WO2008035399A1 - Appareil de diagnostic de médecine nucléaire - Google Patents

Appareil de diagnostic de médecine nucléaire Download PDF

Info

Publication number
WO2008035399A1
WO2008035399A1 PCT/JP2006/318535 JP2006318535W WO2008035399A1 WO 2008035399 A1 WO2008035399 A1 WO 2008035399A1 JP 2006318535 W JP2006318535 W JP 2006318535W WO 2008035399 A1 WO2008035399 A1 WO 2008035399A1
Authority
WO
WIPO (PCT)
Prior art keywords
collimator
signal
drug
ray
signals
Prior art date
Application number
PCT/JP2006/318535
Other languages
English (en)
French (fr)
Inventor
Hiromichi Tonami
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to PCT/JP2006/318535 priority Critical patent/WO2008035399A1/ja
Priority to JP2008535219A priority patent/JP4737292B2/ja
Priority to CN200680055186.4A priority patent/CN101479625B/zh
Priority to US12/373,015 priority patent/US8232528B2/en
Publication of WO2008035399A1 publication Critical patent/WO2008035399A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/1603Measuring radiation intensity with a combination of at least two different types of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1644Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using an array of optically separate scintillation elements permitting direct location of scintillations

Definitions

  • a radiopharmaceutical is administered to a subject, and a single photon isotope (radioisotope, RI) or a positron radioactive isotope released from the subject's region of interest is collected.
  • the present invention relates to the technology of a nuclear medicine diagnostic device (ECT device) for simultaneously measuring gamma rays or a pair of gamma rays and obtaining a slice image of the region of interest.
  • ECT device nuclear medicine diagnostic device
  • the above-described nuclear medicine diagnostic apparatus that is, an ECT (Emission Computed Tomography) apparatus, and a SPECT (single emission emission tomography) apparatus and a PET (Positron Emission Tomography) apparatus are generally known.
  • the SPECT device applies a radiopharmaceutical containing a single photon radioisotope to a subject and detects ⁇ -rays emitted from the nuclide by a ⁇ -ray detector.
  • the energy of the y-ray which is also emitted by the single phyton radioisotope force often used for inspection with the SPECT device, is around several lOOkeV.
  • SPECT equipment a single gamma ray is emitted, so the angle incident on the gamma ray detector cannot be obtained. Therefore, angle information is obtained by using a collimator to detect only ⁇ rays that are incident on a specific angular force.
  • the SPECT device administers a radiopharmaceutical containing a substance that accumulates in a specific tumor molecule and a radiopharmaceutical containing a single photon radioisotope Tc-99m, Ga-67, T1-201, etc. to the subject.
  • This is an inspection method that detects ⁇ -rays generated more and identifies places that consume a lot of radiopharmaceuticals (for example, places where cancer cells are present).
  • the obtained data is converted into data for each botasel by a method such as filtered back projection.
  • Tc-99 m, Ga-67, and T1-201 used in SPECT devices are 6 hours to 3 days longer than the half-life of radioisotopes used in PET devices.
  • a PET device administers a radiopharmaceutical containing a positron radioisotope to a subject, and detects annihilation ⁇ -rays generated by the positron emitted from the nuclide by a ⁇ -ray detector.
  • positrons emitted from positron radioisotopes used in PET equipment The energy of the annihilation zero line is 511keV-constant because it is extinguished in principle by combining with the electrons of the cells near the positron force.
  • the annihilation ⁇ -rays emitted by the positron emits a pair of X-rays.
  • the PET device administers radiopharmaceuticals and positron radioisotopes 0-15, N-13, C-ll, F-18, etc. containing substances that have the property of collecting in specific cells in the body, and is generated from the radiopharmaceuticals.
  • This is an inspection method for detecting a place where a large amount of radiopharmaceutical is consumed (for example, a place where cancer cells exist) by detecting ⁇ -rays.
  • An example of a radiopharmaceutical is fluorodeoxyglucose (2- [F-18] fluoro-2-deoxy-D-glucose, FDG).
  • FDG is highly accumulated in tumor tissues by glucose metabolism and is therefore used to identify tumor sites.
  • the positron emitted from the positron emitting nuclide contained in the radiopharmaceutical accumulated at a specific location is combined with the electrons of nearby cells and disappears, emitting a pair of ⁇ -rays with energy of 511 keV. These gamma rays are radiated in almost opposite directions (180 ° ⁇ 0.6 °). If this pair of ⁇ -rays is detected by a ⁇ -ray detector, it can be determined which ⁇ -ray detector is connected between which two ⁇ -ray detectors are emitted. By detecting these many gamma ray pairs, it is possible to know where the radiopharmaceutical is consumed.
  • FDG gathers in cancer cells with intense glucose metabolism as described above, it is possible to detect cancer foci using a PET device.
  • the obtained data is converted into the radiation generation density of each botacell by the filtered back projection method shown earlier, and the y-ray generation position (position where radionuclides accumulate, that is, the position of cancer cells) is imaged.
  • Contribute to 0-15, N-13, C-ll, and F-18 used in PET equipment are radioisotopes with a short half-life of 2 to 110 minutes. Since ⁇ rays are attenuated in the body of the subject, absorption correction data for absorption correction is acquired and corrected.
  • the absorption correction data was obtained by calculating the attenuation rate of the X-rays in the body by, for example, using Cs-137 as an external source, irradiating the subject with ⁇ rays from the external source, and measuring the transmission intensity It is data.
  • the conventional nuclear medicine diagnostic apparatus has the following problems.
  • drugs such as drugs using nuclides that release single photons and drugs that use nuclides that release positrons
  • they were unable to detect and image them.
  • these SPECT devices and PET devices exist independently of each other, and the devices that dock them have become very expensive.
  • the present invention has been made in view of such circumstances, and different drugs such as a drug using a nuclide that releases a single photon and a drug using a nuclide that releases a positron are simultaneously tested. It is an object of the present invention to provide a nuclear medicine diagnostic apparatus that detects and images them at the same time.
  • the present invention has the following characteristic means.
  • the invention according to claim 1 is a nuclear medicine diagnostic apparatus, and is arranged in a ring shape, and includes a plurality of ⁇ -ray detectors that convert incident ⁇ -rays into electrical signals, and the plurality of ⁇ -ray detections.
  • a collimator arranged to be rotatable along the front surface of the vessel and shielding a part of a single photon; collimator position detecting means for detecting the position of the collimator; and the plurality of shoreline detector forces substantially simultaneously.
  • a simultaneous measuring means for outputting an electrical signal to be output as a simultaneous measurement signal, and a first drug force in which the electrical signals output from the plurality of X-ray detectors are integrated in the subject are released.
  • An energy discriminating means for discriminating between a first signal caused by photon and a second drug force accumulated in the subject and a second signal caused by the released positron, the first signal and
  • the collimator First position specifying means for specifying the position of the first drug accumulated in the subject based on the position, and accumulation in the subject based on the simultaneous measurement signal and the second signal.
  • a second position specifying means for specifying the position of the second drug, wherein the positions of the first drug and the second drug are specified simultaneously.
