WO2008032805A1 - Procédé d'émission de données et émetteur de données - Google Patents

Procédé d'émission de données et émetteur de données Download PDF

Info

Publication number
WO2008032805A1
WO2008032805A1 PCT/JP2007/067885 JP2007067885W WO2008032805A1 WO 2008032805 A1 WO2008032805 A1 WO 2008032805A1 JP 2007067885 W JP2007067885 W JP 2007067885W WO 2008032805 A1 WO2008032805 A1 WO 2008032805A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmission
length
amplitude
transmission data
Prior art date
Application number
PCT/JP2007/067885
Other languages
English (en)
French (fr)
Inventor
Naoki Suehiro
Original Assignee
Naoki Suehiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naoki Suehiro filed Critical Naoki Suehiro
Priority to JP2008534398A priority Critical patent/JP5303806B2/ja
Publication of WO2008032805A1 publication Critical patent/WO2008032805A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Definitions

  • the present invention relates to a data transmission method and a data transmission device, and more particularly to a data transmission method and a data transmission device for simultaneously transmitting amplitude distribution improvement data.
  • N is a natural number of 2 or more
  • M is a natural number of 2 or more
  • Second data of length M b b b
  • Nth data of length M b b---b
  • Figure 1 shows the transmission data in matrix form.
  • variable W corresponding to the point obtained by dividing the unit circle into N is defined as follows.
  • Figure 4 shows the calculation results of Fig. 2.
  • FIG. 2 when the operation of FIG. 2 is performed as a row vector operation and FIG.
  • the distribution of magnitude (amplitude) is a normal distribution.
  • the amplitude distribution shown in FIG. 5 is a normal distribution and therefore has a large spread. Therefore, a transmitter that transmits the calculation result of FIG. 4 needs a large dynamic range. This dynamic range increases as N increases.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a data transmission method and a data transmission apparatus that improve the distribution of transmission amplitude and reduce the dynamic range. .
  • a data transmission method performs predetermined computations on N transmission data of length M and N different sequences within a predetermined sequence, respectively.
  • the data transmission method of converting N transmission data of length M into N transmission data of length L (where L> M) and transmitting the converted transmission data at the same time Based on the N transmission data of length L, data for improving amplitude distribution of length L is generated, and the data for improving amplitude distribution and N transmission data of length L are simultaneously Or it can be configured to add and transmit.
  • the amplitude distribution improving data is transmitted to the correction data having a length M to the transmission data in the predetermined series. It can be configured to generate a sequence that is not used in the process and the predetermined calculation.
  • the data transmission method of the present invention includes the predetermined calculation.
  • the data transmission method of the present invention can be configured such that the predetermined sequence is a ZCCZ sequence or a row vector component of a DFT matrix.
  • the data transmission method of the present invention is configured to transmit a plurality of the amplitude distribution improvement data simultaneously with the N transmission data of length L. That's the power S.
  • the data transmitting apparatus of the present invention causes a predetermined calculation to be performed on N transmission data of length M and one of a set of predetermined sequences.
  • the data transmission apparatus for converting N transmission data of length M into N transmission data of length L (where L> M) and transmitting N transmission data at the same time, the length Based on the amplitude calculation means for calculating the maximum amplitude and the next amplitude from the N transmission data of L, and the maximum amplitude and the next amplitude calculated by the amplitude calculation means, A correction amount calculating means for calculating an amplitude correction amount; an amplitude distribution improving data generating means for generating amplitude distribution improving data of length L based on the amplitude correction amount calculated by the correction amount calculating means; Amplitude distribution improvement data is transmitted simultaneously with N transmission data of length L. It can be configured to have a transmitting means that.
  • the data transmitting apparatus of the present invention is configured such that the amplitude distribution improving data is transmitted to the correction data of length M in the predetermined series. It can be configured to generate a sequence that is not used in the process and the predetermined calculation.
  • the data transmitting apparatus of the present invention can be configured such that the predetermined calculation is a Kronecker product.
  • the data transmitting apparatus of the present invention provides that the predetermined sequence is a ZCCZ sequence or a DFT
  • It can be configured to be a row vector component of a matrix.
