JP2007189492A - Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator - Google Patents

Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator Download PDF

Info

Publication number
JP2007189492A
JP2007189492A JP2006005731A JP2006005731A JP2007189492A JP 2007189492 A JP2007189492 A JP 2007189492A JP 2006005731 A JP2006005731 A JP 2006005731A JP 2006005731 A JP2006005731 A JP 2006005731A JP 2007189492 A JP2007189492 A JP 2007189492A
Authority
JP
Japan
Prior art keywords
piezoelectric
substrate
piezoelectric substrate
crystal
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006005731A
Other languages
Japanese (ja)
Inventor
Akinori Ishita
明徳 井下
Kazutoshi Fujita
和俊 藤田
Noriyuki Watanabe
紀之 渡辺
Atsushi Nishide
淳 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006005731A priority Critical patent/JP2007189492A/en
Publication of JP2007189492A publication Critical patent/JP2007189492A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for mass-producing a mesa type piezoelectric substrate having a trapezoidal projection. <P>SOLUTION: In the piezoelectric substrate where masks with openings are arranged on both principal planes of the piezoelectric substrate at a prescribed interval between the principal planes and the masks and piezoelectric films are epitaxially grown under atmospheric pressure, the piezoelectric films formed at the openings of the masks and their vicinities are formed in trapezoidal shapes nearly in almost middles of both the principal planes of the piezoelectric substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エピタキシャル成長法を用いて圧電膜を圧電基板面に形成した台形状メサ型
の圧電基板とその製造方法、及びその圧電基板を用いた圧電振動子と圧電発振器に関する
ものである。
The present invention relates to a trapezoidal mesa type piezoelectric substrate in which a piezoelectric film is formed on a surface of a piezoelectric substrate using an epitaxial growth method, a manufacturing method thereof, and a piezoelectric vibrator and a piezoelectric oscillator using the piezoelectric substrate.

水晶振動子は、小型、経年変化が小さい、高精度、高安定な周波数が容易に得られる等
の利点を有するため、産業用機器、民生用機器の基準周波数源として広く用いられている
。近年、機器が小型化、軽量化されると共に水晶振動子の小型化への要求が強くなり、ま
た電子部品の組み立て自動化に適した表面実装型水晶振動子の需要が大きい。
水晶は物理的、化学的に安定な物質であるが、天然水晶は品質的、量的に問題があるた
め、現在では品質の安定性、供給量の安定確保という点で優れた人工水晶を用いて水晶振
動子を製造している。中でも周波数−温度特性が3次曲線を呈するATカット水晶振動子
は、携帯電話等の通信機器に多量に用いられている。周知のように、ATカット水晶振動
子は、水晶の結晶軸Yに垂直な水晶板(Y板)を結晶軸Xの周りに約35度15分回転し
て得られる水晶板(ATカット水晶板)の両主面に、真空蒸着、あるいはスパッタ装置等
を用いて金属膜を付着し、パッケージに気密封止して構成される。ATカット水晶振動子
の振動モードは厚みすべり振動であり、その共振周波数fは厚さtの逆数に比例し、比例
常数kは水晶の密度ρと切断角度に依存する弾性定数c’とから決まり、約1.65MH
z・mmである。
A crystal resonator is widely used as a reference frequency source for industrial equipment and consumer equipment because it has advantages such as small size, small secular change, high accuracy, and high frequency stability. In recent years, the size and weight of devices have been reduced, and the demand for miniaturization of crystal resonators has increased, and there is a great demand for surface mount crystal resonators suitable for automating the assembly of electronic components.
Quartz is a physically and chemically stable substance, but natural quartz is problematic in terms of quality and quantity, so today we use artificial quartz that is superior in terms of quality stability and supply stability. To manufacture crystal units. Among them, AT-cut crystal resonators having a frequency-temperature characteristic exhibiting a cubic curve are used in large quantities in communication devices such as mobile phones. As is well known, an AT-cut crystal unit is a crystal plate (AT-cut crystal plate) obtained by rotating a crystal plate (Y plate) perpendicular to the crystal axis Y of the crystal around the crystal axis X for about 35 degrees 15 minutes. ) And a metal film are attached to both main surfaces using a vacuum deposition or sputtering apparatus, and the package is hermetically sealed. The vibration mode of the AT-cut quartz resonator is thickness shear vibration, the resonance frequency f is proportional to the reciprocal of the thickness t, and the proportional constant k is determined from the crystal density ρ and the elastic constant c ′ that depends on the cutting angle. Approx. 1.65MH
z · mm.

図6は従来のATカット水晶振動素子の構成を示す図であって、同図(a)は平面図、
同図(b)はP−Pにおける断面図、同図(c)はQ−Qにおける断面図、同図(d)、
(e)はそれぞれX軸方向(長手方向)、Z’軸方向(短手方向)から見た厚みすべり振
動の変位分布を示す図である。図6の左側に座標軸を示すように、矩形状ATカット水晶
板11は長手方向(長さL)をX軸方向、短手方向(幅W)をZ’軸方向とするのが一般
的である。このATカット水晶板11の表裏面に、真空蒸着、あるいはスパッタ装置の中
でマスクを介して電極12a、12bを形成して水晶振動素子を構成し、この水晶振動素
子を図示しないパッケージの内底部に収容し、パッケージ側の端子電極(図示しない)と
、各電極12a、12bからATカット水晶板11の端縁に伸びるリード電極とを導電性
接着剤13a、13bを用いて導通固定して水晶振動子を構成する。
FIG. 6 is a diagram showing a configuration of a conventional AT-cut crystal resonator element, in which FIG.
(B) is a cross-sectional view taken along the line PP, (c) is a cross-sectional view taken along the line Q-Q, (d),
(E) is a figure which shows the displacement distribution of the thickness shear vibration seen from the X-axis direction (longitudinal direction) and the Z'-axis direction (short side direction), respectively. As shown on the left side of FIG. 6, the rectangular AT-cut quartz plate 11 generally has the longitudinal direction (length L) as the X-axis direction and the short direction (width W) as the Z′-axis direction. is there. Electrodes 12a and 12b are formed on the front and back surfaces of the AT-cut quartz plate 11 through a mask in a vacuum deposition or sputtering apparatus to form a quartz crystal resonator element. The terminal electrode (not shown) on the package side and the lead electrode extending from each of the electrodes 12a and 12b to the edge of the AT-cut quartz plate 11 are conductively fixed using the conductive adhesives 13a and 13b, and the crystal is crystallized. Configure the vibrator.

