a magnetization state of a permanent magnet that is magnetized on a magnet material by a magnetizer.
  • a permanent magnet refers to a material magnetized by applying a magnetic field to a magnet material
  • a magnet material refers to a material before magnetization
  • the magnetization analysis apparatus disclosed in Patent Document 1 displays a plurality of types of first parameter candidates necessary for performing a magnetization analysis on the display screen.
  • the required first parameter is determined from the candidates, and further inputs for a plurality of second parameters that determine the characteristics of the first parameter are obtained.
  • permanent input is performed.
  • a magnetic field distribution indicating the magnetized state of the magnet is calculated.
  • the magnetization analysis device disclosed in Patent Document 2 calculates a parameter corresponding to a system including a magnetizer and a magnet material based on a set unique parameter and the characteristics of the magnet material.
  • the current waveform flowing through the magnetizer is calculated based on the set unique parameter and the parameter corresponding to the system, and the magnetization distribution indicating the magnetized state of the permanent magnet is calculated based on the calculated current waveform. .
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-346919
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-329624
  • Patent Documents 1 and 2 there is no mention of the presence of an incompletely magnetized region, and therefore the presence of the incompletely magnetized region is not taken into consideration in the analysis process.
  • the present invention has been made in view of such circumstances, and its main object is to measure each part of the incompletely magnetized region in advance and measure the demagnetization according to the applied magnetizing magnetic field.
  • the purpose is to provide a magnetization analysis method that can consider the magnetization state of the incomplete magnetization region by using the curve.
  • Another object of the present invention is that the calculation result of the magnetizing magnetic field applied to the magnet material and each part of the incompletely magnetized region are measured in advance and correspond to the applied magnetizing magnetic field.
  • a region parameter related to the incomplete magnetization region calculated based on the demagnetization curve a state parameter indicating the magnetization state of the permanent magnet to be analyzed is calculated, so that the magnetization of the incomplete magnetization region is calculated.
  • An object of the present invention is to provide a magnetization analysis method, a magnetization analysis device, and a computer program for causing a computer to function as a magnetization analysis device that can perform magnetization analysis with high accuracy while reflecting a magnetic state.
  • Still another object of the present invention is to counteract the demagnetization characteristics of the incompletely magnetized region by using the recoil relative permeability and the coercive force as the region parameters related to the incompletely magnetized region.
  • An object of the present invention is to provide a magnetization analysis method capable of performing magnetization analysis with high accuracy while projecting. Means for solving the problem
  • the magnetization analysis method according to the first invention is a magnetization analysis method for analyzing the magnetization state of a permanent magnet magnetized on a magnet material by a magnetizer. For each part of the incompletely magnetized area, the area parameters related to the incompletely magnetized area of the permanent magnet to be analyzed are measured in advance and a demagnetization curve corresponding to the applied magnetizing magnetic field is used. It is characterized by calculating data.
  • the magnetization analysis method according to the second invention is applied to each part of the magnet material by performing a magnetic field analysis using the magnetizer parameters of the magnetizer and the magnet parameters of the magnet material. Calculating a magnetization magnetic field, calculating the region parameter for each of the parts based on the calculation result of the magnetization magnetic field and the demagnetization curve, and performing a magnetic field analysis using the calculation result of the region parameter To calculate a state parameter indicating a magnetization state of the permanent magnet to be analyzed.
  • the magnetization analysis method according to the third invention is characterized in that recoil relative permeability and coercive force approximately representing the demagnetization characteristics of the incomplete magnetization region are used as the region parameters.
  • a magnetization analyzing apparatus is the magnetization analyzing apparatus for analyzing the magnetization state of a permanent magnet that is magnetized on a magnet material by a magnetizer.
  • a magnetizing magnetic field calculating means for calculating a magnetizing magnetic field applied to each part of the magnet material, a calculation result by the magnetizing magnetic field calculating means, and
  • Each part of the incompletely magnetized region of the permanent magnet is measured in advance and related to the incompletely magnetized region of the permanent magnet to be analyzed based on the demagnetization curve corresponding to the applied magnetizing magnetic field.
  • a state calculation indicating the magnetization state of the permanent magnet to be analyzed is performed by performing a magnetic field analysis using a parameter calculation unit that calculates a region parameter for each part and a calculation result by the parameter calculation unit. Characterized in that it comprises a magnetic state calculating means for calculating the main one data.
  • a computer program according to a fifth invention is a computer program for causing a computer to analyze a magnetized state of a permanent magnet that is magnetized on a magnet material by a magnetizer, the computer having the magnetizer Magnetizer parameters and magnet parameters related to magnet material Performing a magnetic field analysis using a meter to calculate a magnetizing magnetic field applied to each part of the magnet material; and causing a computer to calculate the magnetizing magnetic field and to provide a given demagnetization curve. And calculating a region parameter related to the incomplete magnetization region of the permanent magnet to be analyzed for each part based on the above, and causing a computer to perform a magnetic field analysis using the calculation result of the region parameter. And a step of calculating a state parameter indicating a magnetization state of the permanent magnet to be analyzed.
  • the demagnetization curve measured in advance related to the incomplete magnetization region that is, each part of the incomplete magnetization region of the permanent magnet
  • the area parameter related to the incomplete magnetization area of the permanent magnet to be analyzed is calculated using a demagnetization curve that is measured in advance and corresponding to the applied magnetic field.
  • the region parameter is, for example, a recoil relative permeability and a coercive force obtained based on a demagnetization curve corresponding to the magnetizing magnetic field.
  • the demagnetization curve related to the incomplete magnetization region is based on the demagnetization curve related to the complete magnetization region, for example, and the force S, Since such a demagnetization curve may differ greatly from an actual demagnetization curve, when analyzing the magnetization state using such a demagnetization curve, the magnetization state as the analysis result and the actual The magnetized state may differ significantly.
  • demagnetization curves for different types of permanent magnets such as materials and grades are different, the same demagnetization curves can be used for the same type of permanent magnets regardless of the shape, dimensions, etc. There is no need to prepare a newly measured demagnetization curve for each permanent magnet of different shape and size.
  • the permanent magnet to be analyzed is based on the region parameter relating to the incomplete magnetization region of the permanent magnet to be analyzed! Calculate the state parameter indicating the magnetized state. For example, by installing the computer program of the fifth invention on a personal computer, a server, etc., the magnetization analysis device of the fourth invention is formed, and the magnetization analysis method of the second invention is executed using this magnetization analysis device. Is done.
  • the magnetizer parameter means the number of turns of the air-core coil and the resistance value, the capacitor capacitance and magnetizing voltage, the internal resistance value of the magnetizer, etc.
  • the magnet parameter is the magnet parameter.
  • it refers to the resistivity and initial magnetization curve associated with the magnet material
  • the state parameter refers to what indicates the magnetized state of the permanent magnet.
  • the magnetizing field calculation means applies a magnetic field to a magnet material, such as a coil shape related to a magnetizer, a magnetizer parameter such as a power circuit, and an initial magnetization curve and a resistivity related to the magnet material.
  • a magnet material such as a coil shape related to a magnetizer, a magnetizer parameter such as a power circuit, and an initial magnetization curve and a resistivity related to the magnet material.
  • Magnetic field analysis is performed by a finite element method, an integral element method, etc. using magnet parameters.
  • the magnetizing magnetic field calculating means calculates the magnetizing magnetic field applied to each part of the magnet material.
  • the parameter calculation means is based on the calculation result by the magnetization magnetic field calculation means and the demagnetization curve measured in advance relating to the incomplete magnetization region! /, Based on the permanent magnet to be analyzed.
  • the region parameters related to the incomplete magnetization region are calculated for each part of the magnet material.
  • the area parameter relating to the calculated incomplete magnetization region includes the magnetization state of the incomplete magnetization region. It is reflected.
  • the magnetization state calculation means requires a finite amount of magnetic field analysis using the calculation result by the parameter calculation means (that is, the area parameter reflecting the magnetization state of the incomplete magnetization area!). This is done by the prime method, integral element method, etc. Thereby, the magnetized state calculating means calculates a state parameter indicating the magnetized state of the permanent magnet to be analyzed.
  • the magnetized state of the permanent magnet is analyzed with high accuracy while considering the magnetized state of the incompletely magnetized region.
  • the region parameter force recoil relative permeability and coercive force relating to the incomplete magnetization region.
  • the parameter calculating means provided in the magnetization analyzing apparatus of the fourth invention calculates recoil relative permeability and coercive force as region parameters.
  • the recoil relative permeability and the coercivity are each easily calculated based on a previously measured demagnetization curve relating to the incomplete magnetization region, and approximately represent the demagnetization characteristics of the incomplete magnetization region.
  • the calculated recoil permeability and coercive force reflect the magnetization state of the incomplete magnetization region.
  • the magnetization state of the incomplete magnetization region is analyzed by analyzing the magnetization state of the permanent magnet using the demagnetization curve measured in advance for the incomplete magnetization region. Analysis results reflecting the magnetic state can be obtained.
  • the power S is used to make the characteristics of the equipment planned at the time of design substantially match the characteristics of the equipment actually manufactured.
  • the magnetization analysis device of the fourth invention and the computer program of the fifth invention, using the region parameters reflecting the magnetization state of the incomplete magnetization region, With a simple procedure, it is possible to easily execute a highly accurate magnetization analysis that takes into account the magnetization state of the incomplete magnetization region.
  • the demagnetization characteristic of the incomplete magnetization region is approximated by the recoil relative permeability and the coercive force, so that the magnetization state of the permanent magnet can be easily and highly accurate. It depends on the power of magnetization analysis.
  • FIG. 1 is a block diagram showing a configuration of a magnetization analysis apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic perspective view of a magnet material to be a permanent magnet that is an analysis target of the magnetization analysis method according to Embodiment 1 of the present invention.
  • FIG. 3 is a circuit diagram showing a main part of a magnetizer that applies a magnetic field to a magnet material to be a permanent magnet to be analyzed by the magnetization analysis method according to the first embodiment of the present invention.
  • 4 A characteristic diagram showing an initial magnetization curve of a permanent magnet used in the magnetization analysis method according to Embodiment 1 of the present invention.
  • FIG. 6 A characteristic diagram in which the demagnetization curve in the incomplete magnetization region is represented by a similar form of the demagnetization curve in the complete magnetization region by the conventional method.
  • FIG. 7 A characteristic diagram showing the relationship between the magnetized magnetic field and the coercive force for each of the fully magnetized region and the incompletely magnetized region according to Embodiment 1 of the present invention.
  • FIG. 8 A characteristic diagram showing the relationship between the magnetized magnetic field and recoil relative permeability for each of the fully magnetized region and the incompletely magnetized region according to the first embodiment of the present invention.
  • FIG. 9 is a flowchart showing the procedure of magnetization analysis processing executed by the CPU of the magnetization analysis apparatus according to Embodiment 1 of the present invention.
  • FIG. 10 A characteristic diagram showing an analysis result corresponding to the first region of interest of the incompletely magnetized permanent magnet calculated by the magnetization analyzer according to Embodiment 1 of the present invention.
  • FIG. 11 is a characteristic diagram showing an analysis result corresponding to a second region of interest of the incompletely magnetized permanent magnet calculated by the magnetization analyzer according to Embodiment 1 of the present invention.
  • FIG. 12 A characteristic diagram showing an analysis result corresponding to the third target region of the incompletely magnetized permanent magnet calculated by the magnetization analyzer according to Embodiment 1 of the present invention.
  • FIG. 13 is a characteristic diagram showing an analysis result of a permanent magnet having a magnetization rate of 44% calculated by the magnetization analysis apparatus according to Embodiment 1 of the present invention.
  • FIG. 15 is a characteristic diagram showing an analysis result of a permanent magnet in a fully magnetized state calculated by a conventional magnetization analysis method.
  • FIG. 16 is a characteristic diagram showing an analysis result of an incompletely magnetized permanent magnet calculated by a conventional magnetization analysis method.
  • FIG. 17 is a schematic perspective view of a magnet material to be a permanent magnet that is an analysis target of the magnetization analysis method according to the second embodiment of the present invention.
  • FIG. 18 is a characteristic diagram showing an initial magnetization curve of a permanent magnet used in the magnetization analysis method according to Embodiment 2 of the present invention.
  • FIG. 19 is a characteristic diagram showing a demagnetization curve used in the magnetization analysis method according to the second embodiment of the present invention.
  • FIG. 20 is a characteristic diagram showing a relationship between a magnetized magnetic field and a coercive force according to each of a completely magnetized region and an incompletely magnetized region according to Embodiment 2 of the present invention.
  • FIG. 21 is a characteristic diagram showing a relationship between a magnetized magnetic field and a recoil relative permeability in each of a completely magnetized region and an incompletely magnetized region according to Embodiment 2 of the present invention.
  • FIG. 22 is a characteristic diagram showing an analysis result under a first magnetization condition of a permanent magnet calculated by a magnetization analysis apparatus according to Embodiment 2 of the present invention.
  • FIG. 23 is a characteristic diagram showing an analysis result under a second magnetization condition of the permanent magnet calculated by the magnetization analysis apparatus according to Embodiment 2 of the present invention.
  • FIG. 24 is a characteristic diagram showing an analysis result under a third magnetization condition of a permanent magnet calculated by a magnetization analysis apparatus according to Embodiment 2 of the present invention.
  • FIG. 25 is a characteristic diagram showing a no-load induced voltage of an electric motor including a permanent magnet that is magnetized under each of the first, second, and third magnetization conditions.
