JP2006261745A - Method of manufacturing piezoelectric vibrator and method of measuring frequency temperature characteristic - Google Patents

Method of manufacturing piezoelectric vibrator and method of measuring frequency temperature characteristic Download PDF

Info

Publication number
JP2006261745A
JP2006261745A JP2005072604A JP2005072604A JP2006261745A JP 2006261745 A JP2006261745 A JP 2006261745A JP 2005072604 A JP2005072604 A JP 2005072604A JP 2005072604 A JP2005072604 A JP 2005072604A JP 2006261745 A JP2006261745 A JP 2006261745A
Authority
JP
Japan
Prior art keywords
piezoelectric
frequency
frequency temperature
temperature characteristic
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005072604A
Other languages
Japanese (ja)
Inventor
Akinori Ishita
明徳 井下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2005072604A priority Critical patent/JP2006261745A/en
Publication of JP2006261745A publication Critical patent/JP2006261745A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a piezoelectric vibrator capable of measuring frequency temperature characteristic in a mode of a piezoelectric vibration piece while reducing manufacturing cost, and a method of measuring the frequency temperature characteristic. <P>SOLUTION: The piezoelectric vibrator has been manufactured by a process of cleaning a piezoelectric blank plate; process of vapor-depositing an excitation electrode on the main surface of the blank plate after cleaning; process of measuring the frequency temperature characteristic of a piezoelectric elements formed by vapor-depositing the excitation electrode; process of dividing the piezoelectric elements into singular pieces after measuring the frequency temperature characteristic; process of mounting each of the singulated piezoelectric elements on a package for piezoelectric vibrator via a conductive adhesive; process of drying the conductive adhesive after mounting; and process of minutely adjusting the main vibration frequency of each of the piezoelectric vibrators after drying. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は量産性に優れ、かつ製造コストを削減した圧電振動子の製造方法、及び周囲温度変化に対する周波数変動特性を測定するための測定方法に関するものである。   The present invention relates to a method for manufacturing a piezoelectric vibrator having excellent mass productivity and reduced manufacturing cost, and a measuring method for measuring frequency fluctuation characteristics with respect to changes in ambient temperature.

従来、周波数発生源やフィルタといった機能を有する電子部品に圧電材料を用いたものがあり、種々の圧電材料の中でも特に共振特性に優れている水晶を使用した圧電振動子(水晶振動子)が多用されている。水晶振動子は、コンピューター等のOA機器や携帯電話に代表される移動体通信機器等に搭載されており、安価で、かつ周波数特性の良好な水晶振動子の要求が強まっている。   Conventionally, electronic parts having functions such as frequency generation sources and filters have been made using piezoelectric materials. Among various piezoelectric materials, piezoelectric vibrators (quartz crystal vibrators) that use quartz that has particularly excellent resonance characteristics are widely used. Has been. Crystal resonators are mounted on OA devices such as computers and mobile communication devices represented by mobile phones, and there is an increasing demand for crystal resonators that are inexpensive and have good frequency characteristics.

