JP2006284346A - 放射線断層撮影装置 - Google Patents

放射線断層撮影装置 Download PDF

Info

Publication number
JP2006284346A
JP2006284346A JP2005104120A JP2005104120A JP2006284346A JP 2006284346 A JP2006284346 A JP 2006284346A JP 2005104120 A JP2005104120 A JP 2005104120A JP 2005104120 A JP2005104120 A JP 2005104120A JP 2006284346 A JP2006284346 A JP 2006284346A
Authority
JP
Japan
Prior art keywords
radiation
subject
ray
data
external radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005104120A
Other languages
English (en)
Inventor
Hiromichi Tonami
寛道 戸波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005104120A priority Critical patent/JP2006284346A/ja
Publication of JP2006284346A publication Critical patent/JP2006284346A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Nuclear Medicine (AREA)

Abstract

【課題】PETやSPECTにより体内代謝に関する機能画像を得る際、低コストで吸収補正データ及び形態画像データを取得でき、かつ当該データ取得時の被検体の被爆線量を低減できる放射線断層撮影装置を提供する。
【解決手段】吸収補正データ及び合成処理のための形態画像データを取得するため、X線CTに代えて、別途、放射性物質を備えた外部放射線源11Aと外部放射線検出手段8とを備える構成とした。
【効果】X線CT装置が不要となるため、装置の低コスト化が実現できる。また、放射性物質からのγ線などを被検体に照射するようにしているため、X線CTのX線管に比べて照射線量を1/100〜1/1000程度とすることができ、被検体の被曝線量を大幅に抑えることができる。
【選択図】図1