  • FIG. 2 is a diagram for explaining an example of calculation in the present invention.
  • FIG. 3 is a diagram for explaining F 1 .
  • FIG. 4 is a diagram for explaining the calculation result of FIG. 2.
  • FIG. 5 is a diagram for explaining an amplitude distribution.
  • FIG. 6 is a diagram for explaining transmission data conversion.
  • the fourth-order inverse DFT power IJ is expressed by the following equation (3).
  • Equation (3) is expressed by the row vector component of the DFT matrix as follows:
  • the vector f is (1 1 1 1), the vector f is (1 j 1 1]), the vector f is (1-1 1 — 1), and the vector f is (1 -j-1 j).
  • the three transmission data to be transmitted are converted and transmitted as follows.
  • the transmission data b is
  • the transmitted data is a
  • Equation (7) The calculation result of Equation (7) is
  • the maximum amplitude is “4”, and the minimum amplitude is “1 4”. Therefore, the dynamic range becomes “-4” and “4”.
  • the correction data having a length of 5 is calculated and transmitted in the same manner as the three transmission data. At this time, the calculated correction data of length 5 is set so as to reduce the dynamic range of (8).
  • Vectonole f Vectonole f
  • Vectonole f Vectonole f
  • Equation (9) The calculation result of Equation (9) is as follows.
  • the dynamic range is “ ⁇ 4” to “4” is “—4 + jC” to “4 + C”.
  • the portion related to C, C, and C is more than “ ⁇ 4” and less than “4”, and is in the dynamic range.
  • the dynamic range is “1 1 1/3” to “; 1 1/3”, and the first purpose was achieved.
  • the transmission apparatus of the present invention can be implemented, for example, with the configuration shown in FIG.
  • the transmission apparatus in FIG. 7 includes transmission data 10, transmission data conversion means 11 and amplitude calculation means 12.
  • N pieces of transmission data 10 of length M are supplied to transmission data conversion means 11.
  • N transmission data different in length within a predetermined series are operated (calculated) on N transmission data, and N transmission data of length M is long. It is converted to N transmission data of length L (where L> M).
  • the amplitude calculation means 12 calculates the maximum amplitude and the amplitude of the next magnitude from “N transmission data of length L” that is an output from the transmission data conversion means 11.
  • the correction amount calculation unit 13 calculates an amplitude correction amount based on the maximum amplitude calculated by the amplitude calculation unit 12 and the next amplitude.
  • the maximum amplitude MAX calculated by the amplitude calculating means 12 and the amplitude of the next magnitude are calculated.
  • the correction amount is (MAX — MAX) or the positive amount is (MAX — MAX) / 2.
  • the correction data calculation unit 14 calculates correction data based on the amplitude correction amount calculated by the correction amount calculation unit 13.
  • the correction data conversion means 15 converts correction data for the correction data calculated by the correction data calculation means 14.
  • the correction data is converted using a sequence of the same type as that of the transmission data conversion means 11 and not used for the transmission data.
  • the delay means 16 delays the output of the transmission data conversion means 11 in order to match the timing of the output of the transmission data conversion means 11 and the output of the correction data conversion means 15. is there.
  • Addition means 17 adds the output of transmission data conversion means 11 and the output of correction data conversion means 15.
  • Modulation means 18 modulates the output of transmission data conversion means 11 added by addition means 17 and the output of correction data conversion means 15 and radiates from antenna 19.
  • the amplitude of the signal that determines the dynamic range before correction is decreased.
  • the signal that does not determine the dynamic range before correction is also affected, and as a result of correction, the dynamic range before correction may be exceeded in some cases.
  • the maximum amplitude MAX and the next largest amplitude MAX are set in the transmission data before correction.
  • the force S using the row vector component of the vector component of the fourth-order inverse DFT matrix, the vector vector of the fourth-order DFT matrix, as a sequence for performing a predetermined operation on the transmission data It may be a component.
  • the order is not limited to the fourth order, and can be implemented.
  • the vector component of the inverse DFT matrix is used as a sequence for performing a predetermined calculation on the transmission data.
  • the present invention can also be implemented in a ZCZ (Zero Correlation Zone sequence) sequence, a Z CZ ero Cross correlation Lone Sequence sequence, an M sequence ⁇ IJ, or a Gold sequence.
  • the correction may be performed a plurality of times by repeating the force performed once.
  • the adding means 17 adds the output of the converting means 11 and the output of the converting means 15 for transmission, but the two antennas are not added. And send them at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Description