このような水晶振動子の製造工程について、図4のフローチャートを用いて説明する。まず、結晶から切り出された水晶ウエハ(素板)について、所要の外形寸法及び厚さに研磨し、洗浄を行う(M30)。洗浄後、前記水晶素板の主面上には、金(Au)や銀(Ag)等の金属材料を用いた前記水晶素板を励振するための励振電極、及び水晶振動子用パッケージにマウントするための引出し電極が蒸着され、各金属電極膜が成膜される(M31)。前記金属電極膜が形成された前記水晶素板は、個片に分割され、金属電極膜が各水晶片に成膜された水晶素子(水晶振動片)が形成される(M32)。前記水晶振動片は、マウント工程により、導電性接着剤を介して水晶振動子用のパッケージに収容され(M33)、乾燥(アニール)工程にて前記導電性接着剤を乾燥後(M34)、前記金属電極膜上に更なる金属電極を蒸着する、あるいは前記電極膜をエッチング等の手法によって除去することにより、目標の主振動周波数を得るための周波数微調整が行われる(M35)。その後、電極材料の化学変化によって生じる経年変化を防止し安定な性能を維持するために、前記パッケージ内部は真空状態で封止され、水晶振動子が完成する(M36)。前記水晶振動子は、完全な密封状態であるか調査するリーク試験(M37)の後、水晶振動子に過大な電流を印加した時の周波数変動量を測定するドライブレベル試験(DLD試験)や前記水晶振動子の等価回路定数測定等の各種電気的特性について検査が行われる(M38)。前記電気的特性の中で、周囲温度変化による発振周波数の周波数変動特性(周波数温度特性)は、前記水晶振動子を用いて構成される温度補償型水晶発振器(TCXO)等の周波数安定度を大きく左右する特性であることから、特に重要であり、厳しい良否検査が行われる。
このように、水晶振動子の完成品について、上記のような各種電気的特性評価を実施することにより、極めて高い周波数安定度を有する水晶振動子を得ることができる。
The manufacturing process of such a crystal unit will be described with reference to the flowchart of FIG. First, a quartz wafer (base plate) cut out from a crystal is polished to a required external dimension and thickness and cleaned (M30). After cleaning, on the main surface of the crystal element plate, an excitation electrode for exciting the crystal element plate using a metal material such as gold (Au) or silver (Ag), and a crystal resonator package are mounted. For this purpose, an extraction electrode is deposited and each metal electrode film is formed (M31). The crystal element plate on which the metal electrode film is formed is divided into individual pieces, and a crystal element (crystal vibration piece) in which the metal electrode film is formed on each crystal piece is formed (M32). The quartz crystal resonator element is housed in a quartz resonator package via a conductive adhesive in a mounting process (M33), and after drying the conductive adhesive in a drying (annealing) process (M34), By further depositing a metal electrode on the metal electrode film or removing the electrode film by a method such as etching, fine frequency adjustment for obtaining a target main vibration frequency is performed (M35). Thereafter, in order to prevent the secular change caused by the chemical change of the electrode material and maintain the stable performance, the inside of the package is sealed in a vacuum state, and the crystal resonator is completed (M36). After the leak test (M37) for investigating whether the crystal resonator is in a completely sealed state, a drive level test (DLD test) for measuring a frequency fluctuation amount when an excessive current is applied to the crystal resonator, Various electrical characteristics such as measurement of equivalent circuit constants of the crystal resonator are inspected (M38). Among the electrical characteristics, the frequency variation characteristic (frequency temperature characteristic) of the oscillation frequency due to a change in ambient temperature increases the frequency stability of a temperature compensated crystal oscillator (TCXO) configured using the crystal resonator. It is particularly important because of its influence on characteristics, and a strict quality inspection is performed.
As described above, a crystal resonator having extremely high frequency stability can be obtained by performing various electrical characteristic evaluations as described above on a completed crystal resonator.

ところが、水晶振動子の完成品について、電気的特性、特に周波数温度特性の測定を行う従来の手法では、以下のような問題点があった。上述の一連の製造工程を経て水晶振動子を完成させた後、検査工程において周波数温度特性の特性不良が確認された場合、不良と判定された水晶振動子は、そのまま廃棄されてしまう。そのため、前記水晶振動子を構成するパッケージや、蓋等の部材についても同時に廃棄されることから、製造時の損失が非常に大きくなるため、製造コストの低減を困難にしていた。   However, the conventional method for measuring the electrical characteristics, particularly the frequency temperature characteristics, of the finished crystal unit has the following problems. After the crystal resonator is completed through the above-described series of manufacturing steps, when a defect in the frequency temperature characteristic is confirmed in the inspection step, the crystal resonator determined to be defective is discarded as it is. For this reason, since the package, the lid, and other members constituting the crystal resonator are also discarded at the same time, the loss at the time of manufacture becomes very large, making it difficult to reduce the manufacturing cost.