  • the invention according to claim 2 is the nuclear medicine diagnostic apparatus according to claim 1, wherein the collimator is a two-dimensional collimator.
  • the invention according to claim 3 is the nuclear medicine diagnostic apparatus according to claim 1, wherein the collimator is a one-dimensional collimator and is arranged in front of the plurality of ⁇ -ray detectors. And a scepter.
  • the invention according to claim 4 is the nuclear medicine diagnostic apparatus according to any one of claims 1 to 3, wherein the energy discriminating means includes two ⁇ from the first signal. Scattered rays that reduce the effects of scattered ⁇ -rays generated from positrons emitted from the second drug accumulated in the subject by removing signals measured almost simultaneously by the line detector It further has a removing means.
  • the invention according to claim 5 is the nuclear medicine diagnostic apparatus according to any one of claims 1 to 4, wherein the nuclide contained in the first drug and the second drug is selected.
  • the method further comprises nuclide estimation means for estimating the decay time of radioactive decay of the nuclide.
  • the nuclear medicine diagnostic apparatus of the present invention in order to further improve the diagnostic accuracy, different drugs such as a drug using a nuclide releasing a single photon and a drug using a nuclide releasing a positron are simultaneously used. Even when administered to a subject, they can be detected and imaged simultaneously.
  • the detector having the SPECT function and the PET function is shared, it can be provided at a reasonable price.
  • the collimator can be made one-dimensional. Therefore, the collimator to be rotated can be reduced in weight, and can be rotated by a smaller driving means.
  • radiopharmaceuticals accumulate.
  • the location of cancer cells can be identified, and the location of other diseases where radiopharmaceuticals containing a single photon radioisotope accumulate can be identified.
  • FIG. 1 is a cross-sectional view of a nuclear medicine diagnostic apparatus that is a first embodiment of the present invention.
  • FIG. 2 is a front sectional view of a nuclear medicine diagnostic apparatus which is a first embodiment of the present invention.
  • FIG. 3 is an external view of the ⁇ -ray detector of the present invention viewed from the X direction.
  • FIG. 4 is an external view of the ⁇ -ray detector of the present invention viewed from the heel direction.
  • FIG. 5 is a diagram showing an example of a position calculation circuit according to the ⁇ -ray detector of the present invention.
  • FIG. 6 is a diagram showing an energy spectrum of the ⁇ -ray detector of the present invention.
  • FIG. 7 is a block diagram illustrating a discrimination function of the present invention.
  • FIG. 8 is a diagram for explaining an energy spectrum and an energy window of a ⁇ -ray detector according to the present invention.
  • FIG. 9 is a diagram for explaining an energy spectrum and an energy window of a ⁇ -ray detector according to the present invention.
  • FIG. 10 is a cross-sectional view of a nuclear medicine diagnostic apparatus that is a second embodiment of the present invention.
  • FIG. 11 is a front sectional view of a nuclear medicine diagnostic apparatus which is a second embodiment of the present invention.
  • FIG. 1 shows a transverse section of the nuclear medicine diagnostic apparatus 1 of the present invention.
  • different drugs such as a drug using a nuclide that releases a single photon and a drug using a nuclide that releases a positron are simultaneously administered to subject 2 lying on bed 7. It is assumed that this is the case.
  • FIG. 1 shows that there is a drug accumulation site 11 using a nuclide releasing a single photon and a drug accumulation site 21 using a nuclide releasing a positron in the body of a subject 2.
  • the first drug is described as including a nuclide Tc-99m that releases single photon.
  • the energy of ⁇ rays by this nuclide is 141 keV, and the half-life is 6 hours.
  • the second drug will be described as including a nuclide that releases positron (2- [F-18] fluoro-2-deoxy-D-glucose, FDG). Since this nuclide emits positron, it combines with the electrons of nearby cells and disappears, emitting a pair of ⁇ -rays with energy of 511keV. The half-life is 110 minutes.
  • the nuclear medicine diagnostic apparatus of the present invention simultaneously images, identifies and identifies the positions of these drugs accumulated in a subject.
  • the ⁇ -ray detector 3 for detecting a drug using a nuclide that emits a single photon and a drug using a nuclide that emits a positron are common.
  • the two-dimensional collimator 4 is necessary.
  • the two-dimensional collimator 4 is coupled by a ring-shaped support member 5 that exists all around.
  • the support member 5 is guided by a bearing 6 disposed on the gantry 10 and is configured to be rotated by a drive mechanism (not shown) having an external force.
  • the two-dimensional collimator 4 is a two-dimensional grid of shielding materials combined.
  • the ⁇ -ray detector 3 is composed of a ⁇ -ray detector module 40, and is annularly arranged with respect to a predetermined tomographic plane, and a plurality of layers are laminated along the body axis direction of the subject 2. Arranged.
  • FIG. 2 shows a cross section in the front direction of the nuclear medicine diagnostic apparatus 1 of the present invention.
  • the two-dimensional collimator 4 is disposed so as to be rotatable along the front surface of the ⁇ -ray detector 3 that is annularly arranged around a predetermined fault plane. In addition, only a part of the entire circumference exists and is arranged oppositely. In the present embodiment, the force of arranging the two-dimensional collimator at the opposed position is not necessarily opposed.
  • the two-dimensional collimator 4 is indispensable for detecting the single photon gamma ray 12.
  • the ⁇ ray detector 3 ⁇ in the region where it overlaps with the ⁇ ray detector 3 that is circularly arranged around the predetermined fault plane is caused to function together with the 2D collimator 4.
  • All the ⁇ -ray detectors 3 detect annihilation ⁇ -rays 22 having a positron as a source.
  • heavy metals such as lead, tungsten, tungsten alloy, molybdenum, and tantalum are generally used.
  • the ⁇ -ray detector module 40 constituting the ⁇ -ray detector 3 performs position discrimination from a scintillator that emits light upon incidence of gamma rays emitted from a radiopharmaceutical in the subject.
  • the light guide and a photomultiplier tube for converting the light emitted from the scintillator into a pulsed electric signal An example is shown in FIGS. 3 and 4 to explain the y-ray detector module 40 in more detail.
  • Fig. 3 is an external view (side view) of the ⁇ -ray detector module 40 viewed from the X direction
  • Fig. 4 is an external view of the ⁇ -ray detector module 40 viewed from the X direction. It is a figure (front view).
  • the ⁇ -ray detector 4 is partitioned by appropriately sandwiching the light reflecting materials 43 and 53, and 90 scintillators 41 (51), 9 in the X direction and 10 in the heel direction, are two-dimensionally arranged in close contact.
  • the scintillator group 42 (52) and a light frame optically coupled to the scintillator group 42 (52) and combined with light reflectors 47 and 57 are embedded to define a number of small sections.
  • FIG. 4 shows a photomultiplier tube 61 and a photomultiplier tube 63.
  • scintillator 41 (51) Gd2SiO: Ce, Zr
  • Ce Inorganic crystals such as Bi Ge 2 O 3 and Lu Gd SiO 2: Ce are used.
  • the position and length of the light reflecting material 57 are set so that + P4) changes at a constant rate according to the position of each scintillator 51.
  • the light reflecting material 43 (53) between the scintillators 41 (51) and the light reflecting material 47 (57) of the light guide 46 (56) are mainly composed of a polyester film as a base material. And titanium oxide multilayer films are often used, and their reflection efficiency is so high that they are used as light reflecting elements. Strictly speaking, depending on the incident angle of light, a transmissive component is generated. The shape and arrangement of the light reflecting material 43 (53) and the light reflecting material 46 (56) have been determined.