明 細 書
データ送信方法及びデータ送信装置
技術分野
[0001] 本発明は、データ送信方法及びデータ送信装置に係り、特に、振幅分布改善用デ ータを、同時に送信するデータ送信方法及びデータ送信装置に関する。
背景技術
[0002] 送信データとして、長さ M (Mは、 2以上の自然数)のデータが N (Nは、 2以上の自 然数)個ある場合を考える。
[0003] この場合の送信データを、次のように示す。
[0004] 長さ Mの 1番目のデータ: b b b
00 01 0 (M- 1)
長さ Mの 2番目のデータ: b b b
長さ Mの N番目のデータ: b b - - -b
(N— 1) 0 (N— 1) 1 (N- l) (M- l)
この送信データをマトリックス表現すると図 1のようになる。
[0005] 図 1のマトリックス表現が可能な送信データを送信するには、各種の方法が考えら れる。
[0006] ここでは、図 2に示すように、送信データを逆 DFT (Discrete
Fourier Transform)変換(逆離散フーリエ変換; IDFT)して送信する場合を考える
[0007] なお、演算子 F 1は、図 3に示す M行、 N列の行列である。
N
[0008] また、図 3において、単位円を N分割した点に相当する変 W は、次のように定義さ
N
れる。
Figure imgf000003_0001
図 2の演算結果を図 4に示す。
[0010] 図 2の演算は、 [0011] [数 1]
Figure imgf000004_0001
なお、行ベクトノレ b (b b ••b )
(b b •b )
=(b b --b )
である。
[0012] したがって、図 2の演算を行ベクトルの演算として、図 4を見ると、
(第 0行):行ベクトル bに W。が乗算されたもの、行ベクトル bに W 1が乗算された もの、 ···行ベクトル bに w N_1が乗算されたもの
(第 1行):行ベクトル bに W。が乗算されたもの、行ベクトル bに W 1が乗算された もの、 ···行ベクトル bに w N_1が乗算されたもの
(第 N— 1行):行ベクトル b に W。が乗算されたもの、行ベクトル b に W 1が 乗算されたもの、 ···行ベクトル b に W が乗算されたもの
力 図 4に示されている。
[0013] そして、図 4から明らかなように、(第 0行) + (第 1行) + ··· + (第 N— 1行)が、図 2 の演算結果となり、出力として、
a a · ·& 、 & 、 & 、 ··、 & 、 ···、 & 、 & . a が得られる。
発明の開示
発明が解決しょうとする課題
[0014] しかしながら、図 4の演算結果において、 a 、 a 、 . '、 a 、 a 、 a 、 . '、 a
00 01 0 (M- 1) 10 11 1 (M— 1
、 · · ' a 、 a 、 a のそれぞれは、 N個の演算結果の和であり、その
) (N— 1) 0 (N— 1) 1 (N- 1) (M- 1)
大きさ(振幅)の分布は、図 5に示すように、正規分布となる。
[0015] 図 5に示されている振幅の分布は、正規分布であるので、大きな広がりを有している 。したがって、図 4の演算結果を送信する送信装置は、大きなダイナミックレンジが必 要となる。このダイナミックレンジは、 Nが大きくなるにつれて、大きくなる。
[0016] また、大きなダイナミックレンジを送信するためには、送信出力を上げる必要があり、 装置コストが増大し、エネルギーの消費が増大するという問題がある。更に、その結 果、運用コストが増大するという問題も生じる。
[0017] 本発明は、上記問題に鑑みなされたものであり、送信振幅の分布を改善して、ダイ ナミックレンジを小さくしたデータ送信方法及びデータ送信装置を提供することを目 的とするものである。
課題を解決するための手段
[0018] 上記目的を達成するために、本発明のるデータ送信方法は、長さ Mの N個の送信 データと所定の系列の内の異なる N個の系列とに対して、それぞれ所定の演算をさ せて、長さ Mの N個の送信データを長さ L (但し、 L〉M)の N個の送信データに変換 して、変換された送信データを同時に送信するデータ送信方法において、前記長さ Lの N個の送信データに基づいて、長さ Lの振幅分布改善用データを生成し、前記 振幅分布改善用データと、前記長さ Lの N個の送信データとを、同時に、又は、加算 して、送信するように構成することができる。
[0019] また、上記目的を達成するために、本発明のデータ送信方法は、前記振幅分布改 善用データは、長さ Mの補正データに、前記所定の系列の内の、送信データのため に用いられていない系列と、前記所定の演算をさせて生成されるように構成すること ができる。