Description

本発明は、放射線を利用した放射線断層撮影装置に係り、特に陽電子放出型CT(ポジトロン・エミッション・コンピューテッド・トモグラフィ(Positron Emission Computed Tomography)、以下PETという)及びCTによる放射線検査、または単光子放出型CT(シングル・フォトン・エミッション・コンピューテッド・トモグラフィ(Single Photon Emission Computed Tomography)、以下SPECTという)及びCTによる放射線画像診断を行うのに最適な放射線断層撮影装置に関するものである。
放射線を利用した検査技術は、被検体の内部を非破壊で検査することができる。特に人体を被検体とする放射線検査としては、X線CT、PET及びSPECT等がある。これらの技術はいずれも、人体を透過もしくは人体に投与された薬剤から放出された放射線の積算値を計測し、その値を逆投影することにより人体内の各ボクセルの線減弱係数を計算し画像化する。この画像化のためには膨大なデータを処理する必要があるが、近年のコンピュータ技術の急速な発達は人体の断層像を高速・高精細に提供できるようになった。
X線CTは、X線管からX線を被検体に照射し、被検体の体内を通過したX線の強度を測定してX線の体内通過率から被検体における断面の形態情報を画像化する、すなわち被検体の断層像を得る技術である。被検体の体内を通過したX線強度を被検体に対してX線管の反対側に配置した放射線検出器により測定し、測定されたX線強度を用いてX線管と放射線検出器との間の線減弱係数を求める。X線管及び放射線検出器を、同時に被検体の周囲を周回させて体内における線減弱係数の分布を求める。この線減弱係数を例えばフィルタードバックプロジェクション法(Filtered Back Projection Method)などを用いて各ボクセルの線減弱係数を求め、その値をCT値に変換する。X線CTによく用いられるX線管の管電圧は約80〜130keVである。
一方、PET及びSPECTはX線CT等では検出できない分子レベルでの機能及び代謝の検出が可能であり、被検体の体内の機能画像を提供することができる。
PETは、陽電子放出核種(15O、13N、11C、18F等)、及び体内の特定の細胞に集まる性質を有する物質を含む放射性薬剤を被検体に投与し、その放射性薬剤が体内のどの部位で多く消費されているかを調べる方法である。放射性薬剤の一例として、フルオロデオキシグルコース(2-[F-18]fluoro-2-deoxy-D-glucose、18FDG)がある。18FDGは、糖代謝により腫瘍組織に高集積するため、腫瘍部位の特定に使用される。特定の箇所に集積した放射性薬剤に含まれた陽電子放出核種から放出された陽電子が、付近の細胞の電子と結合して消滅し、511keVのエネルギーを有する一対のγ線を放射する。これらのγ線は互いにほぼ正反対の方向(180°±0.6°)に放射される。この一対のγ線をγ線検出器で検知すれば、どの2つのγ線検出器を結ぶ間で陽電子が放出されたかがわかる。それらの多数のγ線対を検知することで、放射性薬剤を多く消費する場所がわかる。例えば18FDGは前述のように糖代謝の激しい癌細胞に集まるため、PETにより癌病巣を発見することが可能である。なお、得られたデータは、先ほど示したフィルタードバックプロジェクション方法により各ボクセルの放射線発生密度に変換され、γ線の発生位置(放射線核種が集積する位置、すなわち癌細胞の位置)を画像化することに貢献する。PETに用いられる15O、13N、11C、18Fは2分から110分の短半減期の放射性同位元素である。
PETによる検査では、陽電子消滅の際に発生するγ線が被検体の体内で減衰するため、吸収補正のための吸収補正データを取得しこれを用いて補正する。吸収補正データは、例えば外部線源として137Csを用い、外部線源からのγ線を被検体に照射し、透過強度を測定することにより体内におけるγ線の減衰率を計算により求められたデータである。得られた吸収補正データを用いて体内でのγ線の減衰率を見積り、18FDGからのエミッションにより得られたデータを補正することにより、より高精度なPET像を得ることが可能である。
SPECTは、単光子放出核種を含む放射性薬剤を被検体に投与し、核種から放出されるγ線をγ線検出器で検出する。SPECTによる検査時によく用いられる単光子放出核種から放出されるγ線のエネルギーは数100keV前後である。SPECTの場合、単一γ線が放出されるため、γ線検出器に入射した角度が得られない。そこで、コリメータを用いて特定の角度から入射するγ線のみを検出することにより角度情報を得ている。
