WO2008029829A1 - Dérivé de pyrazolopyridine et inhibiteur de la phosphodiestérase (pde) qui le contient en tant que matière active - Google Patents

Dérivé de pyrazolopyridine et inhibiteur de la phosphodiestérase (pde) qui le contient en tant que matière active Download PDF

Info

Publication number
WO2008029829A1
WO2008029829A1 PCT/JP2007/067267 JP2007067267W WO2008029829A1 WO 2008029829 A1 WO2008029829 A1 WO 2008029829A1 JP 2007067267 W JP2007067267 W JP 2007067267W WO 2008029829 A1 WO2008029829 A1 WO 2008029829A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyridine
group
general formula
chemical
added
Prior art date
Application number
PCT/JP2007/067267
Other languages
English (en)
French (fr)
Inventor
Yasushi Kohno
Satoshi Takita
Akihiko Kojima
Tetsuya Kishi
Original Assignee
Kyorin Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyorin Pharmaceutical Co., Ltd. filed Critical Kyorin Pharmaceutical Co., Ltd.
Priority to EP07828195A priority Critical patent/EP2060572A4/en
Priority to JP2008533178A priority patent/JPWO2008029829A1/ja
Priority to CA002661992A priority patent/CA2661992A1/en
Priority to US12/310,736 priority patent/US20090318385A1/en
Publication of WO2008029829A1 publication Critical patent/WO2008029829A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a pyrazolopyridine derivative useful as a phosphodiesterase (PDE) inhibitor.
  • PDE phosphodiesterase
  • Phosphodiesterase is an enzyme that degrades cyclic AMP (cAMP) and cyclic GMP (cGMP), which are second messengers in vivo.
  • cAMP cyclic AMP
  • cGMP cyclic GMP
  • PDEs have a power of 1 to 11; the ability to specifically decompose cAMP, whether to specifically decompose cG MP, or both It has been decided.
  • There is a difference in the distribution of each type of PDE tissue and it is thought that the cell response is controlled by various types of PDE depending on the type of organ.
  • PDE3 inhibitors are used as therapeutic agents for angina pectoris, heart failure, hypertension, platelet aggregation inhibitors or anti-asthma drugs, and PDE4 inhibitors.
  • COPD chronic obstructive pulmonary disease
  • interstitial pneumonia As a treatment for bronchial asthma, chronic obstructive pulmonary disease (COPD), interstitial pneumonia, allergic rhinitis, atopic dermatitis, rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, dementia, Parkinson's disease, etc.
  • COPD chronic obstructive pulmonary disease
  • PDE5 inhibitors are already in clinical use as a treatment for male sexual dysfunction.
  • Patent Document 1 More recently, there was a report that minocycline was effective as a PDE 10A modulator in patients with Huntington's disease (Patent Document 1), and PDE10 inhibitors were Huntington's disease, Alzheimer's disease, dementia, Parkinson's disease, schizophrenia.
  • An open patent gazette that has been shown to be effective as a remedy for various mental disorders has also been disclosed (Patent Document 2).
  • Patent Document 1 WO01024781 Nonfret
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-363103
  • Patent Document 3 Republished W09814448
  • Patent Document 4 Japanese Patent Laid-Open No. 10-109988
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2006-117647
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2006-169138
  • Patent Document 7 WO2003066044 Nonfret
  • Patent Document 8 US2002128290 Nonfret
  • Patent Document 9 WO9937640 Nonfret
  • Patent Document 10 WO9916768 pamphlet
  • Patent Document 11 W09636624 pamphlet
  • Patent Document 12 Japanese Unexamined Patent Application Publication No. 2004-196785
  • Patent Document 13 W09822455 pamphlet
  • Patent Document 14 W09748697 pamphlet
  • An object of the present invention is to provide a virazolopyridine derivative having an excellent phosphodiesterase inhibitory action and few side effects.
  • the present invention has been completed.
  • the present invention relates to
  • R 1 is a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms (the substituent is a halogen atom, an alkoxy group having 1 to 6 carbon atoms or a hydroxyl group), carbon A cycloalkyl group having 3 to 8 carbon atoms, an alkanoyl group having 1 to 6 carbon atoms, an oxime group or a cyan group;
  • R 2 is a hydrogen atom or an optionally substituted carbon group;!
  • To 6 alkyl groups (substituted) Group is an alkoxy group having from 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkyl group having 1 to 6 carbon atoms, an alkylsulfanyl group having 1 to 6 carbon atoms, carbon 1 to 6 alkylsulfonyl groups, substituted! /, May! /, Amino groups (carbon number; may be substituted with! -6 alkyl groups, may be! /), Or carbon number 1 Represents ⁇ 6 alkanoyl groups,
  • R 5 and R 6 are the same or different and each represents a hydrogen atom or a halogen atom
  • R 13 represents a hydrogen atom or a halogen atom
  • n 0 or 1
  • [0011] represents a single bond or a double bond
  • R 3 is involved in the formation of the double bond
  • R 4 represents a hydrogen atom or a phenol group
  • R ld is a hydrogen atom, the virazolopyridine derivative according to 1), a pharmaceutically acceptable salt thereof, or a hydrate thereof.
  • a phosphodiesterase (PDE) inhibitor comprising the pyrazomouth pyridine derivative according to any one of 1) to 5), a pharmacologically acceptable salt thereof or a hydrate thereof.