[0020] また、上記目的を達成するために、本発明のデータ送信方法は、前記所定の演算 は、クロネッカ積であるように構成すること力 Sできる。
[0021] また、上記目的を達成するために、本発明のデータ送信方法は、前記所定の系列 は、 ZCCZ系列又は DFT行列の行ベクトル成分であるように構成することができる。
[0022] また、上記目的を達成するために、本発明のデータ送信方法は、複数の前記振幅 分布改善用データを、前記長さ Lの N個の送信データと、同時に送信するように構成 すること力 Sでさる。
[0023] また、上記目的を達成するために、本発明のデータ送信装置は、長さ Mの N個の 送信データと所定の系列のセットの内の一つとに対して、所定の演算をさせて、長さ Mの N個の送信データを長さ L (但し、 L〉M)の N個の送信データに変換して、 N個 の送信データを同時に送信するデータ送信装置において、前記長さ Lの N個の送信 データから、最大の振幅及びその次の大きさの振幅を算出する振幅算出手段と、振 幅算出手段で算出した最大の振幅及びその次の大きさの振幅に基づいて、振幅補 正量を算出する補正量算出手段と、前記補正量算出手段で算出した振幅補正量に 基づいて、長さ Lの振幅分布改善用データを生成する振幅分布改善用データ生成 手段と、前記振幅分布改善用データを、前記長さ Lの N個の送信データと、同時に送 信する送信手段とを有するように構成することができる。
[0024] また、上記目的を達成するために、本発明のデータ送信装置は、前記振幅分布改 善用データは、長さ Mの補正データに、前記所定の系列の内の、送信データのため に用いられていない系列と、前記所定の演算をさせて生成されるように構成すること ができる。
[0025] また、上記目的を達成するために、本発明のデータ送信装置は、前記所定の演算 は、クロネッカ積であるように構成すること力 Sできる。
[0026] また、上記目的を達成するために、本発明のデータ送信装置は、前記所定の系列 は、 ZCCZ系列又は DFT
行列の行ベクトル成分であるように構成することができる。
発明の効果
[0027] 本発明によれば、送信振幅の分布を改善して、ダイナミックレンジを小さくしたデー タ送信方法及びデータ送信装置を提供することができる。 図面の簡単な説明
園 1]送信データを説明するための図である。
[図 2]本発明における演算の例を説明するための図である。
[図 3]F 1を説明するための図である。
N
[図 4]図 2の演算結果を説明するための図である。
[図 5]振幅分布を説明するための図である。
[図 6]送信データの変換を説明するための図である。
[図 7]送信装置
符号の説明
10 送信データ
11 送信データの変換手段
12 振幅算出手段
13 補正量算出手段
14 補正データ算出手段
15 補正データの変換手段
16 遅延手段
17 加算手段
18 変調手段
19 ン亍ナ
発明を実施するための最良の形態
[0030] ここでは、次の 3つの送信データを、 4次の逆 DFT行列のベクトル成分と、クロネッ 力積演算して送信する場合について説明する。
[0031] 3つの送信データを、次のように表す。
[0032] 送信データ b = (2 1 j - 1 j)
0
送信データ b = (1 2 -j -j 1)
送信データ b = ( -j 1 1 2 - 1)
2
また、 4次の逆 DFT行歹 IJは、次式(3)で表される。
[0033] [数 2]
Figure imgf000008_0001
また、式(3)は、次のように、 DFT行列の行べクトノレ成分で表される
[数 3]
Figure imgf000008_0002
なお、ベクトル f は、(1 1 1 1)であり、ベクトル f は、(1 j 一 1 一】)であり、ベ タトル f は、(1 - 1 1 — 1)であり、ベクトル f は、(1 -j - 1 j)である。
2 3
[0035] そして、送信される 3つの送信データは、次のように変換されて送信される。
[0036] つまり、送信データ bは、
0
[0037] [数 4] ベク卜ル f0 ® (2 1 j -1 j) ---(5)
の演算がなされて送信され、
送信データ は、
[数 5]
ベクトル ® (1 2 -j -j 1) ---(6)
の演算がなされて送信され、
送信データ bは、
2
[数 6]
ベクトル ® C-j
の演算がなされて送信される。これらの 3つの信号は、同時に送信される。
図 6に示すように、式(5)の演算結果は、
= 1/2(2 1 j -1 j 2 1 j -1 j 2 1 j -1 j 2 1 j -1 j)となり、 式(6)の演算結果は、