SPECTは、特定の腫瘍や分子に集積する性質を有する物質、及び単光子放出核種(99mTc、67Ga、201Tl等)を含む放射性薬剤を被検体に投与し、放射性薬剤より発生するγ線を検知して放射性薬剤を多く消費する場所(例えば、癌細胞が存在する場所)を特定する検査方法である。SPECTの場合も、得られたデータはフィルタードバックプロジェクションなどの方法により各ボクセルのデータに変換する。なお、SPECTでも吸収補正データを取得することがしばしばある。SPECTに用いられる99mTc、67Ga、201Tlは、PETに用いられる放射性同位元素の半減期よりも長く6時間から3日である。
上述のようにPET及びSPECTは、体内代謝を利用して機能画像を得るために、放射性薬剤が集積した部位をコントラスト良く抽出できるが、周辺臓器との位置関係を正確に把握できない問題がある。そこで近年、X線CTによって得られた断層像である形態画像と、PETまたはSPECTによって得られた断層像である機能画像とを合成してより精密な診断を行なう技術(以下フュージョン技術という)が注目されている。本技術の一例として、特開平7−20245号公報記載の技術がある(特許文献1)。
特開平7−20245号公報記載の装置は、X線CTとPETとを密着させて設置し、被検体が横たわっているベッドを水平方向に移動させて両装置を用いて被検体の検査を行う。この場合、2つの検査を行う時間間隔が短く、被検体はベッドの上でほとんど動かないため2つの検査装置で得られたデータであるPETデータとX線CTデータの対応関係が分かる。その対応関係の情報を用いることにより、PETデータとX線CTデータとを合成し、被検体の病巣位置を精密に特定している。
また上述した装置では、吸収補正データはX線CTの撮像により取得して、得られた吸収補正データを用いてPETデータの補正を行うのが一般的である。
特開平7−20245号公報
上記の公開公報に記載された放射線検査装置では、吸収補正データや機能画像を形態画像と重畳させるためのフュージョン技術のデータを、通常のX線CTで取得しているので、被検体への照射線量が大きく、被曝線量が問題となっている。
さらに、一般にPETは非常に高価な装置であるがX線CTを組み合わせるとさらにコストが高いものになってしまい、一般にX線CTの方は常に使用するとは限らないため、リーズナブルなものとはいえない。
本発明の目的は、X線CTを用いることなく低コストで吸収補正データ及びフュージョン技術のための形態画像データ及びエミッションデータを取得できかつ、吸収補正データ及びフュージョン処理のための形態画像データ取得時の被検体への被曝線量を小さく抑えた放射線断層撮影装置を提供することにある。
上記の目的を達成する本発明の放射線断層撮影装置は、被検体内の放射性物質から放出され被検体外部へ放射された放射線を検出する手段と、検出されたデータから被検体の所定断層面についてのデータを収集する手段と、放射性物質を備え放射線を放出する外部放射線源と、該外部放射線源から被検体を挟んで対向する位置に配設される外部放射線検出手段と、前記外部放射線源と外部放射線検出手段とから前記所定断層面と同一の断層面に関して放射線吸収補正用データを収集する手段と、前記被検体の所定断層面についてのデータを、前記同一の断層面に関して得た放射線吸収補正用データを用いて補正し、補正後のデータから機能的断層画像を構成する手段とを備えたことを特徴としている。
ここでいう「機能的断層画像」とは、被検体内の放射性物質が集積する状態を画像化したものであって、被検体の生体機能を画像化したものである。例えば、PETでは放射性物質を含む薬剤を被検体に投与すれば、薬剤は糖代謝の激しい癌細胞に集まるため、放射線核種が集積する位置すなわち癌細胞の位置を画像化することができる。
本発明では、吸収補正データ及びフュージョン処理のための形態画像データを取得するために、X線管を備えたX線CT装置を用いるのではなく、放射性物質を備えた外部放射線源と、前記外部放射線源からの放射線を検出する外部放射線検出手段を用いているため、X線CTは必要ではなく低コストの装置が実現できる。
さらに、放射性物質を備えた外部放射線源からγ線などを被検体に照射するようにしたため、X線CTのX線管に比べて照射線量が1/100〜1/1000程度の低線量照射とすることができ、被検体の被曝線量を小さく抑えることができる。
本発明の好適な一実施例である放射線断層撮影装置を図に基づいて説明する。
図1及び図2における本実施例の放射線断層撮影装置1は、撮像装置2、被検体保持装置16、信号弁別装置19、同時計数装置26、コンピュータ27、記憶装置28及び表示装置29を備えている。被検体保持装置16は、支持部材17及び支持部材17の上端部に配設され長手方向に移動可能なベッド18を有する。撮像装置2は、ベッド18の長手方向に対して直角の方向に設置されており、放射線検出器環状体3、吸収補正用放射線検出器環状体7、外部線源周方向移動装置10を有する。放射線検出器環状体3は、環状保持部5、及び環状保持部5の内側に環状に設置された多数の放射線検出器4を含む。さらに吸収補正用放射線検出器環状体7は、環状保持部9、及び環状保持部9の内側に環状に設置された多数の吸収補正用放射線検出器8を含む。環状保持部5および吸収補正用放射線検出器環状体7は、支持部材6上に設置される。尚、図2は図1のX-X断面を示している。