  • a pharmaceutical comprising the pyrazomouth pyridine derivative according to any one of 1) to 5), a pharmacologically acceptable salt thereof or a hydrate thereof.
  • novel pyrazomouth pyridine derivative and its addition salt according to the present invention have an excellent PDE inhibitory action, bronchial asthma, chronic obstructive pulmonary disease (COPD), interstitial pneumonia, allergic rhinitis, atopic It is useful as a prophylactic or therapeutic agent for dermatitis, rheumatoid arthritis, multiple sclerosis, Huntington's disease, Alzheimer's disease, dementia, Parkinson's disease, schizophrenia and the like.
  • COPD chronic obstructive pulmonary disease
  • the “C 1-6 alkoxy group” of R 1 and R 2 is a linear or branched alkoxy group having 1-6 carbon atoms, preferably 1-4 carbon atoms. This is an alkoxy group.
  • methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, t-butoxy group and the like can be mentioned.
  • halogen atom of R 5 , R 6 and R 13 means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the "alkyl group having 1 to 6 carbon atoms" of R 1 and R 2 is a straight chain or branched alkyl group having carbon atoms of! To 6 and preferably an alkyl group having 1 to 4 carbon atoms. It is. Examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group. [0032] Examples of the substituent having the “optionally substituted carbon number;!
  • To 6 alkyl group” of R 1 include hydroxymethyl group, methoxymethyl group, ethoxymethyl group, propoxymethyl group, isoso Examples thereof include a propoxymethyl group, a butoxymethyl group, an isobutoxymethyl group, a sec-butoxymethyl group, a t-butoxymethyl group, a monofluoromethyl group, a difluoromethyl group, and a trifluoromethyl group. Preferred are a hydroxymethyl group, a methoxymethyl group, and a trifluoromethyl group.
  • Examples of the substituent having the “optionally substituted carbon number;! To 6 alkyl group” of R 2 include hydroxymethyl group, methoxymethyl group, ethoxymethyl group, propoxymethyl group, isoso Examples thereof include a propoxymethyl group, a butoxymethyl group, an isobutoxymethyl group, a sec-butoxymethyl group, and a t-butoxymethyl group. Preferred are a hydroxymethyl group and a methoxymethylol group.
  • Examples of the "cycloalkyl group having 3 to 8 carbon atoms" of R 1 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and the like.
  • the “alkanoyl group having 1 to 6 carbon atoms” of R 1 and R 2 is a straight-chain or branched alkanoyl group having carbon atoms;! To 6 and preferably an alkanoyl group having 1 to 4 carbon atoms. It is. For example, a formyl group, a acetyl group, a propionyl group, a butyryl group, an isobutyryl group, and the like can be given.
  • alkyl sulfanyl group having 1 to 6 carbon atoms is a linear or branched alkyl sulfanyl group having carbon numbers;! To 6 and preferably an alkyl sulfanyl group having 1 to 4 carbon atoms. It is. For example, methylsulfanyl group, ethylsulfanyl group, propylsulfaninole group, isopropinoresnorefaninore group, butinolesnorefaninore group, isobutinoresnorefaninore group, sec-butylsulfanyl group, t -Butylsulfanyl group
  • the "alkyl sulfiel group having 1 to 6 carbon atoms" of R 2 is a linear or branched alkyl sulfier group having carbon atoms;! To 6 and preferably an alkyl having 1 to 4 carbon atoms. Sulfiel group.
  • alkylsulfonyl group having 6 to 6 carbon atoms is a linear or branched alkylsulfonyl group having 6 to 6 carbon atoms, preferably an alkylsulfonyl group having 1 to 4 carbon atoms. It is a group.
  • Examples thereof include a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, an isopropylsulfonyl group, a butylsulfonyl group, an isobutylsulfonyl group, a sec-butynolesulfonyl group, and a t-butylsulfonyl group.
  • the "optionally substituted amino group" for R 2 is substituted with a linear or branched alkyl group having carbon number;! To 6! /, May! /, An amino group And preferably an alkylamino group having 1 to 4 carbon atoms.
  • substituted amino groups include methylamino group, ethylamino group, propylaminol group, isopropylamino group, butylamino group, isobutylamino group, sec-butylamino group, t-butylamino group, dimethylamino group, jetylamino group, dipropyl group.
  • Amino group, diisopropylamino group, ethylmethylamino group and the like can be mentioned.
  • Examples of pharmacologically acceptable salts in the present invention include acid addition salts such as hydrochloride, hydrobromide, acetate, trifluoroacetate, methanesulfonate, kenate, and tartrate. The ability to raise S.
  • R 3 is a hydroxyl group
  • R 4 is a phenyl group
  • R 13 is a hydrogen atom
  • n is 0,
  • the compound represented by the general formula (3) is obtained by reacting the compound represented by the general formula (2) with 0-mesitylenesulfonylhydroxylamine (hereinafter referred to as MSH). Can be manufactured (process Al). In the reaction, it is preferable to dissolve the compound represented by the general formula (2) in methyl chloride and to actuate a methylene chloride solution of MSH at 0 ° C to room temperature.
