JP5757793B2 - Manufacturing apparatus for piezoelectric vibration device - Google Patents

Manufacturing apparatus for piezoelectric vibration device Download PDF

Info

Publication number
JP5757793B2
JP5757793B2 JP2011130085A JP2011130085A JP5757793B2 JP 5757793 B2 JP5757793 B2 JP 5757793B2 JP 2011130085 A JP2011130085 A JP 2011130085A JP 2011130085 A JP2011130085 A JP 2011130085A JP 5757793 B2 JP5757793 B2 JP 5757793B2
Authority
JP
Japan
Prior art keywords
chamber
inspection
piezoelectric vibration
vibration device
internal space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011130085A
Other languages
Japanese (ja)
Other versions
JP2012257152A (en
Inventor
飯塚 実
実 飯塚
強 草井
強 草井
塩野 忠久
忠久 塩野
基毅 和田
基毅 和田
好寿 跡邊
好寿 跡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2011130085A priority Critical patent/JP5757793B2/en
Priority to KR1020120057323A priority patent/KR101898451B1/en
Priority to TW101120137A priority patent/TWI575870B/en
Priority to CN201210188595.9A priority patent/CN102820865B/en
Publication of JP2012257152A publication Critical patent/JP2012257152A/en
Application granted granted Critical
Publication of JP5757793B2 publication Critical patent/JP5757793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0519Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for cantilever
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

本発明は、圧電振動デバイスの製造装置に関する。   The present invention relates to a piezoelectric vibration device manufacturing apparatus.

現在、圧電振動デバイスとして、例えば、発振器や水晶振動子などが挙げられる。この種の圧電振動デバイスでは、その筐体が略直方体のパッケージで構成される。このパッケージはセラミックのベースと金属のキャップとから構成され、パッケージ内部には気密封止された内部空間が形成されている。また、このパッケージ内部では、水晶振動片などの電子部品素子が、ベース上の電極パッドに導電性接合材を介して接合されている。   Currently, examples of the piezoelectric vibration device include an oscillator and a crystal resonator. In this type of piezoelectric vibration device, the casing is formed of a substantially rectangular parallelepiped package. This package includes a ceramic base and a metal cap, and an airtightly sealed internal space is formed inside the package. Further, in this package, an electronic component element such as a crystal vibrating piece is bonded to an electrode pad on the base via a conductive bonding material.

この圧電振動デバイスを製造する製造工程には、水晶振動片をベースと蓋とにより気密封止する封止装置を用いた封止工程と、気密状態の検査を行う気密検査装置を用いた気密検査工程とが含まれる。このうち、気密検査工程は、エアーを用いた粗検査であるグロスリーク検査工程と、ヘリウムガスを用いた微検査であるヘリウムリーク検査工程とを有する(例えば、特許文献1参照)。   The manufacturing process for manufacturing this piezoelectric vibration device includes a sealing process using a sealing device that hermetically seals the quartz crystal vibrating piece with a base and a lid, and an airtight inspection using an airtight inspection device that performs an airtight inspection. Process. Among these, the airtight inspection process includes a gross leak inspection process that is a rough inspection using air and a helium leak inspection process that is a fine inspection using helium gas (see, for example, Patent Document 1).

特許文献1の技術は、ターンテーブルを有し、気密検査の対象ワークとなる電子デバイス(水晶振動子やICチップなど)を環状に搬送させながら、グロスリーク検査とヘリウムリーク検査とを行う。
特開2007−278914号公報
The technology of Patent Document 1 has a turntable and performs a gross leak test and a helium leak test while carrying an electronic device (a crystal resonator, an IC chip, etc.) that is a target object of an airtight test in a ring shape.
JP 2007-278914 A

従来の気密検査工程は、上記の通り、2つの検査工程(グロスリーク検査工程とヘリウムリーク検査工程)を行うので、気密検査工程を行うために多くの製造時間を確保する必要がある。また、気密検査装置では、気密検査を行うために気密検査装置内を減圧する必要があり、この減圧を行う時間が多大にかかる。特に、ヘリウムリーク検査工程では、ヘリウムをパッケージ内に注入するための時間(例えば約1時間)を要する。   Since the conventional airtight inspection process performs two inspection processes (gross leak inspection process and helium leak inspection process) as described above, it is necessary to secure a lot of manufacturing time in order to perform the airtight inspection process. Further, in the airtight inspection apparatus, it is necessary to decompress the inside of the airtight inspection apparatus in order to perform the airtight inspection, and it takes a lot of time to perform this decompression. In particular, in the helium leak inspection process, it takes time (for example, about 1 hour) to inject helium into the package.

このように、特許文献1の技術を含む従来技術では、気密検査工程を行うために多くの製造時間が必要になる。   Thus, in the prior art including the technique of Patent Document 1, a lot of manufacturing time is required to perform the airtight inspection process.

そこで、上記課題を解決するために、本発明は、圧電振動デバイスの製造において圧電振動デバイスの気密検査にかかる時間を短縮させる電子デバイスの製造装置を目的とする。   SUMMARY OF THE INVENTION In order to solve the above problems, an object of the present invention is to provide an electronic device manufacturing apparatus that shortens the time required for an airtight inspection of a piezoelectric vibrating device in manufacturing the piezoelectric vibrating device.

上記の目的を達成するため、本発明にかかる圧電振動デバイスの製造装置は、複数の封止部材を接合することにより内部空間が形成され、この内部空間に圧電振動素子を含む1つ以上の電子部品素子が気密封止され、外部に電気的に接続する外部端子として、圧電振動素子に接続される圧電振動素子用外部端子が形成された圧電振動デバイスの製造装置において、真空雰囲気下で複数の封止部材を加熱接合して真空状態の内部空間を形成し、内部空間に電子部品素子を気密封止する気密封止室と、圧電振動デバイスの内部空間の気密状態を検査する検査室と、が設けられ、前記検査室には、真空雰囲気下において圧電振動デバイスの内部空間の気密状態を検査する第1検査室と、前記第1検査室よりも高圧の雰囲気下において圧電振動デバイスの内部空間の気密状態を検査する第2検査室とが含まれており、圧電振動デバイスを、前記気密封止室、前記第1検査室、および前記第2検査室の順に搬送することを特徴とする。 In order to achieve the above object, an apparatus for manufacturing a piezoelectric vibration device according to the present invention forms an internal space by joining a plurality of sealing members, and one or more electrons including a piezoelectric vibration element in the internal space. In a piezoelectric vibration device manufacturing apparatus in which a component element is hermetically sealed and an external terminal for a piezoelectric vibration element connected to the piezoelectric vibration element is formed as an external terminal electrically connected to the outside. A sealing member is heated and joined to form an internal space in a vacuum state, an airtight sealing chamber for airtightly sealing the electronic component element in the internal space, an inspection chamber for inspecting an airtight state of the internal space of the piezoelectric vibration device, is provided to the laboratory, the first laboratory for testing the airtightness of the interior space of the piezoelectric vibrating device in a vacuum atmosphere, the piezoelectric vibrating device under high pressure atmosphere than the first laboratory Of which includes a second laboratory for testing the airtightness of the interior space, characterized in that conveying the piezoelectric vibrating device, wherein the hermetic seal chamber, the first laboratory, and the order of the second test chamber And

本発明によれば、圧電振動デバイスの気密封止を行うために用いる真空状態(減圧状態)の環境を、圧電振動デバイスの検査にも用いることができるので、気密検査を行うためだけに圧電振動デバイスの内部空間を減圧する時間を必要とせず、気密検査にかかる時間を短縮させることが可能となる。さらに、本発明によれば、従来の技術のように2つの検査工程(グロスリーク検査工程とヘリウムリーク検査工程)を行う必要がなく、この点においても気密検査にかかる時間を短縮させることが可能となる。また、本発明によれば、従来の技術の封止装置を用いた圧電振動デバイスの気密封止工程と、気密検査装置を用いた圧電振動デバイスの気密検査工程を、1つの製造装置によって実現することができ、その結果、圧電振動デバイスの製造時間の短縮を図るのに好適である。   According to the present invention, the vacuum environment (depressurized state) used for hermetic sealing of the piezoelectric vibration device can also be used for the inspection of the piezoelectric vibration device. It is possible to reduce the time required for the airtight inspection without requiring time for decompressing the internal space of the device. Furthermore, according to the present invention, it is not necessary to perform two inspection steps (gross leak inspection step and helium leak inspection step) as in the prior art, and in this respect also, the time required for the airtight inspection can be shortened. It becomes. In addition, according to the present invention, the hermetic sealing process of the piezoelectric vibrating device using the conventional sealing device and the hermetic testing process of the piezoelectric vibrating device using the hermetic inspection apparatus are realized by one manufacturing apparatus. As a result, it is suitable for shortening the manufacturing time of the piezoelectric vibrating device.

また、本発明によれば、前記気密封止室で内部空間を気密状態にした圧電振動デバイスに対して、一度も外部に搬送せずに、前記気密封止室から前記第1検査室に圧電振動デバイスを搬送し、前記第1検査室において、圧電振動デバイスの内部空間の気密状態の検査を行うので、そのまま真空雰囲気下で気密検査を行うことが可能となる。その結果、内部空間の正確な気密検査を行うことが可能となる。これに対して、従来の技術のように、気密封止と気密検査とを別々にすると、一度、大気中に圧電振動デバイスを搬出することになるので、内部空間の気密漏れのある不良品の圧電振動デバイスでは、内部空間の状態が変化し、正常な気密検査を行うことができない。 Further, according to the present invention, a piezoelectric vibration device having an inner space hermetically sealed in the hermetic sealing chamber may be piezoelectrically transferred from the hermetic sealing chamber to the first inspection chamber without being transported to the outside. Since the vibration device is transported and the airtight state of the internal space of the piezoelectric vibration device is inspected in the first inspection chamber, the airtight inspection can be performed in a vacuum atmosphere as it is. As a result, an accurate airtight inspection of the internal space can be performed. On the other hand, if the hermetic sealing and the hermetic inspection are separately performed as in the prior art, the piezoelectric vibration device is once carried out to the atmosphere. In the piezoelectric vibration device, the state of the internal space changes, and a normal airtight inspection cannot be performed.

前記構成において、真空雰囲気下で封止部材を予備加熱する予備加熱室が設けられ、圧電振動デバイスを、前記予備加熱室、前記気密封止室、前記第1検査室、および前記第2検査室の順に搬送してもよい。 In the above configuration, a preheating chamber for preheating the sealing member in a vacuum atmosphere is provided, and the piezoelectric vibration device is connected to the preheating chamber, the hermetic sealing chamber, the first inspection chamber, and the second inspection chamber. You may convey in order.

なお、この構成において、複数の封止部材を局所加熱により加熱溶融接合する場合、加熱接合する前記気密封止室の前室に前記予備加熱室が設けられているので、封止部材の熱歪や熱応力の悪影響を抑制することが可能となる。また、複数の封止部材を雰囲気加熱により加熱溶融接合する場合、封止部材をより均一に所定の温度まで上昇させる必要がある。本構成によれば、前記気密封止室の前室に前記予備加熱室が設けられているので、前記気密封止室において封止部材をより均一に所定の温度まで上昇させる時間を少なくすることが可能となる。その結果、前記予備加熱室が設けられず、気密封止室のみで加熱する製造装置に比べて、封止工程のタクト低減により一層好ましいものとなる。   In this configuration, when a plurality of sealing members are heat-melted and bonded by local heating, the preheating chamber is provided in the front chamber of the hermetic sealing chamber to be heat-bonded, so that the thermal strain of the sealing member And adverse effects of thermal stress can be suppressed. In addition, when a plurality of sealing members are heat-melted and joined by atmospheric heating, it is necessary to raise the sealing members more uniformly to a predetermined temperature. According to this configuration, since the preheating chamber is provided in the front chamber of the hermetic sealing chamber, the time for raising the sealing member more uniformly to a predetermined temperature in the hermetic sealing chamber can be reduced. Is possible. As a result, the preheating chamber is not provided, and the tact reduction of the sealing process is more preferable as compared with a manufacturing apparatus that heats only in the hermetic sealing chamber.

前記構成において、前記検査室では、圧電振動デバイスの内部空間の気密状態の検査の他に、圧電振動素子用外部端子を使った圧電振動デバイスの電気的特性の検査を行ってもよい。   In the above configuration, in the inspection room, in addition to the inspection of the airtight state of the internal space of the piezoelectric vibration device, the electrical characteristics of the piezoelectric vibration device using the piezoelectric vibration element external terminal may be inspected.

この場合、圧電振動デバイスの内部空間の気密状態の検査と、DLDなどの電気的特性の検査を同時に行うことが可能となる。また、圧電振動デバイスの電気的特性の検査を行うために、新たに室や検査部材を用意しなくてもよく、当該製造装置の簡易化を図ることが可能となる。その結果、当該製造装置の他に、電気的特性の検査のための製造装置を新たに設ける必要がなく、製造コストおよび製造時間をともに抑えることが可能となる。   In this case, it is possible to simultaneously perform an inspection of the airtight state of the internal space of the piezoelectric vibration device and an inspection of electrical characteristics such as DLD. In addition, in order to inspect the electrical characteristics of the piezoelectric vibration device, it is not necessary to prepare a new chamber or inspection member, and the manufacturing apparatus can be simplified. As a result, it is not necessary to newly provide a manufacturing apparatus for inspecting electrical characteristics in addition to the manufacturing apparatus, and both the manufacturing cost and the manufacturing time can be suppressed.

前記構成において、前記検査室では、圧電振動デバイスの内部空間の気密状態の検査の他に、圧電振動素子用外部端子を使った圧電振動デバイスの温度特性の検査を行ってもよい。   In the above configuration, the inspection room may inspect the temperature characteristics of the piezoelectric vibration device using the piezoelectric vibration element external terminal in addition to the airtight state inspection of the internal space of the piezoelectric vibration device.

