WO2008047864A1 - Procédé de production d'acide monopersulfurique et appareil de production continue d'acide monopersulfurique - Google Patents

Procédé de production d'acide monopersulfurique et appareil de production continue d'acide monopersulfurique Download PDF

Info

Publication number
WO2008047864A1
WO2008047864A1 PCT/JP2007/070343 JP2007070343W WO2008047864A1 WO 2008047864 A1 WO2008047864 A1 WO 2008047864A1 JP 2007070343 W JP2007070343 W JP 2007070343W WO 2008047864 A1 WO2008047864 A1 WO 2008047864A1
Authority
WO
WIPO (PCT)
Prior art keywords
static mixer
water
reaction solution
acid
monopersulfuric acid
Prior art date
Application number
PCT/JP2007/070343
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Yoshida
Tetsuo Koshitsuka
Kaoru Tsuyuki
Wakana Uesugi
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to US12/444,287 priority Critical patent/US9181094B2/en
Priority to NZ575784A priority patent/NZ575784A/en
Priority to AU2007312061A priority patent/AU2007312061B2/en
Priority to BR122018001058A priority patent/BR122018001058B1/pt
Priority to KR1020097005975A priority patent/KR101432549B1/ko
Priority to CA2666413A priority patent/CA2666413C/en
Priority to BRPI0717530-2A priority patent/BRPI0717530B1/pt
Priority to JP2008539864A priority patent/JP5305230B2/ja
Priority to EP07830077.9A priority patent/EP2075230B1/en
Publication of WO2008047864A1 publication Critical patent/WO2008047864A1/ja
Priority to US14/872,462 priority patent/US9988269B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/055Peroxyhydrates; Peroxyacids or salts thereof
    • C01B15/06Peroxyhydrates; Peroxyacids or salts thereof containing sulfur
    • C01B15/08Peroxysulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/811Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more consecutive, i.e. successive, mixing receptacles or being consecutively arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/055Peroxyhydrates; Peroxyacids or salts thereof
    • C01B15/06Peroxyhydrates; Peroxyacids or salts thereof containing sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/715Feeding the components in several steps, e.g. successive steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00099Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor the reactor being immersed in the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00186Controlling or regulating processes controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00204Sensing a parameter of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00225Control algorithm taking actions stopping the system or generating an alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00229Control algorithm taking actions modifying the operating conditions of the reaction system
    • B01J2219/00231Control algorithm taking actions modifying the operating conditions of the reaction system at the reactor inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00238Control algorithm taking actions modifying the operating conditions of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00256Leakage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00259Preventing runaway of the chemical reaction
    • B01J2219/00263Preventing explosion of the chemical mixture