  • FIG. 5 is a block diagram showing the configuration of the position calculation circuit of the ⁇ -ray detector.
  • the position calculation circuit is composed of adders 71, 72, 73, 74 and position discrimination circuits 75, 76.
  • the output P1 of the photomultiplier tube 61 and the output ⁇ 3 of the photomultiplier tube 63 are input to the adder 71 and the photoelectron
  • the output ⁇ 2 of the multiplier 62 and the output ⁇ 4 of the photomultiplier 64 are input to the adder 72.
  • the addition outputs (P1 + P3) and ( ⁇ 2 + ⁇ 4) of both adders 7 1 and 72 are input to the position discriminating circuit 75, and the incident position of the gamma rays in the X direction is obtained based on both calorie calculation forces.
  • the output P1 of the photomultiplier tube 61 and the output ⁇ 2 of the photomultiplier tube 62 are input to the adder 73 and the photomultiplier tube 63
  • the output ⁇ 3 and the output ⁇ 4 of the photomultiplier tube 64 are input to the adder 74.
  • the addition outputs ( ⁇ 1 + ⁇ 2) and ( ⁇ 3 + ⁇ 4) of both adders 73 and 74 are input to the position discriminating circuit 76, and the incident position of the gamma ray in the ⁇ ⁇ direction is obtained based on both addition outputs.
  • the calculated value (P1 + P2 + P3 + P4) shows the energy for that event, and is displayed as an energy spectrum as shown in Fig. 6.
  • FIG. 7 is a block diagram showing an outline for detecting annihilation y-rays and single photon ⁇ -rays by a positron.
  • the energy discriminating means 81 provides an energy window (for example, 100 keV) centered on 141 keV on the energy spectrum map, and outputs a signal entering the first as a first signal Sin.
  • an energy window eg, lOOkeV
  • a signal entering the window is output as the second signal S2n.
  • the first signal Sin output from the energy discriminating means 81 is input to the first position specifying means 82.
  • the first position specifying means 82 outputs a signal S1 for specifying the position of the first medicine.
  • To locate the first drug see Figure 1 and Figure 2.
  • the single photon ⁇ -ray 12A that passes through the rotating 2D collimator 4 and reaches the ⁇ -ray detector 3 A must be detected as a single photon ⁇ -ray! /.
  • detector selection means 821 uses the first signal Sin output from the energy discrimination means, the signal S1A from the ⁇ -ray detector 3 ⁇ ⁇ that overlaps the two-dimensional collimator 4, and the signal SIB from the ⁇ -ray detector 3 ⁇ that does not overlap. Output to and separately. By counting the signal S1A while rotating the collimator 4, the first drug accumulation site 11 can be accurately identified.
  • Compton scattering is caused in the subject 2 like the annihilation ⁇ -ray 22C of the annihilation ⁇ -ray 22 starting from the second drug accumulation site 21, and the traveling path is There is a Compton scattered ray 22D that is emitted by changing and lowering the energy.
  • this Compton scattered ray 22D has an energy of around 141 keV, for example, passes through the rotating two-dimensional collimator 4 and reaches the ⁇ -ray detector 3A, the second drug accumulation site 2 1 Is mistaken for the first drug concentration site.
  • the scattered radiation removal means 822 receives the signals S1A and S1B as input, detects the signal S1AB entering the time window (for example, within 6 ns) by the simultaneous measurement means 823, and excludes it from the signal S1A.
  • the powerful process can eliminate the effects of annihilation gamma rays whose energy has been reduced by Compton scattering.
  • the second signal S2n output from the energy discriminating means 81 is input to the second position specifying means 83.
  • the second position specifying means 83 has a function of specifying the position of the second medicine.
  • the second position specifying means 83 extracts signals S2 that are simultaneously measured at two locations by the simultaneous measuring means 831.
  • the simultaneous measurement means 831 extracts a signal that falls within the time window (for example, within 6 ns) as the signal S2 by the annihilation gamma ray.
  • the position of the second drug can be identified from the two positions where the signal was observed.
  • the signal S ⁇ force output from all the ⁇ -ray detectors by the energy discriminating means 31 and the signals Sln and S2n having a predetermined energy by the energy discriminating means 81 are obtained.
  • the simultaneous measurement means 831 included in the annihilation ⁇ -ray detection means 83 can extract only the signals related to the annihilation ⁇ -rays radiated as a pair facing each other by approximately 180 °.
  • the energy of the annihilation ⁇ -ray 22 is relatively large as 51 IkeV, so it can pass through the two-dimensional collimator 4.
  • a certain amount of annihilation ⁇ -rays 22 ⁇ is shielded stochastically.
  • the nuclear medicine diagnostic apparatus of the present invention can simultaneously capture and identify the positions of these drugs accumulated in the subject.
  • the X-ray detector 3 for detecting a drug using a nuclide emitting a single photon and a drug using a nuclide releasing a positron can be used in common.
  • FIG. 10 shows a cross section in the lateral direction of the nuclear medicine diagnostic apparatus 1 of the present invention.
  • different drugs such as a drug using a nuclide that releases a single photon and a drug using a nuclide that releases a positron, are placed on bed 7 at the same time. Assuming that it is administered to a laying subject 2! /
  • FIG. 10 shows that there is a drug accumulation site 11 using a nuclide releasing a single photon and a drug accumulation site 12 using a nuclide releasing a positron in the body of the subject 2. .
  • a two-dimensional collimator is required.
  • a scepter 23 is disposed on the entire front surface of the ⁇ -ray detector 3 and two-dimensional collection is performed for detection of the positron.
  • the one-dimensional collimator 24 is coupled by a ring-shaped support member 5 that exists around the entire circumference, and the support member 5 is guided by a bearing 6 disposed on a gantry 10 and is driven by an external force drive mechanism (not shown). Is not possible).
  • the one-dimensional collimator 24 has shielding materials arranged in one direction. That is, a two-dimensional collimator is formed at the portion where the scepter 23 and the one-dimensional collimator 24 are combined.
  • the ⁇ -ray detector 3 is composed of a ⁇ -ray detector module 40, which is arranged on a predetermined tomographic plane. A plurality of layers are arranged along the body axis direction of the subject 2.
  • FIG. 11 shows a cross section in the front direction of the nuclear medicine diagnostic apparatus 1 of the present invention.
  • the one-dimensional collimator 24 in FIG. 11 can be rotated along the front surface of the ⁇ -ray detector 3 arranged in a ring shape with respect to a predetermined fault plane, and there is only a part of the entire circumference. It is arranged.
  • the two-dimensional collimator is formed by the scepter 23 and the one-dimensional collimator 24, and the single photon ⁇ -ray 12 is detected.
  • the ⁇ -ray detector 3 while the 1-D collimator 24 is rotating, the ⁇ -ray detector 3 in the region where it overlaps with the y-ray detector 3 that is circularly arranged around the predetermined slice plane, The single photon ⁇ -ray 12 is detected by functioning together. In addition, all ⁇ -ray detectors 3 detect annihilation ⁇ -rays 22 using positron as a source.
  • the ⁇ -ray detector module 40 that constitutes the ⁇ -ray detector 3 discriminates the position of the scintillator that emits gamma rays emitted from the radiopharmaceutical in the subject and emits light.
  • a photomultiplier tube for converting the light emitted from the scintillator into a pulsed electric signal, the details of which are the same as in the first embodiment.
  • the nuclear medicine diagnostic apparatus of the present invention is a single photon radioisotope accumulated in a subject.
  • Radioisotope, RI Radioisotope, RI
  • ECT device nuclear medicine diagnostic device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine (AREA)