この場合、圧電振動デバイスの内部空間の気密状態の検査と、温度特性の検査を同時に行うことが可能となる。そのため、圧電振動デバイスの温度特性の検査を行うために、新たに室や検査部材を用意しなくてもよく、当該製造装置の簡易化を図ることができる。その結果、当該製造装置の他に、温度特性の検査のための製造装置を新たに設ける必要がなく、製造コストおよび製造時間をともに抑えることが可能となる。特に、前記気密封止室での複数の封止部材の加熱接合に雰囲気加熱を用いた場合、前記気密封止室では室内が高温状態になり、それにともなって圧電振動デバイスも高温状態となっているので、この圧電振動デバイスの高温状態を積極的に利用して、高温下における圧電振動デバイスの温度特性の検査を行うことができ、圧電振動デバイスの温度特性の検査のために、圧電振動デバイスを高温にする時間を省くことが可能となる。   In this case, it is possible to simultaneously perform the inspection of the airtight state of the internal space of the piezoelectric vibration device and the inspection of the temperature characteristics. Therefore, in order to inspect the temperature characteristics of the piezoelectric vibration device, it is not necessary to newly prepare a chamber or an inspection member, and the manufacturing apparatus can be simplified. As a result, it is not necessary to newly provide a manufacturing apparatus for inspecting temperature characteristics in addition to the manufacturing apparatus, and both the manufacturing cost and the manufacturing time can be suppressed. In particular, when atmosphere heating is used for heating and joining a plurality of sealing members in the hermetic sealing chamber, the chamber is in a high temperature state in the hermetic sealing chamber, and accordingly, the piezoelectric vibration device is also in a high temperature state. Therefore, the temperature characteristics of the piezoelectric vibration device can be inspected at high temperatures by actively using the high temperature state of the piezoelectric vibration device. It is possible to save time for making the temperature high.

前記構成において、前記検査室には、圧電振動デバイスの温度を、予め設定した基準温度に調整する温度調整部が設けられてもよい。   In the above configuration, the inspection room may be provided with a temperature adjusting unit that adjusts the temperature of the piezoelectric vibrating device to a preset reference temperature.

この場合、複数の封止部材の接合によって高温になった圧電振動デバイスの温度を下げる(例えば、常温)のに好ましい。また、温度特性の検査の時の圧電振動デバイスの温度を制御するのに最適である。   In this case, it is preferable for lowering the temperature of the piezoelectric vibration device that has become high temperature due to the joining of a plurality of sealing members (for example, normal temperature). In addition, it is optimal for controlling the temperature of the piezoelectric vibrating device during the inspection of the temperature characteristics.

前記構成において、前記第2検査室では、大気圧またはそれよりも高圧の雰囲気下において圧電振動デバイスの内部空間の気密状態の検査が行われてもよい。 The said structure WHEREIN: In the said 2nd inspection chamber, the test | inspection of the airtight state of the internal space of a piezoelectric vibration device may be performed in the atmosphere of atmospheric pressure or a pressure higher than it .

前記第2検査室が大気圧よりも高圧に加圧されている場合、加圧した状態での圧電振動デバイスの内部空間の気密状態の検査を行うので、気密封止漏れがあった場合、CI値の変動量が、非加圧下に比べて大きくなる。そのため、さらに精度の良い気密検査を行うことが可能となる。 When the second inspection chamber is pressurized to a pressure higher than the atmospheric pressure, the hermetic state of the internal space of the piezoelectric vibration device in the pressurized state is inspected. The fluctuation amount of the value is larger than that under non-pressurization. Therefore, it is possible to perform a more accurate airtight inspection.

前記構成において、圧電振動素子は、厚みすべり振動を行う素子であってもよい。ここでいう厚みすべり振動を行う素子として、ATカット水晶振動片や、BTカット水晶振動片、SCカット水晶振動片などが挙げられる。一般的に屈曲振動を利用した圧電振動素子では、真空雰囲気と大気雰囲気におけるCI値差が100kΩ以上あるため、基準温度(常温)でのCI値測定にて気密良否判定が行いやすいが、厚みすべり振動を行う素子では、このCI値差は数Ω程度しかなく、基準温度(常温)でのCI値測定だけでは気密良否判定は行えないため、本発明の電子デバイスの製造装置を利用して正確な気密良否判定を行う。   In the above configuration, the piezoelectric vibration element may be an element that performs thickness shear vibration. Examples of the element that performs the thickness-shear vibration include an AT-cut quartz crystal vibrating piece, a BT-cut quartz crystal vibrating piece, and an SC-cut quartz crystal vibrating piece. In general, a piezoelectric vibration element using flexural vibration has a CI value difference of 100 kΩ or more between a vacuum atmosphere and an air atmosphere. Therefore, it is easy to judge whether the airtightness is good or not by measuring the CI value at a reference temperature (room temperature). In the element that vibrates, this CI value difference is only about several Ω, and it is impossible to judge whether the airtightness is good or not only by measuring the CI value at the reference temperature (room temperature). Therefore, it is accurate using the electronic device manufacturing apparatus of the present invention. Airtight quality judgment is performed.

本発明によれば、気密検査にかかる時間を短縮させることが可能となる。   According to the present invention, it is possible to reduce the time required for the airtight inspection.

図1は、本実施の形態1にかかる内部空間を公開した水晶振動子の概略側面図である。FIG. 1 is a schematic side view of a crystal resonator that exposes an internal space according to the first embodiment. 図2は、本実施の形態1にかかる水晶振動子の製造装置の概略構成を示したブロック図である。FIG. 2 is a block diagram showing a schematic configuration of the crystal resonator manufacturing apparatus according to the first embodiment. 図3は、本実施の形態1にかかる水晶振動子の製造装置で用いるパレットの概略平面図である。FIG. 3 is a schematic plan view of a pallet used in the crystal resonator manufacturing apparatus according to the first embodiment. 図4は、本実施の形態1にかかる水晶振動子の製造装置を用いて、CI値を測定した結果を示すデータである。FIG. 4 is data showing the results of measuring CI values using the crystal resonator manufacturing apparatus according to the first embodiment. 図5は、圧力変化に対するCI値の変化を測定した結果を示すデータである。FIG. 5 is data showing a result of measuring a change in CI value with respect to a pressure change. 図6は、本実施の他の形態にかかる内部空間を公開した発振器の概略側面図である。FIG. 6 is a schematic side view of an oscillator showing an internal space according to another embodiment of the present invention. 図7は、本実施の他の形態にかかる水晶振動子の製造装置の概略構成を示したブロック図である。FIG. 7 is a block diagram showing a schematic configuration of a crystal resonator manufacturing apparatus according to another embodiment of the present invention. 図8は、本実施の形態2にかかる水晶振動子の製造装置の概略構成を示したブロック図である。FIG. 8 is a block diagram showing a schematic configuration of the crystal resonator manufacturing apparatus according to the second embodiment. 図9は、本実施の形態3にかかる水晶振動子の製造装置の概略構成を示したブロック図である。FIG. 9 is a block diagram showing a schematic configuration of the crystal resonator manufacturing apparatus according to the third embodiment. 図10は、本実施の形態4にかかる水晶振動子の製造装置の概略構成を示したブロック図である。FIG. 10 is a block diagram showing a schematic configuration of the crystal resonator manufacturing apparatus according to the fourth embodiment.

以下、本発明の実施の形態について図面を参照して説明する。なお、以下に示す実施の形態では、電子デバイスとして圧電振動デバイスである水晶振動子の製造装置について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the embodiment described below, a crystal resonator manufacturing apparatus that is a piezoelectric vibration device as an electronic device will be described.

<実施の形態1>
−水晶振動子1−
水晶振動子1には、図1に示すように、電子部品素子である圧電素子のATカット水晶振動片2(以下、水晶振動片という)と、水晶振動片2を搭載し保持するベース3(本発明でいう封止部材)と、ベース3の一主面31に保持した水晶振動片2を気密封止するための蓋4(本発明でいう封止部材)と、が設けられている。この水晶振動子1では、ベース3と蓋4とが接合部材51により加熱溶融接合されて本体筐体11が構成され、この接合により、気密封止された本体筐体11の内部空間12が形成される。なお、本実施の形態では、接合部材51に、Agろう、Niメッキ、AuとSn等のAuSn合金、ガラス材等が用いられている。
<Embodiment 1>
-Crystal resonator 1
As shown in FIG. 1, the crystal resonator 1 includes an AT-cut crystal vibrating piece 2 (hereinafter referred to as a crystal vibrating piece) of a piezoelectric element, which is an electronic component element, and a base 3 on which the crystal vibrating piece 2 is mounted and held. A sealing member in the present invention and a lid 4 (sealing member in the present invention) for hermetically sealing the quartz crystal vibrating piece 2 held on one main surface 31 of the base 3 are provided. In this crystal unit 1, the base 3 and the lid 4 are heated and melted and joined by the joining member 51 to form the main body casing 11, and the inner space 12 of the hermetically sealed main body casing 11 is formed by this joining. Is done. In this embodiment, the bonding member 51 is made of Ag brazing, Ni plating, AuSn alloy such as Au and Sn, glass material, or the like.

水晶振動片2はATカット水晶片の基板からなり、水晶振動片2の基板は、図1に示すように、一枚板の直方体形状からなり、この基板の両主面には一対の励振電極(図示省略)が対向して形成されている。   The quartz crystal vibrating piece 2 is made of an AT-cut quartz piece substrate, and the substrate of the quartz crystal vibrating piece 2 is a single plate rectangular parallelepiped shape as shown in FIG. 1, and a pair of excitation electrodes is formed on both main surfaces of the substrate. (Not shown) are formed to face each other.

蓋4は、図1に示すように、一枚板のコバール母材(導電性材料)からなり、このコバール母材の両主面に図示しないニッケル層が形成され、蓋4の下面(ニッケル層)の外周にAuSn合金が形成されている。   As shown in FIG. 1, the lid 4 is made of a single plate Kovar base material (conductive material), nickel layers (not shown) are formed on both main surfaces of the Kovar base material, and the lower surface of the lid 4 (nickel layer) AuSn alloy is formed on the outer periphery of

ベース3は、アルミナ等のセラミック材料の基材からなり、図1に示すように、底部32と、ベース3の一主面31の主面外周に沿って底部32から上方に延出した壁部33と、から構成された箱状体に成形されている。   The base 3 is made of a base material made of a ceramic material such as alumina. As shown in FIG. 1, the bottom portion 32 and a wall portion extending upward from the bottom portion 32 along the main surface outer periphery of the one main surface 31 of the base 3. 33 is formed into a box-like body.

ベース3の他主面38には、外部の回路基板(図示省略)などの外部機器に半田などの導電性接合材(図示省略)を用いて電気的に接続する圧電振動素子用外部端子34が形成されている。この圧電振動素子用外部端子34は、水晶振動片2の励振電極に導電性接合材52を介して電気的に接続されている。   On the other principal surface 38 of the base 3, there are piezoelectric vibration element external terminals 34 that are electrically connected to an external device such as an external circuit board (not shown) using a conductive bonding material (not shown) such as solder. Is formed. The piezoelectric vibration element external terminal 34 is electrically connected to the excitation electrode of the crystal vibrating piece 2 via the conductive bonding material 52.

水晶振動子1では、図1に示すように、内部空間12のベース3の底部32上に、導電性接合材52(導電性樹脂接着剤、金属バンプ、めっきバンプ等)を介して水晶振動片2が接合されるとともに電気的に接続されている(電気機械的に接合されている)。   In the crystal unit 1, as shown in FIG. 1, the crystal resonator element is disposed on the bottom 32 of the base 3 of the internal space 12 via a conductive bonding material 52 (conductive resin adhesive, metal bump, plating bump, etc.). 2 are joined and electrically connected (electromechanically joined).

そして、水晶振動片2が搭載接合されたベース3が、加熱溶融接合により、接合部材51を介して、蓋4に接合されて、図1に示すように、水晶振動片2を気密封止した水晶振動子1が製造される。ここで製造された水晶振動子1は、圧電振動素子用外部端子34を介して外部の回路基板に半田などの導電性接合材により実装される。なお、水晶振動片2をベース3に接合するために用いる加熱接合には、水晶振動片2が搭載接合されたベース3を含む空間全体を加熱してベース3に蓋4を加熱溶融接合する雰囲気加熱接合や、水晶振動片2が搭載接合されたベース3に蓋4を配し(もしくは、蓋4に、水晶振動片2が搭載接合されたベース3を配し)、ベース3と蓋4との接合箇所を局所的に直接熱してベース3に蓋4を加熱溶融接合する局所加熱接合(例えば、シーム溶接やビーム溶接)などが挙げられる。   Then, the base 3 on which the crystal vibrating piece 2 is mounted and joined is joined to the lid 4 via the joining member 51 by heat-melt joining, and the crystal vibrating piece 2 is hermetically sealed as shown in FIG. The crystal unit 1 is manufactured. The quartz resonator 1 manufactured here is mounted on an external circuit board with a conductive bonding material such as solder via the piezoelectric vibration element external terminals 34. In addition, the heat bonding used for bonding the crystal vibrating piece 2 to the base 3 is an atmosphere in which the entire space including the base 3 on which the crystal vibrating piece 2 is mounted and bonded is heated and the lid 4 is heated and melt bonded to the base 3. The lid 4 is disposed on the base 3 on which the thermal bonding or the crystal vibrating piece 2 is mounted and bonded (or the base 3 on which the crystal vibrating piece 2 is mounted and bonded on the lid 4), and the base 3 and the lid 4 And the like. For example, local heat bonding (for example, seam welding or beam welding) in which the lid 4 is heated and melt-bonded to the base 3 by directly heating the joint portion is used.

次に、水晶振動子1を製造する製造装置7について、図面を用いて説明する。   Next, a manufacturing apparatus 7 for manufacturing the crystal unit 1 will be described with reference to the drawings.

−水晶振動子1の製造装置7−
本実施の形態にかかる水晶振動子1の製造装置7は、ベース3と蓋4との雰囲気加熱接合による例を示しており、水晶振動片2をベース3と蓋4とによって気密封止し、気密封止した水晶振動片2の検査を行うものである。
-Manufacturing apparatus 7 for crystal unit 1-
The crystal resonator 1 manufacturing apparatus 7 according to the present embodiment shows an example of atmospheric heating bonding between the base 3 and the lid 4, and the quartz crystal resonator element 2 is hermetically sealed with the base 3 and the lid 4. An inspection of the hermetically sealed quartz crystal vibrating piece 2 is performed.

