WO2008041592A1 - Ni-based compound superalloy having excellent oxidation resistance, process for production thereof, and heat-resistant structural material - Google Patents

Ni-based compound superalloy having excellent oxidation resistance, process for production thereof, and heat-resistant structural material Download PDF

Info

Publication number
WO2008041592A1
WO2008041592A1 PCT/JP2007/068720 JP2007068720W WO2008041592A1 WO 2008041592 A1 WO2008041592 A1 WO 2008041592A1 JP 2007068720 W JP2007068720 W JP 2007068720W WO 2008041592 A1 WO2008041592 A1 WO 2008041592A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
superalloy
based compound
less
oat
Prior art date
Application number
PCT/JP2007/068720
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Chikugo
Takayuki Takasugi
Yasuyuki Kaneno
Original Assignee
Ihi Corporation
Osaka Prefecture University Public Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihi Corporation, Osaka Prefecture University Public Corporation filed Critical Ihi Corporation
Priority to US12/442,038 priority Critical patent/US20090308507A1/en
Priority to EP07828466.8A priority patent/EP2078763A4/en
Priority to JP2008537492A priority patent/JP5224246B2/ja
Publication of WO2008041592A1 publication Critical patent/WO2008041592A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to proeutectoid L1 phase and (L1 phase + D0 phase (DO phase or DO phase or DO phase
  • Ni-based superalloys are limited in melting point and high-temperature creep strength because about 35 vol% or more of the constituent phases are metal phases ( ⁇ ).
  • examples of high-temperature structural materials that exceed Ni-base superalloys include high-temperature structural materials containing intermetallic compounds that exhibit the inverse temperature dependence of yield stress, but this is a single-phase material that has poor room temperature ductility. There is a disadvantage that the high temperature tape strength is low.
  • Ni X-type intermetallic compounds Since many Ni X-type intermetallic compounds have excellent characteristics, make them multi-phased
  • Non-Patent Document 1 Lower 00 ⁇ &, ⁇ .13 ⁇ 41116110, 1 ⁇ Lower & 13 ⁇ 4311, 3 ⁇ 4160 ⁇ 1 & 11 3,10 (2002) 247 DISCLOSURE OF THE INVENTION
  • Ni-base superalloy is useful as a structural material that requires high-temperature heat resistance such as engines.
  • the engine efficiency is affected by the combustion temperature and the engine weight, but the density of the Ni-base superalloy described above is 8.0 to 9. Og / Because of its relatively heavy weight of 3 cm, the development of a Ni-based compound superalloy is underway.
  • Ni-based compound superalloy has a density in the range of 7.5 to 8.5 g / cm 3 , is lighter than the aforementioned Ni-based superalloy, and has a high-temperature strength up to about 1000 ° C. It has almost the same characteristics as Ni-base superalloys!
  • Ni-based compound superalloy has the problem of poor oxidation resistance.
  • the present invention is lighter than Ni-base superalloy.
  • the objective is to provide a Ni-based compound superalloy that has high strength up to about ° C and almost the same as that of a Ni-based superalloy, and has excellent strength and oxidation resistance.
  • the present invention employs the following configuration.
  • the Ni-based compound superalloy having excellent oxidation resistance according to the present invention has Al: greater than 5 at%, 13 at% or less, V: 3 at% or more, 9.5 at% or less, Ti: 0 at% or more, 3 Less than 5at%, the balance is made of Ni, excluding impurities, proeutectoid L1 phase (L1 phase + D0 phase and / or DO phase and / or DO phase)
  • It has a multiphase structure composed of a eutectoid structure.
  • Ni-based compound superalloy having excellent oxidation resistance according to the present invention includes, in addition to the above composition, Nb: 3 at% or more and 9.5 at% or less, and the content of V is the content of Nb or more. It is characterized by being.
  • Ni-based compound superalloy having excellent oxidation resistance according to the present invention contains, in addition to the above composition, at least one or more of Co: 15 at% or less and Cr: 5 at% or less.
  • the Ni-based compound superalloy excellent in oxidation resistance according to the present invention contains B: 1000 ppm by weight or less in addition to the composition described in either (1) or (2) or (4).
  • Ni-based compound superalloy with excellent oxidation resistance is composed of the proeutectoid L1 phase and (L1 phase + D0
  • the heat-resistant structural material having excellent oxidation resistance according to the present invention is characterized by comprising the Ni-based compound superalloy according to any one of (1) to (6).
  • the manufacturing method of the Ni-based compound superalloy having excellent oxidation resistance according to the present invention includes Al: greater than 5 at% and not more than 13 at%, V: not less than 3 at%, not more than 9.5 at%, Ti: 0 at % To 3.5at%, the balance is the temperature at which the pro-eutectoid L1 phase and A1 phase coexist for an alloy material composed of Ni excluding impurities.
  • the method for producing a Ni-based compound superalloy having excellent oxidation resistance according to the present invention includes, in addition to the above composition, Nb: 3 at% or more and 9.5 at% or less, and the V content is the Nb content.
  • An alloy material having the above composition is used.
  • the method for producing a Ni-based compound superalloy having excellent oxidation resistance according to the present invention includes, as the alloy material, at least Co: 15 at% or less and Cr: 5 at% or less in addition to the composition. It is characterized by using one or more types.
  • the method for producing a Ni-based compound superalloy having excellent oxidation resistance according to the present invention is characterized in that, in addition to the above composition, B: 1000 wt ppm or less is used as the alloy material.
  • the method for producing a Ni-based compound superalloy having excellent oxidation resistance according to the present invention is characterized in that the first heat treatment is performed at a temperature at which the alloy material is brought into the first state of FIG. .
  • the method for producing a Ni-based compound superalloy having excellent oxidation resistance according to the present invention is characterized in that the second heat treatment is performed at 1173K to 1273K.
  • Al greater than 5at%, 13at% or less, V: 3at% or more, 9.5at% or less, Ti: 0at% or more, 3.5at% or less, the balance is from Ni except impurities
  • the specific gravity is slightly lighter than the conventional Ni-base superalloys, and the high-temperature strength up to about 1000 ° C is superior to that of Ni-base superalloys, and the strength and oxidation resistance are also excellent.
  • Ni-based compound superalloys with excellent strength and resistance to oxidation can be manufactured.
  • FIG. 1 is a longitudinal sectional state diagram regarding temperature and A1 content at a Ti content of 2.5 at% for a specific example of a composition-based alloy that is the basis of a Ni-based compound superalloy according to the present invention. It is.
  • FIG. 2 is a Ni Al—Ni Ti—Ni V pseudo ternary phase diagram at 1273K, prepared from various specific examples of the Ni-based compound superalloy according to the present invention and its basic compositional alloy. is there
  • FIG. 3 is a graph of compression test results showing the relationship between yield stress and temperature of each sample obtained from a specific example of a Ni-based compound superalloy according to the present invention.
  • FIG. 4 is a graph of an oxidation test result showing the relationship between the firing time and the weight increase of each sample obtained from the specific example of the Ni-based compound superalloy according to the present invention.
  • FIG. 5A is a metallographic photograph of each of the samples ⁇ ⁇ ⁇ 21, 22, 23 manufactured in the example.
  • Fig. 5 (b) is a metallographic photograph (5000 times magnification) of the sample No. 21 produced in the example.
  • Fig. 6 is a metallographic photograph (1000x magnification) of the sample No. 28 produced in the example.
  • FIG. 7 is a metallographic photograph taken by changing the field of view of the sample.
  • Fig. 8 is a photograph of the metallographic structure of the multiphase structure of the same sample taken at 2500x magnification.
  • FIG. 9 is a graph showing the oxidation resistance test results of each sample.
  • FIG. 10 is a graph of oxidation test results showing the relationship between firing time and weight increase of each sample No. 41 to 48 obtained from the specific example of the Ni-based compound superalloy according to the present invention. .
  • FIG. 11 is a graph of an oxidation test result showing the relationship between the firing time and the weight increase of each sample No. 51 to 58 obtained from the specific example of the Ni-based compound superalloy according to the present invention. .
  • FIG. 12 is a graph of an oxidation test result showing the relationship between the firing time and the weight increase of each sample No. 63 to 67 obtained from the specific example of the Ni-based compound superalloy according to the present invention. .
  • FIG. 13 is a graph showing the tensile test results of samples ⁇ ⁇ 28, 41, and 65.
  • Fig.14 is a photograph of the metallographic structure of the sample ⁇ .41 magnified 1000 times.
  • Figure 15 shows a metallographic photograph of the sample ⁇ .41 magnified 5000 times.
  • Fig. 16 is a metallographic photograph of the No.47 sample magnified 5000 times.
  • Fig.17 shows a metallographic photograph of the sample ⁇ .48 magnified 5000 times.
  • Fig.18 shows a metallographic image of the sample of ⁇ .52 magnified 2500 times.
  • Figure 19 shows a metallographic image of the sample ⁇ .57 magnified 2500 times.
  • Figure 20 shows a metallographic photograph of the ⁇ .65 sample magnified 50 times.
  • Fig. 21 is a photograph of the metal structure of No. 65 sample magnified 1000 times.
  • Figure 22 is a metallographic photograph of the No.65 sample magnified 5000 times.
  • FIG. 23 is a stress-strain diagram showing the tensile test results for each sample when the B addition amount is changed for the No. 65 sample.
  • Fig. 24 is a photograph of the metallographic structure of the sample obtained by homogenizing for 3 hours at 1300 ° C in the sample with 25 ppm B added to the No. 65 sample.
  • Fig.25 is a metallographic photograph of the sample obtained by homogenizing for 3 hours at 1330 ° C in the sample with 25ppm of B added to the sample No.65.
  • the Ni-based compound superalloy according to the present invention has Al: greater than 5 at%, not more than 13 at%, V: not less than 3 at%, not more than 9.5 at%, Nb: not less than 3 at%, not more than 9.5 at%, Ti: 0 at% As mentioned above, 3.5at% or less, the balance is made of Ni excluding impurities, the V content is more than the Nb content, the proeutectoid L1 phase (L1 phase + D0 phase and / or DO phase) And / or DO phase) having a multi-phase structure composed of a eutectoid structure.
  • Co 15 at% or less may be included.
  • Cr 5 at% or less may be included. It may contain 1000 ppm by weight or less.
  • Pre-deposition L1 phase (L1 phase + D0 phase and / or DO phase and or DO) Phase) consisting of a eutectoid structure and being a double-phase structure!
  • Such Ni-based compound superalloy has Al: greater than 5 at%, not more than 13 at%, V: not less than 3 at%, 9 5at% or less, Nb: 3at% or more, 9.5at% or less, Ti: 0at% or more, 3.5at% or less, the balance is made of Ni excluding impurities, and the V content is more than the Nb content.
  • the first heat treatment is performed at the temperature, and then the proeutectoid L1 phase and DO phase and / or DO phase and / or
  • FIG. 1 shows a longitudinal sectional state diagram of an alloy according to the composition system of the present invention.
  • the horizontal axis indicates the A1 content (at%)
  • the vertical axis indicates the absolute temperature (K).
  • the phase diagram shown in FIG. 1 has a Ti content of 2.5 ⁇ 5 at% and a V content of (22 ⁇ 5—A1 content) at%.
  • Fig. 2 shows Ni Al-Ni Ti-N at 1273K prepared from various specific examples of the composition system of the present invention.
  • the solution treatment means a treatment of heating and holding at a temperature in the region indicated by A1 in FIG. In the region indicated by A1, for example, if it is in the range of Al: 5 to 10 at%, the temperature is between the national mark and the ⁇ mark.
  • first, solution heat treatment may be performed on the alloy material.
  • the homogenization heat treatment is usually performed at a temperature higher than the temperature of the first heat treatment performed in the subsequent process.
  • the homogenization heat treatment is preferably performed at about 1523 to 1623K.
  • the first heat treatment can be combined with the homogenization heat treatment.
  • the first heat treatment is performed on the alloy material after the homogenization heat treatment. This first heat treatment is performed at a temperature at which the proeutectoid L1 phase and the A1 phase coexist. Proeutect L1 phase and A1 phase
  • the coexisting temperature is the temperature at which the alloy material becomes the state of A1 + L1 in FIG.
  • the first heat treatment is performed at a temperature at which the proeutectoid L1 phase and the A1 phase coexist.
  • A1 type intermetallic phase is fee type Ni solid solution phase.
  • the time for performing the first heat treatment is not particularly limited, but the entire alloy material is pro-eutectoid L1 phase and A1
  • the time for performing the first heat treatment is, for example, 5 to 20 hours.
  • the second heat treatment is performed on the alloy material after the first heat treatment in a region indicated by LI + DO.
  • heat treatment is performed at a temperature not more than the temperature indicated by a circle in FIG. In Fig. 1, the temperature marked with a circle is 1281K. This temperature varies depending on the composition of the alloy material. This second heat treatment hardly affects the pro-eutectoid L1 phase.
  • A1 phase is separated into L1 phase, DO phase and / or DO phase and / or DO phase.
  • A1 phase is
  • the L1 phase and DO phase and / or DO phase and / or DO phase formed separately are the main components.
  • this multiphase structure is referred to as “lower multiphase structure”.
  • the cooling may be natural cooling or forced cooling such as water quenching.
  • the natural cooling may be performed, for example, by removing the alloy material from the heat treatment furnace after the first heat treatment and leaving it at room temperature, or by turning off the heater power supply of the heat treatment furnace after the first heat treatment. It may be done by leaving
  • the temperature at which the second heat treatment is performed is, for example, about 1173 to 1281K.
  • the duration of the second heat treatment is, for example, about 5 to 20 hours.
  • the ability to separate the A1 phase into the L1 phase and the DO phase by simply performing cooling such as water quenching without performing the second heat treatment is relatively high.
  • the alloy material may be cooled to room temperature by natural cooling or forced cooling.
  • includes end points unless otherwise noted.
  • the reasons for specifying Al: greater than 5at%, 13at% or less, V: 3at% or more, and 9.5at% or less are apparent from the longitudinal sectional state diagram of FIG. 1, the state diagram of FIG. In this range, the first heat treatment can be performed at a temperature at which the pro-eutectoid L1 phase and the A1 phase coexist.
  • a second heat treatment can be performed at this temperature, and a multiphase structure can be formed.
  • the Nb content may be in the range of 3 at% or more and 9.5 at% or less, but it is equal to or less than the above-mentioned V content, in other words, the V content is equal to the Nb content. It must be equal to or greater than the Nb content.
  • part of V is replaced with Nb to improve oxidation resistance, and the amount of part of V replaced with Nb is increased. The better the oxidation resistance.
  • the inventors are studying A1 from 5 to 13 at%, V from 9.5 to 17.5 at%, Ti from 0 to 3.5 at%, B from 1000 ppm by weight or less, the balance being Ni, Proeutect L1 phase and (LI + D0 and / or DO phase and / or DO