  • FIG. 1 is a block diagram showing a configuration of a magnetization analysis apparatus 1 according to Embodiment 1 of the present invention.
  • the magnetization analysis apparatus 1 uses a personal computer, for example, and includes a CPU 10, ROM 11 and RAM 12 , A display unit 13, an operation unit 14, an auxiliary storage unit 15, and an external storage unit 16, and these units are appropriately connected via a bus, a signal line, and the like.
  • the display unit 13 uses a liquid crystal display, for example, and is controlled by the CPU 10 to display a message indicating the operating state of the magnetization analyzer 1, messages indicating various instructions to the user, and the like.
  • the operation unit 14 is formed using, for example, a keyboard and a mouse.
  • the user of the magnetization analysis device 1 operates the operation unit 14 while visually observing the display unit 13, for example, inputs necessary data to the magnetization analysis device 1, and performs magnetization analysis processing (see FIG. 9). Let it run.
  • the auxiliary storage unit 15 uses a hard disk, for example, and the CPU 10 reads and writes various computer programs and data.
  • the external storage unit 16 uses, for example, a CD-ROM drive and is controlled by the CPU 10 to have a portable recording medium (for example, a CD-ROM 2 in which the computer program of the present embodiment is recorded), Read computer programs and data. The read computer program, data, etc. are written in the auxiliary storage unit 15.
  • the CPU 10 is a control center of the magnetization analysis apparatus 1, uses the RAM 12 as a work area, controls each part of the apparatus according to the computer program, data, etc. stored in the ROM 11 and / or the auxiliary storage unit 15, Execute the process.
  • the CPU 10 performs a magnetization field calculation process (see S17 shown in FIG. 9 described later) according to the computer program of the present embodiment including the magnetization field calculation step, the parameter calculation step, the magnetization state calculation step, and the like. ), Parameter calculation processing (see S 18), magnetization state calculation processing (see S 19), etc., the personal computer functions as the magnetization analysis device 1 of this embodiment. To do.
  • FIG. 2 shows a permanent magnet 3 to be analyzed by the magnetization analysis method according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic perspective view of a magnet material 30 to be obtained.
  • FIG. 3 is a circuit diagram showing a main part of a magnetizer 4 that magnetizes a magnet material 30 by applying a magnetic field.
  • FIG. 4 is a characteristic diagram showing the initial magnetization curve of the permanent magnet 3 used in the magnetization analysis method according to Embodiment 1 of the present invention, where the horizontal axis shows the magnetic field H [kA / m] and the vertical axis shows Magnetic flux density B [T] is shown.
  • the magnet material 30 is made up of the magnet material 30 using the magnetizer 4 and the magnetization direction is the permanent magnet 3 in the direction of the white arrow shown in FIG.
  • the magnetic flux density distribution on the magnet surface that is, measured
  • the result is compared with the magnetic flux density distribution on the magnet surface (ie, the analysis result) calculated by the magnetization analyzer 1.
  • the magnetic flux density distribution on the magnet surface is referred to as the magnetic flux distribution.
  • the shape of the magnet material 30 (and the permanent magnet 3 formed by magnetizing it) has a length L of 10 [mm], a width B of 10 [mm], and a thickness.
  • D is a rectangular parallelepiped with 4 [mm].
  • the attention parts 3a, 3b, 3c of the permanent magnet 3 are related to one surface of the longitudinal length LX width B of the permanent magnet 3, and the other end from one end in the longitudinal length L direction (for example, the position of 0 [mm] shown in FIG. 10).
  • the position of 10 [mm] is a linear part that continues up to 10 mm. More specifically, the first target part 3a is the center position in the width B direction of the permanent magnet 3, and the third target part 3c is the permanent magnet 3
  • the second region of interest 3b is positioned at an intermediate portion between the first region of interest 3a and the third region of interest 3c.
  • magnetic material 30 is an anisotropic magnetic material comprising a rare earth rare element, resistance ratio of the magnetic material 30 is a 144 X 10- 8 [ ⁇ . ⁇ ] .
  • the magnetization characteristics of the magnet material 30 are nonlinear, and an initial magnetization curve as shown in FIG. 4 is used as data indicating this.
  • the initial magnetization curve in the present embodiment is measured in advance with respect to the magnet material 30 to be the permanent magnet 3 to be analyzed, and the force magnet material 30 is an initial magnetization curve corresponding to the applied magnetizing magnetic field. There is no problem using the measured initial magnetization curves for the same type of magnet material.
  • the material, resistivity, and initial magnetization curve of the magnet material 30 are magnetic field analysis processing (S shown in FIG. 9), as will be described later, as intrinsic magnet parameters of the magnet material 30 (hereinafter referred to as magnet characteristics). 1 and / or S19).
  • the magnetizer 4 is connected in series with an air-core coil 41, a switch 42, and a large-capacitance capacitor 43 having required dimensions.
  • the power supply device 44 and the switch 45 are respectively connected in parallel to the capacitor 43, and a large amount of electric charge is stored in the capacitor 43 by being fed from the power supply device 44. Further, a magnet material 30 to be the permanent magnet 3 is arranged at the center position inside the air-core coil 41.
  • Switch 42 is turned off, switch 45 is turned on, a large amount of charge is stored in capacitor 43, and then the polarity of switches 42 and 45 is reversed at the same time, so that a large nors current flows from capacitor 43 to air-core coil 41. At this time, a huge magnetic field generated in the air-core coil 41 is applied to the magnet material 30, so that the magnet material 30 is magnetized to become the permanent magnet 3.
  • the number of turns of the air-core coil 41 is 45 [turn]
  • the resistance value of the air-core coil 41 is 45. 28 [m
  • the capacitance of the capacitor 43 is 3375 [F]
  • the voltage across the capacitor 43 ie, the magnetizing voltage
  • the internal resistance of the magnetizer 4 is 72 [m ⁇ ].
  • the number of turns and resistance value of the air-core coil 41, the capacitance and magnetization voltage of the capacitor 43, and the internal resistance value of the magnetizer 4 are specific magnetizer parameters of the magnetizer 4 (hereinafter referred to as circuit conditions). As will be described later, it is used in the magnetization analysis.
  • a mesh division model corresponding to the shape and size of the air-core coil 41 is created, and further, a mesh division model corresponding to the shape and size of the magnet material 30 (and hence the permanent magnet 3) is created ( (See Figure 2).
  • FIG. 5 is a characteristic diagram showing each of the demagnetization curves 50 to 56 used in the magnetization analysis method according to the first embodiment of the present invention.
  • FIG. 6 is a characteristic diagram showing pre-measured demagnetization curves 5;! To 56 for the incomplete magnetization region.
  • FIG. 6 is a characteristic diagram in which the demagnetization curves 61 to 66 in the incomplete magnetization region are expressed in a similar manner to the demagnetization curve 60 in the complete magnetization region by a conventional method.
  • the horizontal axis indicates the magnetic field H [kA / m]
  • the vertical axis indicates the magnetic flux density B [T].
  • Demagnetization curves 5;! To 56 shown in FIG. 5 are demagnetization curves actually measured using the magnet material 30 to be the permanent magnet 3 to be analyzed. Specifically, the magnet material 30 is imperfectly formed by applying a 1257, 1019, 859, 700, 533, or 366 [kA / m] magnetized magnetic field (g, a magnetic field applied by the magnetizer 4). This is a demagnetization curve according to the magnetizing magnetic field measured by measuring the magnetized permanent magnet.
  • demagnetization curves 50 and 60 shown in FIG. 5 and FIG. 6 both relate to the complete magnetization region of the permanent magnet formed by applying a magnetization field of 2777 [kA / m] to the magnet material 30. This is a demagnetization curve, and the demagnetization curves 50 and 60 agree.
  • . 5 and 6 show the coercive force H (exactly the negative coercive force number) according to the demagnetization curves 54 and 64.
  • the negative coercive force “H” is the value of the intersection of the demagnetization curve and the horizontal axis, and the recoil relative permeability.
  • the recoil relative permeability and the coercive force H are parameters that approximate the demagnetization characteristics.
  • FIG. 7 is a characteristic diagram showing the relationship between the magnetized magnetic field H and the coercive force H in the fully magnetized region and the incompletely magnetized region, and the horizontal axis represents the magnetized magnetic field H [kA / m]. The vertical axis represents the coercive force H
  • Fig. 8 is a characteristic diagram showing the relationship between the magnetized magnetic field H and the recoil relative permeability for the fully magnetized region and the incompletely magnetized region, and the horizontal axis represents the magnetized magnetic field H [kA / m]. Indicates vertical The axis indicates the recoil relative permeability.
  • the measured demagnetization curves 51, 52, 53, 54, 55, and 56 have slopes (that is, recoil relative permeability) that decrease the magnitude of the magnetizing magnetic field H.
  • the value of the piece on the horizontal axis that is, the negative coercive force “H” increases as the magnitude of the magnetizing magnetic field H decreases.
  • the magnetic force H) increases rapidly, and the coercive force H cb c corresponding to the magnetizing magnetic field H of 1592 [kA / m] or more
  • the recoil relative permeability ⁇ (corresponding to the magnetizing magnetic field H from 0 [kA / m] to 1592 [kA / m].
  • the recoil relative permeability in the incompletely magnetized region rapidly decreases, and the recoil relative permeability corresponding to the magnetized magnetic field ⁇ of 1592 [kA / m] or more (that is, the recoil relative permeability in the completely magnetized region). Magnetic susceptibility) is almost constant.
  • each demagnetization curve 61, 62, 63, 64, 6 5, 66 defined in the conventional method is an inclination of the demagnetization curve 60 (that is, recoil relative permeability).
  • the value of the intercept on the horizontal axis that is, the negative coercive force “" ”) decreases as the magnitude of the magnetizing magnetic field ⁇ decreases.
  • FIG. 9 is a flowchart showing the procedure of magnetization analysis processing executed by the CPU 10 of the magnetization analyzer 1.
  • the CPU 10 causes the display unit 13 to display an input screen that prompts the operator to input required data (Sl l).
  • the CPU 10 receives model shape data (S12), receives magnet characteristic data (S13), receives demagnetization curve data (S14), and receives circuit condition data ( S15), receiving data of analysis conditions such as nonlinear iterative calculation conditions (S16).
  • S 12 model shape data
  • S13 magnet characteristic data
  • S14 demagnetization curve data
  • S15 circuit condition data
  • S16 receiving data of analysis conditions such as nonlinear iterative calculation conditions
  • the CPU 10 causes the auxiliary storage unit 15 to store the received various data, that is, data input by the worker.
  • the operator Before the magnetization analysis processing by the CPU 10, the operator performs an actual measurement operation using the magnet material 30, or prepares the initial magnetization curve data and the demagnetization curve data, or the actual measurement in advance. Prepared are initial magnetization curve data and demagnetization curve data.
  • the operator creates a mesh division model according to the shape and size of the air-core coil 41, and further creates a mesh division model according to the shape and size of the magnet material 30.
  • the operator magnetizes the generated mesh division model data, the shape and size data of the air-core coil 41, and the shape and size data of the permanent magnet 3 as model shape data. Input to analyzer 1.
  • the data of the mesh division model is determined by the magnetization analysis device 1 according to the shape and size of the air core coil 41 and the shape and size of the magnet material 30 that are not input to the magnetization analysis device 1 from the outside. It can be generated.
  • the operator uses the magnet material 30 material data, the resistivity data, and the initial magnetization curve data, which are the intrinsic magnet parameters of the magnet material 30, as magnet characteristics data. Input to analyzer 1.
  • the operator inputs the measured demagnetization curve data to the magnetization analyzer 1.
  • the operator is responsible for data on the number of turns and resistance of the air core coil 41, which is an intrinsic magnetizer parameter of the magnetizer 4, data on the capacitance and magnetizing voltage of the capacitor 43, and the inside of the magnetizer 4.
  • the resistance value data is input to the magnetization analyzer 1 as circuit condition data.
  • the operator inputs a nonlinear iterative calculation condition or the like to the magnetization analyzer 1.
  • the input of various types of data as described above is performed manually by the operator using the operation unit 14 or is performed by causing the external storage unit 16 to read the recording medium storing the data.
  • the data may be input by means such as selecting data stored in advance in the auxiliary storage unit 15 or downloading data from a network (not shown).
  • the CPU 10 receives the data of the magnetizer parameters specific to the magnetizer 4 and the magnet parameters specific to the magnet material 30 among the received data. Then, the magnetic field applied by the mesh division model of the magnet material 30 is calculated by performing magnetic field analysis by the finite element method using the data of the mesh division model as appropriate (S17).
  • the magnetic field analysis procedure in S 17 is substantially the same as the conventional magnetic field analysis procedure, and the calculated magnetization magnetic field is stored in the auxiliary storage unit 15.
  • the CPU 10 sets the incomplete magnetization region of the permanent magnet 3 based on the calculation result of the magnetization magnetic field related to each mesh element obtained in S17 and the data of the demagnetization curve received in S14.
  • the related area parameters are calculated for each mesh element (S18).
  • the area parameter calculated in S 18 is the recoil relative permeability and coercive force H obtained based on the demagnetization curve corresponding to the magnetizing magnetic field applied to each mesh element.
  • the parameter is stored in the auxiliary storage unit 15.
  • the CPU 10 performs a magnetic field analysis using the recoil relative permeability and the coercive force H related to each mesh element obtained in S18, thereby indicating a state buffer cb indicating the magnetization state of the permanent magnet 3.
  • the state parameters calculated in SI 9 are the magnetic flux density B and magnetic field H of each mesh element of the mesh division model, and the calculated state parameters are stored in the auxiliary storage unit 15.
  • the magnetic field analysis procedure in S 19 is the same as the conventional magnetic field analysis. The procedure is almost the same.
  • the CPU 10 displays an output screen obtained by editing the state parameter calculated in S19 into a predetermined format on the display unit 13 (S20), and ends the magnetization analysis process.
  • the CPU 10 calculates the magnetic flux density B in each of the first, second, and third target regions 3a, 3b, 3c (see FIG. 2) based on the state parameter calculated in S19, and The magnetic flux distribution graphs for 3a, 3b, and 3c are displayed. In the present embodiment, this magnetic flux distribution is the analysis result.
  • magnetic flux distribution data that is, measurement results
  • the analysis result and the actual measurement result may be compared.
  • the magnetization analysis device 1 applies the magnetic material to the magnet material 30 and magnetizes the permanent magnet 3 that is magnetized by the magnetizer 4 that magnetizes the magnet material 30. Analyze the magnetized state.
  • the CPU 10 in S 17 calculates a magnetic field applied to each part of the magnet material 30 by performing a magnetic field analysis using the magnetizer parameters related to the magnetizer 4 and the magnet parameters related to the magnet material 30. It functions as a magnetization magnetic field calculation means.
  • the CPU 10 in S18 measures the calculation result by the magnetization magnetic field calculation means and each part of the incomplete magnetization area of the permanent magnet in advance, and reduces it according to the applied magnetic field. Based on the magnetic curve, it functions as a parameter calculation means for calculating the area parameter relating to the incomplete magnetization area of the permanent magnet 3 to be analyzed for each part of the magnet material 30.
  • the CPU 10 calculates a recoil relative permeability and a coercive force H that approximately represent the demagnetization characteristics of the incomplete magnetization region. Use.
  • the CPU 10 in S19 performs a magnetic field analysis using the calculation result by the parameter calculation means, thereby calculating a state parameter indicating a magnetization state of the permanent magnet 3 to be analyzed. It functions as a calculation means.