Definitions

  • the present invention relates to a method for producing monopersulfuric acid having high yield and excellent stability.
  • the present invention also relates to an apparatus for continuously producing monopersulfuric acid.
  • the produced monopersulfuric acid is used for wastewater treatment and bleaching of chemical pulp for papermaking.
  • Monopersulfuric acid is represented by the chemical formula H 2 SO and is also called “caroic acid” and has long been known to have excellent bleaching and bactericidal effects. Due to its strong oxidizing power, monopersulfuric acid is expected to be used as a metal surface treatment as an etching agent for copper and copper alloy surface processing, as a pickling agent, and as a disinfectant and wastewater treatment agent.
  • Patent Document 2 discloses a reactor with a jacket that has two reactant transport pipes arranged symmetrically and overflows a product from a certain level.
  • this apparatus has a problem that the cooling performance is insufficient particularly when it is scaled up to an industrial scale, so that the reaction yield is lowered or the apparatus cost is inevitably increased.
  • Patent Document 1 US Patent No. 2789954
  • Patent Document 2 JP-A-57-132591
  • Patent Document 3 Japanese Patent Publication No. 6-501672
  • Patent Document 4 US Patent No. 5141731
  • Patent Document 5 JP-A-10-95602
  • the first object of the present invention is to provide a monopersulfuric acid solution that can be stored for a long time after production in the production of the monopersulfuric acid solution while minimizing the decomposition of the monopersulfuric acid solution during the production. Is to manufacture.
  • the inventors of the present invention have intensively studied a method for producing a monopersulfuric acid solution with hydrogen peroxide and sulfuric acid. As a result, the hydrogen peroxide and sulfuric acid are mixed and immediately cooled to a predetermined temperature within a predetermined time. Then, it was found that a stable monopersulfuric acid solution can be obtained by diluting with a predetermined amount of water in the following! /, And the present invention was completed.
  • the present invention relates to the following (1) to (6).
  • reaction solution is diluted with water of 4 times by weight or more and 10 times by weight or less.
  • a second object of the present invention is to provide an apparatus for continuously producing monopersulfuric acid stably and safely.
  • the present inventors synthesized monopersulfuric acid with high yield and stability by installing the mixer in water using a static mixer.
  • the present invention has been completed by finding that it can be used and that the concentrated solution of monopersulfuric acid cannot be directly leaked to the outside. That is, the present invention provides a first static mixer for mixing hydrogen peroxide and sulfuric acid, a second static mixer for mixing the reaction solution and dilution water, and a first static mixer.
  • the present invention relates to an apparatus for continuously producing monopersulfuric acid, comprising a reaction solution transfer pipe to two static mixers, wherein the first static mixer and the reaction solution transfer pipe are installed in water in a container.
  • the first feature of the production method of the present invention is that the generated monopersulfuric acid is decomposed due to a large exothermic heat generated during the production of the monopersulfuric acid solution, or the generated monopersulfuric acid solution cannot be stored for a long period of time.
  • a monopersulfate solution cooled to a predetermined temperature or lower within a predetermined time with water such as ordinary industrial water, which does not necessarily require a special cooling facility such as a refrigerator, to a predetermined concentration or lower, It is to produce a monopersulfate solution that is stable for a long time with a high yield.
  • the second feature of the production method of the present invention is that the pH of the monopersulfuric acid solution is adjusted to stabilize the monopersulfuric acid solution. Since there is no need to add chemicals, the monopersulfuric acid solution made using high-purity hydrogen peroxide and high-purity sulfuric acid can be used for semiconductors that do not like impurities.
  • the third feature of the production method of the present invention is that due to impurities in sulfuric acid during the production of conventional monopersulfuric acid.
  • the fourth feature of the production method of the present invention is that, when sulfuric acid having a high iron content is used, rapid heat generation and generation of oxygen gas are caused by the decomposition reaction of hydrogen peroxide and the resulting monopersulfuric acid solution. Although it may cause disasters such as rupture of the reaction tube, the decomposition reaction of hydrogen peroxide and the generated monopersulfate solution is suppressed by cooling and diluting the generated monopersulfate solution in a short time, and the The ability to produce persulfuric acid.
  • the fifth feature of the production method of the present invention is that a chemical pump, a chemical mixing mixer, a reaction vessel, and a produced monopersulfate solution are not necessarily required as a refrigerator for cooling the produced monopersulfate solution.
  • monopersulfuric acid solution can be produced with a compact device consisting of a dilution mixer.
  • the sixth feature of the production method of the present invention is that the produced monopersulfuric acid is diluted so that the diluted monopersulfuric acid solution is made of a material such as SUS304 or SUS316 as a material for piping or storage containers. New materials can be used, and the equipment cost is reduced.
  • an apparatus for continuously producing monopersulfuric acid stably and safely is realized at a relatively low cost. According to the production apparatus of the present invention, it is possible to obtain stable monopersulfuric acid with a high yield by using the force S.
  • Monopersulfuric acid is obtained by mixing sulfuric acid and hydrogen peroxide.
  • the molar ratio of sulfuric acid / hydrogen peroxide is preferably in the range of 1-5. If the molar ratio is less than 1, the concentration of hydrogen peroxide in the resulting monopersulfuric acid solution will be high, and depending on the application, this hydrogen peroxide may be undesirable. Moreover, it is not preferable also economically.
  • the molar ratio is 5 or more, the concentration of monopersulfuric acid produced decreases and the sulfuric acid concentration increases. Depending on the application, it is necessary to neutralize with an alkali such as caustic soda where the sulfuric acid concentration is unfavorable, which is not economical.
  • the sulfuric acid general industrial sulfuric acid can be used.
  • concentration 70 to 98% by weight of sulfuric acid can be used, preferably 90 to 98% by weight, more preferably 95 to 98% by weight of concentrated sulfuric acid.
  • the iron content is important for the quality of sulfuric acid. When a large amount of iron is present, hydrogen peroxide and monopersulfuric acid are decomposed, and the heat generated from the decomposition of monopersulfuric acid Since the yield decreases, the iron content is preferably 20 ppm or less, preferably 10 ppm or less, more preferably 5 ppm or less.
  • hydrogen peroxide industrial chemicals can be used, and a concentration of 35 to 90% by weight can be used, preferably 45 to 90% by weight, more preferably 60 to 90% by weight of hydrogen peroxide. It is preferable.
  • the reaction between sulfuric acid and hydrogen peroxide can be carried out either batchwise or continuously. Industrially, a continuous method is preferred.
  • a static mixer can be used as a mixer for continuous reaction. Since the heat generated in the static mixer is large, the material is preferably Hastelloy (registered trademark) C or Teflon (registered trademark).
  • reaction temperature that is, the maximum temperature of the reaction solution during the reaction exceeds 80 ° C. It is preferable to do.
  • the maximum temperature reached may be referred to as the reaction temperature.
  • the reaction temperature When the reaction temperature is low, the reaction rate becomes low and the yield of monopersulfuric acid decreases.
  • the mixing of hydrogen peroxide and sulfuric acid is accompanied by a very large exotherm, so the reaction temperature usually exceeds 80 ° C unless very strong cooling is performed. 90 ° C or higher is preferable.
  • the upper limit of the reaction temperature is not particularly limited but is preferably 120 ° C or lower.
  • the decomposition amount of hydrogen peroxide and monopersulfuric acid will increase. Cool the reaction solution at the same time as the start of mixing or immediately after the start, so that the resulting monopersulfuric acid solution is brought to 80 ° C or less within 5 minutes after starting mixing. In this way, it is possible to obtain monopersulfuric acid. More preferably, the upper limit of the cooling temperature is 70 ° C. or lower, more preferably 60 ° C. or lower, more preferably 50 ° C. or lower, more preferably the lower limit of the cooling temperature is 25 ° C. or higher, more preferably 30 It is preferable that the temperature is not lower than ° C.
  • the reaction is preferably 80 ° C or lower and cooled to 40 ° C or higher within 5 minutes.
  • the time from the start of mixing to dilution is preferably 10 seconds or more, more preferably 30 seconds or more, and even more preferably 1 minute or more. If this time is short, the reaction does not proceed sufficiently and the monopersulfuric acid yield decreases.
  • hydrogen peroxide and sulfuric acid can be cooled before the reaction, and the two can be reacted while cooling. In this case, the temperature of the reaction solution should be kept below 80 ° C within 5 minutes after the start of mixing. This is because when the produced monopersulfuric acid is diluted above 80 ° C, the yield decreases due to the decomposition of monopersulfuric acid.
  • the cooler for cooling is large. There is a problem that a large amount of cooling water is required.
  • cooling water that can be cooled with water, a refrigerant, or air from the outside of the reaction vessel is preferable.
  • this cooling water cooling water cooled by a refrigerator may be used, but normal industrial water can be used at room temperature.
  • the size of the reaction vessel is determined by the overall heat transfer coefficient of the reaction vessel material.
  • the shape and material of the reaction vessel are preferably such that the resulting monopersulfuric acid solution can be cooled to 80 ° C or less within 5 minutes after the start of mixing.
  • Hastelloy (registered trademark) C or Teflon (registered trademark) is preferable.
  • a monopersulfuric acid solution cooled to 80 ° C or less within 5 minutes is unstable as it is and difficult to store for a long time. Therefore, in the production method of the present invention, it is diluted with 4 times by weight or more of water. Preferably, it is diluted 4 times or more and 20 times or less. When diluted with less than 4 times the weight of water, the stability of monopersulfuric acid deteriorates and the yield decreases. Dilution with more than 20 times the weight of water has the disadvantage that the concentration at the point of use decreases and the reaction slows down.
  • the dilution water may be diluted with fresh water, but it is preferable to use the water used for cooling the reaction vessel during the production of monopersulfuric acid. When used for applications such as semiconductors, it is preferable to use ultrapure water.
  • the temperature of the dilution water is preferably 40 ° C or lower. As a dilution method, it is preferable to mix in a static mixer.
  • the monopersulfuric acid solution produced in this way is sent directly to the place of use or stored in a tank and then sent to the place of use.
  • the produced monopersulfate solution is strongly acidic as it is, and may not be suitable for use depending on the application. In that case, it is necessary to add an alkali such as caustic soda to raise the pH of the monopersulfuric acid solution.
  • the alkali is preferably added after cooling the reaction solution of monopersulfuric acid to 80 ° C or lower.
  • there are a method of diluting after adding an alkali after cooling a method of adding an alkali simultaneously with dilution, a method of adding an alkali after dilution, and a method of adding an alkali to diluting water in advance.
  • the amount of alkali added can be any amount to bring the monopersulfuric acid solution to the desired pH, and the amount of sulfuric acid to be used in the reaction can be maintained in order not to impair the stability of monopersulfuric acid. It is preferable to make it equal to or less than the sum equivalent.
  • the production method of the present invention can be carried out continuously using a static mixer. wear. Therefore, the present invention further provides a manufacturing apparatus that can use the above manufacturing method.
  • the production apparatus of the present invention will be described below.
  • the static mixer used in the present invention
  • a general mixer in which elements are installed in the mixer can be used.
  • the shape of the mixer is not particularly limited.
  • a tubular one can be used.
  • the first static mixer of the present invention hydrogen peroxide and sulfuric acid are mixed and monopersulfuric acid is generated by the reaction.
  • the hydrogen peroxide and sulfuric acid that can be used here are as described above.
  • the hydrogen peroxide and sulfuric acid supply pipes can be directly connected to the first static mixer, and hydrogen peroxide and sulfuric acid can be combined in the first static mixer.
  • the hydrogen peroxide and sulfuric acid supply pipes can be connected upstream of the first static mixer so that hydrogen peroxide and sulfuric acid can be merged, and the merge point should be as close to the mixer as possible. Is preferred.
  • hydrogen peroxide is pressurized with a hydrogen peroxide pump and sulfuric acid is pressurized with a sulfuric acid pump, and then pressurized with hydrogen peroxide. It is preferable to supply the sulfuric acid to the first static mixer.
  • the hydrogen peroxide supply pipe and the sulfuric acid supply pipe upstream of the first static mixer are each prevented from flowing into one raw material supply pipe, and the reaction solution is prevented from flowing back.
  • a back pressure valve is preferably attached. The position of the back pressure valve is preferably as close to the junction as possible.
  • the reaction solution exiting the first static mixer is sent to the second static mixer while being cooled in the reaction solution transfer pipe, and is mixed with the dilution water in the second static mixer.
  • the length of the reaction solution transfer pipe is determined so that the temperature of the reaction solution is preferably 80 ° C. or less immediately before joining the dilution water.
  • the reaction solution transfer pipe and the dilution water supply pipe can be directly connected to the second static mixer, and the reaction solution and the dilution water can be merged in the second static mixer.
  • the reaction solution transfer pipe and the dilution water supply pipe can be connected upstream of the second static mixer to join the reaction solution and dilution water, but the junction is as close to the mixer as possible! It is preferable.
  • the flow rate of the reaction solution and the flow rate of the reaction solution transfer pipe are set so that the time from when the reaction solution enters the first static mixer until it comes into contact with the dilution water in the second static mixer is within 5 minutes. Adjust the length.
  • the amount of dilution water used in the second static mixer is as described above.