  • Vb is reduced and Nb is added and A1 is increased compared to Ni-base compound superalloys with a dual-phase structure consisting of eutectoid structures.
  • Co and Cr are elements that contribute to the improvement of oxidation resistance. Co is preferably added in the range of Oat% or more and 15at% or less. Cr is in the range of Oat% or more and 5at% or less. It is preferable to add them.
  • Ni is an element that dissolves completely in Ni, it is contained in the intermetallic compounds Ni Ni, Ni V, (Ni Ti), etc. that Ni in the structure constitutes.
  • Ni-base alloys Ni Ni, Ni V, Ni Ti, etc.
  • the maximum amount is 15at%.
  • Ni A1 is effective for improving oxidation resistance Since the amount of solid solution in Ni A1 is small, it exceeds 5at%
  • the upper limit is preferably 5 at%.
  • V easily oxidizes the surface of the alloy material having a strong binding force with oxygen
  • the oxidation resistance can be improved by reducing the amount of V.
  • V can be replaced with Nb, which has the same number of charged electrons as S.
  • Nb which has the same number of charged electrons as S.
  • A1 a dense oxide film of dense alumina on the surface can be generated.
  • the ability to improve oxidation resistance by reducing the amount of V If the amount of Nb is larger than the amount of V, it becomes difficult to obtain a multiphase structure. Therefore, it is necessary to increase the amount of V more than the amount of Nb.
  • the Ti content is not less than Oat% and not more than 3.5 at%, preferably not more than 0.5 to 3.5 at%, more preferably 1 to 3.5 at%, most preferably 2 to 3 at%. is there.
  • Ni of the present invention The base compound superalloy preferably contains Ti, but may not contain Ti.
  • the Ni content is preferably 73 to 77 at%, more preferably 74 to 76 at%. In such a range, the total content of Ni and (Al, Ti, V) is close to 3: 1, and there is virtually no solid solution phase of Ni, Al, Ti or V. It is.
  • the content of B is 0 ppm by weight or more and 1000 ppm by weight or less, preferably 1 to 1000 ppm by weight, more preferably;! To 500 ppm by weight, more preferably 5 to 100 ppm by weight. is there.
  • the Ni-based compound superalloy of the present invention preferably contains B, but may not contain B.
  • Mo in addition to each additive element having the above composition, Mo may be contained in an amount of 1 to 2 at%.
  • Mo is an element that is effective in improving high-temperature strength, and is an element that dissolves completely in V.
  • the addition amount is preferably V> Mo + Nb.
  • a method for improving the ductility a method for strengthening the crystal grain boundary can be considered. For this purpose, it is possible to add trace amounts of elements such as C, Zr, and Hf up to 0.2 at%. Further, any element of C, Zr, and Hf may be contained in a minute range of 0.2 at% or less.
  • Ni-based compound superalloy of the present invention exhibits a multiphase structure including the upper multiphase structure and the lower multiphase structure as described above, and has a two-phase structure composed of these multiphase structures. It is most desirable to have!
  • the Ni-based compound superalloy of the present invention has excellent mechanical properties at high temperatures and is excellent in oxidation resistance. This is due to the fact that it exhibits a multiphase structure including an upper multiphase structure and a lower multiphase structure, and more preferably, it has a two-phase structure of the upper multiphase structure and the lower multiphase structure. This is considered to be a factor in obtaining superior characteristics.
  • these double phase structure or double phase structure constitute the entire Ni-based compound superalloy according to the present invention.
  • the entire structure is necessarily this structure, or at least partially. More preferably, 50% or more of the entire structure should be a multiphase structure.
  • the intermetallic compound used in the Ni-based compound superalloy of the present invention has a simple crystal structure compared to the other three constituent phases (DO phase, DO phase, and DO phase). Comparison
  • Ni-based compound superalloy of the present invention Since the Ni-based compound superalloy of the present invention has excellent mechanical properties at high temperatures, it can be used as a heat-resistant structural material.
  • part of V is replaced with Nb to improve oxidation resistance, and the addition of appropriate amounts of Co and Cr also enhances oxidation resistance.
  • composition in which a part of V is replaced with Nb is somewhat disadvantageous in terms of weight reduction, but it can be reduced by about 0.5 g / cm 3 compared to a general Ni-base superalloy.
  • Ni-based compound superalloy described above can be used effectively in a temperature range slightly lower than 1523K (1250 ° C), for example, from 1273K to 1373K (1000 to 1100 ° C). It is suitable for turbochargers, engine low-pressure turbine blades, and the like. When the high temperature strength is high in these temperature ranges, there is an effect of reducing the weight with the same pressure resistance, which is effective in terms of engine efficiency and fuel consumption.
  • the alloy material used to manufacture the Ni-based compound superalloy of the present invention is made of a forged material, a forged material, a single crystal material, or the like.
  • the forged material can be produced by melting a pre-weighed ingot (arc melting, high frequency melting, etc.), then pouring it into a bowl and solidifying it.
  • a forged material is usually a polycrystal having crystal grains on the order of several hundred microns to several millimeters, and has a weak point that it is easily broken at the boundary (crystal grain boundary) between crystal grains and a shrinkage nest. It has a weak point that it has a flaw. The strength of this forging is to improve this weakness.
  • the forged material is produced by hot forging and recrystallization annealing on the forged material. Hot forging and recrystallization annealing are usually performed at a temperature higher than that of the first heat treatment.
  • the temperature at which hot forging and recrystallization annealing are performed may be the same or different. Hot forging is preferably performed at about 1523 to 1623K, and recrystallization annealing is preferably performed at about 1423 to about 1573K.
  • the alloy material Before the first heat treatment, the alloy material may be subjected to a homogenization heat treatment.
  • the homogenization heat treatment is usually performed at a temperature higher than that of the first heat treatment.
  • the homogenization heat treatment is preferably performed at about 1523 to 1623K.
  • the first heat treatment may be combined with the homogenization heat treatment. In the case of a forged material, hot forging and recrystallization annealing may also serve as a homogenizing heat treatment.
  • the time for performing the homogenization heat treatment is not limited, but for example, 24-9 About 6 hours.
  • the alloy material is a polycrystalline material (such as a forged material or a forged material)
  • Ni-based compound superalloy having a multiphase structure was fabricated by heat treatment, and the mechanical properties thereof were examined.
  • heat treatment at 1373K coexists with the pro-eutectoid L1 phase and A1 phase
  • water quenching after heat treatment at 1373 K corresponds to cooling to a temperature at which the L1 phase and DO phase coexist. Also, 137
  • Ni, Al, Ti, and V Prior to the preparation of the sample of the composition system of the present invention, Ni, Al, Ti, and V in the ratios shown in No. in Table 1; Gold (purity 99.9% by weight) was melted in an arc melting furnace.
  • the arc melting furnace was first evacuated in the melting chamber and then replaced with an inert gas (argon gas).
  • argon gas an inert gas
  • a non-consumable tungsten electrode was used as the electrode, and a water-cooled copper hearth was used for the vertical type.
  • a bullion added with elements such as Co, Cr, Mo, B, C, Hf, etc. depending on the alloy composition required in the bullion is used or is separately added at the time of melting. Add a lump of these elements.
  • the forged material is referred to as a “sample”.
  • rhombohedral is expressed as “rhoj”.
  • Figure 2 shows the ternary phase diagram
  • composition range surrounded by points A, B, C, D, and E shown in FIG.
  • the amount of V is reduced and a part of V is replaced with Nb. Therefore, in particular, Ni Al—Ni Ti—Ni V pseudo 3 shown in FIG. Original system phase diagram
  • Point A (A1: 14 ⁇ 0at%, Ti: 0at%, (V + Nb): 11. Oat%, Ni: 75at%)
  • point B ( ⁇ 1: 12.5at%, Ti: 2.8at% , (V + Nb): 9.8at%, Ni: 75at%)
  • C point (Al: 8.0at%, Ti: 3.8at%, (V + Nb): 13.3at%, Ni: 75at% )
  • D point (Al: 2 ⁇ 3at%, Ti: 2. Oat%, (V + Nb): 20.8at%, Ni: 75at%)
  • E point (Al: 2 ⁇ Oat%, Ti: Oat% , (
  • Fig. 3 shows the 0.2% yield stress (MPa) measured at temperatures of 298, 673, 773, 873, 973, 1073, 1173, and 1273K.
  • Fig. 4 shows the results of measuring the weight increase including peeling when each sample (size 10 X 10 X 10mm) of ⁇ ⁇ 2;! To 28 was baked at 1000 ° C for a predetermined time in the atmosphere! Indicates.
  • Figure 4 shows the sample No. 10 (Al: 7.5%) and CMSX-4 sample (Cannon-Muskegon, USA: trade name) (Ti: 1.0% by weight, 0: 9.0, Cr, Table 1). : 6.5, ⁇ : 0 ⁇ 6, Al: 5.6, Ta: 6.5, Hf: 0.10, rare earth (Re) 3.0, balance Ni), Al: 14% sample (Al: 14%, Ti: 2.5% , V: 8.5%, Ni: 75%), Co: 5% sample (Co: 5%, Al: 7.5%, Ti: 2.5%, V:
  • the firing times are six types of 24 hours, 50 hours, 100 hours, 200 hours, 400 hours, and 500 hours in order from the left plot.
  • Fig. 5 shows a metallographic photograph of the sample No. 21 (see Fig. 5 (A)) and a partial enlargement (5000x) of the metallographic image of the sample (see Fig. 5 (B)).
  • the structure photograph (see Fig. 5 (A)) and the metal structure photograph of the sample No. 23 (see Fig. 5 (A)) are shown.
  • the magnification of each sample photo shown in Fig. 5 (A) is 100 times, and each photo shows a white line of 100 m as a scale.
  • those containing a multi-phase structure or a structure containing a double-phase structure have high high-temperature strength because they are stable against large structural changes even at high temperatures. It is important to make these multiphase structures as fine and consistent as possible in order to obtain a structure with excellent mechanical properties at higher temperatures.
  • FIGS. 6 and 7 show a metallographic photograph (1000 times) of the sample No. 28, and FIG. 8 shows a partial enlargement (2500 times) of the metallographic photograph of the sample.
  • the finely grained portion of the metal structure photograph shown in Fig. 6 is the L1 D0 — DO structure.
  • Fig. 8 shows that this fine granular part is enlarged 2500 times. As shown in the figure, it is confirmed that a large number of amorphous Ni A1 (L1) particles are spread.
  • the L1 DO — DO phase is present at the grain boundaries between the grains as in the sample shown in Fig. 5.
  • the weight of the No. 21 word-to-word (Ma 7/90, No. 22's No. 23/95, No. 23 has a specific gravity of 8.07 and No. 24.
  • the specific gravity of the sample is 7.90
  • the specific gravity of ⁇ ⁇ 25 is 7.87
  • the specific gravity of the sample of No.26 is 7.88
  • the specific gravity of the sample of No.27 is 7.8,
  • the specific gravity of the sample of No.28 is 7.86, which is lighter than typical Ni-based superalloy MarM247 (registered trademark): 8.54g / cm 3 and CMS X-4 (registered trademark): 8. 70g / cm 3 It is clear.
  • Each sample having the composition ratio shown in Table 4 was melted and heat-treated in a vacuum furnace at 1563K (1290 ° C) for 10 hours. This process corresponds to a homogenization process. Next, argon gas was put into the furnace by gas fan cooling and cooled by stirring. Next, after heating at 1373K (1100 ° C) for 10 hours, gas-fan cooling (first heat treatment), and further heating at 1273K (1000 ° C) for 10 hours, followed by gas-fan cooling (second heat treatment), Samples were obtained and subjected to the following tests.
  • the samples ⁇ .5;! To 58 and ⁇ .63 to 67 according to the present invention have better oxidation resistance than the samples of ⁇ .10. Indicated.
  • the sample of ⁇ ⁇ 67 is superior to the sample of force S and No. 10, which is a sample containing 1.5at% of Zr after adding a specified amount of Co, Cr, Al, Ti, V, Nb.
  • the Ni-based compound superalloy excellent in oxidation resistance can be obtained even in the composition system in which Zr is added to the composition according to the present invention.
  • FIG. 13 shows the results of a tensile strength test performed on the samples Nos. 28, 41, and 65 shown in Tables 2 and 4.
  • the sample used in the tensile test is a sample to which lOOppm of boron (B) is added by Ni substitution.
  • the samples ⁇ ⁇ ⁇ 28, 41, 65 according to the present invention are slightly lower in the temperature range from room temperature to 700 ° C, but from a temperature range exceeding 700 ° C to 1000 ° C. In the temperature range up to 8000, the rate of decrease in tensile strength is less than that of the No. 10 sample. From 1000 ° C, in the temperature range of 1000 ° C, the strength is reversed to be higher than that of the No.
  • Ni-based compound superalloy according to the present invention is suitable as a structural material that requires high-temperature heat resistance, such as an engine that requires high-temperature strength.
  • Fig. 14 shows a metallographic photograph of the surface of No.41 sample magnified 1000 times
  • Fig. 15 shows force S showing the metallographic image of the sample surface magnified 5000 times, and is shown in Figs. 6 and 8 above. Similar to the metallographic image of the sample, the finely grained portion of the metallographic image is the L1 DO — DO structure.
  • the LI -DO —DO phase exists at the grain boundary between Ni A1 (L1) particles.
  • Fig. 16 shows a metallographic image of the surface of No.47 sample magnified 5000 times
  • Fig. 17 shows a metallographic image of the surface of No.48 sample magnified 5000 times
  • Fig. 18 shows the surface of the sample No.52.
  • Fig. 19 is a metallographic image of the surface of the sample No.57 magnified 2500x
  • Fig. 20 is a metallographic image of the surface of the sample No.65 magnified 50x.
  • Fig. 21 shows a metallographic image of the surface of No.65 sample magnified 100 times
  • Fig. 22 shows a metallographic image of the surface of No.65 sample magnified 5000 times.
  • 16 and 17 is 5 111
  • the scale of the white line shown in FIGS. 18 and 19 is 10 111
  • the scale of the white line shown in FIG. 20 is 500 m
  • the scale of the white line shown in FIG. m the scale of the white line shown in Figure 22 is 5 ⁇ m ⁇ ).
  • Fig. 23 shows the results of a room temperature tensile test in the sample No. 65 when the boron addition amount was changed in the form of substitution with Ni.
  • the boron addition amount of the alloy of the present invention is Oppm or more, lOOOppm or less, or less than lOOOppm, considering elongation.
  • Figure 24 shows a metallographic photograph (3000 times, white line scale 5 m) of a sample obtained by adding 25 ppm of boron to the No. 65 sample and homogenizing for 3 hours at 1300 ° C.
  • Fig. 25 shows a metallographic photograph (3000 times, white line scale 5 111) of a sample obtained by adding 25 ppm of boron to the sample No. 65 and homogenizing at 1330 ° C for 3 hours. These samples were cooled after homogenization at 1300 ° C or 1330 ° C for 3 hours, and then as common heat treatment 1100 ° C X 10 hours after heating and 1000 ° C X 10 hours after cooling after heating It is the sample which performed the heat processing to perform.
  • the Ni-base superalloy according to the present invention is used as a structural material that requires high-temperature heat resistance such as an engine, has a slightly lower specific gravity than a conventional Ni-base superalloy, and is excellent in oxidation resistance. Since the tensile strength at high temperature is excellent, the engine efficiency can be improved in an engine to which the Ni-based compound superalloy of the present invention is applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