= 1/2(1 2 -j "J 1 J 2j 1 1 j -1 -2 j j -1 -j —2j —1 —1 j)となり、
式(7)の演算結果は、
= l/2(-j 1 1 2 -1 j -1 -1 -2 1 -j 1 1 2 -1 j -1 -1 2 1)となる。
[0041] 式(5)、式(6)及び式(7)の信号が同時に送信されるので、送信信号は、
3— j 4 1 1 j j 2 + ¾ ¾ j 2 1+ ¾ 1 j 0 1+ ¾ l+j — 2+j 2 ¾ —2+j 4 1 ··· (8)
となる。
[0042] これによれば、最大の振幅は「4」であり、最小の振幅は「一 4」である。したがって、 ダイナミックレンジは、「ー4」 「4」となって!/、る。
[0043] そこで、このダイナミックレンジを小さくして、ここでは、「ー4+1/3=— 11/3」〜「
4 1/3 = 11/3」とする。
[0044] 次に、ダイナミックレンジを「― 4」〜「4」から、「― 11/3」〜「; 11/3」にする具体的 方法を説明する。
[0045] 本発明では、長さ 5の補正データを、 3つの送信データと同様に演算して、送信す る。このとき、演算された長さ 5の補正データが、(8)のダイナミックレンジを小さくする ように設定する。
[0046] つまり、 4次の逆 DFTfi列の内、ベクトノレ f 、ベクトノレ f 、ベクトノレ f は、データの送
0 1 2
信に利用したので、補正データの送信のためには、残ったベクトル f (1 -j -l j)
3
を使用する。
[0047] そこで、補正データ C=(C C C C C )とすると、
0 1 2 3 4
この補正データ cは、
[0048] [数 7] ベクトル ® (C0 C1 C2 C3 C4) ---(9)
の演算がなされて、長さ 20の振幅分布改善用データに変換される。
[0049] 式(9)の演算結果は、次のようになる。
[0050] C C C C C -jC -jC -jC -jC -iC C C C
0 1 2 3 4 0 1 2 3 4 0 1 2
C -C jC jC jC jC jC …(10)
3 4 0 1 2 3 4
(10)の信号と(8)の信号とが同時に送信されるので、次の信号が、送信されること となる。
[0051] 3-j + C、4 + C、 l + C、 l—j + C、j + C、 2 + 2i-jC、 2j-jC J-jC、 一 2
0 1 2 3 4 0 1 2
-jC、 l + 2j-jC、 1-j-C、 0— C、 l + 2j-C、 1+j-C、 一 2+j— C、 2+j
3 4 0 1 2 3 4
C、 -2j+jC、 -2+j+jC、 -4+jC、 1+jC ··· (11)
0 1 2 3 4
となる。
[0052] 式(11)の表現では、ダイナミックレンジは、「ー4」〜「4」は、「— 4+jC」〜「4 + C
3 1
」となっている。この実施例では、「― 4+jC」〜「4 + C」を「― 11/3」〜「; 11/3」と
3 1
する。
[0053] ところで、「一 4+jC」を「一 11/3」とすることは、 Cを「一 j/3」とすることであり、ま
3 3
た、「4 + C」を「11/3」とすることは、 Cを「一1/3」とすることである。
[0054] C、 C及び Cに係る部分は、「ー4」を超え、「4」未満であり、ダイナミックレンジに
0 2 4
影響を与えていないので、補正しない。
[0055] その結果、 C、 C及び Cをゼロとする。
0 2 4
[0056] つまり、補正データ C二(C C C C C )は、
0 1 2 3 4
補正データ C=(0 -1/3 0 -j/3 0)となる。
[0057] この補正データで、式(11)を求めると、次のようになる。
[0058] 3— j、 11/3、 1、 1— 4i/3、 j、 2 + ¾、 7j/3、 j、 一7/3、 l + ¾、 1— i、 1/3、 1 + ¾、 l + 4j/3、 一 2 +j、 2、 — 7j/3、 一 2 +j、 —1 1/3、 1 …(12)
式(12)によれば、ダイナミックレンジは、「一1 1/3」〜「; 1 1/3」となっておおり、当 初の目的が達成できた。
(送信装置)
本発明送信装置は、例えば、図 7の構成で実施できる。
[0059] 図 7の送信装置は、送信データ 10、送信データの変換手段 1 1、振幅算出手段 12
、補正量算出手段 13、補正データ算出手段 14、補正データの変換手段 15、遅延手 段 16、加算手段 17、変調手段 18及びアンテナ 19から構成されている。