放射線検出器環状体3の放射線検出器4及び吸収補正用放射線検出器環状体7の吸収補正用放射線検出器8の内側に、ベッド18が挿入される貫通した孔部30が形成される。放射線検出器4は、環状保持部5に周方向のみならず孔部30の軸方向にも複数列設置されている。一方、吸収補正用放射線検出器8もまた、環状保持部9に周方向に複数列設置されているが、孔部30の軸方向にはさほど多くは設置されない。本実施例では一例として放射線検出器4は軸方向に8列、吸収補正用放射線検出器8は軸方向に1列設置されている。放射線検出器4は、被検体に注入された放射性薬剤の被検体内での集積位置と集積度を検出するためのものである。放射線検出器4は、被検体内で放射性薬剤から放出されたガンマ線を入射して発光するシンチレータと、位置弁別をするためのライトガイドと前記シンチレータの発光をパルス状の電気信号に変換する光電子増倍管とから構成されている。
ここで放射線検出器4についてさらに詳細に説明する。一例を図3、図4に示す。図3は放射線検出器4をY方向からみたX方向の外観図(側面図)であり、図4は、放射線検出器4をX方向からみたY方向の外観図(正面図)である。放射線検出器4は、光反射材43及び53が適宜挟み込まれることによって区画され、X方向に9個、Y方向に10個の合計90個のシンチレータ41(51)を2次元的に密着配置したシンチレータ群42(52)と、このシンチレータ群42(52)に光学的に結合されかつ光反射材47及び57が組み合わされた格子枠体が埋設され多数の小区画が画定されているライトガイド46(56)とこのライトガイド46(56)に光学的に結合される4個の光電子増倍管61、62、63、64とから構成されている。尚本図3では光電子増倍管61と光電子増倍管62とが図示されており、図4では光電子増倍管61と光電子増倍管63とが図示されている。ここでシンチレータ41(51)としては、例えばBi4Ge312(BGO)、Gd2SiO4:Ce(GSO)、Lu2SiO5:Ce(LSO)、LuYSiO5:Ce(LYSO)、NaI、BaF2,CsFなどの無機結晶が用いられる。
図3に示すように、X方向に配列された9個のシンチレータ41(X方向においては各シンチレータ41間はすべて光反射材43が挿設されている)にガンマ線が入射すると可視光に変換される。この光は光学的に結合されるライトガイド46を通して光電子増倍管61〜64へ光が導かれるが、その際、X方向に配列された光電子増倍管61(63)と光電子増倍管62(64)の出力比が一定の割合で変化するように、ライトガイド46における各々の光反射材47の位置と長さおよび角度が調整されている。
より具体的には光電子増倍管61の出力をP1、光電子増倍管62の出力をP2、光電子増倍管63の出力をP3、光電子増倍管64の出力をP4とすると、X方向の位置を表す計算値{(P1+P3)−(P2+P4)}/(P1+P2+P3+P4)が各シンチレータ41の位置に応じて一定の割合で変化するよう光反射材47の位置と長さが設定されている。
一方、図4に示すように、Y方向に配列された10個のシンチレータ51(中心4本のシンチレータ51のそれぞれの間には光反射材53は挿設されておらず、そしてそれ以外のシンチレータ51のそれぞれの間には光反射材53が挿設されている)の場合も同様に、光学的に結合されるライトガイド56を通して光電子増倍管61〜64へ光が導かれる。すなわちY方向に配列された光電子増倍管61(62)と光電子増倍管63(64)の出力比が一定の割合で変化するように、ライトガイド56における各々の光反射材57の位置と長さが設定され、また傾斜の場合は角度が調整されている。
すなわち、Y方向の位置を表す計算値{(P1+P2)−(P3+P4)}/(P1+P2+P3+P4)が各シンチレータ51の位置に応じて一定の割合で変化するよう光反射材57の位置と長さが設定されている。
ここで各シンチレータ41(51)間における光反射材43(53)及びライトガイド46(56)の光反射材47(57)は、主としてポリエステルフィルムを基材とした酸化ケイ素と酸化チタニウムの多層膜フィルムが良く用いられ、その反射効率が非常に高いため光の反射素子として用いられているが厳密には光の入射角度によっては透過成分が発生しており、それをも計算に入れて光反射材43(53)及び光反射材46(56)の形状及び配置は決定されている。