製造装置7では、図2に示すように、複数の室(導入室71,予備加熱室72,気密封止室73,検査室75)が連続して並んで設けられ、水晶振動子1を一方向(図2に示すX方向)に搬送しながら水晶振動子1の気密封止および検査を行うインライン方式の製造装置である。   In the manufacturing apparatus 7, as shown in FIG. 2, a plurality of chambers (introduction chamber 71, preheating chamber 72, hermetic sealing chamber 73, and inspection chamber 75) are provided side by side. This is an in-line manufacturing apparatus that hermetically seals and inspects the crystal unit 1 while being conveyed in the direction (X direction shown in FIG. 2).

具体的には、製造装置7では、水晶振動子1の搬送方向であるX方向に沿って、導入室71,予備加熱室72,気密封止室73,検査室75が順に連続して並び、複数の水晶振動子1を搭載した1つのパレット8をX方向に搬送しながら各室(導入室71,予備加熱室72,気密封止室73,検査室75)で製造処理を行うものである。また、この製造装置7では、図2に示すように、外部と導入室71との間と、導入室71と第1予備加熱室721との間と、気密封止室73と温度調整室74との間と、温度調整室74と検査室75との間と、検査室75と外部との間にゲート弁76がそれぞれ設けられ、各室の開放と遮断とを自在とし、各室内の気圧を制御して気圧変化を抑えることができる。   Specifically, in the manufacturing apparatus 7, the introduction chamber 71, the preheating chamber 72, the hermetic sealing chamber 73, and the inspection chamber 75 are sequentially arranged along the X direction that is the conveyance direction of the crystal unit 1. A manufacturing process is performed in each chamber (introduction chamber 71, preheating chamber 72, hermetic sealing chamber 73, inspection chamber 75) while conveying one pallet 8 carrying a plurality of crystal resonators 1 in the X direction. . Moreover, in this manufacturing apparatus 7, as shown in FIG. 2, between the exterior and the introduction chamber 71, between the introduction chamber 71 and the 1st preheating chamber 721, the airtight sealing chamber 73, and the temperature control chamber 74. , And between the temperature adjustment chamber 74 and the inspection chamber 75 and between the inspection chamber 75 and the outside, gate valves 76 are provided to freely open and shut off the respective chambers. Can be controlled to suppress changes in atmospheric pressure.

ここでいうパレット8は、図3に示すように、直方体に成形されたプレートで構成され、このパレット8には、マトリックス状に複数の水晶振動子1が配されている。なお、本実施の形態では、最大400個(20個×20個)の水晶振動子1をパレット8に配することができる。また、最大400個(20個×20個)の水晶振動子1を搭載可能な搭載部81は平面視正方形とされ、その対角位置に、試験基準となる2個のリファレンスワーク82が配されている。本実施の形態では、リファレンスワーク82として、事前に良品と判断された水晶振動子を用いる。   As shown in FIG. 3, the pallet 8 here is composed of a plate formed in a rectangular parallelepiped, and a plurality of crystal resonators 1 are arranged in a matrix on the pallet 8. In the present embodiment, a maximum of 400 (20 × 20) crystal resonators 1 can be arranged on the pallet 8. The mounting portion 81 on which up to 400 (20 × 20) crystal resonators 1 can be mounted is a square in plan view, and two reference works 82 serving as test standards are arranged at diagonal positions. ing. In the present embodiment, a crystal resonator that has been determined to be non-defective in advance is used as the reference work 82.

次に、複数の室(導入室71、予備加熱室72、気密封止室73、温度調整室74、検査室75)について、図2を用いて説明する。   Next, a plurality of chambers (introduction chamber 71, preheating chamber 72, hermetic sealing chamber 73, temperature adjustment chamber 74, and inspection chamber 75) will be described with reference to FIG.

導入室71では、パレット8を製造装置7に搬入する室であり、導入室71のX方向の上流側に設けたゲート弁76を開けて、内部空間12が形成されていない水晶振動子1(すなわち、ベース3と蓋4とが別々の部材となっている状態であり、便宜上、未気密封止状態の水晶振動子1ともいう)を複数搭載したパレット8を外から搬入し、パレット8を搬入した後に、ゲート弁76を閉じる。そして、ゲート弁76を閉じた後、導入室71の室内を気圧制御して減圧し、大気状態から真空状態に気圧変更を行う。   The introduction chamber 71 is a chamber for carrying the pallet 8 into the manufacturing apparatus 7. The gate valve 76 provided on the upstream side in the X direction of the introduction chamber 71 is opened, and the crystal resonator 1 (in which the internal space 12 is not formed) ( That is, the base 3 and the lid 4 are separate members. For convenience, the pallet 8 on which a plurality of unsealed sealed crystal resonators 1 are mounted is loaded from the outside. After carrying in, the gate valve 76 is closed. Then, after closing the gate valve 76, the inside of the introduction chamber 71 is controlled to reduce the pressure, and the pressure is changed from the atmospheric state to the vacuum state.

予備加熱室72は、パレット8上の未気密封止状態の水晶振動子1の温度を上げる室であり、導入室71のX方向の下流側に隣接し、第1予備加熱室721と第2予備加熱室722と第3予備加熱室723とから構成される。第1予備加熱室721と第2予備加熱室722と第3予備加熱室723とはX方向に沿って順に配され、第1予備加熱室721が導入室71に隣接し、第1予備加熱室721と導入室71との間は、開閉自在なゲート弁76によって仕切られている。予備加熱室72(第1予備加熱室721と第2予備加熱室722と第3予備加熱室723)では、室内が真空状態(真空雰囲気)になっており、第1予備加熱室721と第2予備加熱室722と第3予備加熱室723では、それぞれ予め設定した基準温度に設定されている。この予備加熱室72では、導入室71の室内が真空状態(真空雰囲気)になった後に、導入室71のX方向の下流側のゲート弁76を開き、導入室71からパレット8を搬入し、パレット8を搬入した後に、ゲート弁76を閉じる。そして、ゲート弁76を閉じた後、パレット8を、第1予備加熱室721、第2予備加熱室722、および第3予備加熱室723の順に搬送させることで、パレット8上の未気密封止状態の水晶振動子1を段階的に加熱させて未気密封止状態の水晶振動子1の温度を所望の温度にする。なお、予備加熱室72の基準温度は250〜290℃に設定されている。   The preheating chamber 72 is a chamber for raising the temperature of the unsealed crystal resonator 1 on the pallet 8 and is adjacent to the downstream side in the X direction of the introduction chamber 71, and is connected to the first preheating chamber 721 and the second preheating chamber 721. The preheating chamber 722 and the third preheating chamber 723 are configured. The first preheating chamber 721, the second preheating chamber 722, and the third preheating chamber 723 are sequentially arranged along the X direction, the first preheating chamber 721 is adjacent to the introduction chamber 71, and the first preheating chamber 721 and the introduction chamber 71 are partitioned by a gate valve 76 that can be freely opened and closed. In the preheating chamber 72 (the first preheating chamber 721, the second preheating chamber 722, and the third preheating chamber 723), the interior of the chamber is in a vacuum state (vacuum atmosphere). In the preheating chamber 722 and the third preheating chamber 723, the reference temperature is set in advance. In the preheating chamber 72, after the chamber of the introduction chamber 71 is in a vacuum state (vacuum atmosphere), the gate valve 76 on the downstream side in the X direction of the introduction chamber 71 is opened, and the pallet 8 is carried from the introduction chamber 71, After carrying in the pallet 8, the gate valve 76 is closed. Then, after closing the gate valve 76, the pallet 8 is conveyed in the order of the first preheating chamber 721, the second preheating chamber 722, and the third preheating chamber 723, so that the airtight sealing on the pallet 8 is performed. The crystal resonator 1 in the state is heated stepwise to bring the temperature of the crystal resonator 1 in the non-hermetic sealed state to a desired temperature. The reference temperature of the preheating chamber 72 is set to 250 to 290 ° C.

気密封止室73は、ベース3と蓋4とを接合して水晶振動片2を気密封止する室であり、予備加熱室72(具体的には、第3予備加熱室723)のX方向の下流側に隣接する。気密封止室73では、予備加熱室72と同様に、室内が真空状態(真空雰囲気)になっており、予め設定した基準温度に設定されている。この気密封止室73では、真空雰囲気下の予備加熱室72からパレット8を搬入し、パレット8上の未気密封止状態の水晶振動子1を、接合部材51が溶融する溶融温度よりも高い温度まで加熱する。そして、気密封止室73において、ベース3と蓋4とを接合部材51を介して加熱溶融することで接合し、ベース3に搭載した水晶振動片2を内部空間12に気密封止する。なお、気密封止室73の基準温度は約300〜約330℃に設定され、気密封止室73において水晶振動子1を約280℃に加熱する。なお、本明細書では、気密封止室73での水晶振動子1(および未気密封止状態の水晶振動子1)の加熱に対する、上記の予備加熱室72での未気密封止状態の水晶振動子1の加熱を、予備加熱とする。   The hermetic sealing chamber 73 is a chamber that hermetically seals the crystal vibrating piece 2 by joining the base 3 and the lid 4, and is in the X direction of the preheating chamber 72 (specifically, the third preheating chamber 723). Adjacent to the downstream side. In the hermetic sealing chamber 73, as in the preheating chamber 72, the chamber is in a vacuum state (vacuum atmosphere) and is set to a preset reference temperature. In the hermetic sealing chamber 73, the pallet 8 is carried from the preheating chamber 72 in a vacuum atmosphere, and the crystal resonator 1 in an unsealed sealed state on the pallet 8 is higher than the melting temperature at which the bonding member 51 is melted. Heat to temperature. Then, in the hermetic sealing chamber 73, the base 3 and the lid 4 are joined by heating and melting through the joining member 51, and the quartz crystal resonator element 2 mounted on the base 3 is hermetically sealed in the internal space 12. The reference temperature of the hermetic sealing chamber 73 is set to about 300 to about 330 ° C., and the crystal unit 1 is heated to about 280 ° C. in the hermetic sealing chamber 73. In the present specification, the crystal in the non-hermetic sealed state in the preheating chamber 72 with respect to the heating of the crystal resonator 1 (and the crystal resonator 1 in the non-hermetic sealed state) in the hermetic sealing chamber 73 is used. The heating of the vibrator 1 is preheating.

温度調整室74は、水晶振動子1の温度を、予め設定した基準温度(本実施の形態では常温である約25℃)に調整する室であり、気密封止室73のX方向の下流側に隣接する。この温度調整室74では、温度調整部(図示省略)としてペルチェ素子や冷却板などが設けられている。このように気密封止室73と検査室75との間に温度調整室74を設けることで、気密封止室73で雰囲気加熱によるベース3と蓋4との加熱接合によって高温になっている水晶振動子1の温度を下げることができる。具体的には、温度調整室74では、水晶振動子1の温度を常温の約25℃に下げる温度調整を行う。   The temperature adjustment chamber 74 is a chamber for adjusting the temperature of the crystal unit 1 to a preset reference temperature (in the present embodiment, about 25 ° C. which is normal temperature), and is downstream of the hermetic sealing chamber 73 in the X direction. Adjacent to. In the temperature adjustment chamber 74, a Peltier element, a cooling plate, and the like are provided as a temperature adjustment unit (not shown). In this way, by providing the temperature adjustment chamber 74 between the hermetic sealing chamber 73 and the inspection chamber 75, the quartz crystal that is heated to a high temperature by the heat bonding between the base 3 and the lid 4 by the atmospheric heating in the hermetic sealing chamber 73. The temperature of the vibrator 1 can be lowered. Specifically, in the temperature adjustment chamber 74, temperature adjustment is performed to lower the temperature of the crystal unit 1 to about 25 ° C., which is normal temperature.

検査室75は、気密封止室73で気密封止した水晶振動子1の内部空間12の気密状態を検査する室であり、温度調整室74のX方向の下流側に隣接し、第1検査室751と第2検査室752とから構成される。第1検査室751と第2検査室752とはX方向に沿って順に配され、第1検査室751が温度調整室74に隣接し、温度調整室74と第1検査室751との間は、開閉自在なゲート弁76によって仕切られている。   The inspection chamber 75 is a chamber for inspecting the hermetic state of the internal space 12 of the crystal unit 1 hermetically sealed in the hermetic sealing chamber 73, and is adjacent to the downstream side in the X direction of the temperature adjustment chamber 74. The chamber 751 and the second inspection chamber 752 are configured. The first examination chamber 751 and the second examination chamber 752 are sequentially arranged along the X direction, the first examination chamber 751 is adjacent to the temperature adjustment chamber 74, and the space between the temperature adjustment chamber 74 and the first examination chamber 751 is between The gate valve 76 is openable and closable.

第1検査室751では、真空雰囲気下において水晶振動子1の内部空間12の気密状態を検査する。具体的には、第1検査室751では、室内を真空状態にし、温度調整室74で約25℃の常温まで水晶振動子1の温度を下げた後に、検査室75のX方向の上流側に設けたゲート弁76を開け、温度調整室74からパレット8を搬入し、パレット8を搬入した後に、ゲート弁76を閉じる。そして、ゲート弁76を閉じた後、真空雰囲気下で水晶振動子1の内部空間12の気密状態の検査(水晶振動子1のCI値の測定)を行う。この検査が1回目の測定となり、この1回目の測定結果と、下記の第2検査室752における2回目の測定により水晶振動子1の内部空間12の気密状態の検査を行う。なお、気密状態の検査では、一対のプローブピン(図示省略)を用い、プローブピンを水晶振動子1の圧電振動素子用外部端子34に接続して水晶振動子1のCI値を測定する。   In the first inspection chamber 751, the airtight state of the internal space 12 of the crystal unit 1 is inspected in a vacuum atmosphere. Specifically, in the first examination chamber 751, the inside of the chamber is evacuated and the temperature of the crystal unit 1 is lowered to a room temperature of about 25 ° C. in the temperature adjustment chamber 74. The provided gate valve 76 is opened, the pallet 8 is loaded from the temperature adjustment chamber 74, and after the pallet 8 is loaded, the gate valve 76 is closed. Then, after the gate valve 76 is closed, the airtight state of the internal space 12 of the crystal resonator 1 (measurement of the CI value of the crystal resonator 1) is performed in a vacuum atmosphere. This inspection is the first measurement, and the airtight state of the internal space 12 of the crystal unit 1 is inspected by the first measurement result and the second measurement in the second inspection chamber 752 described below. In the airtight state inspection, a pair of probe pins (not shown) are used, and the probe pins are connected to the piezoelectric vibration element external terminal 34 of the crystal resonator 1 to measure the CI value of the crystal resonator 1.