そこで、上記のような問題点を解決する手段として、例えば特開2004−128592号公報が開示されている。前記公報は、図5で示したように、金属電極板16の間に水晶素板10を挟持させた状態にて、前記水晶素板10の温度を変化させ、温度変化時の周波数を測定することにより、前記水晶素板10の周波数温度特性を測定したことを特徴としている。
前記公報によれば、前記金属電極板16をペルチェ素子等の加熱、冷却手段にて構成することにより、前記水晶素板10を挟持した状態で前記水晶素板10の温度を変化させ、温度変化時の周波数をネットワークアナライザ15により測定するようしたので、水晶素板の状態で周波数温度特性が測定可能となり、特性不良が確認された場合には素板のみ廃棄すれば良いため、製造時の損失を低減することが可能である。また、水晶素板の状態にて周波数温度特性の良否が確認可能であるので、その後の製造工程に良品の水晶素板を安定に投入でき、製品の良品率を向上することができる。
特開2004−128592号公報
Thus, for example, Japanese Patent Application Laid-Open No. 2004-128592 is disclosed as means for solving the above problems. In the publication, as shown in FIG. 5, the temperature of the crystal base plate 10 is changed in a state where the crystal base plate 10 is sandwiched between the metal electrode plates 16, and the frequency at the time of temperature change is measured. Thus, the frequency temperature characteristic of the quartz base plate 10 is measured.
According to the publication, by forming the metal electrode plate 16 with heating and cooling means such as a Peltier element, the temperature of the crystal base plate 10 is changed in a state where the crystal base plate 10 is sandwiched, and the temperature change Since the frequency at the time is measured by the network analyzer 15, the frequency temperature characteristic can be measured in the state of the crystal base plate, and if the characteristic defect is confirmed, only the base plate has to be discarded. Can be reduced. In addition, since the quality of the frequency temperature characteristic can be confirmed in the state of the crystal base plate, a good crystal base plate can be stably introduced into the subsequent manufacturing process, and the non-defective product rate can be improved.
JP 2004-128592 A

しかしながら、上記公報に開示されたような測定方法では、以下のような問題点があった。周知のように、水晶振動子の周波数温度特性を決定する要因は、水晶素板の切断角度、及び水晶振動片の寸法に依存する。ここで、前記水晶振動片の寸法は、前記励振電極の形成部分におけるエネルギー閉じ込めの度合いにより、見かけ上変化する現象を示し、前述のエネルギー閉じ込めは、前記励振電極の形状(寸法)や膜厚により決定する。従って、水晶素板の主面上に励振電極を形成する前後とでは、周波数温度特性が大きくばらつくため、上記のような周波数温度特性測定方法による良否判定では、正確な判別が困難であるという問題点があった。
本発明は、製造コストを低減し、製品に近い状態で圧電素子の周波数温度特性測定を可能とした圧電振動子の製造方法、及び周波数温度特性の測定方法を提供する。
However, the measurement method as disclosed in the above publication has the following problems. As is well known, the factors that determine the frequency-temperature characteristics of a crystal resonator depend on the cutting angle of the crystal element plate and the size of the crystal resonator element. Here, the size of the quartz crystal resonator element shows a phenomenon that apparently changes depending on the degree of energy confinement in the formation portion of the excitation electrode, and the energy confinement described above depends on the shape (dimension) and film thickness of the excitation electrode. decide. Therefore, since the frequency temperature characteristic varies greatly before and after the excitation electrode is formed on the main surface of the quartz base plate, it is difficult to accurately determine the quality by the frequency temperature characteristic measurement method as described above. There was a point.
The present invention provides a method for manufacturing a piezoelectric vibrator and a method for measuring a frequency temperature characteristic, which can reduce the manufacturing cost and can measure the frequency temperature characteristic of a piezoelectric element in a state close to a product.

本発明は、上述の目的を達成するため、圧電素板を洗浄する工程と、洗浄後の前記圧電素板の主面上に励振電極を蒸着する工程と、前記励振電極蒸着により形成された圧電素子の周波数温度特性を測定する工程と、周波数温度特性測定後、前記圧電素子を個片分割し、各個の圧電素子を形成する工程と、個片分割後の前記圧電素子を圧電振動子用パッケージに導電性接着剤を介してマウントする工程と、前記マウント後に前記導電性接着剤を乾燥する工程と、乾燥後、前記圧電素子の主振動周波数を微調整する工程とにより、圧電振動子を製造したことを特徴とする。   In order to achieve the above object, the present invention provides a step of cleaning a piezoelectric element plate, a step of evaporating an excitation electrode on the main surface of the piezoelectric element plate after cleaning, and a piezoelectric element formed by the excitation electrode evaporation. A step of measuring a frequency temperature characteristic of the element; a step of dividing the piezoelectric element into pieces after forming the frequency temperature characteristic; and forming each piece of the piezoelectric element; and A piezoelectric vibrator is manufactured through a step of mounting via a conductive adhesive, a step of drying the conductive adhesive after mounting, and a step of finely adjusting the main vibration frequency of the piezoelectric element after drying. It is characterized by that.