  • MSH 0-mesitylenesulfonylhydroxylamine
  • R 7 represents a lower alkyl group having 1 to 6 carbon atoms or a benzyl group, and R 1 and R 2 are as described above]
  • Step A-2 Can be produced by acting in the presence of a base (step A-2).
  • the reaction includes methanol, ethanol, 1,4 dioxane, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), tetrahydrofuran (THF), cyclopentyl methino ether (CPME), toluene, benzene, and cyclohexane.
  • Cyclopentane, methyl chloride, chloroform, and acetonitrile are used as the reaction solvent in the presence of an inorganic base such as sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, or an organic base such as triethylamine.
  • the temperature can be 0 ° C to room temperature.
  • the compound represented by the general formula (5) in the synthetic route A can be produced by subjecting the compound represented by the general formula (4) to a water-hydrolysis reaction (step A-3).
  • the reaction is carried out in a solvent such as methanol, ethanol, THF, CPME, DMSO, DMF, 1,4 dioxane, aqueous potassium hydroxide, aqueous sodium hydroxide, or aqueous lithium hydroxide, preferably hydroxylated.
  • a solvent such as methanol, ethanol, THF, CPME, DMSO, DMF, 1,4 dioxane, aqueous potassium hydroxide, aqueous sodium hydroxide, or aqueous lithium hydroxide, preferably hydroxylated.
  • the compound represented by the general formula (6) is obtained by decarboxylating the compound represented by the general formula (5) (step A-4) or represented by the general formula (4). It can be produced by hydrolyzing and decarburizing acid.
  • the compound represented by the general formula (5) is used in an organic solvent such as benzene, black benzene, dichlorobenzene, bromobenzene, toluene, and xylene at 100 ° C. It can be performed by heating to ⁇ 160 ° C.
  • this reaction is performed by adding 2-10% aqueous sulfuric acid in ethanol or 1,4-dioxane and heating at 80 ° C-120 ° C, or heating at 80 ° C-120 ° C in 50% sulfuric acid. It can also be done.
  • the reaction in the case of using the compound represented by the general formula (4) can be carried out by using hydrobromic acid or acetic acid containing hydrogen bromide and acting under heating and reflux. Also, this reaction can be heated at 80 ° -120 ° in ethanol or 1,4-dioxane with 2-10% aqueous sulfuric acid solution, or at 80 ° C-120 ° C in 50% sulfuric acid. It can also be performed by heating.
  • the compound represented by the general formula (7) can be produced by oxidizing the compound represented by the general formula (6) (step A-5).
  • a commonly used oxidative method of alcohols to aldehydes or ketones can be used.
  • chromium pyridine complex such as pyridinium chromatochromate and pyridinium nichromate
  • chromium oxide carbonic acid DM SO oxidation with DMSO activator such as silver, manganese dioxide and other metal oxidants
  • sulfur trioxide pyridine complex oxalyl chloride, trifluoroacetic anhydride, acetic anhydride or dicyclohexyl carpositimide (DCC) or Dess Martin oxidation
  • the reaction temperature can be -78 ° C to 100 ° C.
  • the reaction can be carried out using a generally used oxidative method of alcohols to aldehydes or ketones, and can be performed, for example, in the same manner as in Step A-5.
  • the reaction is preferably performed using THF, 1,4 dioxane, ether as a solvent, mixing both at _78 ° C to 0 ° C, and then gradually raising the temperature to room temperature.
  • R 4 is a phenyl group
  • R 13 is a hydrogen atom
  • n is 0,
  • [0075] is a compound having a double bond (IT is involved in the formation of a double bond), that is, the general formula (Id)
  • the compound represented by general formula (lc) can be produced by dehydrating the compound represented by general formula (lc).
  • benzene, toluene or xylene is used as a reaction solvent, paratoluenesulfonic acid, pyridinium paratoluenesulfonate, sulfuric acid or methanesulfonic acid is added as a dehydrating agent, and preferably methanesulfonic acid is added. It can be reacted at 70 ° C to under reflux.
  • the compound represented by the formula (Id) can be produced by reducing the compound represented by the general formula (Id) by the force S.
  • the reaction is carried out in a solvent such as ethanol, methanol, THF, DMF, and ethyl acetate in the presence of palladium carbon, platinum carbon, platinum oxide, rhodium carbon, and ruthenium carbon that are catalytic reduction catalysts. It can be performed at room temperature under hydrogen pressure.
  • a solvent such as ethanol, methanol, THF, DMF, and ethyl acetate in the presence of palladium carbon, platinum carbon, platinum oxide, rhodium carbon, and ruthenium carbon that are catalytic reduction catalysts. It can be performed at room temperature under hydrogen pressure.
  • the compound represented by the general formula (le) can also be produced from the compound represented by the general formula (lc).
  • palladium carbon, platinum carbon, platinum oxide, rhodium carbon, and ruthenium carbon which are catalytic reduction catalysts, are added with hydrochloric acid or acetic acid, and in a solvent such as ethanol, methanol, THF, DMF, ethyl acetate, etc.
  • a solvent such as ethanol, methanol, THF, DMF, ethyl acetate, etc.
  • a solvent such as THF
  • methanesulfuryl chloride or paratoluenesulfuric chloride and a base such as triethylamine or pyridine exist at 0 ° C to room temperature.
  • LiAlH is added at 0 ° C in a solvent such as THF.