  • Fig. 10, Fig. 11 and Fig. 12 are intentionally incompletely magnetized by adjusting the magnitude of the magnetizing magnetic field.
  • FIGS. 10, 11 and 12 The horizontal axis of each of FIGS. 10, 11 and 12 indicates the position on the region of interest 3a, 3b, 3c (specifically, the distance [mm] from one end of the permanent magnet 3).
  • the magnetic flux density B [mT] is shown.
  • the position of 0 [mm] is the one end, and the position of 10 [mm] is the other end of the permanent magnet.
  • the magnetic flux distribution as the analysis result calculated by the magnetization analyzer 1 and the actually measured magnetic flux distribution substantially coincide with each other.
  • the analysis results corresponding to the distance of 2 [mm] to 8 [mm] that is, the central part of the permanent magnet
  • FIG. 13 and FIG. 14 are characteristic diagrams showing analysis results of permanent magnets with a magnetization rate of 44% and a magnetization rate of 50% calculated by the magnetization analyzer 1.
  • a magnetization rate of 44% means a state in which the magnet is incompletely magnetized so that a magnetic flux amount of 44% of the total magnetic flux amount in a fully magnetized permanent magnet can be obtained.
  • the horizontal axis in FIGS. 13 and 14 indicates, for example, the position on the attention portion 3a, and the vertical axis indicates the magnetic flux density B [mT]. Also, the plot (black square) and the solid line indicated by the solid line are the analysis results, and the solid line! / Is the actual measurement result.
  • FIG. 15 is a characteristic diagram showing an analysis result of a permanent magnet in a fully magnetized state (magnetization rate 100%) calculated by the conventional magnetization analysis method shown in FIG.
  • FIG. 16 is a special drawing showing the analysis results of a permanent magnet in an incompletely magnetized state (magnetization rate 44%) calculated by a conventional magnetization analysis method.
  • the horizontal axis in each of FIGS. 15 and 16 indicates the position of the target region (specifically, the distance [mm] from one end of the permanent magnet) on the surface of the permanent magnet such as the target region 3a shown in FIG.
  • the vertical axis shows the magnetic flux density B [mT].
  • the position of 0 [mm] is the one end, and the position of 10 [mm] is the other end of the permanent magnet.
  • the analysis result and the measurement result of the incompletely magnetized permanent magnet are significantly different.
  • the analysis result corresponding to the distance of 2 [mm] to 8 [mm] that is, the central portion of the permanent magnet
  • Such an error is caused by the magnetization analysis apparatus 1 according to the magnetization analysis method of the present embodiment, which analyzes the magnetization state with high accuracy in consideration of the incomplete magnetization region of the permanent magnet as described above. This can be reduced by using the magnetization analysis process (see Fig. 13).
  • the initial magnetization curve and the demagnetization curve actually measured using the magnet material 30 are diverted to the magnetization analysis processing of the permanent magnet formed by magnetizing the same type of magnet material as the magnet material 30, respectively. If the same type of magnet material is used, V, the first magnetization curve, and the demagnetization curve are measured when performing magnetization analysis on permanent magnets of different shapes and dimensions. There is no need to ask. That is, it is possible to reuse the initial magnetization curve and the demagnetization curve, which improves the convenience of analysis work.
  • the computer program of the present invention has portability.
  • the present invention is not limited to this, and the recording medium (CD-ROM2) may be distributed via a communication line. Alternatively, it may be stored in advance in a program storage means (for example, ROM) provided in a magnetization analyzing apparatus using a computer program force computer.
  • a program storage means for example, ROM
  • Such a computer program is read from a recording medium or distribution source which may be executed after being installed in a volatile or non-volatile storage means (for example, RAM or hard disk) and directly executed. May be.
  • a volatile or non-volatile storage means for example, RAM or hard disk
  • Such a computer program realizes the magnetization magnetic field calculation means, the parameter calculation means, and the magnetization state calculation means as software using hardware elements of the computer.
  • a force exemplifying the permanent magnet 3 which is a rare earth magnet and a single pole magnetized magnet is not limited to this, but a magnet other than the rare earth magnet or a multipolar magnet is used.
  • the present invention can also be applied to magnets.
  • the rectangular parallelepiped permanent magnet 3 is exemplified, but the present invention is not limited to this, and the present invention may be applied to a permanent magnet having a different shape such as an annular shape or a cylindrical shape.
  • FIG. 17 is a schematic perspective view of a magnet material 31 to be a permanent magnet 32 to be analyzed by the magnetization analysis method according to Embodiment 2 of the present invention.
  • FIG. 18 is a characteristic diagram showing the initial magnetization curve of the permanent magnet 32 used in this magnetization analysis method.
  • the horizontal axis shows the magnetic field H [k A / m], and the vertical axis shows the magnetic flux density B [T ] Is shown.
  • the magnetizer 4 of the present embodiment includes a magnetized coil different from the air-core coil 41.
  • the magnetization analysis apparatus 1 according to the present embodiment has a configuration substantially similar to that of the magnetization analysis apparatus 1 shown in FIG.
  • the permanent magnet 32 has a cylindrical shape and the outer periphery of the shaft SH of the electric motor. To form a rotor.
  • the permanent magnet 32 has an outer diameter of 36.45 [mm], an inner diameter of 30.45 [mm], and a length of 21 [mm] in the axial direction. It is a magnet, and is formed by skew magnetizing cylindrical magnet materials 31 alternately with different polarities. The skew angle of the permanent magnet 32 is 13.3 [°] with respect to the axial direction.
  • the permanent magnet 32 thus magnetized is an integral ring in which the outer peripheral surface side N pole 32a and the outer peripheral surface side S pole 32b are alternately formed in the circumferential direction. That is, the permanent magnet 32 has a radial magnetization direction.
  • the permanent magnet 32 thus magnetized in multiple poles (specifically, 6 poles) has an incompletely magnetized region (neutral zone) in the interpolar part.
  • the incomplete magnetization region is determined empirically (for example, 1 [mm]), and the incomplete magnetization region is analyzed as an unmagnetized region and the others as fully magnetized regions. !
  • the position is 1 [mm] away from the outer peripheral surface of the central portion of the permanent magnet 32 in the axial direction, and the position along the circumferential direction is set as a target site 3d (see FIG. 17), and measured with a measuring device (not shown).
  • the magnetic flux density distribution (that is, the actual measurement result) of the target region 3d thus calculated is compared with the magnetic flux density distribution (that is, the analysis result) of the target region 3d that is calculated by the magnetization analyzer 1.
  • the magnetic flux density distribution of the target region 3d is referred to as magnetic flux distribution.
  • magnetic flux distribution continuous from one circumferential end of the outer peripheral surface side N pole 32a to the other circumferential end of the outer peripheral surface side S pole 32b adjacent to the outer peripheral surface side N pole 32a. This shows the magnetic flux distribution of the arc-shaped attention part 3d for 120 °. Further, one end in the circumferential direction of the outer peripheral surface side N pole 32a is set to a position of 0 °.
  • magnetic material 31 is an anisotropic magnetic material comprising a rare earth rare element, resistance ratio of the magnetic material 31 is 144 X 10- 8 [ ⁇ ⁇ ⁇ ], the residual magnetic flux density 1. 23 [T], the coercivity Is over 1671 [kA / m].
  • This initial magnetization curve is an initial magnetization curve corresponding to the magnetizing magnetic field that is measured in advance with respect to the magnet material 31 to be the permanent magnet 32 to be analyzed.
  • the material, resistivity, and initial magnetization curve of magnet material 31 are unique to magnet parameters of magnet material 31. It is used as a meter (that is, magnet characteristics) in the magnetic field analysis.
  • the magnet material 31 is arranged at the center position inside the magnetizing coil included in the magnetizer 4 and is skew magnetized to become a permanent magnet 32.
  • the number of turns of the magnetizing coil is 6 [turn]
  • the resistance value of the magnetizing coil is 24.6 [m ⁇ ]
  • the capacitance of the capacitor 43 is 4000 [F]
  • both ends of the capacitor 43 The voltage (that is, the magnetizing voltage) is 1000 to 3000 [V]
  • the internal resistance of the magnetizer 4 is 44 [m ⁇ ].
  • the number of turns and the resistance value of the magnetizing coil, the capacitance and magnetizing voltage of the capacitor 43, and the internal resistance value of the magnetizer 4 are set as the magnetizer parameters specific to the magnetizer 4 (ie, circuit conditions). Used for analysis. In the present embodiment, focusing on the magnetizing voltage of the capacitor 43, which is one of the circuit conditions, the first condition (1000 [V]), the second condition (2000 [V]), and the third condition Magnetization analysis is performed under the three conditions (3000 [V]). In the following, these three conditions are referred to as magnetizing conditions!
  • the finite element method is used for the magnetization analysis in the present embodiment, a mesh division model is created, and a transient response analysis is performed.
  • a mesh division model corresponding to the shape and size of the magnetized coil is created, and a mesh division model corresponding to the shape and size of the magnet material 31 (and thus the permanent magnet 32) is further created.
  • the shape and size of the magnetizing coil, the shape and size of the magnet material 31 (that is, the shape and size of the permanent magnet 32), and these mesh division models (that is, the model shape) are used in the magnetization analysis.
  • FIG. 19 is a characteristic diagram showing each of the demagnetization curves 500 to 560 used in the magnetization analysis method according to Embodiment 2 of the present invention.
  • FIG. 6 is a characteristic diagram showing demagnetization curves 510 to 560 measured in advance in the fully magnetized region.
  • the horizontal axis in Fig. 19 indicates the magnetic field H [kA / m], and the vertical axis indicates the magnetic flux density B [T]!
  • Each of the demagnetization curves 510 to 560 shown in FIG. 19 is a demagnetization curve obtained by actual measurement using the magnet material 31 to be the permanent magnet 32 to be analyzed. Specifically, it was measured for a permanent magnet in an incompletely magnetized state, which is formed by applying a magnetized magnetic field of 14 05, 1015, 834, 661, 484, or 306 [kA / m] to the magnet material 31.
  • a demagnetization curve 500 shown in FIG. 19 is a demagnetization curve relating to a complete magnetization region of a permanent magnet in which a magnetizing magnetic field of 5570 [kA / m] is applied to the magnet material 31.
  • the coercive force H and the recoil relative permeability are calculated.
  • FIG. 19 shows the coercivity H and recoil relative permeability for the demagnetization curve 540.
  • the negative coercive force "H" is the value of the intersection of the demagnetization curve and the horizontal axis, and the recoil relative permeability.
  • FIG. 20 is a characteristic diagram showing the relationship between the magnetized magnetic field H and the coercive force H related to the completely magnetized region and the incompletely magnetized region, and the horizontal axis represents the magnetized magnetic field H [kA / m]. The vertical axis represents the coercive force H [kA / m].
  • FIG. 21 shows the complete magnetization region and the incomplete magnetization region respectively cb
  • FIG. 6 is a characteristic diagram showing the relationship between the magnetizing magnetic field H and the recoil relative magnetic permeability, wherein the horizontal axis represents the magnetizing magnetic field H [kA / m], and the vertical axis represents the recoil relative permeability. 20 and 21 correspond to the definition of the demagnetization curve based on the actual measurement shown in FIG.
  • FIGS. 19, 20, and 21 correspond to the characteristic diagrams of FIGS. 5, 7, and 8 of the first embodiment, and thus detailed description thereof is omitted. .
  • the procedure of the magnetization analysis process by the magnetization analysis apparatus 1 of the present embodiment is the same as the procedure of the magnetization analysis process shown in FIG. 9 of the first embodiment.
  • the CPU 10 of the magnetization analyzer 1 completes the reception of various data by executing the processing of S11 to S16, the data such as circuit conditions, magnet characteristics, model shape, etc. are appropriately included in the received data.
  • the magnetic field analysis is performed using the finite element method to calculate the magnetizing magnetic field applied to each mesh element of the mesh division model of the magnet material 31 (processing of S17).
  • the CPU 10 sets the recoil relative permeability and the coercive force H to each mesh element based on the calculation result of the magnetization magnetic field related to each mesh element obtained in S17 and the demagnetization curve data.
  • the CPU 10 performs a magnetic field analysis using the recoil relative permeability and the coercive force H related to each mesh element obtained in S18, thereby indicating the magnetization state of the permanent magnet 32. Calculate the parameter (S19 processing).
  • the CPU 10 causes the display unit 13 to display an output screen obtained by editing the state parameter calculated in S19 into a predetermined format (S20 process), and ends the magnetization analysis process.
  • the CPU 10 calculates the magnetic flux density B at the attention position 3d shown in FIG. 17 based on the state parameter calculated in S19, and displays the magnetic flux distribution graph regarding the attention site 3d.
  • this magnetic flux distribution is an analysis result.
  • FIG. 22, FIG. 23, and FIG. 24 show the first, second, and third magnetization conditions of the permanent magnet 32 calculated by the magnetization analyzer 1 according to Embodiment 2 of the present invention.
  • FIG. 6 is a characteristic diagram showing an analysis result related to the attention site 3d in FIG. 6. In the process of S20, such characteristic charts are displayed on the output screen.
  • the horizontal axis of each characteristic diagram shows the position [°] on the target region 3d, and the vertical axis shows the magnetic flux density B [T].
  • the position of 0 [°] on the horizontal axis is one end in the circumferential direction, and the position of 120 [°] is the other end in the circumferential direction.
  • the graph shown by the solid line is the analysis result
  • the graph shown by the broken line is the actual measurement result.
  • the magnetic flux distribution as the analysis result calculated by the magnetization analysis device 1 and the actually measured magnetic flux distribution are:
  • the peak magnetic flux density agrees well, and the tendency of the magnetic flux density distribution in the zero crossing region around 60 [°] also agrees. That is, in the magnetization analysis method of the present invention, the magnetization state obtained by the magnetization analysis and the measured magnetization state are in good agreement. This is because the incomplete magnetization region (neutral zone) of the permanent magnet 32 is sufficiently taken into account by using a demagnetization curve based on actual measurement!
  • FIG. 25 is a characteristic diagram showing the no-load induced voltage of the electric motor including the permanent magnet 32 that is magnetized under the first, second, and third magnetization conditions.
  • the magnetization voltage [V] is shown, and the vertical axis shows the no-load induced voltage [V / krpm].
  • the actual measurement value of the no-load induced voltage of the electric motor including the permanent magnet 32 magnetized under each magnetizing condition is shown only by a plot (black circle mark).
  • the calculated values of the no-load induced voltage obtained based on the analysis results under each magnetization condition calculated by the magnetization analyzer 1 are shown by plots (white circles) and solid lines.
  • the no-load induced electric current obtained based on the analysis result under each magnetization condition calculated using the conventional magnetization analysis method The calculated pressure value (12.1 [V / krpm]) is indicated by a broken line.
  • the measured value and the calculated value of the no-load induced voltage obtained based on the analysis result according to the magnetization analysis method of the present invention are in good agreement.
  • the difference between the calculated value of the no-load induced voltage calculated based on the analysis results and the measured value is large, and the difference tends to increase especially as the magnetized voltage decreases.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Description