また、本発明は、前記周波数温度特性の測定において、前記励振電極にペルチェ素子等から成る加熱、冷却手段が設けられたプローブを当て、前記プローブにより前記圧電素板の温度を変化させながら、前記圧電素子の主振動周波数を測定することを特徴とする。   Further, in the measurement of the frequency temperature characteristics, the present invention applies a probe provided with heating and cooling means composed of a Peltier element or the like to the excitation electrode, and changes the temperature of the piezoelectric element plate with the probe. The main vibration frequency of the piezoelectric element is measured.

本発明に係る圧電振動子の製造方法は、圧電素板の主面上に励振電極を成膜後に周波数温度特性を測定する工程を追加したので、前記周波数温度特性測定工程にて特性不良が確認された場合、圧電素板のみ廃棄すれば良いため、製造時の損失を低減できる。また、圧電素板に励振電極を成膜した状態にて周波数温度特性を測定するため、製品に近い状態での特性評価が可能となり、その後の製造工程に安定した良品の圧電素子を供給することが可能となる。さらに、前記周波数温度特性は、圧電素板上に成膜された引出し電極に検査用のプローブを当てて測定を行うので、励振電極を傷つけることなく測定を行うことが可能である。   In the method of manufacturing a piezoelectric vibrator according to the present invention, since a step of measuring frequency temperature characteristics after forming an excitation electrode on the main surface of the piezoelectric element plate is added, a characteristic defect is confirmed in the frequency temperature characteristics measurement step. In this case, since only the piezoelectric element plate needs to be discarded, the loss during manufacturing can be reduced. In addition, since the frequency temperature characteristics are measured with the excitation electrode formed on the piezoelectric element plate, it is possible to evaluate the characteristics in a state close to the product, and supply a good piezoelectric element that is stable in the subsequent manufacturing process. Is possible. Furthermore, since the frequency temperature characteristic is measured by applying an inspection probe to the extraction electrode formed on the piezoelectric element plate, it is possible to perform the measurement without damaging the excitation electrode.

以下、図示した実施の形態例に基づいて本発明を詳細に説明する。
図1は本発明に係る水晶振動子の製造工程を示したフローチャート図である。なお、上述の従来例に示したものと同様の構成部材については同一の符号を付してその説明を省略する。また、前記フローチャートは水晶素板の状態にて水晶素子のバッチ処理を行う工程を表しており、本例の水晶振動子は、ATカット水晶振動子を例として説明する。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
FIG. 1 is a flow chart showing a manufacturing process of a crystal resonator according to the present invention. In addition, about the structural member similar to what was shown in the above-mentioned prior art example, the same code | symbol is attached | subjected and the description is abbreviate | omitted. The flowchart represents a process of batch processing of crystal elements in the state of a crystal base plate, and the crystal resonator of this example will be described by taking an AT cut crystal resonator as an example.

まず、水晶結晶から切り出されたATカットの水晶素板について、所要の外形寸法及び厚さに研磨し、洗浄を行う(M30)。
前記洗浄工程後、前記水晶素板は、各個の水晶片を励振するための励振電極、及び前記励振電極より前記水晶素子の端部へ引出された引出し電極が、前記水晶素板の両主面上に所定の電極形状、および膜厚にて形成されるようメタルマスク等で挟持され、真空チャンバー内でAuやAl等の金属材料による電極膜が成膜されることにより、各個の水晶素子(振動片)が形成される(M30)。
First, an AT-cut quartz base plate cut out from a quartz crystal is polished to a required external dimension and thickness and cleaned (M30).
After the cleaning step, the quartz base plate has an excitation electrode for exciting each piece of crystal, and an extraction electrode drawn from the excitation electrode to the end of the quartz crystal element. Each crystal element is formed by being sandwiched by a metal mask or the like so as to be formed with a predetermined electrode shape and film thickness on top, and forming an electrode film of a metal material such as Au or Al in a vacuum chamber. A vibrating piece) is formed (M30).