  • It can also be manufactured by acting at room temperature.
  • R 3 is a hydroxyl group
  • R 4 is a hydrogen atom
  • R 13 is a hydrogen atom.
  • N is 0,
  • R 4 is a hydrogen atom
  • R 13 is a hydrogen atom
  • n is 0,
  • R 3 and R 4 are hydrogen atoms
  • R 13 is a hydrogen atom
  • n is 0,
  • [0100] is a single bond, that is, the compound represented by the general formula (lj)
  • the compound represented by the general formula (13) is obtained by oxidizing the compound represented by the general formula (7) (step B-11) or represented by the general formula (6). Can be produced by oxidizing the resulting compound (Step B-1 -2).
  • the oxidation reaction in Step B-11 can be carried out by using a commonly used oxidative method of aldehydes to carboxylic acids, such as air oxidation, oxygen oxidation, pyridinium black chromate, pyridinium nichromate, etc.
  • Chromium oxide pyridine complex, chromium oxide, silver oxide, silver nitrate, potassium permanganate, ruthenium oxide, sodium periodate catalyzed by ruthenium, odosobenzene catalyzed by ruthenium, sodium chlorite, bleached powder , Hydrogen peroxide, chlorine, N can be performed by oxidation reaction with prosuccinimide.
  • the reaction temperature can be 0 ° C to 100 ° C.
  • the oxidation reaction in Step B-12 can be performed by using a generally used oxidative method of alcohols to carboxylic acids, such as oxygen oxidation, chromic acid, chromic acid.
  • Oxidation reaction using potassium, pyridinium oxides such as potassium, pyridinium dichromate, pyridinium dichromate, potassium permanganate, ruthenium oxide, ruthenium, sodium periodate, silver oxide, white powder, hydrogen peroxide, etc. It can be carried out
  • the reaction temperature can be O ° C to 100 ° C.
  • R 8 represents an alkyl group having 1 to 6 carbon atoms, and R 1 and R 2 are as described above]
  • the compound represented by general formula (13) can be produced by esterifying the compound represented by general formula (13) (step B-2).
  • a compound represented by the general formula (15) using a condensing agent such as jetylazodicarboxylate or DCC and DMF, methylene chloride, chloroform, benzene, toluene, THF, 1,4-dioxane, etc. It can be produced by operating at 0 ° C to room temperature in the above solvent.
  • the compound represented by the general formula (14) is represented by the general formula (15) after the compound represented by the general formula (13) is converted to an acid chloride with thionyl chloride, oxalyl chloride, or the like.
  • a base such as triethylamine and pyridine
  • a solvent such as methylene chloride, chloroform, benzene, toluene, THF, 1,4-dioxane, and the like. I'll do it.
  • the compound represented by the general formula (14) uses sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, lithium carbonate as a base, and DMF, THF, 1,4-dioxane as a solvent.
  • a compound represented by the general formula (13) and the general formula (16) uses sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, lithium carbonate as a base, and DMF, THF, 1,4-dioxane as a solvent.
  • the compound represented by the general formula (If) is obtained by reacting the compound represented by the general formula (7) with the compound represented by the general formula (12) (step B-3), It can be produced by reducing the compound represented by the general formula (lh) (step B-7).
  • reaction via step B-3 can be carried out in the same manner as in step A-8.
  • reaction via Step B-7 is carried out by using borane, alkylborane derivatives such as 9-borabicyclo [3. 3.1] nonane (9-BB N), A1H), sodium borohydride (NaBH), lithium borohydride (LiBH), aluminum hydride lithium
  • metal hydride complex compounds such as thidium (LiAlH), THF, 1, 4
  • the reaction can be performed at a temperature of o ° c to room temperature using xylene, methanol, and ethanol.
  • the compound represented by the general formula (lh) in the synthetic pathway B oxidizes the compound represented by the general formula (If) (step B-4) or the compound represented by the general formula (13) Or a compound represented by the general formula (12) (step B-5) or a compound represented by the general formula (14) and a compound represented by the general formula (12) ( It can be manufactured by Step B-6).
  • reaction via step B-4 can be carried out by using a generally used oxidative method of alcohols to aldehydes or ketones, and can be carried out in the same manner as in step A-5, for example.
  • Step B-5 and Step B-6 can be carried out in the same manner as in Step A-8.
  • the compound represented by the general formula (lg) is separated from the compound represented by the general formula (If). It can be produced by watering (Step B-8).
  • reaction benzene, toluene or xylene is used as a reaction solvent, paratoluenesulfonic acid, pyridinium paratoluenesulfonate, sulfuric acid or methanesulfonic acid is added as a dehydrating agent, and preferably methanesulfonic acid is added.
  • the reaction is preferably carried out at 70 ° C to reflux under heating.
  • the compound represented by the general formula (lj) is represented by the ability to dehydroxylate the compound represented by the general formula (If) (step B-10) and the general formula (lg). Can be produced by reducing the resulting compound (Step B-9).
  • Step B-9 The reaction of Step B-9 is usually carried out in a solvent such as ethanol, methanol, THF, DMF, or ethyl acetate in the presence of palladium carbon, platinum carbon, platinum oxide, potassium carbon, or ruthenium carbon as catalytic reduction catalysts. It can carry out at normal temperature under the hydrogen pressure under pressure-pressurization.