上記のように構成された水晶振動素子の電気的等価回路は、一般的にインダクタンスL
1、容量C1、抵抗R1の直列回路に、静電容量C0を並列接続した回路で表される。こ
こで、インダクタンスL1、容量C1、静電容量C0は水晶板の厚さと電極の面積に依存
し、抵抗R1は振動エネルギーの損失を表している。
An electrical equivalent circuit of a crystal resonator element configured as described above generally has an inductance L
1, a circuit in which a capacitance C0 is connected in parallel to a series circuit of a capacitor C1 and a resistor R1. Here, the inductance L1, the capacitance C1, and the capacitance C0 depend on the thickness of the crystal plate and the area of the electrode, and the resistance R1 represents the loss of vibration energy.

図6(d)、(e)に厚みすべりモードの振動変位分布を示すように、水晶板11の辺
比(水晶板の長さLあるいは幅Wと厚さtとの比、L/tあるいはW/t)が小さくなる
と、電極12a、12bとATカット水晶板11の端部との間隔が狭まり、エネルギー閉
じ込め理論を用いて設計しても、振動エネルギーは電極下に閉じ込めきれずに支持部に漏
洩して、直列共振抵抗R1が大きくなる。また、辺比を最適値に選んでもATカット水晶
板11の端部で主振動の振動エネルギーの一部が輪郭モードに変換して、水晶振動素子の
直列共振抵抗R1を劣化させると共に、共振周波数近傍に不要モードが励起される。
As shown in FIGS. 6D and 6E, the vibration displacement distribution in the thickness-slip mode, the side ratio of the crystal plate 11 (the ratio of the length L or width W of the crystal plate to the thickness t, L / t or When (W / t) is reduced, the distance between the electrodes 12a and 12b and the end of the AT-cut quartz plate 11 is narrowed, and even if designed using the energy confinement theory, the vibration energy cannot be confined under the electrodes and the support portion. Leaks to increase the series resonance resistance R1. Even if the side ratio is selected as the optimum value, a part of the vibration energy of the main vibration is converted into the contour mode at the end of the AT-cut quartz plate 11 to degrade the series resonance resistance R1 of the quartz vibration element and the resonance frequency. An unnecessary mode is excited in the vicinity.

直列共振抵抗を改善する手段として、ATカット水晶板11の端部にベベル加工を施す
方法や、図7の断面図に示すように水晶板14の主面中央部をメサ型構造とした水晶板を
用い、厚みすべり振動の振動エネルギーを水晶板の中央部に閉じ込めることにより、支持
部の影響や、端部での他のモードへの変換を極力低減し、水晶振動子の抵抗R1を改良し
、不要モードを抑圧した水晶子が用いられている。
As means for improving the series resonance resistance, a method of beveling the end of the AT-cut quartz plate 11, or a quartz plate having a mesa structure at the center of the main surface of the quartz plate 14 as shown in the sectional view of FIG. By confining the vibration energy of thickness-shear vibration in the center of the quartz plate, the influence of the support and conversion to other modes at the edges are reduced as much as possible, and the resistance R1 of the quartz resonator is improved. A crystal that suppresses unnecessary modes is used.

近年、携帯電話機等の小型化、高機能化に伴い、水晶振動子の小型化、薄型化が強く求
められている。例えば、水晶振動子の外形寸法が3.2mm×2.5mm×1.0mmか
ら更に小型化した2.5mm×2.0mm×0.7mmが求められている。このような要
求に対し、水熱合成法で育成した人工水晶を所定の方位に切断し、所定の厚さに研磨して
水晶板を得る従来の方法と異なり、サファイヤ、シリコン、GaAs等の基板上に水晶膜
をエピタキシャル成長させる気相成長法が、特許文献1に開示されている。図8は特許文
献1に開示されたエピタキシャル成長を行うための装置の概略図であり、この装置を用い
て成長させた水晶膜について、X線回折、走査型電子顕微鏡及び赤外線分光装置を用いて
評価したところ、結晶性の優れた水晶薄膜であると開示されている。
In recent years, with the miniaturization and high functionality of mobile phones and the like, there is a strong demand for miniaturization and thinning of crystal resonators. For example, there is a demand for 2.5 mm × 2.0 mm × 0.7 mm in which the external dimensions of the crystal resonator are further reduced from 3.2 mm × 2.5 mm × 1.0 mm. In response to such demands, unlike conventional methods in which a quartz plate is obtained by cutting an artificial quartz grown by a hydrothermal synthesis method in a predetermined direction and polishing it to a predetermined thickness, a substrate such as sapphire, silicon, GaAs, etc. Patent Document 1 discloses a vapor phase growth method for epitaxially growing a quartz film thereon. FIG. 8 is a schematic diagram of an apparatus for performing epitaxial growth disclosed in Patent Document 1. A quartz film grown using this apparatus is evaluated using an X-ray diffraction, a scanning electron microscope, and an infrared spectrometer. As a result, it is disclosed that the crystal thin film has excellent crystallinity.