前記水晶振動片の形成後、前記真空チャンバー内にて各水晶振動片の周波数温度特性が測定される(M40)。ここで、前記周波数温度特性の測定方法について図2を用いて説明する。図2は、水晶振動片における周波数温度特性の測定系の概念を示した図である。
図2に示すように、前記測定系は、ネットワークアナライザ15と、前記ネットワークアナライザ15に接続され、電流変化により加熱、冷却作用を生じるペルチェ素子14が設けられたプローブ13とにより構成される。
前記水晶振動片はATカットの水晶素板から形成されていることから、周囲温度変化tに対する周波数変化Δf/f、即ち周波数温度特性は、図3で示したように3次曲線を描き、Δf/f=α(t−t)+β(t−t+γ(t−tの一般式にて表すことができる。ただし、α、β、γはそれぞれ1次、2次、3次の温度係数であり、tは基準温度、例えば+25℃である。周波数温度特性曲線の傾きは前記1次温度係数αに依存するため、前記1次温度係数αを求めることができれば、全体の温度特性曲線を容易に予測することが可能である。
After the formation of the quartz crystal vibrating piece, the frequency temperature characteristic of each quartz crystal vibrating piece is measured in the vacuum chamber (M40). Here, a method of measuring the frequency temperature characteristic will be described with reference to FIG. FIG. 2 is a diagram showing the concept of a measurement system for frequency temperature characteristics in the quartz crystal resonator element.
As shown in FIG. 2, the measurement system includes a network analyzer 15 and a probe 13 connected to the network analyzer 15 and provided with a Peltier element 14 that generates a heating and cooling action due to a current change.
Since the quartz crystal resonator element is formed of an AT-cut quartz base plate, the frequency change Δf / f with respect to the ambient temperature change t, that is, the frequency-temperature characteristic draws a cubic curve as shown in FIG. / F = α (t−t 0 ) + β (t−t 0 ) 2 + γ (t−t 0 ) 3 However, α, β, and γ are primary, secondary, and third-order temperature coefficients, respectively, and t 0 is a reference temperature, for example, + 25 ° C. Since the slope of the frequency temperature characteristic curve depends on the primary temperature coefficient α, the overall temperature characteristic curve can be easily predicted if the primary temperature coefficient α can be obtained.

従って、本発明に係る周波数温度特性の測定は、まず、前記プローブ13を水晶片10b上に成膜された引出し電極12に当て、前記水晶片10bの温度が+25℃よりも低い所定温度t1(t1<+25℃)となるよう、前記プローブ13に設けられた前記ペルチェ素子14の電流を制御し、前記温度t1時における周波数f1をネットワークアナライザ15により測定する。次に、前記水晶片10bの温度が+25℃よりも高い所定温度t2(t2>+25℃)となるよう前記ペルチェ素子14の電流を制御し、前記温度t2時における周波数f2を前記ネットワークアナライザ15により測定する。上記で得られた結果から、1次温度温度係数αについてα=(f2−f1)/(t2−t1)の式より導出した後、前記1次温度温度係数αより全体の周波数温度特性を予測し、良否判定を行う。なお、前記プローブ、又は前記水晶素板は、X−Yステージ等により移動する構造となっており、前述の測定は、前記水晶素板に設けられた各水晶振動片について同様に実施される。   Therefore, in the measurement of the frequency temperature characteristic according to the present invention, first, the probe 13 is applied to the extraction electrode 12 formed on the crystal piece 10b, and the temperature of the crystal piece 10b is lower than the predetermined temperature t1 ( The current of the Peltier element 14 provided in the probe 13 is controlled so that t1 <+ 25 ° C.), and the frequency f1 at the temperature t1 is measured by the network analyzer 15. Next, the current of the Peltier element 14 is controlled so that the temperature of the crystal piece 10b becomes a predetermined temperature t2 (t2> + 25 ° C.) higher than + 25 ° C., and the frequency f2 at the temperature t2 is controlled by the network analyzer 15. taking measurement. From the results obtained above, after deriving the primary temperature temperature coefficient α from the formula α = (f2−f1) / (t2−t1), the overall frequency temperature characteristic is predicted from the primary temperature temperature coefficient α. Then, pass / fail judgment is performed. The probe or the quartz element plate is structured to move by an XY stage or the like, and the above-described measurement is similarly performed on each quartz crystal vibrating piece provided on the quartz element plate.