次に、第2検査室752では、第2検査室752のX方向の上流側に設けたゲート弁76を開け、第1検査室751からパレット8を搬入し、パレット8を搬入した後に、ゲート弁76を閉じる。そして、ゲート弁76を閉じた後、室内を大気開放し、第1検査室751での検査と同じ温度(約25℃)になっている水晶振動子1に対して、水晶振動子1の内部空間12の気密状態の検査(水晶振動子1のCI値の測定)を行う。この検査が2回目の測定となる。2回目の測定では、上記の第1回目の測定と同様に、気密状態の検査では、一対のプローブピンを用い、プローブピンを水晶振動子1の圧電振動素子用外部端子34に接続して水晶振動子1のCI値を測定する。   Next, in the second inspection chamber 752, the gate valve 76 provided on the upstream side in the X direction of the second inspection chamber 752 is opened, the pallet 8 is loaded from the first inspection chamber 751, and the pallet 8 is loaded. The valve 76 is closed. Then, after the gate valve 76 is closed, the interior of the crystal unit 1 is opened with respect to the crystal unit 1 having the same temperature (about 25 ° C.) as the test in the first test chamber 751. An inspection of the airtight state of the space 12 (measurement of the CI value of the crystal unit 1) is performed. This inspection is the second measurement. In the second measurement, as in the first measurement, a pair of probe pins are used in the airtight state inspection, and the probe pins are connected to the piezoelectric vibration element external terminal 34 of the crystal resonator 1 to obtain a crystal. The CI value of the vibrator 1 is measured.

そして、気密検査終了後に、第2検査室752のX方向の下流側に設けたゲート弁76を開けてパレット8を外に搬出する。パレット8を外に搬入した後に、ゲート弁76を閉じて、この製造装置7による複数の水晶振動子1の製造を終える。   Then, after completion of the airtight inspection, the gate valve 76 provided on the downstream side in the X direction of the second inspection chamber 752 is opened to carry the pallet 8 out. After carrying in the pallet 8 outside, the gate valve 76 is closed and the manufacturing of the plurality of crystal units 1 by the manufacturing apparatus 7 is finished.

なお、予備加熱室72、気密封止室73、温度調整室74、および検査室75におけるパレット8上の水晶振動子1の温度の測定は次の通りに行う。まず、リファレンスワーク82と、試験を行なう検査対象の水晶振動子1との発振周波数の測定を行なう。そして、リファレンスワーク82の発振周波数の値から、製造装置7の制御部(図示省略)で基準温度に対する実質温度の誤差を算出し、この算出した誤差に基づいて、各室における水晶振動子1の温度制御を行う。なお、水晶振動子1の温度の測定は、上記のようなリファレンスワーク82を用いるものに限定されるものではなく、温度センサーを用いる測定であってもよい。   In addition, the temperature of the crystal unit 1 on the pallet 8 in the preheating chamber 72, the hermetic sealing chamber 73, the temperature adjustment chamber 74, and the inspection chamber 75 is measured as follows. First, the oscillation frequency of the reference work 82 and the crystal resonator 1 to be inspected to be tested is measured. Then, from the value of the oscillation frequency of the reference work 82, a control unit (not shown) of the manufacturing apparatus 7 calculates an error of the real temperature with respect to the reference temperature, and based on the calculated error, the crystal resonator 1 in each chamber. Perform temperature control. Note that the measurement of the temperature of the crystal unit 1 is not limited to using the reference work 82 as described above, and may be measurement using a temperature sensor.

次に、本実施の形態1にかかる製造装置7を用いて、水晶振動子1(平面寸法:3.2×2.5mm)のCI値を実測した(実験した)。そのデータを図4に示す。この図4では、図2に示す製造装置7の第2検査室752にて水晶振動子1のCI値を実測した結果を示し、横軸を時間軸とし、縦軸をCI値の変化量(ΔCI)とする。本実験では、事前に予めヘリウムリーク検査にてリークがないことを確認した2つの水晶振動子1と、同検査にてリークがあることを確認した6つの水晶振動子1とを準備し、8つの水晶振動子1をパレット8に搭載して、上記の製造方法により8つの水晶振動子1のCI値を同時に測定した。なお、本実験では、リークがない水晶振動子1に番号1〜2を付し、リークがある水晶振動子1に番号3〜8を付す。   Next, using the manufacturing apparatus 7 according to the first embodiment, the CI value of the crystal unit 1 (plane dimension: 3.2 × 2.5 mm) was measured (experimental). The data is shown in FIG. FIG. 4 shows the result of actual measurement of the CI value of the crystal unit 1 in the second inspection chamber 752 of the manufacturing apparatus 7 shown in FIG. 2, with the horizontal axis representing the time axis and the vertical axis representing the amount of change in the CI value ( ΔCI). In this experiment, two crystal resonators 1 that have been confirmed in advance to have no leak in the helium leak test and six crystal resonators 1 that have been confirmed to have leak in the test are prepared. Two crystal resonators 1 were mounted on the pallet 8 and the CI values of the eight crystal resonators 1 were simultaneously measured by the above manufacturing method. In this experiment, numbers 1 and 2 are assigned to the crystal resonator 1 having no leak, and numbers 3 to 8 are assigned to the crystal resonator 1 having the leak.

本実験によれば、図4に示すように、番号3〜8のリークがある水晶振動子1は時間の経過とともにCI値が変化する。これに対して、番号1,2のリークがない水晶振動子1は時間が経過してもCI値が変化しない。つまり、リークがある水晶振動子1のみのCI値が変動し、このことから、上記の製造装置7によれば、気密検査を確実に行うことができる。なお、図4では実験のために第2検査室752におけるCI値の変化量を経時的に観測しているが、実際には第2検査室752に搬入してから一定時間経過後に測定したCI値と第1検査室751にて測定したCI値とを比較し、CI値の変化量にてリークの有無を検査(気密検査)する。   According to this experiment, as shown in FIG. 4, the CI value of the quartz resonator 1 having leaks of numbers 3 to 8 changes with time. On the other hand, in the quartz resonator 1 having no leaks of Nos. 1 and 2, the CI value does not change over time. That is, the CI value of only the quartz resonator 1 having a leak fluctuates. Therefore, according to the manufacturing apparatus 7, the airtight inspection can be reliably performed. In FIG. 4, the amount of change in the CI value in the second examination room 752 is observed over time for the experiment, but in practice, the CI measured after a certain period of time has passed from the second examination room 752. The value and the CI value measured in the first examination room 751 are compared, and the presence / absence of a leak is inspected (air tightness inspection) by the change amount of the CI value.

本発明によれば、水晶振動子1の気密封止を行うために用いる真空状態(減圧状態)の環境を、水晶振動子1の検査にも用いることができるので、気密検査を行うためだけに水晶振動子1の内部空間12を減圧する時間を必要とせず、気密検査にかかる時間を短縮させることができる。さらに、本実施の形態によれば、従来の技術のように2つの検査工程(グロスリーク検査工程とヘリウムリーク検査工程)を行う必要がなく、この点においても気密検査にかかる時間を短縮させることができる。また、本実施の形態によれば、従来の技術の封止装置を用いた気密封止工程と、気密検査装置を用いた気密検査工程を、1つの製造装置によって実現することができ、その結果、水晶振動子1の製造時間の短縮を図るのに好適である。   According to the present invention, the vacuum environment (depressurized state) used for hermetically sealing the crystal unit 1 can also be used for the inspection of the crystal unit 1, and therefore only for performing the hermetic test. The time required for decompressing the internal space 12 of the crystal unit 1 is not required, and the time required for the airtight inspection can be shortened. Furthermore, according to the present embodiment, it is not necessary to perform two inspection processes (gross leak inspection process and helium leak inspection process) as in the prior art, and also in this respect, the time required for the airtight inspection can be shortened. Can do. Further, according to the present embodiment, the hermetic sealing process using the conventional sealing apparatus and the hermetic inspection process using the hermetic inspection apparatus can be realized by one manufacturing apparatus, and as a result, This is suitable for shortening the manufacturing time of the crystal unit 1.

また、本実施の形態によれば、気密封止室73で内部空間12を気密状態にした水晶振動子1に対して、一度も外部に搬送せずに、気密封止室73から第1検査室751に水晶振動子1を搬送し、第1検査室751において水晶振動子1の内部空間12の気密状態の検査を行うので、そのまま真空雰囲気下で1回目の気密検査(水晶振動子1のCI値の測定)を行うことができる。その後、第1検査室751から第2検査室752に水晶振動子1を搬送し、第2検査室752において大気雰囲気化で水晶振動子1の内部空間12の2回目の気密検査(水晶振動子1のCI値の測定)を行い、これらの検査結果の差を比較する(水晶振動子1のCI値の変動量を認識する)ことができる。その結果、水晶振動子1の気密封止後に、内部空間の気密漏れのある不良品の水晶振動子1であっても、これらの検査結果の差を比較する(水晶振動子1のCI値の変動量を認識する)ことで、内部空間12の正確な気密検査を行うことができる。これに対して、従来の技術のように、気密封止と気密検査とを別々にすると、一度、大気中に水晶振動子などの圧電振動デバイスを搬出することになるので、内部空間の気密漏れのある不良品の水晶振動子などの圧電振動デバイスでは、内部空間の状態が変化し、正常な気密検査を行うことができない。   Further, according to the present embodiment, the first inspection is performed from the hermetic sealing chamber 73 to the quartz resonator 1 in which the inner space 12 is hermetically sealed in the hermetic sealing chamber 73 without being transported to the outside. Since the crystal resonator 1 is transported to the chamber 751 and the airtight state of the internal space 12 of the crystal resonator 1 is inspected in the first inspection chamber 751, the first airtight inspection (the crystal resonator 1 CI value can be measured). Thereafter, the crystal resonator 1 is transported from the first inspection chamber 751 to the second inspection chamber 752, and in the second inspection chamber 752, the second airtight inspection (quartz crystal resonator) of the internal space 12 of the crystal resonator 1 is performed in the atmosphere. 1), and the difference between these inspection results can be compared (the amount of variation in the CI value of the crystal unit 1 can be recognized). As a result, even after the hermetic sealing of the crystal unit 1, even a defective crystal unit 1 having an airtight leak in the internal space is compared with the difference between these inspection results (the CI value of the crystal unit 1). By recognizing the fluctuation amount), an accurate airtight inspection of the internal space 12 can be performed. On the other hand, if the hermetic sealing and the hermetic inspection are separately performed as in the prior art, a piezoelectric vibration device such as a crystal resonator is once carried out to the atmosphere. In a defective piezoelectric device such as a crystal resonator, the state of the internal space changes and a normal airtight inspection cannot be performed.

また、本実施の形態によれば、予備加熱室72が気密封止室73の前室として設けられ、水晶振動子1を、予備加熱室72、気密封止室73、および検査室75の順に搬送する。この構成において、ベース3と蓋4とを局所加熱により加熱溶融接合する場合、加熱接合する気密封止室73の前室に予備加熱室72が設けられているので、ベース3と蓋4との熱歪や熱応力の悪影響を抑制することができる。また、本実施の形態に示すように、ベース3と蓋4とを雰囲気加熱により加熱溶融接合する場合、ベース3と蓋4とをより均一に所定の温度まで上昇させる必要がある。本構成によれば、気密封止室73の前室(搬送前室)として予備加熱室72が設けられているので、気密封止室73においてベース3と蓋4とをより均一に所定の温度まで上昇させる時間を少なくすることができる。その結果、予備加熱室72が設けられず、気密封止室73のみで加熱する製造装置に比べて、封止工程のタクト低減により一層好ましいものとなる。   Further, according to the present embodiment, the preheating chamber 72 is provided as a front chamber of the hermetic sealing chamber 73, and the crystal unit 1 is arranged in the order of the preheating chamber 72, the hermetic sealing chamber 73, and the inspection chamber 75. Transport. In this configuration, when the base 3 and the lid 4 are heat-melted and joined by local heating, the preheating chamber 72 is provided in the front chamber of the hermetic sealing chamber 73 to be heat-joined. The adverse effects of thermal strain and thermal stress can be suppressed. Further, as shown in the present embodiment, when the base 3 and the lid 4 are heat-melted and joined by atmospheric heating, it is necessary to raise the base 3 and the lid 4 more uniformly to a predetermined temperature. According to this configuration, since the preheating chamber 72 is provided as the front chamber (pre-transport chamber) of the hermetic sealing chamber 73, the base 3 and the lid 4 are more uniformly set at a predetermined temperature in the hermetic sealing chamber 73. It is possible to reduce the time to raise the temperature. As a result, the preheating chamber 72 is not provided, and the tact reduction of the sealing process is more preferable as compared with a manufacturing apparatus that heats only with the hermetic sealing chamber 73.