特許文献2には、シリコン(Si)基板上に図8に示した装置を用いて水晶膜をエピタ
キシャル成長させた後、水晶膜を残して基板を凹陥状にエッチング加工すると共に、前記
水晶膜をくり抜き加工して振動部を形成し、該振動部の両面に電極を付着して水晶振動子
を構成する方法が開示されている。また、特許文献3には、図9に示すように水晶膜のエ
ピタキシャル成長を行うための装置内の基板台20上に基板21を配置し、該基板21上
にマスク22を載置する。そして、このマスク22を介して水晶膜をエピタキシャル成長
させて、マスクの開口部の大きさに相当する形状の水晶薄膜を得る方法が開示されている
In Patent Document 2, after a crystal film is epitaxially grown on a silicon (Si) substrate using the apparatus shown in FIG. 8, the substrate is etched into a concave shape while leaving the crystal film, and the crystal film is cut out. A method is disclosed in which a crystal part is formed by processing to form a vibration part and attaching electrodes to both sides of the vibration part. Further, in Patent Document 3, as shown in FIG. 9, a substrate 21 is arranged on a substrate table 20 in an apparatus for epitaxial growth of a crystal film, and a mask 22 is placed on the substrate 21. A method of epitaxially growing a quartz film through the mask 22 to obtain a quartz thin film having a shape corresponding to the size of the opening of the mask is disclosed.

また、特許文献4にはプラノコンベックス形水晶エピタキシャル薄膜の製造方法が開示
されている。図10(a)に示すように、サファイヤ、シリコン、あるいはガリウム砒素
等の材料に所望の曲率をもった多数の窪みを有する基台31を形成する。この基台31を
図8に示す装置内に配置し、珪素源としてアルコシドを気化して流入させ、窪みにバッフ
ァー層を形成し、その上に水晶エピタキシャル薄膜を形成する。そして、図10(b)に
示すように基台31から水晶エピタキシャル薄膜32を剥離し、図10(a)と同一形状
のダミー基台へ嵌め込むように載置して研磨定盤などを水晶エピタキシャル薄膜に押しつ
けながら研磨することで、プラノコンベックス形の水晶薄膜が得られると開示されている

また特許文献5には、図11に示すように、サファイヤ基台40にSiO2膜を処理し
た基台40上にマスク41を載置する。そして、マスク41の上部に設けたノズル42か
ら気相状態の圧電材料を吐出して水晶膜を形成する方法が開示されている。このときマス
ク41の内径よりノズル42の内径を小さくすることにより、形成された薄膜結晶43が
ベベリング加工を施した形状(半楕円体)と同様になると開示されている。
特開2002−80296公報 特許第3703773号 特開2005−213080公報 特開2005−239495公報 特開2005−295229公報
Patent Document 4 discloses a method for producing a plano-convex crystal epitaxial thin film. As shown in FIG. 10A, a base 31 having a large number of depressions having a desired curvature is formed in a material such as sapphire, silicon, or gallium arsenide. The base 31 is placed in the apparatus shown in FIG. 8, and alcohol is vaporized as a silicon source to flow in. A buffer layer is formed in the depression, and a crystal epitaxial thin film is formed thereon. Then, as shown in FIG. 10B, the crystal epitaxial thin film 32 is peeled off from the base 31 and placed so as to be fitted into a dummy base having the same shape as in FIG. It is disclosed that a plano-convex crystal thin film can be obtained by polishing while pressing against an epitaxial thin film.
In Patent Document 5, as shown in FIG. 11, a mask 41 is placed on a sapphire base 40 on which a SiO 2 film is processed. A method of forming a quartz film by ejecting a piezoelectric material in a gas phase state from a nozzle 42 provided on an upper portion of a mask 41 is disclosed. At this time, it is disclosed that by making the inner diameter of the nozzle 42 smaller than the inner diameter of the mask 41, the formed thin film crystal 43 becomes similar to the shape (semi-ellipsoid) subjected to the beveling process.
JP 2002-80296 A Japanese Patent No. 3703773 Japanese Patent Laid-Open No. 2005-213080 JP 2005-239495 A JP 2005-295229 A

しかしながら、特許文献2の水晶薄膜振動子は、平板の振動部を有する水晶振動子であ
り、特許文献3の水晶薄膜も平板の水晶基板で、所望とする水晶基板の中央部が厚く周縁
部がなだらかに薄くなる水晶基板は得られない。
また特許文献4に開示されているプラノコンベックス形の水晶薄膜の製造方法では、多
数の窪みを有する基台をサファイヤ、シリコン、あるいはガリウム砒素等の材料で構成し
、予め基台の窪みにバッファー層を形成してから、水晶エピタキシャル薄膜を形成し、こ
れを剥離し、その後研磨して仕上げる必要があり、工数が大幅にかかり、コスト増になる
という問題があった。
また特許文献5の構成では、ベベリング加工を施した形状(半楕円体)の水晶薄膜が得
られるものの、水晶薄膜の取り扱いが難しいという問題があった。
本発明の目的は、水晶基板の両面の中央部に台形状の突起部を有するメサ型の水晶基板
を低コストで製造する製造方法、及びその水晶基板を用いた水晶振動子と水晶発振器を提
供することを目的とする。
However, the crystal thin film resonator of Patent Document 2 is a crystal resonator having a flat vibrating portion, and the crystal thin film of Patent Document 3 is also a flat crystal substrate, where the center portion of the desired crystal substrate is thick and the peripheral portion is A quartz substrate that is gently thinned cannot be obtained.
Further, in the method for producing a plano-convex crystal thin film disclosed in Patent Document 4, a base having a large number of depressions is made of a material such as sapphire, silicon, or gallium arsenide, and a buffer layer is previously formed in the depressions of the base. After forming the crystal, it is necessary to form a quartz epitaxial thin film, peel it off, and then polish and finish it, resulting in a significant increase in man-hours and increased costs.
Further, in the configuration of Patent Document 5, although a quartz thin film having a beveled shape (semi-ellipsoid) can be obtained, there is a problem that it is difficult to handle the quartz thin film.
An object of the present invention is to provide a manufacturing method for manufacturing a mesa crystal substrate having a trapezoidal protrusion at the center of both surfaces of a crystal substrate at a low cost, and a crystal resonator and a crystal oscillator using the crystal substrate. The purpose is to do.