  • Each of the reaction solution transfer pipe and the dilution water supply pipe upstream of the second static mixer is used to prevent the other liquid from flowing into one liquid supply pipe and to prevent or reverse the back flow of the diluted solution. It is preferable to have a back pressure valve attached to the. The position of the back pressure valve is preferably as close to the junction as possible.
  • the reaction solution transfer pipe and the dilution solution are set so that the pressure of the reaction solution in the first static mixer and the reaction solution transfer pipe and the pressure of the dilution water are equal to or higher than the pressure of the dilution solution in the second static mixer.
  • the volume of dilution water is overwhelmingly larger in the reaction solution and dilution water mixed in the second static mixer!
  • the pressure of the dilution solution in the second static mixer is Dilution water supply pressure Is almost the same. Therefore, the supply pressure of hydrogen peroxide and sulfuric acid is preferably the same as or higher than the supply pressure of dilution water.
  • the diluted monopersulfuric acid solution that has exited the second static mixer is used by being directly fed to a place where the monopersulfuric acid is used, such as a wastewater treatment facility or a pulp drifting facility. It can also be stored in a tank until used.
  • the first static mixer and the reaction solution transfer pipe are installed in the water in the container. That is, the outer surfaces of the first static mixer and the reaction solution transfer pipe are in contact with water.
  • a first static mixer and a coiled reaction solution transfer pipe are installed in the water in the water tank.
  • the housing and transfer pipe of the static mixer are double pipes and water is present between the inner pipe and the outer pipe. All of the external surfaces of the first static mixer and the reaction solution transfer pipe need not be in contact with water. All or part of the first static mixer may be installed in the water. All or part of the reaction solution transfer pipe may be installed in water.
  • the water in the container may be room temperature water or water cooled by a freezer.
  • stirrer or a pump for circulating water in order to stir the water in the container. It is also preferable to provide means for detecting the temperature of the water in the container in order to stir or circulate the water in the container and to adjust the amount and temperature of the water added to the container.
  • the first purpose of installing the first static mixer and the reaction solution transfer pipe in the water in the container is to increase the temperature of the reaction solution due to the heat generated by the mixing of hydrogen peroxide and sulfuric acid. Is to cool. Therefore, for example, it is conceivable that industrial water or the like can be supplied from the inlet of the container and the hot waste water can be discharged from the outlet of the container. In addition, in order to reduce the amount of water supplied in the container, it is necessary to provide a separate heat exchanger and a device for cooling the water in the container.
  • the second purpose of installing the first static mixer and the reaction solution transfer pipe in the water in the container is to connect the pipe connection around the first static mixer and the reaction solution transfer pipe. Even if high-temperature, high-concentration monopersulfuric acid leaks, it can be immediately diluted for safety. Therefore, the outside of the first static mixer and the reaction solution transfer pipe It is preferred that all of the surface is in contact with water. For the same reason, it is preferable to install the junction between the hydrogen peroxide supply pipe and the sulfuric acid supply pipe and the second static mixer in the water in the container.
  • a pump for supplying water in the container as dilution water to the second static mixer By combining the water in the container and the dilution water, the amount of water used can be saved, or the device for cooling the water in the container can be omitted. Even if monopersulfuric acid leaks into the container from the first static mixer and reaction solution transfer pipe, the leaked monopersulfuric acid is sent to the monopersulfuric acid use place or tank together with the diluted water. Therefore, there is an effect that high concentration of monopersulfuric acid does not flow out. In order to detect leakage of monopersulfuric acid, equipped with a device to detect peroxide or acid in the water in the container!
  • a means for detecting the amount of water in the container is provided, and a means for controlling the amount of water supplied to the container based on the detected amount of water is provided. I prefer to be there. By keeping the amount of water in the container constant, the flow rate of water into the vessel can be adjusted by adjusting the amount of dilution water supplied.
  • the supply amounts of hydrogen peroxide, sulfuric acid and diluted water are usually varied proportionally.
  • the water in the container is not used as dilution water! /
  • the temperature of the diluted monopersulfate solution generated constant it is necessary to control the cooling efficiency of the water in the container. is there.
  • the temperature of the diluted monopersulfuric acid solution can be kept almost constant by simply changing the flow rate of each solution proportionally.
  • the material of the confluence of the hydrogen peroxide supply pipe and the sulfuric acid supply pipe, the first static mixer and the reaction material transfer pipe in the reaction solution transfer pipe are made of fluororesin, hastelloy (registered) Trademark) C or tantalum is preferred! / ,.
  • the apparatus of the present invention includes means for detecting the temperature of the reaction solution exiting the first static mixer, and based on the temperature of the reaction solution exiting the first static mixer, hydrogen peroxide and / or Alternatively, it is preferable to provide means for stopping the supply of sulfuric acid. As a result, it is possible to detect an increase in temperature when hydrogen peroxide is abnormally decomposed and a decrease in temperature when the reaction solution leaks around the first static mixer, and immediately shut off the supply of raw materials. [0049] Further, the apparatus of the present invention includes means for detecting the temperature of the reaction solution exiting the second static mixer, and is based on the temperature of the reaction solution exiting the second static mixer.
  • the first static mixer 3 is located immediately downstream of the junction of the hydrogen peroxide supply pipe 1 and the sulfuric acid supply pipe 2, and the reaction solution transfer pipe 4 downstream of the first static mixer 3 and A second static mixer 6 is provided immediately downstream of the junction with the dilution water supply pipe 5, and the first static mixer 3 and the reaction solution transfer pipe 4 are installed in the water tank 7.
  • a water supply pipe 8 in the container and a water discharge pipe 9 in the container are connected to the water tank 7.
  • the water discharge pipe 9 in the container is installed at a position higher than the first static mixer 3 and the reaction solution transfer pipe 4 so that the water in the water tank 7 can overflow.
  • the first static mixer 3 is located immediately downstream of the junction of the hydrogen peroxide supply pipe 1 and the sulfuric acid supply pipe 2, and the reaction solution transfer pipe 4 downstream of the first static mixer 3 and A second static mixer 6 is provided immediately downstream of the junction with the dilution water supply pipe 5, and the housing of the first static mixer 3 and the reaction solution transfer pipe 4 are double pipes.
  • the water supply pipe 8 and the water discharge pipe 9 in the container allow the water in the container to exist between the inner pipe and the outer pipe of the double pipe. .
  • the first static mixer 3 is located immediately downstream of the junction of the hydrogen peroxide supply pipe 1 and the sulfuric acid supply pipe 2, and the reaction solution transfer pipe 4 downstream of the first static mixer 3 and A second static mixer 6 is provided immediately downstream of the junction with the dilution water supply pipe 5, and the first static mixer 3, the reaction solution supply pipe 4 and the second static mixer 6 are in the water tank 7. Is installed.
  • a water supply pipe 8 in the container and a water discharge pipe 9 in the container are connected to the water tank 7, and the other of the water discharge pipe 9 in the container is connected to the suction port side of the dilution water pump 10. Being! / From the discharge port side of the dilution water pump 10, the water tank 7 is connected by a water circulation pipe 11 in the container, and the second static mixer 6 is connected to the upstream part by a dilution water supply pipe 5. ing.
  • a flow rate indicating controller 12 is provided in the middle of the dilution water supply pipe 5 to control the flow rate of the dilution water.
  • the level of the water in the container in the water tank 7 is detected by the level meter 13, and a signal is output to the controller 14 to control the valve 15 in the middle of the water supply pipe 8 in the container.
  • the temperature of the reaction solution is detected by a thermometer 16 installed in the middle of the reaction solution transfer pipe 4, and a signal is output to the controller 17. If the reaction solution temperature is abnormal, the hydrogen peroxide supply system 18 And the sulfuric acid supply system 19 is stopped. In addition, the temperature of the diluted monopersulfate solution is detected by a thermometer 21 installed in the middle of the diluted monopersulfate transfer pipe 20 downstream of the second static mixer 6 and a signal is output to the controller 17 for dilution. If the monopersulfate solution temperature is abnormal, stop the hydrogen peroxide supply system 18 and the sulfuric acid supply system 19.
  • the apparatus of the present invention can be provided with a means for further mixing an alkaline aqueous solution as required.
  • the second static mixer is further mixed with an alkaline aqueous solution, downstream of the first static mixer and upstream of the second static mixer or downstream of the second static mixer.
  • the third static mixer is preferably installed in the water in the container.
  • the means for mixing the alkaline aqueous solution is an alkaline aqueous solution supply pipe, and the supply pipe is provided with a back pressure valve.
  • a means for adding an alkaline aqueous solution to the water in the container may be provided.
  • Hydrogen peroxide concentration (%) 1. 701 X (a / 4) X (50/5 / sample amount) X 0.1
  • Example 2 This was carried out in the same manner as in Example 1 except that the beaker was immersed in ice water (maximum temperature reached 82 ° C) and diluted with water when the temperature of the monopersulfuric acid solution was 80 ° C (30 seconds after the start of mixing).
  • Example 2 The same procedure as in Example 1 was conducted except that the monopersulfuric acid solution was diluted with water at a temperature of 90 ° C (1 minute after the start of mixing).
  • Example 2 Immerse the beaker in cold water after adding hydrogen peroxide (maximum temperature 136 ° C), The same procedure as in Example 1 was performed except that the monopersulfuric acid solution was diluted with water at 110 ° C (2 minutes after the start of mixing) and 130 ° C (1 minute after), respectively.
  • Example 2 Similar to Example 1 except that the beaker is immersed in a 10 ° C refrigerant (maximum temperature 68 ° C) and diluted with water when the temperature of the monopersulfuric acid solution is 65 ° C (30 seconds after the start of mixing). Went to.
  • Example 1 adjust the temperature of the cooling water to change the temperature drop rate of the monopersulfuric acid solution, and the time to decrease to 80 ° C is 1 minute, 2.5 minutes, 5 The same procedure was followed except for minutes.
  • Example 1 adjust the temperature of the cooling water to change the temperature reduction rate of the monopersulfuric acid solution, and the time to decrease to 80 ° C is 7 minutes, 10 minutes, 15 minutes.
  • the procedure was the same except that.
  • Table 2 shows the influence of the time from the production of the monopersulfate solution to the dilution. As a result, when 7.5 minutes or more, the residual rate of monopersulfuric acid deteriorates, so that 5 minutes or less is preferable.
  • Example 9 The same procedure as in Example 9 was carried out except that each sample was diluted with 10 times by weight and 20 times by weight water, respectively. Comparative Examples 8-9
  • Example 9 The same procedure as in Example 9 was carried out except that each was diluted with 0 times by weight and 2 times by weight of water.
  • Table 3 shows the stability results of the monopersulfuric acid solution.
  • the upper value indicates the concentration of monopersulfuric acid calculated by the method described above.
  • the lower value shows the retention rate obtained from the concentration of monopersulfuric acid at each hour when the concentration of monopersulfuric acid at 0 hour is 100.
  • the stability of the high-concentration monopersulfuric acid solution at the time of production is very poor. It must be used immediately after production. Dilution with water improves stability and enables long-term storage.
  • the amount of dilution water is preferably 4 times by weight or more.
  • the iron concentration in the sulfuric acid used in Example 1 was 5 ppm, and the same procedure was performed except that sulfuric acid added with 5 ppm, 10 ppm, and 15 ppm of iron was used.
  • the concentration of monopersulfate was measured immediately after monopersulfate formation and after standing at 40 ° C for 24 hours.
  • Iron was added in the form of ferrous sulfate.
  • Example 1 the same procedure was performed except that sulfuric acid added with 25 ppm, 50 ppm and 10 ppm of iron was used. The concentration of monopersulfate was measured immediately after the production of monopersulfate and after standing at 40 ° C for 24 hours. Iron was added in the form of ferrous sulfate.
  • the concentration immediately after the production of monopersulfuric acid and the concentration after 24 hours can be kept high by using an Fe content of 20 ppm or less.
  • the reaction solution exiting the first static mixer is passed through the reaction solution transfer pipe 4 with an inner diameter of 17 mm and a length of 100 m connected downstream of the first static mixer 3 and passed through the second static mixer.
  • the temperature of the reaction solution just before flowing in was lowered to 40 ° C.
  • the time from when the reaction solution left the first static mixer to the second static mixer was 3 minutes.
  • the reaction solution transfer pipe 4 is connected to the second static mixer on the downstream side, and the reaction solution transfer pipe 4 and the second static mixer are installed in water. From the dilution water supply pipe 5, at a flow rate of 7580 kg / h, water corresponding to 10 times the amount of the reaction solution is supplied, and the reaction solution and dilution water are mixed in the second static mixer.
  • Persulfuric acid was produced (70% yield based on hydrogen peroxide). The obtained monopersulfuric acid was allowed to stand under the same conditions as described in Example 9 at 40 ° C., and its stability was evaluated. As a result, a retention rate equivalent to that in Example 9 was obtained.
  • FIG. 1 is a diagram showing an example of a monopersulfuric acid continuous production apparatus of the present invention.
  • FIG. 2 is a view showing an example of a monopersulfuric acid continuous production apparatus of the present invention.
  • FIG. 3 is a diagram showing an example of a monopersulfuric acid continuous production apparatus of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