  • a solvent such as ethanol, methanol, THF, DMF, or ethyl acetate
  • palladium carbon, platinum carbon, platinum oxide, potassium carbon, or ruthenium carbon as catalytic reduction catalysts. It can carry out at normal temperature under the hydrogen pressure under pressure-pressurization.
  • Step B-10 is simple by adding hydrochloric acid or acetic acid to the reaction of Step B-9.
  • a solvent such as THF
  • methanesulfuryl chloride is reacted with paratoluenesulfuryl chloride in the presence of a base such as triethylamine or pyridine at 0 ° C to room temperature to form a sulfonate ester, and then THF or the like. It can also be produced by reacting LiAlH in a solvent at 0 ° C to room temperature.
  • R 1 is a difluoromethyl group, that is, the general formula (6c)
  • R 9 is a force representing a lower alkyl group having 1 to 6 carbon atoms, or two R 9 are linked to form a methylene chain having 2 to 4 carbon atoms (1 carbon atom on the methylene chain). Which may have a lower alkyl group of ⁇ 4), R 2 and R 7 are as described above]
  • reaction can be carried out in the same manner as in Step A-2.
  • Pro represents an alcohol protecting group such as methoxymethyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, triisopropylpropylsilyl group, tetrahydrobiranyl group, acetyl group, etc.
  • the compound represented by general formula (4c) can be produced by subjecting the compound represented by the general formula (4c) to various alcohol protecting group introduction reactions (step C-2).
  • the reaction is carried out in the presence of a base such as sodium hydride, triethylamine, diisopropylethylamine, methoxymethyl chloride or methoxymethyl bromide in THF, acetonitrile, or methylene chloride. It can be performed at 0 ° C to room temperature.
  • a base such as sodium hydride, triethylamine, diisopropylethylamine, methoxymethyl chloride or methoxymethyl bromide in THF, acetonitrile, or methylene chloride. It can be performed at 0 ° C to room temperature.
  • reaction is carried out in the presence of a base such as triethylamine or imidazole with the corresponding silyl chloride, silylpromide, silyltrifluoromethanesulfonate,
  • a base such as triethylamine or imidazole
  • the reaction can be carried out in a solvent such as THF, CPME, DMF, acetonitrile, or methylene chloride at 0 ° C to room temperature.
  • the reaction is carried out by dihydropyran in the presence of an acid catalyst such as paratoluenesulfonic acid. It is preferable to act in a solvent such as methylene chloride at a temperature of o ° c to room temperature.
  • an acid catalyst such as paratoluenesulfonic acid. It is preferable to act in a solvent such as methylene chloride at a temperature of o ° c to room temperature.
  • the reaction is carried out with acetyl chloride, acetyl bromide, or acetic anhydride in the presence of an organic base such as triethylamine, diisopropylethylamine, pyridine, THF, 1,4 dioxane, methylene chloride, etc. Can be carried out at 0 ° C to room temperature. In this case, the reaction can also be carried out using pyridine or the like as a solvent that also serves as a base.
  • the compound represented by the general formula (9c) in the synthetic pathway C can be produced by subjecting the compound represented by the general formula (8c) to a conversion reaction of a commonly used acetal group to a formyl group ( Process C 3).
  • the reaction used an acid catalyst such as p-toluenesulfonic acid monohydrate and pyridinium p-toluenesulfonate in an acetone solvent, and contained hydrogen chloride or a force to act under normal temperature to heating under reflux.
  • an acid catalyst such as p-toluenesulfonic acid monohydrate and pyridinium p-toluenesulfonate in an acetone solvent, and contained hydrogen chloride or a force to act under normal temperature to heating under reflux.
  • the compound represented by the general formula (11c) in the synthetic pathway C can be produced by subjecting the compound represented by the general formula (9c) to a fluorination reaction (step C4).
  • the reaction is carried out using a fluorinating agent such as dimethylaminosulfur trifluoride or dimethylaminosulfur trifluoride in a solvent such as dichloromethane at 0 ° C to room temperature.
  • a fluorinating agent such as dimethylaminosulfur trifluoride or dimethylaminosulfur trifluoride in a solvent such as dichloromethane at 0 ° C to room temperature.
  • the compound represented by the general formula (5c) can be used for the deprotection reaction of protecting groups of alcohols and the hydrolysis reaction of esters which are generally used in the compound represented by the general formula (11c). (Step C5).
  • the deprotection reaction of the protective group for alcohols is carried out at 0 ° C to room temperature using methanol, ethanol, ethyl acetate or jetyl ether as a solvent when the protective group is a methoxymethyl group or tetrahydropyranyl group.
  • the reaction can be carried out below.
  • Protective group power 3 ⁇ 4 In the case of silyl groups such as butyl dimethylsilyl group, t-butylsphenyl silyl group, triisopropyl silyl group, etc., potassium fluoride, cesium fluoride, tetraptyl ammonium fluoride are used and acetononitrile is used.
  • the reaction can be carried out in a solvent such as THF at 0 ° C. to room temperature.
  • a solvent such as THF
  • the protecting group is a acetyl group, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution
  • the reaction can be carried out at 0 ° C. to room temperature using a lithium bromide aqueous solution and using THF, CPME, methanol, ethanol, 1,4 dioxane or the like as a solvent.