本発明にかかる圧電基板は、圧電基板の小型化を図るため、圧電基板の両主面と所定の
間隔を隔して複数の開口部を有するマスクを配置し、該開口部内に露出した圧電基板面に
大気圧下で圧電膜をエピタキシャル成長させた圧電基板の製造方法であって、前記マスク
の開口部内とその近傍に形成される前記水晶膜が前記圧電基板両面に複数の台形状突起部
を形成し、該台形状突起部の周囲に沿って前記圧電基板を切断して、台形状突起部有する
圧電基板個片を得る製造方法である。
圧電基板に大型の圧電基板と、マトリクス状の開口部を有するマスクと用いることによ
り、台形状突起部有する圧電基板を精度よく、大量に製造することが可能になり、製造コ
ストも大幅に低減できるという利点がある。また、圧電膜の台形状突起部はマスクの開口
部形状、水晶基板とマスクとの間隔、圧電エピタキシャル薄膜を形成する時間とに依存す
るので、極めて精度よく構成することができるという利点がある。
In the piezoelectric substrate according to the present invention, in order to reduce the size of the piezoelectric substrate, a mask having a plurality of openings is arranged at a predetermined interval from both main surfaces of the piezoelectric substrate, and the piezoelectric substrate exposed in the openings is provided. A method of manufacturing a piezoelectric substrate in which a piezoelectric film is epitaxially grown on a surface under atmospheric pressure, wherein the quartz film formed in and near the opening of the mask forms a plurality of trapezoidal protrusions on both sides of the piezoelectric substrate In this manufacturing method, the piezoelectric substrate is cut along the periphery of the trapezoidal protrusion to obtain a piezoelectric substrate piece having the trapezoidal protrusion.
By using a large piezoelectric substrate and a mask having a matrix-like opening as the piezoelectric substrate, it becomes possible to manufacture a large number of piezoelectric substrates having trapezoidal protrusions with high accuracy, and the manufacturing cost can be greatly reduced. There is an advantage. Further, since the trapezoidal protrusion of the piezoelectric film depends on the shape of the opening of the mask, the distance between the quartz substrate and the mask, and the time for forming the piezoelectric epitaxial thin film, there is an advantage that it can be configured with extremely high accuracy.

本発明にかかる圧電基板は、圧電基板の両主面のほぼ中央部に対向して台形状突起部を
備え、該台形状突起部をエピタキシャル成長法で形成した圧電基板である。
この圧電膜の台形状突起部を有した圧電基板は振動エネルギーを中央部に閉じ込める効
果があり、圧電基板を小型化するのに有利である。
The piezoelectric substrate according to the present invention is a piezoelectric substrate provided with trapezoidal protrusions facing substantially central portions of both main surfaces of the piezoelectric substrate, and the trapezoidal protrusions are formed by an epitaxial growth method.
The piezoelectric substrate having the trapezoidal protrusion portion of the piezoelectric film has an effect of confining vibration energy in the central portion, which is advantageous for downsizing the piezoelectric substrate.

本発明にかかる圧電振動子は、上記のように形成した圧電基板の両面に電極を形成した
圧電振動素子と、表面実装用のパッケージと、該パッケージの開口を封止する蓋と、を備
え、前記圧電振動素子を前記パッケージ内に収容し、前記蓋により前記パッケージを気密
封止した圧電振動子である。
このように構成した圧電振動子は、小型化が可能であると共に直列共振抵抗が小さく、
且つ共振周波数近傍の不要モードが抑圧された圧電振動子を低コストで実現できる。
A piezoelectric vibrator according to the present invention includes a piezoelectric vibration element in which electrodes are formed on both surfaces of a piezoelectric substrate formed as described above, a surface mounting package, and a lid for sealing the opening of the package, A piezoelectric vibrator in which the piezoelectric vibration element is accommodated in the package and the package is hermetically sealed by the lid.
The piezoelectric vibrator configured in this way can be reduced in size and has a small series resonance resistance,
In addition, a piezoelectric vibrator in which unnecessary modes near the resonance frequency are suppressed can be realized at low cost.

上記のように構成した圧電振動子と、発振回路と、を備えた圧電発振器を構成する。こ
のように構成した圧電発振器は、小型、高周波、周波数可変範囲の広い圧電発振器が得ら
れ、且つ周波数ジャンプ現象の少ない圧電発振器となるという効果がある。
A piezoelectric oscillator including the piezoelectric vibrator configured as described above and an oscillation circuit is configured. The piezoelectric oscillator configured as described above has an effect that a piezoelectric oscillator having a small size, a high frequency, and a wide frequency variable range can be obtained and a piezoelectric oscillator with less frequency jump phenomenon can be obtained.