明 細 書
モノ過硫酸の製造方法及びモノ過硫酸連続製造装置
技術分野
[0001] 本発明は、高収率で安定性に優れたモノ過硫酸の製造方法に関する。本発明はま た、モノ過硫酸を連続的に製造するための装置に関する。製造したモノ過硫酸は、 排水処理や製紙用化学パルプの漂白処理等に用いられる。
背景技術
[0002] モノ過硫酸は化学式 H SOで表され、別名「カロ酸」と呼ばれており、優れた漂白 効果や殺菌効果を有することが古くから知られている。モノ過硫酸はその強力な酸化 力から、金属表面処理として銅や銅のァロイの表面加工のエッチング剤、ピックリング 剤としての用途、また殺菌剤、廃水処理剤としての用途が期待されている。
[0003] モノ過硫酸は過酸化水素と濃硫酸の反応で生成することは公知である。しかしなが ら、生成時に多量の発熱を伴うこと、また生成モノ過硫酸溶液は不安定であり、長時 間の貯蔵ができないことより実験室レベルでは使用されている力 工業レベルではほ とんど使用されていない。
[0004] モノ過硫酸溶液の安定性が悪!/、との欠点を解消する方法として、 V、くつかの製造 方法が提案されている。生成モノ過硫酸の安定性が悪いために、できるだけ製造後 短時間で使用し、分解によるロスを極力抑える方法としてオンサイト (使用場所付近 で製造)で製造する方法が提案されてレ、る。
[0005] 過酸化水素と濃硫酸を混合後大きな発熱によるモノ過硫酸の分解があるために、 反応時間を数秒とし、その後常温以下まで冷却後、さらに冷やされた水で希釈する 方法が開示されている。この方法は、冷却に大きなエネルギー、また装置を必要とし 、少量の生産では実施できるが、多量にモノ過硫酸を生産する方法としては問題が ある (特許文献 1参照)。
[0006] 攪拌機が付いた容器中で過酸化水素と濃硫酸を反応させ、即シアンを含んだ廃水 中に連続的に添加する方法が提案されている。この方法では、高温に発熱したモノ 過硫酸溶液に新たに過酸化水素、濃硫酸が添加されることとなり、過酸化水素が分 解してモノ過硫酸生成収率が大幅に低下するとの問題がある(特許文献 2参照)
[0007] 既提案のモノ過硫酸製造プラントは大きくて、冷蔵設備も力、さばり、オンサイト装置 としては多大なコストがかかる点を懸案して、反応器を改良し小型化した方法として、 密閉環状反応チャンバ一内で製造する方法が提案されている。この方法は過酸化 水素と濃硫酸を反応させる部分を小型化した方法であり、反応熱による生成モノ過硫 酸の分解に対しては何ら問題が解決されて!/、な!/、(特許文献 3参照)。
[0008] モノ過硫酸の反応収率を向上させる方法として、濃硫酸に過酸化水素を数分割し て添加する方法が開示されている。この方法では、反応温度を冷水(チラ一水)でコ ントロールし、薬品は数段階に分割添加されことから装置が大型化、および複雑とな るとの問題点がある。また、生成したモノ過硫酸の安定化については何ら対策が提案 されてレ、なレ、(特許文献 4参照)。
[0009] 生成したモノ過硫酸溶液の安定化方法として、 pHを 0. 5〜2. 0にコントロールする 方法が提案されている。この pH範囲にコントロールすれば安定化できる力、もしれない 1S 工業的にオンサイトで多量に生成するモノ過硫酸溶液を pH調整することは、大 きな発熱を伴うために冷却を必要とし、従って装置が大きくなるとの問題がある。また 、 pH調整のアルカリが多量に必要となり、経済的に好ましくない(特許文献 5参照)
[0010] モノ過硫酸の製造装置としては、高濃度の硫酸と高濃度の過酸化水素を反応させ る方法が知られている。しかし、モノ過硫酸をバッチ方式で大量に製造しょうとすると 、反応時の発熱による温度上昇を制御するのが困難なことから、モノ過硫酸の合成 収率が低下するという問題点がある。さらに、製造したモノ過硫酸は一般に安定性が 乏しく長期の保存が困難であるといった問題点も有している。
[0011] 上記のような問題点を回避する手法として、使用される場所の近傍(いわゆるオン サイト)でモノ過硫酸を連続的に製造する装置が種々提案されてレ、る。
[0012] 特許文献 2には、対称的に配置された 2個の反応剤輸送管を有し、生成物を一定 水準より溢流させるジャケット付反応装置が開示されている。しかしながら、この装置 では、特に工業的規模までスケールアップした場合に冷却性能が不足することから、 反応収率の低下または装置コストの増大が否めないという問題がある。
[0013] 更に、特許文献 3には、反応チャンバ一の形状を工夫して効率よくモノ過硫酸を製 造する方法が開示されている力 発熱に対する冷却手段については詳細には記載さ れていない。また、モノ過硫酸の濃厚液が万一漏れ出た場合に周囲の作業者等に 直接触れさせな!/、ための手段につ!/、ても記載がな!/、。
[0014] 特許文献 1 :米国特許第 2789954号明細書
特許文献 2:特開昭 57— 132591号公報
特許文献 3:特表平 6— 501672号公報
特許文献 4:米国特許第 5141731号明細書
特許文献 5 :特開平 10— 95602号公報
発明の開示
[0015] 本発明の第一の目的は、モノ過硫酸溶液の製造において、製造時のモノ過硫酸溶 液の分解を最小限に抑え、かつ、製造後長期間保存可能なモノ過硫酸溶液を製造 することである。
本発明者等は、過酸化水素と硫酸でモノ過硫酸溶液を製造する方法につ!、て鋭 意検討した結果、過酸化水素と硫酸を混合後、直ちに所定時間内で所定温度まで 冷却し、次!/、で所定量の水で希釈する事により安定なモノ過硫酸溶液ができることを 見いだし、本発明を完成させた。
[0016] すなわち、本願発明は、下記(1)〜(6)に関するものである。
(1) 35重量%以上の過酸化水素と70重量%以上の硫酸を混合して90°じ以上で反 応させ、混合開始後 5分以内に反応溶液を 80°C以下まで冷却し、次いで反応溶液 を 4重量倍以上の水で希釈することを特徴とする安定性の高いモノ過硫酸溶液の製 造方法。
(2)反応溶液を 40°C以上であって 80°C以下まで冷却することを特徴とする前記(1) の方法。
(3)反応溶液を 4重量倍以上であって 10重量倍以下の水で希釈することを特徴とす る前記(1)の方法。
(4)鉄の含有量が 20ppm以下である硫酸を用いる前記( 1 )の方法。
(5)反応溶液を 80°C以下まで冷却した以降に、アルカリ水溶液を添加する前記(1) の方法。 (6) 35重量%以上の過酸化水素と70重量%以上の硫酸を混合して80°じを超ぇる 温度で反応させ、混合開始後 5分以内に反応溶液を 80°C以下まで冷却し、次いで 反応溶液を 4重量倍以上の水で希釈することを特徴とするモノ過硫酸溶液の製造方 法。
[0017] 本発明の第二の目的は、モノ過硫酸を安定かつ安全に連続的に製造するための 装置を提供することである。
[0018] 本発明者等は、モノ過硫酸連続製造装置について鋭意検討した結果、静止型混 合器を用い混合器を水中に設置することにより、モノ過硫酸を高収率かつ安定して 合成することができ、なおかつモノ過硫酸の濃厚液を直接外部に漏出させないように すること力 Sできることを見いだし、本発明を完成させた。すなわち、本発明は、過酸化 水素及び硫酸を混合して反応させる第 1静止型混合器と、反応溶液及び希釈水を混 合する第 2静止型混合器と、第 1静止型混合器から第 2静止型混合器への反応溶液 移送管とを備え、第 1静止型混合器及び反応溶液移送管を容器内の水中に設置す ることを特徴とするモノ過硫酸連続製造装置に関する。
[0019] 本発明の製造方法の第 1の特徴は、モノ過硫酸溶液製造時に生成する大きな発熱 により、生成モノ過硫酸が分解する、または生成モノ過硫酸溶液を長期間保存できな いとの問題に対して、必ずしも冷凍機などの特別な冷却設備が必要ではなぐ通常 の工業用水などの水で所定温度以下に所定時間以内で冷却されたモノ過硫酸溶液 を所定濃度以下に希釈することにより、高収率で長期間安定なモノ過硫酸溶液を製 造でさることである。
[0020] 本発明の製造方法の第 2の特徴は、モノ過硫酸溶液の安定化のためにモノ過硫酸 溶液の pH調整をする、安定剤を添加するとの従来の方法に対して、特別な薬品を 加える必要がないことから、高純度過酸化水素、高純度硫酸を使用してできたモノ過 硫酸溶液は、不純物を嫌う半導体等の用途にも使用することができることである。
[0021] 本発明の製造方法の第 3の特徴は、従来モノ過硫酸製造時硫酸中の不純物により
(例えば、鉄化合物)過酸化水素および生成モノ過硫酸溶液の分解が大きくなり、モ ノ過硫酸収率が低下する、また硫酸中の不純物により反応時の発熱が大きくなりモノ 過硫酸収率が低下するとの問題に対して、ある程度鉄を含有する硫酸を使用するこ と力 Sでさることである。
[0022] 本発明の製造方法の第 4の特徴は、鉄の含有量の多い硫酸を使用した場合、過酸 化水素および生成モノ過硫酸溶液の分解反応により急激な発熱と酸素ガスの発生 により反応管の破裂などの災害を引き起こす可能性があるが、生成モノ過硫酸溶液 を短時間で冷却及び希釈することにより、過酸化水素および生成モノ過硫酸溶液の 分解反応が抑制され、安全にモノ過硫酸を製造できることである。
[0023] 本発明の製造方法の第 5の特徴は、生成モノ過硫酸溶液を冷却するための冷凍機 が必ずしも必要ではなぐ設備として薬液ポンプ、薬液混合ミキサー、反応容器、生 成モノ過硫酸溶液希釈ミキサー等からなるコンパクトな装置でモノ過硫酸溶液が製造 でさることである。
[0024] 本発明の製造方法の第 6の特徴は、生成モノ過硫酸を希釈することにより、希釈後 のモノ過硫酸溶液を輸送する配管あるいは貯蔵する容器の材質として SUS304、 S US316などの安価な材質が使用でき、設備費が安価になることである。
[0025] 本発明によれば、モノ過硫酸を安定かつ安全に連続的に製造する装置が比較的 低コストで具現化される。本発明の製造装置によればまた、安定なモノ過硫酸を高収 串で得ること力 Sでさる。
発明を実施するための最良の形態
[0026] モノ過硫酸は、硫酸と過酸化水素とを混合することにより得られる。この際、硫酸/ 過酸化水素のモル比は、 1〜5の範囲が良い。モル比が 1未満では生成するモノ過 硫酸溶液中の過酸化水素濃度が高くなり、用途によってはこの過酸化水素が好まし くない作用をする場合がある。また、経済的にも好ましくない。モル比が 5以上では生 成するモノ過硫酸の濃度が低くなり、硫酸濃度が高くなる。用途によってはこの硫酸 濃度が好ましくなぐ苛性ソーダ等のアルカリで中和する必要があり、経済的に好まし くない。
[0027] 硫酸としては、一般の工業用硫酸を使用することができる。濃度としては、 70〜98 重量%の硫酸が使用でき、好ましくは 90〜98重量%、さらには 95〜98重量%の濃 硫酸が好ましい。硫酸品質としては、鉄の含有量が重要である。鉄が多量に存在した 場合、過酸化水素、モノ過硫酸の分解さらにその分解発熱により生成モノ過硫酸の 収率が低下するため、鉄含有量としては 20ppm以下、好ましくは lOppm以下、さら に好ましくは 5ppm以下にすることが好ましい。
[0028] 過酸化水素としては、工業薬品が使用可能であり、濃度としては 35〜90重量%品 が使用でき、好ましくは 45〜90重量%、さらには 60〜90重量%の過酸化水素が好 ましい。
[0029] 硫酸と過酸化水素との反応は、回分式でも連続式でも行うことができる力 工業規 模的には連続式が好ましい。連続式反応の場合のミキサーとしては、静止型混合機 が使用できる。静止型混合機内での発熱が大きいため、材質としてはハステロィ (登 録商標) C、またはテフロン (登録商標)が好ましい。
[0030] 過酸化水素と硫酸とは、 1分間程度の短時間で反応の大部分を完結させるために 、反応温度、つまり、反応時の反応溶液の最高到達温度は 80°Cを超える温度とする ことが好ましい。以下、最高到達温度を反応温度ということもある。反応温度が低いと 反応速度が小さくなりモノ過硫酸の収率が低下する。過酸化水素と硫酸との混合時 には非常に大きな発熱を伴うので、非常に強力な冷却を行わない限り反応温度は通 常 80°Cを超える。 90°C以上が好ましい。反応温度の上限は特にないが 120°C以下 が好ましい。あまり高いと過酸化水素及びモノ過硫酸の分解量が大きくなる。混合開 始と同時あるいは開始後速やかに反応溶液を冷却することにより、生成モノ過硫酸 溶液を混合開始後 5分以内に 80°C以下にする。このようにしてモノ過硫酸を得ること 力 Sできる。より好ましくは冷却温度の上限を 70°C以下、さらに好ましくは 60°C以下、さ らに特に好ましくは 50°C以下に、より好ましくは冷却温度の下限を 25°C以上、さらに 好ましくは 30°C以上にするのが好ましい。さらに好ましくは、 5分以内に 80°C以下で あって 40°C以上に冷却することが好ましい。また、混合開始後希釈までの時間は 10 秒以上が好ましぐより好ましくは 30秒以上、さらに好ましくは 1分以上である。この時 間が短いと、反応が十分に進行せずモノ過硫酸収率が低下する。本発明の製造方 法において、過酸化水素と硫酸とを反応前から冷却し、両者を冷却しながら反応させ ることもできる。この場合も、混合開始後 5分以内に反応溶液の温度を 80°C以下にす る。 80°C超では生成モノ過硫酸を希釈した場合、モノ過硫酸の分解により収率が低 下するためである。 40°Cより低い温度まで冷却すると、冷却のための冷却器が大きく なる、冷却水量が多量に必要であるとの問題点がある。