  • esters are methanol, ethanol, THF, CPME, DMSO,
  • a potassium hydroxide aqueous solution a sodium hydroxide aqueous solution, or a lithium hydroxide aqueous solution, preferably a sodium hydroxide aqueous solution, to act under normal temperature to heating under reflux in a solvent such as DMF or 1,4 dioxane.
  • the compound represented by the general formula (6c) in the synthesis route C can be produced by decarboxylation of the compound represented by the general formula (5c) (step C6).
  • the reaction can be done in the same way as in step A-4.
  • the compound represented by the general formula (7c) can be produced by oxidizing the compound represented by the general formula (6c) (step C-7).
  • the reaction can be carried out using a generally used oxidative method of alcohols to aldehydes or ketones, and can be performed, for example, in the same manner as in Step A-5.
  • R 1 is a difluoromethyl group, that is, the general formula (13c)
  • the compound represented by can also be produced by the following synthetic route C ′.
  • the reaction is preferably performed by using THF, 1,4 dioxane, and ether as solvents, mixing them at _78 ° C to 0 ° C, and then gradually raising the temperature to room temperature.
  • the compound represented by the general formula (2c ') in the synthetic route C' can be produced by oxidizing the compound represented by the general formula (1) (step C2).
  • reaction may be carried out using any method commonly used to oxidize alcohols to aldehydes or ketones, and may be performed, for example, in the same manner as in Step A-5.
  • step C ′ 3 In the presence of a base (step C ′ 3).
  • a compound represented by the general formula (18) is used in a solvent amount in the presence of a base such as sodium hydride, sodium alkoxide, potassium alkoxide, potassium hydride, preferably sodium hydride, It is preferable to carry out by heating to 80 ° C to 120 ° C.
  • a base such as sodium hydride, sodium alkoxide, potassium alkoxide, potassium hydride, preferably sodium hydride, It is preferable to carry out by heating to 80 ° C to 120 ° C.
  • the compound represented by the general formula (13c) in the synthetic pathway C ' can be produced by subjecting the compound represented by the general formula (3c') to a hydrolysis reaction (step C '4). .
  • the reaction can be carried out in the same manner as in Step A-3.
  • the compound represented by can also be produced by the following synthesis route D.
  • Pro represents an alcohol protecting group such as methoxymethyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, triisopropylpropylsilyl group, tetrahydrobiranyl group, R 2 and R 7 is as described above]
  • Step D-1 Can be produced by acting in the presence of a base (step D-1).
  • the reaction can be carried out in the same manner as in Step A-2.
  • the compound represented by the general formula (5d) in the synthesis route D can be produced by subjecting the compound represented by the general formula (4d) to a hydrolysis reaction of generally used esters ( Process D—2). The reaction can be carried out in the same manner as in Step A-3.
  • the compound represented by the general formula (6d) in the synthesis route D can be produced by decarboxylation of the compound represented by the general formula (5d) (step D-3).
  • the reaction can be done in the same way as in step A-4.
  • the compound represented by the general formula (7d ') in the synthetic route D can be produced by oxidizing the compound represented by the general formula (6d) (step D-4).
  • the reaction can be carried out using a generally used oxidative method of alcohols to aldehydes or ketones, and can be performed, for example, in the same manner as in Step A-5.
  • the compound represented by the general formula (8d) is obtained by oxidizing the compound represented by the general formula (7d ') (step D-5) or represented by the general formula (6d). It can be produced by oxidizing a compound.
  • the oxidation reaction in Step D-5 can be carried out using a generally used oxidative method for converting aldehydes to carboxylic acids, and can be carried out in the same manner as in Step B-1-1, for example.
  • the compound represented by the general formula (13d) in the synthesis route D is produced by subjecting the compound represented by the general formula (8d) to a deprotection reaction of a protecting group of alcohols generally used. (Step D-6).
  • the protecting group is a methoxymethyl group or a tetrahydrobiranyl group
  • methanol, ethanol, ethyl acetate, or jetyl ether containing hydrogen chloride is used as a solvent.
  • the reaction can be performed at a temperature of from ° C to room temperature.
  • Protective group power 3 ⁇ 4 In the case of silyl groups such as butyldimethylsilyl, t-butylsphenylsilyl, and triisopropyl silyl, use fluorinated rhodium, cesium fluoride, tetraptyl ammonium fluoride, acetonitrile or The reaction can be carried out in a solvent such as THF at 0 ° C to room temperature.
  • the compound represented by the general formula (7d) in the synthesis route D should be produced by subjecting the compound represented by the general formula (7d ') to deprotection reaction of a commonly used protective group for alcohols. (Step D-7).
  • the deprotection reaction can be carried out in the same manner as in Step D-6.
  • R 1 is a cyan group, that is, the general formula (6e)
  • R 1 is an oxime group, that is, the general formula (6e ′)
  • the compound represented by the general formula (19e) in the synthesis route E can be produced by subjecting the compound represented by the general formula (6d) to a deprotection reaction of a commonly used protective group for alcohols. Yes (Step E-l).
  • the deprotection reaction can be performed, for example, in the same manner as in Step D-6.
  • the compound represented by the general formula (20e) is obtained by subjecting the compound represented by the general formula (19e) to various alcohol protecting group introduction reactions (step E-2) or the general formula ( The compound represented by 6d) can be produced by subjecting it to various alcohol protecting group introduction reactions and then subjecting it to a deprotection reaction of a commonly used alcohol protecting group.