Description

明 細 書
核医学診断装置
技術分野
[0001] この発明は、被検体に放射性薬剤が投与され、この被検体の関心部位に集積され たシングルフオトン放射性同位元素(ラジオアイソトープ, RI)やポジトロン放射性同 位元素から放出された一本の γ線もしくは一対の γ線を同時計測し、関心部位の断 層像を得るための核医学診断装置 (ECT装置)の技術に関する。
背景技術
[0002] 上述した核医学診断装置、すなわち ECT (Emission Computed Tomograph yノ装 ¾とし一し、 SPECT (; single Pnoton Emission Computed Tomography )装置と PET (Positron Emission Tomography)装置が一般に知られている。
[0003] SPECT装置は、シングルフオトン放射性同位元素を含む放射性薬剤を被検体に投 与し、核種カゝら放出される γ線を γ線検出器で検出する。 SPECT装置にて検査時 によく用いられるシングルフオトン放射性同位元素力も放出される y線のエネルギー は数 lOOkeV前後である。 SPECT装置の場合、単一 γ線が放出されるため、 γ線検 出器に入射した角度が得られない。そこで、コリメータを用いて特定の角度力も入射 する γ線のみを検出することにより角度情報を得ている。 SPECT装置は、特定の腫 瘍ゃ分子に集積する性質を有する物質、及びシングルフオトン放射性同位元素 Tc- 99m、 Ga-67、 T1-201等を含む放射性薬剤を被検体に投与し、放射性薬剤より発生 する γ線を検知して放射性薬剤を多く消費する場所 (例えば、癌細胞が存在する場 所)を特定する検査方法である。得られたデータはフィルタードバックプロジェクシヨン などの方法により各ボタセルのデータに変換する。 SPECT装置に用いられる Tc-99 m、 Ga-67、 T1-201は、 PET装置で用いられる放射性同位元素の半減期よりも長く 6 時間から 3日である。
[0004] 一方 PET装置は、ポジトロン放射性同位元素を含む放射性薬剤を被検体に投与し、 核種カゝら放出されるポジトロンによる消滅 γ線を γ線検出器で検出する。 PET装置 にて検査時に用いられるポジトロン放射性同位元素から放出されるポジトロンによる 消滅 0線のエネルギーは、原理的にポジトロン力 付近の細胞の電子と結合して消 滅するものであるため、 511keV—定である。またポジトロンによる消滅 γ線は一対の Ύ線を放射する。 PET装置は体内の特定の細胞に集まる性質を有する物質を含む 放射性薬剤及びポジトロン放射性同位元素 0-15、 N-13、 C-ll、 F-18等を被検体 に投与し、放射性薬剤より発生する γ線を検知して放射性薬剤を多く消費する場所 ( 例えば、癌細胞が存在する場所)を特定する検査方法である。放射性薬剤の一例と して、フルォロデオキシグルコース (2- [F- 18]fluoro- 2- deoxy- D- glucose、 FDG)があ る。 FDGは、糖代謝により腫瘍組織に高集積するため、腫瘍部位の特定に使用され る。特定の箇所に集積した放射性薬剤に含まれた陽電子放出核種カゝら放出された ポジトロンが、付近の細胞の電子と結合して消滅し、 511keVのエネルギーを有する 一対の γ線を放射する。これらの γ線は互いにほぼ正反対の方向(180° ±0.6° ) に放射される。この一対の γ線を γ線検出器で検知すれば、どの 2つの γ線検出器 を結ぶ間でポジトロンが放出されたかがわかる。それらの多数の γ線対を検知するこ とで、放射性薬剤を多く消費する場所がわかる。例えば FDGは前述のように糖代謝 の激しい癌細胞に集まるため、 PET装置により癌病巣を発見することが可能である。 なお、得られたデータは、先ほど示したフィルタードバックプロジェクシヨン方法により 各ボタセルの放射線発生密度に変換され、 y線の発生位置 (放射線核種が集積す る位置、すなわち癌細胞の位置)を画像化することに貢献する。 PET装置に用いられ る 0-15、 N-13、 C-ll、 F-18は 2分から 110分の短半減期の放射性同位元素である また PET装置による検査では、ポジトロン消滅の際に発生する γ線が被検体の体内 で減衰するため、吸収補正のための吸収補正データを取得しこれを用いて補正する 。吸収補正データは、例えば外部線源として Cs-137を用い、外部線源からの γ線を 被検体に照射し、透過強度を測定することにより体内における Ί線の減衰率を計算 により求められたデータである。得られた吸収補正データを用いて体内での γ線の 減衰率を見積り、 FDGからのェミッションにより得られたデータを補正することにより、 より高精度な PET像を得ることが可能である
発明の開示 発明が解決しょうとする課題
[0006] しかしながら、従来の核医学診断装置では、次のような問題がある。すなわち、より診 断精度を上げるためには、シングルフオトンを放出する核種を用いた薬剤とポジトロン を放出する核種を用いた薬剤など異なる薬剤を同時に被検体に投与する必要があ る力 その場合同時にそれらを検出し撮像することができな力つた。またこれら SPEC T装置と PET装置は互いに独立して存在しており、これらをドッキングした装置では 非常に価格の高 、ものになって ヽた。
[0007] この発明は、このような事情に鑑みてなされたものであって、シングルフオトンを放出 する核種を用いた薬剤とポジトロンを放出する核種を用いた薬剤など異なる薬剤を同 時に被検体に投与する必要がある力 その場合同時にそれらを検出し撮像する核医 学診断装置を提供することを目的とする。
課題を解決するための手段
[0008] 上述の課題を解決するために、本発明は以下の特徴的な手段を有する。
すなわち、請求項 1に記載の発明は、核医学診断装置であって、環状に周設された 、入射した γ線を電気信号に変換する複数の γ線検出器と、前記複数の γ線検出 器の前面に沿って回転可能に配置されるとともに、シングルフオトンの一部を遮蔽す るコリメータと、前記コリメータの位置を検出するコリメータ位置検出手段と、前記複数 の Ύ線検出器力 略同時に出力される電気信号を同時計測信号として出力する同 時計測手段と、前記複数の Ί線検出器から出力される電気信号の夫々を、被検体 内に集積した第一の薬剤力 放出されるシングルフオトンに起因する第一の信号と、 被検体内に集積した第二の薬剤力 放出されるポジトロンに起因する第二の信号と に弁別するためのエネルギー弁別手段と、前記第一の信号及び前記コリメータの位 置に基づいて、前記被検体内に集積した第一の薬剤の位置を特定する第一の位置 特定手段と、前記同時計測信号及び前記第二の信号に基づいて、被検体内に集積 した第二の薬剤の位置を特定する第二の位置特定手段とを有することにより、前記 第一の薬剤及び第二の薬剤の位置を同時に特定することを特徴とする。
[0009] また、請求項 2に記載の発明は、請求項 1に記載の核医学診断装置であって、前記 コリメータは、 2次元コリメータであることを特徴とする。 [0010] また、請求項 3に記載の発明は、請求項 1に記載の核医学診断装置であって、前記 コリメータは、 1次元コリメータであるとともに、前記複数の γ線検出器の前面に配置 されたセプターを更に有することを特徴とする。
[0011] また、請求項 4に記載の発明は、請求項 1乃至 3のいずれかに記載の核医学診断装 置であって、前記エネルギー弁別手段は、前記第一の信号から 2箇所の γ線検出器 で略同時に計測された信号を除去することにより、前記被検体内に集積した第二の 薬剤から放出されるポジトロンを発生源とする消滅 γ線の散乱線による影響を低減 する散乱線除去手段を更に有することを特徴とする。
[0012] また、請求項 5に記載の発明は、請求項 1乃至 4のいずれかに記載の核医学診断装 置であって、前記第一の薬剤および前記第二の薬剤に含まれる核種を、核種の放射 性壊変の減衰時間を検出することにより推定する核種推定手段を更に有することを 特徴とする。
[0013]
発明の効果
[0014] この発明に係る核医学診断装置によれば、より診断精度を上げるために、シングルフ オトンを放出する核種を用いた薬剤とポジトロンを放出する核種を用いた薬剤など異 なる薬剤を同時に被検体に投与する場合であっても同時にそれらを検出し撮像する ことができる。
[0015] また、 SPECT¾能と PET機能を持つ検出器が共通化されているのでリーズナブル な価格で提供することができる。
[0016] また、コリメータのみを回転させればよぐ γ線検出器を移動させる必要がない。その 結果、振動などによる雑音信号の発生を抑制することができる。
[0017] また、検出器の前面にセプタを設ければ、コリメータを 1次元とすることができる。従つ て、回転させるコリメータを軽量ィ匕することができ、より小型の駆動手段で回転させる ことができる。
[0018] また、ポジトロンの消滅 γ線力 コンプトン散乱によりシングルフオトンと同等のエネ ルギ一の Ί線として γ線検出器に入射した場合は、エネルギー弁別手段によって、 シングルフオトンに起因した電気信号として弁別される。ただし、コンプトン散乱した 消滅 γ線は、一対で放射されるため、同時計測された信号を除去することにより、散 乱線の影響を低減した高画質な画像が得られる。
[0019] 更に、薬剤に含まれる核種の種類を推定することにより、例えばフルォロデオキシグ ルコース (2- [F- 18]fluoro- 2- deoxy- D- glucose、 FDG)放射性薬剤が集積する癌細胞 の存在する場所を特定することできかつ、さらにシングルフオトン放射性同位元素を 含む放射性薬剤が集積するそれ以外の疾患場所などを特定することができる。 図面の簡単な説明
[0020] [図 1]本発明の第一実施例である核医学診断装置の横断面図である。