明 細 書
耐酸化性の優れた Ni基化合物超合金及びその製造方法と耐熱構造材 技術分野
[0001] 本発明は、初析 L1相と(L1相 + D0相(DO 相あるいは DO 相あるいは DO相
2 2 22 24 a を含む) )共析組織力 なる複相構造を具備してなる耐酸化性の優れた Ni基化合物 超合金及びその製造方法に関する。
本願 (ま、 2006年 9月 26曰 ίこ出願された特願 2006— 261569号 ίこ基づき優先権 を主張し、その内容をここに援用する。
背景技術
[0002] 現在、ジェットエンジンやガスタービンのタービン部材といった高温構造材料の主 流は Ni基超合金である。 Ni基超合金は、構成相の約 35vol%以上が金属相( γ )で あるために、融点や高温クリープ強度に限界があるといえる。将来、 Ni基超合金を超 える高温構造材料の候補として、降伏応力の逆温度依存性を示す金属間化合物を 含む高温構造材料を例示できるが、これは単相材では、常温延性に乏しぐ高温タリ ープ強度も低いという欠点がある。単相材ではなく複相材を求めると、 Ni X型金属間
3 化合物はいずれも結晶構造が GCP (最密充填、 Geometrically Close Packed)構造を とること力 、これらの!/、くつかを整合性良く組み合わせることができる可能性がある。
Ni X型金属間化合物には優れた特性を有するものが多いことから、複相化すること
3
により、更に優れた特性を有し、かつ幅広い組織制御の可能性を持つ複相金属間化 合物 マルチインターメタリックス の創製が期待される。
[0003] 従来、複相化合物の作製を Ni A1 (L1 ) -Ni Ti (D0 )—Ni Nb (D0 )系で試み
3 2 3 24 3 a
、優れた特性を有する合金を開発可能であるとの報告があった (非特許文献 1参照)
非特許文献1 : 下00^^&,丫.1¾1116110,1\下&1¾311 ,¾160^1&11 3,10 (2002) 247 発明の開示
発明が解決しょうとする課題
[0004] 前述の Ni基超合金は、エンジンなどの高温耐熱性を要求される構造材料として利 用され、この種の材料が適用されるエンジンにあっては、エンジン効率が燃焼温度と エンジン重量の影響を受けるのであるが、前述の Ni基超合金の密度が 8. 0〜9. Og /cm3と比較的重!/、ために、これよりも若干比重の軽!/、Ni基化合物超合金の開発が 進められている。
このような背景から本願発明者らは、これら従来の Ni基超合金よりも更に特性の優 れた超合金を開発するべぐ研究開発を進めており、その一環として、 A1を 5〜; 13at %、Vを 9. 5—17. 5at%、Ti 0〜3. 5at%、 Bを 1000重量 ppm以下、残部 Ni力も なり、初析 L1相と(L1相 + D0 相)の共析組織からなる 2重複相組織を有する Ni
2 2 22
基化合物超合金の研究開発を行って V、る。
この Ni基化合物超合金は、その密度が 7. 5〜8. 5g/cm3の範囲であって、前述 の Ni基超合金よりは軽量化されており、 1000°C程度までの高温強度も Ni基超合金 とほぼ同等であるとレ、う特徴を有して!/、る。
ところ力 前述の Ni基化合物超合金は、耐酸化性が劣るという問題があった。
[0005] 本発明は前記課題を解決するために、 Ni基超合金よりも軽量化されており、 1000
°C程度までの高温強度も Ni基超合金とほぼ同等であり、し力、も耐酸化性に優れた Ni 基化合物超合金を提供することを目的とする。
課題を解決するための手段
[0006] 上記目的を達成するために、本発明は以下の構成を採用した。
(1)本発明の耐酸化性の優れた Ni基化合物超合金は、 Al:5at%より大、 13at%以 下、 V:3at%以上、 9. 5at%以下、 Ti:0at%以上、 3. 5at%以下、残部は不純物を 除き Niからなり、初析 L1相と(L1相 + D0 相及びまたは DO 相及びまたは DO相
2 2 22 24 a
)の共析組織からなる複相構造を有してなることを特徴とする。
(2)本発明の耐酸化性の優れた Ni基化合物超合金は、前記組成に加え、 Nb:3at %以上、 9. 5at%以下を含み、前記 Vの含有量が前記 Nbの含有量以上とされてな ることを特徴とする。
(3)本発明の耐酸化性の優れた Ni基化合物超合金は、図 2に示す Ni Al— Ni Ti—
3 3
Ni V擬 3元系状態図において、 A点(Al: 14· 0at%、Ti:0at%、 (V + Nb) :11. 0a
3
t%、 Ni:75at%)、 B点(Α1:12· 5at%、Ti:2. 8at%、 (V + Nb) :9. 8at%、Ni:7 5at%)、 C点(Α1:8· 0at%、Ti:3.8at%、 (V+Nb) :13.3at%、 Ni: 75at%)、 D 点(Al:2.3at%、Ti:2. Oat%、 (V+Nb) :20.8at%、 Ni: 75at%)、 E点(Al : 2. 0at%、Ti:0at%、 (V+Nb) :23. Oat%、 Ni : 75at%)を結ぶ範囲の組成で示され る初析 L1相と(L1相 + D0 相及びまたは DO 相及びまたは DO相)の共析組織
2 2 22 24 a 力、らなる複相構造を有してなることを特徴とする。
[0007] (4)本発明の耐酸化性の優れた Ni基化合物超合金は、前記組成に加え、 Co: 15at %以下、 Cr: 5at%以下の少なくとも 1種または 2種以上を含むことを特徴とする。
(5)本発明の耐酸化性の優れた Ni基化合物超合金は、(1)または(2)または(4)の いずれかに記載の組成に加え、 B: 1000重量 ppm以下を含むことを特徴とする。
(6)本発明の耐酸化性の優れた Ni基化合物超合金は、初析 L1相と(L1相 + D0
2 2 22 相及びまたは DO 相及びまたは DO相)との共析組織からなる 2重複相組織を有し
24 a
ていることを特徴とする。
(7)本発明の耐酸化性の優れた耐熱構造材は、(1)〜(6)のいずれかに記載の Ni 基化合物超合金からなることを特徴とする。
[0008] (8)本発明の耐酸化性の優れた Ni基化合物超合金の製造方法は、 Al: 5at%より大 、 13at%以下、 V:3at%以上、 9.5at%以下、 Ti:0at%以上、 3.5at%以下、残部 は不純物を除き Niからなる組成の合金材に対して、初析 L1相と A1相が共存する温
2
度で第 1熱処理を行い、その後、 L1相と DO 相及びまたは DO 相及びまたは DO
2 22 24 a 相とが共存する温度に冷却する力、、その温度で第 2熱処理を行うことによって、 A1相 を(L1相 + D0 相及びまたは DO 相及びまたは DO相)の共析組織に変化させて
2 22 24 a
複相組織を形成することを特徴とする。
(9)本発明の耐酸化性の優れた Ni基化合物超合金の製造方法は、前記組成に加 え、 Nb:3at%以上、 9.5at%以下、前記 Vの含有量が前記 Nbの含有量以上とされ てなる組成の合金材を用いることを特徴とする。
( 10)本発明の耐酸化性の優れた Ni基化合物超合金の製造方法は、図 2に示す Ni
3
Al— Ni Ti-Ni V擬 3元系状態図において、 A点(Α1:14· Oat%、 Ti:0at%、 (V
3 3
+ Nb) :11. Oat%、 Ni:75at%)、 B点(Α1:12· 5at%、Ti:2.8at%、 (V + Nb) :9 .8at%、 Ni:75at%)、 C点(Α1:8· 0at%、Ti:3.8at%、 (V + Nb) :13.3at%、 N i:75at%)、 D点(Α1:2· 3at%、Ti:2. Oat%、 (V+Nb) :20.8at%、 Ni: 75at%) 、E点(Α1:2· 0at%、Ti:0at%、 (V+Nb) :23. Oat%、 Ni: 75at%)を結ぶ範囲の 組成の合金材に対して、初析 L1相と A 目が共存する温度で第 1熱処理を行い、そ
2
の後、 L1相と DO 相及びまたは DO 相及びまたは DO相とが共存する温度に冷却
2 22 24 a
する力、、その温度で第 2熱処理を行うことによって、 A1相を(L1相 + D0 相及びまた
2 22 は DO 相及びまたは DO相)の共析組織に変化させて複相組織を形成することを特
24 a
徴とする。
[0009] (11)本発明の耐酸化性の優れた Ni基化合物超合金の製造方法は、前記合金材と して、前記組成に加え、 Co:15at%以下、 Cr:5at%以下の少なくとも 1種または 2種 以上を含むものを用いることを特徴とする。
(12)本発明の耐酸化性の優れた Ni基化合物超合金の製造方法は、前記合金材と して、前記組成に加え、 B: 1000重量 ppm以下を含むものを用いることを特徴とする
(13)本発明の耐酸化性の優れた Ni基化合物超合金の製造方法は、前記第 1熱処 理は、前記合金材を図 1の第 1状態にする温度で行うことを特徴とする。
(14)本発明の耐酸化性の優れた Ni基化合物超合金の製造方法は、前記第 2熱処 理は、 1173K〜; 1273Kで fiうことを特 ί毁とする。
発明の効果
[0010] 本発明によれば、 Al:5at%より大、 13at%以下、 V:3at%以上、 9.5at%以下、 T i:0at%以上、 3.5at%以下、残部は不純物を除き Niからなり、初析 L1相と(L1相
2 2
+ D0 相及びまたは DO 相及びまたは DO相)共析組織からなる複相構造を具備
22 24 a
してなるので、一般的な従来の Ni基超合金よりも比重が若干軽ぐ 1000°C程度まで の高温強度も Ni基超合金並に優れ、し力、も耐酸化性に優れている。
本発明の製造方法によれば、初析 L1相と(L1相 + D0 相及びまたは DO相)の
2 2 22 a 共析組織力 なる複相構造を具備し、一般的な従来の Ni基超合金よりも比重が若干 軽ぐ 1273K(1000°C)程度までの高温強度も Ni基超合金並に優れ、し力、も耐酸化 性に優れている Ni基化合物超合金を製造することができる。
図面の簡単な説明 [図 1]図 1は本発明に係る Ni基化合物超合金の基本となる組成系合金の一具体例に ついての Ti含有量 2. 5at%の際の温度と A1含有量に関する縦断面状態図である。
[図 2]図 2は本発明に係る Ni基化合物超合金とその基本となる組成系合金の種々の 具体例から作製された 1273Kにおける Ni Al-Ni Ti— Ni V擬 3元系状態図である
3 3 3
[図 3]図 3は本発明に係る Ni基化合物超合金の具体例から得られた各試料の降伏応 力と温度との関係を示す圧縮試験結果のグラフである。
[図 4]図 4は本発明に係る Ni基化合物超合金の具体例から得られた各試料の焼成時 間と重量増加量との関係を示す酸化試験結果のグラフである。
[図 5A]図 5Aは実施例で製造された Νο·21、 22、 23の各試料の金属組織写真であ
[図 5Β]図 5Βは実施例で製造された No.21の試料の金属組織写真 (倍率 5000倍)で ある。
[図 6]図 6は実施例で製造された No.28の試料の金属組織写真 (倍率 1000倍)であ
[図 7]図 7は同試料の視野を変えて撮影した金属組織写真である。
[図 8]図 8は同試料の複相構造部分を 2500倍にて拡大撮影した金属組織写真であ
[図 9]図 9は各試料の耐酸化性試験結果を示すグラフである。
[図 10]図 10は本発明に係る Ni基化合物超合金の具体例から得られた No.41〜48 の各試料の焼成時間と重量増加量との関係を示す酸化試験結果のグラフである。
[図 11]図 11は本発明に係る Ni基化合物超合金の具体例から得られた No.51〜58 の各試料の焼成時間と重量増加量との関係を示す酸化試験結果のグラフである。
[図 12]図 12は本発明に係る Ni基化合物超合金の具体例から得られた No.63〜67 の各試料の焼成時間と重量増加量との関係を示す酸化試験結果のグラフである。
[図 13]図 13は Νο·28、 41、 65の各試料の引張試験結果を示すグラフである。
[図 14]図 14は Νο.41の試料の金属組織を 1000倍に拡大した金属組織写真。