  • reaction for introducing various alcohol protecting groups in Step E-2 for example, fi can be carried out in the same manner as in Step C2.
  • the deprotection reaction of the protecting group of alcohols can be carried out, for example, in the same manner as in Step D-6.
  • the compound represented by the general formula (21e) in the synthesis route E can be produced by oxidizing the compound represented by the general formula (20e) (step E-3).
  • the reaction can be carried out using a generally used oxidative method of alcohols to aldehydes or ketones, and can be performed, for example, in the same manner as in Step A-5.
  • the compound represented by the general formula (22e) is obtained by adding hydroxylamine or hydroxylamine hydrochloride to the compound represented by the general formula (21e) in the presence or absence of a base. It can be produced by reacting (Step E-4). [0210] The reaction can be carried out in a solvent such as water, methanol, ethanol and the like using sodium acetate, sodium carbonate or the like as a base at O ° C to 100 ° C.
  • the compound represented by the general formula (23e) in the synthesis route E can be produced by subjecting the compound represented by the general formula (22e) to a dehydration reaction (Step E-5).
  • the reaction was carried out using tritylamine, dehydrating agents such as diphosphorus pentoxide, phosphorus pentachloride, thionyl chloride, acetic anhydride, trifluoroacetic anhydride, DCC, N, N, -carbonyldiimidazole, triphenylphosphine monotetrachloride.
  • dehydrating agents such as diphosphorus pentoxide, phosphorus pentachloride, thionyl chloride, acetic anhydride, trifluoroacetic anhydride, DCC, N, N, -carbonyldiimidazole, triphenylphosphine monotetrachloride.
  • a base such as diisopropylethylamine, pyridine, etc.
  • toluene, ether, THF, CPME, 1,4 dioxane, dichloromethane, chloroform, pyridine, etc. can be performed at 100 °
  • the compound represented by the general formula (23e) is obtained by converting the compound represented by the general formula (21e) into the step E
  • the compound represented by the general formula (6e) in the synthetic route E is produced by subjecting the compound represented by the general formula (23e) to a deprotection reaction of a commonly used protective group for alcohols. (Step E-6).
  • the compound represented by the general formula (6e ') in the synthesis route E is produced by subjecting the compound represented by the general formula (22e) to a deprotection reaction of a commonly used protective group for alcohols.
  • the power S can be achieved (Process E-7).
  • the deprotection reaction can be performed, for example, in the same manner as in Step C5.
  • R 1 may be a methyl group which may be substituted with an alkoxy group having 1 to 6 carbon atoms, that is, the general formula (13f)
  • the compound represented by can also be manufactured by the following synthetic pathway F.
  • the compound represented by general formula (13d) can be produced by reacting the compound represented by general formula (13d) and the compound represented by general formula (16) in the presence of a base (step F-1).
  • the reaction is based on sodium hydride, potassium hydride, lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, silver carbonate, silver oxide, etc., with toluene, THF, CPME, acetonitrile, DMF DMSO or the like can be used as a solvent at 0 ° C to 100 ° C.
  • the compound represented by the general formula (13f) can be produced by subjecting the compound represented by the general formula (14f) to a hydrolysis reaction of a commonly used ester ( Process F— 2).
  • reaction can be carried out in the same manner as in Step A-3.
  • Z represents an alkoxy group having 1 to 6 carbon atoms or an alkylsulfanyl group having 1 to 6 carbon atoms
  • the compound represented by can also be produced by the following synthesis route G.
  • the compound represented by the general formula (19g) is a compound represented by the general formula 1 ⁇ 2) and a compound in which R 2 is a hydrogen atom, that is, the general formula 1 ⁇ 2g) is introduced with various alcohol protecting groups. It can be produced by subjecting it to a reaction (Step G-l). The reaction is carried out in the same way as in Step C-2.
  • the compound represented by the general formula (20g) in the synthesis route G can be produced by rogenation of the compound represented by the general formula (19g) (step G-2).
  • reaction was carried out by reacting a base such as butyl lithium, lithium diisopropylamide, or lithium bistrimethylsilylamide in a solvent such as THF or CPME at -78 ° C to 0 ° C, and then N fluorobenzenesulfone.
  • a base such as butyl lithium, lithium diisopropylamide, or lithium bistrimethylsilylamide
  • a solvent such as THF or CPME
  • N fluorobenzenesulfone N fluorobenzenesulfone.
  • Imido, N-chlorosuccinimide, N-bromosuccinic acid imide, 1,2-dibromoethane, bromine, N-hydrosuccinimide, iodine, 1,2-Jodoe It can be performed at -78 ° C to room temperature by the action of a halogenating agent such as tan.
  • the compound represented by the general formula (21g) in the synthesis route G is the compound represented by the general formula (20g).
  • reaction can be carried out in the same manner as in Step C5.
  • the compound represented by the general formula (22g) is a compound represented by the general formula (21g).
  • Step G-4 It can be produced by oxidation (Step G-4).
  • the reaction may be carried out using any method commonly used to oxidize alcohols to aldehydes or ketones, and may be performed, for example, in the same manner as in Step A-5.