前記の良否判定により良品と判定された水晶振動片は、その後、ダイシングソー等により各個片に分割される(M32)。
前記水晶振動片は、マウント工程において、導電性接着剤を介して水晶振動子用パッケージ内に収容され(M33)、前記導電性接着剤の乾燥(アニール)工程を経た後(M34)、前記励振電極の電極膜上において、更なる金属電極を蒸着する、あるいは前記電極膜をエッチング等の手法によって除去することにより、目標の主振動周波数を得るための周波数微調整が行われる(M35)。
The quartz crystal vibrating piece determined to be a non-defective product by the quality determination is then divided into individual pieces by a dicing saw or the like (M32).
The quartz crystal resonator element is accommodated in a quartz resonator package via a conductive adhesive in a mounting process (M33), and after passing through a drying (annealing) process of the conductive adhesive (M34), the excitation is performed. On the electrode film of the electrode, fine metal frequency adjustment for obtaining the target main vibration frequency is performed by depositing a further metal electrode or removing the electrode film by a technique such as etching (M35).

その後、電極材料の化学変化によって生じる経年変化を防止し安定な性能を維持するために、前記パッケージ内部は真空、もしくは窒素ガスが封入された状態で封止され、水晶振動子が完成する(M36)。前記水晶振動子は、完全な密封状態に保持されているか調査するリーク試験(M37)の実施後、水晶振動子に過大な電流を印加した時の周波数変動量を測定するDLD試験や、前記水晶振動子の等価回路定数測定等の各種電気的特性について検査(M38)が行われることにより、極めて高い周波数安定度を有する水晶振動子を得ることができる。   Thereafter, in order to prevent the secular change caused by the chemical change of the electrode material and maintain the stable performance, the inside of the package is sealed in a vacuum or a state in which nitrogen gas is sealed, thereby completing the crystal resonator (M36). ). After the leak test (M37) for investigating whether the crystal resonator is kept in a completely sealed state, a DLD test for measuring a frequency fluctuation amount when an excessive current is applied to the crystal resonator, By performing inspection (M38) for various electrical characteristics such as measurement of equivalent circuit constants of the vibrator, a crystal vibrator having extremely high frequency stability can be obtained.

以上のように、水晶素板を洗浄する工程と、洗浄後の前記水晶素板の主面上に励振電極、
及び引出し電極を蒸着する工程と、励振電極蒸着後により形成された各水晶振動片の周波数温度特性を測定する工程と、周波数温度特性測定後、前記水晶素板を個片分割する工程と、個片分割後の水晶振動片を水晶振動子用パッケージに導電性接着剤を介してマウントする工程と、前記マウント後に前記導電性接着剤を乾燥する工程と、乾燥後、前記水晶振動片の主振動周波数を微調整する工程とにより、水晶振動子を製造したので、周波数温度特性の良否判定を製造工程の早い段階で確認できることから、周波数温度特性において不良が発見された場合、水晶振動片のみ廃棄すれば良く、完成品を評価する際に比べ、製造時の損失を低減することができる。また、水晶素板に励振電極を成膜した状態にて周波数温度特性を測定するため、製品に近い状態での特性評価が可能となり、その後の製造工程に安定した良品の水晶素子を供給することが可能となる。さらに、ペルチェ素子を用いたプローブにより、容易に各水晶片に対して温度変化を加えた状態で周波数の測定を行うことができるので、量産性に適した評価、検査を行うことが可能となり製造コストを低減できる。また、前記周波数温度特性測定は、引出し電極に検査用のプローブを当てるので、励振電極を傷つけることなく測定を行うことが可能である。
以上の実施例においては、水晶振動子を例について説明したが、本発明はこれに限るものではなく、水晶以外の圧電材料に適用しても良いことは明らかである。
As described above, the step of cleaning the crystal base plate, the excitation electrode on the main surface of the crystal base plate after cleaning,
And a step of evaporating the extraction electrode, a step of measuring the frequency temperature characteristics of each quartz vibrating piece formed after the excitation electrode deposition, a step of dividing the quartz base plate into pieces after measuring the frequency temperature characteristics, A step of mounting the crystal vibrating piece after the division into a crystal resonator package via a conductive adhesive, a step of drying the conductive adhesive after the mounting, and a main vibration of the crystal vibrating piece after drying Since the crystal unit was manufactured through the process of fine-tuning the frequency, it is possible to check the quality of the frequency temperature characteristic at an early stage of the manufacturing process. If a defect is found in the frequency temperature characteristic, only the crystal resonator element is discarded. As a result, the loss during manufacturing can be reduced as compared with the case of evaluating the finished product. In addition, since the frequency temperature characteristics are measured with the excitation electrode formed on the quartz base plate, it is possible to evaluate the characteristics in a state close to the product, and supply a good crystal element that is stable in the subsequent manufacturing process. Is possible. In addition, since the frequency can be easily measured with a temperature change applied to each crystal piece with a probe using a Peltier element, evaluation and inspection suitable for mass production can be performed. Cost can be reduced. The frequency temperature characteristic measurement can be performed without damaging the excitation electrode because a probe for inspection is applied to the extraction electrode.
In the above-described embodiments, the crystal resonator has been described as an example. However, the present invention is not limited to this, and it is obvious that the present invention may be applied to piezoelectric materials other than quartz.