[図 15]図 15は Νο.41の試料の金属組織を 5000倍に拡大した金属組織写真。 [図 16]図 16は No.47の試料の金属組織を 5000倍に拡大した金属組織写真。
[図 17]図 17は Νο.48の試料の金属組織を 5000倍に拡大した金属組織写真。
[図 18]図 18は Νο.52の試料の金属組織を 2500倍に拡大した金属組織写真。
[図 19]図 19は Νο.57の試料の金属組織を 2500倍に拡大した金属組織写真。
[図 20]図 20は Νο.65の試料の金属組織を 50倍に拡大した金属組織写真。
[図 21]図 21は No.65の試料の金属組織を 1000倍に拡大した金属組織写真。
[図 22]図 22は No.65の試料の金属組織を 5000倍に拡大した金属組織写真。
[図 23]図 23は No.65の試料に対し B添加量を変更した場合の各試料に対する引張 試験結果を示す応力 歪線図。
[図 24]図 24は No.65の試料に対し Bを 25ppm添加した試料において 1300°Cで 3時 間均質化処理して得られた試料の金属組織写真。
[図 25]図 25は No.65の試料に対し Bを 25ppm添加した試料において 1330°Cで 3時 間均質化処理して得られた試料の金属組織写真。
発明を実施するための最良の形態
[0012] 以下、本発明の実施の形態を図面を用いて説明するが、本発明は以下に説明する 各実施の形態に制限されるものではない。
本願発明に係る Ni基化合物超合金は、 Al : 5at%より大、 13at%以下、 V : 3at% 以上、 9. 5at%以下、 Nb : 3at%以上、 9. 5at%以下、 Ti: 0at%以上、 3. 5at%以 下、残部は不純物を除き Niからなり、前記 Vの含有量が前記 Nbの含有量以上とされ てなり、初析 L1相と(L1相 + D0 相及びまたは DO 相及びまたは DO相)共析組 織からなる複相構造を具備してなることを特徴とする。
前記 Ni基化合物超合金において、前記組成に加えて Co : 15at%以下を含んでい ても良く、前記組成に加え、 Cr : 5at%以下を含んでいても良ぐ前記組成に加え、 B : 1000重量 ppm以下を含んでいても良い。また、前記組成に加え、初析 L1相と(L
1相 + D0 相及びまたは D0 相及びまたは DO相)共析組織からなる複相構造を 具備してなることが好ましぐ初析 L1相と(L1相 + D0 相及びまたは DO 相及び または DO相)共析組織とからなる 2重複相組織とされて!/、ること力 S最も好ましレ、。
[0013] このような Ni基化合物超合金は、 Al : 5at%より大、 13at%以下、 V: 3at%以上、 9 . 5at%以下、 Nb : 3at%以上、 9. 5at%以下、 Ti : 0at%以上、 3. 5at%以下、残部 は不純物を除き Niからなり、前記 Vの含有量が前記 Nbの含有量以上とされてなる組 成の合金材を溶製し、溶体化処理 (均質化処理)後、初析 L1相と A1相が共存する
2
温度で第 1熱処理を行い、その後、初析 L1相と DO 相及びまたは DO 相及びまた
2 22 24 は DO相とが共存する温度に冷却する力、、その温度で第 2熱処理を行うことによって 、A 目を(LI +DO 及びまたは DO相)共析組織に変化させて複相組織を形成す
2 22 a
ることにより製造すること力 sでさる。
[0014] ここで図 1に本発明組成系に係る合金の縦断面状態図を示す。図 1において横軸 は A1含有量 (at%)を示し、縦軸は絶対温度 (K)を示す。図 1に示す状態図は、 Ti含 有量 2· 5at%であり、 V含有量は、(22· 5— A1含有量) at%である。また、図 2は本 発明組成系に係る種々の具体例から作成された 1273Kにおける Ni Al-Ni Ti— N
3 3 i V擬 3元系状態図である。
3
[0015] 本実施形態において溶体化処理 (均質化処理)を行うとは、図 1の A1で示された領 域の温度に加熱して保持する処理を意味する。前記 A1で示された領域において、例 えば、 Al : 5〜; 10at%の範囲であるならば、國印と△印の間の温度である。
[0016] 本実施形態において最初に、合金材に対して溶体化熱処理 (均質化熱処理)を行 つてもよい。均質化熱処理は、通常は、後工程で行う第 1熱処理の温度よりも高い温 度で行われる。均質化熱処理は、 1523〜; 1623K程度で行うことが好ましい。但し、 第 1熱処理を均質化熱処理と兼ねてもょレ、。
本実施形態において合金材に対し均質化熱処理後に第 1熱処理を行う。この第 1 熱処理は、初析 L1相と A1相とが共存する温度で行われる。初析 L1相と A1相とが
2 2
共存する温度とは、具体的には、合金材が図 1の A1 + L1 の状態になる温度、即ち、
2
図 1に示す Al : 5〜; 10at%の範囲であるならば、△印と〇印の間の温度である。 本実施形態において初析 L1相と A1相が共存する温度で第 1熱処理を行うとは、
2
図 1の A1 + L1 と記載された領域において、熱処理することを意味する。 L1相とは N
2 2 i A1型金属間化合物相であり、 A1相は fee型 Ni固溶体相である。
3
この状態により、後述の実施例の結果などから、立方体状もしくは直方体状の初析 L1相力 S、初析 L1相の間に A1相が存在する組織を呈する。このような初析 L1相と その間隙の相とからなる組織を「上部複相組織」と呼ぶことができる。
前記第 1熱処理を行う時間は特に限定されないが、合金材全体が初析 L1相と A1
2 相とからなる組織になる程度の時間を行うことが望ましい。第 1熱処理を行う時間は例 えば 5〜20時間である。
[0017] 前記第 1熱処理後の合金材に対し、 LI +DO で示された領域において第 2熱処
2 22
理するとは、例えば、 Al : 5〜; 10at%の範囲であるならば、図 1の ·印の温度以下で 熱処理することである。図 1で ·印の温度は 1281Kである力 この温度は合金材の 組成に応じて変化する。この第 2熱処理によって初析 L1相は殆ど影響を受けないが
2
、A1相は L1相と DO 相及びまたは DO 相及びまたは DO相に分離する。 A1相が
2 22 24 a
分離して形成された L1相と DO 相及びまたは DO 相及びまたは DO相を主体とす
2 22 24 a
る複相組織を以下、「下部複相組織」と称する。
[0018] 第 1熱処理後に第 2熱処理を行う場合、冷却は、 自然冷却でも良ぐ水焼き入れな どの強制冷却でも良い。 自然冷却は、例えば第 1熱処理後に熱処理炉から合金材を 取り出して室温に放置することにより行っても良いし、第 1熱処理後に熱処理炉のヒ 一ター電源を落としてそのまま熱処理炉内に合金材を放置することによって行っても 良い。
第 2熱処理を行う温度は、例えば、 1173〜; 1281K程度である。第 2熱処理を行う 時間は,例えば 5〜20時間程度である。第 2熱処理を行わずに単に水焼入れ等の冷 却を行うことによつても A1相を L1相と DO 相に分離させることはできる力、比較的高
2 22
い温度での熱処理により,この分離をより確実にすること力 Sできる。第 2熱処理の後は 、 自然冷却又は強制冷却によって、室温にまで合金材を冷却してもよい。なお,本明 細書において、「〜」は、特に銘記しない限り端の点を含むものとする。
[0019] 以下に本発明に係る Ni基化合物超合金の各成分を限定した理由につ!/、て説明す
Al : 5at%より大、 13at%以下、 V : 3at%以上、 9. 5at%以下と規定した理由は、 図 1の縦断面状態図、図 2の状態図や、後述する具体例から明らかになるように、こ の範囲であれば、初析 L1相と A1相とが共存する温度で第 1熱処理を行うことができ
2
、かつ、 L1相と DO 相及びまたは DO 相及びまたは DO相とが共存する温度に冷
2 22 24 a 却するか、この温度で第 2熱処理を行うことができて、複相組織を形成することができ る力、らである。
[0020] Nbの含有量は、 3at%以上、 9. 5at%以下の範囲で良いが、前述の Vの含有量と 等しいか、あるいは、よりも少ないこと、換言すると、 V量が Nb量と等しいか、 Nb量より も多いことが必要である。これは、本実施形態の Ni基化合物超合金においては、耐 酸化性を向上させるために Vの一部を Nbに置換しているものであり、 Vの一部を Nb で置換する量を増加するほど耐酸化性は向上する。なお、本願発明者らが研究して いる A1を 5〜; 13at%、 Vを 9. 5—17. 5at%、Ti 0〜3. 5at%、 Bを 1000重量 ppm 以下、残部 Niからなり、初析 L1相と(LI +D0 及びまたは DO 相及びまたは DO
2 2 22 24 a 相)共析組織からなる 2重複相組織を有する Ni基化合物超合金に比べて Vを少なく して Nbを添カロし、 A1を増量している点が異なる。
[0021] Co、 Crは耐酸化性の向上に寄与する元素であり、 Coは Oat%以上、 15at%以下の 範囲で添加することが好ましぐ Crは Oat%以上、 5at%以下の範囲で添加すること が好ましい。
Coは Niに全率固溶する元素であるので、組織中の Niが構成する金属間化合物、 Ni Al、 Ni V、 (Ni Ti)等の内部に含まれる。 Ni基合金の特性を維持するために、
3 3 3
添加量は最大で 15at%とする。
Crは耐酸化性向上に有効である力 Ni A1への固溶量が少ないため、 5at%を超
3
える量を添加しても不要な析出物を生成するおそれがあるので、上限を 5at%とする ことが好ましい。
[0022] Vは酸素との結合力が強ぐ合金材の表面を酸化し易いので、この V量を低下する ことにより耐酸化性を向上させ得る。同時に、 Vはそれと荷電子数の等しい Nbに置き 換えること力 Sできる。また、 A1を増量することにより表面に緻密なアルミナの緻密な酸 化皮膜を生成できる。また、 V量の減量により耐酸化性は向上する力 V量よりも Nb 量が多くなると、複相組織を得ることが難しくなる。従って V量を Nb量よりも多くする必 要がある。
Tiの含有量は、 Oat%以上で 3. 5at%以下であり、好ましくは 0. 5〜3. 5at%以下 であり、さらに好ましくは 1〜3· 5at%、最も好ましくは 2〜3at%である。本発明の Ni 基化合物超合金は、 Tiを含んでいることが好ましいが、含んでいなくてもよい。
Niの含有量は、好ましくは 73〜77at%であり、さらに好ましくは 74〜76at%である 。このような範囲であれば、 Niの含有量と(Al、 Ti、 V)の含有量の合計が 3: 1に近く なり、 Ni、 Al、 Ti又は Vの固溶体相が実質的に存在しないからである。
[0023] Bの含有量は、 0重量 ppm以上、 1000重量 ppm以下であり、好ましくは、 1— 1000 重量 ppm、さらに好ましくは;!〜 500重量 ppm、より好ましくは 5〜; 100重量 ppmであ る。本発明の Ni基化合物超合金は、 Bを含んでいることが好ましいが、含んでいなく てもよい。
前記組成の各添加元素の他に、本発明では、 Moを l〜2at%含有させても良い。
Moは高温強度の向上に効果のある元素であり、 Vに全率固溶する元素である。その 添加量は、 V〉Mo + Nbであることが好ましい。また更に、延性を向上させる方法とし て、結晶粒界を強化させる方法が考えられる。そのためには、 C、 Zr、 Hfといった元 素を最大で 0. 2at%まで微量添加することが可能となる。また、 0. 2at%以下の微量 範囲で C、 Zr、 Hfのいずれかの元素を含有させても良い。
[0024] 本発明の Ni基化合物超合金は、上述のような上部複相組織と下部複相組織とを含 む複相組織を呈しており、これらの複相組織からなる 2重複相組織を有して!/、ること が最も望ましい。