[0031] 冷却方法としては、反応容器の外側から水や冷媒、空気で冷却することがあげられ る力 水が好ましい。この冷却水は、冷凍機で冷却した冷却水を使用しても良いが、 通常の工業用水を常温で使用できる。反応容器の大きさは、反応容器の材質の総括 伝熱係数により決まる。反応容器の形状及び材質は生成モノ過硫酸溶液を混合開 始後 5分以内で 80°C以下に冷却できる、形状および材質が好ましい。このための材 質としてはハステロィ (登録商標) C、またはテフロン (登録商標)が好ましい。
[0032] 5分間以内で 80°C以下に冷却されたモノ過硫酸溶液は、このままでは不安定であ り長期間保存することが困難である。そこで、本発明の製造方法においては 4重量倍 以上の水で希釈する。好ましくは、 4重量倍以上であって 20重量倍以下に希釈する 。 4重量倍未満の水での希釈ではモノ過硫酸の安定性が悪くなり収率が低下すると の問題がある。 20重量倍超の水での希釈では、ユースポイントの濃度が低下し、反 応が遅くなるとの欠点がある。希釈水としては、新たな水で希釈してもよいが、モノ過 硫酸生成時の反応容器の冷却に使用した水を利用することが好ましい。半導体等の 用途に使用する場合、超純水を使用するのが好ましい。希釈水の温度としては、 40 °C以下の水が好ましい。希釈方法としては、静止型混合機内で混合するのが好まし い。
[0033] このようにして製造されたモノ過硫酸溶液は、そのまま使用場所に送液されるか、一 且タンクに貯蔵してから使用場所に送液される。
なお、製造されたモノ過硫酸溶液は、そのままでは強酸性であり、用途によっては 使用に適さない場合がある。その場合、苛性ソーダ等のアルカリを添加してモノ過硫 酸溶液の pHを上げる必要がある。アルカリの添加はモノ過硫酸の反応溶液を 80°C 以下まで冷却した後に行うことが好ましい。例えば、冷却後アルカリ添加してから希釈 する方法、希釈と同時にアルカリ添加する方法、希釈後にアルカリ添加する方法、希 釈水に予めアルカリを添加しておく方法がある。アルカリの添加量は、モノ過硫酸溶 液を所望の pHにするために任意の量とすることができる力 S、モノ過硫酸の安定性を 損なわないためには反応に供する硫酸の量の中和等量以下とすることが好ましい。
[0034] 既述のように、本発明の製造方法は、静止型混合器を用いて連続式で行うことがで きる。そこで本発明はさらに、上記製造方法を使用することができる製造装置を提供 する。本発明の製造装置について以下に説明する。
本発明に用いられる静止型混合器 (スタティックミキサー)としては、混合器内にエレ メントが設置してある一般的なものが使用できる。混合器の形状に特に制限はなぐ 例えば管状のものを使用することができる。エレメントの形状 ·数に特に制限はなぐ 例えば、長方形の板を長手方向の中心軸を中心として 180° 程度ねじったねじり羽 根状エレメントを用い、ねじれ方向の異なる 2個以上のエレメントを設置したものを使 用すること力 Sでさる。
[0035] 本発明の第 1の静止型混合器においては、過酸化水素と硫酸が混合され反応によ りモノ過硫酸が生成する。ここで用いることのできる過酸化水素と硫酸は上で述べた とおりである。過酸化水素及び硫酸の供給管はそれぞれを第 1静止型混合器に直接 接続させて、過酸化水素と硫酸を第 1静止型混合器内で合流させることができる。ま た、第 1静止型混合器の上流で過酸化水素及び硫酸の供給管を接続させて過酸化 水素と硫酸を合流させることもできる力、合流点はできるだけ混合器に近い位置とす ることが好ましい。
静止型混合器における混合効率を上げるためには、過酸化水素を過酸化水素用 のポンプで加圧し、かつ硫酸を硫酸用のポンプで加圧してから、加圧した過酸化水 素と加圧した硫酸とを第 1静止型混合器に供給することが好ましい。第 1静止型混合 器上流の過酸化水素供給管及び硫酸供給管のそれぞれには、一方の原料の供給 管に他方の原料が流れ込むのを防レ、だり、反応溶液の逆流を防レ、だりするために背 圧弁を取り付けてあることが好ましい。背圧弁の位置は、できるだけ合流点に近い位 置とすることが好ましい。
[0036] 第 1静止型混合器中で過酸化水素と硫酸とを反応させるが、第 1静止型混合器に おいて過酸化水素と硫酸とが接触して力 反応溶液移送管を経て第 2静止型混合 器に入るまでに反応が完了するよう、両者の流量並びに第 1静止型混合器の容量及 び反応溶液移送管の容量を設定する。例えば、 45%の過酸化水素と 98 %の硫酸と を反応溶液として lm3/hの流量で第 1静止型混合器に導入することにより反応を行う 場合、長方形の板を 180度ねじった形状の混合用エレメントを複数設置した内径 15 〜30mm、長さ 0. ;!〜 lm程度の管状の第 1静止型混合器及び内径 15〜30mm、 長さ 20〜200m程度の反応溶液移送管を用いることができる。反応モル比及び反応 温度は上で述べた範囲が好まし!/、。
[0037] 第 1静止型混合器を出た反応溶液は、反応溶液移送管内で冷却されながら第 2の 静止型混合器に送液され、第 2静止型混合器内において希釈水と混合される。反応 溶液移送管の長さは、希釈水と合流する直前で反応溶液の温度が好ましくは 80°C 以下となるように決定される。希釈前の反応溶液の温度が高いと、希釈時にモノ過硫 酸と水から過酸化水素と硫酸を生成させやすくなり、第 1静止型混合器で生成したモ ノ過硫酸の損失が大きくなる。
[0038] 反応溶液移送管及び希釈水供給管は、それぞれを第 2静止型混合器に直接接続 させて、反応溶液と希釈水を第 2静止型混合器内で合流させることができる。また、 第 2静止型混合器の上流で反応溶液移送管及び希釈水供給管を接続させて反応 溶液と希釈水を合流させることもできるが、合流点はできるだけ混合器に近!、位置と することが好ましい。このとき、反応溶液が第 1静止型混合器に入ってから第 2静止型 混合器において希釈水と接触するまでの時間が 5分以内となるよう、反応溶液の流 量及び反応溶液移送管の長さを調節する。第 2静止型混合器で用いる希釈水の量 は上で述べたとおりである。第 2静止型混合器上流の反応溶液移送管及び希釈水 供給管のそれぞれには、一方の液の供給管に他方の液が流れ込むのを防いだり、 希釈溶液の逆流を防レ、だりするために背圧弁を取り付けてあることが好ましレ、。背圧 弁の位置は、できるだけ合流点に近い位置とすることが好ましい。
第 1静止型混合器及び反応溶液移送管内における反応溶液の圧力並びに希釈水 の圧力が第 2静止型混合器内の希釈溶液の圧力と同じまたはそれより高くなるように 、反応溶液移送管及び希釈水供給管に取り付けた背圧弁の圧力設定を決定する。 また、過酸化水素及び硫酸の圧力が第 1静止型混合器内の反応溶液の圧力と同じ またはそれより高くなるように、過酸化水素供給管及び硫酸供給管の背圧弁の圧力 設定を決定するとともに、過酸化水素及び硫酸用のポンプの仕様を決定する。一般 には、第 2静止型混合器で混合する反応溶液と希釈水とでは希釈水の方が圧倒的 に液量が大き!/、ので、第 2静止型混合器内の希釈溶液の圧力は希釈水の供給圧力 とほぼ同じになる。したがって、過酸化水素及び硫酸の供給圧力は、希釈水の供給 圧力と同じまたはそれより高くすることが好ましい。
[0039] 第 2静止型混合器を出た希釈モノ過硫酸液は、例えば排水処理設備やパルプ漂 白設備のようなモノ過硫酸の使用場所にそのまま送液されて使用される。また、使用 するまでタンクに貯蔵することもできる。
[0040] 本発明においては、第 1静止型混合器及び反応溶液移送管は、容器内の水中に 設置している。すなわち、第 1静止型混合器及び反応溶液移送管の外部表面は水と 接している。具体的には、例えば、水槽内の水中に第 1静止型混合器及びコイル状 の反応溶液移送管を設置しておく。また、静止型混合器のハウジング部及び移送管 を二重管にしておき、内側の管と外側の管の間に水を存在させておくことも本発明の 好ましい実施形態の一つである。第 1静止型混合器及び反応溶液移送管のそれぞ れの外部表面の全てが水と接していなくても良い。第 1静止型混合器の全部又は一 部が水中に設置されていてもよい。反応溶液移送管の全部又は一部が水中に設置 されていてもよい。容器中の水は常温の水でもよぐ冷凍機で冷却した水でもよい。
[0041] さらに、容器内の水を攪拌するために攪拌機または水を循環させるためのポンプを 設置することも好ましい。容器内の水を攪拌ないし循環させたり、容器内に追加する 水の量や温度を調節したりするために、容器内の水の温度を検出する手段を備えて いるのもまた好ましい。
[0042] 第 1静止型混合器及び反応溶液移送管を容器内の水中に設置しておくことの第 1 の目的は、過酸化水素と硫酸との混合による発熱で液温が上昇した反応溶液を冷却 することである。したがって、例えば、容器の入口から工業用水等を供給し、容器の 出口から温排水を排出できるようにすることが考えられる。また、容器内の水の供給 量'排出量を削減するには、別途熱交換器を設けて、容器内の水を冷却するための 装置を備える必要がある。
[0043] 第 1静止型混合器及び反応溶液移送管を容器内の水中に設置しておくことの第 2 の目的は、第 1静止型混合器及び反応溶液移送管周辺の配管接続部等から高温、 高濃度のモノ過硫酸が漏出した場合でも直ちに希釈されて安全化を図ることができ ることである。したがって、第 1静止型混合器及び反応溶液移送管のそれぞれの外部 表面の全てが水と接していることが好ましい。同じ理由で、過酸化水素供給管と硫酸 供給管との合流部や第 2静止型混合器も容器内の水に設置しておくことが好ましい。
[0044] 本発明においては、容器内の水を、希釈水として第 2静止型混合器に供給するた めのポンプを備えていることが好ましい。容器内の水と希釈水を兼用することにより、 水の使用量が節約できる、あるいは、容器内の水を冷却する装置を省略できるといつ た効果がある。また、第 1静止型混合器及び反応溶液移送管から容器内にモノ過硫 酸が漏出した場合でも、漏出したモノ過硫酸は希釈水とともにモノ過硫酸の使用場 所またはタンクに送液されるため、高濃度のモノ過硫酸を外部に流出させることがな いといった効果も有する。モノ過硫酸の漏出を検知するためには、容器内の水中の 過酸化物または酸を検出する装置を備えて!/、ること力 S好ましレ、。
[0045] 容器内の水と希釈水を兼用する場合、容器内の水の量を検出する手段を備え、検 出した水の量に基づき容器への水の供給量を制御する手段を備えていることが好ま しい。容器内の水量を一定に保つことで、希釈水の供給量を調節することにより、容 器内への水の流量も調節することができる。
[0046] 本発明の装置において、モノ過硫酸の生産量を変動させる際は、通常、過酸化水 素、硫酸及び希釈水のそれぞれの供給量を比例的に変動させる。その際、容器内の 水を希釈水として利用しな!/、場合は、生成する希釈モノ過硫酸液の温度を一定に保 つためには、容器内の水の冷却効率を制御する必要がある。一方、容器内の水を希 釈水として利用する場合は、各液の流量を比例的に変動させるだけで、希釈後のモ ノ過硫酸液の温度をほぼ一定に保つことができる。
[0047] 過酸化水素供給管と硫酸供給管の合流部、第 1静止型混合器内及び反応溶液移 送管内の反応原料または反応溶液が接触する部分の材質は、フッ素樹脂、ハステロ ィ (登録商標) Cまたはタンタルとすることが好まし!/、。
[0048] 本発明の装置においては、第 1静止型混合器を出た反応溶液の温度を検出する 手段を備え、第 1静止型混合器を出た反応溶液の温度に基づき過酸化水素及び/ または硫酸の供給を停止する手段を備えることが好ましい。これにより、過酸化水素 が異常分解した場合の温度上昇や第 1静止型混合器周辺で反応溶液が漏出した場 合の温度低下を検出し、直ちに原料の供給を遮断することができる。 [0049] さらに、本発明の装置においては、第 2静止型混合器を出た反応溶液の温度を検 出する手段を備え、第 2静止型混合器を出た反応溶液の温度に基づき過酸化水素 及び/または硫酸の供給を停止する手段を備えることが好ましい。これにより、希釈 水が停止した場合の温度上昇や第 2静止型混合器周辺で反応溶液が漏出した場合 の温度低下を検出し、直ちに原料の供給を遮断することができる。