本発明に係る水晶振動子の製造工程を示すフローチャート図である。It is a flowchart figure which shows the manufacturing process of the crystal oscillator based on this invention. 本発明に係る周波数温度特性測定方法の概念を示す図である。It is a figure which shows the concept of the frequency temperature characteristic measuring method which concerns on this invention. ATカット水晶基板における周波数温度特性を示す図である。It is a figure which shows the frequency temperature characteristic in an AT cut quartz substrate. 従来の水晶振動子の製造工程を示すフローチャート図である。It is a flowchart figure which shows the manufacturing process of the conventional crystal oscillator. 従来の圧電素板の周波数温度特性測定方法の概念を示す図である。It is a figure which shows the concept of the frequency temperature characteristic measuring method of the conventional piezoelectric element board.

符号の説明Explanation of symbols

10 水晶素板
10a、10b、10c 水晶片
11 励振電極
12 引出し電極
13 プローブ
14、17 ペルチェ素子
15 ネットワークアナライザ
16 金属電極















DESCRIPTION OF SYMBOLS 10 Crystal base plate 10a, 10b, 10c Crystal piece 11 Excitation electrode 12 Extraction electrode 13 Probe 14, 17 Peltier element 15 Network analyzer 16 Metal electrode















Claims (5)

圧電素板を洗浄する工程と、洗浄後の前記圧電素板の主面上に励振電極、及び引出し
電極を蒸着する工程と、前記電極蒸着工程後に前記圧電素板の周波数温度特性を測定す
る工程と、前記周波数温度特性測定工程後に前記圧電素板を個片分割し、圧電振動片を
形成する工程と、前記圧電振動片を圧電振動子用パッケージに導電性接着剤を介してマ
ウントする工程と、前記マウント工程後に前記導電性接着剤を乾燥する工程と、前記乾
燥工程後に前記圧電振動片の周波数を微調整する工程とにより、圧電振動子を製造した
ことを特徴とする圧電振動子の製造方法。
A step of cleaning the piezoelectric element plate, a step of depositing an excitation electrode and an extraction electrode on the main surface of the cleaned piezoelectric element plate, and a frequency temperature characteristic of the piezoelectric element plate after the electrode evaporation step. A step of dividing the piezoelectric element plate into individual pieces after the step of measuring the frequency temperature characteristics and forming the piezoelectric vibrating piece; and mounting the piezoelectric vibrating piece to the piezoelectric vibrator package via a conductive adhesive Piezoelectric vibrator characterized in that a piezoelectric vibrator is manufactured by a step, a step of drying the conductive adhesive after the mounting step, and a step of finely adjusting the frequency of the piezoelectric vibrating piece after the drying step. Child manufacturing method.
前記周波数温度特性の測定は、前記励振電極に加熱、冷却手段が設けられたプローブ
を当て、前記プローブにより前記圧電素板の温度を変化させながら、周波数を測定する
ことを特徴とする請求項1記載の圧電振動子の製造方法。
The frequency temperature characteristic is measured by applying a probe provided with heating and cooling means to the excitation electrode and measuring the frequency while changing the temperature of the piezoelectric element plate by the probe. The manufacturing method of the piezoelectric vibrator as described.
前記プローブに設けられた加熱、冷却手段はペルチェ素子であることを特徴とする
請求項1、及び2記載の圧電振動子の製造方法。
The method for manufacturing a piezoelectric vibrator according to claim 1, wherein the heating and cooling means provided in the probe is a Peltier element.
圧電素板の主面上に設けられた引出し電極に、加熱、冷却手段が設けられたプローブ
を当てることにより、前記圧電素板の温度を変化させながら、周波数を測定することを
特徴とする圧電振動子の周波数温度特性測定方法。
A frequency is measured while changing the temperature of the piezoelectric element plate by applying a probe provided with heating and cooling means to an extraction electrode provided on the main surface of the piezoelectric element plate. Measurement method of frequency temperature characteristics of vibrator.
前記プローブに設けられた加熱、冷却手段は、ペルチェ素子であることを特徴とする
請求項4記載の圧電振動子の周波数温度特性測定方法。