また、本実施の形態では、1度目のCI値の測定を真空雰囲気下にて行なっているため、大気圧またはそれ以上の圧力をかけた加圧雰囲気下にて1度目のCI値の測定を行なう場合に比べて、検査時間を短縮できる効果を奏する。図5に、封止前の水晶振動子1(平面寸法:3.2×2.5mm)を用いて、真空槽の圧力を変化させながらCI値を実測した結果を示す。図5では、横軸を圧力とし、縦軸をCI値の変化量(ΔCI)とする。図5に示すように、圧力変化に対するCI値の変化の割合は、高圧側(粘性流領域)で小さく、低圧側(分子流領域)で大きいことが分かる。これは、水晶振動子1のCI値が気体との摩擦によって上昇し、この摩擦力が分子流領域では圧力に比例し、粘性流領域では圧力の1/2乗に比例するためである。本実施の形態では、この原理に基づき加熱封止の真空雰囲気を利用しているため、図5に示す低圧側の分子流領域においてCI値の変化を測定することができる。これに対して、大気圧下にて1度目のCI値の測定を行なう場合、大気圧から減圧又は加圧のどちらかに圧力変化をさせた後に2回目のCI値の測定を行う必要がある。このように、大気圧から減圧又は加圧のどちらかに圧力変化をさせた場合、粘性流領域にてCI値が変化するため、CI値の変化量が小さくなり、そのため、検査時間を長くする必要がある。なお、大気圧以上の加圧雰囲気下にて1度目のCI値の測定を行う場合も同様である。   In the present embodiment, since the first CI value is measured in a vacuum atmosphere, the first CI value is measured in a pressurized atmosphere to which atmospheric pressure or higher pressure is applied. Compared with the case where it performs, there exists an effect which can shorten inspection time. FIG. 5 shows the result of actual measurement of the CI value while changing the pressure in the vacuum chamber using the crystal resonator 1 (planar dimension: 3.2 × 2.5 mm) before sealing. In FIG. 5, the horizontal axis is pressure, and the vertical axis is the amount of change in CI value (ΔCI). As shown in FIG. 5, it can be seen that the change rate of the CI value with respect to the pressure change is small on the high pressure side (viscous flow region) and large on the low pressure side (molecular flow region). This is because the CI value of the crystal unit 1 increases due to friction with gas, and this frictional force is proportional to the pressure in the molecular flow region and proportional to the 1/2 power of the pressure in the viscous flow region. In this embodiment, since a heat-sealed vacuum atmosphere is used based on this principle, the change in CI value can be measured in the molecular flow region on the low-pressure side shown in FIG. On the other hand, when the first CI value is measured under atmospheric pressure, it is necessary to measure the second CI value after changing the pressure from atmospheric pressure to either reduced pressure or increased pressure. . As described above, when the pressure is changed from atmospheric pressure to either reduced pressure or increased pressure, the CI value changes in the viscous flow region, so that the change amount of the CI value becomes small, and therefore the inspection time is lengthened. There is a need. The same applies when the first CI value is measured in a pressurized atmosphere at atmospheric pressure or higher.

上記のように、本実施の形態によれば、真空状態にて1度目のCI値の測定を行なうことで、CI値の変化量が大きくすることができ、その結果、大気圧又は加圧状態から圧力変化をさせた形態に比べて、より少ない時間で気密検査を行うことができる。   As described above, according to the present embodiment, it is possible to increase the change amount of the CI value by measuring the CI value for the first time in a vacuum state. Therefore, the airtightness inspection can be performed in a shorter time compared to the case where the pressure is changed.

なお、本実施の形態では、1つのパレット8に最大400個の水晶振動子1を搭載することができるが、この水晶振動子1の搭載数は限定されるものではなく、任意に設定できる。   In the present embodiment, a maximum of 400 crystal resonators 1 can be mounted on one pallet 8, but the number of mounted crystal resonators 1 is not limited and can be arbitrarily set.

また、本実施の形態でいう水晶振動子1の一方向(X方向)の搬送方向とは、厳密にX方向に沿った搬送方向というものではなく、水晶振動子1が循環することなく水晶振動子1の搬送方向が一方であればよい。   Further, the conveyance direction in one direction (X direction) of the crystal resonator 1 in the present embodiment is not strictly a conveyance direction along the X direction, and the crystal resonator 1 does not circulate without circulating. The conveyance direction of the child 1 may be one.

また、本実施の形態では、圧電振動素子としてATカット水晶振動片2を用いているが、これに限定されるものではなく、圧電振動素子は、厚みすべり振動を行う素子であればよい。ここでいう厚みすべり振動を行う素子として、ATカット水晶振動片の他に、BTカット水晶振動片、SCカット水晶振動片などが挙げられる。一般的に屈曲振動を利用した圧電振動素子では、真空雰囲気と大気雰囲気におけるCI値差が100kΩ以上あるため、基準温度(常温)でのCI値測定にて気密良否判定が行いやすいが、厚みすべり振動を行う素子では、このCI値差は数Ω程度しかなく、基準温度(常温)でのCI値測定だけでは気密良否判定は行えないため、本実施の形態の製造装置7を利用して正確な気密良否判定を行う。   In this embodiment, the AT-cut quartz crystal vibrating piece 2 is used as the piezoelectric vibration element. However, the present invention is not limited to this, and the piezoelectric vibration element may be an element that performs thickness shear vibration. Examples of the element that performs the thickness-shear vibration include a BT cut crystal vibrating piece and an SC cut crystal vibrating piece in addition to the AT cut crystal vibrating piece. In general, a piezoelectric vibration element using flexural vibration has a CI value difference of 100 kΩ or more between a vacuum atmosphere and an air atmosphere. Therefore, it is easy to judge whether the airtightness is good or not by measuring the CI value at a reference temperature (room temperature). In the element that vibrates, this CI value difference is only about several Ω, and it is impossible to judge the quality of the airtightness only by measuring the CI value at the reference temperature (room temperature). Airtight quality judgment is performed.

また、本実施の形態では、圧電振動デバイスとして図1に示す水晶振動子1を用いているが、これに限定されるものでなく、他の形態の水晶振動子や水晶フィルタ、図6に示すような発振器1等であってもよい。なお、図6に示す発振器1は、本実施の形態と同じ圧電振動デバイスであるので、便宜上、水晶振動子と同様の符号1を付す。   In this embodiment, the crystal resonator 1 shown in FIG. 1 is used as the piezoelectric vibration device. However, the present invention is not limited to this, and other forms of crystal resonators and crystal filters are shown in FIG. Such an oscillator 1 may be used. Since the oscillator 1 shown in FIG. 6 is the same piezoelectric vibration device as that of the present embodiment, the same reference numeral 1 as that of the crystal resonator is attached for convenience.

図6に示す発振器1では、水晶振動片2と、水晶振動片2とともに発振回路を構成する1チップ集積回路素子(集積回路素子)であるICチップ6(本発明でいう電子部品素子)と、これら水晶振動片2およびICチップ6を搭載し保持するベース3と、ベース3の一主面31に保持した水晶振動片2およびICチップ6を気密封止するための蓋4と、が設けられている。この発振器1の内部空間12にはベース3に段部35が設けられている。   In the oscillator 1 shown in FIG. 6, a crystal vibrating piece 2, an IC chip 6 (electronic component element referred to in the present invention) that is a one-chip integrated circuit element (integrated circuit element) that constitutes an oscillation circuit together with the crystal vibrating piece 2, A base 3 for mounting and holding the crystal vibrating piece 2 and the IC chip 6 and a lid 4 for hermetically sealing the crystal vibrating piece 2 and the IC chip 6 held on one main surface 31 of the base 3 are provided. ing. A step portion 35 is provided in the base 3 in the internal space 12 of the oscillator 1.

この発振器1では、図6に示すように、内部空間のベース3の段部35上に、導電性接合材52(導電性樹脂接着剤、金属バンプ、めっきバンプ等)を介して水晶振動片2が接合されるとともに電気的に接続されている(電気機械的に接合されている)。また、内部空間12のベース3の底部32上に、ICチップ6が導電性接合材52を介して接合されるとともに電気的に接続されている(電気機械的に接合されている)。このように、内部空間12のベース3上では、図6に示すように、段部35上に接合された水晶振動片2と、底部32上に接合されたICチップ6とが積層した状態で配される。そして、ベース3の外側面36に、水晶振動片2の特性を測定・検査する圧電振動素子用外部端子34が形成され、ベース3の他主面38に外部の回路基板(図示省略)などの外部機器に電気的に接続する外部端子37が形成されている。この発振器1を製造装置7で製造する場合、検査室75では、一対のプローブピンが圧電振動素子用外部端子34に接して発振器1の気密状態の検査を行う。   In this oscillator 1, as shown in FIG. 6, the crystal vibrating piece 2 is disposed on the step portion 35 of the base 3 in the internal space via a conductive bonding material 52 (conductive resin adhesive, metal bump, plating bump, etc.). Are joined and electrically connected (electromechanically joined). Further, the IC chip 6 is bonded and electrically connected (electromechanically bonded) to the bottom 32 of the base 3 of the internal space 12 via the conductive bonding material 52. Thus, on the base 3 of the internal space 12, as shown in FIG. 6, the crystal vibrating piece 2 bonded on the step portion 35 and the IC chip 6 bonded on the bottom portion 32 are stacked. Arranged. An external terminal 34 for a piezoelectric vibration element that measures and inspects the characteristics of the crystal vibrating piece 2 is formed on the outer surface 36 of the base 3, and an external circuit board (not shown) is provided on the other main surface 38 of the base 3. An external terminal 37 that is electrically connected to an external device is formed. When the oscillator 1 is manufactured by the manufacturing apparatus 7, in the inspection chamber 75, the pair of probe pins is in contact with the piezoelectric vibration element external terminal 34 to inspect the hermetic state of the oscillator 1.

また、本実施の形態の検査室75では、真空雰囲気下と大気雰囲気下とにおいて水晶振動子1の気密状態を検査しているが、これに限定されるものではなく、さらに、DLDなどの電気特性も併せて検査してもよい。この電気的特性の検査は、気密検査と同様に一対のプローブピンを用いて行う。そのため、電気的特性の検査を行うために、新たに室や検査部材を用意しなくてもよく、水晶振動子1の製造装置7の簡易化を図ることができる。その結果、本製造装置7の他に電気的特性の検査のための製造装置を新たに設ける必要がなく、製造コストおよび製造時間をともに抑えることができる。なお、検査室75における水晶振動子1のDLDなどの電気特性の検査は、真空雰囲気下であっても大気雰囲気下であってもどちらの雰囲気下であっても行うことができる。   Further, in the inspection chamber 75 of the present embodiment, the hermetic state of the crystal unit 1 is inspected in a vacuum atmosphere and an air atmosphere. However, the inspection chamber 75 is not limited to this. The characteristics may also be inspected. This electrical property inspection is performed using a pair of probe pins as in the airtight inspection. Therefore, it is not necessary to prepare a new chamber or inspection member in order to inspect the electrical characteristics, and the manufacturing apparatus 7 for the crystal resonator 1 can be simplified. As a result, it is not necessary to newly provide a manufacturing apparatus for inspecting electrical characteristics in addition to the manufacturing apparatus 7, and both the manufacturing cost and the manufacturing time can be suppressed. It should be noted that the inspection of the electrical characteristics such as DLD of the crystal unit 1 in the inspection chamber 75 can be performed in either a vacuum atmosphere or an air atmosphere.

また、本実施の形態では、温度調整室74と検査室75とを分けているが、これに限定されるものではなく、検査室75(具体的には第1検査室751)に温度調整部を設けてもよい。すなわち、検査室75が温度調整室74を兼ねてもよい。   In the present embodiment, the temperature adjustment chamber 74 and the inspection chamber 75 are separated. However, the present invention is not limited to this, and the temperature adjustment section is provided in the inspection chamber 75 (specifically, the first inspection chamber 751). May be provided. That is, the examination room 75 may also serve as the temperature adjustment room 74.

また、本実施の形態では、雰囲気加熱によりベース3と蓋4との加熱溶融接合を行っているが、これに限定されるものではなく、気密封止室73において、シーム溶接により、ベース3と蓋4との接合箇所を局所的に直接熱してベース3に蓋4を加熱溶融接合してもよい。このシーム溶接によるベース3と蓋4との加熱接合を採用することで、本実施の形態と異なり、気密封止室73の室内の温度を高める必要がなく、図7に示すように、予備加熱室72と温度調整室74とを必要としない製造装置1で、水晶振動子1の気密封止と検査とを行うことができる。なお、図7に示す製造装置1による製造方法は、本実施の形態1の製造装置1による製造方法に準ずる。   In the present embodiment, the base 3 and the lid 4 are heated and melt-bonded by atmospheric heating. However, the present invention is not limited to this. In the hermetic sealing chamber 73, the base 3 and the lid 4 are bonded by seam welding. Alternatively, the lid 4 may be heated and bonded to the base 3 by locally directly heating the joint with the lid 4. By adopting the heat bonding of the base 3 and the lid 4 by seam welding, unlike the present embodiment, there is no need to increase the temperature in the hermetic sealing chamber 73, and as shown in FIG. The manufacturing apparatus 1 that does not require the chamber 72 and the temperature adjustment chamber 74 can perform hermetic sealing and inspection of the crystal unit 1. Note that the manufacturing method by the manufacturing apparatus 1 shown in FIG. 7 is in accordance with the manufacturing method by the manufacturing apparatus 1 of the first embodiment.

<実施の形態2>
次に、本実施の形態2にかかる水晶振動子1の製造装置7を、図面を用いて説明する。なお、本実施の形態2にかかる水晶振動子1の製造装置7は、上記の実施の形態1に対して、温度調整室74と検査室75との関係と、検査室75の構成が異なる。そのため、実施の形態1にかかる水晶振動子1の製造装置7と同一構成による作用効果及び変形例は、実施の形態1にかかる水晶振動子1の製造装置7と同様の作用効果及び変形例を有する。そこで、本実施の形態2では、上記の実施の形態1と異なる点について説明し、同一の構成についての説明を省略する。
<Embodiment 2>
Next, the manufacturing apparatus 7 for the crystal resonator 1 according to the second embodiment will be described with reference to the drawings. Note that the crystal resonator 1 manufacturing apparatus 7 according to the second embodiment differs from the first embodiment in the relationship between the temperature adjustment chamber 74 and the inspection chamber 75 and the configuration of the inspection chamber 75. Therefore, the operation effect and modification by the same configuration as the manufacturing apparatus 7 of the crystal unit 1 according to the first embodiment are the same as the operation effect and modification example of the manufacturing apparatus 7 of the crystal unit 1 according to the first embodiment. Have. Therefore, in the second embodiment, a point different from the first embodiment will be described, and description of the same configuration will be omitted.