本発明の Ni基化合物超合金は、高温での機械的特性が優れ、耐酸化性にも優れ ていることが後述の実施例において実験的に実証される力 S、これらの優れた特性は、 上部複相組織と下部複相組織とを含む複相組織を呈していることが原因となっており 、更に好ましくは、前記上部複相組織と下部複相組織の 2重複相組織を有しているこ と力 より優れた特性を得る上での要因となっていると考えられる。
なお、これらの複相組織あるいは 2重複相組織が本発明に係る Ni基化合物超合金 の全体を構成していることが望ましいが、全体がこの組織である必然性はなぐ少なく とも一部に、あるいはより好ましくは全組織の 50%以上が複相組織となっていれば良 い。
[0025] また、本発明の Ni基化合物超合金に用いられる金属間化合物は、他の 3つの構成 相(DO 相と DO 相と DO相)に比べて結晶構造が単純であって、そのために比較
22 24 a 的転位が活動しやすい初析 LI相を有しており、室温を含む全温度範囲においてあ
2
る程度の延性を有していると考えられ、そのため、取り扱いが容易であるという利点が ある。
本発明の Ni基化合物超合金は、高温での機械的特性が優れているので、耐熱構 造材として利用可能である。また、成分元素のうち、 Vの一部を Nbに置換して耐酸化 性を高め、更に Coと Crを適量添加することによつても耐酸化性を高めている。
また、 Vの一部を Nbに置換する組成にすると、多少軽量化の面では不利であるが 、一般的な Ni基超合金よりも 0. 5g/cm3程度は軽量化できる。
以上説明の Ni基化合物超合金は、 1523K (1250°C)より少し低温側の温度域、例 えば 1273K〜; 1373K (1000〜; 1100°C)までの高温度域においての有効利用が可 能であり、ターボチャージヤー、エンジンの低圧タービン翼などに好適である。これら の温度域において高温強度が高い場合、同じ耐圧で軽量化できる効果があり、ェン ジン効率や燃費などの面で有効である。
[0026] 本発明の Ni基化合物超合金を製造するのに用いる合金材は、铸造材、鍛造材又 は単結晶材などからなる。铸造材は、予め秤量した地金を溶解(アーク溶解、高周波 溶解など)した後、铸型に流し込んで、凝固させることによって作製することができる。 铸造材は、通常、数百ミクロン〜数ミリオーダーの結晶粒を有する多結晶であり、結 晶粒と結晶粒の間の境界 (結晶粒界)で破壊されやすいという弱点と、引け巣等の铸 造欠陥があるという弱点を有している。この弱点を改善するの力 鍛造材である。鍛 造材は、铸造材に対して熱間鍛造及び再結晶焼鈍を行うことによって作製される。熱 間鍛造及び再結晶焼鈍は、通常は、第 1熱処理の温度よりも高い温度で行われる。
[0027] 熱間鍛造及び再結晶焼鈍を行う温度は、同じであっても互いに異なっていてもよい 。熱間鍛造は、 1523〜; 1623K程度で行い、再結晶焼鈍は、 1423〜; 1573K程度 で行うことが好ましい。第 1熱処理の前に、合金材に対して均質化熱処理を行っても よい。均質化熱処理は、通常は、第 1熱処理の温度よ も高い温度で行われる。均質 化熱処理は、 1523〜; 1623K程度で行うことが好ましい。但し、第 1熱処理を均質化 熱処理と兼ねてもよい。また、鍛造材の場合は、熱間鍛造及び再結晶焼鈍を均質化 熱処理と兼ねてもよい。均質化熱処理を行う時間は限定されないが,例えば, 24〜9 6時間程度である。合金材が多結晶材 (铸造材又は鍛造材など)の場合は、合金材 に Bを含有させることが好ましい。これによつて、結晶粒界が強化されるからである。 铸造材、鍛造材及び単結晶材を熱処理して作製した複相組織を有する Ni基化合 物超合金にっレ、て圧縮試験や引張試験を行えば、レ、ずれにお!/、ても優れた機械特 十生を得ること力 Sでさる。
実施例
[0028] 以下、本発明の Ni基化合物超合金の種々の具体例について説明する。
以下の具体例では、熱処理を施すことによって複相組織を有する Ni基化合物超合 金を作製し、その機械的特性を調べた。
以下の具体例において、 1373Kでの熱処理は、初析 L1相と A1相とが共存する
2
温度での第 1熱処理(1次析出熱処理)に相当し、 1373Kでの熱処理を行った後に 行う水焼入れは、 L1相と DO 相とが共存する温度への冷却に相当する。また、 137
2 22
3Kでの熱処理を行った後に行う 1173K又は 1273Kでの熱処理は、 L1相と DO
2 22 相とが共存する温度での第 2熱処理(2次析出熱処理)に相当する。
[0029] 铸造材の作製方法
本発明組成系の試料の作成に先立ち、本発明類似合金の組成範囲を規定するた めの铸造材として、表 1の No. ;!〜 20に示す割合の Ni、 Al、 Ti、 Vの地金(それぞれ 純度 99. 9重量%)をアーク溶解炉で溶製した。アーク溶解炉の雰囲気は、まず、溶 解室内を真空排気し、その後不活性ガス(アルゴンガス)に置換した。電極は、非消 耗タングステン電極を用い、铸型には水冷式銅ハースを使用した。また、これらの他 に添加元素を含有させる場合は、地金内に必要な合金組成に応じて Co、 Cr、 Mo、 B、 C、 Hfなどの元素を添加した地金を用いるか溶解時に別途これらの元素の铸塊 を追加すればよい。
以下の説明では、上記铸造材を「試料」と呼ぶ。
[0030] 本発明に係る Ni基化合物超合金を実際に作製するにあたり、本発明の Ni基化合 物超合金の基本組成系の状態図を得るために、 Ni、 Al、 Ti、 Vの地金を用いて表 1 に示す各組成の No.;!〜 20の試料を作成した。
図 1の縦断面状態図によれば、 A1量 5at%より大で 13at%以下の組成の試料は、 1373Kでは Al+Ll相という Ni基超合金の組織になり、共析温度(1281K)以下 の温度に冷却することによって A1→L1 +DO , DO , DOという共析反応が起こり
、初析 L1相と(LI +DO , DO , DO )共析組織からなる 2重複相組織が形成され るということが分かる。
[表 1]
Figure imgf000016_0001
rhombohedralを「rhojと表記する。
[0032] 表 1及び図 1によると, No. l~No. 20の試料には, LI 、 DO 、 DO 、 rhomboh
2 22 24
edral以外の相が存在していなかったことが分かる。各相は、 Ni量をほぼ 75at%に 保っていた。また、各相は、単相もしくは複相として平衡状態になっていた。 5つの 2 相共存領域と、 2つの 3相共存領域が見られた。低 Ti含有量領域に存在する L1
2
DO DO 相共存組織は、状態図の 3つの頂点に位置する構成相が直接平衡して
22 24
V、る興味深レ、組織であった。
[0033] 次に図 1に示す状態図に従い、 1273Kにおける Ni Al— Ni Ti— Ni V擬 3元系状
3 3 3
態図を求めた。
No. ;!〜 No. 20の試料を石英管に真空封入し、これらの試料のそれぞれに対して 1273K X 7日間の熱処理を施し、その後、水焼入れを行った。その後、 1273Kでの 状態図を作成するために、 No. ;!〜 No. 20の試料のそれぞれについて、組織観察 及び各構成相の分析を行った。組織観察は、 OM (Optical Microscope)、 SEM、 TE Mを用いて行い、各構成相の分析は、 SEM - EPMA (Scanning Electron Microsco pe-Electron Probe MicroAnalyzer)により行った。前記観察及び分析の結果を表 1に 示し、前記観察及び分析によって得られた 1273Kにおける Ni Al— Ni Ti— Ni V擬
3 3 3
3元系状態図を図 2に示す。
[0034] 図 2に示す A点、 B点、 C点、 D点、 E点で囲まれた組成範囲が、複相組織あるいは
2重複相組織を確実に呈する領域である。
本発明では、前記の組成範囲において、 Vの量を少なくして Vの一部を Nbに置換 してゆく形で実現するので、特に、図 2に示す Ni Al— Ni Ti— Ni V擬 3元系状態図
3 3 3
において、 A点(A1 : 14· 0at%、Ti : 0at%、 (V + Nb) : 11. Oat%、 Ni: 75at%)、 B 点(Α1 : 12· 5at%、Ti : 2. 8at%、 (V+Nb) : 9. 8at%、 Ni : 75at%)、 C点(Al : 8. 0at%、Ti : 3. 8at%、 (V+Nb) : 13. 3at%、 Ni : 75at%)、 D点(Al : 2· 3at%、 Ti : 2. Oat%、 (V+Nb) : 20. 8at%、 Ni : 75at%)、 E点(Al : 2· Oat%、 Ti : Oat%、 (
V + Nb) : 23. Oat%、 Ni : 75at%)を結ぶ範囲の組成とすることで複相組織あるいは 2重複相組織を確実に呈する目的の Ni基化合物超合金が得られる。
[0035] 更に、図 2に示す Ni Al— Ni Ti— Ni V擬 3元系状態図を元に、本願発明組成系
3 3 3
の Ni基化合物超合金の組成と組織を調べるために、以下の表 2に示す組成比の試
Figure imgf000018_0002
Figure imgf000018_0001
SU D¾¾036 [0037] 表 2に示す組成比の各試料を溶製し、真空炉にて 1573K(1300°C)で 10時間熱 処理した。この処理が均質化処理に相当する。次に、ガスファンクーリングにより炉に アルゴンガスを入れて攪拌冷却した。次いで 1373K(1100°C)で 10時間ガスファン 冷却し(第 1の熱処理)、更に 1273K(1000°C)にて 10時間ガスファン冷却し(第 2の 熱処理)、各試料を得、以下の圧縮試験に供した。
[0038] 「圧縮試験」
表 2に示す No.21、 22、 28の試料を用い、圧縮試験は、常温〜 1273Kの範囲で、 2X 2 X 5mm3の角状の試験片を用いて、真空中、ひずみ速度 3.3X10— —1の条 件で fiつた。その結果を図 3ίこ示す。図 3ίこ (ま 298Κ、 673Κ, 773Κ、 873Κ、 973Κ 、 1073Κ、 1173Κ、 1273Kの各温度において測定した 0· 2%降伏応力(MPa)を 示す。
図 3に示す圧縮試験結果から、 0.2%降伏応力において、 1273K(1000°C)にお いても 300MPaの値を確保することができること、 300K〜1073Kまでの温度範囲に おいて 600MPaを超える降伏応力値を確保できることが判明した。従って本発明試 料では高温強度の優れた特性が得られた。
[0039] 「酸化試験」
図 4は Νο·2;!〜 28の各試料(サイズ 10 X 10 X 10mm)を大気中にお!/、て 1000°C で所定時間焼成した場合の剥離を含む重量増加量を測定した結果を示す。
また、図 4に表 1の No.10の試料(Al:7.5%)と CMSX— 4試料(米国 Cannon-Mu skegon社:商品名)(Ti:l.0重量%、じ0:9.0、Cr:6.5、Μο:0· 6、 Al:5.6、Ta: 6.5、Hf:0.10、希土類(Re)3.0、残部 Ni)と、 Al: 14%の試料 (Al: 14%、 Ti: 2. 5%、V:8.5%、 Ni:75%)、 Co:5%の試料(Co:5%、 Al:7.5%、Ti:2.5%、V:
[0040] 図 4において、焼成時間は左のプロットから順に、 24時間、 50時間、 100時間、 20 0時間、 400時間、 500時間の 6種類である。
図 4に示す結果から、 A1: 14%試料、 Co: 5%試料に比較し、 Νο·2;!〜 28の試料 はいずれにおいても重量増加が抑制されていることが明らかである。なお、 CMSX— 4試料は Ni基超合金として著名な合金である力 S、この合金試料よりも No.22、 23、 28 の試料は明らかに耐酸化性に優れている。また、 No.21の試料は 400時間以下では CMSX— 4試料よりも耐酸化性に優れている。また、 No.24、 25の試料は 200時間 までは CMSX— 4試料よりも優れている。
また、本発明者らが研究している Ni Al-Ni Ti-Ni V系の合金の試料(図 4の Al
3 3 3