なお、シンチレータ群42(52)はライトガイド46(56)とカップリング接着剤44(54)にて接着されており、ライトガイド46(56)は光電子増倍管61〜64とカップリング接着剤45(55)にて接着されている。また各シンチレータ41(51)が対向していない外周表面は、光電子増倍管61〜64側との光学結合面を除き光反射材で覆われている。この場合の光反射材としては主にフッ素樹脂テープが用いられる。
図5は、放射線検出器の位置演算回路の構成を示すブロック図である。位置演算回路は、加算器71、72、73、74と位置弁別回路75、76とから構成されている。図3に示すように、ガンマ線のX方向の入射位置を検出するために、光電子増倍管61の出力P1と光電子増倍管63の出力P3とが加算器71に入力されるとともに、光電子増倍管62の出力P2と光電子増倍管64の出力P4とが加算器72に入力される。両加算器71、72の各加算出力(P1+P3)と(P2+P4)とが位置弁別回路75へ入力され、両加算出力に基づきガンマ線のX方向の入射位置が求められる。
同様に、ガンマ線のY方向の入射位置を検出するために、光電子増倍管61の出力P1と光電子増倍管62の出力P2とが加算器73に入力されるとともに、光電子増倍管63の出力P3と光電子増倍管64の出力P4とが加算器74に入力される。両加算器73、74の各加算出力(P1+P2)と(P3+P4)とが位置弁別回路76へ入力され、両加算出力に基づきガンマ線のY方向の入射位置が求められる。
さらに計算値(P1+P2+P3+P4)はそのイベントに対するエネルギーを示しており、図6に示すようなエネルギースペクトルとして表示される。
以上、放射線検出器4について詳細に説明してきたが、吸収補正用放射線検出器8についても同様の構造及び機能を有している。
本実施例では一例として外部線源が3つ設置されている場合を示す。図2において、外部線源周方向移動装置10は、外部線源11A〜11C、外部線源ケース12A〜12C、チャンネルコリメータ13A〜13C及び環状の回転リング14を備える。回転リング14は支持部材6の一端部の外面に取り付けられる。環状のガイドレールであるベアリング15が、回転リング14の一端面に設置される。ベアリング15及び回転リング14は孔部30の周囲を取り囲むように配置される。外部線源11A〜11Cは通常必要のない領域への遮蔽のため外部線源ケース12A〜12C内に納められており、外部線源ケース12A〜12Cには照射領域を規定してγ線をコリメートして放射するための開閉機構(図示しない)を有する窓があり、放射時のみ適宜開閉するよう機構になっている。この場合、窓を開閉するにあたり、機械的方法、電気的方法、遠心力を利用する方法などがある。
外部線源11Aと外部線源ケース12Aとチャンネルコリメータ13A、外部線源11Bと外部線源ケース12Bとチャンネルコリメータ13B、外部線源11Cと外部線源ケース12Cとチャンネルコリメータ13Cが各々対応している。本実施例では外部線源は3つあるため、吸収補正用放射線検出器8も3等分され、それらの手前には各々の外部線源11A〜11Cをにらむように放射状にチャンネルコリメータ13A〜13Cが配置されている。チャンネルコリメータ13A〜13Cの開口部は、吸収補正用放射線検出器8のシンチレータに1対1で対応している。外部線源11A〜11Cから放射されるγ線は、外部線源ケースケース12A〜12Cの窓でファンビーム角度及び軸方向幅の照射領域を規定するようにコリメートされ、チャンネルコリメータ13A〜13Cを通して吸収補正用放射線検出器8に照射される。チャンネルコリメータ13A〜13Cはこのとき発生する被検体35からの散乱線を除去する作用がある。外部線源8としてはγ線を放出する核種、57Co(122keV)、99mTc(141keV)、123I(159keV)、133Ba(356keV)、22Na(511keV)、137Cs(662keV)、などがあり、吸収補正データ及びフュージョン技術のための形態画像データを取得するために用いられる。
本実施例は、吸収補正データの取得、フュージョン技術のための形態画像データの取得及びPET検査(PET用の放射性薬剤に起因して被検体の体内から放射されるγ線を放射線検出器で検出する行為)を一台の撮像装置2を用いて行う例である。