本実施の形態にかかる検査室75は、図8に示すように、第3検査室753と第4検査室754と第5検査室755とから構成され、第3検査室753において真空雰囲気下において高温状態の水晶振動子1の内部空間12の温度特性の検査を行い、第4検査室754において真空雰囲気下において常温状態の水晶振動子1の内部空間12の気密状態と温度特性の検査を行い、第5検査室755において大気雰囲気下において常温状態の水晶振動子1の内部空間12の気密状態の検査を行う。なお、本実施の形態では、第3検査室753と第4検査室754との間に温度調整室74が介在し、この温度調整室74により、水晶振動子1の温度を高温(約100℃)から常温(一般的には約25℃)に温度調整する。   As shown in FIG. 8, the inspection chamber 75 according to the present embodiment includes a third inspection chamber 753, a fourth inspection chamber 754, and a fifth inspection chamber 755. In the third inspection chamber 753, under a vacuum atmosphere. The temperature characteristic of the internal space 12 of the crystal unit 1 in the high temperature state is inspected, and the airtight state and the temperature characteristic of the internal space 12 of the crystal unit 1 in the normal temperature state are inspected in a fourth atmosphere in the fourth inspection chamber 754. In the fifth inspection chamber 755, the airtight state of the internal space 12 of the crystal unit 1 in the normal temperature state is inspected in an air atmosphere. In the present embodiment, a temperature adjustment chamber 74 is interposed between the third inspection chamber 753 and the fourth inspection chamber 754, and the temperature of the crystal unit 1 is increased to a high temperature (about 100 ° C.) by the temperature adjustment chamber 74. ) To room temperature (generally about 25 ° C.).

第3検査室753は、気密封止室73(具体的には、第3予備加熱室723)のX方向の下流側に隣接し、第3検査室753のX方向の上流側と下流側にそれぞれゲート弁76が設けられている。第3検査室753では、ベース3と蓋4との接合によって高温になっている水晶振動子1(約100℃)の温度特性を検査する。この気密状態の検査と温度特性の検査では、一対のプローブピン(図示省略)を用い、プローブピンを水晶振動子1の圧電振動素子用外部端子34に接続して水晶振動子1のCI値とその周波数を測定する。なお、ここでの測定は、温度特性の検査の1回目の測定となり、そして、下記の第4検査室754における検査が2回目の測定となり、これら計2回の測定により水晶振動子1の温度特性の検査を行う。   The third inspection chamber 753 is adjacent to the downstream side in the X direction of the hermetic sealing chamber 73 (specifically, the third preheating chamber 723), and is located upstream and downstream in the X direction of the third inspection chamber 753. A gate valve 76 is provided for each. In the third inspection chamber 753, the temperature characteristics of the crystal resonator 1 (about 100 ° C.) that is at a high temperature due to the joining of the base 3 and the lid 4 are inspected. In this airtight state inspection and temperature characteristic inspection, a pair of probe pins (not shown) are used, and the probe pins are connected to the piezoelectric vibration element external terminal 34 of the crystal resonator 1 to obtain the CI value of the crystal resonator 1. Measure its frequency. The measurement here is the first measurement of the temperature characteristic inspection, and the following inspection in the fourth inspection chamber 754 is the second measurement, and the temperature of the crystal unit 1 is measured by these two measurements. Inspect the characteristics.

第3検査室753において高温時の水晶振動子1の温度特性の検査を終了した後に、第3検査室753のX方向の下流側に設けたゲート弁76を開けてパレット8を温度調整室74に搬送する。   After the inspection of the temperature characteristics of the crystal unit 1 at a high temperature is completed in the third inspection chamber 753, the gate valve 76 provided on the downstream side in the X direction of the third inspection chamber 753 is opened, and the pallet 8 is moved to the temperature adjustment chamber 74. Transport to.

温度調整室74では、水晶振動子1の温度を、高温の約100℃から常温の約25℃に温度調整する。そして、水晶振動子1の温度調整を終えた後に、温度調整室74のX方向の下流側に設けたゲート弁76を開けてパレット8を第4検査室754に搬送する。   In the temperature adjustment chamber 74, the temperature of the crystal unit 1 is adjusted from a high temperature of about 100 ° C. to a normal temperature of about 25 ° C. Then, after finishing the temperature adjustment of the crystal unit 1, the gate valve 76 provided on the downstream side in the X direction of the temperature adjustment chamber 74 is opened, and the pallet 8 is transported to the fourth inspection chamber 754.

第4検査室754は、温度調整室74のX方向の下流側に隣接し、第4検査室754のX方向の上流側と下流側にそれぞれゲート弁76が設けられている。第4検査室754では、真空雰囲気下における常温の水晶振動子1の内部空間の気密状態の検査と、常温の水晶振動子1の温度特性の検査を行う。これら気密状態の検査と温度特性の検査では、上記の第3検査室753と同様に、一対のプローブピン(図示省略)を用い、プローブピンを水晶振動子1の圧電振動素子用外部端子34に接続して水晶振動子1のCI値とその周波数を測定する。   The fourth inspection chamber 754 is adjacent to the downstream side in the X direction of the temperature adjustment chamber 74, and gate valves 76 are provided on the upstream side and the downstream side in the X direction of the fourth inspection chamber 754, respectively. In the fourth inspection chamber 754, the airtight state of the internal space of the quartz resonator 1 at room temperature in a vacuum atmosphere and the temperature characteristics of the quartz resonator 1 at room temperature are inspected. In these airtight state inspection and temperature characteristic inspection, a pair of probe pins (not shown) are used as in the third inspection chamber 753, and the probe pins are connected to the piezoelectric vibration element external terminals 34 of the crystal unit 1. Connect to measure the CI value and frequency of the crystal unit 1.

第4検査室754において、真空雰囲気下における水晶振動子1の内部空間12の気密状態の検査と、常温時の水晶振動子1の温度特性の検査とを終了した後に、第4検査室754のX方向の下流側に設けたゲート弁76を開けてパレット8を第5検査室755に搬送する。   In the fourth inspection chamber 754, after the inspection of the airtight state of the internal space 12 of the crystal resonator 1 in a vacuum atmosphere and the inspection of the temperature characteristics of the crystal resonator 1 at room temperature, the fourth inspection chamber 754 The gate valve 76 provided on the downstream side in the X direction is opened, and the pallet 8 is conveyed to the fifth inspection chamber 755.

第5検査室755では、大気雰囲気下で、水晶振動子1(常温)の内部空間12の気密状態を検査する。この第5検査室755では、第4検査室754からパレット8を搬入した後に、ゲート弁76を閉じる。そして、ゲート弁76を閉じた後、大気雰囲気下で水晶振動子1の内部空間12の気密状態の検査を行う。この気密状態の検査では、上記の第3検査室753と同様に、一対のプローブピン(図示省略)を用い、プローブピンを水晶振動子1の圧電振動素子用外部端子34に接続して水晶振動子1のCI値を測定する。   In the fifth inspection chamber 755, the airtight state of the internal space 12 of the crystal unit 1 (normal temperature) is inspected in an air atmosphere. In the fifth inspection chamber 755, after the pallet 8 is loaded from the fourth inspection chamber 754, the gate valve 76 is closed. Then, after closing the gate valve 76, the airtight state of the internal space 12 of the crystal unit 1 is inspected in an air atmosphere. In this airtight state inspection, a pair of probe pins (not shown) are used as in the third inspection chamber 753, and the probe pins are connected to the piezoelectric vibration element external terminal 34 of the crystal resonator 1 to vibrate crystal. The CI value of child 1 is measured.

そして、第5検査室755において大気雰囲気下での水晶振動子1の気密状態の検査を終了した後に、第5検査室755のX方向の下流側に設けたゲート弁76を開けてパレット8を外に搬出し、パレット8を外に搬入した後に、ゲート弁76を閉じて、この製造装置7による複数の水晶振動子1の製造を終える。   After the inspection of the airtight state of the crystal unit 1 in the atmosphere in the fifth inspection chamber 755 is finished, the gate valve 76 provided on the downstream side in the X direction of the fifth inspection chamber 755 is opened to open the pallet 8. After carrying out outside and carrying in the pallet 8 outside, the gate valve 76 is closed and manufacture of the several crystal oscillator 1 by this manufacturing apparatus 7 is completed.

本実施の形態にかかる水晶振動子1の製造方法によれば、上記の実施の形態1にかかる製造装置7による作用効果に加えて、水晶振動子1の内部空間12の気密状態の検査と、水晶振動子1の温度特性の検査を同時に行うことができる。そのため、水晶振動子1の温度特性の検査を行うために、新たに室や検査部材を用意しなくてもよく、水晶振動子1の製造装置7の簡易化を図ることができる。その結果、本製造装置7の他に温度特性の検査のための製造装置を新たに設ける必要がなく、製造コストおよび製造時間をともに抑えることができる。   According to the manufacturing method of the crystal unit 1 according to the present embodiment, in addition to the function and effect of the manufacturing apparatus 7 according to the first embodiment, the inspection of the airtight state of the internal space 12 of the crystal unit 1, The temperature characteristics of the crystal unit 1 can be inspected at the same time. Therefore, in order to inspect the temperature characteristics of the crystal unit 1, it is not necessary to prepare a new chamber or inspection member, and the manufacturing apparatus 7 for the crystal unit 1 can be simplified. As a result, it is not necessary to newly provide a manufacturing apparatus for inspecting temperature characteristics in addition to the manufacturing apparatus 7, and both the manufacturing cost and the manufacturing time can be suppressed.

なお、検査室75における水晶振動子1の温度特性の検査は、真空雰囲気下であっても大気雰囲気下であってもどちらの雰囲気下であっても行うことができるが、水晶振動子1の内部空間12の気密状態の検査と、水晶振動子1の温度特性の検査とを同時に行う場合、本実施の形態に示す製造工程順になる。   Note that the inspection of the temperature characteristics of the crystal resonator 1 in the inspection chamber 75 can be performed in either a vacuum atmosphere, an air atmosphere, or an atmosphere. When the inspection of the airtight state of the internal space 12 and the inspection of the temperature characteristics of the crystal resonator 1 are performed at the same time, the manufacturing steps are performed in the order shown in the present embodiment.

また、本実施の形態において、水晶振動子1の気密状態の検査をせずに温度特性の検査のみを行うことも可能である。   In the present embodiment, it is also possible to perform only the temperature characteristic inspection without inspecting the airtight state of the crystal unit 1.

<実施の形態3>
次に、本実施の形態3にかかる水晶振動子1の製造装置7を、図面を用いて説明する。なお、本実施の形態3にかかる水晶振動子1の製造装置7は、上記の実施の形態1に対して、検査室75が異なる。そのため、実施の形態1にかかる水晶振動子1の製造装置7と同一構成による作用効果及び変形例は、実施の形態1にかかる水晶振動子1の製造装置7と同様の作用効果及び変形例を有する。そこで、本実施の形態3では、上記の実施の形態1と異なる検査室75の構成について説明し、同一の構成についての説明を省略する。
<Embodiment 3>
Next, the manufacturing apparatus 7 for the crystal resonator 1 according to the third embodiment will be described with reference to the drawings. The crystal resonator 1 manufacturing apparatus 7 according to the third embodiment is different from the first embodiment in the examination room 75. Therefore, the operation effect and modification by the same configuration as the manufacturing apparatus 7 of the crystal unit 1 according to the first embodiment are the same as the operation effect and modification example of the manufacturing apparatus 7 of the crystal unit 1 according to the first embodiment. Have. Therefore, in the third embodiment, the configuration of the examination room 75 different from that of the first embodiment will be described, and the description of the same configuration will be omitted.

本実施の形態にかかる検査室75は、図9に示すように、第6検査室756と第7検査室757とから構成され、第6検査室756および第7検査室757において水晶振動子1の内部空間12の気密状態の検査を行う。なお、第6検査室756での水晶振動子1の内部空間12の気密状態の検査は、真空雰囲気下の室内で行われ、第7検査室757での水晶振動子1の内部空間12の気密状態の検査は、大気圧を超える圧力に加圧された室内で行われる。室内の加圧は、例えば検査室に窒素ガスを導入する等、適切なガスを充填すればよく、エアー(大気)導入であってもよい。   As shown in FIG. 9, the examination room 75 according to the present embodiment includes a sixth examination room 756 and a seventh examination room 757. In the sixth examination room 756 and the seventh examination room 757, the crystal resonator 1 is provided. The airtight state of the internal space 12 is inspected. The inspection of the airtight state of the internal space 12 of the crystal resonator 1 in the sixth inspection chamber 756 is performed in a room under a vacuum atmosphere, and the airtightness of the internal space 12 of the crystal resonator 1 in the seventh inspection chamber 757 is performed. The state inspection is performed in a room pressurized to a pressure exceeding atmospheric pressure. The indoor pressure may be filled with an appropriate gas, for example, nitrogen gas is introduced into the examination room, or may be air (atmosphere) introduction.

第6検査室756は、温度調整室74のX方向の下流側に隣接し、第6検査室756のX方向の上流側と下流側にそれぞれゲート弁76が設けられている。第6検査室756では、真空雰囲気下で水晶振動子1の気密状態を検査する。この第6検査室756では、温度調整室74で水晶振動子1の温度を常温に調整した後に第6検査室756のX方向の上流側に設けたゲート弁76を開け、温度調整室74からパレット8を搬入し、パレット8を搬入した後に、ゲート弁76を閉じる。そして、ゲート弁76を閉じた後、真空雰囲気下で水晶振動子1の内部空間12の気密状態の検査を行う。この気密状態の検査では、一対のプローブピン(図示省略)を用い、プローブピンを水晶振動子1の圧電振動素子用外部端子34に接続して水晶振動子1のCI値を測定する。この検査が1回目の測定となり、この1回目の測定結果と、下記の第7検査室757における2回目の測定により水晶振動子1の内部空間12の気密状態の検査を行う。   The sixth inspection chamber 756 is adjacent to the downstream side of the temperature adjustment chamber 74 in the X direction, and gate valves 76 are provided on the upstream side and the downstream side of the sixth inspection chamber 756 in the X direction, respectively. In the sixth inspection chamber 756, the airtight state of the crystal unit 1 is inspected in a vacuum atmosphere. In the sixth inspection chamber 756, after adjusting the temperature of the crystal unit 1 to room temperature in the temperature adjustment chamber 74, the gate valve 76 provided on the upstream side in the X direction of the sixth inspection chamber 756 is opened. After the pallet 8 is loaded and the pallet 8 is loaded, the gate valve 76 is closed. After the gate valve 76 is closed, the airtight state of the internal space 12 of the crystal unit 1 is inspected in a vacuum atmosphere. In this airtight state inspection, a pair of probe pins (not shown) are used, and the probe pins are connected to the piezoelectric vibration element external terminal 34 of the crystal resonator 1 to measure the CI value of the crystal resonator 1. This inspection becomes the first measurement, and the airtight state of the internal space 12 of the crystal unit 1 is inspected by the first measurement result and the second measurement in the seventh inspection chamber 757 described below.