前記圧電基板がATカット水晶基板であることと、その製造法、及び前記圧電基板をA
Tカット水晶基板として水晶振動子を構成する。このように構成した水晶振動子は、温度
特性、周波数エージングの良好な特性となる。
The piezoelectric substrate is an AT-cut quartz substrate, its manufacturing method, and the piezoelectric substrate as A
A crystal resonator is configured as a T-cut crystal substrate. The crystal resonator configured as described above has excellent temperature characteristics and frequency aging characteristics.

前記水晶振動子と、発振回路と、を備えた水晶発振器を構成する。このように構成した
水晶発振器は、温度特性、周波数エージングの良好な水晶発振器となる。
A crystal oscillator including the crystal resonator and an oscillation circuit is configured. The crystal oscillator configured as described above is a crystal oscillator having excellent temperature characteristics and frequency aging.

前記圧電基板がPZT(チタン酸ジルコニウム酸鉛)基板であることと、その製造法、
及び前記圧電基板をPZTとして圧電振動子を構成する。このように構成したPZT振動
子は、電気機械結合係数が大きいため、共振子−反共振子周波数の間隔が広いPZT振動
子を得ることができる。
The piezoelectric substrate is a PZT (lead zirconate titanate) substrate;
And a piezoelectric vibrator is constituted by using the piezoelectric substrate as PZT. Since the PZT vibrator configured in this way has a large electromechanical coupling coefficient, a PZT vibrator having a wide resonator-antiresonator frequency interval can be obtained.

前記PZT振動子と、発振回路と、を備えた圧電発振器を構成する。このように構成し
たPZT発振器は、PZT振動子の共振子−反共振子周波数の間隔が広いため、周波数可
変範囲の広いPZT発振器を得ることができる。
A piezoelectric oscillator including the PZT vibrator and an oscillation circuit is configured. Since the PZT oscillator configured as described above has a wide interval between the resonator and antiresonator frequencies of the PZT vibrator, a PZT oscillator having a wide frequency variable range can be obtained.

本発明に係る水晶基板とその製造方法の実施の形態を、図面に基づいて詳細に説明する
。図1は、図8に示したエピタキシャル成長を行うための装置内に配置した水晶基板とマ
スクを拡大して示した概略図である。
この図1に示すように、本実施形態では、ATカット水晶基板(以下、水晶基板と称す
)1の両主面と間隔5を隔してマスク2a、2bを配置し、このマスク2a、2bを装着
した水晶基板1を、エピタキシャル成長を行うための装置の中に載置すると共に、マスク
2a、2bの上下にノズル3を配設する。そして、このノズル3から水晶薄膜の原料ガス
を吐出させる。水晶基板1は高温(550度以上)に保持され、原料ガス((テトラエト
キシシラン+N2)、(O2+N2)、(HCl+N2)、N2)も高温にし、それぞれ所定
の流量で供給する。
An embodiment of a quartz crystal substrate and a method for manufacturing the same according to the present invention will be described in detail with reference to the drawings. FIG. 1 is an enlarged schematic view showing a quartz substrate and a mask arranged in the apparatus for performing epitaxial growth shown in FIG.
As shown in FIG. 1, in this embodiment, masks 2a and 2b are arranged with a distance 5 from both main surfaces of an AT-cut quartz substrate (hereinafter referred to as a quartz substrate) 1, and the masks 2a and 2b. Is mounted in an apparatus for performing epitaxial growth, and nozzles 3 are disposed above and below the masks 2a and 2b. Then, the raw material gas for the crystal thin film is discharged from the nozzle 3. The quartz substrate 1 is held at a high temperature (550 ° C. or higher), and the source gases ((tetraethoxysilane + N 2 ), (O 2 + N 2 ), (HCl + N 2 ), N 2 )) are also heated to a predetermined flow rate. To do.

図2は水晶基板1の両面と所定の間隔を隔してマスク2a、2bを装着した斜視図であ
って、水晶基板1は所定の厚さに研磨し、ポリッシュあるいはエッチング等を施した大型
基板を用い、マスク2a、2bはマトリクス状に複数の開口部4を有するものを用いる。
水晶基板1とマスク2a、2bとの間に隙間5を設けるには、水晶基板1に面する側のマ
スク2a、2bの面に複数個の所定の厚さの突起物を形成すればよい。なお、マスク2a
、2bの材質は高温に耐えるものを用いる。ノズル3より吐出した原料ガスは開口部4内
に露出する水晶基板1上にエピタキシャル成長し、水晶膜6を形成する。さらに、水晶基
板1とマスク2a、2bとの隙間5より入り込む原料ガスにより、開口部4の縁よりマス
ク2a、2bの遮蔽部底面にかけて、傾斜を有する水晶膜6を形成することになる。図3
(a)は水晶基板1とその上にマトリクス状に析出し、台形状に結晶した水晶膜6である
。水晶基板1を台形状突起部の周囲に沿って、つまり破線7に沿って切断することにより
、図3(b)の断面図に示す台形状突起部を有するメサ型水晶基板の個片が得られる。
FIG. 2 is a perspective view in which masks 2a and 2b are mounted on both sides of the quartz substrate 1 at a predetermined interval. The quartz substrate 1 is polished to a predetermined thickness and polished or etched. And masks 2a and 2b having a plurality of openings 4 in a matrix.
In order to provide the gap 5 between the quartz substrate 1 and the masks 2a and 2b, a plurality of protrusions having a predetermined thickness may be formed on the masks 2a and 2b facing the quartz substrate 1. The mask 2a
The material 2b is one that can withstand high temperatures. The source gas discharged from the nozzle 3 is epitaxially grown on the quartz substrate 1 exposed in the opening 4 to form a quartz film 6. Further, the raw material gas entering from the gap 5 between the quartz substrate 1 and the masks 2a and 2b forms the inclined quartz film 6 from the edge of the opening 4 to the bottom of the shielding portion of the masks 2a and 2b. FIG.
(A) is a quartz crystal substrate 1 and a quartz crystal film 6 deposited on the quartz substrate 1 and crystallized in a trapezoidal shape. By cutting the quartz substrate 1 along the periphery of the trapezoidal projection, that is, along the broken line 7, a mesa crystal substrate having a trapezoidal projection shown in the cross-sectional view of FIG. It is done.