明 細 書
着磁解析方法、着磁解析装置及びコンピュータプログラム
技術分野
[0001] 本発明は、着磁器で磁石素材に着磁してなる永久磁石の着磁状態を解析する着 磁解析方法、着磁解析装置及びコンピュータプログラムに関する。
背景技術
[0002] 本明細書において、永久磁石とは磁石素材に磁界を印加して着磁した物をいい、 磁石素材とは着磁前の物をレ、う。
従来、磁石素材に着磁してなる永久磁石の着磁状態を示すパラメータを算出する( 着磁解析する)ために、種々の方法、装置等が提案されている(特許文献 1 , 2参照)
[0003] 特許文献 1に開示されて!/、る着磁解析装置は、着磁解析を行なう場合に必要とな る複数種類の第 1パラメータの候補を表示画面上に表示し、表示された候補の中か ら必要な第 1パラメータを決定して、更に第 1パラメータの特性を決める複数の第 2パ ラメータについての入力を求め、入力された第 1及び第 2パラメータに基づいて、永 久磁石の着磁状態を示す磁界分布を算出する。
[0004] 特許文献 2に開示されている着磁解析装置は、設定された固有のパラメータと磁石 素材の特性とに基づいて、着磁器と磁石素材とを含んだ系に対応したパラメータを 算出し、設定された固有のパラメータと系に対応したパラメータとに基づいて着磁器 に流れる電流波形を算出し、算出された電流波形に基づいて、永久磁石の着磁状 態を示す磁化分布を算出する。
特許文献 1 :特開 2000— 346919号公報
特許文献 2:特開 2002— 329624号公報
発明の開示
発明が解決しょうとする課題
[0005] ところで、永久磁石を用いてなるピックアップ、モータ等の機器の設計においては、 永久磁石の着磁状態を考慮する必要がある。 しかしながら、従来の着磁解析方法においては、着磁解析によって得られる着磁状 態と、実測される着磁状態とが大幅に異なることがある。このため、設計時に予定した 機器の特性と、実際に製造された機器の特性とが異なり、所望の特性を得られないこ と力 Sある。
[0006] 永久磁石の着磁状態の解析結果と実測結果との乖離を防ぐベぐ発明者らは、永 久磁石の不完全着磁領域 (永久磁石が飽和するまで着磁できな!/、領域。例えば多 極着磁された永久磁石における極間部のニュートラルゾーン等)に着目した。
[0007] 従来、永久磁石の不完全着磁領域まで考慮した着磁解析は行なわれて!/、な!/、。即 ち、着磁解析の際に、不完全着磁領域は考慮されていないか、又は十分に考慮され ておらず、例えば、永久磁石の全部分が完全着磁領域 (即ち着磁率 100%)であると 仮定されているか、又は、不完全着磁領域は未着磁領域 (即ち着磁率 0%)であると 仮定されている。
また、特許文献 1 , 2においては、不完全着磁領域の存在について何ら言及されて おらず、このため解析過程において、不完全着磁領域の存在が一切考慮されていな い。
[0008] 本発明は斯かる事情に鑑みてなされたものであり、その主たる目的は、不完全着磁 領域の各部位について、予め実測してなり、印加される着磁磁界に応じた減磁曲線 を用いることにより、不完全着磁領域の着磁状態を考慮することができる着磁解析方 法を提供することにある。
[0009] 本発明の他の目的は、磁石素材に印加される着磁磁界の算出結果と、不完全着 磁領域の各部位について、予め実測してなり、印加される着磁磁界に応じた減磁曲 線とに基づいて算出した不完全着磁領域に係る領域パラメータを用いて、解析対象 となる永久磁石の着磁状態を示す状態パラメータを算出することにより、不完全着磁 領域の着磁状態を反映させつつ高精度に着磁解析することができる着磁解析方法、 着磁解析装置、及びコンピュータを着磁解析装置として機能させるためのコンビユー タプログラムを提供することにある。
[0010] 本発明の更に他の目的は、リコイル比透磁率と保磁力とを不完全着磁領域に係る 領域パラメータとして用いる構成とすることにより、不完全着磁領域の減磁特性を反 映させつつ高精度に着磁解析することができる着磁解析方法を提供することにある。 課題を解決するための手段
[0011] 第 1発明に係る着磁解析方法は、着磁器で磁石素材に着磁してなる永久磁石の着 磁状態を解析する着磁解析方法において、着磁状態を解析するに際し、永久磁石 の不完全着磁領域の各部位について、予め実測してなり、印加される着磁磁界に応 じた減磁曲線を用い、解析対象となる永久磁石の不完全着磁領域に係る領域パラメ ータを算出することを特徴とする。
[0012] 第 2発明に係る着磁解析方法は、前記着磁器に係る着磁器パラメータ及び磁石素 材に係る磁石パラメータを用いて磁場解析を行なうことによって、前記磁石素材の各 部位に印加される着磁磁界を算出し、該着磁磁界の算出結果と、前記減磁曲線とに 基づいて、前記領域パラメータを前記各部位について算出し、前記領域パラメータ の算出結果を用いて磁場解析を行なうことによって、前記解析対象となる永久磁石 の着磁状態を示す状態パラメータを算出することを特徴とする。
[0013] 第 3発明に係る着磁解析方法は、前記領域パラメータとして、不完全着磁領域の減 磁特性を近似的に表わすリコイル比透磁率と保磁力とを用いることを特徴とする。
[0014] 第 4発明に係る着磁解析装置は、着磁器で磁石素材に着磁してなる永久磁石の着 磁状態を解析する着磁解析装置において、前記着磁器に係る着磁器パラメータ及 び磁石素材に係る磁石パラメータを用いて磁場解析を行なうことによって、前記磁石 素材の各部位に印加される着磁磁界を算出する着磁磁界算出手段と、該着磁磁界 算出手段による算出結果、及び、永久磁石の不完全着磁領域の各部位について、 予め実測してなり、印加される着磁磁界に応じた減磁曲線に基づいて、解析対象と なる永久磁石の不完全着磁領域に係る領域パラメータを前記各部位について算出 するパラメータ算出手段と、該パラメータ算出手段による算出結果を用いて磁場解析 を行なうことによって、前記解析対象となる永久磁石の着磁状態を示す状態パラメ一 タを算出する着磁状態算出手段とを備えることを特徴とする。
[0015] 第 5発明に係るコンピュータプログラムは、コンピュータに、着磁器で磁石素材に着 磁してなる永久磁石の着磁状態を解析させるためのコンピュータプログラムであって 、コンピュータに、前記着磁器に係る着磁器パラメータ及び磁石素材に係る磁石パラ メータを用いて磁場解析を行なわせることによって、前記磁石素材の各部位に印加さ れる着磁磁界を算出させるステップと、コンピュータに、前記着磁磁界の算出結果、 及び、与えられた減磁曲線に基づいて、解析対象となる永久磁石の不完全着磁領 域に係る領域パラメータを前記各部位について算出させるステップと、コンピュータに 、前記領域パラメータの算出結果を用いて磁場解析を行なわせることによって、前記 解析対象となる永久磁石の着磁状態を示す状態パラメータを算出させるステップとを 実行させることを特徴とする。
[0016] 第 1発明にあっては、着磁状態を解析するに際し、不完全着磁領域に係る予め実 測された減磁曲線、即ち、永久磁石の不完全着磁領域の各部位について、予め実 測してなり、印加される着磁磁界に応じた減磁曲線を用いて、解析対象となる永久磁 石の不完全着磁領域に係る領域パラメータを算出する。
ここで、領域パラメータは、例えば、着磁磁界に対応する減磁曲線に基づいて求め られるリコイル比透磁率及び保磁力等である。
[0017] 不完全着磁領域に係る減磁曲線は、例えば完全着磁領域に係る減磁曲線に基づ いて、この減磁曲線の相似形で定義することも従来行なわれていた力 S、このような減 磁曲線は、実際の減磁曲線とは大きく異なることがあるため、このような減磁曲線を用 いて着磁状態を解析した場合、解析結果としての着磁状態と、実際の着磁状態とが 大幅に異なることがある。
[0018] 一方、不完全着磁領域に係る予め実測された減磁曲線を用いて着磁状態を解析 した場合、この減磁曲線から実際の着磁状態を反映した領域パラメータが得られるた め、解析結果としての着磁状態と、実際の着磁状態とが略一致する。
ここで、材料、グレード等の種類が異なる永久磁石に関する減磁曲線は異なるが、 同じ種類の永久磁石に関しては、形状、寸法等に関係なく同じ減磁曲線を利用する ことが可能であるため、形状、寸法等が異なる永久磁石毎に、実測された減磁曲線 を新たに準備する必要はなレ、。
[0019] 第 2発明、第 4発明及び第 5発明にあっては、解析対象となる永久磁石の不完全着 磁領域に係る領域パラメータに基づ!/、て、解析対象となる永久磁石の着磁状態を示 す状態パラメータを算出する。 例えば、第 5発明のコンピュータプログラムを、パーソナルコンピュータ、サーバ等に インストールすることによって第 4発明の着磁解析装置となし、この着磁解析装置を用 いて、第 2発明の着磁解析方法が実行される。
ここで、着磁器パラメータとは、着磁器に係る空芯コイルの巻数及び抵抗値、コンデ ンサの静電容量及び着磁電圧、並びに着磁器の内部抵抗値等をいい、磁石パラメ ータとは、磁石素材に係る抵抗率、及び初磁化曲線等をいい、また、状態パラメータ とは、永久磁石の着磁状態を示すものをいう。
[0020] 以下では、着磁解析装置の作用を例に、具体的に説明する。
まず、着磁磁界算出手段が、磁石素材に磁界を印加して着磁する着磁器に係るコ ィル形状、電源回路等の着磁器パラメータ、及び磁石素材に係る初磁化曲線、抵抗 率等の磁石パラメータを用いて、磁場解析を有限要素法、積分要素法等で行なう。こ れによって、着磁磁界算出手段は、磁石素材の各部位に印加される着磁磁界を算 出する。なお、当然のことながら磁場解析時には渦電流を考慮することが必要である
[0021] 次に、パラメータ算出手段が、着磁磁界算出手段による算出結果と、不完全着磁 領域に係る予め実測された減磁曲線とに基づ!/、て、解析対象となる永久磁石の不完 全着磁領域に係る領域パラメータを、磁石素材の各部位について算出する。
ここで、不完全着磁領域に係る予め実測された減磁曲線が用いられているため、算 出された不完全着磁領域に係る領域パラメータには、不完全着磁領域の着磁状態 が反映されている。
[0022] 最後に、着磁状態算出手段が、ノ ラメータ算出手段による算出結果 (即ち不完全 着磁領域の着磁状態が反映されて!/、る領域パラメータ)を用いて磁場解析を有限要 素法、積分要素法等で行なう。これによつて、着磁状態算出手段は、解析対象となる 永久磁石の着磁状態を示す状態パラメータを算出する。
以上のようにして、不完全着磁領域の着磁状態を考慮しつつ、永久磁石の着磁状 態が高精度に解析される。
なお、有限要素法、積分要素法等で行なう磁場解析は、従来の手順と略同様の手 順で簡易に行なうことが可能である。 [0023] 第 3発明にあっては、不完全着磁領域に係る領域パラメータ力 リコイル比透磁率 及び保磁力である。このため、例えば第 4発明の着磁解析装置が備えるパラメータ算 出手段は、領域パラメータとしてリコイル比透磁率と保磁力とを算出する。
リコイル比透磁率及び保磁力夫々は、不完全着磁領域に係る予め実測された減磁 曲線に基づいて容易に算出され、不完全着磁領域の減磁特性を近似的に表わして いる。つまり、算出されたリコイル比透磁率及び保磁力夫々には、不完全着磁領域の 着磁状態が反映されている。
発明の効果
[0024] 第 1発明の着磁解析方法による場合、不完全着磁領域に係る予め実測された減磁 曲線を用いて永久磁石の着磁状態を解析することによって、不完全着磁領域の着磁 状態が反映された解析結果を得ることができる。
このため、解析結果としての着磁状態と、実測される着磁状態との乖離を防止する ことができ、延いては、永久磁石の着磁状態の解析結果に基づいて設計される機器 に関して、設計時に予定した機器の特性と、実際に製造された機器の特性とを略一 致させること力 Sでさる。
[0025] 第 2発明の着磁解析方法、第 4発明の着磁解析装置及び第 5発明のコンピュータ プログラムによる場合、不完全着磁領域の着磁状態が反映されている領域パラメータ を用いて、簡易な手順で、不完全着磁領域の着磁状態が考慮された高精度な着磁 解析を容易に実行すること力できる。
[0026] 第 3発明の着磁解析方法による場合、不完全着磁領域に係る減磁特性をリコイル 比透磁率と保磁力とで近似して、永久磁石の着磁状態を容易且つ高精度に着磁解 析すること力でさる。
図面の簡単な説明
[0027] [図 1]本発明の実施の形態 1に係る着磁解析装置の構成を示すブロック図である。
[図 2]本発明の実施の形態 1に係る着磁解析方法の解析対象である永久磁石となす べき磁石素材の模式的な斜視図である。
[図 3]本発明の実施の形態 1に係る着磁解析方法の解析対象である永久磁石となす べき磁石素材に磁界を印加して着磁する着磁器の要部を示す回路図である。 園 4]本発明の実施の形態 1に係る着磁解析方法で用いられる永久磁石の初磁化曲 線を示す特性図である。
園 5]本発明の実施の形態 1に係る着磁解析方法で用いられる減磁曲線を示す特性 図である。
[図 6]従来の手法で、不完全着磁領域の減磁曲線を完全着磁領域の減磁曲線の相 似形で表現した特性図である。