次に、第7検査室757では、第7検査室757のX方向の上流側に設けたゲート弁76を開け、第6検査室756からパレット8を搬入し、パレット8を搬入した後に、ゲート弁76を閉じる。そして、ゲート弁76を閉じた後、室内を加圧する。本実施の形態では、約0.3〜約0.4MPaに第4検査室754の室内を加圧する。そして、加圧下における水晶振動子1の気密状態の検査を行う。この検査が2回目の測定となる。2回目の測定では、上記の第1回目の測定と同様に、気密状態の検査では、一対のプローブピンを用い、プローブピンを水晶振動子1の圧電振動素子用外部端子34に接続して水晶振動子1のCI値を測定する。   Next, in the seventh inspection chamber 757, the gate valve 76 provided on the upstream side in the X direction of the seventh inspection chamber 757 is opened, the pallet 8 is loaded from the sixth inspection chamber 756, the pallet 8 is loaded, The valve 76 is closed. Then, after closing the gate valve 76, the interior is pressurized. In the present embodiment, the interior of the fourth examination chamber 754 is pressurized to about 0.3 to about 0.4 MPa. Then, the airtight state of the crystal unit 1 under pressure is inspected. This inspection is the second measurement. In the second measurement, as in the first measurement, a pair of probe pins are used in the airtight state inspection, and the probe pins are connected to the piezoelectric vibration element external terminal 34 of the crystal resonator 1 to obtain a crystal. The CI value of the vibrator 1 is measured.

そして、水晶振動子1の気密状態の検査を終了した後に、第7検査室757のX方向の下流側に設けたゲート弁76を開けてパレット8を外に搬出し、パレット8を外に搬入した後に、ゲート弁76を閉じて、この製造装置7による複数の水晶振動子1の製造を終える。   Then, after the inspection of the airtight state of the crystal unit 1 is completed, the gate valve 76 provided on the downstream side in the X direction of the seventh inspection chamber 757 is opened, the pallet 8 is carried out, and the pallet 8 is carried out. After that, the gate valve 76 is closed, and the manufacturing of the plurality of crystal resonators 1 by the manufacturing apparatus 7 is finished.

本実施の形態にかかる水晶振動子1の製造方法によれば、上記の実施の形態1にかかる製造装置7による作用効果に加えて、加圧した状態での水晶振動子1の内部空間12の気密状態の検査を行うので、気密封止漏れがあった場合、CI値の変動量が、非加圧下に比べて大きくなる。そのため、さらに精度の良い気密検査を行うことができる。   According to the method for manufacturing the crystal resonator 1 according to the present embodiment, in addition to the operational effects of the manufacturing apparatus 7 according to the first embodiment, the internal space 12 of the crystal resonator 1 in a pressurized state can be obtained. Since the airtight state is inspected, if there is a hermetic sealing leak, the amount of fluctuation of the CI value becomes larger than that under non-pressurization. Therefore, a more accurate airtight inspection can be performed.

<実施の形態4>
次に、本実施の形態4にかかる水晶振動子1の製造装置7を、図面を用いて説明する。本実施の形態4にかかる水晶振動子1の製造装置7は、上記の実施の形態1〜3にかかる水晶振動子1の製造装置7による各検査を併せ持つ製造装置である。そのため、実施の形態1〜3にかかる水晶振動子1の製造装置7と同一構成による作用効果及び変形例は、実施の形態1〜3にかかる水晶振動子1の製造装置7と同様の作用効果及び変形例を有する。
<Embodiment 4>
Next, the manufacturing apparatus 7 for the crystal unit 1 according to the fourth embodiment will be described with reference to the drawings. The crystal resonator 1 manufacturing apparatus 7 according to the fourth embodiment is a manufacturing apparatus having both the inspections by the crystal resonator 1 manufacturing apparatus 7 according to the first to third embodiments. Therefore, the operation effect and the modification by the same configuration as the crystal resonator 1 manufacturing apparatus 7 according to the first to third embodiments are the same as those of the crystal resonator 1 manufacturing apparatus 7 according to the first to third embodiments. And it has a modification.

本実施の形態にかかる検査室75は、図10に示すように、第8検査室758と第9検査室759と第10検査室7510とから構成され、第8検査室758において真空雰囲気下において高温状態の水晶振動子1の内部空間12の温度特性の検査を行い、第9検査室759において真空雰囲気下において常温状態の水晶振動子1の内部空間12の気密状態と温度特性の検査を行い、第10検査室7510において加圧下において常温状態の水晶振動子1の内部空間12の気密状態の検査を行う。なお、本実施の形態では、第8検査室758と第9検査室759との間に温度調整室74が介在し、この温度調整室74により、水晶振動子1の温度を高温(約100℃)から常温(約25℃)に温度調整する。   As shown in FIG. 10, the inspection chamber 75 according to the present embodiment includes an eighth inspection chamber 758, a ninth inspection chamber 759, and a tenth inspection chamber 7510. In the eighth inspection chamber 758, a vacuum atmosphere is provided. The temperature characteristic of the internal space 12 of the crystal unit 1 in the high temperature state is inspected, and the airtight state and the temperature characteristic of the internal space 12 of the crystal unit 1 in the normal temperature state are inspected in a ninth vacuum chamber 759 in a vacuum atmosphere. In the tenth inspection chamber 7510, the airtight state of the internal space 12 of the quartz crystal resonator 1 at room temperature is tested under pressure. In the present embodiment, a temperature adjustment chamber 74 is interposed between the eighth inspection chamber 758 and the ninth inspection chamber 759, and the temperature adjustment chamber 74 increases the temperature of the crystal unit 1 to a high temperature (about 100 ° C.). ) To room temperature (about 25 ° C.).

第8検査室758は、気密封止室73(具体的には、第3予備加熱室723)のX方向の下流側に隣接し、第8検査室758のX方向の上流側と下流側にそれぞれゲート弁76が設けられている。第8検査室758では、ベース3と蓋4との接合によって高温になっている水晶振動子1(約100℃)の温度特性を検査する。この気密状態の検査と温度特性の検査では、一対のプローブピン(図示省略)を用い、プローブピンを水晶振動子1の圧電振動素子用外部端子34に接続して水晶振動子1のCI値とその周波数を測定する。なお、ここでの測定は、温度特性の検査の1回目の測定となり、そして、下記の第9検査室759における検査が2回目の測定となり、これら計2回の測定により水晶振動子1の温度特性の検査を行う。   The eighth inspection chamber 758 is adjacent to the downstream side in the X direction of the hermetic sealing chamber 73 (specifically, the third preheating chamber 723), and upstream and downstream in the X direction of the eighth inspection chamber 758. A gate valve 76 is provided for each. In the eighth inspection chamber 758, the temperature characteristics of the crystal resonator 1 (about 100 ° C.) that is at a high temperature due to the joining of the base 3 and the lid 4 are inspected. In this airtight state inspection and temperature characteristic inspection, a pair of probe pins (not shown) are used, and the probe pins are connected to the piezoelectric vibration element external terminal 34 of the crystal resonator 1 to obtain the CI value of the crystal resonator 1. Measure its frequency. The measurement here is the first measurement of the temperature characteristic inspection, and the inspection in the ninth inspection chamber 759 described below is the second measurement, and the temperature of the crystal unit 1 is measured by these two measurements. Inspect the characteristics.

第8検査室758において高温時の水晶振動子1の温度特性の検査を終了した後に、第8検査室758のX方向の下流側に設けたゲート弁76を開けてパレット8を温度調整室74に搬送する。   After the inspection of the temperature characteristics of the crystal unit 1 at a high temperature is completed in the eighth inspection chamber 758, the gate valve 76 provided on the downstream side in the X direction of the eighth inspection chamber 758 is opened, and the pallet 8 is moved to the temperature adjustment chamber 74. Transport to.

温度調整室74では、水晶振動子1の温度を、高温の約100℃から常温の約25℃に温度調整する。そして、水晶振動子1の温度調整を終えた後に、温度調整室74のX方向の下流側に設けたゲート弁76を開けてパレット8を第9検査室759に搬送する。   In the temperature adjustment chamber 74, the temperature of the crystal unit 1 is adjusted from a high temperature of about 100 ° C. to a normal temperature of about 25 ° C. After the temperature adjustment of the crystal unit 1 is completed, the gate valve 76 provided on the downstream side in the X direction of the temperature adjustment chamber 74 is opened, and the pallet 8 is conveyed to the ninth inspection chamber 759.

第9検査室759は、温度調整室74のX方向の下流側に隣接し、第9検査室759のX方向の上流側と下流側にそれぞれゲート弁76が設けられている。第9検査室759では、真空雰囲気下における常温の水晶振動子1の内部空間の気密状態の検査と、常温の水晶振動子1の温度特性の検査を行う。これら気密状態の検査と温度特性の検査では、上記の第8検査室758と同様に、一対のプローブピン(図示省略)を用い、プローブピンを水晶振動子1の圧電振動素子用外部端子34に接続して水晶振動子1のCI値とその周波数を測定する。   The ninth inspection chamber 759 is adjacent to the downstream side of the temperature adjustment chamber 74 in the X direction, and gate valves 76 are provided on the upstream side and the downstream side of the ninth inspection chamber 759 in the X direction, respectively. In the ninth inspection chamber 759, the airtight state of the internal space of the quartz resonator 1 at room temperature in a vacuum atmosphere and the temperature characteristics of the quartz resonator 1 at room temperature are inspected. In the airtight state inspection and the temperature characteristic inspection, a pair of probe pins (not shown) is used as in the eighth inspection chamber 758, and the probe pins are connected to the piezoelectric vibration element external terminals 34 of the crystal unit 1. Connect to measure the CI value and frequency of the crystal unit 1.

第9検査室759において、真空雰囲気下における水晶振動子1の内部空間12の気密状態の検査と、常温時の水晶振動子1の温度特性の検査とを終了した後に、第9検査室759のX方向の下流側に設けたゲート弁76を開けてパレット8を第10検査室7510に搬送する。   In the ninth inspection chamber 759, after the inspection of the airtight state of the internal space 12 of the crystal resonator 1 in a vacuum atmosphere and the inspection of the temperature characteristics of the crystal resonator 1 at room temperature, the ninth inspection chamber 759 The gate valve 76 provided on the downstream side in the X direction is opened, and the pallet 8 is transported to the tenth inspection chamber 7510.

第10検査室7510では、加圧雰囲気下で、水晶振動子1(常温)の内部空間12の気密状態を検査する。この第10検査室7510では、第9検査室759からパレット8を搬入した後に、ゲート弁76を閉じる。そして、ゲート弁76を閉じた後、加圧下において水晶振動子1の内部空間12の気密状態の検査を行う。この気密状態の検査では、上記の第8検査室758と同様に、一対のプローブピン(図示省略)を用い、プローブピンを水晶振動子1の圧電振動素子用外部端子34に接続して水晶振動子1のCI値を測定する。   In the tenth inspection chamber 7510, an airtight state of the internal space 12 of the crystal unit 1 (normal temperature) is inspected under a pressurized atmosphere. In the tenth inspection chamber 7510, after loading the pallet 8 from the ninth inspection chamber 759, the gate valve 76 is closed. Then, after closing the gate valve 76, the airtight state of the internal space 12 of the crystal unit 1 is inspected under pressure. In this airtight state inspection, a pair of probe pins (not shown) are used and the probe pins are connected to the piezoelectric vibration element external terminal 34 of the crystal resonator 1 in the same manner as the eighth inspection chamber 758 described above. The CI value of child 1 is measured.

そして、第10検査室7510において加圧雰囲気下での水晶振動子1の気密状態の検査を終了した後に、第10査室7510のX方向の下流側に設けたゲート弁76を開けてパレット8を外に搬出し、パレット8を外に搬入した後に、ゲート弁76を閉じて、この製造装置7による複数の水晶振動子1の製造を終える。   Then, after the inspection of the airtight state of the quartz crystal resonator 1 under a pressurized atmosphere is completed in the tenth inspection chamber 7510, the gate valve 76 provided on the downstream side in the X direction of the tenth inspection chamber 7510 is opened to open the pallet 8 After carrying out outside and carrying in the pallet 8 outside, the gate valve 76 is closed and manufacture of the several crystal oscillator 1 by this manufacturing apparatus 7 is completed.

本実施の形態にかかる水晶振動子1の製造方法によれば、上記の実施の形態1〜3にかかる製造装置7による作用効果およびその変形例による作用効果を併せて有する。   According to the manufacturing method of the crystal unit 1 according to the present embodiment, the operation effect by the manufacturing apparatus 7 according to the first to third embodiments and the operation effect by the modified example are included.

なお、本発明は、その精神や主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。例えば上記実施形態では、各検査室等を個別に構成しているが1つの検査室にまとめて構成してもよい。また上記温度調整室は温度を下げるものに限らず温度を上げるものであってもよい。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   It should be noted that the present invention can be implemented in various other forms without departing from the spirit, gist, or main features. For example, in the above-described embodiment, each examination room or the like is individually configured, but may be configured as a single examination room. Further, the temperature adjusting chamber is not limited to the one that lowers the temperature, but may be one that raises the temperature. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、圧電振動デバイスの製造工程で好ましく適用できる。   The present invention can be preferably applied in the manufacturing process of a piezoelectric vibration device.