まずPET検査で撮像する断層面と同一の断層面についての吸収補正データを取得し、吸収係数の分布を知る必要がある。これは図1に示すようにPET用の放射性薬剤が投与された被検体35が横たわっているベッド18を移動させて被検体35を孔部30内に内挿された状態で撮像装置2を用いて行なわれる。図2に示すように、外部線源11A〜11Cから放出されたγ線はファンビーム状に孔部30内に挿入された被検体35に照射される。このときベッド18上の被検体35は、3つの外部線源の周方向の移動によりは3方向から照射される。被検体35を透過した後、3方向から照射されたγ線は各々チャンネルコリメータを通して吸収補正用放射線検出器8に照射される。吸収補正用放射線検出器8から、そのγ線の検出信号を出力する。ところで、ポジトロンから放射されるγ線のエネルギーは常に511keVであるので、上述したような外部線源を選ぶとそれとは異なるエネルギーで放射される場合があり、誤差が生じてしまう。そこで、エネルギー補正演算を行なうことにより、γ線吸収係数の分布データを補正してポジトロンのエネルギーについての吸収係数の分布データに変換することが望ましい。
γ線の吸収係数とエネルギーEとの関係は、光電効果関して次の数式(1)で表される。
(数1)
μ=k(E)-3.5 ・・・・(1)
ここでkは原子数、原子番号などで決まる定数である。従って例えば外部線源に57Coを用いた場合、γ線エネルギーは122keVでありそのときに求められらた吸収係数を μ122keV とするとポジトロンでの吸収係数 μ511keV との対応式は次の数式(2)で表される。
(数2)
μ511keV =μ122keV (511/122)-3.5 ・・・・(2)
すなわち数式(2)を用いれば μ511keV を求めることが可能である。
一方、フュージョン技術のための形態画像データも同時に取得するわけであるが、吸収補正用放射線検出器8のシンチレータは、外部線源から放出されるγ線のエネルギーに応じてシンチレータの種類と吸収させる厚さを決めることができる。すなわち、γ線照射エネルギーの低いものを選べばそれだけシンチレータの厚さを薄くでき、コスト的に有利、シンチレータ内を進む光の損失が少なく感度が高いなどの利点がある。以上のように吸収補正データ及びフュージョン技術のための形態画像データの取得が行われる。
次にPET検査について具体的に説明する。図1に示すように孔部30に挿入されたベッド18上の被検体35からはPET用放射性薬剤からの511keVのγ線が放出されている。ここで、γ線は前述したように対となってほぼ正反対の方向(180°±0.6°)に放出され、放射線検出器環状体3のいずれかの放射線検出器4によって検出され、この検出信号を出力する。これら検出信号と前段で取得した吸収補正データを用いてPET画像の再構成を行う。さらに前段では同時にフュージョン技術のための形態画像データの取得もおこなっている。そのためこの場合、2つの検査を行う時間間隔が短く、被検体35はベッド18上でほとんど動かないためフュージョン技術のための形態画像とPET画像は重ね合わせることができ、対応関係が分かる。その対応関係の情報を用いることにより、被検体35の病巣位置を精密に特定することができる。
本実施例ではフュージョン技術のための形態画像取得のために、外部線源とシンチレータと光電子増倍管を用いているため、被検体への照射線量はX線CTの場合よりも圧倒的に小さくて済み、被曝線量が問題とならない。また、外部線源を複数用いており、検査中は全放射線検出器が常に稼動状態になっているため、高感度で有効に利用できている。さらに、吸収補正データの取得、フュージョン処理のための形態画像データの取得及びPET検査のための放射線検出器はすべて一種類で済むため、X線CTを用いる場合に比べ装置はコンパクトにできコスト的にも非常に有利になる。よって、低被曝線量、コンパクト、低コストにて精密にPET検査をすることができる。
本発明の好適な一実施例である放射線検査装置の縦断面図である。 本発明の好適な一実施例である放射線検査装置の横断面図である。 本発明の放射線検出器のX方向からみた外観図である。 本発明の放射線検出器のY方向からみた外観図である。 本発明の放射線検出器に係る位置演算回路の一例を示す図である。 本発明の放射線検出器のエネルギースペクトルを示す図である。
符号の説明
1 …放射線検査装置
2 …撮像装置
3 …放射線検出器環状体
4 …放射線検出器
5 …環状保持部
6 …支持部材
7 …吸収補正用放射線検出器環状体
8 …吸収補正用放射線検出器
9 …環状保持部
10 …外部線源周方向移動装置
11A、11B、11C …外部線源
12A、12B、12C …外部線源ケースケース
13A、13B、13C …チャンネルコリメータ
14 …回転リング
15 …ベアリング
16 …被検体保持装置
17 …支持部材
18 …ベッド
19 …信号弁別装置
26 …同時係数装置
27 …コンピュータ
28 …記憶装置
29 …表示装置
30 …孔部
35 …被検体
41、51 …シンチレータ
42、52 …シンチレータ群
43、53 …光反射材
44、45、54、55…カップリング接着剤
46、56 …ライトガイド
47、57 …光反射材
61、62、63、64…光電子増倍管
71、72、73、74…加算器
75 …位置弁別回路
76 …位置弁別回路