5. The method for measuring frequency temperature characteristics of a piezoelectric vibrator according to claim 4, wherein the heating and cooling means provided in the probe is a Peltier element.













JP2005072604A 2005-03-15 2005-03-15 Method of manufacturing piezoelectric vibrator and method of measuring frequency temperature characteristic Pending JP2006261745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005072604A JP2006261745A (en) 2005-03-15 2005-03-15 Method of manufacturing piezoelectric vibrator and method of measuring frequency temperature characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072604A JP2006261745A (en) 2005-03-15 2005-03-15 Method of manufacturing piezoelectric vibrator and method of measuring frequency temperature characteristic

Publications (1)

Publication Number Publication Date
JP2006261745A true JP2006261745A (en) 2006-09-28

Family

ID=37100550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072604A Pending JP2006261745A (en) 2005-03-15 2005-03-15 Method of manufacturing piezoelectric vibrator and method of measuring frequency temperature characteristic

Country Status (1)

Country Link
JP (1) JP2006261745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257152A (en) * 2011-06-10 2012-12-27 Daishinku Corp Manufacturing method of piezoelectric vibration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257152A (en) * 2011-06-10 2012-12-27 Daishinku Corp Manufacturing method of piezoelectric vibration device

Similar Documents

Publication Publication Date Title
Umeda et al. Piezoelectric properties of ScAlN thin films for piezo-MEMS devices
US7518291B2 (en) Piezoelectric device
JP6812443B2 (en) A single crystal piezoelectric layer and a method for making a microelectronic device, photon device or optical device containing such a layer.
JP4569450B2 (en) Assembly of AT-cut crystal piece, AT-cut crystal device, and manufacturing method of AT-cut crystal device
Momosaki A brief review of progress in quartz tuning fork resonators
JP2008206000A (en) Piezoelectric vibration chip, piezoelectric device, and manufacturing method of the piezoelectric vibration chip
JP2006261745A (en) Method of manufacturing piezoelectric vibrator and method of measuring frequency temperature characteristic
JP2007116563A (en) Crystal oscillator
JP2007088691A (en) Piezoelectric vibration chip, piezoelectric device, and manufacturing method of them
JP2007189492A (en) Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator
JP2008078869A (en) Method for manufacturing oscillator
JP5526665B2 (en) Manufacturing method of surface acoustic wave device
US20070024158A1 (en) Integrated resonators and time base incorporating said resonators
JP2001085970A (en) Resonator for high stable piezo-oscillator
JP4036149B2 (en) Piezoelectric device leak detection method
JP2007192731A (en) Method and apparatus for measuring frequency characteristic
JP2002171008A (en) Piezoelectric element piece and manufacturing method of piezoelectric device
JP4482203B2 (en) Quartz wafer and quartz crystal manufacturing method
JP2006261746A (en) Method of manufacturing piezoelectric vibrator
JP2013078046A (en) Method of manufacturing piezoelectric vibrator, and piezoelectric vibrator
Wuthrich et al. Batch fabrication of AT-cut crystal resonators up to 200 MHz
JP4534482B2 (en) Quartz crystal selection method, crystal vibrating piece and crystal device manufacturing method
JP2003273682A (en) Frequency control method for piezoelectric vibrator, piezoelectric vibrator, and piezoelectric device
Buettgenbach et al. High-frequency thickness-shear mode resonators for sensor application in liquids
JP7265384B2 (en) Frequency dip temperature adjustment method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403