[図 2]本発明の第一実施例である核医学診断装置の正面断面図である。
[図 3]本発明の γ線検出器の X方向からみた外観図である。
[図 4]本発明の γ線検出器の Υ方向からみた外観図である。
[図 5]本発明の γ線検出器に係る位置演算回路の一例を示す図である。
[図 6]本発明の γ線検出器のエネルギースペクトルを示す図である。
[図 7]本発明の弁別機能を説明するブロック図である。
[図 8]本発明の γ線検出器のエネルギースペクトルとエネルギーウィンドウを説明す る図である。
[図 9]本発明の γ線検出器のエネルギースペクトルとエネルギーウィンドウを説明す る図である。
[図 10]本発明の第二実施例である核医学診断装置の横断面図である。
[図 11]本発明の第二実施例である核医学診断装置の正面断面図である。
符号の説明
[0021] 1
2 '被検体
3、 3Α、 3Β •γ線検出器
4 •2次元コリメータ
5 '支持部材
6 'ベアリング 8 …ベッドの架台
9 …検出器保持部
10 …架台
11 · ··シングルフオトンを放出する核種を用いた薬剤の集積部位 12、 12A、 12B …シングルフォトン 線
21 · ··ポジトロンを放出する核種を用いた薬剤の集積部位
22、 22A、 22B、 22C…消滅 γ線
22D …コンプトン散乱線
23 · ·セプター
24 ••1次元コリメータ
40 • 線検出器モジュール
41、 51 …シンチレータ
42、 52 "シンチレータ群
43、 53 ··光反射材
44、 45、 54、 55· '·カップリング接着剤
46、 56 "ライトガイド
47、 57 ··光反射材
61、 62、 63、 64· ··光電子増倍管
71、 72、 73、 74· ··加算器
75 ··位置弁別回路
76 ··位置弁別回路
発明を実施するための最良の形態
(実施例 1)
以下、本発明の核医学診断装置の第一実施例の構成を図面に示し詳細に説明する 。図 1は本発明の核医学診断装置 1の横方向の断面を示している。より診断精度を上 げるため、シングルフオトンを放出する核種を用いた薬剤とポジトロンを放出する核種 を用いた薬剤など異なる薬剤を、ベッド 7の上に寝力された被検体 2に同時に投与さ れている場合を想定する。 [0023] 図 1は、被検体 2の体内でシングルフオトンを放出する核種を用いた薬剤の集積部位 11及びポジトロンを放出する核種を用いた薬剤の集積部位 21が存在することを示す
[0024] 本実施例では、第一の薬剤は、シングルフオトンを放出する Tc- 99mなる核種を含む として説明する。この核種による γ線のエネルギーは 141keVであり、半減期は 6時間 である。
[0025] 一方、第二の薬剤は、ポジトロンを放出するフルォロデオキシグルコース (2-[F-18]fl uoro-2-deoxy-D- glucose、 FDG)なる核種を含むとして説明する。この核種はポジトロ ンを放出するため、付近の細胞の電子と結合して消滅し、 511keVのエネルギーを有 する一対の γ線を放射する。また半減期は 110分である。
[0026] 本発明の核医学診断装置は、被検体内で集積したこれら薬剤の位置を同時に撮像 、画像ィ匕し特定するものである。また本実施例において、シングルフオトンを放出する 核種を用いた薬剤とポジトロンを放出する核種を用いた薬剤を検出する γ線検出器 3は共通のものである。
[0027] 前述したようにシングルフオトン γ線 12を検出するためには 2次元コリメータ 4が必要 である。図 1の実施例の場合、 2次元コリメータ 4は全周に存在するリング状の支持部 材 5で結合されている。支持部材 5は架台 10に配置されたベアリング 6によってガイド されており外部力もの駆動機構(図示して 、な 、)で回転できるように構成されて 、る 。ここで 2次元コリメータ 4は 2次元的に格子状に遮蔽材が組み合わされたものである
[0028] また γ線検出器 3は γ線検出器モジュール 40から構成されており、所定断層面に対 して環状に周設されており、被写体 2の体軸方向にそって複数層の積層配置をして いる。
[0029] 一方、図 2は本発明の核医学診断装置 1の正面方向の断面を示している。 2次元コリ メータ 4は所定断層面に対して環状に周設された γ線検出器 3の前面に沿って回転 可能に配置されている。また、全周の内、一部分のみ存在し、かつ対向して配置され ている。本実施例では、対向した位置に 2次元コリメータを配置している力 必ずしも 対向させる必要はない。 [0030] 2次元コリメータ 4はシングルフオトン γ線 12を検出するためには不可欠なものである 。つまり 2次元コリメータ 4が回転中に、所定断層面に対して環状に周設された γ線 検出器 3と重なった瞬間の領域にある γ線検出器 3Αについては、 2次元コリメータ 4 と共に機能させることによりシングルフオトン γ線 12の検出を行う。また、全ての γ線 検出器 3は、ポジトロンを発生源とする消滅 γ線 22の検出を行う。尚、 2次元コリメ一 タ 4の遮蔽材の材質としては、鉛、タングステン、タングステン合金、モリブデン、タン タルなど重金属が一般に用いられる。
[0031] ここで、 γ線検出器 3を構成している γ線検出器モジュール 40は、被検体内で放射 性薬剤から放出されたガンマ線を入射して発光するシンチレータと、位置弁別をする ためのライトガイドと前記シンチレータの発光をパルス状の電気信号に変換する光電 子増倍管とから構成されている。 y線検出器モジュール 40についてさらに詳細に説 明するため一例を図 3、図 4に示す。
[0032] 図 3は γ線検出器モジュール 40を Υ方向カゝらみた X方向の外観図(側面図)であり、 図 4は、 γ線検出器モジュール 40を X方向からみた Υ方向の外観図(正面図)である 。 γ線検出器 4は、光反射材 43及び 53が適宜挟み込まれることによって区画され、 X方向に 9個、 Υ方向に 10個の合計 90個のシンチレータ 41 (51)を 2次元的に密着 配置したシンチレータ群 42 (52)と、このシンチレータ群 42 (52)に光学的に結合さ れかつ光反射材 47及び 57が組み合わされた格子枠体が埋設され多数の小区画が 画定されているライトガイド 46 (56)とこのライトガイド 46 (56)に光学的に結合される 4 個の光電子増倍管 61、 62、 63、 64とから構成されている。尚本図 3では光電子増倍 管 61と光電子増倍管 62とが図示されており、図 4では光電子増倍管 61と光電子増 倍管 63とが図示されている。ここでシンチレータ 41 (51)としては、 Gd2SiO: Ce、 Zr
5 doped Gd SiO: Ce、 Lu SiO: Ce、 LuYSiO: Ce、 LaBr: Ce、 LaCl: Ce、 Lul :
2 5 2 5 5 3 3
Ce、: Bi Ge O 、 Lu Gd SiO : Ceなどの無機結晶が用いられる。
4 3 12 0.4 1.6 5
[0033] 図 3に示すように、 X方向に配列された 9個のシンチレータ 41 (X方向においては各 シンチレータ 41間はすべて光反射材 43が揷設されている)にガンマ線が入射すると 可視光に変換される。この光は光学的に結合されるライトガイド 46を通して光電子増 倍管 61〜64へ光が導かれるが、その際、 X方向に配列された光電子増倍管 61 (63 )と光電子増倍管 62 (64)の出力比が一定の割合で変化するように、ライトガイド 46 における各々の光反射材 47の位置と長さおよび角度が調整されている。
[0034] より具体的には光電子増倍管 61の出力を Pl、光電子増倍管 62の出力を P2、光電 子増倍管 63の出力を P3、光電子増倍管 64の出力を P4とすると、 X方向の位置を表 す計算値 { (P1 + P3) - (P2 + P4) }/ (Ρ1 + Ρ2 + Ρ3 + Ρ4)が各シンチレータ 41の 位置に応じて一定の割合で変化するよう光反射材 47の位置と長さが設定されている
[0035] 一方、図 4に示すように、 Y方向に配列された 10個のシンチレータ 51 (中心 4本のシ ンチレータ 51のそれぞれの間には光反射材 53は揷設されておらず、そしてそれ以 外のシンチレータ 51のそれぞれの間には光反射材 53が揷設されている)の場合も 同様に、光学的に結合されるライトガイド 56を通して光電子増倍管 61〜64へ光が導 かれる。すなわち Y方向に配列された光電子増倍管 61 (62)と光電子増倍管 63 (64 )の出力比が一定の割合で変化するように、ライトガイド 56における各々の光反射材 57の位置と長さが設定され、また傾斜の場合は角度が調整されている。
[0036] すなゎち、丫方向の位置を表す計算値{ (?1 + ?2)—(?3 + ?4) }7 (?1 + ?2 + ?3
+ P4)が各シンチレータ 51の位置に応じて一定の割合で変化するよう光反射材 57 の位置と長さが設定されて 、る。
[0037] ここで各シンチレータ 41 (51)間における光反射材 43 (53)及びライトガイド 46 (56 )の光反射材 47 (57)は、主としてポリエステルフィルムを基材とした酸ィ匕ケィ素と酸 化チタニウムの多層膜フィルムが良く用いられ、その反射効率が非常に高いため光 の反射素子として用いられているが厳密には光の入射角度によっては透過成分が発 生しており、それをも計算に入れて光反射材 43 (53)及び光反射材 46 (56)の形状 及び配置は決定されて!、る。