Claims (4)

  1. 被検体内の放射性物質から放出され被検体外部へ放射された放射線を検出する手段と、
    検出されたデータから被検体の所定断層面についてのデータを収集する手段と、
    放射性物質を備え放射線を放出する外部放射線源と、
    該外部放射線源から被検体を挟んで対向する位置に配設される外部放射線検出手段と、
    前記外部放射線源と外部放射線検出手段とから前記所定断層面と同一の断層面に関して放射線吸収補正用データを収集する手段と、
    前記被検体の所定断層面についてのデータを、前記同一の断層面に関して得た放射線吸収補正用データを用いて補正し、補正後のデータから機能的断層画像を構成する手段と
    を備えたことを特徴とする放射線断層撮影装置。
  2. 対向して配設される外部放射線源と外部放射線検出手段とを複数対備えていることを特徴とする請求項1記載の放射線断層撮影装置。
  3. 外部放射線検出手段は所定断層面に対して環状に周設されており、且つ外部放射線源を周方向へ移動させるための外部放射線源移動手段をさらに備えたことを特徴とする請求項1または2記載の放射線断層撮影装置。
  4. 外部放射線源と外部放射線検出手段とから得られる所定断層面に関するデータから同断層面の形態画像を構成する手段をさらに備え、前記機能的断層画像に重畳表示させるようにしたことを特徴とする請求項2または3に記載の放射線断層撮影装置。
JP2005104120A 2005-03-31 2005-03-31 放射線断層撮影装置 Withdrawn JP2006284346A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104120A JP2006284346A (ja) 2005-03-31 2005-03-31 放射線断層撮影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104120A JP2006284346A (ja) 2005-03-31 2005-03-31 放射線断層撮影装置