: 7. 5%試料)に比べ、概ね!/、ずれの試料も耐酸化性にっレ、ては優れて!/、ることカ 判明した。
[0041] 「金属組織について」
図 5に No.21の試料の金属組織写真(図 5 (A)参照)と同試料の金属組織写真の 部分拡大(5000倍)(図 5 (B)参照)、 No.22の試料の金属組織写真(図 5 (A)参照) と No.23の試料の金属組織写真(図 5 (A)参照)を示す。図 5 (A)に示す各試料写真 の倍率は 100倍、各写真に縮尺として 100 mの白線を記載している。
No.21の試料写真では濃淡が薄いので判別し難いが、ほぼ全体に Ni A1 (L1 )相
3 2 の存在を確認することができた。同試料の金属組織写真の部分拡大(5000倍)から 、初析 L1相と(LI +D0 )共析組織とからなる 2重複相組織になっていることが明
2 2 22
瞭になった。
No.22、 23の試料写真では明確に Ni A1 (L1 )相が表示されている力 Ni A1 (L1
3 2 3
)相の量が少なくなつていることが明らかである。写真の如く Ni A1 (L1 )粒子の量が
2 3 2
減少してゆくと、複相組織を形成することが出来難くなる傾向となる。 (No.21の試料 は表 2に示す如く V: 7at%、 Nb3at%、 No.22の試料は V、 Nb : 5at%、 No.23の試 料は V: 0at%、 Nb : 10at%の試料である。 )
これらの金属組織において、複相組織を含むもの、あるいは 2重複相組織を含むも のは、高温でも大きな組織変化が生じにくぐ安定なので高温強度が高い。そして、 これらの複相組織をできるだけ微細かつ整合よく配置した組織とすることが、より高温 における優れた機械特性の組織にできる上で重要である。
[0042] 図 6と図 7は No.28の試料の金属組織写真(1000倍)を示し、図 8は同試料の金属 組織写真の部分拡大(2500倍)を示す。
図 6に示す金属組織写真の微細粒状の部分が L1 D0 — DO組織であり、写真
2 24 a
組織の大部分を占めている。この微細粒状部分を 2500倍に拡大すると図 8に示す 如く不定形の Ni A1 (L1 )粒子が多数敷き詰められた組織状態となっていることを確
3 2
認できた。なお、 Ni A1 (L1 )粒子が多数敷き詰められた組織状態において Ni Al (
3 2 3
LI )粒子間の粒界には図 5で示した試料と同様に L1 DO — DO相が存在して
2 2 24 a
いることは、明らかである。
以上の組織写真から、 No.28の試料の如く Vと Nbの複合添加に加えて、 Cr、 Coを 複合添加した試料にあっても複相組織を有していることが明らかである。
なお、図 6と図 7の金属組織写真においては、左下側に Ni Ti相が見えているが、こ
3
のような粗大な板状形態の Ni Ti相は存在しな!/、方が好まし!/、。
3
[0043] 「比重計測」
また、 No.21の言式斗の 匕重 (ま 7· 90、 No.22の言式斗の 匕重 (ま 7· 95、 No.23の言式 料の比重は 8.07、 No.24の試料の比重は 7.90、 Νο·25の試料の比重は 7. 87、 No .26の試料の比重は 7. 88、 No.27の試料の比重は 7. 8、 No.28の試料の比重は 7 . 86であり、一般的な Ni基超合金の MarM247 (登録商標): 8. 54g/cm3や CMS X— 4 (登録商標): 8. 70g/cm3に比べて軽量化できていることが明らかである。
[0044] 次に、図 2に示す Ni Al-Ni Ti Ni V擬 3元系状態図を元に、本願発明組成系
3 3 3
の Ni基化合物超合金にお V、て、 A1添加量の影響と Nb添加量の影響と Cr添加の影 響、 Co添加の影響を調べるために、以下の表 3に示す組成比の試料を作成してそ れら試料の特性を評価した。
[0045] [表 3]
/v 0z/-890z,00ifcl:>d OS
Figure imgf000022_0002
Figure imgf000022_0001
[0046] 表 3に示す各組成の試料を表 2に示す試料と同様に作成し、各試料について試験 温度 1000°Cにおける耐酸化性試験を行った結果を図 9に示す。
図 9に示す結果から、本願発明組成系の Ni基化合物超合金において、単に Coや Crを添加した組成系としただけでは、耐酸化性を大きく改善することができないこと が明らかである。また、 A1についても同様のことが明らかになり、本願発明において 先に説明した如く特定の範囲を選択することが重要である。
[0047] 表 4に示す組成比の各試料を溶製し、真空炉にて 1563K (1290°C)で 10時間熱 処理した。この処理が均質化処理に相当する。次に、ガスファンクーリングにより炉に アルゴンガスを入れて攪拌冷却した。次いで 1373K (1100°C)で 10時間加熱後、ガ スフアン冷却し(第 1の熱処理)、更に 1273K (1000°C)にて 10時間加熱後、ガスフ アン冷却し(第 2の熱処理)、各試料を得、以下の各試験に供した。
[0048] [表 4]
Figure imgf000024_0001
表 4に示す試料において、 Νο·41の試料の比重を測定したところ 7· 94であり、 No 5の試料の比重は 8. 01であった。これらに対し、表 1の No.10の試料の比重は 8· 0である。また、前述した如く一般的な Ni基超合金の MarM247 (登録商標)の比 重 8· 54や CMSX— 4 (登録商標)の比重 8· 70に比べて Νο·41、 65の試料は軽量 化できていることが判明した。
[0050] 表 4に示す Νο·4;!〜 48の試料について、各試料(サイズ 10 X 10 X 10mm)を大気 中において 1000°Cで所定時間焼成した場合の剥離を含む重量増加量を測定した 酸化試験結果を図 10に示す。図 10には先の表 1に示した No.10の試料 (A1 : 7. 5
%)の結果も比較例として併記した。
図 10に示す酸化試験結果から、本発明に係る No.4;!〜 48の試料はいずれにおい ても No.10の試料よりも良好な耐酸ィ匕十生を示した。特に、 Νο·28、 41、 46、 42、 47 の試料がこれらの順に優れた耐酸化性を有している。
[0051] 表 4に示す Νο·5;!〜 58の試料、及び、 Νο·63〜67の試料について、同様な酸化 試験を行った結果を Νο· 5;!〜 58の試料については図 11に、 Νο·63〜67の試料に ついては図 12に示した。図 11と図 12には Νο· 10、 28、 41の試料の結果も併記した
図 11、図 12に示す酸化試験結果から、本発明に係る Νο.5;!〜 58の試料、 Νο.63 〜67の試料はいずれにおいても Νο.10の試料よりも良好な耐酸化性を示した。なお 、 Νο·67の試料は、 Co、 Cr、 Al、 Ti、 V、 Nbを規定量添加した上に Zrを 1 · 5at%含 有した試料である力 S、 No.10の試料よりも優れた耐酸化性を示したので、本発明に係 る組成に Zrを添加した組成系においても耐酸化性に優れた Ni基化合物超合金を得 られることが明ら力、となった。
[0052] 次に、表 2、 4に示す No.28、 41、 65の試料について引張強試験を行った結果を 図 13に示す。引張試験に用いた試料は、 Ni置換にてボロン(B)を lOOppm添加し ている試料である。 No.10の試料に対し、本発明に係る Νο·28、 41、 65の試料は、 常温〜 700°Cの温度範囲においては、若干低いものの、 700°Cを超える温度領域か ら 1000°Cまでの温度領域では、 No.10の試料よりも引張強度の低下率が少なぐ 8 00〜; 1000°Cの温度領域においては No.10の試料と逆転してより高強度になってい ることが分かる。従って本発明に係る Ni基化合物超合金は、特に高温強度が要望さ れるエンジンなどの高温耐熱性を要求される構造材料として好適なことが明らかであ [0053] 図 14〜図 22ίこ、表 4ίこ示す試料のうち、 No.41 , 47、 48、 52、 57、 65の各試料の 組織写真を示す。
図 14は No.41の試料の表面を 1000倍に拡大した金属組織写真、図 15は同試料 の表面を 5000倍に拡大した金属組織写真を示す力 S、先の図 6、図 8に示す試料の 金属組織写真と同様に、金属組織写真の微細粒状の部分が L1 DO — DO組織
2 24 a であり、写真組織の全体を占めている。この微細粒状部分を 5000倍に拡大すると図 15に示す如く不定形の Ni A1 (L1 )粒子が多数敷き詰められた組織状態となってい
3 2
ることを確認できた。なお、 Ni A1 (L1 )粒子が多数敷き詰められた組織状態におい
3 2
て Ni A1 (L1 )粒子間の粒界には先の試料と同様に LI -DO —DO相が存在して
3 2 2 24 a いることが明らかである。なお、図 14に示す 11個の白点が示す縮尺は 30 m、図 1 5に示す 11個の白点が示す縮尺は 6 mである。
図 16は No.47の試料の表面を 5000倍に拡大した金属組織写真、図 17は No.48 の試料の表面を 5000倍に拡大した金属組織写真、図 18は No.52の試料の表面を 2500倍に拡大した金属組織写真、図 19は No.57の試料の表面を 2500倍に拡大し た金属組織写真、図 20は No.65の試料の表面を 50倍に拡大した金属組織写真、 図 21は No.65の試料の表面を 100倍に拡大した金属組織写真、図 22は No.65の 試料の表面を 5000倍に拡大した金属組織写真を示す。なお、図 16、図 17に示す 白線の縮尺は 5 111、図 18、図 19に示す白線の縮尺は 10 111、図 20に示す白線 の縮尺は 500 m、図 21に示す白線の縮尺は 10 m、図 22に示す白線の縮尺は 5 μ mであ^)。
これらの金属糸且織写真力、ら、 No.47, 48、 52、 57、 65の!/、ずれの試料にお!/、て も金属組織写真の微細粒状の部分が L1 D0 — DO組織であり、写真組織の全
2 24 a
体を占めていることが明らかとなった。
[0054] 前記 No.65の試料において、 Niに置換する形式でボロン添加量を変化させた場 合の室温引張試験結果を図 23に示す。図 23に示す試料に関して、ボロン未添加(0 ppm)の場合は、塑性伸びが全く無ぐ引張強度も低い。ボロン添加量を 25ppmに 増加させると、伸びが大きくなり塑性伸びを示すとともに、引張強度も高くなつている。 し力、し、ボロンを上限である lOOOppmを超えて添加すると、再び塑性伸びが全く無く 、破断強度も低い状態となる。これらの結果から、本発明合金のボロン添加量は、伸 びを勘案するならば Oppm以上、 lOOOppm以下あるいは lOOOppm未満とすること が望ましい。
[0055] 図 24は No.65の試料にボロンを 25ppm添加した試料において、 1300°Cで 3時 間均質化処理を行った試料の金属組織写真(3000倍、白線縮尺 5 m)を示し、図 25は No.65の試料にボロンを 25ppm添加した試料において、 1330°Cで 3時間均質 化処理を行った試料の金属組織写真(3000倍、白線縮尺 5 111)を示す。これらの 試料は、 1300°Cあるいは 1330°Cで 3時間均質化処理後に冷却後、いずれも共通 の加熱処理として 1100°C X 10時間加熱後冷却する加熱処理と、 1000°C X 10時間 加熱後冷却する加熱処理を施した試料である。
図 24と図 25を比較して明らかなように、 No.65の試料において均質化熱処理温度 を高くすると組織を微細化することが可能である。また、組織を微細化することにより 引張強度の向上効果を見込むことができる。
産業上の利用可能性
[0056] 本発明に係る Ni基超合金は、エンジンなどの高温耐熱性を要求される構造材料と して利用され、従来の Ni基超合金よりも若干比重が軽ぐ耐酸化性に優れ、高温に おける引張強度に優れるので、本発明の Ni基化合物超合金が適用されるエンジン にあっては、エンジンの効率向上を図ることができる。