[0060] 長さ Mの N個の送信データ 10が、送信データの変換手段 1 1に供給される。送信デ ータの変換手段 1 1では、 N個の送信データに対して、所定の系列の内の異なる N個 の系列を作用(演算)させて、長さ Mの N個の送信データを長さ L (但し、 L〉M)のN 個の送信データに変換する。
[0061] 振幅算出手段 12は、送信データの変換手段 1 1からの出力である「長さ Lの N個の 送信データ」から、最大の振幅及びその次の大きさの振幅を算出する。
[0062] 次いで、補正量算出手段 13は、振幅算出手段 12で算出した最大の振幅及びその 次の大きさの振幅に基づいて、振幅補正量を算出する。
[0063] 後述するように、振幅算出手段 12で算出した最大の振幅 MAXと次の大きさの振
0
幅 MAXとした場合、補正量を(MAX — MAX )又は正量を(MAX — MAX ) /2
1 0 1 0 1 とする。
[0064] 補正データ算出手段 14は、補正量算出手段 13で算出された振幅補正量に基づ いて、補正データを算出する。
[0065] 補正データの変換手段 15は、補正データ算出手段 14で算出された補正データに 対して、補正データの変換を行う。
[0066] 補正データの変換は、送信データの変換手段 1 1と同じ種類の系列であって、その 内の、送信データのために用いられていない系列を用いて変換する。
[0067] 遅延手段 16は、送信データの変換手段 1 1の出力と、補正データの変換手段 15の 出力とのタイミングを合わせるために、送信データの変換手段 1 1の出力を遅延させ るものである。 [0068] 加算手段 17は、送信データの変換手段 11の出力と、補正データの変換手段 15の 出力と加算する。
[0069] 変調手段 18は、加算手段 17で加算された送信データの変換手段 11の出力と、補 正データの変換手段 15の出力とを変調して、アンテナ 19から放射する。
(変形例)
(1)上記実施例では、式(8)の信号に対して、格別の根拠もなぐダイナミックレン ジを「一 4」〜「4」から、「一 11/3」〜「; 11/3」にした。
[0070] 上記方法によれば、補正量を大きくすると、補正前のダイナミックレンジを決定して いる信号の振幅は小さくなる。し力、しながら、補正前のダイナミックレンジを決定しな い信号も影響を受け、補正の結果、場合によっては、補正前のダイナミックレンジを 超えることがある。
[0071] このように、補正によって、補正前のダイナミックレンジを超えないようにするために は、補正前の送信データにおいて、最大の振幅 MAXと次の大きさの振幅 MAXを
0 1 算出し、補正量を(MAX—MAX )以内にする必要がある。
0 1
[0072] なお、補正量を(MAX— MAX ) /2とすれば、必ずダイナミックレンジは減少する
0 1
[0073] (2)上記実施例では、送信データに所定の演算を行うための系列として、 4次の逆 DFT行列のベクトル成分の行ベクトル成分を用いた力 S、 4次の DFT行列のベクトノレ 成分であってもよい。
[0074] また、次数も、 4次に限らず実施することができる。
[0075] (3)上記実施例では、送信データに所定の演算を行うための系列として、逆 DFT 行列のベクトル成分を用いた。しかしながら、本発明は、 ZCZ (Zero Correlation Zo ne sequence)系列、 Zし CZ ん ero Cross correlation Lone Sequence 系列、 M系 歹 IJ、 Gold系列でも実施できる。
[0076] (4)上記実施例では、補正データは一つであつたが、補正データは複数であっても 実施できる。し力、しながら、この場合、補正データに用いる系列は、送信データのた めに用いられて!/、な!/ヽ系列を使用する必要がある。
[0077] (5)上記実施例では、補正を 1回行った力 繰り返して、複数回行ってもよい。 [0078] (6)図 7の送信装置は、加算手段 17で、変換手段 11の出力と変換手段 15の出力 とを加算した上で送信するようにしたが、加算せずに、二つのアンテナから、同時に 送信するようにしてあよレヽ。
[0079] 本発明は、具体的に開示された実施例に限定されるものではなぐ特許請求した本 発明の範囲から逸脱することなぐ種々の変形例や実施例が考えられる。そのため、 上述の実施例は、あらゆる点で単なる例示に過ぎず限定的に解釈してはならない。 本発明の範囲は請求の範囲によって示すものであり、明細書の本文にはなんら拘束 されない。
[0080] 本件国際出願は、 2006年 9月 15日に出願した日本国特許出願 2006— 251184 号に基づく優先権を主張するものであり、 日本国特許出願日本国特許出願 2006— 251184号の全内容を本国際出願に援用する。