Publications (1)

Publication Number Publication Date
JP2006284346A true JP2006284346A (ja) 2006-10-19

Family

ID=37406435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104120A Withdrawn JP2006284346A (ja) 2005-03-31 2005-03-31 放射線断層撮影装置

Country Status (1)

Country Link
JP (1) JP2006284346A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017417A (ja) * 2008-07-11 2010-01-28 Univ Of Fukui Pet薬剤送出装置およびその作動方法
US8232528B2 (en) * 2006-09-19 2012-07-31 Shimadzu Corporation Nuclear medical diagnostic device
JP2013181756A (ja) * 2012-02-29 2013-09-12 Hitachi Ltd 放射線計測装置の較正方法及び粒子線治療装置
WO2013147013A1 (ja) 2012-03-28 2013-10-03 独立行政法人放射線医学総合研究所 Mr画像からのpet吸収補正画像生成方法及びコンピュータプログラム
JP2016522890A (ja) * 2013-04-24 2016-08-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光検出器画素アレイ及び画素セルトリガー状態センシング回路を用いた放射量子の検出
JP2017529542A (ja) * 2014-07-03 2017-10-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 放射線検出器及び放射線検出器を作製する方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232528B2 (en) * 2006-09-19 2012-07-31 Shimadzu Corporation Nuclear medical diagnostic device
JP2010017417A (ja) * 2008-07-11 2010-01-28 Univ Of Fukui Pet薬剤送出装置およびその作動方法
JP2013181756A (ja) * 2012-02-29 2013-09-12 Hitachi Ltd 放射線計測装置の較正方法及び粒子線治療装置
WO2013147013A1 (ja) 2012-03-28 2013-10-03 独立行政法人放射線医学総合研究所 Mr画像からのpet吸収補正画像生成方法及びコンピュータプログラム
US9342903B2 (en) 2012-03-28 2016-05-17 National Institute Of Radiological Services Method for generating image for PET attenuation correction from MR image and computer program
JP2016522890A (ja) * 2013-04-24 2016-08-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光検出器画素アレイ及び画素セルトリガー状態センシング回路を用いた放射量子の検出
JP2017529542A (ja) * 2014-07-03 2017-10-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 放射線検出器及び放射線検出器を作製する方法
US10345456B2 (en) 2014-07-03 2019-07-09 Koninklijke Philips N.V. Radiation detector and method for producing a radiation detector

Similar Documents

Publication Publication Date Title
CA2252993C (en) Detector assembly for multi-modality scanners
KR100991640B1 (ko) 핵의학 진단장치, 형태단층촬영 진단장치, 핵의학용 데이터연산처리방법 및 형태단층화상 연산처리방법
US8299437B2 (en) Gamma ray detector and gamma ray reconstruction method
US7652256B2 (en) Solid state based PET retrofit for a CT scanner
Patton et al. Coincidence imaging with a dual-head scintillation camera
PL228457B1 (pl) Tomograf hybrydowy TOF-PET/CT
JP4737292B2 (ja) 核医学診断装置
US20130009066A1 (en) Block Detector With Variable Microcell Size For Optimal Light Collection
JP2006284346A (ja) 放射線断層撮影装置
JP2009281816A (ja) 断層撮影装置
Zanzonico An overview of nuclear imaging
JP2007101234A (ja) 核医学診断装置および核医学診断装置の冷却方法
JP2010243395A (ja) X線・ガンマ線撮像装置
JP4003978B2 (ja) 陽電子放出断層撮影装置および陽電子放出断層撮影装置におけるエミッションデータの減弱補正の制御方法
JP3851575B2 (ja) Pet検査装置
Khalil Elements of gamma camera and SPECT systems
JP4604974B2 (ja) Pet装置
Tipnis et al. Feasibility of a beta-gamma digital imaging probe for radioguided surgery
US20040159791A1 (en) Pet/spect nuclear scanner
Mettivier et al. High Resolution ${}^{125} $ I Pinhole SPECT Imaging of the Mouse Thyroid With the MediSPECT Small Animal CdTe Scanner
WO2019135676A1 (en) Active collimator for positron emission and single photon emission computed tomography
JP4082324B2 (ja) 陽電子放出型ct装置
Korotcenkov et al. Medical Applications of II-VI Semiconductor-Based Radiation Detectors
WO2024048515A1 (ja) 画像取得装置および画像取得方法
Silva Small animal PET imaging using GATE Monte Carlo simulations: Implementation of physiological and metabolic information

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090911