園 7]本発明の実施の形態 1に係る完全着磁領域及び不完全着磁領域夫々に係る 着磁磁界と保磁力との関係を示す特性図である。
園 8]本発明の実施の形態 1に係る完全着磁領域及び不完全着磁領域夫々に係る 着磁磁界とリコイル比透磁率との関係を示す特性図である。
園 9]本発明の実施の形態 1に係る着磁解析装置の CPUが実行する着磁解析処理 の手順を示すフローチャートである。
園 10]本発明の実施の形態 1に係る着磁解析装置で算出された不完全着磁状態の 永久磁石の第 1の注目部位に対応する解析結果を示す特性図である。
園 11]本発明の実施の形態 1に係る着磁解析装置で算出された不完全着磁状態の 永久磁石の第 2の注目部位に対応する解析結果を示す特性図である。
園 12]本発明の実施の形態 1に係る着磁解析装置で算出された不完全着磁状態の 永久磁石の第 3の注目部位に対応する解析結果を示す特性図である。
園 13]本発明の実施の形態 1に係る着磁解析装置で算出された着磁率 44%の永久 磁石の解析結果を示す特性図である。
園 14]本発明の実施の形態 1に係る着磁解析装置で算出された着磁率 50%の永久 磁石の解析結果を示す特性図である。
[図 15]従来の着磁解析方法で算出された完全着磁状態の永久磁石の解析結果を示 す特性図である。
[図 16]従来の着磁解析方法で算出された不完全着磁状態の永久磁石の解析結果を 示す特性図である。
[図 17]本発明の実施の形態 2に係る着磁解析方法の解析対象である永久磁石とな すべき磁石素材の模式的な斜視図である。 [図 18]本発明の実施の形態 2に係る着磁解析方法で用いられる永久磁石の初磁化 曲線を示す特性図である。
[図 19]本発明の実施の形態 2に係る着磁解析方法で用いられる減磁曲線を示す特 性図である。
[図 20]本発明の実施の形態 2に係る完全着磁領域及び不完全着磁領域夫々に係る 着磁磁界と保磁力との関係を示す特性図である。
[図 21]本発明の実施の形態 2に係る完全着磁領域及び不完全着磁領域夫々に係る 着磁磁界とリコイル比透磁率との関係を示す特性図である。
[図 22]本発明の実施の形態 2に係る着磁解析装置で算出された永久磁石の第 1の 着磁条件下での解析結果を示す特性図である。
[図 23]本発明の実施の形態 2に係る着磁解析装置で算出された永久磁石の第 2の 着磁条件下での解析結果を示す特性図である。
[図 24]本発明の実施の形態 2に係る着磁解析装置で算出された永久磁石の第 3の 着磁条件下での解析結果を示す特性図である。
[図 25]第 1、第 2及び第 3夫々の着磁条件下で着磁してなる永久磁石を備える電動モ 一タの無負荷誘起電圧を示す特性図である。
符号の説明
[0028] 1 着磁解析装置
10 CPU
2 CD-ROM
3, 32 永久磁石(解析対象)
30, 31 磁石素材
4 着磁器
51 , 52, 53, 54, 55, 56 減磁曲線
510, 520, 530, 540, 550, 560 減磁曲線
発明を実施するための最良の形態
[0029] 以下、本発明を、その実施の形態を示す図面に基づいて詳述する。
実施の形態 1 [0030] 図 1は、本発明の実施の形態 1に係る着磁解析装置 1の構成を示すブロック図であ 着磁解析装置 1は、例えばパーソナルコンピュータを用いてなり、 CPU10、 ROM1 1、 RAM12、表示部 13、操作部 14、補助記憶部 15及び外部記憶部 16を備え、こ れらの装置各部はバス、信号線等を介して適宜に接続されて!/、る。
[0031] 表示部 13は、例えば液晶ディスプレイを用いてなり、 CPU10に制御されて、着磁 解析装置 1の作動状態を示すメッセージ、ユーザに対する各種の指示を示すメッセ 一ジ等を表示する。
操作部 14は、例えばキーボード及びマウスを用いてなる。
着磁解析装置 1のユーザは、表示部 13を視認しながら操作部 14を操作することに よって、例えば所要のデータを着磁解析装置 1に入力し、着磁解析処理(図 9参照) を実行させる。
[0032] 補助記憶部 15は、例えばハードディスクを用いてなり、 CPU10によって、各種のコ ンピュータプログラム、データ等の読み書きが行なわれる。
また、外部記憶部 16は、例えば CD— ROMドライブを用いてなり、 CPU10に制御 されて、可搬性を有する記録媒体 (例えば本実施の形態のコンピュータプログラムが 記録されている CD— ROM2)力、らコンピュータプログラム、データ等を読み込む。読 み込まれたコンピュータプログラム、データ等は、補助記憶部 15に書き込まれる。
[0033] CPU10は着磁解析装置 1の制御中枢であり、 RAM12を作業領域として用い、 R OM11及び/又は補助記憶部 15に記憶されたコンピュータプログラム、データ等に 従って装置各部を制御し、各種処理を実行する。
更に詳細には、 CPU10が、着磁磁界算出ステップ、パラメータ算出ステップ、着磁 状態算出ステップ等を含む本実施の形態のコンピュータプログラムに従って、着磁磁 界算出処理 (後述する図 9に示す S17参照)、パラメータ算出処理(S 18参照)、着磁 状態算出処理(S 19参照)等を含む着磁解析処理を実行することによって、パーソナ ルコンピュータが本実施の形態の着磁解析装置 1として機能する。
[0034] 以下に、本実施の形態における着磁解析方法を説明する。
図 2は、本発明の実施の形態 1に係る着磁解析方法の解析対象である永久磁石 3 となすべき磁石素材 30の模式的な斜視図であり、図 3は、磁石素材 30に磁界を印加 して着磁する着磁器 4の要部を示す回路図である。
図 4は、本発明の実施の形態 1に係る着磁解析方法で用いられる永久磁石 3の初 磁化曲線を示す特性図であり、横軸は磁界 H [kA/m]を示し、縦軸は磁束密度 B [ T]を示している。
[0035] 本実施の形態においては、着磁器 4を用いて磁石素材 30を、磁化方向が図 2に示 す白抜矢符方向の永久磁石 3となし、永久磁石 3の表面の各部(具体的には図 2に 示す第 1、第 2、及び第 3の注目部位 3a, 3b, 3c夫々)に関して、図示しない計測機 器 (例えばガウスメータ)で実測された磁石表面の磁束密度分布(即ち実測結果)と、 着磁解析装置 1で算出された磁石表面の磁束密度分布(即ち解析結果)とを比較す 以下、磁石表面の磁束密度分布を磁束分布という。
[0036] 図 2に示すように、磁石素材 30 (及びこれを着磁してなる永久磁石 3)の形状は、縦 長さ Lが 10 [mm]、横幅 Bが 10 [mm]、厚さ Dが 4 [mm]の直方体状である。
永久磁石 3の注目部位 3a, 3b, 3cは、永久磁石 3の縦長さ L X横幅 Bの一面に関 し、縦長さ L方向の一端(例えば図 10に示す 0 [mm]の位置)から他端(10 [mm]の 位置)まで連続する直線的な部位であり、更に詳細には、第 1の注目部位 3aは永久 磁石 3の横幅 B方向中心位置、第 3の注目部位 3cは永久磁石 3の横幅 B方向一端部 、第 2の注目部位 3bは第 1の注目部位 3aと第 3の注目部位 3cとの中間部に夫々位 。
[0037] また、磁石素材 30は希土類希元素を含む異方性磁性体であり、磁石素材 30の抵 抗率は 144 X 10— 8[ Ω .πι]である。
更に、磁石素材 30の磁化特性は非線形であり、これを示すデータとして、図 4に示 すような初磁化曲線が用いられる。
本実施の形態における初磁化曲線は、解析対象である永久磁石 3となすべき磁石 素材 30に関して予め実測してなり、印加される着磁磁界に対応した初磁化曲線であ る力 磁石素材 30と同じ種類の磁石素材に関して実測された初磁化曲線を用いても 問題はない。 [0038] 磁石素材 30の材料、抵抗率、及び初磁化曲線は、磁石素材 30の固有の磁石パラ メータ(以下、磁石特性という)として、後述するように、磁場解析処理(図 9に示す S 1 7及び/又は S19参照)の際に用いられる。
[0039] 図 3に示すように、着磁器 4は、所要の寸法を有する空芯コイル 41、スィッチ 42、及 び大容量のコンデンサ 43が直列に接続されている。
電源装置 44及びスィッチ 45は夫々コンデンサ 43に並列に接続されており、コンデ ンサ 43には、電源装置 44から給電されることによって、大量の電荷が蓄えられる。 また、空芯コイル 41の内部の中心位置に、永久磁石 3となすべき磁石素材 30が配 される。
スィッチ 42をオフに、スィッチ 45をオンとして、コンデンサ 43に大量の電荷を蓄え た後、スィッチ 42, 45の極性を同時に反転させることによって、コンデンサ 43から空 芯コイル 41へ大きなノルス電流が流れ、このとき空芯コイル 41で発生した巨大な磁 界が磁石素材 30に印加され、このため磁石素材 30が着磁されて永久磁石 3となる。
[0040] ここで、空芯コイル 41の巻き数は 45 [turn]、空芯コイル 41の抵抗値は 45. 28 [m
Ω ]、コンデンサ 43の静電容量は 3375 [ F]、コンデンサ 43の両端の電圧(即ち着 磁電圧)は 500V、着磁器 4の内部抵抗値は 72 [m Ω ]である。
空芯コイル 41の巻き数及び抵抗値、コンデンサ 43の静電容量及び着磁電圧、並 びに着磁器 4の内部抵抗値は、着磁器 4の固有の着磁器パラメータ(以下、回路条 件という)として、後述するように、着磁解析の際に用いられる。
[0041] ところで、着磁解析には、有限要素法、積分要素法等、種々の方法を用いることが できる力 例えば有限要素法の場合、メッシュ分割モデルを作成して、過渡応答解析 をする。
この場合、空芯コイル 41の形状及び寸法に応じたメッシュ分割モデルが作成され、 更に、磁石素材 30 (延いては永久磁石 3)の形状及び寸法に応じたメッシュ分割モデ ルが作成される(図 2参照)。
空芯コイル 41の形状及び寸法と、磁石素材 30の形状及び寸法(即ち永久磁石 3の 形状及び寸法)と、これらのメッシュ分割モデルと(以下、モデル形状という)は、後述 するように、着磁解析の際に用いられる。 [0042] 図 5は、本発明の実施の形態 1に係る着磁解析方法で用いられる減磁曲線 50〜5 6夫々を示す特性図であり、完全着磁領域に係る減磁曲線 50と、不完全着磁領域に 係る予め実測された減磁曲線 5;!〜 56夫々とを示す特性図である。
また、図 6は、従来の手法で、不完全着磁領域の減磁曲線 61〜66を完全着磁領 域の減磁曲線 60の相似形で表現した特性図である。
図 5及び図 6夫々の横軸は磁界 H [kA/m]を示し、縦軸は磁束密度 B [T]を示し ている。
[0043] 図 5に示す減磁曲線 5;!〜 56夫々は、解析対象である永久磁石 3となすべき磁石 素材 30を用いて実測してなる減磁曲線である。具体的には、磁石素材 30に 1257、 1019、 859、 700、 533、又は 366 [kA/m]の着磁磁界(gち着磁器 4によって印 加される磁界)を印加してなる不完全着磁状態の永久磁石に関して実測してなり、印 カロされる着磁磁界に応じた減磁曲線である。
ただし、磁石素材 30と同じ種類の磁石素材を用いて実測された減磁曲線を用いて も問題はなぐこの場合も、減磁曲線 5;!〜 56夫々と略同様の減磁曲線が得られる。
[0044] また、図 5及び図 6に示す減磁曲線 50, 60は、共に、磁石素材 30に 2777 [kA/ m]の着磁磁界が印加されてなる永久磁石の完全着磁領域に係る減磁曲線であり、 減磁曲線 50, 60は一致する。
[0045] 以上のような減磁曲線に基づいて、保磁力 H とリコイル比透磁率 とが算出される
。図 5及び図 6には、減磁曲線 54, 64に係る保磁力 H (正確には保磁力の負数"
H ")とリコイル比透磁率 とが図示されている。
保磁力の負数" H "は、減磁曲線と横軸との交点の値であり、リコイル比透磁率
11は、減磁曲線の傾きである。リコイル比透磁率 及び保磁力 H は、減磁特性を近 似的に表わすパラメータである。
[0046] 図 7は、完全着磁領域及び不完全着磁領域夫々に係る着磁磁界 Hと保磁力 H と の関係を示す特性図であり、横軸は着磁磁界 H [kA/m]を示し、縦軸は保磁力 H
[kA/m]を示している。
また、図 8は、完全着磁領域及び不完全着磁領域夫々に係る着磁磁界 Hとリコイル 比透磁率 との関係を示す特性図であり、横軸は着磁磁界 H[kA/m]を示し、縦 軸はリコイル比透磁率 を示している。
図 7及び図 8夫々において、プロット(黒四角印)及び実線で示されているグラフ力 図 5に示す実測に基いた減磁曲線の定義に対応し、二点鎖線で示されているグラフ 力 図 6に示す従来の手法の定義に対応する。
[0047] 図 5に示すように、実測された各減磁曲線 51 , 52, 53, 54, 55, 56は、傾き(即ち リコイル比透磁率 )が、着磁磁界 Hの大きさの減少に伴って増大し、横軸に係る切 片(即ち保磁力の負数" H ")の値が、着磁磁界 Hの大きさの減少に伴って増大す
cb
る非線形特性として定義される。