[0050] 図;!〜 3により、本発明のモノ過硫酸連続製造装置の具体例について、それぞれ説 明する。
[0051] 図 1では、過酸化水素供給管 1と硫酸供給管 2との合流部のすぐ下流に第 1静止型 混合器 3が、第 1静止型混合器 3下流の反応溶液移送管 4と希釈水供給管 5との合 流部のすぐ下流に第 2静止型混合器 6が備えられ、第 1静止型混合器 3及び反応溶 液移送管 4は水槽 7内に設置されている。水槽 7には、容器内の水の供給管 8及び容 器内の水の排出管 9が接続されている。容器内の水の排出管 9は第 1静止型混合器 3及び反応溶液移送管 4より高い位置に設置されており、水槽 7内の水をオーバーフ ローさせることができるようになっている。
[0052] 図 2では、過酸化水素供給管 1と硫酸供給管 2との合流部のすぐ下流に第 1静止型 混合器 3が、第 1静止型混合器 3下流の反応溶液移送管 4と希釈水供給管 5との合 流部のすぐ下流に第 2静止型混合器 6が備えられ、第 1静止型混合器 3のハウジング 及び反応溶液移送管 4は二重管になっており、容器内の水の供給管 8及び容器内 の水の排出管 9により二重管の内側の管と外側の管の間に容器内の水を存在させる こと力 Sできるようになって!/、る。
[0053] 図 3では、過酸化水素供給管 1と硫酸供給管 2との合流部のすぐ下流に第 1静止型 混合器 3が、第 1静止型混合器 3下流の反応溶液移送管 4と希釈水供給管 5との合 流部のすぐ下流に第 2静止型混合器 6が備えられ、第 1静止型混合器 3、反応溶液 供給管 4及び第 2静止型混合器 6は水槽 7内に設置されている。
[0054] 水槽 7には容器内の水の供給管 8及び容器内の水の排出管 9が接続され、容器内 の水の排出管 9のもう一方は希釈水ポンプ 10の吸入口側に接続されて!/、る。希釈水 ポンプ 10の吐出口側からは、水槽 7との間を容器内の水の循環管 11によって、第 2 静止型混合器 6上流部との間を希釈水供給管 5によって、それぞれ接続されている。 [0055] 希釈水供給管 5の途中に流量指示調節計 12を設けて希釈水の流量を制御させる 。また、水槽 7内の容器内の水のレベルをレベル計 13により検出し、信号をコントロー ラー 14に出力して容器内の水の供給管 8の途中のバルブ 15を制御させる。水槽 7内 の容器内の水のレベルをある範囲に保つことにより、希釈水供給量と容器内の水の 供給量とは本質的に同じになる。
[0056] 反応溶液移送管 4の途中に設置された温度計 16により反応溶液の温度を検出し、 信号をコントローラー 17に出力して、反応溶液温度が異常な場合は過酸化水素供 給系 18及び硫酸供給系 19を停止させる。また、第 2静止型混合器 6下流の希釈モノ 過硫酸液移送管 20の途中に設置された温度計 21により希釈モノ過硫酸液の温度を 検出し、信号をコントローラー 17に出力して、希釈モノ過硫酸液温度が異常な場合 は過酸化水素供給系 18及び硫酸供給系 19を停止させる。
本発明の装置には、必要に応じて、さらにアルカリ水溶液を混合するための手段を 備えること力 Sできる。具体的には、例えば、第 2静止型混合器にさらにアルカリ水溶液 を混合する手段、第 1静止型混合器の下流かつ第 2静止型混合器の上流もしくは第 2静止型混合器の下流に第 3静止型混合器を設けてアルカリ水溶液を混合する手段 である。第 3静止型混合器は容器内の水中に設置しておくことが好ましい。アルカリ 水溶液を混合するための手段がアルカリ水溶液供給管であり、該供給管に背圧弁を 備えていることが好ましい。また、容器内の水を希釈水として用いる場合は、容器内 の水にアルカリ水溶液を添加する手段を備えることでもよい。
実施例
[0057] 次に実施例により本発明を具体的に説明する。使用薬品の濃度は重量%で表した 。なお、以下に示す実施例は、本発明を具体的に説明するために示すものであり、 何ら本発明を制限するものではない。
[0058] モノ過硫酸の分析方法は、以下の方法で行った。
1) 50mlのメスフラスコに生成モノ過硫酸溶液 lgを秤量し、純水でメスアップする。
2)純水、 4N—硫酸 10ml、氷をいれたコニカルビーカーに、 1)を 5ml添加する。
3)オルトフエナント口リン鉄指示薬を数滴添加する。
4) 1/40N—硫酸セリウム溶液で滴定する。赤色から青色に変化 滴定量 = aml 5)純水、 4N—硫酸 10ml、氷をいれたコニカルビーカーに、 1)を 5ml添加する。
6)よう化カリウムを適当量!/、れる。
7)モリブデン酸アンモニゥム飽和溶液を数滴添加する。
8) 1/10N—チォ硫酸溶液で滴定する。終点近くでデンプン指示薬を添加する。
紫から無色に変化 滴定量 = bml
9)薬品濃度計算
モノ過硫酸濃度(%) = 5· 7309 X (b— a/4) X (50/5/試料量)
X 0. 1
過酸化水素濃度(%) = 1. 701 X (a/4) X (50/5/試料量) X 0. 1
[0059] 実施例 1
98%硫酸 150g (l . 5モル)を 500mlのコニカルビーカーにサンプリングし、ビーカ 一を冷水に浸漬した。スターラーで撹拌しながら硫酸に 45%過酸化水素 37. 78g (0 . 5モル)を 15秒かけて添加して両者を混合し、モノ過硫酸溶液を合成した (最高到 達温度 92°C)。 25°Cまで液温が低下した時点(混合開始 5分後)で 20°Cの水 1126. 7g (6重量倍量)で希釈したところ、希釈液中のモノ過硫酸溶液濃度は 2. 97%であ つた。なお、添加開始 1分後の溶液 (未希釈)中のモノ過硫酸濃度は 21. 1 %であり、 この値を基準に希釈後のモノ過硫酸の残存率を計算すると 98. 7%となった。
[0060] 実施例 2〜4
モノ過硫酸溶液の温度がそれぞれ 40°C (混合開始 3分後)、 60°C (同 2分後)、 80 °C (同 1分 30秒後)の時点で水で希釈した以外、実施例 1と同様に行った。
実施例 5
ビーカーを氷水に浸漬し (最高到達温度 82°C)、モノ過硫酸溶液の温度が 80°C ( 混合開始 30秒後)の時点で水で希釈した以外、実施例 1と同様に行った。
[0061] 比較例 1
モノ過硫酸溶液の温度が 90°C (混合開始 1分後)の時点で水で希釈した以外、実 施例 1と同様に行った。
比較例 2〜3
ビーカーの冷水への浸漬を過酸化水素の添加後に行い (最高到達温度 136°C)、 モノ過硫酸溶液の温度がそれぞれ 110°C (混合開始 2分後)、 130°C (同 1分後)の 時点で水で希釈した以外、実施例 1と同様に行った。
比較例 4
ビーカーを 10°Cの冷媒に浸漬し (最高到達温度 68°C)、モノ過硫酸溶液の温度 が 65°C (混合開始 30秒後)の時点で水で希釈した以外、実施例 1と同様に行った。
[表 1]
Figure imgf000017_0001
[0063] モノ過硫酸製造は硫酸の水和熱のために製造時に多量の発熱をともなう。そのた め、冷却しながら反応を行った。モノ過硫酸希釈前温度のモノ過硫酸残存率へ及ぼ す影響を表 1に示した。その結果、希釈前のモノ過硫酸の温度が 90°C以上ではモノ 過硫酸残存率が減少して過酸化水素濃度が増加しており、希釈時の生成モノ過硫 酸溶液の温度は 80°C以下が好ましいことが分かった。
[0064] 実施例 6〜 8
実施例 1にお!/、て、冷却水の温度を調整することによりモノ過硫酸溶液の温度低下 速度を変え、 80°Cに低下するまでの時間を、 1分、 2. 5分、 5分とした以外、同様に 行った。
[0065] 比較例 5〜7
実施例 1にお!/、て、冷却水の温度を調整することによりモノ過硫酸溶液の温度低下 速度を変え、 80°Cに低下するまでの時間を、 7分、 10分、 15分とした以外、同様に 行った。
[0066] [表 2] 希釈までの時間 H2S05 H,S05残/ ί:率
(分) (%) (¾) 実施例 6 1 2. 8 0 9 3. 0
7 2. 5 2. 7 8 9 2. 4
8 0 2. 7 2 9 0. 4 比較例 5 7. 5 2. 49 8 3. 8
6 1 0 2, 07 6 9. 7
7 1 5 1. 6 8 5 6. 6
[0067] モノ過硫酸溶液製造から希釈までの時間の影響を表 2に示した。その結果、 7.5分 以上では、モノ過硫酸の残存率が悪くなるために 5分以下が好ましいことが分力、つた
[0068] 実施例 9
98%硫酸 150g(l.5モル)を 500mlのコニカルビーカーにサンプリングし、スター ラーで撹拌しながら硫酸に 45%過酸化水素 37.78g(0.5モル)を添加し、添加後 直ちにビーカーを氷水に浸漬した。モノ過硫酸溶液の温度は最高 95°Cまで上昇し、 40°Cまで低下した時点(混合開始 3分後)で、 20°Cの水 751. lg (4重量倍量)で希 釈した。この液を 40°Cの恒温槽中に 0.5h、 12h、 24h、 3日放置してその安定性を みた。
[0069] 実施例 10〜; 11
それぞれ 10重量倍、 20重量倍の水で希釈した以外は、実施例 9と同様に行った。 比較例 8〜 9
それぞれ 0重量倍、 2重量倍の水で希釈した以外は、実施例 9と同様に行った。
[0070] [表 3]
Figure imgf000018_0001
)内は保持率% ( )内は保持率%
[0071] モノ過硫酸溶液の安定性の結果を表 3に示した。表 3中、上段の値は、上に述べた 方法で算出したモノ過硫酸の濃度を示す。下段の値は、 0時間のときのモノ過硫酸の 濃度を 100とした場合の各時間におけるモノ過硫酸の濃度から求めた残存率を保持 率として示す。製造時の高濃度モノ過硫酸溶液の安定性は非常に悪ぐ製造後すぐ 使用する必要がある力 水で希釈することにより安定性が向上し、長期間の保存が可 能となる。希釈水量としては、 4重量倍以上が好ましい。
[0072] 実施例 12〜; 14
実施例 1において使用した硫酸中の鉄濃度は 5ppmであり、鉄をさらにそれぞれ 5p pm、 10ppm、 15ppm添加した硫酸を使用した以外、同様に行った。モノ過硫酸生 成直後および 40°C、 24h放置後のモノ過硫酸濃度を測定した。
尚、鉄は硫酸第 1鉄の形で添加した。
[0073] 比較例 10〜; 12
実施例 1において、鉄をさらに 25ppm、 50ppm、 lOOppm添加した硫酸を使用し た以外、同様に行った。モノ過硫酸生成直後および 40°C、 24h放置後のモノ過硫酸 濃度を測定した。尚、鉄は硫酸第 1鉄の形で添加した。
[表 4]
Figure imgf000019_0001
[0074] 硫酸品質としては、 Feの含有量が 20ppm以下のものを使用することにより、モノ過 硫酸生成直後の濃度および 24h後の濃度を高く維持できる。
[0075] 実施例 15
本実施例において、図 3を参照することにより上で説明した装置を用いてモノ過硫 酸を連続的に製造した。 45%過酸化水素 150kg/h及び 98%硫酸 600kg/hを、それぞれ、ポンプを作 動させて過酸化水素供給管 1と硫酸供給管 2に送った。合流部のすぐ下流に設置さ れている第 1静止型混合器 3において過酸化水素と硫酸とを混合することにより、過 酸化水素と硫酸とを反応させた。反応は 92°Cにおいて行った。第 1静止型混合器と しては、(株)ノリタケカンパユーリミテド製スタティックミキサー N60型 (ハウジング材質 :ハステロィ C 22、エレメント材質: PTFE)を用い、該混合器の表面全体が水に接 触するよう該混合器を水中に設置した。第 1静止型混合器を出た反応溶液を、第 1静 止型混合器 3下流に接続されている、内径 17mm、長さ 100mの反応溶液移送管 4 に通し、第 2静止型混合器に流入する直前の反応溶液の温度を 40°Cに低下させた 。反応溶液が第 1静止型混合器を出てから第 2静止型混合器に到達するまでの時間 は 3分であった。反応溶液移送管 4は、その下流側で第 2静止型混合器と接続されて おり、反応溶液移送管 4及び第 2静止型混合器は水中に設置した。希釈水供給管 5 から、 7580kg/hの流量で、反応溶液の 10倍量に相当する量の水を供給し、第 2静 止型混合器において反応溶液と希釈水とを混合することによりモノ過硫酸を製造した (過酸化水素基準収率 70%)。得られたモノ過硫酸を 40°Cの実施例 9において述べ たのと同じ条件で放置し、その安定性を評価したところ、実施例 9と同等の保持率が 得られた。
図面の簡単な説明
[0076] [図 1]本発明のモノ過硫酸連続製造装置の一例を示す図である。
[図 2]本発明のモノ過硫酸連続製造装置の一例を示す図である。
[図 3]本発明のモノ過硫酸連続製造装置の一例を示す図である。
符号の説明
[0077] 1 過酸化水素供給管
2 硫酸供給管
3 第 1静止型混合器
4 反応溶液移送管
5 希釈水供給管
6 第 2静止型混合器 水槽
容器内の水の供給管 容器内の水の排出管