Claims

請求の範囲
[1] 長さ Mの N個の送信データと所定の系列の内の異なる N個の系列とに対して、それ ぞれ所定の演算をさせて、長さ Mの N個の送信データを長さ L (但し、 L〉M)のN個 の送信データに変換して、変換された送信データを同時に送信するデータ送信方法 において、
前記長さ Lの N個の送信データに基づいて、長さ Lの振幅分布改善用データを生 成し、
前記振幅分布改善用データと前記長さ Lの N個の送信データとを、同時に、又は、 加算して送信することを特徴とするデータ送信方法。
[2] 前記振幅分布改善用データは、長さ Mの補正データに、前記所定の系列の内の、 送信データのために用いられてレ、な!/、系列と、前記所定の演算をさせて生成される ことを特徴とする請求項 1記載のデータ送信方法。
[3] 前記所定の演算は、クロネッカ積であることを特徴とする請求項 1又は 2記載のデー タ送信方法。
[4] 前記所定の系列は、 ZCCZ系列又は DFT行列の行ベクトル成分であることを特徴 とする請求項 1ないし 3いずれか一項に記載のデータ送信方法。
[5] 複数の前記振幅分布改善用データを、前記長さ Lの N個の送信データと、同時に 送信することを特徴とする請求項 1ないし 4いずれか一項に記載のデータ送信方法。
[6] 長さ Mの N個の送信データと所定の系列の内の異なる N個の系列とに対して、それ ぞれ所定の演算をさせて、長さ Mの N個の送信データを長さ L (但し、 L〉M)のN個 の送信データに変換して、変換された送信データを同時に送信するデータ送信装置 において、
前記長さ Lの N個の送信データから、最大の振幅及びその次の大きさの振幅を算 出する振幅算出手段と、
振幅算出手段で算出した最大の振幅及びその次の大きさの振幅に基づいて、振 幅補正量を算出する補正量算出手段と、
前記補正量算出手段で算出した振幅補正量に基づいて、長さ Lの振幅分布改善 用データを生成する振幅分布改善用データ生成手段と、 前記振幅分布改善用データを、前記長さ Lの N個の送信データと、同時に送信す る送信手段と
を有することを特徴とするデータ送信装置。
[7] 前記振幅分布改善用データは、長さ Mの補正データに、前記所定の系列の内の、 送信データのために用いられてレ、な!/、系列と、前記所定の演算をさせて生成される ことを特徴とする請求項 6記載のデータ送信装置。
[8] 前記所定の演算は、クロネッカ積であることを特徴とする請求項 6又は 7記載のデー タ送信装置。
[9] 前記所定の系列は、 ZCCZ系歹 IJ又は DFT行列の行ベクトル成分であることを特徴 とする請求項 6なレ、し 8レ、ずれか一項に記載のデータ送信装置。
PCT/JP2007/067885 2006-09-15 2007-09-13 Procédé d'émission de données et émetteur de données WO2008032805A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008534398A JP5303806B2 (ja) 2006-09-15 2007-09-13 データ送信方法及びデータ送信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006251184 2006-09-15
JP2006-251184 2006-09-15

Publications (1)

Publication Number Publication Date
WO2008032805A1 true WO2008032805A1 (fr) 2008-03-20

Family

ID=39183859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067885 WO2008032805A1 (fr) 2006-09-15 2007-09-13 Procédé d'émission de données et émetteur de données

Country Status (2)

Country Link
JP (1) JP5303806B2 (ja)
WO (1) WO2008032805A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126516A1 (ja) * 2007-04-10 2008-10-23 Naoki Suehiro 送信方法、送信装置、受信方法及び受信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835536A (en) * 1995-02-02 1998-11-10 Motorola, Inc. Method and apparatus for reducing peak-to-average requirements in multi-tone communication circuits
JP2002314503A (ja) * 2001-03-02 2002-10-25 Zarlink Semiconductor Inc 送信信号に影響のないdmt信号のピーク減少
JP2004135087A (ja) * 2002-10-10 2004-04-30 Sumitomo Electric Ind Ltd ピーク電力抑圧方法及び装置
WO2005036790A1 (ja) * 2003-10-10 2005-04-21 Intelligent Cosmos Research Institute 送信装置、通信システムおよび通信方法
WO2006041054A1 (ja) * 2004-10-13 2006-04-20 Matsushita Electric Industrial Co., Ltd. マルチキャリア通信装置およびピーク電力抑圧方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023675A (ja) * 2001-07-06 2003-01-24 Katsuyoshi Azeyanagi 相互相関抑圧形拡散系列セットを用いた通信方式