[0048] このため、図 7に示すように、着磁磁界 Hの大きさの増大に伴って、 0 [kA/m]〜l 592 [kA/m]の着磁磁界 Hに対応する保磁力 H (即ち不完全着磁領域に係る保
cb
磁力 H )は急激に増大し、 1592 [kA/m]以上の着磁磁界 Hに対応する保磁力 H cb c
(即ち完全着磁領域に係る保磁力 H )は緩慢に増大する。
b cb
また、図 8に示すように、着磁磁界 Hの大きさの増大に伴って、 0 [kA/m]〜; 1592 [kA/m]の着磁磁界 Hに対応するリコイル比透磁率 μ (即ち不完全着磁領域に係 るリコイル比透磁率 )は急激に減少し、 1592 [kA/m]以上の着磁磁界 Ηに対応 するリコイル比透磁率 (即ち完全着磁領域に係るリコイル比透磁率 )は略一定で ある。
[0049] 一方、図 6に示すように、従来の手法に定義された各減磁曲線 61 , 62, 63, 64, 6 5, 66は、減磁曲線 60の傾き(即ちリコイル比透磁率 )と同一の傾きを有し、横軸に 係る切片(即ち保磁力の負数" Η ")の値が、着磁磁界 Ηの大きさの減少に伴って
cb
増大する線形特性として定義され、図 5に示す実測された減磁曲線 5;!〜 56と大きく 異なる。
このため、図 7に示すように、着磁磁界 Hの大きさの増大に伴って、保磁力 H は正
cb 比例的に増大する。また、図 8に示すように、着磁磁界 Hの大きさが増大しても、リコ ィル比透磁率 は一定である。
[0050] 図 5に示すような減磁曲線 5;!〜 56に基づいて、即ち、不完全着磁領域に係る予め 実測された減磁曲線 5;!〜 56に基づいて算出される保磁力 H とリコイル比透磁率
cb
とは、不完全着磁領域の減磁特性を近似的に表わしており、不完全着磁領域の着 磁状態を反映している。
このため、本実施の形態においては、このような保磁力 H とリコイル比透磁率 と
cb
を、永久磁石 3の不完全着磁領域に係る領域パラメータとして用いる。
[0051] 次に、着磁解析装置 1による具体的な計算手順を説明する。
図 9は、着磁解析装置 1の CPU 10が実行する着磁解析処理の手順を示すフ口一 チャートである。
CPU10は、作業者に対して所要のデータの入力を促す入力画面を、表示部 13に 表示させる(Sl l)。
[0052] そして、 CPU10は、モデル形状のデータを受け付け(S 12)、磁石特性のデータを 受け付け(S13)、減磁曲線のデータを受け付け(S 14)、回路条件のデータを受け付 け(S15)、非線形反復計算条件等の解析条件のデータを受け付ける(S16)。 S 12
〜S 15に関し、 CPU10は、受け付けた各種のデータ、即ち作業者によって入力され たデータを補助記憶部 15に記憶させる。
[0053] CPU10による着磁解析処理の実行前に、作業者は、磁石素材 30を用いて実測作 業を行ない初磁化曲線のデータ及び減磁曲線のデータを準備する力、、又は、予め 実測されている初磁化曲線のデータ及び減磁曲線のデータを準備する。
[0054] 次に、作業者は、空芯コイル 41の形状及び寸法に応じたメッシュ分割モデルを作 成し、更に、磁石素材 30の形状及び寸法に応じたメッシュ分割モデルを作成する。 作業者は、作成したこれらのメッシュ分割モデルのデータと、空芯コイル 41の形状 及び寸法夫々のデータと、永久磁石 3の形状及び寸法夫々のデータとを、モデル形 状のデータとして、着磁解析装置 1に入力する。
なお、メッシュ分割モデルのデータは、外部から着磁解析装置 1に入力する構成で はなぐ空芯コイル 41の形状及び寸法、磁石素材 30の形状及び寸法等に応じて、 着磁解析装置 1で生成する構成でもよレヽ。
[0055] 次いで、作業者は、磁石素材 30の固有の磁石パラメータである磁石素材 30の材 料のデータ、抵抗率のデータ、及び初磁化曲線のデータを、磁石特性のデータとし て、着磁解析装置 1に入力する。
また、作業者は、実測された減磁曲線のデータを、着磁解析装置 1に入力する。 更に作業者は、着磁器 4の固有の着磁器パラメータである空芯コイル 41の巻き数 及び抵抗値夫々のデータ、コンデンサ 43の静電容量及び着磁電圧夫々のデータ、 並びに着磁器 4の内部抵抗値のデータを、回路条件のデータとして、着磁解析装置 1に入力する。
[0056] そして、作業者は、非線形反復計算条件等を着磁解析装置 1に入力する。
以上のような各種のデータの入力は、作業者が操作部 14を用いて手作業で入力 するか、又は、データが記憶されている記録媒体を外部記憶部 16に読み取らせて入 力する。なお、補助記憶部 15に予め記憶されているデータを選択する、図示しない ネットワークからデータをダウンロードする等の手段でデータを入力する構成でもよい
[0057] S12〜S16夫々にて各種のデータの受け付けが完了した場合、 CPU10は、受け 付けたデータの内、着磁器 4の固有の着磁器パラメータ及び磁石素材 30の固有の 磁石パラメータ夫々のデータ、メッシュ分割モデルのデータ等を適宜に用いて有限 要素法で磁場解析を行なうことによって、磁石素材 30のメッシュ分割モデルの各メッ シュ要素に印加される着磁磁界を算出する(S 17)。 S 17における磁場解析の手順は 従来の磁場解析の手順と略同様であり、算出された着磁磁界は補助記憶部 15に記
I思 れる。
[0058] 次いで CPU10は、 S17で求めた各メッシュ要素に係る着磁磁界の算出結果と、 S 1 4で受け付けた減磁曲線のデータとに基づいて、永久磁石 3の不完全着磁領域に係 る領域パラメータを各メッシュ要素について算出する(S 18)。 S 18で算出される領域 ノ ラメータは、具体的には、各メッシュ要素に印加される着磁磁界に対応する減磁曲 線に基づいて求められるリコイル比透磁率 及び保磁力 H であり、算出された領域
cb
ノ ラメータは補助記憶部 15に記憶される。
[0059] 更に CPU10は、 S18で求めた各メッシュ要素に係るリコイル比透磁率 及び保磁 力 H を用いて磁場解析を行なうことによって、永久磁石 3の着磁状態を示す状態パ cb
ラメータを算出する(SI 9)。 SI 9で算出される状態パラメータは、メッシュ分割モデル の各メッシュ要素の磁束密度 B、磁界 H等であり、算出された状態パラメータは補助 記憶部 15に記憶される。また、 S 19における磁場解析の手順は従来の磁場解析の 手順と略同様である。
[0060] 最後に CPU10は、 S19で算出された状態パラメータを所定の形式に編集してなる 出力画面を表示部 13に表示させ(S20)、着磁解析処理を終了する
S20では、 CPU10は、第 1、第 2、及び第 3の注目部位 3a, 3b, 3c (図 2参照)夫々 における磁束密度 Bを S19で算出された状態パラメータをもとに算出し、注目部位 3a , 3b, 3c夫々に関する磁束分布のグラフを表示させる。本実施の形態においては、 この磁束分布が解析結果である。
[0061] ここで、第 1、第 2、及び第 3の注目部位 3a, 3b, 3c夫々に関して実測された磁束 分布のデータ(即ち実測結果)を補助記憶部 15に予め記憶させておき、このデータ も同時に出力画面に表示することによって、解析結果と実測結果とを比較させるよう にしてもよい。
[0062] 以上のような着磁解析処理において、着磁解析装置 1は、磁石素材 30に磁界を印 加して着磁する着磁器 4で磁石素材 30に着磁してなる永久磁石 3の着磁状態を解 析する。
また、 S 17における CPU10は、着磁器 4に係る着磁器パラメータ及び磁石素材 30 に係る磁石パラメータを用いて磁場解析を行なうことによって、磁石素材 30の各部位 に印加される着磁磁界を算出する着磁磁界算出手段として機能する。
[0063] 更に、 S 18における CPU10は、着磁磁界算出手段による算出結果と、永久磁石の 不完全着磁領域の各部位について、予め実測してなり、印加される着磁磁界に応じ た減磁曲線とに基づ!/、て、解析対象となる永久磁石 3の不完全着磁領域に係る領域 ノ ラメータを磁石素材 30の各部位について算出するパラメータ算出手段として機能 する。ここで、解析対象となる永久磁石 3の不完全着磁領域に係る領域パラメータとし て、 CPU10は、不完全着磁領域の減磁特性を近似的に表わすリコイル比透磁率 と保磁力 H とを用いる。
cb
[0064] 更にまた、 S19における CPU10は、ノ ラメータ算出手段による算出結果を用いて 磁場解析を行なうことによって、解析対象となる永久磁石 3の着磁状態を示す状態パ ラメータを算出する着磁状態算出手段として機能する。
[0065] 図 10、図 11及び図 12は、着磁磁界の大きさを調整し、意図的に不完全着磁した 永久磁石 3に関し、着磁解析装置 1で算出された不完全着磁状態の永久磁石 3の第 1、第 2及び第 3の注目部位 3a, 3b, 3cに対応する解析結果を示す特性図であり、 図 9に示す S20においては、これらのような特性図が出力画面に表示される。
[0066] 図 10、図 11及び図 12夫々の横軸は、注目部位 3a, 3b, 3c上の位置(具体的には 永久磁石 3の一端からの距離 [mm] )を示し、縦軸は磁束密度 B [mT]を示している 。 0 [mm]の位置が前記一端、 10 [mm]の位置が永久磁石の他端である。
図 10、図 11及び図 12夫々において、プロット(黒四角印)及び実線で示されている グラフが解析結果であり、実線で示されてレ、るグラフが実測結果である。
[0067] 図 10、図 11及び図 12夫々に示すように、着磁解析装置 1で算出された解析結果と しての磁束分布と、実測された磁束分布とは略一致する。特に、距離 2 [mm]〜8 [m m] (即ち永久磁石の中央部)に対応する解析結果と実測結果とが非常によく一致し ている。
[0068] ところで、距離 1 [mm]前後、及び距離 9 [mm]前後(即ち永久磁石 3の一端及び 他端夫々の近傍)に対応する解析結果と実測結果との差異は、中央部に比べて大き い。このような誤差は、不完全着磁状態の減磁特性をリコイル比透磁率 と保磁力 H とで近似して扱ったこと、不完全着磁状態の永久磁石は不安定であって物性が振 cb
れ易いこと等が原因であると考えられ、不完全着磁状態の減磁特性を、実測で得ら れた減磁曲線のデータとして扱うことで、更なる精度向上が図られると考えられる。
[0069] 図 13及び図 14は、着磁解析装置 1で算出された着磁率 44%及び着磁率 50%夫 々の永久磁石の解析結果を示す特性図である。ここで、例えば着磁率 44%とは、完 全着磁された永久磁石における総磁束量の 44%の磁束量が得られるように不完全 着磁されている状態をいう。
図 10、図 11及び図 12夫々同様に、図 13及び図 14夫々の横軸は、例えば注目部 位 3a上の位置を示し、縦軸は磁束密度 B [mT]を示している。また、プロット(黒四角 印)及び実線で示されて!/、るグラフが解析結果であり、実線で示されて!/、るグラフが 実測結果である。
図 13及び図 14夫々に示すように、永久磁石の着磁率が異なる場合でも、着磁解 析装置 1で算出された解析結果としての磁束分布と、実測された磁束分布とは略一 致する。
[0070] 図 15は、図 6に示した従来の着磁解析方法で算出された完全着磁状態 (着磁率 1 00%)の永久磁石の解析結果を示す特性図である。また、図 16は、従来の着磁解 析方法で算出された不完全着磁状態 (着磁率 44%)の永久磁石の解析結果を示す 特 1·生図である。
図 15及び図 16夫々の横軸は、例えば図 2に示す注目部位 3aのような永久磁石表 面の注目部位の位置(具体的には永久磁石の一端からの距離 [mm] )を示し、縦軸 は磁束密度 B [mT]を示している。 0 [mm]の位置が前記一端、 10 [mm]の位置が 永久磁石の他端である。
[0071] 図 15及び図 16夫々において、プロット(黒四角印)及び実線で示されているグラフ が解析結果であり、実線で示されているグラフが実測結果である。ここで、図 16に示 されている実測結果は、図 13に示されている実測結果と同一のものである。
図 15に示すように、従来の着磁解析方法を用いた場合でも、完全着磁状態の永久 磁石の解析結果と実測結果とは略一致する。
しかしながら、従来の着磁解析方法を用いた場合、図 16に示すように、不完全着 磁状態の永久磁石の解析結果と実測結果が大幅に異なる。特に、距離 2 [mm]〜8 [mm] (即ち永久磁石の中央部)に対応する解析結果と実測結果が非常に大きく乖 離している。
[0072] このような誤差は、前述の通り永久磁石の不完全着磁領域まで考慮して着磁状態 を高精度に解析する本実施の形態の着磁解析方法に従って、着磁解析装置 1を用 いて着磁解析処理を行なうことによって、減少させることが可能となる(図 13参照)。
[0073] ところで、磁石素材 30を用いて実測された初磁化曲線及び減磁曲線は、夫々、磁 石素材 30と同じ種類の磁石素材を着磁してなる永久磁石の着磁解析処理に流用す ることが可能であるため、同一種類の磁石素材であれば、異なる形状、寸法等の永 久磁石に対する着磁解析を行なう際に、 V、ちいち初磁化曲線及び減磁曲線夫々を 実測して求める必要がない。即ち、初磁化曲線及び減磁曲線を使いまわすことが可 能であり、これによつて、解析作業の利便性が向上される。