Claims

請求の範囲
[1] 35重量%以上の過酸化水素と 70重量%以上の硫酸を混合して 90°C以上で反応 させ、混合開始後 5分以内に反応溶液を 80°C以下まで冷却し、次いで反応溶液を 4 重量倍以上の水で希釈することを特徴とする安定性の高いモノ過硫酸溶液の製造 方法。
[2] 反応溶液を 40°C以上であって、 80°C以下まで冷却することを特徴とする請求項 1 記載の方法。
[3] 反応溶液を 4重量倍以上であって、 10重量倍以下の水で希釈することを特徴とす る請求項 1記載の方法。
[4] 鉄の含有量が 20ppm以下である硫酸を用いる請求項 1記載の方法。
[5] 反応溶液を 80°C以下まで冷却した以降に、アルカリ水溶液を添加する請求項 1記 載の方法。
[6] 35重量%以上の過酸化水素と 70重量%以上の硫酸を混合して 80°Cを超える温 度で反応させ、混合開始後 5分以内に反応溶液を 80°C以下まで冷却し、次いで反 応溶液を 4重量倍以上の水で希釈することを特徴とするモノ過硫酸溶液の製造方法
[7] モノ過硫酸連続製造装置において、過酸化水素及び硫酸を混合して反応させる第 1静止型混合器と、第 1静止型混合器で得られた反応溶液及び希釈水を混合する第 2静止型混合器と、第 1静止型混合器から第 2静止型混合器への反応溶液移送管と を備え、第 1静止型混合器及び反応溶液移送管を容器内の水中に設置することを特 徴とするモノ過硫酸連続製造装置。
[8] 第 1静止型混合器上流に過酸化水素供給管及び硫酸供給管が設けられており、 前記過酸化水素供給管及び前記硫酸供給管のそれぞれに、背圧弁を備える請求項 7記載のモノ過硫酸連続製造装置。
[9] 第 2静止型混合器上流に反応溶液移送管及び希釈水供給管が設けられており、 前記反応溶液移送管及び前記希釈水供給管のそれぞれに、背圧弁を備える請求項 7記載のモノ過硫酸連続製造装置。
[10] 第 2静止型混合器が水中に設置されている請求項 7記載のモノ過硫酸連続製造装 置。
[11] 容器内の水を希釈水として、第 2静止型混合器に供給するためのポンプを備える請 求項 7記載のモノ過硫酸連続製造装置。
[12] 容器内の水の量を検出する手段を備え、検出した水の量に基づき容器への水の供 給量を制御する手段を備える請求項 7記載のモノ過硫酸連続製造装置。
[13] 容器内の水中の過酸化物または酸を検出する装置を備える請求項 7記載のモノ過 硫酸連続製造装置。
[14] 第 1静止型混合器を出た反応溶液の温度を検出する手段を備え、第 1静止型混合 器を出た反応溶液の温度に基づき過酸化水素の供給、硫酸の供給又は過酸化水 素及び硫酸の供給を停止する手段を備える請求項 7記載のモノ過硫酸連続製造装 置。
[15] 第 2静止型混合器を出た反応溶液の温度を検出する手段を備え、第 2静止型混合 器を出た反応溶液の温度に基づき過酸化水素の供給、硫酸の供給又は過酸化水 素及び硫酸の供給を停止する手段を備える請求項 7記載のモノ過硫酸連続製造装 置。
[16] 第 2静止型混合器で、さらにアルカリ水溶液を混合する請求項 7記載のモノ過硫酸 連続製造装置。
[17] 第 1静止型混合器の下流かつ第 2静止型混合器の上流に、反応溶液及びアルカリ 水溶液を混合する第 3静止型混合器を備える請求項 7記載のモノ過硫酸連続製造 装置。
[18] 第 2静止型混合器の下流に、希釈反応溶液及びアルカリ水溶液を混合する第 3静 止型混合器を備える請求項 7記載のモノ過硫酸連続製造装置。
[19] アルカリ水溶液供給管に背圧弁を備える請求項 16〜; 18のいずれ力、 1項記載のモ ノ過硫酸連続製造装置。
[20] 第 3静止型混合器を水中に設置する請求項 17又は 18記載のモノ過硫酸連続製造 装置。
[21] 容器内の水にアルカリ水溶液を添加する手段を備えた請求項 11記載のモノ過硫 酸連続製造装置。
[22] 請求項 7記載のモノ過硫酸連続製造装置を用いて、 35重量%以上の過酸化水素 と 70重量%以上の硫酸を混合して 80°Cを超える温度で反応させ、混合開始後 5分 以内に反応溶液を 80°C以下まで冷却し、次いで反応溶液を 4重量倍以上の水で希 釈することを特徴とするモノ過硫酸溶液の連続製造方法。
[23] 反応溶液を 40°C以上であって、 80°C以下まで冷却することを特徴とする請求項 22 記載の製造方法。
[24] 反応溶液を 4重量倍以上であって、 10重量倍以下の水で希釈することを特徴とす る請求項 22記載の製造方法。
[25] 鉄の含有量が 20ppm以下である硫酸を用いる請求項 22記載の製造方法。
[26] 反応溶液を 80°C以下まで冷却した以降に、アルカリ水溶液を添加する請求項 22 記載の製造方法。
PCT/JP2007/070343 2006-10-18 2007-10-18 Procédé de production d'acide monopersulfurique et appareil de production continue d'acide monopersulfurique WO2008047864A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US12/444,287 US9181094B2 (en) 2006-10-18 2007-10-18 Method for producing peroxymonosulfuric acid and apparatus for continuously producing peroxymonosulfuric acid
NZ575784A NZ575784A (en) 2006-10-18 2007-10-18 Method for producing peroxymonosulfuric acid (also known as persulfuric acid, peroxysulfuric acid, or Caro's acid)
AU2007312061A AU2007312061B2 (en) 2006-10-18 2007-10-18 Method for producing peroxymonosulfuric acid and apparatus for continuously producing peroxymonosulfuric acid
BR122018001058A BR122018001058B1 (pt) 2006-10-18 2007-10-18 aparelho para continuamente produzir ácido peroximonossulfúrico
KR1020097005975A KR101432549B1 (ko) 2006-10-18 2007-10-18 모노과황산의 제조방법 및 모노과황산 연속 제조장치
CA2666413A CA2666413C (en) 2006-10-18 2007-10-18 Method for producing peroxymonosulfuric acid and apparatus for continuously producing peroxymonosulfuric acid
BRPI0717530-2A BRPI0717530B1 (pt) 2006-10-18 2007-10-18 Método para produzir uma solução de ácido peroximonossulfúrico
JP2008539864A JP5305230B2 (ja) 2006-10-18 2007-10-18 モノ過硫酸の製造方法及びモノ過硫酸連続製造装置
EP07830077.9A EP2075230B1 (en) 2006-10-18 2007-10-18 Process for producing monopersulfuric acid and monopersulfuric acid
US14/872,462 US9988269B2 (en) 2006-10-18 2015-10-01 Method for producing peroxymonosulfuric acid and apparatus for continuously producing peroxymonosulfuric acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-284218 2006-10-18
JP2006-284219 2006-10-18
JP2006284218 2006-10-18
JP2006284219 2006-10-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/444,287 A-371-Of-International US9181094B2 (en) 2006-10-18 2007-10-18 Method for producing peroxymonosulfuric acid and apparatus for continuously producing peroxymonosulfuric acid
US14/872,462 Division US9988269B2 (en) 2006-10-18 2015-10-01 Method for producing peroxymonosulfuric acid and apparatus for continuously producing peroxymonosulfuric acid