Claims

請求の範囲
[1] Al:5at%より大、 13at%以下、 V:3at%以上、 9.5at%以下、 Ti: Oat%以上、 3.
5at%以下、残部は不純物を除き Niからなり、初析 L1相と(L1相 + DO 相及びま
2 2 22 たは DO 相及びまたは DO相)の共析組織からなる複相構造を有してなることを特徴
24 a
とする耐酸化性の優れた Ni基化合物超合金。
[2] 前記組成に加え、 Nb: 3at%以上、 9.5at%以下を含み、前記 Vの含有量が前記
Nbの含有量以上とされてなることを特徴とする請求項 1に記載の Ni基化合物超合金
[3] 図 2に示す Ni Al— Ni Ti— Ni V擬 3元系状態図において、 A点(Al: 14· Oat%、
3 3 3
Ti:Oat%、 (V+Nb) :11. Oat%、 Ni: 75at%)、 B点(Al: 12· 5at%、Ti:2.8at% 、 (V+Nb) :9.8at%、 Ni:75at%)、 C点(Α1:8· 0at%、Ti:3.8at%、 (V + Nb): 13.3at%、 Ni:75at%)、 D点(Α1:2· 3at%、Ti:2. Oat%、 (V+Nb) :20.8at% 、 Ni:75at%)、 E点(Α1:2· Oat%、 Ti: Oat%、 (V+Nb) :23. Oat%、 Ni: 75at%) を結ぶ範囲の組成で示される初析 LI相と(L1相 + D0 相及びまたは DO 相及び
2 2 22 24 または DO相)の共析組織からなる複相構造を有してなることを特徴とする耐酸化性 の優れた Ni基化合物超合金。
[4] 前記組成に加え、 Co: 15at%以下、 Cr: 5at%以下の少なくとも 1種または 2種以 上を含むことを特徴とする請求項 2に記載の耐酸化性の優れた Ni基化合物超合金。
[5] 前記組成に加え、 B: 1000重量 ppm以下を含むことを特徴とする請求項 4に記載 の耐酸化性の優れた Ni基化合物超合金。
[6] 初析 L1相と(L1相 + D0 相及びまたは DO 相及びまたは DO相)の共析組織
2 2 22 24 a 力、らなる 2重複相組織を有して!/、ることを特徴とする請求項 1に記載の Ni基化合物超 合金。
[7] 請求項 1〜6のいずれかに記載の Ni基化合物超合金からなることを特徴とする耐 酸化性に優れた耐熱構造材。
[8] Al:5at%より大、 13at%以下、 V:3at%以上、
9.5at%以下、 Ti: Oat%以上、 3.
5at%以下、残部は不純物を除き Niからなる合金材に対して、初析 L1相と A1相が
2
共存する温度で第 1熱処理を行い、その後、初析 L1相と DO 相及びまたは DO 相
2 22 24 及びまたは D0a相とが共存する温度に冷却する力、、その温度で第 2熱処理を行うこと によって、 A1相を(L1相 + DO 相及びまたは DO 相及びまたは DO相)の共析組
2 22 24 a
織に変化させて複相組織を形成することを特徴とする耐酸化性の優れた Ni基化合 物超合金の製造方法。
前記組成に加え、 Nb:3at%以上、 9.5at%以下、前記 Vの含有量が前記 Nbの含 有量以上とされてなる組成の合金材を用いることを特徴とする請求項 8に記載の Ni 基化合物超合金の製造方法。
図 2に示す Ni Al-Ni Ti-Ni V擬 3元系状態図において、 A点(Al: 14· Oat%、
3 3 3
Ti:Oat%、 (V+Nb) :11. Oat%、 Ni: 75at%)、 B点(Al: 12· 5at%、Ti:2.8at% 、 (V+Nb) :9.8at%、 Ni:75at%)、 C点(Α1:8· 0at%、Ti:3.8at%、 (V + Nb): 13.3at%、 Ni:75at%)、 D点(Α1:2· 3at%、Ti:2. Oat%、 (V+Nb) :20.8at% 、 Ni:75at%)、 E点(Α1:2· Oat%、 Ti: Oat%、 (V+Nb) :23. Oat%、 Ni: 75at%) を結ぶ範囲の組成の合金材に対して、初析 L1相と A1相が共存する温度で第 1熱処
2
理を行い、その後、 L1相と DO 相及びまたは DO 相及びまたは DO相が共存する
2 22 24 a
温度に冷却する力、、その温度で第 2熱処理を行うことによって、 A1相を(L1相 + D0
2 2 相及びまたは DO 相及びまたは DO相)の共析組織に変化させて複相組織を形成
2 24 a
することを特徴とする耐酸化性の優れた Ni基化合物超合金の製造方法。
前記合金材として、前記組成に加え、 Co:15at%以下、 Cr:5at%以下の少なくと も 1種または 2種以上を含む合金材を用いることを特徴とする請求項 8に記載の耐酸 化性の優れた Ni基化合物超合金の製造方法。
前記合金材として、前記組成に加え、 B: lOOOppm以下を含むことを特徴とする請 求項 8に記載の耐酸化性に優れた Ni基化合物超合金の製造方法。
前記第 1熱処理は、前記合金材を図 1の第 1状態にする温度で行うことを特徴とす る請求項 8に記載の耐酸化性の優れた Ni基化合物超合金の製造方法。
前記第 2熱処理は、 1173K〜; 1273Kで行うことを特徴とする請求項 8に記載の耐 酸化性の優れた Ni基化合物超合金の製造方法。
PCT/JP2007/068720 2006-09-26 2007-09-26 Ni-based compound superalloy having excellent oxidation resistance, process for production thereof, and heat-resistant structural material WO2008041592A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/442,038 US20090308507A1 (en) 2006-09-26 2007-09-26 Ni-BASED COMPOUND SUPERALLOY HAVING EXCELLENT OXIDATION RESISTANCE, METHOD FOR MANUFACTURING THE SAME, AND HEAT-RESISTANT STRUCTURAL MATERIAL
EP07828466.8A EP2078763A4 (en) 2006-09-26 2007-09-26 MIXED SUPERALLY BASED ON NO EXTENDING EXCELLENT OXIDATION RESISTANCE, MANUFACTURING METHOD THEREFOR, AND HEAT-RESISTANT STATE-OF-THE-ART MATERIAL
JP2008537492A JP5224246B2 (ja) 2006-09-26 2007-09-26 耐酸化性の優れたNi基化合物超合金及びその製造方法と耐熱構造材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-261569 2006-09-26
JP2006261569 2006-09-26

Publications (1)

Publication Number Publication Date
WO2008041592A1 true WO2008041592A1 (en) 2008-04-10

Family

ID=39268454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068720 WO2008041592A1 (en) 2006-09-26 2007-09-26 Ni-based compound superalloy having excellent oxidation resistance, process for production thereof, and heat-resistant structural material

Country Status (4)

Country Link
US (1) US20090308507A1 (ja)
EP (1) EP2078763A4 (ja)
JP (1) JP5224246B2 (ja)
WO (1) WO2008041592A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255170A (ja) * 2008-03-27 2009-11-05 Osaka Industrial Promotion Organization Ni基2重複相金属間化合物合金からなる摩擦攪拌加工用ツール及び摩擦攪拌加工方法
WO2011118798A1 (ja) 2010-03-26 2011-09-29 公立大学法人大阪府立大学 Nb及びCを含むNi基2重複相金属間化合物合金及びその製造方法
WO2011118796A1 (ja) 2010-03-26 2011-09-29 公立大学法人大阪府立大学 Ti及びCを含むNi基2重複相金属間化合物合金及びその製造方法
JP2016160495A (ja) * 2015-03-03 2016-09-05 本田技研工業株式会社 Mo添加Ni基金属間化合物合金及びその製造方法
JP2018141187A (ja) * 2017-02-27 2018-09-13 本田技研工業株式会社 Ni基金属間化合物合金及びその製造方法
CN117431432A (zh) * 2023-12-20 2024-01-23 北京北冶功能材料有限公司 一种长时氧化性能好的镍基高温合金箔材及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146935B2 (ja) * 2006-01-30 2013-02-20 公立大学法人大阪府立大学 VおよびNbを含有し,かつ,二重複相組織を有するNi3Al基金属間化合物,およびその製造方法,耐熱構造材
JP5998325B2 (ja) * 2011-03-29 2016-09-28 公立大学法人大阪府立大学 摩擦攪拌加工用ツール及びこれを用いた摩擦攪拌加工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261569A (ja) 2005-03-18 2006-09-28 Dowa Mining Co Ltd サブマウントおよびその製造方法
JP2006299403A (ja) * 2005-03-25 2006-11-02 Osaka Prefecture Univ 2重複相組織からなるVおよびTiを含有するNi3Al基金属間化合物及びその製造方法,耐熱構造材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478791A (en) * 1982-11-29 1984-10-23 General Electric Company Method for imparting strength and ductility to intermetallic phases
US4710247A (en) * 1984-09-04 1987-12-01 General Electric Company Rapidly solidified tri-nickel aluminide base alloy
JPS62274040A (ja) * 1986-05-22 1987-11-28 Mitsubishi Heavy Ind Ltd Ni基合金
GB2191505B (en) * 1986-06-09 1991-02-13 Gen Electric Dispersion strengthened single crystal alloys
US4849030A (en) * 1986-06-09 1989-07-18 General Electric Company Dispersion strengthened single crystal alloys and method
US5935349A (en) * 1994-05-21 1999-08-10 Siemens Aktiengesellschaft Intermetallic nickel-aluminum base alloy and material formed of the alloy
JP5146935B2 (ja) * 2006-01-30 2013-02-20 公立大学法人大阪府立大学 VおよびNbを含有し,かつ,二重複相組織を有するNi3Al基金属間化合物,およびその製造方法,耐熱構造材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261569A (ja) 2005-03-18 2006-09-28 Dowa Mining Co Ltd サブマウントおよびその製造方法
JP2006299403A (ja) * 2005-03-25 2006-11-02 Osaka Prefecture Univ 2重複相組織からなるVおよびTiを含有するNi3Al基金属間化合物及びその製造方法,耐熱構造材

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
K. TOMIHISA; Y. KANENO; T. TAKASUGI, INTERMETALLICS, vol. 10, 2002, pages 247
See also references of EP2078763A4 *
TAKASUGI T. ET AL.: "Chobisai Niju Fukuso Soshiki kara Naru Ni-ki Multi Intermetalix no Gokin Sekkei to Soshiki Seigyo", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 18, no. 6, 1 September 2005 (2005-09-01), pages 1464, XP003021797 *
TAKASUGI T. ET AL.: "Ni-ki Chochogokin no Sosei to Oyo Tenkai", JOURNAL OF HIGH TEMPERATURES SOCIETY, vol. 31, no. 6, 28 November 2005 (2005-11-28), pages 1 - 2, XP003021798 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255170A (ja) * 2008-03-27 2009-11-05 Osaka Industrial Promotion Organization Ni基2重複相金属間化合物合金からなる摩擦攪拌加工用ツール及び摩擦攪拌加工方法
WO2011118798A1 (ja) 2010-03-26 2011-09-29 公立大学法人大阪府立大学 Nb及びCを含むNi基2重複相金属間化合物合金及びその製造方法
WO2011118796A1 (ja) 2010-03-26 2011-09-29 公立大学法人大阪府立大学 Ti及びCを含むNi基2重複相金属間化合物合金及びその製造方法
JP5733729B2 (ja) * 2010-03-26 2015-06-10 公立大学法人大阪府立大学 Nb及びCを含むNi基2重複相金属間化合物合金及びその製造方法
JP5733728B2 (ja) * 2010-03-26 2015-06-10 公立大学法人大阪府立大学 Ti及びCを含むNi基2重複相金属間化合物合金及びその製造方法
US9187808B2 (en) 2010-03-26 2015-11-17 Osaka Prefecture University Public Corporation Ni-base dual multi-phase intermetallic compound alloy containing Ti and C, and manufacturing method for same
US9249488B2 (en) 2010-03-26 2016-02-02 Osaka Prefecture University Public Corporation Ni-base dual multi-phase intermetallic compound alloy containing Nb and C, and manufacturing method for same
JP2016160495A (ja) * 2015-03-03 2016-09-05 本田技研工業株式会社 Mo添加Ni基金属間化合物合金及びその製造方法
JP2018141187A (ja) * 2017-02-27 2018-09-13 本田技研工業株式会社 Ni基金属間化合物合金及びその製造方法
CN117431432A (zh) * 2023-12-20 2024-01-23 北京北冶功能材料有限公司 一种长时氧化性能好的镍基高温合金箔材及其制备方法
CN117431432B (zh) * 2023-12-20 2024-03-12 北京北冶功能材料有限公司 一种长时氧化性能好的镍基高温合金箔材及其制备方法

Also Published As

Publication number Publication date
EP2078763A1 (en) 2009-07-15
US20090308507A1 (en) 2009-12-17
EP2078763A4 (en) 2014-09-03
JPWO2008041592A1 (ja) 2010-02-04
JP5224246B2 (ja) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5146935B2 (ja) VおよびNbを含有し,かつ,二重複相組織を有するNi3Al基金属間化合物,およびその製造方法,耐熱構造材
CA2663632C (en) Ni-based single crystal superalloy
WO2008041592A1 (en) Ni-based compound superalloy having excellent oxidation resistance, process for production thereof, and heat-resistant structural material
CN102076877B (zh) Ni基单晶超合金及以其为基材的合金构件
JP4833227B2 (ja) 高耐熱性,高強度Ir基合金及びその製造方法
JPH07138683A (ja) ニッケルを基本とする単結晶超合金
EP2128284B1 (en) Ni-BASED SINGLE CRYSTAL SUPERALLOY AND TURBINE VANE USING THE SAME
JP6965364B2 (ja) 析出硬化型コバルト−ニッケル基超合金およびそれから製造された物品
Kakehi et al. Effect of yttrium addition on creep properties of a Ni-base superalloy built up by selective laser melting
EP2420584B1 (en) Nickel-based single crystal superalloy and turbine blade incorporating this superalloy
WO2004053177A1 (ja) Ni基単結晶超合金
JP5127144B2 (ja) 2重複相組織からなるVおよびTiを含有するNi3Al基金属間化合物及びその製造方法,耐熱構造材
JP5010841B2 (ja) Ni3Si−Ni3Ti−Ni3Nb系複相金属間化合物,その製造方法,高温構造材料
WO2011118798A1 (ja) Nb及びCを含むNi基2重複相金属間化合物合金及びその製造方法
Gu et al. Microstructures and compressive properties of Ir-15Nb refractory superalloy containing nickel
Lin et al. Phase equilibria and microhardness of as-cast and annealed Ni-Al-Os alloys in Ni-rich region
JP5757507B2 (ja) Reが添加されたNi基2重複相金属間化合物合金及びその製造方法
JP5733728B2 (ja) Ti及びCを含むNi基2重複相金属間化合物合金及びその製造方法
JP3393378B2 (ja) 高融点超合金とその製造方法
WO2023243146A1 (ja) Ni基合金部材の製造方法
JP7252621B2 (ja) 高強度Ir合金
Tanaka et al. Morphology change of γ′ precipitates in γ/γ′ two-phase microstructure in Co-based superalloys by higher-order alloying
JPH062061A (ja) 常温延性に優れたNiAl系金属間化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828466

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008537492

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007828466

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12442038

Country of ref document: US