[0074] また、本実施の形態においては、本発明のコンピュータプログラムは、可搬性を有 する記録媒体(CD— ROM2)に記憶されて配布されるが、これに限らず、通信回線 を介して配信されてもよい。又は、コンピュータプログラム力 コンピュータを用いてな る着磁解析装置が備えるプログラム記憶手段(例えば ROM)に予め記憶してあって あよい。
[0075] このようなコンピュータプログラムは、揮発性又は不揮発性の記憶手段(例えば RA M又はハードディスク)にインストールされてから実行されてもよぐ記録媒体又は配 信元から読み取られて直接的に実行されてもよい。
そして、このようなコンピュータプログラムは、着磁磁界算出手段、パラメータ算出手 段、及び着磁状態算出手段を、コンピュータのハードウェア要素を用いてソフトウェア 的に実現する。
[0076] なお、本実施の形態においては希土類磁石且つ単極着磁された磁石である永久 磁石 3を例示した力 これに限らず、希土類磁石以外の種類の磁石、又は多極着磁 された磁石に対しても、本発明を適用することが可能である。
また、本実施の形態では直方体状の永久磁石 3を例示したが、これに限らず、環状 、筒状等、形状が異なる永久磁石に対して本発明を適用してもよい。
実施の形態 2
[0077] 図 17は、本発明の実施の形態 2に係る着磁解析方法の解析対象である永久磁石 32となすべき磁石素材 31の模式的な斜視図である。また、図 18は、この着磁解析 方法で用いられる永久磁石 32の初磁化曲線を示す特性図であり、横軸は磁界 H[k A/m]を示し、縦軸は磁束密度 B[T]を示している。
本実施の形態では、実施の形態 1の図 3に示す着磁器 4に相当する着磁器 4で磁 石素材 31に着磁してなる永久磁石 32を解析対象とする着磁解析方法を説明する。 ただし、本実施の形態の着磁器 4は、空芯コイル 41とは異なる着磁コイルを備える。 本実施の形態に係る着磁解析装置 1は、実施の形態 1の図 1に示す着磁解析装置 1と略同様の構成を有する。
その他、実施の形態 1に対応する部分には同一符号を付してそれらの説明を省略 する。
[0078] 図 17に示すように、永久磁石 32は円筒状であり、電動モータのシャフト SHの外周 に取り付けられてロータを形成するために用いられる。
更に詳細には、永久磁石 32は、外径 36. 45 [mm] ,内径 30. 45 [mm] ,軸長方 向の長さ 21 [mm]を有する Nd Fe B系ラジアル異方性焼結磁石であり、円筒状 の磁石素材 31を交互異極にスキュー着磁してなる。永久磁石 32のスキュー角は、軸 長方向に対して 13. 3 [° ]である。このように着磁された永久磁石 32は、外周面側 N 極 32aと外周面側 S極 32bとが周方向に交互に形成された一体のリングとなっている 。つまり、永久磁石 32は磁化方向が径方向である。
[0079] このように多極着磁(具体的には 6極着磁)された永久磁石 32は、極間部に不完全 着磁領域 (ニュートラルゾーン)を有する。従来の着磁解析方法では、不完全着磁領 域を経験的に定めて (例えば 1 [mm] )、不完全着磁領域を未着磁領域、その他を完 全着磁領域として解析して!/ヽた。
本実施の形態においては、永久磁石 32の軸方向中央部の外周面から 1 [mm]離 隔し、且つ周方向に沿う位置を注目部位 3d (図 17参照)とし、図示しない計測機器 で実測された注目部位 3dの磁束密度分布(即ち実測結果)と、着磁解析装置 1で算 出された注目部位 3dの磁束密度分布(即ち解析結果)とを比較する。
[0080] 以下では、注目部位 3dの磁束密度分布を磁束分布という。また、後述する図 22〜 図 24夫々には、外周面側 N極 32aの周方向一端部から、この外周面側 N極 32aに 隣り合う外周面側 S極 32bの周方向他端部まで連続する 120° 分の円弧状の注目 部位 3dの磁束分布を図示している。更に、外周面側 N極 32aの周方向一端部を 0 [ ° ]の位置とする。
また、磁石素材 31は希土類希元素を含む異方性磁性体であり、磁石素材 31の抵 抗率は 144 X 10— 8[ Ω ·πι]、残留磁束密度は 1. 23 [Τ]、保磁力は 1671 [kA/m] 以上である。
[0081] 更に、磁石素材 31の磁化特性は非線形であり、これを示すデータとして、図 18に 示すような初磁化曲線が用いられる。この初磁化曲線は、解析対象である永久磁石 32となすべき磁石素材 31に関して予め実測してなり、印加される着磁磁界に対応し た初磁化曲線である。
磁石素材 31の材料、抵抗率、及び初磁化曲線は、磁石素材 31の固有の磁石パラ メータ(即ち磁石特性)として、磁場解析の際に用いられる。
磁石素材 31は、着磁器 4が備える着磁コイルの内部の中心位置に配されてスキュ 一着磁され、永久磁石 32となる。
[0082] ここで、着磁コイルの巻き数は 6 [turn]、着磁コイルの抵抗値は 24. 6 [m Ω ]、コン デンサ 43の静電容量は 4000 [ F]、コンデンサ 43の両端の電圧(即ち着磁電圧) は 1000〜3000 [V]、着磁器 4の内部抵抗値は 44 [m Ω ]である。
着磁コイルの巻き数及び抵抗値、コンデンサ 43の静電容量及び着磁電圧、並びに 着磁器 4の内部抵抗値は、着磁器 4の固有の着磁器パラメータ(即ち回路条件)とし て、着磁解析の際に用いられる。本実施の形態では、回路条件の一つであるコンデ ンサ 43の着磁電圧に着目し、第 1の条件(1000 [V] )、第 2の条件(2000 [V] )、及 び第 3の条件(3000 [V] )の 3種類の条件下で着磁解析を行なう。以下では、この 3 種類の条件を着磁条件と!/、う。
[0083] 本実施の形態における着磁解析には有限要素法を用い、メッシュ分割モデルを作 成して、過渡応答解析をする。この場合、着磁コイルの形状及び寸法に応じたメッシ ュ分割モデルが作成され、更に、磁石素材 31 (延いては永久磁石 32)の形状及び寸 法に応じたメッシュ分割モデルが作成される。
着磁コイルの形状及び寸法と、磁石素材 31の形状及び寸法(即ち永久磁石 32の 形状及び寸法)と、これらのメッシュ分割モデルと(即ちモデル形状)は、着磁解析の 際に用いられる。
[0084] 図 19は、本発明の実施の形態 2に係る着磁解析方法で用いられる減磁曲線 500 〜560夫々を示す特性図であり、完全着磁領域に係る減磁曲線 500と、不完全着磁 領域に係る予め実測された減磁曲線 510〜560夫々とを示す特性図である。図 19 の横軸は磁界 H [kA/m]を示し、縦軸は磁束密度 B [T]を示して!/、る。
図 19に示す減磁曲線 510〜560夫々は、解析対象である永久磁石 32となすべき 磁石素材 31を用いて実測してなる減磁曲線である。具体的には、磁石素材 31に 14 05、 1015、 834、 661、 484、又は 306 [kA/m]の着磁磁界を印カロしてなる不完全 着磁状態の永久磁石に関して実測してなり、印加される着磁磁界に応じた減磁曲線 である。 [0085] また、図 19に示す減磁曲線 500は、磁石素材 31に 5570 [kA/m]の着磁磁界が 印加されてなる永久磁石の完全着磁領域に係る減磁曲線である。
以上のような減磁曲線に基づいて、保磁力 H とリコイル比透磁率 とが算出される
cb
。図 19には、減磁曲線 540に係る保磁力 H とリコイル比透磁率 とが図示されてい
cb 保磁力の負数" H "は、減磁曲線と横軸との交点の値であり、リコイル比透磁率
cb
11は、減磁曲線の傾きである。リコイル比透磁率 及び保磁力 H は、減磁特性を近
cb
似的に表わすパラメータである。
[0086] 図 20は、完全着磁領域及び不完全着磁領域夫々に係る着磁磁界 Hと保磁力 H との関係を示す特性図であり、横軸は着磁磁界 H[kA/m]を示し、縦軸は保磁力 H [kA/m]を示している。また、図 21は、完全着磁領域及び不完全着磁領域夫々 cb
に係る着磁磁界 Hとリコイル比透磁率 との関係を示す特性図であり、横軸は着磁 磁界 H[kA/m]を示し、縦軸はリコイル比透磁率 を示している。図 20及び図 21夫 々は、図 19に示す実測に基いた減磁曲線の定義に対応する。
以上のような図 19、図 20及び図 21夫々の特性図は、実施の形態 1の図 5、図 7及 び図 8夫々の特性図に相当するため、これらについての詳細な説明は省略する。
[0087] 本実施の形態の着磁解析装置 1による着磁解析処理の手順は、実施の形態 1の図 9に示す着磁解析処理の手順と同様である。
従って、着磁解析装置 1の CPU10は、 S11〜S16の処理を実行することによって 各種データの受け付けが完了した後、受け付けたデータの内、回路条件、磁石特性 、モデル形状等のデータを適宜に用いて有限要素法で磁場解析を行なうことによつ て、磁石素材 31のメッシュ分割モデルの各メッシュ要素に印加される着磁磁界を算 出する(S17の処理)。
次いで CPU10は、 S17で求めた各メッシュ要素に係る着磁磁界の算出結果と、減 磁曲線のデータとに基づいて、リコイル比透磁率 及び保磁力 H を各メッシュ要素
cb
につ!/、て算出する(S 18の処理)。
[0088] 更に CPU10は、 S18で求めた各メッシュ要素に係るリコイル比透磁率 及び保磁 力 H を用いて磁場解析を行なうことによって、永久磁石 32の着磁状態を示す状態 ノ ラメータを算出する(S19の処理)。
最後に CPU10は、 S19で算出された状態パラメータを所定の形式に編集してなる 出力画面を表示部 13に表示させ(S20の処理)、着磁解析処理を終了する。
S20では、 CPU10は、図 17に示す注目き位 3dにおける磁束密度 Bを、 S19で算 出された状態パラメータをもとに算出し、注目部位 3dに関する磁束分布のグラフを表 示させる。本実施の形態においては、この磁束分布が解析結果である。
[0089] 図 22、図 23及び図 24は、本発明の実施の形態 2に係る着磁解析装置 1で算出さ れた永久磁石 32の第 1、第 2及び第 3夫々の着磁条件下での注目部位 3dに係る解 析結果を示す特性図であり、 S20の処理においては、これらのような特性図が出力 画面に表示される。各特性図の横軸は、注目部位 3d上の位置 [° ]を示し、縦軸は 磁束密度 B [T]を示している。横軸の 0 [° ]の位置が前記周方向一端部、 120 [° ] の位置が前記周方向他端部である。また、実線で示されているグラフが解析結果で あり、破線で示されてレ、るグラフが実測結果である。
[0090] 図 22、図 23及び図 24夫々に示すように、何れの着磁条件に関しても、着磁解析 装置 1で算出された解析結果としての磁束分布と、実測された磁束分布とは、ピーク 磁束密度がよく一致しており、また、 60 [° ]近傍のゼロクロス部の磁束密度分布の傾 向も一致している。即ち、本発明の着磁解析方法においては、着磁解析によって得 られる着磁状態と、実測される着磁状態とがよく一致している。何故ならば、実測に基 いた減磁曲線を用いることによって、永久磁石 32の不完全着磁領域 (ニュートラルゾ ーン)を十分に考慮して!/、るからである。
[0091] 図 25は、第 1、第 2及び第 3夫々の着磁条件下で着磁してなる永久磁石 32を備え る電動モータの無負荷誘起電圧を示す特性図であり、横軸は着磁電圧 [V]を示し、 縦軸は無負荷誘起電圧 [V/krpm]を示してレ、る。
図 25においては、各着磁条件下で着磁してなる永久磁石 32を備える電動モータ の無負荷誘起電圧の実測値がプロット(黒丸印)のみで示されている。また、着磁解 析装置 1で算出された各着磁条件下での解析結果に基づいて求めた無負荷誘起電 圧の計算値がプロット(白丸印)及び実線で示されている。更に、従来の着磁解析方 法を用いて算出された各着磁条件下での解析結果に基づいて求めた無負荷誘起電 圧の計算値(12. 1 [V/krpm] )が破線で示されている。
図 25に示すように、実測値と、本発明の着磁解析方法に係る解析結果に基づいて 求めた無負荷誘起電圧の計算値とはよく一致しているが、従来の着磁解析方法に係 る解析結果に基づいて求めた無負荷誘起電圧の計算値は実測値との差が大きぐこ の差は、特に着磁電圧が低くなるほど広がる傾向にある。
図 25に示す特性図からは、従来の着磁解析方法を用いる場合、設計時に予定し た機器の特性と、実際に製造された機器の特性とが異なり、所望の特性を得られな いことがある力 本発明の着磁解析方法を用いる場合は、設計時に予定した機器の 特性と実際に製造された機器の特性とが略一致するため、容易に所望の特性を得ら れること力 sゎカゝる。
なお、本実施の形態 1 , 2に記載した各種の数値 (例えば永久磁石 3, 32夫々の寸 法)は一例であり、これらに限定されるものではない。