Publications (1)

Publication Number Publication Date
WO2008047864A1 true WO2008047864A1 (fr) 2008-04-24

Family

ID=39314082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070343 WO2008047864A1 (fr) 2006-10-18 2007-10-18 Procédé de production d'acide monopersulfurique et appareil de production continue d'acide monopersulfurique

Country Status (10)

Country Link
US (2) US9181094B2 (ja)
EP (2) EP2075230B1 (ja)
JP (1) JP5305230B2 (ja)
KR (1) KR101432549B1 (ja)
CN (1) CN103832980B (ja)
AU (1) AU2007312061B2 (ja)
BR (2) BRPI0717530B1 (ja)
CA (1) CA2666413C (ja)
NZ (2) NZ575784A (ja)
WO (1) WO2008047864A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026425A1 (ja) * 2017-07-31 2019-02-07 株式会社カネカ フロー式リアクター
JPWO2019187497A1 (ja) * 2018-03-27 2021-03-18 株式会社カネカ フロー式リアクター及びこれを有する製造設備

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0717530B1 (pt) 2006-10-18 2018-03-20 Mitsubishi Gas Chemical Company, Inc. Método para produzir uma solução de ácido peroximonossulfúrico
US8222667B2 (en) * 2008-03-06 2012-07-17 Sumitomo Metal Mining Co., Ltd Semiconductor light-emitting element, method for manufacturing the semiconductor light-emitting element and lamp that uses the semiconductor light-emitting element
EP2572776A1 (en) 2011-09-21 2013-03-27 Evonik Degussa GmbH Device for mixing and cooling two reactive liquids and method of making peroxomonosulphuric acid with the device
EP2572781A1 (en) 2011-09-21 2013-03-27 Evonik Degussa GmbH Device and method for making a dilute aqueous solution of peroxomonosulphuric acid
CN113573805A (zh) * 2019-03-20 2021-10-29 株式会社钟化 反应装置
CN110898751A (zh) * 2019-12-04 2020-03-24 荣海生物科技有限公司 一种提高大豆肽原料配料效率的装置及其使用方法
CN112645290B (zh) * 2020-12-24 2022-12-09 河北纳泰化工有限公司 一种过一硫酸氢钾复合盐的连续化生产系统及生产方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB738407A (en) 1953-01-16 1955-10-12 Stevensons Dyers Ltd A process for the manufacture of permonosulphuric acid
US2789954A (en) 1953-12-14 1957-04-23 Stevensons Dyers Ltd Process for making peroxymonosulphuric acid
JPS57132591A (en) 1972-07-28 1982-08-16 Air Liquide Generator for oxidizing agent
JPH0195602A (ja) 1987-10-08 1989-04-13 Nec Corp チップ化モジュール
US5141731A (en) 1991-05-24 1992-08-25 Degussa Aktiengesellschaft Process for the generation of peroxyacids
JPH06501672A (ja) 1990-10-27 1994-02-24 ソルベイ インテロックス リミテッド ペルオキソ酸の製造
JPH08295504A (ja) * 1995-04-21 1996-11-12 Noritake Co Ltd 硫酸稀釈装置
WO1997000225A1 (en) 1995-06-16 1997-01-03 Fmc Corporation Method for producing caro's acid
JPH1095602A (ja) * 1996-09-19 1998-04-14 Nippon Peroxide Co Ltd 安定化されたペルオキソ一硫酸溶液、及びその製造方法
JP2005289743A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 硫酸装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743302A (en) * 1950-05-25 1956-04-24 Gulf Research Development Co Production of alcohols by oxo process
US3432546A (en) 1964-11-03 1969-03-11 Fmc Corp Manufacture of peracetic acid
US3939072A (en) * 1972-07-28 1976-02-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for generating an oxidizing reagent for the treatment of polluted water
US4315014A (en) * 1980-09-24 1982-02-09 Warner-Lambert Company Antibacterial amide compounds and pharmaceutical composition containing the same
DE4020856A1 (de) * 1990-06-29 1992-01-09 Degussa Verfahren zur herstellung von lagerstabilen waessrigen natriumperoxomonosulfatloesungen
GB9027960D0 (en) * 1990-12-22 1991-02-13 Interox Chemicals Ltd Manufacture of peroxidic compositions
US6028045A (en) * 1994-03-14 2000-02-22 The Procter & Gamble Company Stable strongly acidic aqueous compositions containing persulfate salts
US5470564A (en) * 1994-08-01 1995-11-28 Fmc Corporation Method for producing caro's acid
US6090297A (en) * 1995-06-16 2000-07-18 Fmc Corporation Method for treating tailing slurries with Caro's acid
US6368570B1 (en) * 1996-01-22 2002-04-09 Fmc Corporation Process for manufacturing Caro's acid
US5977403A (en) * 1997-08-04 1999-11-02 Fmc Corporation Method for the production of lower organic peracids
JP2000015069A (ja) * 1998-06-30 2000-01-18 Lion Corp 液状組成物の連続製造装置及び液状組成物の製造方法
GB0014580D0 (en) * 2000-06-14 2000-08-09 Bp Chem Int Ltd Appatarus and process
DE10048513A1 (de) * 2000-09-29 2002-04-11 Degussa Verfahren zur kontinuierlichen Herstellung von Stoff- und Reaktionsgemischen und Vorrichtung zu seiner Durchführung
EP1539674A1 (en) 2002-09-13 2005-06-15 Novartis AG Amino-propanol derivatives
US20050031530A1 (en) * 2003-08-07 2005-02-10 Martin Perry L. Method and apparatus for producing a peroxyacid solution
US7090820B2 (en) * 2003-09-23 2006-08-15 Truox, Inc. Potassium monopersulfate triple salt with increased active oxygen content and substantially no K2S2O8
CN1528660A (zh) * 2003-10-16 2004-09-15 陶华西 过一硫酸氢钾复合盐的制备方法
US7414149B2 (en) * 2004-11-22 2008-08-19 Rohm And Haas Company Non-routine reactor shutdown method
CN1778669A (zh) 2004-11-22 2006-05-31 上海嘉源实业有限公司 一种单过硫酸氢钾的制备方法
BRPI0717530B1 (pt) 2006-10-18 2018-03-20 Mitsubishi Gas Chemical Company, Inc. Método para produzir uma solução de ácido peroximonossulfúrico

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB738407A (en) 1953-01-16 1955-10-12 Stevensons Dyers Ltd A process for the manufacture of permonosulphuric acid
US2789954A (en) 1953-12-14 1957-04-23 Stevensons Dyers Ltd Process for making peroxymonosulphuric acid
JPS57132591A (en) 1972-07-28 1982-08-16 Air Liquide Generator for oxidizing agent
JPH0195602A (ja) 1987-10-08 1989-04-13 Nec Corp チップ化モジュール
JPH06501672A (ja) 1990-10-27 1994-02-24 ソルベイ インテロックス リミテッド ペルオキソ酸の製造
US5141731A (en) 1991-05-24 1992-08-25 Degussa Aktiengesellschaft Process for the generation of peroxyacids
JPH08295504A (ja) * 1995-04-21 1996-11-12 Noritake Co Ltd 硫酸稀釈装置
WO1997000225A1 (en) 1995-06-16 1997-01-03 Fmc Corporation Method for producing caro's acid
JPH1095602A (ja) * 1996-09-19 1998-04-14 Nippon Peroxide Co Ltd 安定化されたペルオキソ一硫酸溶液、及びその製造方法
JP2005289743A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 硫酸装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2075230A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026425A1 (ja) * 2017-07-31 2019-02-07 株式会社カネカ フロー式リアクター
JPWO2019026425A1 (ja) * 2017-07-31 2020-05-28 株式会社カネカ フロー式リアクター
US11071965B2 (en) 2017-07-31 2021-07-27 Kaneka Corporation Flow reactor
JPWO2019187497A1 (ja) * 2018-03-27 2021-03-18 株式会社カネカ フロー式リアクター及びこれを有する製造設備
JP7239559B2 (ja) 2018-03-27 2023-03-14 株式会社カネカ フロー式リアクター及びこれを有する製造設備

Also Published As

Publication number Publication date
AU2007312061B2 (en) 2012-04-05
EP2495215A2 (en) 2012-09-05
EP2495215A3 (en) 2012-10-24
EP2075230A1 (en) 2009-07-01
EP2075230A4 (en) 2011-12-14
AU2007312061A1 (en) 2008-04-24
KR101432549B1 (ko) 2014-08-21
BRPI0717530A2 (pt) 2013-10-22
BR122018001058B1 (pt) 2018-09-04
CN103832980A (zh) 2014-06-04
US9988269B2 (en) 2018-06-05
EP2495215B1 (en) 2015-01-14
US20160046490A1 (en) 2016-02-18
EP2075230B1 (en) 2014-04-30
CA2666413A1 (en) 2008-04-24
US9181094B2 (en) 2015-11-10
NZ575784A (en) 2012-02-24
CN103832980B (zh) 2015-11-18
CA2666413C (en) 2016-08-02
US20100112094A1 (en) 2010-05-06
NZ596772A (en) 2012-12-21
KR20090066277A (ko) 2009-06-23
BRPI0717530B1 (pt) 2018-03-20
JPWO2008047864A1 (ja) 2010-02-25
JP5305230B2 (ja) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5305230B2 (ja) モノ過硫酸の製造方法及びモノ過硫酸連続製造装置
MX2011005050A (es) Metodo para tratamiento de agua y sistemas acuosos en tuberias con dioxido de cloro.
CZ72493A3 (en) Peroxosulfuric acid continuous preparation process, and apparatus for making the same
CN101553427A (zh) 单过硫酸的制备方法及单过硫酸连续制备装置
JPH08295504A (ja) 硫酸稀釈装置
AU2012201470B8 (en) Method for producing peroxymonosulfuric acid and apparatus for continuously producing peroxymonosulfuric acid
US9050576B2 (en) Device and method for making a dilute aqueous solution of peroxomonosulphuric acid
JPH1192104A (ja) 高純度な二酸化塩素水性組成物、その製造方法及び製造装置
KR20230165878A (ko) 오존수 전달 시스템 및 사용 방법
CN219482686U (zh) 浓硫酸快速连续稀释反应装置
CN220845503U (zh) 一种酮连氮法生产水合肼的合成系统
CN112174091A (zh) 用于生产二氧化氯的方法和装置
OA16762A (en) Device and method for making a dilute aqueous solution of peroxomonosulphuric acid.
JPS62223006A (ja) ヒドロ亜硫酸ナトリウムを製造する方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039074.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097005975

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 575784

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2007312061

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12444287

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008539864

Country of ref document: JP

Ref document number: 2365/DELNP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2666413

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007830077

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007312061

Country of ref document: AU

Date of ref document: 20071018

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0717530

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090416