水晶基板1の厚さ、その上に形成する水晶膜6の大きさと厚さは、要求仕様に基づいて
設計により決めればよい。
図4は本発明の水晶振動子の断面図である。
この図4に示す水晶振動子は、上記のように形成した台形状突起部を有するメサ型の水
晶基板に電極を付着して水晶振動素子X1を形成し、この水晶振動素子X1をセラミック
パッケージ8の内底部に収容して、セラミックパッケージ8の内部電極8aに導電性接着
剤9を用いて導通固定する。さらに、セラミックパッケージ8の上部周縁部に形成したメ
タライズ部8bと金属蓋10とを抵抗溶接機、Au−Sn封止機、半田封止機、ガラス封
止機、等の封止機により気密封止して小型水晶振動子Y1を構成したものである。このよ
う構成すると、小型であると共に、直列共振抵抗R1が小さく、且つ不要モードが抑圧さ
れた水晶振動子が得られる。
The thickness of the quartz substrate 1 and the size and thickness of the quartz film 6 formed thereon may be determined by design based on the required specifications.
FIG. 4 is a cross-sectional view of the crystal resonator of the present invention.
In the crystal resonator shown in FIG. 4, an electrode is attached to a mesa-type crystal substrate having a trapezoidal protrusion formed as described above to form a crystal resonator element X1, and this crystal resonator element X1 is attached to the ceramic package 8. And conductively fixed to the internal electrode 8a of the ceramic package 8 using the conductive adhesive 9. Further, the metallized portion 8b formed on the upper peripheral edge of the ceramic package 8 and the metal lid 10 are hermetically sealed by a sealing machine such as a resistance welding machine, an Au-Sn sealing machine, a solder sealing machine, a glass sealing machine or the like. The small crystal resonator Y1 is configured by stopping. With this configuration, it is possible to obtain a crystal resonator that is small in size, has a small series resonance resistance R1, and suppresses unnecessary modes.

図5は本発明の水晶振動子Y1を用いたコルピッツ型水晶発振器の回路構成を示す図で
ある。周知のように、コルピッツ型発振回路はトランジスタTrのコレクタ−ベース間に
誘導性素子を、ベース−エミッタ間及びコレクターエミッタ間にそれぞれ容量性素子を接
続して構成する発振回路である。トランジスタTrのコレクタ−ベース間の誘導性素子と
して、ベース−接地間に水晶振動子Y1を用いる。エミッタ−接地間に抵抗R1を接続し
、ベース−接地間に容量C1とC2との直列接続回路を接続すると共に、容量C1、C2
の接続中点とエミッタとを接続して、コルピッツ型発振回路を構成する。電源Vc−接地
間はバイパスコンデンサによって高周波的には短絡されているため、等価回路的にコレク
タ−ベース間に誘導性素子として利用する水晶振動子Y1が挿入されたことになる。また
、容量C1とC2との中点がエミッタに接続されているため、トランジスタTrのベース
−エミッタ間には容量C1が、コレクタ−エミッタ間には容量C2が挿入されることにな
り、いずれも容量性として作用することになる。抵抗R2、R3はブリーダ抵抗でベース
バイアス電圧を設定する。
FIG. 5 is a diagram showing a circuit configuration of a Colpitts-type crystal oscillator using the crystal resonator Y1 of the present invention. As is well known, the Colpitts oscillation circuit is an oscillation circuit configured by connecting an inductive element between the collector and base of a transistor Tr, and a capacitive element between the base and emitter and between the collector and emitter. As an inductive element between the collector and the base of the transistor Tr, a crystal resonator Y1 is used between the base and the ground. A resistor R1 is connected between the emitter and ground, a series connection circuit of capacitors C1 and C2 is connected between the base and ground, and capacitors C1 and C2 are connected.
A Colpitts type oscillation circuit is configured by connecting the connection midpoint of each of these and the emitter. Since the power source Vc and the ground are short-circuited at high frequency by the bypass capacitor, the crystal resonator Y1 used as an inductive element is inserted between the collector and the base in an equivalent circuit. Further, since the midpoint between the capacitors C1 and C2 is connected to the emitter, the capacitor C1 is inserted between the base and emitter of the transistor Tr, and the capacitor C2 is inserted between the collector and emitter. It will act as capacitive. The resistors R2 and R3 are bleeder resistors and set a base bias voltage.

本願発明はATカット水晶基板を例に説明したが、本願発明はこれに限らず、例えば、
LiTaO3、LiNbO3、LBO(Li247)、ランガサイト(La3Ga5SiO1
4)、PZT(チタン酸ジルコニウム酸鉛)基板等の圧電基板に広く適用できることは言
うまでもない。
Although the present invention has been described by taking an AT-cut quartz substrate as an example, the present invention is not limited to this,
LiTaO 3 , LiNbO 3 , LBO (Li 2 B 4 O 7 ), Langasite (La 3 Ga 5 SiO 1)
4 ) Needless to say, the present invention can be widely applied to piezoelectric substrates such as PZT (lead zirconate titanate) substrates.