1 水晶振動子,発振器
11 本体筐体
12 内部空間
2 ATカット水晶振動片
3 ベース
31 一主面
32 底部
33 壁部
34 圧電振動素子用外部端子
35 段部
36 外側面
37 外部端子
38 他主面
4 蓋
51 接合部材
52 導電性接合材
6 ICチップ
7 製造装置
71 導入室
72 予備加熱室
721 第1予備加熱室
722 第2予備加熱室
723 第3予備加熱室
73 気密封止室
74 温度調整室
75 検査室
751 第1検査室
752 第2検査室
753 第3検査室
754 第4検査室
755 第5検査室
756 第6検査室
757 第7検査室
758 第8検査室
759 第9検査室
7510 第10検査室
76 ゲート弁
8 パレット
81 搭載部
82 リファレンスワーク
DESCRIPTION OF SYMBOLS 1 Crystal oscillator, oscillator 11 Main body housing | casing 12 Internal space 2 AT cut quartz crystal vibrating piece 3 Base 31 One main surface 32 Bottom part 33 Wall part 34 External terminal 35 for piezoelectric vibration elements Step part 36 Outer side surface 37 External terminal 38 Other main surface 4 Lid 51 Bonding member 52 Conductive bonding material 6 IC chip 7 Manufacturing device 71 Introduction chamber 72 Preheating chamber 721 First preheating chamber 722 Second preheating chamber 723 Third preheating chamber 73 Airtight sealing chamber 74 Temperature adjustment chamber 75 Inspection room 751 1st inspection room 752 2nd inspection room 753 3rd inspection room 754 4th inspection room 755 5th inspection room 756 6th inspection room 757 7th inspection room 758 8th inspection room 759 9th inspection room 7510 9th 10 Inspection room 76 Gate valve 8 Pallet 81 Mounting part 82 Reference work

Claims (7)

複数の封止部材を接合することにより内部空間が形成され、この内部空間に圧電振動素子を含む1つ以上の電子部品素子が気密封止され、外部に電気的に接続する外部端子として、圧電振動素子に接続される圧電振動素子用外部端子が形成された圧電振動デバイスの製造装置において、
真空雰囲気下で複数の封止部材を加熱接合して真空状態の内部空間を形成し、内部空間に電子部品素子を気密封止する気密封止室と、
圧電振動デバイスの内部空間の気密状態を検査する検査室と、が設けられ、
前記検査室には、真空雰囲気下において圧電振動デバイスの内部空間の気密状態を検査する第1検査室と、前記第1検査室よりも高圧の雰囲気下において圧電振動デバイスの内部空間の気密状態を検査する第2検査室とが含まれており、
圧電振動デバイスを、前記気密封止室、前記第1検査室、および前記第2検査室の順に搬送することを特徴とする圧電振動デバイスの製造装置。
An internal space is formed by joining a plurality of sealing members, and one or more electronic component elements including a piezoelectric vibration element are hermetically sealed in the internal space, and the piezoelectric element serves as an external terminal that is electrically connected to the outside. In a piezoelectric vibration device manufacturing apparatus in which an external terminal for a piezoelectric vibration element connected to the vibration element is formed,
A hermetic sealing chamber that heat-bonds a plurality of sealing members in a vacuum atmosphere to form an internal space in a vacuum state and hermetically seals the electronic component element in the internal space;
An inspection room for inspecting the airtight state of the internal space of the piezoelectric vibration device, and
The inspection chamber includes a first inspection chamber for inspecting an airtight state of the internal space of the piezoelectric vibration device in a vacuum atmosphere, and an airtight state of the internal space of the piezoelectric vibration device in an atmosphere at a higher pressure than the first inspection chamber. And a second laboratory to inspect,
An apparatus for manufacturing a piezoelectric vibration device, wherein the piezoelectric vibration device is conveyed in the order of the hermetic sealing chamber, the first inspection chamber, and the second inspection chamber .
請求項1に記載の圧電振動デバイスの製造装置において、
真空雰囲気下で封止部材を予備加熱する予備加熱室が設けられ、
圧電振動デバイスを、前記予備加熱室、前記気密封止室、前記第1検査室、および前記第2検査室の順に搬送することを特徴とする圧電振動デバイスの製造装置。
In the manufacturing apparatus of the piezoelectric vibration device according to claim 1,
A preheating chamber for preheating the sealing member in a vacuum atmosphere is provided,
An apparatus for manufacturing a piezoelectric vibration device, wherein the piezoelectric vibration device is conveyed in the order of the preheating chamber, the hermetic sealing chamber, the first inspection chamber, and the second inspection chamber .
請求項1または2に記載の圧電振動デバイスの製造装置において、
前記検査室では、圧電振動デバイスの内部空間の気密状態の検査の他に、圧電振動素子用外部端子を使った圧電振動デバイスの電気的特性の検査を行うことを特徴とする圧電振動デバイスの製造装置。
In the manufacturing apparatus of the piezoelectric vibration device according to claim 1 or 2,
In the inspection room, in addition to the inspection of the airtight state of the internal space of the piezoelectric vibration device, the electrical characteristics of the piezoelectric vibration device using an external terminal for the piezoelectric vibration element are inspected. apparatus.
請求項1乃至3のうちいずれか1つに記載の圧電振動デバイスの製造装置において、
前記検査室では、圧電振動デバイスの内部空間の気密状態の検査の他に、圧電振動素子用外部端子を使った圧電振動デバイスの温度特性の検査を行うことを特徴とする圧電振動デバイスの製造装置。
In the manufacturing apparatus of the piezoelectric vibration device according to any one of claims 1 to 3,
In the inspection room, in addition to the inspection of the airtight state of the internal space of the piezoelectric vibration device, the temperature characteristic of the piezoelectric vibration device using the external terminal for the piezoelectric vibration element is inspected. .
請求項1乃至4のうちいずれか1つに記載の圧電振動デバイスの製造装置において、
圧電振動デバイスの温度を、予め設定した基準温度に調整する温度調整室が設けられたことを特徴とする圧電振動デバイスの製造装置。
In the manufacturing apparatus of the piezoelectric vibration device according to any one of claims 1 to 4,
An apparatus for manufacturing a piezoelectric vibration device, comprising: a temperature adjustment chamber for adjusting a temperature of the piezoelectric vibration device to a preset reference temperature.
請求項1乃至5のうちいずれか1つに記載の圧電振動デバイスの製造装置において、
前記第2検査室では、大気圧またはそれよりも高圧の雰囲気下において圧電振動デバイスの内部空間の気密状態の検査が行われることを特徴とする圧電振動デバイスの製造装置。
In the manufacturing apparatus of the piezoelectric vibration device according to any one of claims 1 to 5,
In the second inspection chamber, an inspection of the airtight state of the internal space of the piezoelectric vibration device is performed under an atmosphere of atmospheric pressure or higher pressure .
請求項1乃至6のうちいずれか1つに記載の圧電振動デバイスの製造装置において、
圧電振動素子は、厚みすべり振動を行う素子であることを特徴とする圧電振動デバイスの製造装置。
In the manufacturing apparatus of the piezoelectric vibration device according to any one of claims 1 to 6,
The piezoelectric vibration element is an element that performs a thickness-shear vibration.
JP2011130085A 2011-06-10 2011-06-10 Manufacturing apparatus for piezoelectric vibration device Active JP5757793B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011130085A JP5757793B2 (en) 2011-06-10 2011-06-10 Manufacturing apparatus for piezoelectric vibration device
KR1020120057323A KR101898451B1 (en) 2011-06-10 2012-05-30 Apparatus for manufacturing piezoelectric vibrating device
TW101120137A TWI575870B (en) 2011-06-10 2012-06-05 Manufacture of piezoelectric vibrating device
CN201210188595.9A CN102820865B (en) 2011-06-10 2012-06-08 The manufacture device of Piezodectric vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011130085A JP5757793B2 (en) 2011-06-10 2011-06-10 Manufacturing apparatus for piezoelectric vibration device

Publications (2)

Publication Number Publication Date
JP2012257152A JP2012257152A (en) 2012-12-27
JP5757793B2 true JP5757793B2 (en) 2015-07-29

Family

ID=47304764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011130085A Active JP5757793B2 (en) 2011-06-10 2011-06-10 Manufacturing apparatus for piezoelectric vibration device

Country Status (4)

Country Link
JP (1) JP5757793B2 (en)
KR (1) KR101898451B1 (en)
CN (1) CN102820865B (en)
TW (1) TWI575870B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102484A (en) * 2013-11-27 2015-06-04 矢崎総業株式会社 Wire harness inspection device and wire harness inspection method
CN104848992A (en) * 2014-02-17 2015-08-19 珠海格力电器股份有限公司 Oscillator airtightness testing tool and method
US20160225978A1 (en) * 2015-02-03 2016-08-04 Seiko Epson Corporation Method of manufacturing vibration device
JP7470373B2 (en) 2020-02-28 2024-04-18 株式会社昭和真空 Leak inspection method and leak inspection device
JPWO2023048051A1 (en) * 2021-09-22 2023-03-30

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150353A (en) * 1994-07-18 1995-06-13 Hitachi Ltd Vacuum treating device and film forming device and film forming method using the same
JPH1114683A (en) * 1997-06-19 1999-01-22 Seiko Seiki Co Ltd Temperature characteristic measuring apparatus for quartz oscillator
JPH1151802A (en) * 1997-07-31 1999-02-26 River Eletec Kk Method for testing hermetical seal of package for piezoelectric element
JPH11108792A (en) * 1997-09-30 1999-04-23 Mitsumi Electric Co Ltd Method for inspecting gross leakage
JPH11127050A (en) * 1997-10-21 1999-05-11 Sii Quartz Techno:Kk Manufacture of crystal vibrator
JP3456432B2 (en) * 1999-02-01 2003-10-14 株式会社大真空 Method and apparatus for manufacturing vibrator device
JP4291545B2 (en) * 2002-05-17 2009-07-08 Tdk株式会社 Piezoelectric device
JP4429789B2 (en) * 2004-04-28 2010-03-10 株式会社アルバック Organic thin film manufacturing method, organic thin film manufacturing equipment
JP2006159336A (en) * 2004-12-06 2006-06-22 Nippon Dempa Kogyo Co Ltd Table device with rotary stand
JP2006261745A (en) * 2005-03-15 2006-09-28 Epson Toyocom Corp Method of manufacturing piezoelectric vibrator and method of measuring frequency temperature characteristic
JP4845478B2 (en) * 2005-10-24 2011-12-28 セイコーインスツル株式会社 Piezoelectric vibrator, method for manufacturing piezoelectric vibrator, oscillator, electronic device, and radio timepiece
JP2007278914A (en) * 2006-04-10 2007-10-25 Fukuda:Kk Leak test method and leak tester
JP2007288518A (en) * 2006-04-17 2007-11-01 Daishinku Corp Frequency adjusting method of piezoelectric vibrator and frequency adjusting device of piezoelectric vibrator
WO2008038383A1 (en) * 2006-09-28 2008-04-03 Pioneer Corporation Inspection equipment and inspection method
JP2010223643A (en) * 2009-03-23 2010-10-07 Seiko Epson Corp Airtightness inspection device of piezoelectric vibrator, and airtightness inspection method
JP5294413B2 (en) * 2009-07-06 2013-09-18 日本アビオニクス株式会社 Electronic component sealing device

Also Published As

Publication number Publication date
JP2012257152A (en) 2012-12-27
CN102820865B (en) 2016-08-10
KR101898451B1 (en) 2018-09-13
CN102820865A (en) 2012-12-12
KR20120137237A (en) 2012-12-20
TWI575870B (en) 2017-03-21
TW201251319A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
JP5757793B2 (en) Manufacturing apparatus for piezoelectric vibration device
US7557491B2 (en) Electronic component package
JP6167494B2 (en) Electronic device container manufacturing method, electronic device manufacturing method, electronic device, electronic apparatus, and mobile device
JP4588788B2 (en) Inspection device and inspection method
US20120174360A1 (en) Method for Manufacturing Piezoelectric Vibration Device
CN102696173A (en) Base of surface-mount-type electronic component-use package, and surface-mount-type electronic component-use package
JP6275526B2 (en) Piezoelectric vibrator, piezoelectric device, and method of manufacturing piezoelectric vibrator
JP4843424B2 (en) Glass sealing cover for crystal resonator and method for manufacturing crystal resonator using the same
TWI514521B (en) A manufacturing method of a package, a piezoelectric vibrator and an oscillator
JP2010103600A (en) Vibrator and method of manufacturing the same
WO2004100364A1 (en) Tuning-fork piezoelectric device manufacturing method and tuning-fork piezoelectric device
JP7470373B2 (en) Leak inspection method and leak inspection device
JP2015018831A (en) Method for hermetically sealing electronic component
JP2008057995A (en) Manufacturing method of vibrator sealing body, vibrator sealing body, and physical quantity sensor
US11309864B2 (en) Piezoelectric resonator unit and method for manufacturing the piezoelectric resonator unit
JP2007088966A (en) Method for manufacturing piezoelectric oscillating device and piezoelectric oscillating device manufactured by the method
JP2009088196A (en) Hermetic seal inspection method for microfabricated device, hermetic seal inspection system for microfabricated device, microfabricated device, and production process therefor
JP5115110B2 (en) Airtight inspection apparatus and airtight inspection method for piezoelectric vibrator
JP2015153833A (en) Manufacturing method for electronic component device, and electronic component device
JP2009267887A (en) Temperature compensation type crystal oscillator
JP4534482B2 (en) Quartz crystal selection method, crystal vibrating piece and crystal device manufacturing method
JP2010171239A (en) Electronic device and method for manufacturing the same
JP2007208564A (en) Method of manufacturing piezoelectric vibrator
JP4069052B2 (en) Method for inspecting airtightness of electronic component, apparatus used therefor, and method for manufacturing electronic component
JP5449799B2 (en) Method for manufacturing vacuum degree inspection device and vacuum degree inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150602

R150 Certificate of patent or registration of utility model

Ref document number: 5757793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250