[0038] なお、シンチレータ群 42 (52)はライトガイド 46 (56)とカップリング接着剤 44 (54) にて接着されており、ライトガイド 46 (56)は光電子増倍管 61〜64とカップリング接着 剤 45 (55)にて接着されて!、る。また各シンチレータ 41 (51)が対向して ヽな 、外周 表面は、光電子増倍管 61〜64側との光学結合面を除き光反射材で覆われている。 この場合の光反射材としては主にフッ素榭脂テープが用いられる。 [0039] 図 5は、 γ線検出器の位置演算回路の構成を示すブロック図である。位置演算回路 は、加算器 71、 72、 73、 74と位置弁別回路 75、 76とから構成されている。図 3に示 すように、ガンマ線の X方向の入射位置を検出するために、光電子増倍管 61の出力 P1と光電子増倍管 63の出力 Ρ3とが加算器 71に入力されるとともに、光電子増倍管 62の出力 Ρ2と光電子増倍管 64の出力 Ρ4とが加算器 72に入力される。両加算器 7 1、 72の各加算出力(P1 + P3)と(Ρ2 + Ρ4)とが位置弁別回路 75へ入力され、両カロ 算出力に基づきガンマ線の X方向の入射位置が求められる。同様に、ガンマ線の Υ 方向の入射位置を検出するために、光電子増倍管 61の出力 P1と光電子増倍管 62 の出力 Ρ2とが加算器 73に入力されるとともに、光電子増倍管 63の出力 Ρ3と光電子 増倍管 64の出力 Ρ4とが加算器 74に入力される。両加算器 73、 74の各加算出力(Ρ 1 + Ρ2)と (Ρ3 + Ρ4)とが位置弁別回路 76へ入力され、両加算出力に基づきガンマ 線の Υ方向の入射位置が求められる。さら〖こ計算値 (P1 + P2 + P3 + P4)はそのィ ベントに対するエネルギーを示しており、図 6に示すようなエネルギースペクトルとして 表示される。
[0040] 次に、ポジトロンによる消滅 y線及びシングルフオトン γ線を検出するための構成に ついて、図 7〜図 9を参照して詳細に説明する。
[0041] 図 7は、ポジトロンによる消滅 y線及びシングルフオトン γ線を検出するための概略を 示すブロック図である。ここでは、装置に Ν個の γ線検出器 3を搭載しているものとす る。全ての γ線検出器 3したから出力された電気信号 Sn (n= l, 2,… N)は、エネ ルギー弁別手段 81へ入力される。エネルギー弁別手段 81は、図 8に示すように、ェ ネルギースペクトルマップ上で 141keVを中心にエネルギーウィンドウ(例えば士 100 keV)を設けておいて、その中に入る信号を第一の信号 Sinとして出力するとともに、 図 9に示すように、エネルギースペクトルマップ上で 51 IkeVを中心にエネルギーウイ ンドウ(例えば士 lOOkeV)を設けておいて、その中に入る信号を第二の信号 S2nとし て出力する。
[0042] エネルギー弁別手段 81から出力された第一の信号 Sinは、第一の位置特定手段 8 2へと入力される。第一の位置特定手段 82は、第一の薬剤の位置を特定するための 信号 S1を出力する。第一の薬剤の位置を特定するためには、図 1及び図 2に示すよ うに、回転中の 2次元コリメータ 4を通り抜け、 γ線検出器 3 Aに到達したシングルフォ トン γ線 12Aをシングルフオトン γ線として検出しなければならな!/、。
[0043] ここで、 2次元コリメータ 4は、図示しないコリメータ位置検出手段により、逐次その位 置が検出されている。そこで、検出器選択手段 821を設ける。検出器選択手段 821 は、エネルギー弁別手段から出力された第一の信号 Sinから、 2次元コリメータ 4と重 なる γ線検出器 3Αからの信号 S1Aと、重ならない γ線検出器 3Βからの信号 SIBと に分けて出力する。コリメータ 4を回転させながら、信号 S1Aのカウントを行うことによ り、第一の薬剤の集積部位 11を正確に特定することができる。
[0044] ところが、図 2に示すように、第二の薬剤の集積部位 21を起点とする消滅 γ線 22の 内、消滅 γ線 22Cのように被検体 2内でコンプトン散乱を起こし走行経路を変更して エネルギーを下げて放出されるコンプトン散乱線 22Dが確率的に存在する。このコン プトン散乱線 22Dが例えば 141keV付近のエネルギーを有し、回転中の 2次元コリメ ータ 4を通り抜けた上で、 γ線検出器 3Aに到達した場合、第二の薬剤の集積部位 2 1を、第一の薬剤の集結部位と誤認してしまう。カゝかる問題を解決するため、第一の 位置特定手段 82に散乱線除去手段 822を設けることが望ましい。
[0045] 散乱線除去手段 822は、上記信号 S1A及び S1Bを入力として、同時計測手段 823 でタイムウィンドウ(例えば 6ns以内)に入る信号 S1ABを検出し、信号 S1Aから除外 する。力かる処理により、コンプトン散乱によりエネルギーを下げた消滅 γ線による影 響を除外することができる。
[0046] 一方、エネルギー弁別手段 81から出力された第二の信号 S2nは、第二の位置特定 手段 83へと入力される。第二の位置特定手段 83は、第二の薬剤の位置を特定する 機能を有する。
[0047] 第二の位置特定手段 83は、同時計測手段 831により、 2箇所において同時計測され る信号 S2を抽出する。同時計測手段 831は、タイムウィンドウ(例えば 6ns以内)に入 るものを消滅 γ線による信号 S2であるとして抽出する。その信号が観測された 2点の 位置から、第二の薬剤の位置を特定することができる。
[0048] このように、エネルギー弁別手段 31により、全ての γ線検出器から出力される信号 S η力 、エネルギー弁別手段 81により所定のエネルギーを有する信号 Sln、 S2nを 抽出し、なおかつ、消滅 γ線検出手段 83が有する同時計測手段 831により、略 180 ° 対向して一対で放射される消滅 γ線に関する信号のみを抽出することができる。
[0049] ここで、 γ線検出器 3Αに入射するはずの消滅 γ線 22の一部は、 2次元コリメータ 4 に遮蔽されるようにも思われる。しかし、消滅 γ線 22のエネルギーは 51 IkeVと比較 的大きいため、 2次元コリメータ 4を通り抜けることができる。ただし、コリメータ 4の材質 によっては、確率的に一定量の消滅 γ線 22Βが遮蔽される。
[0050] 以上のように本発明の核医学診断装置は、被検体内で集積したこれら薬剤の位置を 同時に撮像、画像ィ匕し特定することができる。また本発明において、シングルフオトン を放出する核種を用いた薬剤とポジトロンを放出する核種を用いた薬剤を検出する Ύ線検出器 3は共通とできる。
[0051] (実施例 2)
次に、本発明の核医学診断装置の第二実施例について説明する。
[0052] 図 10は本発明の核医学診断装置 1の横方向の断面を示している。第一実施例と同 様に、より診断精度を上げるため被検体へ、シングルフオトンを放出する核種を用い た薬剤とポジトロンを放出する核種を用いた薬剤など異なる薬剤を同時にベッド 7の 上に寝かされた被検体 2に投与されて 、る場合を想定して!/、る。
[0053] 図 10において被検体 2の体内で、シングルフオトンを放出する核種を用いた薬剤の 集積部位 11及びポジトロンを放出する核種を用いた薬剤の集積部位 12が存在する ことを示している。
[0054] 前述したようにシングルフオトン γ線 12を検出するためには 2次元コリメータが必要で ある。図 10の第二実施例の場合、 γ線検出器 3の前面には全周に渡ってセプター 2 3が配置されており、ポジトロンの検出には 2次元収集を行うことになる。一方 1次元コ リメータ 24は全周に存在するリング状の支持部材 5で結合されており、支持部材 5は 架台 10に配置されたベアリング 6によってガイドされており外部力もの駆動機構(図 示していない)により回転可能なものになっている。 1次元コリメータ 24は一方向に遮 蔽材が並べられたものである。すなわち、これらセプター 23と 1次元コリメータ 24が組 み合わされた部分では 2次元コリメータが形成されることになる。
[0055] また γ線検出器 3は γ線検出器モジュール 40から構成されており、所定断層面に対 して環状に周設されており、被写体 2の体軸方向にそって複数層の積層配置をして いる。
[0056] 一方、図 11は本発明の核医学診断装置 1の正面方向の断面を示している。図 11の 1次元コリメータ 24は所定断層面に対して環状に周設された γ線検出器 3の前面に 沿って回転可能であり、全周の内、一部分のみ存在し、一例として対向して配置され ている。セプター 23と 1次元コリメータ 24によって 2次元コリメータを形成し、シングル フオトン γ線 12を検出することになる。つまり 1次元コリメータ 24が回転中に、所定断 層面に対して環状に周設された y線検出器 3と重なった瞬間の領域にある γ線検出 器 3Αについては、セプター 23と 1次元コリメータ 4と共に機能させることによりシング ルフオトン γ線 12の検出を行う。また、全ての γ線検出器 3については、ポジトロンを 発生源とする消滅 γ線 22の検出を行う。
[0057] ここで、 γ線検出器 3を構成して ヽる γ線検出器モジュール 40は、被検体内で放射 性薬剤から放出されたガンマ線を入射して発光するシンチレータと、位置弁別をする ためのライトガイドと前記シンチレータの発光をパルス状の電気信号に変換する光電 子増倍管とから構成されており、詳細は第一実施例と同様である。
[0058] 次に、薬剤の集積部位を検出するためには、消滅 γ線とシングルフオトン γ線を完全 に弁別して検出する必要があるがこれも詳細は第一実施例と全く同様である。
産業上の利用可能性
[0059] 本発明の核医学診断装置は、被検体内で集積したシングルフオトン放射性同位元素
(ラジオアイソトープ, RI)やポジトロン放射性同位元素から放出された一本の γ線も しくは一対の γ線を同時計測し、関心部位の断層像を得るための核医学診断装置( ECT装置)に適している。