Claims

請求の範囲
[1] 着磁器で磁石素材に着磁してなる永久磁石の着磁状態を解析する着磁解析方法 において、
着磁状態を解析するに際し、永久磁石の不完全着磁領域の各部位について、予 め実測してなり、印加される着磁磁界に応じた減磁曲線を用い、
解析対象となる永久磁石の不完全着磁領域に係る領域パラメータを算出することを 特徴とする着磁解析方法。
[2] 前記着磁器に係る着磁器パラメータ及び磁石素材に係る磁石パラメータを用いて 磁場解析を行なうことによって、前記磁石素材の各部位に印加される着磁磁界を算 出し、
該着磁磁界の算出結果と、前記減磁曲線とに基づいて、前記領域パラメータを前 記各部位について算出し、
前記領域パラメータの算出結果を用いて磁場解析を行なうことによって、前記解析 対象となる永久磁石の着磁状態を示す状態パラメータを算出することを特徴とする請 求項 1に記載の着磁解析方法。
[3] 前記領域パラメータとして、不完全着磁領域の減磁特性を近似的に表わすリコイル 比透磁率と保磁力とを用いることを特徴とする請求項 1又は 2に記載の着磁解析方法
[4] 着磁器で磁石素材に着磁してなる永久磁石の着磁状態を解析する着磁解析装置 において、
前記着磁器に係る着磁器パラメータ及び磁石素材に係る磁石パラメータを用いて 磁場解析を行なうことによって、前記磁石素材の各部位に印加される着磁磁界を算 出する着磁磁界算出手段と、
該着磁磁界算出手段による算出結果、及び、永久磁石の不完全着磁領域の各部 位について、予め実測してなり、印加される着磁磁界に応じた減磁曲線に基づいて、 解析対象となる永久磁石の不完全着磁領域に係る領域パラメータを前記各部位に ついて算出するパラメータ算出手段と、
該パラメータ算出手段による算出結果を用いて磁場解析を行なうことによって、前 記解析対象となる永久磁石の着磁状態を示す状態パラメータを算出する着磁状態 算出手段と
を備えることを特徴とする着磁解析装置。
コンピュータに、着磁器で磁石素材に着磁してなる永久磁石の着磁状態を解析さ せるためのコンピュータプログラムであって、
コンピュータに、前記着磁器に係る着磁器パラメータ及び磁石素材に係る磁石パラ メータを用いて磁場解析を行なわせることによって、前記磁石素材の各部位に印加さ れる着磁磁界を算出させるステップと、
コンピュータに、前記着磁磁界の算出結果、及び、与えられた減磁曲線に基づい て、解析対象となる永久磁石の不完全着磁領域に係る領域パラメータを前記各部位 について算出させるステップと、
コンピュータに、前記領域パラメータの算出結果を用いて磁場解析を行なわせるこ とによって、前記解析対象となる永久磁石の着磁状態を示す状態パラメータを算出さ を実行させることを特徴とするコンピュータプログラム。
PCT/JP2007/071232 2006-10-31 2007-10-31 Procédé d'analyse d'aimantation, dispositif d'analyse d'aimantation et programme informatique WO2008053921A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07830966.3A EP2098880B1 (en) 2006-10-31 2007-10-31 Magnetization analysis method, magnetization analysis device, and computer program
US12/447,354 US8169213B2 (en) 2006-10-31 2007-10-31 Magnetic field analysis method, magnetization analysis device, and recording medium with computer program
CN2007800396308A CN101529265B (zh) 2006-10-31 2007-10-31 磁化分析方法和磁化分析装置
JP2008542155A JP4915419B2 (ja) 2006-10-31 2007-10-31 着磁解析方法、着磁解析装置及びコンピュータプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-297004 2006-10-31
JP2006297004 2006-10-31

Publications (1)

Publication Number Publication Date
WO2008053921A1 true WO2008053921A1 (fr) 2008-05-08

Family

ID=39344262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071232 WO2008053921A1 (fr) 2006-10-31 2007-10-31 Procédé d'analyse d'aimantation, dispositif d'analyse d'aimantation et programme informatique

Country Status (5)

Country Link
US (1) US8169213B2 (ja)
EP (1) EP2098880B1 (ja)
JP (1) JP4915419B2 (ja)
CN (1) CN101529265B (ja)
WO (1) WO2008053921A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114415A1 (ja) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 保磁力分布磁石の保磁力特定方法
JP2015099053A (ja) * 2013-11-18 2015-05-28 株式会社日立産機システム 磁石素材の選別方法、それに用いる磁気測定装置、及び、その選別方法を用いて構成した永久磁石モータ
JP7549218B2 (ja) 2021-01-27 2024-09-11 富士通株式会社 測定装置、測定方法および測定プログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909488B2 (ja) * 2011-07-19 2016-04-26 株式会社日立製作所 磁場解析プログラム及び磁場解析方法
JP5742616B2 (ja) * 2011-09-15 2015-07-01 富士通株式会社 磁性体のシミュレーションプログラム、シミュレーション装置及びシミュレーション方法
CN103605090B (zh) * 2013-11-26 2017-02-08 美芯晟科技(北京)有限公司 退磁检测方法、退磁检测电路及应用该电路的恒流驱动器
CN103728578B (zh) * 2014-01-10 2017-07-07 美芯晟科技(北京)有限公司 退磁检测方法、退磁检测电路及应用该电路的恒流驱动器
US10712405B2 (en) 2015-06-30 2020-07-14 A. Todd McMullen External air core flux measurement system for a production magnetizing system
JP2021110997A (ja) * 2020-01-07 2021-08-02 住友重機械工業株式会社 シミュレーション方法、シミュレーション装置、及びプログラム
CN113161103B (zh) * 2021-03-01 2022-12-16 江苏大学 一种对永磁体定量充退磁的装置与方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346919A (ja) 1999-03-29 2000-12-15 Sharp Corp 磁界分布の解析方法および装置
JP2002329624A (ja) 2001-04-27 2002-11-15 Canon Inc 磁化分布算出装置および算出方法
JP2004127056A (ja) * 2002-10-04 2004-04-22 Sumitomo Special Metals Co Ltd 磁場解析方法および装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113222A (ja) * 1990-09-04 1992-04-14 Hitachi Metals Ltd 塗布型磁気記録体と磁気エンコーダ
US5285393A (en) * 1991-11-19 1994-02-08 New York University Method for determination of optimum fields of permanent magnet structures with linear magnetic characteristics
US5808392A (en) * 1994-04-28 1998-09-15 Kabushiki Kaisha Toshiba Permanent magnet type rotating machine
US5978694A (en) * 1997-02-27 1999-11-02 Uri Rapoport Method and apparatus for detecting a magnetically responsive substance
CN103310934B (zh) * 1997-09-19 2016-05-04 Tdk株式会社 磁体粉末、烧结磁体,其制造工艺、粘结磁体、马达和磁记录介质
US6456059B1 (en) * 1999-12-13 2002-09-24 Rockwell Automation Technologies, Inc. Non-homogeneous material magnetic flux sensor and method
US6684483B2 (en) * 2001-09-14 2004-02-03 General Motors Corporation Method of fabricating a rotor for an electric traction motor
CN1125973C (zh) * 2001-12-28 2003-10-29 清华大学 应力分布的磁检测方法
JP2004127058A (ja) 2002-10-04 2004-04-22 Sony Corp テスト回路および半導体装置
AU2003269469A1 (en) * 2002-10-21 2004-05-04 Bbms Ltd. Method and apparatus for magnetic resonance analysis
JP2005100067A (ja) * 2003-09-24 2005-04-14 Fujitsu Ltd マイクロ磁化解析プログラムおよび解析装置
GB2413656A (en) 2004-04-30 2005-11-02 Dunlop Aerospace Ltd Method of calculating a hysteresis characteristic and hysteresis characteristic modelling apparatus
JP2007213384A (ja) * 2006-02-10 2007-08-23 Fujitsu Ltd マイクロ磁化解析プログラム、方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346919A (ja) 1999-03-29 2000-12-15 Sharp Corp 磁界分布の解析方法および装置
JP2002329624A (ja) 2001-04-27 2002-11-15 Canon Inc 磁化分布算出装置および算出方法
JP2004127056A (ja) * 2002-10-04 2004-04-22 Sumitomo Special Metals Co Ltd 磁場解析方法および装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Kaitenki no Virtual Engineering no Tameno Denjikai Kaiseki Gijutsu", TECHNICAL REPORT OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, no. 776, 15 March 2000 (2000-03-15), XP008105850 *
See also references of EP2098880A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114415A1 (ja) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 保磁力分布磁石の保磁力特定方法
JP5168363B2 (ja) * 2010-03-15 2013-03-21 トヨタ自動車株式会社 保磁力分布磁石の保磁力特定方法
US8493062B2 (en) 2010-03-15 2013-07-23 Toyota Jidosha Kabushiki Kaisha Method for determining coercivity of coercivity distribution magnet
JP2015099053A (ja) * 2013-11-18 2015-05-28 株式会社日立産機システム 磁石素材の選別方法、それに用いる磁気測定装置、及び、その選別方法を用いて構成した永久磁石モータ
JP7549218B2 (ja) 2021-01-27 2024-09-11 富士通株式会社 測定装置、測定方法および測定プログラム

Also Published As

Publication number Publication date
US20100060266A1 (en) 2010-03-11
CN101529265A (zh) 2009-09-09
CN101529265B (zh) 2012-08-15
EP2098880A1 (en) 2009-09-09
US8169213B2 (en) 2012-05-01
JPWO2008053921A1 (ja) 2010-02-25
EP2098880A4 (en) 2012-02-01
JP4915419B2 (ja) 2012-04-11
EP2098880B1 (en) 2013-05-22

Similar Documents

Publication Publication Date Title
WO2008053921A1 (fr) Procédé d'analyse d'aimantation, dispositif d'analyse d'aimantation et programme informatique
EP2707679A1 (en) Contactless sensing element
CN102338822A (zh) 电流测量装置及其电流测量方法
JP5168363B2 (ja) 保磁力分布磁石の保磁力特定方法
Furlani Computing the field in permanent-magnet axial-field motors
Egorov et al. Linear recoil curve demagnetization models for ferrite magnets in rotating machinery
JP3163378U (ja) 鉄筋破断検査装置
JP2011007512A (ja) 保磁力分布磁石の保磁力特定方法
JP3502982B2 (ja) 磁界制御形電流計測装置
US11181555B2 (en) Current sensing method and current sensor
Luo et al. Multi-pole magnetization of high resolution magnetic encoder
JP6925015B2 (ja) 着磁方法及び着磁装置
Jensen et al. Modeling overlapping laminations in magnetic core materials using 2-D finite-element analysis
Offermann et al. A polynomial chaos meta‐model for non‐linear stochastic magnet variations
JP2008108763A (ja) 着磁装置および着磁方法
Lu et al. An analytical equation for cogging torque calculation in permanent magnet motors
JP2017058327A (ja) 電磁場解析装置、電磁場解析方法、およびプログラム
Memon et al. Input data for mathematical modeling and numerical simulation of switched reluctance machines
Bavendiek et al. Analysis of impulse-magnetization in rare-earth permanent magnets
Dobler et al. Influence of the winding system on the measurement accuracy for characterising soft magnetic materials
KR101177657B1 (ko) 조향장치용 비접촉식 토크센서
JP3482986B2 (ja) モータ解析装置
JP6135248B2 (ja) 進角シミュレーション方法及び進角シミュレーションプログラム
Zhilichev Calculation of 3D magnetic field of disk-type micromotors by integral transformation method
Mthombeni Improved lamination core loss measurements and calculations

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039630.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542155

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007830966

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12447354

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE