WO2008038383A1 - Inspection equipment and inspection method - Google Patents

Inspection equipment and inspection method Download PDF

Info

Publication number
WO2008038383A1
WO2008038383A1 PCT/JP2006/319357 JP2006319357W WO2008038383A1 WO 2008038383 A1 WO2008038383 A1 WO 2008038383A1 JP 2006319357 W JP2006319357 W JP 2006319357W WO 2008038383 A1 WO2008038383 A1 WO 2008038383A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
piezoelectric element
inspection
electronic component
impedance
Prior art date
Application number
PCT/JP2006/319357
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Sakaguchi
Koji Namiki
Original Assignee
Pioneer Corporation
Pioneer Fa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation, Pioneer Fa Corporation filed Critical Pioneer Corporation
Priority to JP2008514986A priority Critical patent/JP4588788B2/en
Priority to CN2006800362792A priority patent/CN101278181B/en
Priority to PCT/JP2006/319357 priority patent/WO2008038383A1/en
Publication of WO2008038383A1 publication Critical patent/WO2008038383A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/18Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/186Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/187Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for flexible or elastic containers

Definitions

  • the present invention relates to an inspection apparatus and an inspection method.
  • An electronic component in which a piezoelectric element such as a crystal resonator is hermetically sealed has, for example, a case in which the piezoelectric element is sealed and the package has poor airtightness, that is, a leak occurs. In this case, the electrical characteristics of the piezoelectric element are affected and the reliability is lowered. For this reason, in general, an electronic component is manufactured by hermetically sealing a piezoelectric element, and then an airtightness inspection, so-called leak inspection, is performed.
  • various inspection methods such as a bubble leak test method, a differential pressure type air leak test method, and an impedance measurement method by pressure change are known, for example.
  • the measurement method of the bubble leak test method includes, for example, immersing a piezoelectric element package in which a piezoelectric element to be inspected is hermetically sealed in a fluorine-based inert liquid heated to about 120 ° C by a heater or the like. Then, the inside of the knocker is expanded to visually inspect the bubbles from the leak (leak) inside the knocker.
  • the differential pressure type air leak test method measures the pressure fluctuation due to leakage (leakage) by placing a package for the piezoelectric element to be inspected in a sealed capsule and enclosing a certain amount of compressed air. Compared with a master package, specifically a reference package that does not leak, the pressure difference is measured by a differential pressure sensor to perform an airtight inspection of the piezoelectric element package (for example, Patent Documents 1 and 2). reference).
  • the impedance measurement method based on pressure changes is based on measuring the package for a piezoelectric element to be inspected in an air atmosphere and a vacuum atmosphere, and determining whether the impedance changes due to the pressure difference at that time. Detect (see, for example, Patent Document 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-121486
  • Patent Document 2 Japanese Patent Publication No. 7-104224
  • Patent Document 3 Japanese Patent Laid-Open No. 11-51802
  • an inspection apparatus capable of inspecting a relatively large amount of packages for piezoelectric elements to be inspected with high efficiency and in a short time is desired!
  • the present invention is directed to addressing such a problem as an example. That is, accurate airtight inspection of small packages for piezoelectric elements, shortening the inspection time compared with general inspection devices, making inspection devices relatively small, and relatively large amounts of piezoelectric objects to be inspected It is an object of the present invention to inspect a device package in a short time. Means for solving the problem
  • the invention according to claim 1 is an inspection device that performs an airtight inspection of an electronic component in which a piezoelectric element is hermetically sealed, and the electronic component is installed in a pressure chamber that can be freely opened and closed.
  • a pressurizing unit that pressurizes the periphery of the sensor, a measuring unit that measures the impedance of the electronic component installed in the pressurizing unit, and an impedance force change amount during non-pressurization and pressurization measured by the measurement unit
  • a determination unit that compares the amount of change with a set value to determine that the airtightness of the electronic component is poor.
  • the invention of claim 11 is an inspection method for performing an airtight inspection of an electronic component in which a piezoelectric element is hermetically sealed, and the electronic component is installed in a pressurizable chamber that can be opened and closed.
  • a step of pressurizing the periphery of the electronic component a step of measuring the impedance of the electronic component installed in the pressurizing chamber, and calculating a measured amount of change in the impedance force during non-pressurization and pressurization. Comparing the amount of change with a set value and determining that the airtightness of the electronic component is poor.
  • FIG. 1 is an overall configuration diagram for explaining an inspection apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the entire inspection apparatus 1 shown in FIG.
  • FIG. 3 is a diagram for explaining a piezoelectric element package 2 to be inspected according to the present invention.
  • (A) is a plan view through the cover 23 of the piezoelectric element package 2
  • (B) is a cross-sectional view taken along the line AA of the piezoelectric element package 2 shown in (A).
  • FIG. 4 is a top view for explaining a holding part 131 formed on the index table 13 shown in FIG. 1.
  • FIG. 4 is a top view for explaining a holding part 131 formed on the index table 13 shown in FIG. 1.
  • FIG. 5 is a view for explaining holding part 131 and lid part 141 shown in FIG. 1.
  • FIG. 6 is a top view for explaining a holding part 131 according to another embodiment.
  • FIG. 7 is a view for explaining a holding part 131 and a lid part 141 according to another embodiment.
  • FIG. 8 is a flowchart for explaining the overall operation of the inspection apparatus 1 shown in FIG.
  • FIG. 9 is a flowchart for explaining the operation related to the pressurized leak inspection process of the inspection apparatus 1 shown in FIG. 1.
  • FIG. 10 is a diagram showing a change amount of a CI value of a piezoelectric element during pressurization.
  • FIG. 11 is a diagram showing the change amount R of the CI value when leakage occurs in the piezoelectric element package during pressurization and when there is no leakage.
  • FIG. 12 is a graph showing the change over time in the amount of change in CI value when a piezoelectric element package in which leakage occurs is pressurized to 0.1 lMPa to 0.5 MPa.
  • FIG. 13 is a diagram showing the amount of change in CI value by a conventional vacuum measurement method for a plurality of packages 2 for piezoelectric elements.
  • FIG. 14 shows a plurality of piezoelectric element packages 2 shown in FIG. 13 according to the present invention. It is a figure which shows the variation
  • FIG. 15 is an overall configuration diagram for explaining an inspection apparatus 1A according to a second embodiment of the present invention.
  • the invention is an inspection device that performs an airtight inspection of an electronic component in which a piezoelectric element is hermetically sealed, and the electronic component is installed in an openable and closable pressurizing chamber.
  • a pressure unit that pressurizes the periphery of the electronic component in a state; a measurement unit that measures the impedance of the electronic component installed in the pressurization unit; and a non-pressurized and a pressurized state measured by the measurement unit
  • the impedance of the electronic component also includes a determination unit that calculates a change amount, compares the change amount with a set value, and determines that the airtightness of the electronic component is poor.
  • the electronic component is pressurized around the electronic component while the electronic component is installed in a pressurizing chamber that can be opened and closed by the pressurizing unit, and the electric component installed in the pressurizing unit is measured by the measuring unit.
  • the impedance of the child component is measured, and the discriminating unit calculates the amount of change in the impedance force during non-pressurization and pressurization measured by the measurement unit. Is determined to be defective.
  • the discriminating unit determines the impedance based on the measured impedance value at the time of non-pressurization measured by the measuring unit, specifically, the atmospheric pressure (1 atmospheric pressure) and the measured impedance value when the electronic component is pressurized.
  • the amount of change is calculated, and if the amount of change in impedance is greater than or equal to the set value within the pressurization time, it is determined that the leak is poor and the amount of change in impedance is less than the set value. It is determined that the airtightness is good, assuming that the standard airtightness is secured.
  • FIG. 1 is an overall configuration diagram for explaining an inspection apparatus according to a first embodiment of the present invention.
  • FIG. 1 is a top view of the inspection apparatus 1.
  • FIG. 2 is a perspective view of the entire inspection apparatus 1 shown in FIG.
  • the inspection apparatus 1 performs an airtight inspection of an electronic component in which, for example, a piezoelectric element is hermetically sealed as an object to be inspected.
  • the electronic component according to the present embodiment is, for example, a surface mount electronic component.
  • the piezoelectric element package 2 has a piezoelectric element hermetically sealed.
  • a piezoelectric element package 2 in which a piezoelectric element such as a crystal resonator is hermetically sealed has an electrical characteristic in which the impedance of the piezoelectric element changes depending on the pressure inside the package.
  • the inspection apparatus 1 measures the impedance of the piezoelectric element by pressurizing the piezoelectric element package in which the piezoelectric element is hermetically sealed, and the impedance for the piezoelectric element is changed when the pressure is not applied and when the pressure is applied. It is determined that the airtightness is poor.
  • the inspection apparatus 1 includes an alignment supply unit 11, a conveyance supply unit 12, an index table 13, a pressure leak inspection unit 14, a conveyance unit 15 (pick-up unit). A second place portion 15A), a storage portion 16, and a control portion 17.
  • the control unit 17 is connected to each component via a signal line such as a data line or an optical fiber, and controls each component in an integrated manner.
  • the alignment supply unit 11, the conveyance supply unit 12, the index table 13, the pressure leak detection unit 14, the conveyance unit 15, the storage unit 16, and the like are placed on the base 10.
  • the alignment supply unit 11 and the conveyance supply unit 12 correspond to an embodiment of the transfer unit according to the present invention.
  • the index table 13 corresponds to an embodiment of the index table according to the present invention.
  • the pressurized leak inspection unit 14 corresponds to an embodiment of the pressurized leak inspection unit according to the present invention.
  • the transport unit 15 corresponds to an embodiment of the transport unit according to the present invention.
  • the control unit 17 corresponds to an embodiment of the control unit according to the present invention.
  • the alignment supply unit 11 accommodates, for example, a plurality of piezoelectric element packages 2 that are electronic components to be inspected, and distinguishes and aligns the front and back of the piezoelectric element package 2.
  • the alignment supply unit 11 includes a parts feeder unit 111 placed on the base 10 as shown in FIGS.
  • the parts feeder unit 111 includes, for example, a bowl feeder (container) 111A and a linear feeder 111B.
  • the bowl feeder 111 (accommodating section) 111A accommodates, for example, a plurality of piezoelectric element packages 2, and after the front and back surfaces and polarity of the piezoelectric element package 2 are discriminated by a drive mechanism, they are aligned.
  • the linear feeder 111B conveys the piezoelectric element package 2 aligned by the bowl feeder (container) 111A to the end of the linear feeder 111B.
  • FIG. 3 is a diagram for explaining a piezoelectric element package 2 to be inspected according to the present invention. It is. Specifically, Fig. 3 (A) is a plan view through the cover 23 of the piezoelectric element package 2, and Fig. 3 (B) is an A—A line of the piezoelectric element package 2 shown in Fig. 3 (A).
  • FIG. 3 is a diagram for explaining a piezoelectric element package 2 to be inspected according to the present invention. It is. Specifically, Fig. 3 (A) is a plan view through the cover 23 of the piezoelectric element package 2, and Fig. 3 (B) is an A—A line of the piezoelectric element package 2 shown in Fig. 3 (A).
  • FIG. 3 is a diagram for explaining a piezoelectric element package 2 to be inspected according to the present invention. It is. Specifically, Fig. 3 (A) is a plan view through the cover 23 of the piezoelectric element package 2, and Fig. 3 (B) is
  • the piezoelectric element package 2 includes, for example, as shown in FIGS. 3A and 3B, a piezoelectric element 21, a conductive adhesive 213, a case internal electrode 214, a case 22, a case cover 23, and a brazing material. 24, and external electrode 25.
  • the sealed space 26 sealed by the case 22 and the case cover 23 is defined in a vacuum state, for example.
  • an inert gas 27 may be sealed in the sealed space 26.
  • the pressure of the inert gas 27 in the sealed space 26 is set to a specified pressure such as atmospheric pressure.
  • the pressure in the package is appropriately set according to the characteristics of the piezoelectric element package 2.
  • the piezoelectric element 21 according to the present embodiment for example, a piezoelectric vibrator device such as a crystal vibrator can be adopted.
  • the piezoelectric element 21 according to the present embodiment has a characteristic that the impedance changes according to a change in pressure inside the package.
  • the piezoelectric element 21 includes a crystal piece 210 and excitation electrodes 211 and 212 as shown in FIGS. 3 (A) and 3 (B), for example.
  • excitation electrodes 211 and 212 are formed on both surfaces of the crystal piece 210, and the ends of the excitation electrodes 211 and 212 are connected to the conductive adhesive 21. 3 is supported and fixed to the case internal electrode 214.
  • the excitation electrodes 211 and 212 are electrically connected to the external electrode 25 via the conductive adhesive 213 and the case internal electrode 214. Further, both ends or one ends of the crystal piece 210 are supported by the support base 22A of the case 22 by the conductive adhesive 213, and are specifically supported so as not to suppress vibration.
  • the piezoelectric element 21 may have various shapes, characteristics, functions, and the like that are not limited to those described above.
  • the case 22 is formed of various materials such as ceramic and resin, and as shown in FIGS. 3 (A) and 3 (B), a support base 22A is formed, and the piezoelectric element 21 is placed on the support base 22A. It is provided.
  • the case cover 23 is formed in a substantially plate shape from various materials such as metal, ceramics, glass, and resin, and is hermetically bonded and sealed to the case 22 via a brazing material (adhesive) 24. It is.
  • the brazing material (adhesive) 24 is provided between the case 22 and the case cover 23.
  • various brazing materials such as alloys such as Ag—Cu and Au—Sn, solder, and glass can be employed.
  • the brazing material 24 is not limited to the above-mentioned form, but it may be hermetically sealed with Ni as a brazing material, such as parallel seam welding.
  • the external electrode 25 is formed, for example, on at least the bottom or side of the piezoelectric element package 2, and is electrically connected to the excitation electrodes 211 and 212.
  • the transport supply unit 12 transfers the piezoelectric element package 2 to a holding unit (work holder) 131 formed on the index table 13, for example, under the control of the control unit 17.
  • the transport supply unit 12 includes a pick and place unit 12A.
  • the pick-and-place unit 12A is a transport port bot that includes a plurality of heads 12B that can adsorb and detach the piezoelectric element package 2, for example, and that the heads 12B can move along the XZ-axis direction.
  • the pick and place unit 12A according to the present embodiment has an eight-unit head 12B, and each head 12B is provided with a vacuum sensor.
  • the pick-and-place unit 12A having the above-described configuration attracts the piezoelectric element package 2 from the linear feeder 111B of the part feeder unit 111 by the head 12B, and the head 12B is mounted on the index table 13 and held.
  • the piezoelectric element package 2 is moved onto the part 131 to be detached, and the piezoelectric element package 2 is transferred to the holding part 131.
  • the index table 13 is formed in a circular shape, for example, and has a holding part 131 on the upper surface side.
  • the holding portion 131 constitutes a part of the pressurizing chamber 140 and can accommodate and hold one or a plurality of piezoelectric element packages 2.
  • a plurality of holding portions 131 are formed at equal intervals along the circumferential direction.
  • four holding portions 131 are arranged on the index table 13 along the circumferential direction.
  • the index table 13 is formed to be rotatable along the circumferential direction.
  • index tape A rotation drive unit 135 having a drive motor and a rotation mechanism is formed in the cylinder 13.
  • the control unit 17 controls the rotation driving unit 135 to rotate the index table 13 along the circumferential direction at a specified timing.
  • a conveyance supply unit (transfer unit) 12 a pressure leak inspection unit 14, and a conveyance unit 15 are sequentially arranged at specified intervals along the circumferential direction. It is arranged.
  • the index table 13 includes, for example, a workpiece (electronic component) input stage, a pressure leak inspection stage, a non-defective / defective product classification stage, and an empty check stage at a specified interval along the circumferential direction. It rotates in order.
  • FIG. 4 is a top view for explaining the holding part 131 formed in the index table 13 shown in FIG.
  • FIG. 5 is a view for explaining the holding part 131 and the lid part 141 shown in FIG.
  • FIG. 6 is a top view for explaining a holding part 131 according to another embodiment.
  • FIG. 7 is a view for explaining a holding part 131 and a lid part 141 according to another embodiment.
  • the holding part 131 has a work holding pocket 132 and a packing 133 provided around the work holding pocket 132.
  • the workpiece holding pocket 132 is formed in, for example, a rectangular shape and a concave shape, and positioning is possible by accommodating the piezoelectric element package 2 therein.
  • a plurality of workpiece holding pockets 132 for example, eight workpiece holding pockets 132 as shown in FIG. 4, are formed in series at regular intervals.
  • the holding portion 131 is not limited to the above-described form, and the work holding pockets 132 may be formed in a plurality of rows, for example, two rows, three rows or more.
  • the lid 141 forms a part of the pressurizing chamber 14 and can hermetically seal the holding part 131 formed on the index table 13. That is, the pressurizing chamber 140 corresponds to a sealed space formed by the holding part 131 and the lid part 141.
  • the lid 141 is provided with a driving unit 149 that drives the lid 141 to move in a specified direction, for example, the vertical direction.
  • the control unit 17 can control the driving unit 149 to seal the holding unit 131 with the lid unit 141.
  • the holding portion 131 may have a configuration in which a plurality of work pockets 132 are formed in a relatively large recess.
  • the terminal part 142 that can be electrically connected to the electrode part 25 of the piezoelectric element package 2 in which the one end part 142A is connected to the measuring part 141 and the other end part 142B is held by the holding part 131, It is formed on one of the holding part 131 and the lid part 141.
  • the terminal portion 142 according to the present embodiment is formed at a position corresponding to the work holding pocket 132 in the lid portion 141 as shown in FIG.
  • the air passage 134 is formed inside the rectangular holding portion 131 along the longitudinal direction with the force on one end portion of the holding portion 131 directed toward the other end portion. ing. Further, as shown in FIG. 5, a through hole 1341 is formed between the air passage 134 and the work holding pocket 132.
  • the air passage 134 is not limited to the above-described form.
  • the formation position and shape of the inlet 134A of the air passage 134 may be appropriately set as long as the gas of the specified pressure from the pressurizing device 146 can flow in.
  • the bottom surface portion and the side surface portion of the holding portion 131 The upper surface portion and the like may be set as appropriate.
  • a vent hole that communicates with the vent path 134 and penetrates the index table 13 in the vertical direction may be provided.
  • the gas force of the specified pressure from the pressurizing device 146 may flow into the pressurizing chamber 140 through the vent and the vent passage.
  • the pressurizing chamber 140 corresponds to a state in which the holding part 131 having the above configuration is hermetically sealed by the lid part 141. That is, the pressurizing chamber 140 is formed to be openable and closable.
  • the pressurizing chamber 140 in which the piezoelectric element package 2 is accommodated can be pressurized by flowing a gas such as an inert gas from the pressurizing device 146 through the air passage 134 and the through hole portion 1341.
  • the pressurizing device 146 and the pressurizing chamber 140 correspond to the pressurizing unit 1401.
  • the impedance of the piezoelectric element 21 in the piezoelectric element package 2 is measured by pressurizing the periphery of the piezoelectric element package 2 in a state where the holding part 131 is hermetically sealed by the lid part 141. Is done.
  • the cover part 141 is attached to the holding part 131, and a state where no gas flows in, that is, an atmospheric pressure state where no pressure is applied is obtained.
  • the pressure leak inspection unit 14 includes a lid 141 that can hermetically seal the holding unit 131, a terminal 142, a measurement unit 145 (crystal impedance: CI value measurement unit), and a pressure device 146. Description of the above-described configuration is omitted.
  • the measuring unit 145 measures the impedance of the piezoelectric element 21 of the piezoelectric element package 2. For example, when a crystal resonator is adopted as the piezoelectric element 21 of the piezoelectric element package 2, the measurement unit 145 measures the crystal impedance of the crystal resonator. In addition, the measuring unit 145 according to the present embodiment measures the impedance of the piezoelectric element package 2 installed in the pressing unit.
  • the measurement unit 145 applies an oscillation signal such as a low frequency of 10 MHz to 40 MHz and a high frequency of 40 MHz to 60 MHz to the piezoelectric element 21 of the piezoelectric element package 2 by, for example, an oscillation circuit, and causes the piezoelectric element 21 to oscillate. Then, the impedance of the piezoelectric element 21 is measured.
  • an oscillation signal such as a low frequency of 10 MHz to 40 MHz and a high frequency of 40 MHz to 60 MHz
  • measurement unit 145 outputs a signal indicating the measurement result to control unit 17.
  • the control unit 17 calculates the amount of change in impedance force between the non-pressurization and the pressurization measured by the measurement unit 145, and compares the change amount with a set value. Thus, it is determined that the airtightness of the piezoelectric element package 2 is poor.
  • the function of the control unit 17 corresponds to the determination unit 171.
  • the discriminating unit 171 calculates the amount of change in impedance force between the non-pressurized state and the pressurized state measured by the measuring unit 145, and compares the amount of change with the set value. Determine that there is.
  • the measurement unit 145 is not limited to the above-described embodiment, and may measure various characteristics such as impedance and frequency characteristics of the piezoelectric element by other measurement methods, for example.
  • the pressurizing device 146 supplies an inert gas such as compressed air or compressed nitrogen (N) at a specified pressure.
  • an inert gas such as compressed air or compressed nitrogen (N) at a specified pressure.
  • the pressure source for example, compressed air, compressed nitrogen, or a compressed tank in which an inert gas is stored, a pump, or the like piped at the manufacturing site can be employed. Further, under the control of the control unit 17, the surroundings of the piezoelectric element package 2 are pressurized in a state where the piezoelectric element package 2 is installed in the pressurizing chamber 140.
  • the transfer unit 15 takes out the piezoelectric element package 2 from the holding unit 131 formed on the index table 13, for example, and places the piezoelectric element package at a position according to the determination result of the determination unit 171. Transport knock 2.
  • the transport unit 15 includes a pick and place unit 15A.
  • the pick-and-place unit 15A is, for example, a transport robot that includes a plurality of heads that can adsorb and detach the piezoelectric element package 2, and the heads can move along the XZ-axis direction.
  • the pick-and-place unit 15A according to the present embodiment has an eight-unit head, and each head is provided with a vacuum sensor.
  • the pick-and-place unit 15A having the above configuration attracts the piezoelectric element package 2 on the holding unit 131 by the head and moves the head onto the housing unit 16 to detach the piezoelectric element cage 2.
  • the piezoelectric element package 2 is transported to a position corresponding to the determination result of the determination unit 171.
  • the storage unit 16 includes a storage box 1601 that stores the piezoelectric element package 2.
  • the storage box 161 is disposed on a moving device that can move along a specified direction, for example, the Y-axis direction, and can move in the specified direction, for example, under the control of the controller 17.
  • the storage box 161 includes, for example, a plurality of boxes, and specifically includes a non-defective product box 161A and an NG (defective product) box 161B as shown in FIG.
  • the non-defective box 161A and the NG box 161B are arranged at predetermined positions.
  • the non-defective box 161A and the NG box 161B may be moved and arranged at a specified position under the control of the control unit 17.
  • the non-defective product box 161A accommodates, for example, the piezoelectric element package 2 that is determined to be non-defective without leak being detected by the pressure leak test.
  • the non-defective box 161 A may contain, for example, the piezoelectric element package 2 that has passed other inspections other than the pressurized leak inspection and has been determined to be non-defective.
  • the piezoelectric element package 2 that has been determined to be a defective product by detecting a leak by pressure leak inspection is housed.
  • the piezoelectric element package 2 that has been determined to be defective by other inspections may be accommodated.
  • the control unit 17 controls the pick and place unit 15A, and adsorbs a good piezoelectric element package 2 on the holding unit 131 according to the determination result of the determination unit 171 to block the pick and place.
  • the piezoelectric element package 2 is moved to the non-defective box 161 A to be attached to and removed from the non-defective box 161A, and is stored in the non-defective box 161A.
  • the package 2 is adsorbed, the head is moved onto the NG (defective product) box 161B, and the piezoelectric element package 2 is detached and accommodated in the NG box 161B.
  • the control unit 17 controls the entire inspection apparatus, for example. Specifically, for example, the control unit 17 implements functions according to the present invention, such as a determination unit and various control functions, by executing a program 172 stored in a memory or the like. Further, the control unit 17 uses, for example, a computer having an input device such as a keyboard and a mouse, a memory, a display device, an output device, a CPU (Central Process Unit), a hard disk drive (HDD), an external storage device, and the like. Thus, the functions according to the present invention may be realized.
  • functions according to the present invention may be realized.
  • control unit 17 calculates the amount of change in the impedance force measured by the measurement unit 145 during non-pressurization and during pressurization, and compares the variation with a set value to obtain a package for a piezoelectric element.
  • the function of the determination unit 171 is realized by determining that the airtightness of 2 is poor.
  • the determination unit 171 may determine that the airtightness of the piezoelectric element package 2 is poor based on, for example, the time change amount (slope) of the impedance change amount, which is not limited to the above embodiment. That is, the determination unit 171 determines that the airtightness is poor when the time change amount (slope) of the impedance change amount is equal to or larger than the set value, and determines that the airtightness is good when the impedance change amount is smaller than the set value. .
  • control unit 17 controls the rotation of the index table 13 along the circumferential direction at a predetermined timing, and at least a transfer unit (alignment supply) arranged at a predetermined interval along the circumferential direction of the index table.
  • Unit 11, conveyance supply unit 12), pressure leak inspection unit 14, and conveyance unit 15 are processed in parallel.
  • control unit 17 Detailed functions and operations of the control unit 17 will be described later.
  • FIG. 8 is a flowchart for explaining the overall operation of the inspection apparatus 1 shown in FIG. The operation of the inspection apparatus 1 will be described with reference to FIG.
  • the control unit 17 of the inspection apparatus 1 The process of transferring the piezoelectric element package 2 as a sub-part to the holding part 131 of the index table 13, the pressure leak inspection process, the classification process based on the result of the pressure leak inspection process, etc. are performed in parallel. It is not limited to this form.
  • step S1 the control unit 17 of the inspection apparatus 1 first, as shown in FIGS. 1 and 2, the piezoelectric element package 2 to be inspected is the bowl feeder (container) 111A of the parts feeder unit 111.
  • the parts feeder 111 is controlled to determine the front and back sides and polarity of the piezoelectric element package 2 by the drive mechanism, and then aligned, and the piezoelectric element package 2 is aligned to the linear feeder 111B. .
  • the control unit 17 controls the conveyance supply unit 12 to transfer the piezoelectric element package 2 from the parts feeder unit 111 to the index table 13 on the holding unit 131 by the pick and place unit 12A.
  • the pick and place unit 12A places the piezoelectric element package 2 in each of the plurality of work holding pockets 132 formed in the holding unit 131.
  • the pick-and-place part 12A is placed such that the external electrode 25 of the piezoelectric element package 2 is on the upper side, for example.
  • step S3 the control unit 17 controls the rotation driving unit 135 to rotate the index table 13 along the circumferential direction at a specified timing. Specifically, as shown in FIG. 1, the control unit 17 rotates the holding unit 131 of the index table 13 from the transfer position to the arrangement position of the pressure leak inspection unit 14. In the present embodiment, the index table 13 rotates 90 degrees.
  • control unit 17 controls the driving unit 149 to move the lid 141 downward, and the holding unit 131 is hermetically sealed by the lid 141.
  • the control unit 17 performs pressure leak measurement of the piezoelectric element package 2 in the pressurizing chamber 140, and determines the airtightness of the piezoelectric element package 2 based on the measurement result. Details will be described later.
  • step S5 the control unit 17 controls the drive unit 149, for example, after measuring the pressure leak. Then, the lid 141 is moved upward. Next, the control unit 17 controls the rotation driving unit 135 to rotate the index table 13 along the circumferential direction at a specified timing. Specifically, as shown in FIG. 1, the control unit 17 rotates the holding unit 131 of the index table 13 from the caloric pressure leak measurement position to the arrangement position of the pick and place unit 15A of the transport unit 15. In this embodiment, the index table 13 is rotated 90 degrees.
  • the control unit 17 controls the pick-and-place unit 15 A of the transport unit 15 to take out the piezoelectric element package 2 on the holding unit 131 and determine the determination unit 171.
  • the piezoelectric element package 2 is transported through the accommodating portion 16 to a position corresponding to the discrimination result.
  • the control unit 17 controls the pick-and-place unit 15A to transfer the piezoelectric element package 2 determined to be a non-defective product to the non-defective product box 161A, and to determine that the piezoelectric element package 2 is determined to be defective. Is transferred to NG box 161 B.
  • step S7 the control unit 17 controls the rotation driving unit 135 to rotate the index table 13 by a specified angle along the circumferential direction at a specified timing. Specifically, the control unit 17 rotates the index table 13 by 90 degrees. At that time, the control unit 17 images the holding unit 131 by, for example, an imaging unit (not shown), and based on the imaging result, the work holding pocket 132 internal force piezoelectric element package 2 of the holding unit 131 is removed and becomes empty. It is determined whether or not it is not.
  • the controller 17 drives the pressurizing device 146 to compress the piezoelectric material from the workpiece holding pocket 132 by compressed gas. Precise processing such as processing to remove the device package 2 is performed.
  • control unit 17 controls the rotation driving unit 135 to rotate the index table 13 by a specified angle along the circumferential direction at a specified timing, and returns to the process of step S1.
  • control unit 17 controls the rotation of the index table 13 along the circumferential direction at a prescribed timing, and is disposed at a prescribed interval along at least the circumferential direction of the index table 13.
  • the transfer unit (conveyance supply unit 12), the pressure leak inspection unit 14, and the conveyance unit 15 are processed in parallel.
  • FIG. 9 is a flowchart for explaining the operation related to the pressurized leak inspection process of the inspection apparatus 1 shown in FIG.
  • the operation of the inspection apparatus 1 will be described with reference to FIG.
  • Step Sl l the piezoelectric element package 2 is installed in the pressurizing chamber 140 that can be opened and closed.
  • the control unit 17 performs a process of transferring the piezoelectric element package 2 onto the holding unit 131 provided in the index table 13 by the pick and place unit 12A.
  • the pick-and-place unit 12A is placed such that the external electrode 25 of the piezoelectric element package 2 is on the upper side, for example.
  • step S 13 the control unit 17 drives the drive unit 149 to seal the holding unit 131 with the lid unit 141. That is, the piezoelectric element package 2 is installed in the pressurizing chamber 140 as described above. In this non-pressurized state, the control unit 17 also connects the impedance of the piezoelectric element 21 (crystal impedance: CI value) via the terminal part 142 electrically connected to the electrode part 25 of the piezoelectric element package 2. Is measured by the measuring unit 145, and the measurement result by the measuring unit 145 is stored in a memory or the like. The CI value at the time of non-pressurization (atmospheric pressure (1 atm)) may be used as the reference value according to the present invention.
  • CI value at the time of non-pressurization atmospheric pressure (1 atm)
  • step S15 the control unit 17 performs a process of pressurizing the periphery of the piezoelectric element package 2 in a state where the piezoelectric element package 2 is installed in the pressurizing chamber 140. Specifically, the control unit 17 drives the pressurizing device 146 to apply a gas such as an inert gas having a predetermined pressure into the pressurizing chamber 140 through the air passage 134, so that the piezoelectric element package 2. Pressurize around.
  • a gas such as an inert gas having a predetermined pressure into the pressurizing chamber 140 through the air passage 134
  • step S17 the control unit 17 pressurizes the periphery of the piezoelectric element package 2 via the terminal part 14 2 electrically connected to the electrode part 25 of the piezoelectric element package 2. Then, the impedance (CI value) of the piezoelectric element 21 is measured by the measuring unit 145, and the measurement result by the measuring unit 145 is stored in a memory or the like.
  • step S19 the control unit 17 calculates the measured amount of change in the impedance force during non-pressurization and during pressurization, compares the amount of change with the set value, and then compares the piezoelectric element package 2 with the set value. It is determined whether the airtightness is poor.
  • FIG. 10 is a diagram showing the amount of change in the CI value of the piezoelectric element during pressurization.
  • the horizontal axis shows pressure P (unit: kPa), and the vertical axis shows the amount of change in CI value (unit: ⁇ ).
  • the reference value of CI value corresponds to the CI value at atmospheric pressure (1 atm), for example.
  • FIG. 11 is a diagram showing the change amount R of the CI value when leakage occurs in the piezoelectric element package during pressurization and when there is no leakage.
  • Horizontal axis is pressurized The time T (unit: second) is shown, and the vertical axis shows the CI value change amount R (unit: ⁇ ).
  • FIG. 12 is a diagram showing the change over time in the amount of change in the CI value when the piezoelectric element package in which leakage occurs is pressurized to 0.1 MPa to 0.5 MPa.
  • the vertical axis is the amount of change R (unit: ⁇ ) of the CI value at the time of leak, and the horizontal axis is the pressurization time T (unit: seconds).
  • the piezoelectric elements used in Figs. 10 to 12 are quartz resonators with a frequency of 26. OMHz.
  • the piezoelectric element 21 has a characteristic that the amount of change in the CI value increases according to the pressure applied to the piezoelectric element package 2.
  • the piezoelectric element package 2 As a characteristic of the piezoelectric element package 2 according to the present embodiment, as shown in FIG. 11, for example, when leakage occurs in the piezoelectric element package 2, compared with the non-pressurized state, Since the internal pressure of the piezoelectric element package 2 at the time of measuring the pressure increases, the CI value of the piezoelectric element 21 during pressurization changes compared to the CI value of the piezoelectric element 21 during non-pressurization. The amount of change is relatively large. On the other hand, when there is no leak, the airtightness in the piezoelectric element package 2 is maintained, so that the pressure in the piezoelectric element package 2 during pressurization does not change or changes in pressure compared to when no pressure is applied. Since the amount is relatively small, the change amount R of the CI value of the piezoelectric element 21 is zero, or the change amount R of the CI value is relatively small and smaller than the specified value.
  • the characteristics of the piezoelectric element package 2 include leakage of the piezoelectric element package 2 during pressurization.
  • the amount of change R with the CI value at the time becomes greater than the set value (eg 2 ⁇ ), for example, the amount of change RNG of the CI value RNG (when 0.2 MPa is applied) is about ⁇ ⁇ .
  • the set value eg 2 ⁇
  • the amount of change RNG of the CI value RNG when 0.2 MPa is applied
  • the airtightness in the piezoelectric element package 2 is maintained, so that the pressure in the piezoelectric element package 2 during pressurization does not change compared to when no pressure is applied.
  • the CI value change amount RG of the piezoelectric element 21 is zero, or the CI value change amount RG is relatively small and smaller than the set value.
  • the determination unit 171 calculates an impedance change amount R at the time of non-pressure mouth pressure and pressurization measured by the measurement unit 145, and calculates the change amount R as Compared with the preset set value Rth (step S19), there is no leakage when the impedance change amount R is smaller than the set value Rth, for example, depending on the result of the comparison (step S21).
  • Package (electronic component) 2 has good airtightness, and the piezoelectric element package 2 is determined to be good (step S23), and the piezoelectric element package 2 determined to be non-defective is classified and accommodated. Housed in part 16 (step S25).
  • the control unit 17 performs classification according to the result of the determination unit 171 and, in detail, performs a process of storing the piezoelectric element package 2 determined to be non-defective in the non-defective box 161 A of the storage unit 16. (Step S25).
  • step S19 the determination unit 171 calculates the impedance change amount R between the non-pressurization and the pressurization measured by the measurement unit 145, and the change As a result of comparing the amount R with the preset value Rth, for example, there is a leak when the impedance change amount is greater than or equal to the set value Rth (step S27), and the airtightness of the piezoelectric element package (electronic component) 2 is It is determined that it is defective (step S29).
  • the control unit 17 performs classification according to the result of the discriminating unit 1701, and in detail, performs processing for accommodating the piezoelectric element package 2 that is discriminated as a defective product in the defective product box 161B of the storage unit 16 ( Step S25).
  • control unit 17 calculates the change amount R from the non-pressurization impedance and the pressurization impedance measured by the measurement unit, and compares the change amount with a set value. Since it is determined that the package 2 for the piezoelectric element is defective in airtightness, as shown in FIG. With ⁇ , it is possible to determine whether the airtightness is good in about 1 to 3 seconds.
  • the greater the pressurization pressure the greater the fluctuation amount of the CI value at the time of leakage of the piezoelectric element package 2, and the shorter the time for determining the airtightness.
  • the pressurization time is 5 seconds
  • the pressure is 0.
  • it is 8.72 ⁇ , 13.5 ⁇ when the pressure is 0.4 MPa, and 19.5 ⁇ when the pressure is 0.5 MPa.
  • the defect of the piezoelectric element package 2 can be determined with high accuracy.
  • the larger the pressurizing pressure the more accurately the defect of the piezoelectric element package 2 can be determined in a short time.
  • the pressure applied to the piezoelectric element package 2 is preferably, for example, a value of 0.2 MPa to 0.5 MPa.
  • This pressure of 0.2 MPa to 0.5 MPa is used to manufacture the piezoelectric element package 2. It can be easily prepared by using compressed air or compressed nitrogen or a pressure tank or a pressurizing device that are generally piped in the field.
  • the pressurizing pressure is not limited to the above-described embodiment, and may be, for example, a pressure of 0.5 MPa or more.
  • the present invention can be easily implemented by preparing a structure of a pressurizing device, a cylinder, and a pressurizing leak inspection unit 14 for relatively high pressure.
  • the inventor of the present application uses the conventional vacuum measurement method and the pressure leak measurement method according to the present invention to determine the amount of change in the CI value for a plurality of packages 2 for piezoelectric elements. Measurements were made for comparison.
  • FIG. 13 is a diagram showing the amount of change in CI value by the conventional vacuum measurement method for a plurality of piezoelectric element packages 2.
  • the vertical axis represents the CI value change amount R (unit: ⁇ )
  • the horizontal axis represents the evacuation time (unit: second).
  • FIG. 14 is a diagram showing the amount of change in the CI value of the plurality of piezoelectric element packages 2 shown in FIG. 13 by the 0.2 MPa pressurized leak measurement method according to the present invention.
  • the vertical axis shows the amount of change in CI value R (unit: ⁇ )
  • the horizontal axis shows the evacuation time (unit: seconds).
  • the measured values of each of the two packages for the piezoelectric element 2 are distinguished by line types such as a solid line, a broken line, and a two-dot chain line.
  • the piezoelectric elements used in Figs. 13 and 14 are quartz resonators with a frequency of 26. OMHz.
  • the inspection time is relatively long.
  • the impedance change amount R setting value Rth is ⁇ 2 ⁇
  • the impedance change amount is ⁇ 2 ⁇ or more
  • the inspection apparatus 1 in the present invention, it is possible to determine whether all five packages 2 for piezoelectric elements are good or bad in about 3 seconds or less (in the case of Dalos leak).
  • the pressurization pressure is 0.2 MPa, and the pass / fail judgment can be made in a shorter time by increasing the pressurization pressure.
  • the piezoelectric element package 2 having a larger leakage amount is obtained.
  • the piezoelectric element package 2 with a large CI value variation R and a small leak amount has a smaller CI value variation R, and therefore the inspection time becomes longer.
  • the piezoelectric element package 2 with a relatively large amount of leakage and a piezoelectric with a relatively small amount of leakage are shown. Both the device package 2 can determine whether the airtightness is good or not in a short time compared to the conventional vacuum measurement method.
  • FIG. 15 is an overall configuration diagram for explaining an inspection apparatus 1A according to the second embodiment of the present invention. Specifically, FIG. 15 is a top view of the inspection apparatus 1A. A description of the same configuration, operation, effects, and the like as in the first embodiment will be omitted.
  • the inspection apparatus 1A includes an alignment supply unit 11, a transport supply unit 12, an index table 13, a first inspection unit 50, a first inspection measurement unit 51, and a pressure leak.
  • the inspection unit 14, the second inspection unit 60, the second inspection measurement unit 61, the transport unit 15 (pick and place unit 15 A), the storage unit 16, and the control unit 17 are included.
  • the alignment supply unit 11, the transport supply unit 12, the index table 13, the first inspection unit 50, the pressure leak inspection unit 14, the second inspection unit 60, the transport unit 15, the storage unit 16, etc. are on the base 10. It is placed.
  • the first inspection unit 50 and the first inspection / measurement unit 51 inspect one of the characteristics of the piezoelectric element package 2 (electronic component) other than the impedance.
  • the second inspection unit 60 and the second inspection / measurement unit 61 inspect one of the characteristics other than the impedance of the characteristic of the piezoelectric element package 2 (electronic component).
  • the first inspection unit 50, the first inspection measurement unit 51, the second inspection unit 60, and the second inspection measurement unit 62 correspond to an embodiment of the inspection unit.
  • the control unit 17 causes the transfer unit 12, the inspection unit 50, the pressure leak inspection unit 14, and the transport unit 15 to be processed in parallel, which are arranged at specified intervals along the circumferential direction of the index table 13. More specifically, the control unit 17 according to the present embodiment includes the transfer unit 12, the inspection unit 50, the pressure leak inspection unit 14, and the inspection unit 60 that are arranged at specified intervals along the circumferential direction of the index table 13. The transport unit 15 is processed in parallel.
  • the first inspection unit 50 and the first inspection / measurement unit 51 inspect one of the characteristics of the piezoelectric element package 2 other than the impedance.
  • the first inspection unit 50, The first inspection / measurement unit 51 inspects the low drive characteristic and frequency characteristic of the piezoelectric element 21.
  • the pressure leak inspection unit 14 and the measurement unit 15 may simultaneously measure impedance and frequency identification.
  • the second inspection unit 60 and the second inspection unit measurement unit 61 measure other characteristics of the piezoelectric element 21 such as capacitance.
  • the first inspection unit 50 has one end connected to the first inspection measurement unit 51 and the other end connected to the holding unit 131 in order to inspect the low drive characteristics and frequency characteristics of the piezoelectric vibrator.
  • a terminal portion that can be electrically connected to the electrode portion 25 of the held piezoelectric element package 2 is provided.
  • the first inspection / measurement unit 51 measures low drive characteristics and frequency characteristics of the piezoelectric element package 2 connected via the terminal unit, and outputs a signal indicating the measurement result to the control unit 17.
  • the second inspection unit 60 has one end connected to the second inspection measurement unit 61 and the other end connected to the holding unit 131 in order to inspect other characteristics of the piezoelectric vibrator, for example, capacitance.
  • a terminal portion that can be electrically connected to the electrode portion 25 of the held piezoelectric element package 2 is provided.
  • the second inspection / measurement unit 61 measures other characteristics, for example, capacitance, of the piezoelectric element package 2 connected via the terminal unit, and outputs a signal indicating the measurement result to the control unit 17.
  • the inspection apparatus 1A having the above-described configuration, for example, after the piezoelectric element package 2 is transferred onto the holding unit 131 of the index table 13 by the transport supply unit 12, the first inspection unit 50, the first inspection measurement unit 51 To check the low drive characteristics and frequency characteristics, and then perform the pressure leak inspection by the pressure leak inspection section 14 and then the second inspection section 60 and the second inspection measurement section 61 to check the piezoelectric element package 2 After measuring other characteristics, such as capacitance, it is accommodated in the accommodating part 16 by the conveying part 15.
  • the control unit 17 performs parallel processing on the various functional units and performs processing for rotating the index table 13 in the circumferential direction at a predetermined angle at a predetermined timing.
  • the present invention is not limited to the above-described embodiment.
  • the above embodiments may be combined.
  • the piezoelectric element package 2 according to the above embodiment is not limited to the above-described embodiment.
  • an electronic component hermetically sealed with a piezoelectric element such as a crystal resonator.
  • the inspection apparatus 1 was performed using a circular index table 13, but this It is not limited to the state.
  • the inspection apparatus 1 is an inspection apparatus that performs an airtight inspection of an electronic component (piezoelectric element package) 2 in which piezoelectric elements are hermetically sealed, and is openable and closable.
  • a pressurizing unit 1401 pressurizing chamber 140, pressurizing device 146) that pressurizes the periphery of the piezoelectric element package 2 in a state where the piezoelectric element package 2 is installed in the pressurizing chamber 1401, and a pressurizing unit (Pressure chamber 140, pressurization device 146)
  • the measurement unit 145 that measures the impedance of the piezoelectric element package 2 installed in the pressure chamber 140, and the impedance force measured by the measurement unit 145 when not pressurized and when pressurized Since the change amount is calculated, and the change amount is compared with a set value to determine that the airtightness of the electronic component is poor, the determination unit 171 is included, so that the inspection time is shortened compared with a general inspection apparatus. be able to
  • the inspection apparatus 1 can be made relatively small.
  • the inspection apparatus 1 constitutes a part of the pressurizing chamber 140 and can hold and hold one or a plurality of piezoelectric element packages 2 and one pressurizing chamber 140.
  • a holding part 131 which can be hermetically sealed, and formed on one of the lid part 141 and the holding part 131, with one end connected to the measuring part 141 and the other end held.
  • the terminal portion 142 that can be electrically connected to the electrode portion 25 of the piezoelectric element package 2 held by the portion 131, and one or both of the lid portion 141 and the holding portion 131, and in the pressurizing chamber 140 Therefore, the openable and closable pressurizing chamber 140 according to the present invention can be configured with a simple configuration. Further, the piezoelectric element package 2 in the pressurizing chamber 140 can be pressurized with a simple configuration.
  • the piezoelectric element package 2 is installed in the pressurizing chamber 140 sealed by the holding unit 131 and the lid unit 141, and a gas having a specified pressure is applied via the air passage 134.
  • the piezoelectric element package 2 (electronic component) applied in the pressure chamber 140 is pressurized and the impedance is passed through the terminal part 142 electrically connected to the electrode part 25 of the piezoelectric element package 2. Therefore, it is possible to easily measure the impedance of the piezoelectric element 21 in the pressurizing chamber 140, and to easily determine whether the piezoelectric element package 2 is airtight. Can be determined.
  • a plurality of holding portions 131 are provided at regular intervals along the circumferential direction, the index table 13 that is rotatable along the circumferential direction, and a holding portion formed on the index table 13 131 includes a transfer part 12 for transferring the piezoelectric element package 2 and a lid part 141, and a pressure leak inspection part 14 for measuring the impedance of the piezoelectric element package 2 installed in the pressure part 1401; Then, the piezoelectric element package 2 is taken out from the holding part 131 formed on the index table 13, and transported to a position according to the determination result of the determination part 171 and the index table 13 in the circumferential direction at a specified timing.
  • the transfer unit 12, the pressure leak inspection unit 14, and the transport unit 15 that are arranged at a specified interval along at least the circumferential direction of the index table 13 are processed in parallel. Since having a that control section 17, can be tested relatively large amounts of packages 2 piezoelectric element to be inspected in a short time.
  • the pressurized leak inspection unit 14 can inspect a relatively large number of the piezoelectric element packages 2 by inspecting the plurality of piezoelectric element packages 2 held by the holding unit 131 in parallel. Can be processed in time.
  • the piezoelectric element has a test unit 50, 60 for inspecting any one of the characteristics of the piezoelectric element package 2 other than the impedance, for example, a low drive characteristic or a frequency characteristic of the piezoelectric element 21.
  • the control unit 17 performs parallel processing on the transfer unit 12, the inspection unit 50, the pressure leak inspection unit 14, and the transport unit 15 that are arranged at a predetermined interval along at least the circumferential direction of the index table 13. The characteristics of the piezoelectric element package 2 other than the pressure leak inspection can be inspected in parallel.
  • the pressurizing unit 1401 by using, for example, 0.2 MPa to 0.5 MPa as the pressure by the pressurizing unit 1401, it is possible to easily determine whether the piezoelectric element package 2 is airtight or not with high accuracy.
  • this pressure can be easily prepared by using compressed air or compressed nitrogen or a pressure tank or a pressurizing device generally piped at the manufacturing site of the piezoelectric element package 2. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

Inspection equipment for inspecting a relatively large quantity of inspection objects, i.e. packages for piezoelectric element, in a short time by correctly performing airtight inspection to a small package for piezoelectric element to shorten the inspection time as compared that required for general inspection equipment and making the inspection equipment relatively compact. The inspection equipment (1) performs airtight inspection to an electronic component (a package for piezoelectric element) (2) wherein a piezoelectric element is sealed airtightly. The inspection equipment comprises a section (1401)(a pressurization chamber (140), a pressurizing unit (146)) for pressurizing the periphery of the package (2) for piezoelectric element under a state where the package (2) is placed in the freely opening/closing pressurization chamber (140), a section (145) for measuring the impedance of the package (2) placed in the pressurizing section (1401), and a control section (17) for calculating a variation amount from the impedance measured at the measuring section (145) when a pressure is applied and not applied, and judging poor airtightness of the electronic component by comparing the variation with a set value.

Description

明 細 書  Specification
検査装置、および検査方法  Inspection device and inspection method
技術分野  Technical field
[0001] 本発明は、検査装置、および検査方法に関するものである。  [0001] The present invention relates to an inspection apparatus and an inspection method.
背景技術  Background art
[0002] 水晶振動子などの圧電素子が気密封止されている電子部品は、例えば圧電素子 を封止して 、るパッケージの気密性が良好でな 、場合、つまりリークが生じて 、る場 合、その圧電素子の電気的特性に影響が生じて信頼性が低下する。このため一般 的に圧電素子を気密封止して電子部品を作製した後、気密性の検査、いわゆるリー ク検査を行う。  [0002] An electronic component in which a piezoelectric element such as a crystal resonator is hermetically sealed has, for example, a case in which the piezoelectric element is sealed and the package has poor airtightness, that is, a leak occurs. In this case, the electrical characteristics of the piezoelectric element are affected and the reliability is lowered. For this reason, in general, an electronic component is manufactured by hermetically sealing a piezoelectric element, and then an airtightness inspection, so-called leak inspection, is performed.
[0003] リーク検査の方法としては、例えば、バブルリークテスト方式、差圧式エアーリークテ スト方式、圧力変化によるインピーダンス測定方式など各種検査方法が知られている  As a method for leak inspection, various inspection methods such as a bubble leak test method, a differential pressure type air leak test method, and an impedance measurement method by pressure change are known, for example.
[0004] バブルリークテスト方式の測定方法は、例えば、被検査対象の圧電素子が気密封 止された圧電素子用パッケージを、ヒーター等により約 120°Cに加熱したフッ素系不 活性液中に浸漬して、そのノ ッケージ内部を膨張させて、ノ ッケージ内部の漏れ (リ ーク)箇所からの気泡を目視検査する方法である。 [0004] The measurement method of the bubble leak test method includes, for example, immersing a piezoelectric element package in which a piezoelectric element to be inspected is hermetically sealed in a fluorine-based inert liquid heated to about 120 ° C by a heater or the like. Then, the inside of the knocker is expanded to visually inspect the bubbles from the leak (leak) inside the knocker.
[0005] 差圧式エアーリークテスト方式の測定方法は、密閉されたカプセルの中に、被検査 対象の圧電素子用パッケージを入れて、一定の圧縮空気を封入し、漏れ (リーク)に よる圧力変動をマスターパッケージ、詳細にはリークのない基準用パッケージと比較 して、その圧力差を差圧センサにて計測することで、圧電素子用パッケージの気密検 查を行う(例えば、特許文献 1, 2参照)。  [0005] The differential pressure type air leak test method measures the pressure fluctuation due to leakage (leakage) by placing a package for the piezoelectric element to be inspected in a sealed capsule and enclosing a certain amount of compressed air. Compared with a master package, specifically a reference package that does not leak, the pressure difference is measured by a differential pressure sensor to perform an airtight inspection of the piezoelectric element package (for example, Patent Documents 1 and 2). reference).
[0006] 圧力変化によるインピーダンス測定方法は、被検査対象の圧電素子用パッケージ を、大気雰囲気中と真空雰囲気中にて測定し、その際の圧力差によって変化するィ ンピーダンスの変化量力 リークの良否を検出する(例えば、特許文献 3参照)。  [0006] The impedance measurement method based on pressure changes is based on measuring the package for a piezoelectric element to be inspected in an air atmosphere and a vacuum atmosphere, and determining whether the impedance changes due to the pressure difference at that time. Detect (see, for example, Patent Document 3).
[0007] 特許文献 1 :特開 2000— 121486号公報  [0007] Patent Document 1: Japanese Patent Application Laid-Open No. 2000-121486
特許文献 2:特公平 7— 104224号公報 特許文献 3:特開平 11— 51802号公報 Patent Document 2: Japanese Patent Publication No. 7-104224 Patent Document 3: Japanese Patent Laid-Open No. 11-51802
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかし、上記バブルリークテスト方式の検査方法では、被検査対象の圧電素子用パ ッケージをフッ素系不活性液中に浸漬して検査するので、比較的長!、検査時間を要 する、気泡の目視検査は信頼性が低い、などの問題点がある。  However, in the inspection method using the bubble leak test method, since the package for the piezoelectric element to be inspected is inspected by immersing it in a fluorine-based inert liquid, it requires a relatively long inspection time. There are problems such as low reliability of visual inspection of bubbles.
[0009] また、例えば特許文献 1, 2に記載された差圧式エアリークテスト方式の検査方法で は、圧電素子用パッケージサイズ力 、さくなると、パッケージ容量も小さくなるため、リ ークの有無による圧力差を正確に計測することができな 、、チャンバ一の容積やチヤ ンバー自体のリークが検査に大きく影響する、等の問題がある。  [0009] Furthermore, in the inspection method of the differential pressure type air leak test method described in Patent Documents 1 and 2, for example, since the package size force for the piezoelectric element becomes small, the package capacity also becomes small. The difference cannot be measured accurately, and there are problems such as the volume of the chamber and the leak of the chamber itself greatly affecting the inspection.
[0010] また、例えば特許文献 3に記載された測定方法では、測定時に真空状態を作るた めの真空排気装置を用意する必要がある。また、この方法では、規定の真空度に達 するまでに時間を要するので検査時間が比較的長い、真空装置が比較的大型であ り比較的広い設置スペースを要する、等の問題点がある。  [0010] For example, in the measurement method described in Patent Document 3, it is necessary to prepare an evacuation apparatus for creating a vacuum state during measurement. In addition, this method has problems such as that it takes a long time to reach the specified degree of vacuum, so that the inspection time is relatively long, the vacuum apparatus is relatively large, and a relatively large installation space is required.
[0011] また、比較的大量の被検査対象の圧電素子用パッケージを高効率、短時間で検査 可能な検査装置が望まれて!/、る。  In addition, an inspection apparatus capable of inspecting a relatively large amount of packages for piezoelectric elements to be inspected with high efficiency and in a short time is desired!
[0012] 本発明は、このような問題に対処することを課題の一例とするものである。すなわち 、小型の圧電素子用パッケージを正確に気密検査すること、検査時間を一般的な検 查装置よりも短縮すること、検査装置を比較的小型にすること、比較的大量の被検査 対象の圧電素子用パッケージを短時間で検査すること、等が本発明の目的である。 課題を解決するための手段  [0012] The present invention is directed to addressing such a problem as an example. That is, accurate airtight inspection of small packages for piezoelectric elements, shortening the inspection time compared with general inspection devices, making inspection devices relatively small, and relatively large amounts of piezoelectric objects to be inspected It is an object of the present invention to inspect a device package in a short time. Means for solving the problem
[0013] 本発明では、上述した課題を解決することを目的の一つとして!/、る。 [0013] In the present invention, one of the objects is to solve the above-mentioned problems!
請求項 1に記載の発明は、圧電素子が気密に封止された電子部品の気密検査を 行う検査装置であって、開閉自在な加圧室内に前記電子部品が設置された状態で 該電子部品の周囲を加圧する加圧部と、前記加圧部に設置された前記電子部品の インピーダンスを測定する測定部と、前記測定部によって測定された非加圧時と加圧 時のインピーダンス力 変化量を算出し、その変化量を設定値と比較して、前記電子 部品の気密性が不良であることを判別する判別部とを有する。 [0014] 請求項 11に記載の発明は、圧電素子が気密に封止された電子部品の気密検査を 行う検査方法であって、開閉自在な加圧室内に前記電子部品を設置した状態で該 電子部品の周囲を加圧するステップと、前記加圧室内に設置された前記電子部品の インピーダンスを測定するステップと、測定された非加圧時と加圧時のインピーダンス 力 変化量を算出し、その変化量を設定値と比較して、前記電子部品の気密性が不 良であることを判別するステップとを有することを特徴とする。 The invention according to claim 1 is an inspection device that performs an airtight inspection of an electronic component in which a piezoelectric element is hermetically sealed, and the electronic component is installed in a pressure chamber that can be freely opened and closed. A pressurizing unit that pressurizes the periphery of the sensor, a measuring unit that measures the impedance of the electronic component installed in the pressurizing unit, and an impedance force change amount during non-pressurization and pressurization measured by the measurement unit And a determination unit that compares the amount of change with a set value to determine that the airtightness of the electronic component is poor. [0014] The invention of claim 11 is an inspection method for performing an airtight inspection of an electronic component in which a piezoelectric element is hermetically sealed, and the electronic component is installed in a pressurizable chamber that can be opened and closed. A step of pressurizing the periphery of the electronic component, a step of measuring the impedance of the electronic component installed in the pressurizing chamber, and calculating a measured amount of change in the impedance force during non-pressurization and pressurization. Comparing the amount of change with a set value and determining that the airtightness of the electronic component is poor.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の第 1実施形態に係る検査装置を説明するための全体構成図である。  FIG. 1 is an overall configuration diagram for explaining an inspection apparatus according to a first embodiment of the present invention.
[図 2]図 1に示した検査装置 1の全体の斜視図である。  2 is a perspective view of the entire inspection apparatus 1 shown in FIG.
[図 3]本発明に係る被検査対象の圧電素子用パッケージ 2を説明するための図であ る。(A)は圧電素子用パッケージ 2のカバー 23を透過した平面図であり、(B)は (A) に示した圧電素子用パッケージ 2の A— A線に沿った断面図である。  FIG. 3 is a diagram for explaining a piezoelectric element package 2 to be inspected according to the present invention. (A) is a plan view through the cover 23 of the piezoelectric element package 2, and (B) is a cross-sectional view taken along the line AA of the piezoelectric element package 2 shown in (A).
[図 4]図 1に示したインデックステーブル 13に形成された保持部 131を説明するため の上面図である。  4 is a top view for explaining a holding part 131 formed on the index table 13 shown in FIG. 1. FIG.
[図 5]図 1に示した保持部 131および蓋部 141を説明するための図である。  FIG. 5 is a view for explaining holding part 131 and lid part 141 shown in FIG. 1.
[図 6]他の実施形態に係る保持部 131を説明するための上面図である。  FIG. 6 is a top view for explaining a holding part 131 according to another embodiment.
[図 7]他の実施形態に係る保持部 131および蓋部 141を説明するための図である。  FIG. 7 is a view for explaining a holding part 131 and a lid part 141 according to another embodiment.
[図 8]図 1に示した検査装置 1の全体の動作を説明するためのフローチャートである。  FIG. 8 is a flowchart for explaining the overall operation of the inspection apparatus 1 shown in FIG.
[図 9]図 1に示した検査装置 1の加圧リーク検査処理に係る動作を説明するためのフ ローチャートである。  FIG. 9 is a flowchart for explaining the operation related to the pressurized leak inspection process of the inspection apparatus 1 shown in FIG. 1.
[図 10]加圧時の圧電素子の CI値の変化量を示す図である。 FIG. 10 is a diagram showing a change amount of a CI value of a piezoelectric element during pressurization.
[図 11]加圧時に圧電素子用パッケージにリークが生じた場合とリークがない場合の C I値の変化量 Rを示す図である。  FIG. 11 is a diagram showing the change amount R of the CI value when leakage occurs in the piezoelectric element package during pressurization and when there is no leakage.
[図 12]リークが生じる圧電素子用パッケージを 0. lMPa〜0. 5MPaに加圧した場合 の CI値の変化量の時間変化を示す図である。  FIG. 12 is a graph showing the change over time in the amount of change in CI value when a piezoelectric element package in which leakage occurs is pressurized to 0.1 lMPa to 0.5 MPa.
[図 13]複数の圧電素子用パッケージ 2について従来の真空測定法による CI値の変 化量を示す図である。  FIG. 13 is a diagram showing the amount of change in CI value by a conventional vacuum measurement method for a plurality of packages 2 for piezoelectric elements.
[図 14]図 13に示した複数の圧電素子用パッケージ 2につ 、て本発明に係る 0. 2MP aの加圧リーク測定法による CI値の変化量を示す図である。 FIG. 14 shows a plurality of piezoelectric element packages 2 shown in FIG. 13 according to the present invention. It is a figure which shows the variation | change_quantity of CI value by the pressurization leak measuring method of a.
[図 15]本発明の第 2実施形態に係る検査装置 1Aを説明するための全体構成図であ る。  FIG. 15 is an overall configuration diagram for explaining an inspection apparatus 1A according to a second embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明の一実施形態に係る発明は、圧電素子が気密に封止された電子部品の気 密検査を行う検査装置であって、開閉自在な加圧室内に電子部品が設置された状 態で該電子部品の周囲を加圧する加圧部と、加圧部に設置された電子部品のインピ 一ダンスを測定する測定部と、測定部によって測定された非加圧時と加圧時のインピ 一ダンス力も変化量を算出し、その変化量を設定値と比較して、電子部品の気密性 が不良であることを判別する判別部とを有する。  [0016] The invention according to an embodiment of the present invention is an inspection device that performs an airtight inspection of an electronic component in which a piezoelectric element is hermetically sealed, and the electronic component is installed in an openable and closable pressurizing chamber. A pressure unit that pressurizes the periphery of the electronic component in a state; a measurement unit that measures the impedance of the electronic component installed in the pressurization unit; and a non-pressurized and a pressurized state measured by the measurement unit The impedance of the electronic component also includes a determination unit that calculates a change amount, compares the change amount with a set value, and determines that the airtightness of the electronic component is poor.
[0017] 上記構成の検査装置では、加圧部により開閉自在な加圧室内に電子部品が設置 された状態でその電子部品の周囲を加圧し、測定部により、加圧部に設置された電 子部品のインピーダンスを測定し、判別部が測定部によって測定された非加圧時と 加圧時のインピーダンス力 変化量を算出し、その変化量を設定値と比較して、電子 部品の気密性が不良であることを判別する。  [0017] In the inspection apparatus having the above-described configuration, the electronic component is pressurized around the electronic component while the electronic component is installed in a pressurizing chamber that can be opened and closed by the pressurizing unit, and the electric component installed in the pressurizing unit is measured by the measuring unit. The impedance of the child component is measured, and the discriminating unit calculates the amount of change in the impedance force during non-pressurization and pressurization measured by the measurement unit. Is determined to be defective.
例えば判別部は、測定部によって測定された非加圧時、具体的には大気圧(1気 圧)時のインピーダンスの測定値と、電子部品を加圧した時のインピーダンスの測定 値からインピーダンスの変化量を算出して、加圧時間内にそのインピーダンス変化量 が設定値以上の場合にリークしているとして気密性が不良と判別し、そのインピーダ ンス変化量が設定値より小さい場合に、リークがなく基準となる気密性が確保されて いるとして、気密性が良であると判別する。  For example, the discriminating unit determines the impedance based on the measured impedance value at the time of non-pressurization measured by the measuring unit, specifically, the atmospheric pressure (1 atmospheric pressure) and the measured impedance value when the electronic component is pressurized. The amount of change is calculated, and if the amount of change in impedance is greater than or equal to the set value within the pressurization time, it is determined that the leak is poor and the amount of change in impedance is less than the set value. It is determined that the airtightness is good, assuming that the standard airtightness is secured.
[0018] 以下、本発明の一実施形態に係る検査装置を図面を参照しながら説明する。  Hereinafter, an inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings.
[0019] [第 1実施形態]  [0019] [First embodiment]
図 1は本発明の第 1実施形態に係る検査装置を説明するための全体構成図である 。図 1は検査装置 1の上面図である。図 2は図 1に示した検査装置 1の全体の斜視図 である。  FIG. 1 is an overall configuration diagram for explaining an inspection apparatus according to a first embodiment of the present invention. FIG. 1 is a top view of the inspection apparatus 1. FIG. 2 is a perspective view of the entire inspection apparatus 1 shown in FIG.
[0020] 検査装置 1は、被検査対象として、例えば圧電素子が気密に封止された電子部品 の気密検査を行う。本実施形態に係る電子部品は、例えば表面実装型電子部品で あり、詳細には圧電素子を気密に封止した圧電素子用パッケージ 2である。例えば、 水晶振動子などの圧電素子が気密封止された圧電素子用パッケージ 2は、パッケ一 ジ内部の圧力によって、圧電素子のインピーダンスが変化する電気特性を有する。 本実施形態に係る検査装置 1は、圧電素子を気密封止した圧電素子用パッケージを 加圧して圧電素子のインピーダンスを測定し、非加圧時と加圧時のインピーダンスが 変化した圧電素子用パッケージを気密性が不良であると判別する。 The inspection apparatus 1 performs an airtight inspection of an electronic component in which, for example, a piezoelectric element is hermetically sealed as an object to be inspected. The electronic component according to the present embodiment is, for example, a surface mount electronic component. In detail, the piezoelectric element package 2 has a piezoelectric element hermetically sealed. For example, a piezoelectric element package 2 in which a piezoelectric element such as a crystal resonator is hermetically sealed has an electrical characteristic in which the impedance of the piezoelectric element changes depending on the pressure inside the package. The inspection apparatus 1 according to this embodiment measures the impedance of the piezoelectric element by pressurizing the piezoelectric element package in which the piezoelectric element is hermetically sealed, and the impedance for the piezoelectric element is changed when the pressure is not applied and when the pressure is applied. It is determined that the airtightness is poor.
[0021] 本実施形態に係る検査装置 1は、例えば図 1,図 2に示すように、整列供給部 11、 搬送供給部 12、インデックステーブル 13、加圧リーク検査部 14、搬送部 15 (ピックァ ンドプレース部 15A)、収容部 16、および制御部 17を有する。制御部 17は、各構成 要素にデータ線又は光ファイバ等の信号路により接続され、各構成要素を統括的に 制御する。 As shown in FIGS. 1 and 2, for example, the inspection apparatus 1 according to the present embodiment includes an alignment supply unit 11, a conveyance supply unit 12, an index table 13, a pressure leak inspection unit 14, a conveyance unit 15 (pick-up unit). A second place portion 15A), a storage portion 16, and a control portion 17. The control unit 17 is connected to each component via a signal line such as a data line or an optical fiber, and controls each component in an integrated manner.
例えば、整列供給部 11、搬送供給部 12、インデックステーブル 13、加圧リーク検 查部 14、搬送部 15、および収容部 16等が台座 10上に載置されている。  For example, the alignment supply unit 11, the conveyance supply unit 12, the index table 13, the pressure leak detection unit 14, the conveyance unit 15, the storage unit 16, and the like are placed on the base 10.
[0022] 整列供給部 11及び搬送供給部 12は本発明に係る移載部の一実施形態に相当す る。インデックステーブル 13は本発明に係るインデックステーブルの一実施形態に相 当する。加圧リーク検査部 14は本発明に係る加圧リーク検査部の一実施形態に相 当する。搬送部 15は本発明に係る搬送部の一実施形態に相当する。制御部 17は 本発明に係る制御部の一実施形態に相当する。  [0022] The alignment supply unit 11 and the conveyance supply unit 12 correspond to an embodiment of the transfer unit according to the present invention. The index table 13 corresponds to an embodiment of the index table according to the present invention. The pressurized leak inspection unit 14 corresponds to an embodiment of the pressurized leak inspection unit according to the present invention. The transport unit 15 corresponds to an embodiment of the transport unit according to the present invention. The control unit 17 corresponds to an embodiment of the control unit according to the present invention.
[0023] 整列供給部 11は、例えば被検査対象の電子部品である複数の圧電素子用パッケ ージ 2を収容し、圧電素子用パッケージ 2の表裏などを判別して整列させる。整列供 給部 11は、例えば図 1, 2に示すように台座 10上に載置されたパーツフィーダ部 111 を有する。パーツフィーダ部 111は、例えばボウルフィーダ一(収容部) 111A、およ びリニアフィーダ一 111Bを有する。ボウルフィーダ一(収容部) 111Aは、例えば複 数の圧電素子用パッケージ 2を収容し、駆動機構により圧電素子用パッケージ 2の表 裏や極性を判別した後に整列させ、その圧電素子用パッケージ 2をリニアフィーダ一 111Bに出力する。リニアフィーダ一 111Bは、ボウルフィーダ一(収容部) 111Aによ り整列された圧電素子用パッケージ 2をリニアフィーダ 111B端部まで搬送する。  The alignment supply unit 11 accommodates, for example, a plurality of piezoelectric element packages 2 that are electronic components to be inspected, and distinguishes and aligns the front and back of the piezoelectric element package 2. The alignment supply unit 11 includes a parts feeder unit 111 placed on the base 10 as shown in FIGS. The parts feeder unit 111 includes, for example, a bowl feeder (container) 111A and a linear feeder 111B. The bowl feeder 111 (accommodating section) 111A accommodates, for example, a plurality of piezoelectric element packages 2, and after the front and back surfaces and polarity of the piezoelectric element package 2 are discriminated by a drive mechanism, they are aligned. Output to linear feeder 111B. The linear feeder 111B conveys the piezoelectric element package 2 aligned by the bowl feeder (container) 111A to the end of the linear feeder 111B.
[0024] 図 3は、本発明に係る被検査対象の圧電素子用パッケージ 2を説明するための図 である。詳細には、図 3 (A)は圧電素子用パッケージ 2のカバー 23を透過した平面図 であり、図 3 (B)は図 3 (A)に示した圧電素子用パッケージ 2の A— A線に沿った断面 図である。 FIG. 3 is a diagram for explaining a piezoelectric element package 2 to be inspected according to the present invention. It is. Specifically, Fig. 3 (A) is a plan view through the cover 23 of the piezoelectric element package 2, and Fig. 3 (B) is an A—A line of the piezoelectric element package 2 shown in Fig. 3 (A). FIG.
[0025] 圧電素子用パッケージ 2は、例えば図 3 (A) , (B)に示すように、圧電素子 21、導 電性接着剤 213、ケース内部電極 214、ケース 22、ケースカバー 23、ろう材 24、お よび外部電極 25を有する。ケース 22とケースカバー 23とにより封止された封止空間 26は、例えば真空状態に規定されている。または封止空間 26には不活性ガス 27が 封止されていてもよい。この封止空間 26の不活性ガス 27の気圧は、例えば大気圧な ど、規定圧力に設定されている。このパッケージ内の圧力は、圧電素子用パッケージ 2の特性に応じて適宜設定される。  [0025] The piezoelectric element package 2 includes, for example, as shown in FIGS. 3A and 3B, a piezoelectric element 21, a conductive adhesive 213, a case internal electrode 214, a case 22, a case cover 23, and a brazing material. 24, and external electrode 25. The sealed space 26 sealed by the case 22 and the case cover 23 is defined in a vacuum state, for example. Alternatively, an inert gas 27 may be sealed in the sealed space 26. The pressure of the inert gas 27 in the sealed space 26 is set to a specified pressure such as atmospheric pressure. The pressure in the package is appropriately set according to the characteristics of the piezoelectric element package 2.
[0026] 本実施形態に係る圧電素子 21としては、例えば、水晶振動子などの圧電振動子デ バイスを採用することができる。また、本実施形態に係る圧電素子 21は、パッケージ 内部の圧力変化に応じてインピーダンスが変化する特性を有する。  As the piezoelectric element 21 according to the present embodiment, for example, a piezoelectric vibrator device such as a crystal vibrator can be adopted. In addition, the piezoelectric element 21 according to the present embodiment has a characteristic that the impedance changes according to a change in pressure inside the package.
[0027] 圧電素子 21は、例えば図 3 (A) , (B)に示すように、水晶片 210、および励振電極 211, 212を有する。この水晶片 210の両面には、図 3 (A) , (B)に示すように、励振 電極 211, 212が成膜されており、励振電極 211, 212の端部は、導電性接着剤 21 3によってケース内部電極 214に支持固定されている。また、各励振電極 211, 212 は、導電性接着剤 213とケース内部電極 214を介して外部電極 25に電気的に接続 されている。また、水晶片 210は、両端部又は一端部が導電性接着剤 213によって、 ケース 22の支持台 22Aに支持されており、詳細には振動を抑圧しないように支持さ れている。  The piezoelectric element 21 includes a crystal piece 210 and excitation electrodes 211 and 212 as shown in FIGS. 3 (A) and 3 (B), for example. As shown in FIGS. 3 (A) and 3 (B), excitation electrodes 211 and 212 are formed on both surfaces of the crystal piece 210, and the ends of the excitation electrodes 211 and 212 are connected to the conductive adhesive 21. 3 is supported and fixed to the case internal electrode 214. The excitation electrodes 211 and 212 are electrically connected to the external electrode 25 via the conductive adhesive 213 and the case internal electrode 214. Further, both ends or one ends of the crystal piece 210 are supported by the support base 22A of the case 22 by the conductive adhesive 213, and are specifically supported so as not to suppress vibration.
圧電素子 21は、上記形態に限られるものではなぐ各種形状、特性、機能等を備え ていてもよい。  The piezoelectric element 21 may have various shapes, characteristics, functions, and the like that are not limited to those described above.
[0028] ケース 22は、例えばセラミック、榭脂などの各種材料により形成され、図 3 (A) , (B) に示すように、支持台 22Aが形成され、支持台 22A上に圧電素子 21が備えられて いる。  [0028] The case 22 is formed of various materials such as ceramic and resin, and as shown in FIGS. 3 (A) and 3 (B), a support base 22A is formed, and the piezoelectric element 21 is placed on the support base 22A. It is provided.
[0029] ケースカバー 23は、例えば金属、セラミックス、ガラス、榭脂などの各種材料により 略板状に形成されており、ろう材 (接着剤) 24を介してケース 22に気密に接着封止さ れる。 [0029] The case cover 23 is formed in a substantially plate shape from various materials such as metal, ceramics, glass, and resin, and is hermetically bonded and sealed to the case 22 via a brazing material (adhesive) 24. It is.
[0030] ろう材 (接着剤) 24は、ケース 22とケースカバー 23間に設けられている。また、ろう 材 24は、例えば Ag— Cuや Au— Snなどの合金、半田、ガラスなどの各種ろう材を採 用することができる。ろう材 24は上記形態に限られるものではなぐパラレルシーム溶 接などのように Niをろう材として気密封止してもょ 、。  The brazing material (adhesive) 24 is provided between the case 22 and the case cover 23. For the brazing material 24, various brazing materials such as alloys such as Ag—Cu and Au—Sn, solder, and glass can be employed. The brazing material 24 is not limited to the above-mentioned form, but it may be hermetically sealed with Ni as a brazing material, such as parallel seam welding.
[0031] 外部電極 25は、例えば圧電素子用パッケージ 2の少なくとも底部、側部のいずれ かに形成されており、上記励振電極 211, 212に電気的に接続されている。  [0031] The external electrode 25 is formed, for example, on at least the bottom or side of the piezoelectric element package 2, and is electrically connected to the excitation electrodes 211 and 212.
[0032] 上記構成の圧電素子用パッケージ 2内の圧電素子 21は、例えばリーク (漏れ)によ りパッケージ内部の圧力が変化した場合、その圧力変化により圧電素子 21のインピ 一ダンスが変化する。  In the piezoelectric element 21 in the piezoelectric element package 2 having the above-described configuration, when the pressure inside the package changes due to, for example, leakage, the impedance of the piezoelectric element 21 changes due to the pressure change.
[0033] 図 1, 2に示すように、搬送供給部 12は、例えば制御部 17の制御により、インデック ステーブル 13上に形成された保持部(ワークホルダ) 131に圧電素子用パッケージ 2 を移載する。詳細には、搬送供給部 12は、ピックアンドプレース部 12Aを有する。ピ ックアンドプレース部 12Aは、例えば圧電素子用パッケージ 2を吸着及び脱着自在 な複数のヘッド 12Bを備え、そのヘッド 12Bが XZ軸方向に沿って移動自在な搬送口 ボットである。本実施形態に係るピックアンドプレース部 12Aは、 8連ヘッド 12Bを有 し、ヘッド 12Bそれぞれにはバキュームセンサが備えられている。  As shown in FIGS. 1 and 2, the transport supply unit 12 transfers the piezoelectric element package 2 to a holding unit (work holder) 131 formed on the index table 13, for example, under the control of the control unit 17. Included. Specifically, the transport supply unit 12 includes a pick and place unit 12A. The pick-and-place unit 12A is a transport port bot that includes a plurality of heads 12B that can adsorb and detach the piezoelectric element package 2, for example, and that the heads 12B can move along the XZ-axis direction. The pick and place unit 12A according to the present embodiment has an eight-unit head 12B, and each head 12B is provided with a vacuum sensor.
上記構成のピックアンドプレース部 12Aは、上記ヘッド 12Bにより、パーツフィーダ 部 111のリニアフィーダ一 111Bから、圧電素子用パッケージ 2を吸着し、そのヘッド 1 2Bをインデックステーブル 13に備えられて ヽる保持部 131上に移動させて圧電素子 用パッケージ 2を脱着させて、保持部 131に圧電素子用パッケージ 2を移載する。  The pick-and-place unit 12A having the above-described configuration attracts the piezoelectric element package 2 from the linear feeder 111B of the part feeder unit 111 by the head 12B, and the head 12B is mounted on the index table 13 and held. The piezoelectric element package 2 is moved onto the part 131 to be detached, and the piezoelectric element package 2 is transferred to the holding part 131.
[0034] インデックステーブル 13は、例えば円形状に形成されており、上面側に保持部 131 を有する。この保持部 131は、加圧室 140の一部を構成するとともに一つ又は複数 の圧電素子用パッケージ 2を収容して保持することができる。本実施形態に係るイン デッタステーブル 13は、図 1, 2に示すように、複数の保持部 131が、周方向に沿つ て等間隔に形成されている。具体的には、図 1, 2に示すように、 4つの保持部 131が インデックステーブル 13上に周方向に沿って配置されている。また、インデックステー ブル 13は、周方向に沿って回転自在に形成されている。例えばインデックステープ ル 13には、駆動モータや回転機構を備えた回転駆動部 135が形成されている。制 御部 17は、回転駆動部 135を駆動制御することより規定のタイミングでインデックステ 一ブル 13を周方向に沿って回転させる。 The index table 13 is formed in a circular shape, for example, and has a holding part 131 on the upper surface side. The holding portion 131 constitutes a part of the pressurizing chamber 140 and can accommodate and hold one or a plurality of piezoelectric element packages 2. As shown in FIGS. 1 and 2, in the index table 13 according to the present embodiment, a plurality of holding portions 131 are formed at equal intervals along the circumferential direction. Specifically, as shown in FIGS. 1 and 2, four holding portions 131 are arranged on the index table 13 along the circumferential direction. The index table 13 is formed to be rotatable along the circumferential direction. For example, index tape A rotation drive unit 135 having a drive motor and a rotation mechanism is formed in the cylinder 13. The control unit 17 controls the rotation driving unit 135 to rotate the index table 13 along the circumferential direction at a specified timing.
[0035] また、図 1に示すように、インデックステーブル 13の周囲には周方向に沿って、搬送 供給部 (移載部) 12、加圧リーク検査部 14、搬送部 15が順に規定間隔に配置されて いる。 In addition, as shown in FIG. 1, around the index table 13, a conveyance supply unit (transfer unit) 12, a pressure leak inspection unit 14, and a conveyance unit 15 are sequentially arranged at specified intervals along the circumferential direction. It is arranged.
[0036] 本実施形態に係るインデックステーブル 13は、例えば周方向に沿って規定間隔で 、ワーク (電子部品)投入ステージ、加圧リーク検査ステージ、良品 ·不良品分類ステ ージ、空確認ステージと順に回転移動する。  [0036] The index table 13 according to the present embodiment includes, for example, a workpiece (electronic component) input stage, a pressure leak inspection stage, a non-defective / defective product classification stage, and an empty check stage at a specified interval along the circumferential direction. It rotates in order.
[0037] 図 4は、図 1に示したインデックステーブル 13に形成された保持部 131を説明する ための上面図である。図 5は、図 1に示した保持部 131および蓋部 141を説明するた めの図である。図 6は、他の実施形態に係る保持部 131を説明するための上面図で ある。図 7は他の実施形態に係る保持部 131および蓋部 141を説明するための図で ある。  FIG. 4 is a top view for explaining the holding part 131 formed in the index table 13 shown in FIG. FIG. 5 is a view for explaining the holding part 131 and the lid part 141 shown in FIG. FIG. 6 is a top view for explaining a holding part 131 according to another embodiment. FIG. 7 is a view for explaining a holding part 131 and a lid part 141 according to another embodiment.
[0038] 保持部 131は、図 4, 5に示すように、ワーク保持ポケット 132と、ワーク保持ポケット 132の周辺部に備えられたパッキン 133とを有する。  As shown in FIGS. 4 and 5, the holding part 131 has a work holding pocket 132 and a packing 133 provided around the work holding pocket 132.
ワーク保持ポケット 132は、例えば矩形状かつ凹形状に形成され、その内部に圧電 素子用パッケージ 2を収容することによって、位置決めが可能である。本実施形態に 係る保持部 131は、複数のワーク保持ポケット 132、例えば図 4に示すように 8個のヮ ーク保持ポケット 132が直列に規定間隔で形成されている。保持部 131は、上記形 態に限られるものではなぐ例えば 2列、 3列以上の複数列にワーク保持ポケット 132 が形成されていてもよい。  The workpiece holding pocket 132 is formed in, for example, a rectangular shape and a concave shape, and positioning is possible by accommodating the piezoelectric element package 2 therein. In the holding part 131 according to the present embodiment, a plurality of workpiece holding pockets 132, for example, eight workpiece holding pockets 132 as shown in FIG. 4, are formed in series at regular intervals. The holding portion 131 is not limited to the above-described form, and the work holding pockets 132 may be formed in a plurality of rows, for example, two rows, three rows or more.
[0039] 蓋部 141は、図 5に示すように、加圧室 14の一部を構成するとともにインデックステ 一ブル 13に形成された保持部 131を気密に密閉可能である。つまり、加圧室 140は 、保持部 131と蓋部 141により形成される密閉空間に相当する。例えば、図 1, 5に示 すように、蓋部 141には、蓋部 141を規定方向、例えば上下方向に移動駆動する駆 動部 149が設けられている。制御部 17は、駆動部 149を制御して、蓋部 141により保 持部 131を密閉することができる。 また、保持部 131は、例えば図 6, 7に示すように、比較的大きな凹部内に、複数の ワークポケット 132が形成されている形態であってもよい。 As shown in FIG. 5, the lid 141 forms a part of the pressurizing chamber 14 and can hermetically seal the holding part 131 formed on the index table 13. That is, the pressurizing chamber 140 corresponds to a sealed space formed by the holding part 131 and the lid part 141. For example, as shown in FIGS. 1 and 5, the lid 141 is provided with a driving unit 149 that drives the lid 141 to move in a specified direction, for example, the vertical direction. The control unit 17 can control the driving unit 149 to seal the holding unit 131 with the lid unit 141. Further, as shown in FIGS. 6 and 7, for example, the holding portion 131 may have a configuration in which a plurality of work pockets 132 are formed in a relatively large recess.
[0040] また、一端部 142Aが測定部 141に接続され、他端部 142Bが保持部 131により保 持された圧電素子用パッケージ 2の電極部 25に電気的に接続可能な端子部 142が 、保持部 131及び蓋部 141の一方に形成されている。本実施形態に係る端子部 142 は、例えば図 5に示すように、蓋部 141においてワーク保持ポケット 132に対応する 位置に形成されている。  [0040] Further, the terminal part 142 that can be electrically connected to the electrode part 25 of the piezoelectric element package 2 in which the one end part 142A is connected to the measuring part 141 and the other end part 142B is held by the holding part 131, It is formed on one of the holding part 131 and the lid part 141. The terminal portion 142 according to the present embodiment is formed at a position corresponding to the work holding pocket 132 in the lid portion 141 as shown in FIG.
[0041] また、加圧装置 146から加圧室 140内に規定圧力の気体を流入可能な通気路カ 加圧室 140の一部を構成する保持部 131又は蓋部 141に形成されて!、る。本実施 形態では、例えば図 5に示すように、通気路 134が、矩形状の保持部 131の内部に、 保持部 131の一端部側力も他端部に向力つて長手方向に沿って形成されている。ま た、図 5に示すように、通気路 134とワーク保持ポケット 132の間には、貫通孔 1341 が形成されている。通気路 134は、上述した形態に限られるものではない。例えば、 通気路 134の流入口 134Aは、加圧装置 146からの規定圧力の気体が流入可能で あれば形成位置や形状などを適宜設定してもよぐ例えば保持部 131の底面部、側 面部、上面部など適宜設定してもよい。また、通気路 134に連通するとともに、インデ ックステーブル 13を上下方向に貫通する通気孔を設けてもよい。つまり、加圧装置 1 46からの規定圧力の気体力 その通気孔および通気路を介して加圧室 140内に流 入する形態であってもよ 、。  [0041] In addition, formed in the holding portion 131 or the lid portion 141 constituting a part of the pressurizing chamber 140 capable of flowing a gas of a specified pressure from the pressurizing device 146 into the pressurizing chamber 140 !, The In the present embodiment, for example, as shown in FIG. 5, the air passage 134 is formed inside the rectangular holding portion 131 along the longitudinal direction with the force on one end portion of the holding portion 131 directed toward the other end portion. ing. Further, as shown in FIG. 5, a through hole 1341 is formed between the air passage 134 and the work holding pocket 132. The air passage 134 is not limited to the above-described form. For example, the formation position and shape of the inlet 134A of the air passage 134 may be appropriately set as long as the gas of the specified pressure from the pressurizing device 146 can flow in.For example, the bottom surface portion and the side surface portion of the holding portion 131 The upper surface portion and the like may be set as appropriate. Further, a vent hole that communicates with the vent path 134 and penetrates the index table 13 in the vertical direction may be provided. In other words, the gas force of the specified pressure from the pressurizing device 146 may flow into the pressurizing chamber 140 through the vent and the vent passage.
[0042] また、上述したように、加圧室 140は、上記構成の保持部 131を蓋部 141により気 密に密閉した状態に相当する。つまり、加圧室 140は開閉自在に形成されている。 そして、圧電素子用パッケージ 2が収容された加圧室 140に、加圧装置 146から、 通気路 134及び貫通孔部 1341を介して不活性ガスなどの気体を流入して加圧する ことができる。加圧装置 146と加圧室 140は、加圧部 1401に相当する。  Further, as described above, the pressurizing chamber 140 corresponds to a state in which the holding part 131 having the above configuration is hermetically sealed by the lid part 141. That is, the pressurizing chamber 140 is formed to be openable and closable. The pressurizing chamber 140 in which the piezoelectric element package 2 is accommodated can be pressurized by flowing a gas such as an inert gas from the pressurizing device 146 through the air passage 134 and the through hole portion 1341. The pressurizing device 146 and the pressurizing chamber 140 correspond to the pressurizing unit 1401.
[0043] 加圧測定時には、保持部 131を蓋部 141により気密に密閉した状態で、圧電素子 用パッケージ 2の周囲を加圧して、圧電素子用パッケージ 2内の圧電素子 21のイン ピーダンスが測定される。非加圧測定時には、保持部 131に蓋部 141を取り付け、気 体を流入しない状態、すなわち、加圧していない大気圧の状態となる。 [0044] 加圧リーク検査部 14は、保持部 131を気密に密閉可能な蓋部 141、端子部 142、 測定部 145 (クリスタルインピーダンス: CI値測定部)、及び加圧装置 146を有する。 上述した構成については説明を省略する。 [0043] During the pressurization measurement, the impedance of the piezoelectric element 21 in the piezoelectric element package 2 is measured by pressurizing the periphery of the piezoelectric element package 2 in a state where the holding part 131 is hermetically sealed by the lid part 141. Is done. At the time of non-pressurization measurement, the cover part 141 is attached to the holding part 131, and a state where no gas flows in, that is, an atmospheric pressure state where no pressure is applied is obtained. The pressure leak inspection unit 14 includes a lid 141 that can hermetically seal the holding unit 131, a terminal 142, a measurement unit 145 (crystal impedance: CI value measurement unit), and a pressure device 146. Description of the above-described configuration is omitted.
[0045] 測定部 145は、圧電素子用パッケージ 2の圧電素子 21のインピーダンスを測定す る。例えば、圧電素子用パッケージ 2の圧電素子 21として水晶振動子を採用した場 合には、測定部 145は、水晶振動子のクリスタルインピーダンスを測定する。また、本 実施形態に係る測定部 145は、加圧部に設置された圧電素子用パッケージ 2のイン ピーダンスを測定する。  The measuring unit 145 measures the impedance of the piezoelectric element 21 of the piezoelectric element package 2. For example, when a crystal resonator is adopted as the piezoelectric element 21 of the piezoelectric element package 2, the measurement unit 145 measures the crystal impedance of the crystal resonator. In addition, the measuring unit 145 according to the present embodiment measures the impedance of the piezoelectric element package 2 installed in the pressing unit.
また、測定部 145は、例えば発振回路により、周波数 10MHz〜40MHzの低周波 、周波数 40MHz〜60MHzの高周波などの発振信号を圧電素子用パッケージ 2の 圧電素子 21に印加し、圧電素子 21を発振させて、圧電素子 21のインピーダンスを 測定する。  In addition, the measurement unit 145 applies an oscillation signal such as a low frequency of 10 MHz to 40 MHz and a high frequency of 40 MHz to 60 MHz to the piezoelectric element 21 of the piezoelectric element package 2 by, for example, an oscillation circuit, and causes the piezoelectric element 21 to oscillate. Then, the impedance of the piezoelectric element 21 is measured.
[0046] そして、測定部 145は、測定結果を示す信号を制御部 17に出力する。制御部 17 は、測定部 145から出力された信号に基づいて、測定部 145によって測定された非 加圧時と加圧時のインピーダンス力 変化量を算出し、その変化量を設定値と比較し て、圧電素子用パッケージ 2の気密性が不良であることを判別する。この制御部 17の 機能は判別部 171に相当する。つまり、判別部 171は、測定部 145によって測定され た非加圧時と加圧時のインピーダンス力 変化量を算出し、その変化量を設定値と 比較して、電子部品の気密性が不良であることを判別する。  Then, measurement unit 145 outputs a signal indicating the measurement result to control unit 17. Based on the signal output from the measurement unit 145, the control unit 17 calculates the amount of change in impedance force between the non-pressurization and the pressurization measured by the measurement unit 145, and compares the change amount with a set value. Thus, it is determined that the airtightness of the piezoelectric element package 2 is poor. The function of the control unit 17 corresponds to the determination unit 171. In other words, the discriminating unit 171 calculates the amount of change in impedance force between the non-pressurized state and the pressurized state measured by the measuring unit 145, and compares the amount of change with the set value. Determine that there is.
測定部 145は、上述した形態に限られるものではなぐ例えば他の測定方法により 圧電素子のインピーダンス、周波数特性、など各種特性を測定してもよい。  The measurement unit 145 is not limited to the above-described embodiment, and may measure various characteristics such as impedance and frequency characteristics of the piezoelectric element by other measurement methods, for example.
[0047] 加圧装置 146は、規定圧力の圧縮空気、圧縮窒素 (N )などの不活性気体を供給  [0047] The pressurizing device 146 supplies an inert gas such as compressed air or compressed nitrogen (N) at a specified pressure.
2  2
する装置である。圧力源としては、例えば製造現場に配管されている圧縮空気、圧 縮窒素、又は圧縮された、不活性気体が蓄えられたタンク、ポンプ等を採用すること ができる。また、制御部 17の制御により、加圧室 140内に圧電素子用パッケージ 2が 設置された状態で、圧電素子用パッケージ 2の周囲を加圧する。  It is a device to do. As the pressure source, for example, compressed air, compressed nitrogen, or a compressed tank in which an inert gas is stored, a pump, or the like piped at the manufacturing site can be employed. Further, under the control of the control unit 17, the surroundings of the piezoelectric element package 2 are pressurized in a state where the piezoelectric element package 2 is installed in the pressurizing chamber 140.
[0048] 搬送部 15は、例えばインデックステーブル 13に形成された保持部 131から圧電素 子用パッケージ 2を取り出して、判別部 171の判別結果に応じた位置に圧電素子用 ノ ッケージ 2を搬送する。 The transfer unit 15 takes out the piezoelectric element package 2 from the holding unit 131 formed on the index table 13, for example, and places the piezoelectric element package at a position according to the determination result of the determination unit 171. Transport knock 2.
[0049] 図 1, 2に示すように、搬送部 15は、ピックアンドプレース部 15Aを有する。ピックァ ンドプレース部 15Aは、例えば圧電素子用パッケージ 2を吸着及び脱着自在な複数 のヘッドを備え、そのヘッドが XZ軸方向に沿って移動自在な搬送ロボットである。本 実施形態に係るピックアンドプレース部 15Aは、 8連ヘッドを有し、ヘッドそれぞれに はバキュームセンサが備えられて 、る。 As shown in FIGS. 1 and 2, the transport unit 15 includes a pick and place unit 15A. The pick-and-place unit 15A is, for example, a transport robot that includes a plurality of heads that can adsorb and detach the piezoelectric element package 2, and the heads can move along the XZ-axis direction. The pick-and-place unit 15A according to the present embodiment has an eight-unit head, and each head is provided with a vacuum sensor.
上記構成のピックアンドプレース部 15Aは、上記ヘッドにより、保持部 131上の圧 電素子用パッケージ 2を吸着し、そのヘッドを収容部 16上に移動させて圧電素子用 ノ^ケージ 2を脱着させて、判別部 171の判別結果に応じた位置に圧電素子用パッ ケージ 2を搬送する。  The pick-and-place unit 15A having the above configuration attracts the piezoelectric element package 2 on the holding unit 131 by the head and moves the head onto the housing unit 16 to detach the piezoelectric element cage 2. Thus, the piezoelectric element package 2 is transported to a position corresponding to the determination result of the determination unit 171.
[0050] 収容部 16は、図 1に示すように、圧電素子用パッケージ 2を収容する収容ボックス 1 61を有する。この収容ボックス 161は、規定方向、例えば Y軸方向に沿って移動可 能な移動装置上に配置され、例えば制御部 17の制御により、規定方向に移動可能 である。  As shown in FIG. 1, the storage unit 16 includes a storage box 1601 that stores the piezoelectric element package 2. The storage box 161 is disposed on a moving device that can move along a specified direction, for example, the Y-axis direction, and can move in the specified direction, for example, under the control of the controller 17.
本実施形態に係る収容ボックス 161は、例えば複数のボックスを備え、詳細には図 1に示すように良品ボックス 161A、および NG (不良品)ボックス 161Bを有する。良 品ボックス 161Aおよび NGボックス 161Bは予め規定された位置に配置されている。 また、この形態に限られるものではなぐ例えば、制御部 17の制御により、良品ボック ス 161Aおよび NGボックス 161Bが移動して規定位置に配置される形態であってもよ い。  The storage box 161 according to the present embodiment includes, for example, a plurality of boxes, and specifically includes a non-defective product box 161A and an NG (defective product) box 161B as shown in FIG. The non-defective box 161A and the NG box 161B are arranged at predetermined positions. For example, the non-defective box 161A and the NG box 161B may be moved and arranged at a specified position under the control of the control unit 17.
[0051] 良品ボックス 161Aには、例えば、加圧リーク検査によりリークが検出されずに、良 品であると判別された圧電素子用パッケージ 2が収容される。また、良品ボックス 161 Aには、例えば加圧リーク検査以外の他の検査にも合格して良品であると判別された 圧電素子用パッケージ 2が収容されてもょ 、。  [0051] The non-defective product box 161A accommodates, for example, the piezoelectric element package 2 that is determined to be non-defective without leak being detected by the pressure leak test. In addition, the non-defective box 161 A may contain, for example, the piezoelectric element package 2 that has passed other inspections other than the pressurized leak inspection and has been determined to be non-defective.
NGボックス 161Bには、例えば、加圧リーク検査によりリークが検出されて不良品で あると判別された圧電素子用パッケージ 2が収容される。また、 NGボックス 161Bに は、例えば他の検査により不良品であると判別された圧電素子用パッケージ 2が収容 されてちょい。 [0052] 例えば、制御部 17により、ピックアンドプレース部 15Aを制御して、判別部 171の判 別結果に応じて保持部 131上の良品の圧電素子用パッケージ 2を吸着して、そのへ ッドを良品ボックス 161 A上に移動させて圧電素子用パッケージ 2を脱着させて、良 品ボックス 161A内に収容し、判別部 171の判別結果に応じて保持部 131上の不良 品の圧電素子用パッケージ 2を吸着して、そのヘッドを NG (不良品)ボックス 161B上 に移動させて圧電素子用パッケージ 2を脱着させて、 NGボックス 161B内に収容す る。 In the NG box 161B, for example, the piezoelectric element package 2 that has been determined to be a defective product by detecting a leak by pressure leak inspection is housed. In the NG box 161B, for example, the piezoelectric element package 2 that has been determined to be defective by other inspections may be accommodated. [0052] For example, the control unit 17 controls the pick and place unit 15A, and adsorbs a good piezoelectric element package 2 on the holding unit 131 according to the determination result of the determination unit 171 to block the pick and place. The piezoelectric element package 2 is moved to the non-defective box 161 A to be attached to and removed from the non-defective box 161A, and is stored in the non-defective box 161A. The package 2 is adsorbed, the head is moved onto the NG (defective product) box 161B, and the piezoelectric element package 2 is detached and accommodated in the NG box 161B.
[0053] 制御部 17は、例えば検査装置全体を統括的に制御する。詳細には、例えば制御 部 17は、メモリ等に記憶されているプログラム 172を実行することにより、本発明に係 る機能、例えば判別部や各種制御機能を実現する。また、制御部 17は、例えばキー ボードやマウス等の入力装置、メモリ、表示装置、出力装置、 CPU (Central Process! ng Unit)、ハードディスクドライブ (HDD)、外部記憶装置などを有するコンピュータを 利用することにより、本発明に係る機能を実現してもよい。  The control unit 17 controls the entire inspection apparatus, for example. Specifically, for example, the control unit 17 implements functions according to the present invention, such as a determination unit and various control functions, by executing a program 172 stored in a memory or the like. Further, the control unit 17 uses, for example, a computer having an input device such as a keyboard and a mouse, a memory, a display device, an output device, a CPU (Central Process Unit), a hard disk drive (HDD), an external storage device, and the like. Thus, the functions according to the present invention may be realized.
[0054] また、制御部 17は、測定部 145によって測定された非加圧時と加圧時のインピー ダンス力も変化量を算出し、その変化量を設定値と比較して、圧電素子用パッケージ 2の気密性が不良であることを判別することで、判別部 171の機能を実現する。  In addition, the control unit 17 calculates the amount of change in the impedance force measured by the measurement unit 145 during non-pressurization and during pressurization, and compares the variation with a set value to obtain a package for a piezoelectric element. The function of the determination unit 171 is realized by determining that the airtightness of 2 is poor.
判別部 171は、上記形態に限られるものではなぐ例えばインピーダンス変化量の 時間変化量 (傾き)に基づいて、その圧電素子用パッケージ 2の気密性が不良である ことを判別してもよい。つまり、判別部 171は、インピーダンス変化量の時間変化量( 傾き)が、設定値以上の場合に気密性が不良であると判別し、設定値より小さい場合 に気密性が良好であると判別する。  The determination unit 171 may determine that the airtightness of the piezoelectric element package 2 is poor based on, for example, the time change amount (slope) of the impedance change amount, which is not limited to the above embodiment. That is, the determination unit 171 determines that the airtightness is poor when the time change amount (slope) of the impedance change amount is equal to or larger than the set value, and determines that the airtightness is good when the impedance change amount is smaller than the set value. .
[0055] また、制御部 17は、インデックステーブル 13を規定のタイミングで周方向に沿って 回転制御するとともに、少なくともインデックステーブルの周方向に沿って規定間隔に 配置された、移載部 (整列供給部 11、搬送供給部 12)、加圧リーク検査部 14、搬送 部 15を並列処理させる。  Further, the control unit 17 controls the rotation of the index table 13 along the circumferential direction at a predetermined timing, and at least a transfer unit (alignment supply) arranged at a predetermined interval along the circumferential direction of the index table. Unit 11, conveyance supply unit 12), pressure leak inspection unit 14, and conveyance unit 15 are processed in parallel.
制御部 17の詳細な機能、および動作等については後述する。  Detailed functions and operations of the control unit 17 will be described later.
[0056] 図 8は、図 1に示した検査装置 1の全体の動作を説明するためのフローチャートであ る。図 8を参照しながら検査装置 1の動作を説明する。検査装置 1の制御部 17は、電 子部品としての圧電素子用パッケージ 2をインデックステーブル 13の保持部 131に 移載する処理、加圧リーク検査処理、加圧リーク検査の処理結果に基づいた分類処 理、等を並列処理するが、この形態に限られるものではない。 FIG. 8 is a flowchart for explaining the overall operation of the inspection apparatus 1 shown in FIG. The operation of the inspection apparatus 1 will be described with reference to FIG. The control unit 17 of the inspection apparatus 1 The process of transferring the piezoelectric element package 2 as a sub-part to the holding part 131 of the index table 13, the pressure leak inspection process, the classification process based on the result of the pressure leak inspection process, etc. are performed in parallel. It is not limited to this form.
[0057] 図 3 (A) , (B)に示すように、ケース 22内に圧電素子 21を載置した状態で、ケース カバー 23によりろう材 24を介して気密に封止して圧電素子用パッケージ 2を作製す る。次に、この圧電素子用パッケージ 2を検査装置 1により検査を行う。  [0057] As shown in FIGS. 3 (A) and 3 (B), with the piezoelectric element 21 placed in the case 22, the case cover 23 is hermetically sealed through the brazing filler metal 24 for the piezoelectric element. Make package 2. Next, the inspection device 1 inspects the piezoelectric element package 2.
[0058] ステップ S1において、検査装置 1の制御部 17は、先ず図 1, 2に示すように、被検 查対象の圧電素子用パッケージ 2がパーツフィーダ部 111のボウルフィーダ一(収容 部) 111Aにセットされた状態で、パーツフィーダ部 111を制御して、駆動機構により 圧電素子用パッケージ 2の表裏や極性を判別した後に整列させ、その圧電素子用パ ッケージ 2をリニアフィーダ一 111Bに整列させる。  [0058] In step S1, the control unit 17 of the inspection apparatus 1 first, as shown in FIGS. 1 and 2, the piezoelectric element package 2 to be inspected is the bowl feeder (container) 111A of the parts feeder unit 111. In this state, the parts feeder 111 is controlled to determine the front and back sides and polarity of the piezoelectric element package 2 by the drive mechanism, and then aligned, and the piezoelectric element package 2 is aligned to the linear feeder 111B. .
次に、制御部 17は、搬送供給部 12を制御して、ピックアンドプレース部 12Aにより 、パーツフィーダ部 111からインデックステーブル 13に備えられて 、る保持部 131上 に圧電素子用パッケージ 2を移載する処理を行う。詳細には、ピックアンドプレース部 12Aは、図 4に示すように、保持部 131に形成された複数のワーク保持ポケット 132 それぞれに、圧電素子用パッケージ 2を載置する。この際、ピックアンドプレース部 12 Aは、例えば圧電素子用パッケージ 2の外部電極 25が上側となるように載置する。  Next, the control unit 17 controls the conveyance supply unit 12 to transfer the piezoelectric element package 2 from the parts feeder unit 111 to the index table 13 on the holding unit 131 by the pick and place unit 12A. Perform the process described. Specifically, as shown in FIG. 4, the pick and place unit 12A places the piezoelectric element package 2 in each of the plurality of work holding pockets 132 formed in the holding unit 131. At this time, the pick-and-place part 12A is placed such that the external electrode 25 of the piezoelectric element package 2 is on the upper side, for example.
[0059] ステップ S3において、制御部 17は、回転駆動部 135を制御して、インデックステー ブル 13を規定のタイミングで周方向に沿って回転させる。詳細には、制御部 17は、 図 1に示すように、インデックステーブル 13の保持部 131を、移載位置から加圧リー ク検査部 14の配置位置まで回転させる。本実施形態ではインデックステーブル 13が 90度回転移動する。  [0059] In step S3, the control unit 17 controls the rotation driving unit 135 to rotate the index table 13 along the circumferential direction at a specified timing. Specifically, as shown in FIG. 1, the control unit 17 rotates the holding unit 131 of the index table 13 from the transfer position to the arrangement position of the pressure leak inspection unit 14. In the present embodiment, the index table 13 rotates 90 degrees.
[0060] 次に、制御部 17は、駆動部 149を制御して蓋部 141を下方向に移動させ、保持部 131を蓋部 141により気密に密閉させる。  Next, the control unit 17 controls the driving unit 149 to move the lid 141 downward, and the holding unit 131 is hermetically sealed by the lid 141.
制御部 17は、加圧室 140にて圧電素子用パッケージ 2の加圧リーク測定を行い、 測定結果に基づ 、て圧電素子用パッケージ 2の気密性を判別する。詳細にっ 、ては 後述する。  The control unit 17 performs pressure leak measurement of the piezoelectric element package 2 in the pressurizing chamber 140, and determines the airtightness of the piezoelectric element package 2 based on the measurement result. Details will be described later.
[0061] ステップ S5において、制御部 17は、加圧リーク測定後、例えば駆動部 149を制御 して、蓋部 141を上方向に移動させる。次に、制御部 17は、回転駆動部 135を制御 して、インデックステーブル 13を規定のタイミングで周方向に沿って回転させる。詳細 には、制御部 17は、図 1に示すように、インデックステーブル 13の保持部 131を、カロ 圧リーク測定位置から、搬送部 15のピックアンドプレース部 15Aの配置位置まで回 転させる。本実施形態ではインデックステーブル 13が 90度回転させる。 [0061] In step S5, the control unit 17 controls the drive unit 149, for example, after measuring the pressure leak. Then, the lid 141 is moved upward. Next, the control unit 17 controls the rotation driving unit 135 to rotate the index table 13 along the circumferential direction at a specified timing. Specifically, as shown in FIG. 1, the control unit 17 rotates the holding unit 131 of the index table 13 from the caloric pressure leak measurement position to the arrangement position of the pick and place unit 15A of the transport unit 15. In this embodiment, the index table 13 is rotated 90 degrees.
[0062] 次に、制御部 17は、図 1, 2に示すように、搬送部 15のピックアンドプレース部 15A を制御して、保持部 131上の圧電素子用パッケージ 2を取り出し、判別部 171の判別 結果に応じた位置に収容部 16を圧電素子用パッケージ 2を搬送する。例えば制御 部 17は、ピックアンドプレース部 15Aを制御して、良品であると判別された圧電素子 用パッケージ 2を良品ボックス 161Aに移載し、不良品であると判別された圧電素子 用パッケージ 2を NGボックス 161 Bに移載する。  Next, as shown in FIGS. 1 and 2, the control unit 17 controls the pick-and-place unit 15 A of the transport unit 15 to take out the piezoelectric element package 2 on the holding unit 131 and determine the determination unit 171. The piezoelectric element package 2 is transported through the accommodating portion 16 to a position corresponding to the discrimination result. For example, the control unit 17 controls the pick-and-place unit 15A to transfer the piezoelectric element package 2 determined to be a non-defective product to the non-defective product box 161A, and to determine that the piezoelectric element package 2 is determined to be defective. Is transferred to NG box 161 B.
[0063] 次に、ステップ S7において、制御部 17は、回転駆動部 135を制御して、インデック ステーブル 13を規定のタイミングで周方向に沿って規定角度だけ回転させる。詳細 には、制御部 17は、インデックステーブル 13を 90度回転させる。その際、制御部 17 は、例えば撮像部 (不図示)により保持部 131を撮像し、撮像結果に基づいて、保持 部 131のワーク保持ポケット 132内力 圧電素子用パッケージ 2が取り除かれて空き となっているカゝ否かを判別する。また、制御部 17は、例えば保持部 131のワーク保持 ポケット 132に圧電素子用パッケージ 2が残っていると判別した場合、例えば加圧装 置 146を駆動して圧縮気体によりワーク保持ポケット 132から圧電素子用パッケージ 2を排除する処理、などの規定処理を行う。  [0063] Next, in step S7, the control unit 17 controls the rotation driving unit 135 to rotate the index table 13 by a specified angle along the circumferential direction at a specified timing. Specifically, the control unit 17 rotates the index table 13 by 90 degrees. At that time, the control unit 17 images the holding unit 131 by, for example, an imaging unit (not shown), and based on the imaging result, the work holding pocket 132 internal force piezoelectric element package 2 of the holding unit 131 is removed and becomes empty. It is determined whether or not it is not. For example, when the control unit 17 determines that the piezoelectric element package 2 remains in the workpiece holding pocket 132 of the holding unit 131, for example, the controller 17 drives the pressurizing device 146 to compress the piezoelectric material from the workpiece holding pocket 132 by compressed gas. Precise processing such as processing to remove the device package 2 is performed.
次に、制御部 17は、回転駆動部 135を制御して、インデックステーブル 13を規定 のタイミングで周方向に沿って規定角度だけ回転させて、ステップ S1の処理に戻る。  Next, the control unit 17 controls the rotation driving unit 135 to rotate the index table 13 by a specified angle along the circumferential direction at a specified timing, and returns to the process of step S1.
[0064] つまり、上述したように、制御部 17は、インデックステーブル 13を規定のタイミング で周方向に沿って回転制御するとともに、少なくともインデックステーブル 13の周方 向に沿って規定間隔に配置された、移載部 (搬送供給部 12)、加圧リーク検査部 14 、および搬送部 15を並列処理させる。  That is, as described above, the control unit 17 controls the rotation of the index table 13 along the circumferential direction at a prescribed timing, and is disposed at a prescribed interval along at least the circumferential direction of the index table 13. The transfer unit (conveyance supply unit 12), the pressure leak inspection unit 14, and the conveyance unit 15 are processed in parallel.
[0065] 図 9は、図 1に示した検査装置 1の加圧リーク検査処理に係る動作を説明するため のフローチャートである。図 9を参照しながら、検査装置 1の動作を説明する。 ステップ Sl lにおいて、開閉自在な加圧室 140に、圧電素子用パッケージ 2を設置 する。詳細には、上述したように制御部 17は、ピックアンドプレース部 12Aによりイン デッタステーブル 13に備えられて 、る保持部 131上に圧電素子用パッケージ 2を移 載する処理を行う。この際、ピックアンドプレース部 12Aは、例えば圧電素子用パッケ ージ 2の外部電極 25が上側となるように載置する。 FIG. 9 is a flowchart for explaining the operation related to the pressurized leak inspection process of the inspection apparatus 1 shown in FIG. The operation of the inspection apparatus 1 will be described with reference to FIG. In Step Sl l, the piezoelectric element package 2 is installed in the pressurizing chamber 140 that can be opened and closed. Specifically, as described above, the control unit 17 performs a process of transferring the piezoelectric element package 2 onto the holding unit 131 provided in the index table 13 by the pick and place unit 12A. At this time, the pick-and-place unit 12A is placed such that the external electrode 25 of the piezoelectric element package 2 is on the upper side, for example.
[0066] ステップ S13において、制御部 17は、駆動部 149を駆動して蓋部 141により保持 部 131を密閉する。つまり、上述したように加圧室 140に圧電素子用パッケージ 2が 設置される。また、この非加圧状態で、制御部 17は、圧電素子用パッケージ 2の電極 部 25に電気的に接続された端子部 142を介して、圧電素子 21のインピーダンス (ク リスタルインピーダンス: CI値)を測定部 145により測定し、測定部 145による測定結 果をメモリなどに記憶する。また、この非加圧時 (大気圧(1気圧))の CI値を本発明に 係る基準値としてちよい。  In step S 13, the control unit 17 drives the drive unit 149 to seal the holding unit 131 with the lid unit 141. That is, the piezoelectric element package 2 is installed in the pressurizing chamber 140 as described above. In this non-pressurized state, the control unit 17 also connects the impedance of the piezoelectric element 21 (crystal impedance: CI value) via the terminal part 142 electrically connected to the electrode part 25 of the piezoelectric element package 2. Is measured by the measuring unit 145, and the measurement result by the measuring unit 145 is stored in a memory or the like. The CI value at the time of non-pressurization (atmospheric pressure (1 atm)) may be used as the reference value according to the present invention.
[0067] ステップ S15において、制御部 17は、加圧室内 140に圧電素子用パッケージ 2が 設置された状態で、圧電素子用パッケージ 2の周囲を加圧する処理を行う。詳細に は、制御部 17は、加圧装置 146を駆動して通気路 134を介して加圧室 140内に規 定圧力の不活性ガスなどの気体を印加することで、圧電素子用パッケージ 2の周囲 を加圧する。  In step S15, the control unit 17 performs a process of pressurizing the periphery of the piezoelectric element package 2 in a state where the piezoelectric element package 2 is installed in the pressurizing chamber 140. Specifically, the control unit 17 drives the pressurizing device 146 to apply a gas such as an inert gas having a predetermined pressure into the pressurizing chamber 140 through the air passage 134, so that the piezoelectric element package 2. Pressurize around.
[0068] ステップ S17において、制御部 17は、上記圧電素子用パッケージ 2の周囲を加圧 した状態で、圧電素子用パッケージ 2の電極部 25に電気的に接続された端子部 14 2を介して、圧電素子 21のインピーダンス (CI値)を測定部 145により測定し、測定部 145による測定結果をメモリなどに記憶する。  [0068] In step S17, the control unit 17 pressurizes the periphery of the piezoelectric element package 2 via the terminal part 14 2 electrically connected to the electrode part 25 of the piezoelectric element package 2. Then, the impedance (CI value) of the piezoelectric element 21 is measured by the measuring unit 145, and the measurement result by the measuring unit 145 is stored in a memory or the like.
[0069] ステップ S 19において、制御部 17は、測定された非加圧時と加圧時のインピーダン ス力 変化量を算出し、その変化量を設定値と比較して、圧電素子用パッケージ 2の 気密性が不良であるカゝ否かを判別する。  [0069] In step S19, the control unit 17 calculates the measured amount of change in the impedance force during non-pressurization and during pressurization, compares the amount of change with the set value, and then compares the piezoelectric element package 2 with the set value. It is determined whether the airtightness is poor.
[0070] 図 10は、加圧時の圧電素子の CI値の変化量を示す図である。横軸は圧力 P (単位 : kPa)を示し、縦軸は CI値の変化量 (単位: Ω )を示す。 CI値の基準値は例えば大 気圧(1気圧)での CI値に相当する。図 11は、加圧時に圧電素子用パッケージにリー クが生じた場合とリークがな 、場合の CI値の変化量 Rを示す図である。横軸が加圧 時間 T (単位:秒)を示し、縦軸が CI値の変化量 R (単位: Ω )を示す図である。 FIG. 10 is a diagram showing the amount of change in the CI value of the piezoelectric element during pressurization. The horizontal axis shows pressure P (unit: kPa), and the vertical axis shows the amount of change in CI value (unit: Ω). The reference value of CI value corresponds to the CI value at atmospheric pressure (1 atm), for example. FIG. 11 is a diagram showing the change amount R of the CI value when leakage occurs in the piezoelectric element package during pressurization and when there is no leakage. Horizontal axis is pressurized The time T (unit: second) is shown, and the vertical axis shows the CI value change amount R (unit: Ω).
[0071] 図 12は、リークが生じる圧電素子用パッケージを 0. lMPa〜0. 5MPaに加圧した 場合の CI値の変化量の時間変化を示す図である。縦軸はリーク時の CI値の変化量 R (単位: Ω )であり、横軸は加圧時間 T (単位:秒)である。なお、図 10〜12に採用し ている圧電素子は、周波数が 26. OMHzの水晶振動子である。 FIG. 12 is a diagram showing the change over time in the amount of change in the CI value when the piezoelectric element package in which leakage occurs is pressurized to 0.1 MPa to 0.5 MPa. The vertical axis is the amount of change R (unit: Ω) of the CI value at the time of leak, and the horizontal axis is the pressurization time T (unit: seconds). The piezoelectric elements used in Figs. 10 to 12 are quartz resonators with a frequency of 26. OMHz.
[0072] 圧電素子 21は、例えば図 10に示すように、圧電素子用パッケージ 2に加わる圧力 の大きさに応じて、 CI値の変化量が大きくなるという特性を有する。 For example, as shown in FIG. 10, the piezoelectric element 21 has a characteristic that the amount of change in the CI value increases according to the pressure applied to the piezoelectric element package 2.
[0073] 本実施形態に係る圧電素子用パッケージ 2の特性としては、例えば図 11に示すよ うに、圧電素子用パッケージ 2にリークが生じている場合、非加圧時と比べて、加圧リ ーク測定時の圧電素子用パッケージ 2の内部の圧力が大きくなるので、非加圧時の 圧電素子 21の CI値と比較して加圧時の圧電素子 21の CI値が変化し、 CI値の変化 量が比較的大きくなる。一方、リークが生じていない場合、圧電素子用パッケージ 2 内の気密が保持されているので、非加圧時と比べて加圧時の圧電素子用パッケージ 2内の圧力は変化しない、又は圧力変化量が比較的小さいために、圧電素子 21の C I値の変化量 Rがゼロ、又は、 CI値の変化量 Rが比較的小さく規定値よりも小さい値と なる。 As a characteristic of the piezoelectric element package 2 according to the present embodiment, as shown in FIG. 11, for example, when leakage occurs in the piezoelectric element package 2, compared with the non-pressurized state, Since the internal pressure of the piezoelectric element package 2 at the time of measuring the pressure increases, the CI value of the piezoelectric element 21 during pressurization changes compared to the CI value of the piezoelectric element 21 during non-pressurization. The amount of change is relatively large. On the other hand, when there is no leak, the airtightness in the piezoelectric element package 2 is maintained, so that the pressure in the piezoelectric element package 2 during pressurization does not change or changes in pressure compared to when no pressure is applied. Since the amount is relatively small, the change amount R of the CI value of the piezoelectric element 21 is zero, or the change amount R of the CI value is relatively small and smaller than the specified value.
[0074] 詳細には、圧電素子用パッケージ 2の特性としては、図 11に示すように、加圧時に 圧電素子用パッケージ 2にリークが生じて 、る場合、大気圧時の CI値と加圧時の CI 値との変化量 Rが設定値 (例えば 2 Ω )以上となり、例えば CI値の変化量 RNG (0. 2 MPa加圧時)が約 ΙΟ Ωとなる。一方、リークが生じていない場合、圧電素子用パッケ ージ 2内の気密が保持されているので、非加圧時と比べて加圧時の圧電素子用パッ ケージ 2内の圧力は変化しない、又は圧力変化量が比較的小さいために、圧電素子 21の CI値の変化量 RGがゼロ、又は CI値の変化量 RGが比較的小さく設定値よりも 小さい値となる。  In detail, as shown in FIG. 11, the characteristics of the piezoelectric element package 2 include leakage of the piezoelectric element package 2 during pressurization. The amount of change R with the CI value at the time becomes greater than the set value (eg 2 Ω), for example, the amount of change RNG of the CI value RNG (when 0.2 MPa is applied) is about Ω Ω. On the other hand, if there is no leak, the airtightness in the piezoelectric element package 2 is maintained, so that the pressure in the piezoelectric element package 2 during pressurization does not change compared to when no pressure is applied. Or, since the pressure change amount is relatively small, the CI value change amount RG of the piezoelectric element 21 is zero, or the CI value change amount RG is relatively small and smaller than the set value.
[0075] 詳細には、判別部 171は、図 11に示すように、測定部 145によって測定された非力口 圧時と加圧時のインピーダンス変化量 Rを算出して、その変化量 Rを、予め規定させ た設定値 Rthと比較して (ステップ S 19)、その比較の結果に応じて、例えばインピー ダンス変化量 Rが設定値 Rthより小さい場合にリークがなく(ステップ S21)、圧電素子 用パッケージ (電子部品) 2の気密性が良好であり、圧電素子用パッケージ 2が良品 であると判別し (ステップ S23)、その良品と判別された圧電素子用パッケージ 2を分 類して、収容部 16に収容する (ステップ S25)。 Specifically, as shown in FIG. 11, the determination unit 171 calculates an impedance change amount R at the time of non-pressure mouth pressure and pressurization measured by the measurement unit 145, and calculates the change amount R as Compared with the preset set value Rth (step S19), there is no leakage when the impedance change amount R is smaller than the set value Rth, for example, depending on the result of the comparison (step S21). Package (electronic component) 2 has good airtightness, and the piezoelectric element package 2 is determined to be good (step S23), and the piezoelectric element package 2 determined to be non-defective is classified and accommodated. Housed in part 16 (step S25).
[0076] 制御部 17は、その判別部 171の結果に応じて分類を行い、詳細には良品と判別さ れた圧電素子用パッケージ 2を収容部 16の良品ボックス 161 Aに収容する処理を行 う(ステップ S 25)。 The control unit 17 performs classification according to the result of the determination unit 171 and, in detail, performs a process of storing the piezoelectric element package 2 determined to be non-defective in the non-defective box 161 A of the storage unit 16. (Step S25).
[0077] 一方、ステップ S19において、判別部 171は、図 11に示すように、測定部 145によ つて測定された非加圧時と加圧時のインピーダンス変化量 Rを算出して、その変化量 Rを、予め規定させた設定値 Rthと比較した結果、例えばインピーダンス変化量尺が 設定値 Rth以上の場合にリークがあり(ステップ S27)、圧電素子用パッケージ (電子 部品) 2の気密性が不良であると判別し (ステップ S29)する。制御部 17は、判別部 1 71の結果に応じて分類を行い、詳細には不良品と判別された圧電素子用パッケ一 ジ 2を収容部 16の不良品ボックス 161Bに収容する処理を行う(ステップ S25)。  On the other hand, in step S19, as shown in FIG. 11, the determination unit 171 calculates the impedance change amount R between the non-pressurization and the pressurization measured by the measurement unit 145, and the change As a result of comparing the amount R with the preset value Rth, for example, there is a leak when the impedance change amount is greater than or equal to the set value Rth (step S27), and the airtightness of the piezoelectric element package (electronic component) 2 is It is determined that it is defective (step S29). The control unit 17 performs classification according to the result of the discriminating unit 1701, and in detail, performs processing for accommodating the piezoelectric element package 2 that is discriminated as a defective product in the defective product box 161B of the storage unit 16 ( Step S25).
[0078] また、制御部 17は、上述したように、測定部によって測定された非加圧時と加圧時 のインピーダンスから変化量 Rを算出し、その変化量を設定値と比較して、圧電素子 用パッケージ 2の気密性の不良であることを判別するので、図 11に示すように、圧電 素子 21は加圧によるインピーダンスの変化速度が比較的速 、ため、例えば設定値 R thを 2 Ωとすると、約 1〜3秒以下で気密性の良否を判別することができる。  In addition, as described above, the control unit 17 calculates the change amount R from the non-pressurization impedance and the pressurization impedance measured by the measurement unit, and compares the change amount with a set value. Since it is determined that the package 2 for the piezoelectric element is defective in airtightness, as shown in FIG. With Ω, it is possible to determine whether the airtightness is good in about 1 to 3 seconds.
[0079] 図 12に示すように、加圧圧力が大きいほど、圧電素子用パッケージ 2のリーク時の CI値の変動量が大きくなるとともに、気密性の良否を判別する時間が短くなる。詳細 は、図 12に示すように、加圧時間が 5秒のときに、圧力 0. IMPaの場合に CI値変動 量 R力 2 Ω、圧力 0. 2MPaの場合に 5 Ω、圧力 0. 3MPaの場合に 8. 72 Ω、圧力 0. 4MPaの場合に 13. 5 Ω、圧力 0. 5MPaの場合に 19. 5 Ωとなる。つまり、カロ圧圧力 が大きいほど CI値の変動量が大きくなるので、高精度に圧電素子用パッケージ 2の 不良を判別することができる。また加圧圧力が大きいほど短時間で高精度に圧電素 子用パッケージ 2の不良を判別することができる。  As shown in FIG. 12, the greater the pressurization pressure, the greater the fluctuation amount of the CI value at the time of leakage of the piezoelectric element package 2, and the shorter the time for determining the airtightness. For details, as shown in Fig. 12, when the pressurization time is 5 seconds, when the pressure is 0. IMPa, the CI value fluctuation amount R force 2 Ω, pressure 0.2 MPa, 5 Ω, pressure 0.3 MPa In this case, it is 8.72 Ω, 13.5 Ω when the pressure is 0.4 MPa, and 19.5 Ω when the pressure is 0.5 MPa. In other words, since the amount of fluctuation of the CI value increases as the caloric pressure increases, the defect of the piezoelectric element package 2 can be determined with high accuracy. In addition, the larger the pressurizing pressure, the more accurately the defect of the piezoelectric element package 2 can be determined in a short time.
[0080] 圧電素子用パッケージ 2に加える圧力としては、例えば 0. 2MPa〜0. 5MPaの値 が好ましい。この 0. 2MPa〜0. 5MPaの圧力は、圧電素子用パッケージ 2の製造現 場にて一般的に配管されている圧縮空気や圧縮窒素、又は圧力タンクや加圧装置 などを利用することにより、容易に準備することができる。また、上述したように圧力 0. 2〜0. 5MPaの圧縮空気や設定時間に設定した場合であっても高精度に、圧電素 子用パッケージ 2の気密性の良否を判別することができる。 [0080] The pressure applied to the piezoelectric element package 2 is preferably, for example, a value of 0.2 MPa to 0.5 MPa. This pressure of 0.2 MPa to 0.5 MPa is used to manufacture the piezoelectric element package 2. It can be easily prepared by using compressed air or compressed nitrogen or a pressure tank or a pressurizing device that are generally piped in the field. In addition, as described above, it is possible to determine whether the piezoelectric element package 2 is airtight or not with high accuracy even when the compressed air is set at a pressure of 0.2 to 0.5 MPa or set time.
また、加圧圧力は、上述した実施形態に限られるものではなぐ例えば 0. 5MPa以 上の圧力であってもよい。この際には、比較的高圧用の加圧装置、ボンべ、加圧リー ク検査部 14の構造を用意することで、本発明を容易に実施することができる。  Further, the pressurizing pressure is not limited to the above-described embodiment, and may be, for example, a pressure of 0.5 MPa or more. In this case, the present invention can be easily implemented by preparing a structure of a pressurizing device, a cylinder, and a pressurizing leak inspection unit 14 for relatively high pressure.
[0081] [従来の真空測定法と本発明に係る加圧リーク測定法の比較]  [0081] [Comparison of conventional vacuum measurement method and pressurized leak measurement method according to the present invention]
本願発明者は、本発明に係る効果を確認するために、複数の圧電素子用パッケ一 ジ 2について従来の真空測定法と本発明に係る加圧リーク測定法により、 CI値の変 化量を測定して比較を行った。  In order to confirm the effect according to the present invention, the inventor of the present application uses the conventional vacuum measurement method and the pressure leak measurement method according to the present invention to determine the amount of change in the CI value for a plurality of packages 2 for piezoelectric elements. Measurements were made for comparison.
[0082] 図 13は、複数の圧電素子用パッケージ 2について従来の真空測定法による CI値の 変化量を示す図である。詳細には図 13は、縦軸は CI値の変化量 R (単位: Ω )を示し 、横軸は真空排気時間(単位:秒)を示す。図 14は、図 13に示した複数の圧電素子 用パッケージ 2について本発明に係る 0. 2MPaの加圧リーク測定法による CI値の変 化量を示す図である。縦軸は CI値の変化量 R (単位: Ω )を示し、横軸は真空排気時 間(単位:秒)を示す。図 13, 14において、例えば 5つの圧電素子用パッケージ 2そ れぞれの測定値を、実線、破線、 2点鎖線などの線種により区別して示す。なお、図 1 3, 14に採用している圧電素子は、周波数が 26. OMHzの水晶振動子である。  FIG. 13 is a diagram showing the amount of change in CI value by the conventional vacuum measurement method for a plurality of piezoelectric element packages 2. In detail, in FIG. 13, the vertical axis represents the CI value change amount R (unit: Ω), and the horizontal axis represents the evacuation time (unit: second). FIG. 14 is a diagram showing the amount of change in the CI value of the plurality of piezoelectric element packages 2 shown in FIG. 13 by the 0.2 MPa pressurized leak measurement method according to the present invention. The vertical axis shows the amount of change in CI value R (unit: Ω), and the horizontal axis shows the evacuation time (unit: seconds). In FIGS. 13 and 14, for example, the measured values of each of the two packages for the piezoelectric element 2 are distinguished by line types such as a solid line, a broken line, and a two-dot chain line. The piezoelectric elements used in Figs. 13 and 14 are quartz resonators with a frequency of 26. OMHz.
[0083] 図 13に示すように、一般的な減圧によるインピーダンス測定方法では、規定の真空 度に到達するまでに時間を要するので検査時間が比較的長い。例えば、インピーダ ンスの変化量 Rの設定値 Rthを ± 2 Ωにした場合、すなわちインピーダンスの変化量 が ± 2 Ω以上を不良とする場合、 5つの全ての圧電素子用パッケージ 2を良否判別 するのに 10秒以上必要となる。一方、本発明に係る検査装置 1では、図 14に示すよ うに、約 3秒以下で 5つの全ての圧電素子用パッケージ 2を良否判別することができる (ダロスリークの場合)。図 14に示したィピーダンス測定法では、加圧圧力が 0. 2MP aの測定であり、加圧圧力を増すことによって、より短時間で良否判別が可能となる。  As shown in FIG. 13, in a general impedance measurement method using reduced pressure, it takes a long time to reach a specified vacuum level, so the inspection time is relatively long. For example, when the impedance change amount R setting value Rth is ± 2 Ω, that is, when the impedance change amount is ± 2 Ω or more, it is determined whether all five packages 2 for piezoelectric elements are good or bad. 10 seconds or more is required. On the other hand, as shown in FIG. 14, in the inspection apparatus 1 according to the present invention, it is possible to determine whether all five packages 2 for piezoelectric elements are good or bad in about 3 seconds or less (in the case of Dalos leak). In the impedance measurement method shown in FIG. 14, the pressurization pressure is 0.2 MPa, and the pass / fail judgment can be made in a shorter time by increasing the pressurization pressure.
[0084] 詳細には、図 13, 14に示すように、リーク量が大きい圧電素子用パッケージ 2ほど 、短時間に CI値の変動量 Rが大きぐリーク量が小さい圧電素子用パッケージ 2ほど CI値の変動量 Rが小さいので検査時間が長くなる。そして図 13, 14に示すように、 本発明に係る加圧リーク測定法では、図 13, 14に示すように、リーク量が比較的大き な圧電素子用パッケージ 2、リーク量が比較的小さい圧電素子用パッケージ 2ともに、 従来の真空測定法と比べて短時間に気密性の良否を判別することができる。 More specifically, as shown in FIGS. 13 and 14, the piezoelectric element package 2 having a larger leakage amount is obtained. In a short time, the piezoelectric element package 2 with a large CI value variation R and a small leak amount has a smaller CI value variation R, and therefore the inspection time becomes longer. As shown in FIGS. 13 and 14, in the pressurized leak measurement method according to the present invention, as shown in FIGS. 13 and 14, the piezoelectric element package 2 with a relatively large amount of leakage and a piezoelectric with a relatively small amount of leakage are shown. Both the device package 2 can determine whether the airtightness is good or not in a short time compared to the conventional vacuum measurement method.
[0085] [第 2実施形態]  [0085] [Second Embodiment]
図 15は、本発明の第 2実施形態に係る検査装置 1Aを説明するための全体構成図 である。詳細には図 15は検査装置 1Aの上面図である。第 1実施形態と同様な構成、 動作、効果などについては説明を省略する。  FIG. 15 is an overall configuration diagram for explaining an inspection apparatus 1A according to the second embodiment of the present invention. Specifically, FIG. 15 is a top view of the inspection apparatus 1A. A description of the same configuration, operation, effects, and the like as in the first embodiment will be omitted.
[0086] 本実施形態に係る検査装置 1Aは、図 15に示すように、整列供給部 11、搬送供給 部 12、インデックステーブル 13、第 1検査部 50、第 1検査測定部 51、加圧リーク検 查部 14、第 2検査部 60、第 2検査測定部 61、搬送部 15 (ピックアンドプレース部 15 A)、収容部 16、および制御部 17を有する。例えば、整列供給部 11、搬送供給部 12 、インデックステーブル 13、第 1検査部 50、加圧リーク検査部 14、第 2検査部 60、搬 送部 15、および収容部 16等が台座 10上に載置されている。  As shown in FIG. 15, the inspection apparatus 1A according to the present embodiment includes an alignment supply unit 11, a transport supply unit 12, an index table 13, a first inspection unit 50, a first inspection measurement unit 51, and a pressure leak. The inspection unit 14, the second inspection unit 60, the second inspection measurement unit 61, the transport unit 15 (pick and place unit 15 A), the storage unit 16, and the control unit 17 are included. For example, the alignment supply unit 11, the transport supply unit 12, the index table 13, the first inspection unit 50, the pressure leak inspection unit 14, the second inspection unit 60, the transport unit 15, the storage unit 16, etc. are on the base 10. It is placed.
[0087] 第 1検査部 50,第 1検査測定部 51は、圧電素子用パッケージ 2 (電子部品)の特性 のうちインピーダンス以外のいずれかの特性を検査する。第 2検査部 60,第 2検査測 定部 61は、圧電素子用パッケージ 2 (電子部品)の特性のインピーダンス以外のいず れかの特性を検査する。  The first inspection unit 50 and the first inspection / measurement unit 51 inspect one of the characteristics of the piezoelectric element package 2 (electronic component) other than the impedance. The second inspection unit 60 and the second inspection / measurement unit 61 inspect one of the characteristics other than the impedance of the characteristic of the piezoelectric element package 2 (electronic component).
例えば、第 1検査部 50,第 1検査測定部 51、および第 2検査部 60,第 2検査測定 部 62は、検査部の一実施形態に相当する。  For example, the first inspection unit 50, the first inspection measurement unit 51, the second inspection unit 60, and the second inspection measurement unit 62 correspond to an embodiment of the inspection unit.
[0088] 制御部 17は、インデックステーブル 13の周方向に沿って規定間隔に配置された、 移載部 12、検査部 50、加圧リーク検査部 14、搬送部 15を並列処理させる。より詳細 には、本実施形態に係る制御部 17は、インデックステーブル 13の周方向に沿って規 定間隔に配置された移載部 12、検査部 50、加圧リーク検査部 14、検査部 60、搬送 部 15を並列処理させる。  The control unit 17 causes the transfer unit 12, the inspection unit 50, the pressure leak inspection unit 14, and the transport unit 15 to be processed in parallel, which are arranged at specified intervals along the circumferential direction of the index table 13. More specifically, the control unit 17 according to the present embodiment includes the transfer unit 12, the inspection unit 50, the pressure leak inspection unit 14, and the inspection unit 60 that are arranged at specified intervals along the circumferential direction of the index table 13. The transport unit 15 is processed in parallel.
[0089] また、例えば、第 1検査部 50,第 1検査測定部 51は、圧電素子用パッケージ 2の特 性のうちインピーダンス以外のいずれかの特性を検査する。例えば、第 1検査部 50, 第 1検査測定部 51は、圧電素子 21の低ドライブ特性や周波数特性を検査する。さら に、加圧リーク検査部 14、測定部 15はインピーダンスと周波数特定を同時に測定し てもよい。また、第 2検査部 60,第 2検査部測定部 61は、圧電素子 21の例えばキヤ パシタンス等の他の特性を測定する。 Further, for example, the first inspection unit 50 and the first inspection / measurement unit 51 inspect one of the characteristics of the piezoelectric element package 2 other than the impedance. For example, the first inspection unit 50, The first inspection / measurement unit 51 inspects the low drive characteristic and frequency characteristic of the piezoelectric element 21. Furthermore, the pressure leak inspection unit 14 and the measurement unit 15 may simultaneously measure impedance and frequency identification. Further, the second inspection unit 60 and the second inspection unit measurement unit 61 measure other characteristics of the piezoelectric element 21 such as capacitance.
[0090] 例えば、第 1検査部 50は、圧電振動子の低ドライブ特性や周波数特性を検査する ために、一端部が第 1検査用測定部 51に接続され、他端部が保持部 131により保持 された圧電素子用パッケージ 2の電極部 25に電気的に接続可能な端子部を備える。 第 1検査測定部 51は、その端子部を介して接続された圧電素子用パッケージ 2の低 ドライブ特性や周波数特性を測定し、測定結果を示す信号を制御部 17に出力する。  For example, the first inspection unit 50 has one end connected to the first inspection measurement unit 51 and the other end connected to the holding unit 131 in order to inspect the low drive characteristics and frequency characteristics of the piezoelectric vibrator. A terminal portion that can be electrically connected to the electrode portion 25 of the held piezoelectric element package 2 is provided. The first inspection / measurement unit 51 measures low drive characteristics and frequency characteristics of the piezoelectric element package 2 connected via the terminal unit, and outputs a signal indicating the measurement result to the control unit 17.
[0091] また、第 2検査部 60は、圧電振動子の他の特性、例えばキャパシタンスを検査する ために、一端部が第 2検査用測定部 61に接続され、他端部が保持部 131により保持 された圧電素子用パッケージ 2の電極部 25に電気的に接続可能な端子部を備える。 第 2検査測定部 61は、その端子部を介して接続された圧電素子用パッケージ 2の他 の特性、例えばキャパシタンスを測定し、測定結果を示す信号を制御部 17に出力す る。  In addition, the second inspection unit 60 has one end connected to the second inspection measurement unit 61 and the other end connected to the holding unit 131 in order to inspect other characteristics of the piezoelectric vibrator, for example, capacitance. A terminal portion that can be electrically connected to the electrode portion 25 of the held piezoelectric element package 2 is provided. The second inspection / measurement unit 61 measures other characteristics, for example, capacitance, of the piezoelectric element package 2 connected via the terminal unit, and outputs a signal indicating the measurement result to the control unit 17.
[0092] 上記構成の検査装置 1Aは、例えば、搬送供給部 12により圧電素子用パッケージ 2をインデックステーブル 13の保持部 131上に移載した後、第 1検査部 50,第 1検査 測定部 51により低ドライブ特性や周波数特性を検査し、その後、加圧リーク検査部 1 4により加圧リーク検査を行い、その後、第 2検査部 60,第 2検査測定部 61により圧 電素子用パッケージ 2の他の特性、例えばキャパシタンスを測定した後、搬送部 15 により、収容部 16に収容する。  In the inspection apparatus 1A having the above-described configuration, for example, after the piezoelectric element package 2 is transferred onto the holding unit 131 of the index table 13 by the transport supply unit 12, the first inspection unit 50, the first inspection measurement unit 51 To check the low drive characteristics and frequency characteristics, and then perform the pressure leak inspection by the pressure leak inspection section 14 and then the second inspection section 60 and the second inspection measurement section 61 to check the piezoelectric element package 2 After measuring other characteristics, such as capacitance, it is accommodated in the accommodating part 16 by the conveying part 15.
制御部 17は、上記各種機能部を並列処理するとともに、所定のタイミングでインデ ックステーブル 13を規定角度で周方向に回転させる処理を行う。  The control unit 17 performs parallel processing on the various functional units and performs processing for rotating the index table 13 in the circumferential direction at a predetermined angle at a predetermined timing.
[0093] なお、本発明は上述した実施形態に限られるものではない。上記実施形態を組み 合わせてもよい。また、上記実施形態に係る圧電素子用パッケージ 2は、上述した実 施形態に限られるものではない。例えば、水晶振動子などの圧電素子を気密封止し た電子部品であってもよ 、。  Note that the present invention is not limited to the above-described embodiment. The above embodiments may be combined. Further, the piezoelectric element package 2 according to the above embodiment is not limited to the above-described embodiment. For example, an electronic component hermetically sealed with a piezoelectric element such as a crystal resonator.
また、検査装置 1は、円形状のインデックステーブル 13を利用して行ったが、この形 態に限られるものではない。 In addition, the inspection apparatus 1 was performed using a circular index table 13, but this It is not limited to the state.
[0094] 以上説明したように、本発明に係る検査装置 1は、圧電素子が気密に封止された電 子部品 (圧電素子用パッケージ) 2の気密検査を行う検査装置であり、開閉自在な加 圧室 1401内に圧電素子用パッケージ 2が設置された状態で、その圧電素子用パッ ケージ 2の周囲を加圧する加圧部 1401 (加圧室 140,加圧装置 146)と、加圧部(加 圧室 140,加圧装置 146)に設置された圧電素子用パッケージ 2のインピーダンスを 測定する測定部 145と、測定部 145によって測定された非加圧時と加圧時のインピ 一ダンス力も変化量を算出し、その変化量を設定値と比較して、電子部品の気密性 が不良であることを判別する判別部 171とを有するので、検査時間を一般的な検査 装置よりも短縮することができる。  As described above, the inspection apparatus 1 according to the present invention is an inspection apparatus that performs an airtight inspection of an electronic component (piezoelectric element package) 2 in which piezoelectric elements are hermetically sealed, and is openable and closable. A pressurizing unit 1401 (pressurizing chamber 140, pressurizing device 146) that pressurizes the periphery of the piezoelectric element package 2 in a state where the piezoelectric element package 2 is installed in the pressurizing chamber 1401, and a pressurizing unit (Pressure chamber 140, pressurization device 146) The measurement unit 145 that measures the impedance of the piezoelectric element package 2 installed in the pressure chamber 140, and the impedance force measured by the measurement unit 145 when not pressurized and when pressurized Since the change amount is calculated, and the change amount is compared with a set value to determine that the airtightness of the electronic component is poor, the determination unit 171 is included, so that the inspection time is shortened compared with a general inspection apparatus. be able to.
また、従来の検査装置と比べて真空装置を設ける必要がないので検査装置 1を比 較的小型にすることができる。  Further, since it is not necessary to provide a vacuum apparatus as compared with the conventional inspection apparatus, the inspection apparatus 1 can be made relatively small.
また、小型の圧電素子用パッケージを正確に気密検査することができる。  In addition, it is possible to accurately inspect a small piezoelectric element package.
[0095] また、検査装置 1は、加圧室 140の一部を構成するとともに一つ又は複数の圧電素 子用パッケージ 2を収容して保持可能な保持部 131と、加圧室 140の一部を構成す るとともに保持部 131を気密に密閉可能な蓋部 141と、蓋部 141及び保持部 131の 一方に形成されるとともに、一端部が測定部 141に接続され、他端部が保持部 131 により保持された圧電素子用パッケージ 2の電極部 25に電気的に接続可能な端子 部 142と、蓋部 141及び保持部 131の一方又は両方に形成されるとともに、加圧室 1 40内に規定圧力の気体を流入可能な通気路 134とを有するので、つまり簡単な構 成で、本発明に係る開閉自在な加圧室 140を構成することができる。また、簡単な構 成で加圧室 140内の圧電素子用パッケージ 2を加圧することができる。  In addition, the inspection apparatus 1 constitutes a part of the pressurizing chamber 140 and can hold and hold one or a plurality of piezoelectric element packages 2 and one pressurizing chamber 140. And a holding part 131 which can be hermetically sealed, and formed on one of the lid part 141 and the holding part 131, with one end connected to the measuring part 141 and the other end held. The terminal portion 142 that can be electrically connected to the electrode portion 25 of the piezoelectric element package 2 held by the portion 131, and one or both of the lid portion 141 and the holding portion 131, and in the pressurizing chamber 140 Therefore, the openable and closable pressurizing chamber 140 according to the present invention can be configured with a simple configuration. Further, the piezoelectric element package 2 in the pressurizing chamber 140 can be pressurized with a simple configuration.
[0096] また、測定部 141は、保持部 131及び蓋部 141により密閉された加圧室 140に圧 電素子用パッケージ 2が設置されるとともに、規定圧力の気体が通気路 134を介して 加圧室 140内に印加された圧電素子用パッケージ 2 (電子部品)の周囲が加圧され た状態で、圧電素子用パッケージ 2の電極部 25に電気的に接続された端子部 142 を介してインピーダンスを測定するので、簡単に加圧室 140内の圧電素子 21のイン ピーダンスを測定することができ、簡単に圧電素子用パッケージ 2の気密性の良否を 判別することができる。 In addition, in the measurement unit 141, the piezoelectric element package 2 is installed in the pressurizing chamber 140 sealed by the holding unit 131 and the lid unit 141, and a gas having a specified pressure is applied via the air passage 134. The piezoelectric element package 2 (electronic component) applied in the pressure chamber 140 is pressurized and the impedance is passed through the terminal part 142 electrically connected to the electrode part 25 of the piezoelectric element package 2. Therefore, it is possible to easily measure the impedance of the piezoelectric element 21 in the pressurizing chamber 140, and to easily determine whether the piezoelectric element package 2 is airtight. Can be determined.
[0097] また、検査装置 1は、周方向に沿って複数の保持部 131が規定間隔に設けられ、 周方向に沿って回転自在なインデックステーブル 13と、そのインデックステーブル 13 に形成された保持部 131に圧電素子用パッケージ 2を移載する移載部 12と、蓋部 1 41を含み、加圧部 1401に設置された圧電素子用パッケージ 2のインピーダンスを測 定する加圧リーク検査部 14と、インデックステーブル 13に形成された保持部 131から 圧電素子用パッケージ 2を取り出して、判別部 171の判別結果に応じた位置に搬送 する搬送部 15と、インデックステーブル 13を規定のタイミングで周方向に沿って回転 制御するとともに、少なくともインデックステーブル 13の周方向に沿って規定間隔に 配置された、移載部 12、加圧リーク検査部 14、および搬送部 15を並列処理させる制 御部 17とを有するので、比較的大量の被検査対象の圧電素子用パッケージ 2を短 時間で検査することができる。  In addition, in the inspection apparatus 1, a plurality of holding portions 131 are provided at regular intervals along the circumferential direction, the index table 13 that is rotatable along the circumferential direction, and a holding portion formed on the index table 13 131 includes a transfer part 12 for transferring the piezoelectric element package 2 and a lid part 141, and a pressure leak inspection part 14 for measuring the impedance of the piezoelectric element package 2 installed in the pressure part 1401; Then, the piezoelectric element package 2 is taken out from the holding part 131 formed on the index table 13, and transported to a position according to the determination result of the determination part 171 and the index table 13 in the circumferential direction at a specified timing. The transfer unit 12, the pressure leak inspection unit 14, and the transport unit 15 that are arranged at a specified interval along at least the circumferential direction of the index table 13 are processed in parallel. Since having a that control section 17, can be tested relatively large amounts of packages 2 piezoelectric element to be inspected in a short time.
[0098] また、本発明に係る加圧リーク検査部 14は、保持部 131に保持された複数の圧電 素子用パッケージ 2を並列に検査することで、比較的大量の圧電素子用パッケージ 2 を短時間に処理することができる。  In addition, the pressurized leak inspection unit 14 according to the present invention can inspect a relatively large number of the piezoelectric element packages 2 by inspecting the plurality of piezoelectric element packages 2 held by the holding unit 131 in parallel. Can be processed in time.
[0099] また、圧電素子用パッケ一 2の特性のうちインピーダンス以外のいずれかの特性、 例えば圧電素子 21の圧電素子の低ドライブ特性や周波数特性を検査する検査部 5 0, 60を有し、制御部 17は、少なくともインデックステーブル 13の周方向に沿って規 定間隔に配置された、移載部 12、検査部 50、加圧リーク検査部 14、搬送部 15を並 列処理させることで、加圧リーク検査以外の圧電素子用パッケージ 2の特性を並列的 に検査することができる。  [0099] Further, the piezoelectric element has a test unit 50, 60 for inspecting any one of the characteristics of the piezoelectric element package 2 other than the impedance, for example, a low drive characteristic or a frequency characteristic of the piezoelectric element 21. The control unit 17 performs parallel processing on the transfer unit 12, the inspection unit 50, the pressure leak inspection unit 14, and the transport unit 15 that are arranged at a predetermined interval along at least the circumferential direction of the index table 13. The characteristics of the piezoelectric element package 2 other than the pressure leak inspection can be inspected in parallel.
[0100] また、加圧部 1401による圧力として、例えば 0. 2MPa〜0. 5MPaを用いることで、 簡単にかつ高精度に圧電素子用パッケージ 2の気密性の良否を判別することができ る。また、圧電素子用パッケージ 2の製造現場にて一般的に配管されている圧縮空 気や圧縮窒素、又は圧力タンクや加圧装置などを利用することにより、この圧力を容 易に準備することができる。  [0100] Further, by using, for example, 0.2 MPa to 0.5 MPa as the pressure by the pressurizing unit 1401, it is possible to easily determine whether the piezoelectric element package 2 is airtight or not with high accuracy. In addition, this pressure can be easily prepared by using compressed air or compressed nitrogen or a pressure tank or a pressurizing device generally piped at the manufacturing site of the piezoelectric element package 2. it can.

Claims

請求の範囲 The scope of the claims
[1] 圧電素子が気密に封止された電子部品の気密検査を行う検査装置であって、 開閉自在な加圧室内に前記電子部品が設置された状態で該電子部品の周囲を加 圧する加圧部と、  [1] An inspection apparatus that performs an airtight inspection of an electronic component in which a piezoelectric element is hermetically sealed, and pressurizes the periphery of the electronic component in a state where the electronic component is installed in an openable / closable pressurizing chamber. Pressure part,
前記加圧部に設置された前記電子部品のインピーダンスを測定する測定部と、 前記測定部によって測定された非加圧時と加圧時のインピーダンス力 変化量を 算出し、前記変化量を設定値と比較して、前記電子部品の気密性が不良であること を判別する判別部と、  A measuring unit for measuring the impedance of the electronic component installed in the pressurizing unit; and calculating a change amount of the impedance force at the time of non-pressurization and pressurization measured by the measurement unit, and setting the change amount as a set value And a determination unit for determining that the airtightness of the electronic component is poor,
を有することを特徴とする検査装置。  An inspection apparatus comprising:
[2] 前記加圧室の一部を構成するとともに一つ又は複数の前記電子部品を収容して保 持可能な保持部と、  [2] A holding portion that constitutes a part of the pressurizing chamber and that can accommodate and hold one or a plurality of the electronic components;
前記加圧室の一部を構成するとともに前記保持部を気密に密閉可能な蓋部と、 前記蓋部及び前記保持部の一方に形成されるとともに、一端部が前記測定部に接 続され、他端部が前記保持部により保持された前記電子部品の電極部に電気的に 接続可能な端子部と、  A lid that forms a part of the pressurizing chamber and that can hermetically seal the holding portion; and is formed on one of the lid and the holding portion, and has one end connected to the measuring portion; A terminal part that is electrically connectable to the electrode part of the electronic component, the other end part of which is held by the holding part;
前記蓋部及び前記保持部の一方又は両方に形成されるとともに、前記加圧室内に 規定圧力の気体を流入可能な通気路と、  An air passage that is formed in one or both of the lid portion and the holding portion, and that can flow a gas of a specified pressure into the pressurizing chamber;
を有することを特徴とする請求項 1に記載の検査装置。  The inspection apparatus according to claim 1, further comprising:
[3] 前記測定部は、前記保持部及び前記蓋部により密閉された前記加圧室に前記電 子部品が設置されるとともに、規定圧力の気体が前記通気路を介して前記加圧室内 に印加され前記電子部品の周囲が加圧された状態で、前記電子部品の電極部に電 気的に接続された前記端子部を介して前記インピーダンスを測定することを特徴とす る請求項 2に記載の検査装置。 [3] In the measurement unit, the electronic component is installed in the pressurizing chamber sealed by the holding unit and the lid unit, and a gas having a specified pressure enters the pressurizing chamber through the vent. 3. The impedance is measured through the terminal portion electrically connected to the electrode portion of the electronic component in a state where the periphery of the electronic component is applied and pressurized. The inspection device described.
[4] 周方向に沿って前記保持部が規定間隔に設けられ、前記周方向に沿って回転自 在なインデックステーブルを有することを特徴とする請求項 2に記載の検査装置。 [4] The inspection apparatus according to [2], wherein the holding portions are provided at regular intervals along the circumferential direction, and have an index table that is self-rotating along the circumferential direction.
[5] 前記インデックステーブルに形成された前記保持部に前記電子部品を移載する移 載部と、 [5] a transfer unit that transfers the electronic component to the holding unit formed in the index table;
前記蓋部を含み、前記加圧部に設置された前記電子部品のインピーダンスを測定 する加圧リーク検査部と、 Measure the impedance of the electronic component installed in the pressure unit, including the lid A pressure leak inspection unit,
前記インデックステーブルに形成された前記保持部力 前記電子部品を取り出して 、前記判別部の判別結果に応じた位置に搬送する搬送部と、  The holding unit force formed on the index table, taking out the electronic component, and conveying the unit to a position according to the determination result of the determination unit;
前記インデックステーブルを規定のタイミングで周方向に沿って回転制御するととも に、少なくとも前記インデックステーブルの周方向に沿って規定間隔に配置された、 前記移載部、前記加圧リーク検査部、および前記搬送部を並列処理させる制御部と を有することを特徴とする請求項 4に記載の検査装置。  The index table is rotationally controlled along a circumferential direction at a prescribed timing, and at least arranged at a prescribed interval along the circumferential direction of the index table, the transfer unit, the pressure leak inspection unit, and the 5. The inspection apparatus according to claim 4, further comprising: a control unit that performs parallel processing on the transport unit.
[6] 前記加圧リーク検査部は、前記保持部の複数の前記電子部品を並列に検査するこ とを特徴とする請求項 4に記載の検査装置。 6. The inspection apparatus according to claim 4, wherein the pressure leak inspection unit inspects the plurality of electronic components of the holding unit in parallel.
[7] 前記電子部品の特性のうちインピーダンス以外の 、ずれかの特性を検査する検査 部を有し、 [7] It has an inspection part for inspecting any of the characteristics of the electronic component other than the impedance,
前記制御部は、少なくとも前記インデックステーブルの周方向に沿って規定間隔に 配置された、前記移載部、前記検査部、前記加圧リーク検査部、および前記搬送部 を並列処理させることを特徴とする請求項 5に記載の検査装置。  The control unit performs parallel processing on the transfer unit, the inspection unit, the pressurized leak inspection unit, and the transport unit, which are arranged at a predetermined interval along at least a circumferential direction of the index table. The inspection device according to claim 5.
[8] 前記検査部は、前記圧電振動子の低ドライブ特性又は周波数特性を検査すること を特徴とする請求項 7に記載の検査装置。  8. The inspection apparatus according to claim 7, wherein the inspection unit inspects low drive characteristics or frequency characteristics of the piezoelectric vibrator.
[9] 前記圧電素子は水晶振動子を含み、  [9] The piezoelectric element includes a crystal resonator,
前記測定部は、前記水晶振動子のクリスタルインピーダンスを測定することを特徴と する請求項 1に記載の検査装置。  The inspection apparatus according to claim 1, wherein the measurement unit measures a crystal impedance of the crystal resonator.
[10] 前記加圧部による圧力は、 0. 2MPa〜0. 5MPaであることを特徴とする請求項 1 に記載の検査装置。  [10] The inspection apparatus according to claim 1, wherein the pressure applied by the pressurizing unit is 0.2 MPa to 0.5 MPa.
[11] 圧電素子が気密に封止された電子部品の気密検査を行う検査方法であって、 開閉自在な加圧室内に前記電子部品を設置した状態で該電子部品の周囲を加圧 するステップと、  [11] An inspection method for performing an airtight inspection of an electronic component in which a piezoelectric element is hermetically sealed, the step of pressurizing the periphery of the electronic component in a state where the electronic component is installed in an openable / closable pressurizing chamber When,
前記加圧室内に設置された前記電子部品のインピーダンスを測定するステップと、 測定された非加圧時と加圧時のインピーダンス力 変化量を算出し、前記変化量を 設定値と比較して、前記電子部品の気密性が不良であることを判別するステップと、 を有することを特徴とする検査方法。 A step of measuring the impedance of the electronic component installed in the pressurizing chamber, and calculating a measured amount of change in impedance force at the time of non-pressurization and pressurization, and comparing the amount of change with a set value, Determining that the airtightness of the electronic component is poor; An inspection method characterized by comprising:
PCT/JP2006/319357 2006-09-28 2006-09-28 Inspection equipment and inspection method WO2008038383A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008514986A JP4588788B2 (en) 2006-09-28 2006-09-28 Inspection device and inspection method
CN2006800362792A CN101278181B (en) 2006-09-28 2006-09-28 Checking apparatus and method
PCT/JP2006/319357 WO2008038383A1 (en) 2006-09-28 2006-09-28 Inspection equipment and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/319357 WO2008038383A1 (en) 2006-09-28 2006-09-28 Inspection equipment and inspection method

Publications (1)

Publication Number Publication Date
WO2008038383A1 true WO2008038383A1 (en) 2008-04-03

Family

ID=39229831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319357 WO2008038383A1 (en) 2006-09-28 2006-09-28 Inspection equipment and inspection method

Country Status (3)

Country Link
JP (1) JP4588788B2 (en)
CN (1) CN101278181B (en)
WO (1) WO2008038383A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110657925A (en) * 2018-06-29 2020-01-07 意法半导体股份有限公司 Method for testing hermetic seal of package
US11945714B2 (en) 2020-07-30 2024-04-02 Stmicroelectronics S.R.L. Electronic device and corresponding method
JP7470373B2 (en) 2020-02-28 2024-04-18 株式会社昭和真空 Leak inspection method and leak inspection device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484465B (en) * 2009-09-14 2015-04-08 株式会社村田制作所 Crystal oscillating device
JP5757793B2 (en) * 2011-06-10 2015-07-29 株式会社大真空 Manufacturing apparatus for piezoelectric vibration device
KR101308935B1 (en) * 2011-11-25 2013-09-23 주식회사 로보스타 Tester of package for leak tester of piezoelectric element package
CN102944362A (en) * 2012-10-26 2013-02-27 铜陵市晶赛电子有限责任公司 Vacuum leakage detection method for quartz-crystal resonator
CN104535282B (en) * 2014-11-24 2017-12-22 应达利电子股份有限公司 A kind of quartz-crystal resonator air-tightness detection method and device
CN105935662B (en) * 2016-03-31 2018-11-30 珠海格力新元电子有限公司 Thin-film capacitor work seal detection device and detection method
CN106052981B (en) * 2016-08-01 2018-09-18 中国航空综合技术研究所 A kind of method for conducting leak test for installing electronic component in the circuit board
CN107290115B (en) * 2017-07-05 2019-07-12 应达利电子股份有限公司 A kind of detection device and its detection method of piezoelectric element air-tightness
CN111562072A (en) * 2020-05-12 2020-08-21 东晶电子金华有限公司 Detection method, detection apparatus, and computer-readable storage medium
JP2023033754A (en) * 2021-08-30 2023-03-13 川崎重工業株式会社 Foam leakage inspection method and vacuum box
CN116659758B (en) * 2023-08-02 2023-10-10 烟台盈德精密机械有限公司 Air-tightness test platform for air-driven urea nozzle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313467Y2 (en) * 1981-11-20 1988-04-16
JPH10232179A (en) * 1996-12-20 1998-09-02 Cosmo Keiki:Kk Method for inspecting leak of fine part and apparatus for inspecting leak using the same
JPH1151802A (en) * 1997-07-31 1999-02-26 River Eletec Kk Method for testing hermetical seal of package for piezoelectric element
JP2000208861A (en) * 1999-01-14 2000-07-28 Matsushita Electronics Industry Corp Manufacturing method and equipment of semiconductor laser device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313467A (en) * 1986-07-02 1988-01-20 Minolta Camera Co Ltd Laser scanning type image forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313467Y2 (en) * 1981-11-20 1988-04-16
JPH10232179A (en) * 1996-12-20 1998-09-02 Cosmo Keiki:Kk Method for inspecting leak of fine part and apparatus for inspecting leak using the same
JPH1151802A (en) * 1997-07-31 1999-02-26 River Eletec Kk Method for testing hermetical seal of package for piezoelectric element
JP2000208861A (en) * 1999-01-14 2000-07-28 Matsushita Electronics Industry Corp Manufacturing method and equipment of semiconductor laser device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110657925A (en) * 2018-06-29 2020-01-07 意法半导体股份有限公司 Method for testing hermetic seal of package
US11353503B2 (en) 2018-06-29 2022-06-07 Stmicroelectronics S.R.L. Method for testing the hermetic seal of a package
JP7470373B2 (en) 2020-02-28 2024-04-18 株式会社昭和真空 Leak inspection method and leak inspection device
US11945714B2 (en) 2020-07-30 2024-04-02 Stmicroelectronics S.R.L. Electronic device and corresponding method

Also Published As

Publication number Publication date
CN101278181A (en) 2008-10-01
CN101278181B (en) 2011-05-04
JPWO2008038383A1 (en) 2010-01-28
JP4588788B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4588788B2 (en) Inspection device and inspection method
JP2925964B2 (en) Semiconductor wafer container and method of inspecting semiconductor integrated circuit
CN1972844B (en) Method and device for inspecting container
CN101080625B (en) Component measuring instrument
JPH1151802A (en) Method for testing hermetical seal of package for piezoelectric element
CN102121963B (en) Method and equipment for detecting crude leakage of surface-mount quartz resonator
JP5045010B2 (en) Conveying device with positioning means
JP2010232974A (en) Piezoelectric oscillator
KR101898451B1 (en) Apparatus for manufacturing piezoelectric vibrating device
JP4473816B2 (en) Component measuring device
US8352198B2 (en) Sensing sensor and concentration measuring device
JPH10321686A (en) Burn-in device
JP4078220B2 (en) Ultrasonic image inspection equipment
JP2005292090A (en) Inspection device, test jig, and test method
JP7470373B2 (en) Leak inspection method and leak inspection device
JP2010223643A (en) Airtightness inspection device of piezoelectric vibrator, and airtightness inspection method
JPH11108792A (en) Method for inspecting gross leakage
JP3870939B2 (en) Airtight test method and apparatus
JPH07159487A (en) Device and method for testing semiconductor
JP2002333383A (en) Pinhole inspection machine
JPH10206266A (en) Automatic inspection apparatus for semiconductor pressure-sensor chip
JP2019190879A (en) Electronic component conveying device and electronic component inspection device
JP5182033B2 (en) Manufacturing apparatus for piezoelectric vibration device
JP2021131349A (en) Method for determining abnormality of electronic component conveyance device
JP2000162083A (en) Inspection apparatus for airtight-seal-leakage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680036279.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008514986

Country of ref document: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06798405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798405

Country of ref document: EP

Kind code of ref document: A1