Claims

請求の範囲
[1] 環状に周設された、入射した γ線を電気信号に変換する複数の γ線検出器と、 前記複数の Ί線検出器の前面に沿って回転可能に配置されるとともに、シングル フオトンの一部を遮蔽するコリメータと、
前記コリメータの位置を検出するコリメータ位置検出手段と、
前記複数の Ί線検出器力 略同時に出力される電気信号を同時計測信号として出 力する同時計測手段と、
前記複数の Ί線検出器から出力される電気信号の夫々を、被検体内に集積した第 一の薬剤力も放出されるシングルフオトンに起因する第一の信号と、被検体内に集積 した第二の薬剤力 放出されるポジトロンに起因する第二の信号とに弁別するための エネルギー弁別手段と、
前記第一の信号及び前記コリメータの位置に基づいて、前記被検体内に集積した第 一の薬剤の位置を特定する第一の位置特定手段と、
前記同時計測信号及び前記第二の信号に基づいて、被検体内に集積した第二の 薬剤の位置を特定する第二の位置特定手段とを有することにより、
前記第一の薬剤及び第二の薬剤の位置を同時に特定することを特徴とする核医学 診断装置。
[2] 前記コリメータは、 2次元コリメータを有することを特徴とする請求項 1に記載の核医学 診断装置。
[3] 前記コリメータは、 1次元コリメータであるとともに、前記複数の γ線検出器の前面に 配置されたセプターを更に有することを特徴とする請求項 1に記載の核医学診断装 置。
[4] 前記エネルギー弁別手段は、前記第一の信号から 2箇所の γ線検出器で略同時 に計測された信号を除去することにより、前記被検体内に集積した第二の薬剤から 放出されるポジトロンを発生源とする消滅 γ線の散乱線による影響を低減する散乱 線除去手段を更に有することを特徴とする請求項 1乃至 3のいずれかに記載の核医 学診断装置。
PCT/JP2006/318535 2006-09-19 2006-09-19 Appareil de diagnostic de médecine nucléaire WO2008035399A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2006/318535 WO2008035399A1 (fr) 2006-09-19 2006-09-19 Appareil de diagnostic de médecine nucléaire
JP2008535219A JP4737292B2 (ja) 2006-09-19 2006-09-19 核医学診断装置
CN200680055186.4A CN101479625B (zh) 2006-09-19 2006-09-19 核医学诊断装置
US12/373,015 US8232528B2 (en) 2006-09-19 2006-09-19 Nuclear medical diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318535 WO2008035399A1 (fr) 2006-09-19 2006-09-19 Appareil de diagnostic de médecine nucléaire