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835536A (en) * 1995-02-02 1998-11-10 Motorola, Inc. Method and apparatus for reducing peak-to-average requirements in multi-tone communication circuits
JP2002314503A (ja) * 2001-03-02 2002-10-25 Zarlink Semiconductor Inc 送信信号に影響のないdmt信号のピーク減少
JP2004135087A (ja) * 2002-10-10 2004-04-30 Sumitomo Electric Ind Ltd ピーク電力抑圧方法及び装置
WO2005036790A1 (ja) * 2003-10-10 2005-04-21 Intelligent Cosmos Research Institute 送信装置、通信システムおよび通信方法
WO2006041054A1 (ja) * 2004-10-13 2006-04-20 Matsushita Electric Industrial Co., Ltd. マルチキャリア通信装置およびピーク電力抑圧方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126516A1 (ja) * 2007-04-10 2008-10-23 Naoki Suehiro 送信方法、送信装置、受信方法及び受信装置
WO2008126644A1 (ja) * 2007-04-10 2008-10-23 Naoki Suehiro 送信方法、送信装置、受信方法及び受信装置
JP5201739B2 (ja) * 2007-04-10 2013-06-05 直樹 末広 送信方法、送信装置、受信方法及び受信装置
US8867633B2 (en) 2007-04-10 2014-10-21 Naoki Suehiro Transmission method, transmission device, receiving method, and receiving device
US9356746B2 (en) 2007-04-10 2016-05-31 Naoki Suehiro Transmission method, transmission device, receiving method, and receiving device
US9819408B2 (en) 2007-04-10 2017-11-14 Naoki Suehiro Transmission method, transmission device, receiving method, and receiving device

Also Published As

Publication number Publication date
JPWO2008032805A1 (ja) 2010-01-28
JP5303806B2 (ja) 2013-10-02

Similar Documents

Publication Publication Date Title
KR100899747B1 (ko) 직교주파수분할다중 시스템의 첨두대평균 전력비 저감을위한 장치 및 방법
JP2014197850A5 (ja)
CN105306399A (zh) 一种雷达通信一体化信号的优化方法
US9497059B2 (en) Method for performing peak clipping to multiple carrier waves and device thereof
EP1916778A3 (en) Method and system for generating reference signals in a wireless communication system
TW200601731A (en) Method and apparatus for high-order PAPR reduction of an OFDM signal
CN101682446A (zh) 用于改进ofdm或ordma通信系统中的papr的方法和装置
WO2010018987A3 (ko) 다중 반송파 시스템에서 데이터 전송 방법 및 전송기
MY163454A (en) Apparatus or method for generating a bandwidth extended signal
CN102237922A (zh) 一种波束赋形的方法和装置
CN107490785A (zh) 一种基于频域置零调制的ofdm雷达通信一体化波形设计方法
EP2079168A3 (en) High speed serializing-deserializing system and method
US6272441B1 (en) Method for determining the pulse response of a broad band linear system and a measuring circuit for carrying out the method
WO2008032805A1 (fr) Procédé d'émission de données et émetteur de données
Kim et al. Building encoder and decoder with deep neural networks: On the way to reality
US20190310356A1 (en) Model-based protection algorithms
JP2007509515A5 (ja)
CN101656696B (zh) 基于联合合并时空分集频域小波盲均衡方法
JP5417187B2 (ja) 相関受信処理装置
CN102608833A (zh) 一种全光时域-频域连续傅里叶变换装置
CN103698751B (zh) 正交低多普勒旁瓣的多站雷达波形设计方法
WO2005117313A1 (ja) 変調装置、変調方法及び復調装置
CN106776475A (zh) 一种三项加权分数傅里叶变换的实现装置
CN103488611B (zh) 基于IEEE802.11.ad协议的FFT处理器
US10298209B2 (en) Digital filter device and signal processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534398

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807292

Country of ref document: EP

Kind code of ref document: A1