装置内に配置した水晶基板とマスクの拡大概略図。The enlarged schematic diagram of the quartz substrate and mask which are arrange | positioned in an apparatus. 水晶基板とマスクの斜視図。The perspective view of a quartz substrate and a mask. (a)は水晶基板上に形成された水晶膜の一例を示した図、(b)は個片の台形状メサ型水晶基板の一例を示した図。(A) is a figure showing an example of a quartz film formed on a quartz substrate, and (b) is a figure showing an example of a piece trapezoidal mesa type quartz substrate. 本発明の水晶基板を用いて形成した水晶振動子の断面図。Sectional drawing of the quartz oscillator formed using the quartz substrate of this invention. 本発明の水晶振動子を用いて構成した水晶発振器の一例を示した図。The figure which showed an example of the crystal oscillator comprised using the crystal oscillator of this invention. (a)〜(e)は従来の水晶振動子の概略図。(A)-(e) is the schematic of the conventional crystal oscillator. (a)〜(d)は従来のメサ型水晶基板の断面図。(A)-(d) is sectional drawing of the conventional mesa type | mold crystal substrate. エピタキシャル成長を行うための装置の一例を示した図。The figure which showed an example of the apparatus for performing epitaxial growth. 水晶薄膜の製造方法の一例を示した図。The figure which showed an example of the manufacturing method of a crystal thin film. (a)(b)はプラノコンベックス状の水晶薄膜の製造方法を示した図。(A) and (b) are diagrams showing a method for producing a plano-convex crystal thin film. 半楕円状の水晶薄膜の形成方法を示した図。The figure which showed the formation method of a semi-elliptical crystal thin film.

符号の説明Explanation of symbols

1 ATカット水晶基板、2a、2b マスク、3 ノズル、4 開口部、5 隙間、
6 水晶膜、7 切断線、8 セラミックパッケージ、8a 端子電極、8b メタライ
ズ部、9 導電性接着剤、10 金属蓋、X1 水晶振動素子、Y1 水晶振動子、R1
、R2、R3、R4 抵抗、C0、C1、C2、C4、CL 容量、Tr トランジスタ
、Vc 電源、VO 出力
1 AT-cut quartz substrate, 2a, 2b mask, 3 nozzles, 4 openings, 5 gaps,
6 Crystal film, 7 Cutting line, 8 Ceramic package, 8a Terminal electrode, 8b Metallized part, 9 Conductive adhesive, 10 Metal lid, X1 Crystal resonator element, Y1 Crystal resonator, R1
, R2, R3, R4 resistance, C 0 , C1, C2, C4, CL capacitance, Tr transistor, Vc power supply, V O output

Claims (12)

圧電基板の両主面と所定の間隔を隔して複数の開口部を有するマスクを配置し、該開口
部内に露出した圧電基板面に大気圧下で圧電膜をエピタキシャル成長させた圧電基板の製
造方法であって、
前記マスクの開口部内とその近傍に形成される前記水晶膜が前記圧電基板両面に複数の
台形状突起部を形成し、該台形状突起部の周囲に沿って前記圧電基板を切断して、台形状
突起部有する圧電基板個片を得ることを特徴とする圧電基板の製造方法。
A method for manufacturing a piezoelectric substrate, comprising: a mask having a plurality of openings arranged at a predetermined distance from both main surfaces of a piezoelectric substrate; and a piezoelectric film epitaxially grown at atmospheric pressure on the surface of the piezoelectric substrate exposed in the openings. Because
The quartz film formed in and near the opening of the mask forms a plurality of trapezoidal protrusions on both sides of the piezoelectric substrate, and cuts the piezoelectric substrate along the periphery of the trapezoidal protrusion, A method of manufacturing a piezoelectric substrate, comprising obtaining a piezoelectric substrate piece having a shape protrusion.
圧電基板の両主面のほぼ中央部に対向して台形状突起部を備え、該台形状突起部をエピ
タキシャル成長法により形成したことを特徴とする圧電基板。
A piezoelectric substrate comprising a trapezoidal protrusion facing substantially the center of both main surfaces of the piezoelectric substrate, the trapezoidal protrusion being formed by an epitaxial growth method.
請求項2に記載の圧電基板の両面に電極を形成した圧電振動素子と、表面実装用のパッ
ケージと、該パッケージの開口を封止する蓋と、を備え、前記圧電振動素子を前記パッケ
ージ内に収容し、前記蓋により前記パッケージを気密封止して構成したことを特徴とする
圧電振動子。
A piezoelectric vibration element having electrodes formed on both surfaces of the piezoelectric substrate according to claim 2, a surface mounting package, and a lid for sealing an opening of the package, wherein the piezoelectric vibration element is placed in the package. A piezoelectric vibrator characterized by being housed and hermetically sealing the package with the lid.
請求項3に記載の圧電振動子と、発振回路と、を備えたことを特徴とする圧電発振器。   A piezoelectric oscillator comprising the piezoelectric vibrator according to claim 3 and an oscillation circuit. 前記圧電基板がATカット水晶基板であることを特徴とする請求項1記載の圧電基板の
製造方法。
2. The method for manufacturing a piezoelectric substrate according to claim 1, wherein the piezoelectric substrate is an AT-cut quartz substrate.
前記圧電基板がATカット水晶基板であることを特徴とする請求項2記載の圧電基板。   The piezoelectric substrate according to claim 2, wherein the piezoelectric substrate is an AT-cut quartz substrate. 前記圧電基板がATカット水晶基板であることを特徴とする請求項3記載の圧電振動子
The piezoelectric vibrator according to claim 3, wherein the piezoelectric substrate is an AT-cut quartz substrate.
請求項7に記載の圧電振動子と、発振回路と、を備えたことを特徴とする圧電発振器。   A piezoelectric oscillator comprising the piezoelectric vibrator according to claim 7 and an oscillation circuit. 前記圧電基板がPZT(チタン酸ジルコニウム酸鉛)基板であることを特徴とする請求
項1記載の圧電基板の製造方法。
2. The method for manufacturing a piezoelectric substrate according to claim 1, wherein the piezoelectric substrate is a PZT (lead zirconate titanate) substrate.
前記圧電基板がPZT(チタン酸ジルコニウム酸鉛)基板であることを特徴とする請求
項2記載の圧電基板。
The piezoelectric substrate according to claim 2, wherein the piezoelectric substrate is a PZT (lead zirconate titanate) substrate.
前記圧電基板がPZT(チタン酸ジルコニウム酸鉛)基板であることを特徴とする請求
項3記載の圧電振動子。
4. The piezoelectric vibrator according to claim 3, wherein the piezoelectric substrate is a PZT (lead zirconate titanate) substrate.
請求項11に記載の圧電振動子と、発振回路と、を備えたことを特徴とする圧電発振器
A piezoelectric oscillator comprising the piezoelectric vibrator according to claim 11 and an oscillation circuit.
JP2006005731A 2006-01-13 2006-01-13 Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator Withdrawn JP2007189492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005731A JP2007189492A (en) 2006-01-13 2006-01-13 Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005731A JP2007189492A (en) 2006-01-13 2006-01-13 Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator

Publications (1)

Publication Number Publication Date
JP2007189492A true JP2007189492A (en) 2007-07-26

Family

ID=38344359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005731A Withdrawn JP2007189492A (en) 2006-01-13 2006-01-13 Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP2007189492A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199849A (en) * 2010-02-25 2011-10-06 Nippon Dempa Kogyo Co Ltd Method of manufacturing piezoelectric vibrating piece, piezoelectric vibrating piece and piezoelectric device
US8766514B2 (en) 2010-11-19 2014-07-01 Seiko Epson Corporation Piezoelectric resonator element and piezoelectric resonator
US9431995B2 (en) 2014-07-31 2016-08-30 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
US9837982B2 (en) 2011-03-09 2017-12-05 Seiko Epson Corporation Vibrating element, vibrator, oscillator, and electronic device with stepped excitation section
US9948275B2 (en) 2011-03-18 2018-04-17 Seiko Epson Corporation Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199849A (en) * 2010-02-25 2011-10-06 Nippon Dempa Kogyo Co Ltd Method of manufacturing piezoelectric vibrating piece, piezoelectric vibrating piece and piezoelectric device
US8415858B2 (en) 2010-02-25 2013-04-09 Nihon Dempa Kogyo Co., Ltd. Piezoelectric vibrating pieces and devices, and methods for manufacturing same
US8766514B2 (en) 2010-11-19 2014-07-01 Seiko Epson Corporation Piezoelectric resonator element and piezoelectric resonator
US9231184B2 (en) 2010-11-19 2016-01-05 Seiko Epson Corporation Piezoelectric resonator element and piezoelectric resonator
US9837982B2 (en) 2011-03-09 2017-12-05 Seiko Epson Corporation Vibrating element, vibrator, oscillator, and electronic device with stepped excitation section
US9948275B2 (en) 2011-03-18 2018-04-17 Seiko Epson Corporation Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
US9431995B2 (en) 2014-07-31 2016-08-30 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
US9716484B2 (en) 2014-07-31 2017-07-25 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object

Similar Documents

Publication Publication Date Title
US5668057A (en) Methods of manufacture for electronic components having high-frequency elements
US10009008B2 (en) Bulk acoustic wave (BAW) device having roughened bottom side
US5747857A (en) Electronic components having high-frequency elements and methods of manufacture therefor
Lakin Thin film resonators and filters
US7414349B2 (en) Piezoelectric vibrator, filter using the same and its adjusting method
EP2892153B1 (en) Piezoelectric acoustic resonator with adjustable temperature compensation capability
JP3703773B2 (en) Manufacturing method of crystal unit
JP5879652B2 (en) Method for manufacturing an acoustic wave device
JP2007158486A (en) Crystal resonator element, crystal resonator, and crystal oscillator
KR20080029862A (en) Hbar oscillator and method of manufacture
US7320164B2 (en) Method of manufacturing an electronic component
EP0483358B1 (en) Ultra thin quartz crystal filter element of multiple mode
JP2007208771A (en) Piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
JP2007189492A (en) Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator
JPH0532925B2 (en)
JP5668392B2 (en) Piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
US11031539B2 (en) Piezoelectric vibrator and sensor
JP2007088691A (en) Piezoelectric vibration chip, piezoelectric device, and manufacturing method of them
JPH06120416A (en) Acoustoelectronic integrated circuit and manufacture thereof
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JP2007189491A (en) Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric resonator, and piezoelectric oscillator
US20070024158A1 (en) Integrated resonators and time base incorporating said resonators
KR0158898B1 (en) Electronic acoustic integrated circuit and its manufacturing method
KR20180102971A (en) Film bulk acoustic resonator and method for fabricating the same
CN112702038A (en) Tunable solid-mounted bulk acoustic wave resonator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407