Publications (1)

Publication Number Publication Date
WO2008035399A1 true WO2008035399A1 (fr) 2008-03-27

Family

ID=39200232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318535 WO2008035399A1 (fr) 2006-09-19 2006-09-19 Appareil de diagnostic de médecine nucléaire

Country Status (4)

Country Link
US (1) US8232528B2 (ja)
JP (1) JP4737292B2 (ja)
CN (1) CN101479625B (ja)
WO (1) WO2008035399A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052820A1 (ja) * 2013-10-10 2015-04-16 株式会社島津製作所 放射線検出器
JP2015520365A (ja) * 2012-05-08 2015-07-16 コーニンクレッカ フィリップス エヌ ヴェ 画像処理システム及び画像処理方法
WO2020195685A1 (ja) * 2019-03-28 2020-10-01 国立研究開発法人量子科学技術研究開発機構 核医学撮像装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2482102B1 (en) * 2011-02-01 2014-06-18 GSI Helmholtzzentrum für Schwerionenforschung GmbH Gamma-ray imaging device
CN103239244B (zh) * 2012-02-10 2015-07-01 北京大基康明医疗设备有限公司 分析器及核医学设备
CN104155673B (zh) * 2014-07-21 2017-04-12 北京永新医疗设备有限公司 伽马射线成像探测器及具有它的系统
US9696439B2 (en) 2015-08-10 2017-07-04 Shanghai United Imaging Healthcare Co., Ltd. Apparatus and method for PET detector
US9910161B1 (en) * 2017-04-27 2018-03-06 Shimadzu Corporation Radiation detector
US20190049448A1 (en) * 2017-08-11 2019-02-14 Wipro Limited Method and device for identifying cancer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172566A (ja) * 1997-08-29 1999-03-16 Toshiba Corp ガンマカメラシステム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105297B2 (ja) * 1990-05-31 1994-12-21 株式会社島津製作所 シングルフォトンect装置
US6171243B1 (en) * 1997-05-30 2001-01-09 Picker International, Inc. Combination of collimated and coincidence information for positron imaging
US6175116B1 (en) * 1997-06-02 2001-01-16 Picker International, Inc. Hybrid collimation and coincidence imager for simultaneous positron and single photon imaging
US6201247B1 (en) * 1998-04-02 2001-03-13 Picker International, Inc. Line source for gamma camera
FR2778467B1 (fr) * 1998-05-11 2000-06-16 Christian Jeanguillaume Perfectionnement du systeme de gamma camera a haute sensibilite
CA2252993C (en) * 1998-11-06 2011-04-19 Universite De Sherbrooke Detector assembly for multi-modality scanners
JP2001159682A (ja) * 1999-12-01 2001-06-12 Toshiba Corp 核医学装置
JP2003520348A (ja) * 2000-01-14 2003-07-02 バン・ドウルメン,アドリアヌス・エイ 単光子放出型コンピュータ撮影法による撮像方法
JP4536212B2 (ja) * 2000-05-24 2010-09-01 浜松ホトニクス株式会社 Pet装置
JP4377536B2 (ja) * 2000-08-30 2009-12-02 浜松ホトニクス株式会社 Pet装置
US20030128801A1 (en) * 2002-01-07 2003-07-10 Multi-Dimensional Imaging, Inc. Multi-modality apparatus for dynamic anatomical, physiological and molecular imaging
JP2006068102A (ja) * 2004-08-31 2006-03-16 Toshiba Corp 超音波治療装置
JP2006284346A (ja) * 2005-03-31 2006-10-19 Shimadzu Corp 放射線断層撮影装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172566A (ja) * 1997-08-29 1999-03-16 Toshiba Corp ガンマカメラシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520365A (ja) * 2012-05-08 2015-07-16 コーニンクレッカ フィリップス エヌ ヴェ 画像処理システム及び画像処理方法
WO2015052820A1 (ja) * 2013-10-10 2015-04-16 株式会社島津製作所 放射線検出器
WO2020195685A1 (ja) * 2019-03-28 2020-10-01 国立研究開発法人量子科学技術研究開発機構 核医学撮像装置
JP7437050B2 (ja) 2019-03-28 2024-02-22 国立研究開発法人量子科学技術研究開発機構 核医学撮像装置

Also Published As

Publication number Publication date
JPWO2008035399A1 (ja) 2010-01-28
JP4737292B2 (ja) 2011-07-27
US8232528B2 (en) 2012-07-31
CN101479625A (zh) 2009-07-08
CN101479625B (zh) 2012-07-18
US20090310735A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP6887427B2 (ja) 低エネルギー放射線量子及び高エネルギー放射線量子の組み合わされた検出のための放射線検出器
CA2252993C (en) Detector assembly for multi-modality scanners
JP6854805B2 (ja) ハイブリッドpet/ctイメージング検出器
JP4737292B2 (ja) 核医学診断装置
KR100991640B1 (ko) 핵의학 진단장치, 형태단층촬영 진단장치, 핵의학용 데이터연산처리방법 및 형태단층화상 연산처리방법
JP4897881B2 (ja) ガンマ線検出器とガンマ線再構築方法
Knoll Single-photon emission computed tomography
Patton et al. Coincidence imaging with a dual-head scintillation camera
JP5126049B2 (ja) 核医学診断装置、形態断層撮影診断装置、核医学用データ演算処理方法および形態断層画像演算処理方法
JP5024182B2 (ja) 断層撮影装置
JP2006284346A (ja) 放射線断層撮影装置
JP3851575B2 (ja) Pet検査装置
JP4003978B2 (ja) 陽電子放出断層撮影装置および陽電子放出断層撮影装置におけるエミッションデータの減弱補正の制御方法
JP2010243395A (ja) X線・ガンマ線撮像装置
JP4984963B2 (ja) 核医学診断装置
JP4604974B2 (ja) Pet装置
JP3778094B2 (ja) 放射線検査装置
JP7437050B2 (ja) 核医学撮像装置
Khalil Positron emission tomography (PET): Basic principles
Musa et al. Simulation and evaluation of a cost-effective high-performance brain PET scanner
US20040159791A1 (en) Pet/spect nuclear scanner
Korotcenkov et al. Medical Applications of II-VI Semiconductor-Based Radiation Detectors
GORDON 28 Radionuclide Imaging
KR20230072173A (ko) 단일 픽셀형 섬광체 기반 검출부 및 이를 포함한 컴프턴 카메라
Reilly Nuclear Medicine Imaging Technology

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055186.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06810277

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535219

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12373015

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810277

Country of ref document: EP

Kind code of ref document: A1