  • the compound represented by the general formula (7g) can be produced by alkoxylation or sulfanylation of the compound represented by the general formula (22g) (step G-5).
  • the reaction is carried out by adding sodium hydride or potassium hydride as a base to the compound represented by the corresponding alcohol or thiol (ZH), and using DMF, THF, CPME, DMSO, preferably DMF as a solvent at room temperature to 60 ° C. Can be done in C.
  • reaction is carried out at 0 ° C to 100 ° C in the presence or absence of butyllithium, sodium hydride, potassium hydride, etc., and THF, CPME, DMSO, or DMF as a solvent. I'll do it.
  • compounds represented by, if both Either or of R 11 and R 12 is a protecting group of the Amino group is either or both of R 11 and R 12 It can also be produced by producing a compound represented by the general formula (7h) which is a hydrogen atom and then subjecting the compound to a general amino group protecting group introduction reaction.
  • a general protecting group for an amino group is, for example, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS THIRD EDI TION (Theodora W.
  • a t-butoxycarbonyl group preferably a t-butoxycarbonyl group.
  • the reaction uses di-butyl dicarbonate, and THF, CPME, DMSO, DMF, acetonitrile, etc. are used as solvents, and 4-dimethylaminoviridine is present. Performed at a reaction temperature of 0 ° C to 100 ° C under or in the absence of force S.
  • R 2 represents a hydroxymethyl group
  • a compound represented by, or R 2 is a formyl group, i.e. formula (14j 2)
  • R 2 is a 1-hydroxyalkyl group having 2 to 6 carbon atoms, that is, the general formula (14j 3)
  • R 1Q represents an alkyl group having 1 to 5 carbon atoms, and IT and R 8 are as described above]
  • a compound represented by, or R 2 is Arukanoiru group having 2 to 6 carbon atoms, i.e. formula (14j- 4)
  • the compound represented by the general formula (25j) in the synthesis route J is a compound represented by the general formula (7j), that is, a compound in which R 2 is a hydrogen atom among the compounds represented by the general formula (7).
  • general formula (32) [0259] [Chemical 62]
  • V represents a hydrogen atom or a trialkylsilyl group, and R 9 is as described above]
  • the reaction is carried out in the presence of a catalyst such as hydrogen chloride, sulfuric acid, p-toluenesulfonic acid, pyridinium paratoluenesulfonate, camphorsulfonic acid, trimethylsilylmethanesulfonate, montmorillonite K10, acidic ion exchange resin, benzene, toluene.
  • a catalyst such as hydrogen chloride, sulfuric acid, p-toluenesulfonic acid, pyridinium paratoluenesulfonate, camphorsulfonic acid, trimethylsilylmethanesulfonate, montmorillonite K10, acidic ion exchange resin, benzene, toluene.
  • a solvent such as xylene and methyl chloride
  • the compound represented by the general formula (23 ⁇ 4) in the synthesis route J can be produced by formylation of the compound represented by the general formula (2) ((3) 1_2).
  • Reaction is butyl lithium, lithium diisopropylamide, lithium bistrimethylsilyl
  • An amide, preferably lithium diisopropylamide, can be used as a base, reacted in THF solvent at ⁇ 78 ° C., and then reacted with ethyl formate or DMF at ⁇ 78 ° C. to room temperature.
  • the compound represented by the general formula (27j) can be produced by reducing the compound represented by the general formula (26j) ((e) 1_3).
  • the reaction can be carried out by allowing a reducing agent such as sodium borohydride, lithium borohydride, DIBAL, lithium hydride hydride to act at 0 ° C to room temperature.
  • a reducing agent such as sodium borohydride, lithium borohydride, DIBAL, lithium hydride hydride
  • the reaction solvent in the case of sodium borohydride, an ether solvent such as THF, CPME, 1,4-dioxane, or an alcohol solvent such as ethanol or methanol, and in the case of lithium borohydride, THF or a solvent in which an alcoholic solvent such as ethanol is added to THF; in the case of DIBAL, THF, toluene, methylene chloride, etc .; in the case of lithium aluminum hydride, an etheric solvent such as THF, jetyl ether, etc. It is preferable that the reaction is carried out.
  • the compound represented by the general formula (23 ⁇ 4) in the synthetic route J can be produced by subjecting the compound represented by the general formula (27j) to various alcohol protecting group introduction reactions (Y 3 ⁇ 4j 4
  • reaction can be carried out in the same manner as in Step C2.
  • the compound represented by the general formula (2) in the synthetic pathway J can be produced by deacetalizing the compound represented by the general formula (28j) (see Example 15).
  • the reaction is carried out using an acid catalyst such as p-toluenesulfonic acid monohydrate or pyridinium p-toluenesulfonate in an acetone solvent, and the reaction is carried out at normal temperature to heating under reflux, or methanol containing hydrogen chloride.
  • an acid catalyst such as p-toluenesulfonic acid monohydrate or pyridinium p-toluenesulfonate in an acetone solvent
  • Ethanol, ethyl acetate, or jetyl ether can be used by reacting at V, o ° C to room temperature.
  • the compound represented by general formula (2) can be produced by oxidizing the compound represented by the general formula (2) (Example 16).
  • the reaction can be carried out using a generally used oxidative method of aldehydes to carboxylic acids, and can be carried out, for example, in the same manner as in Step B-1-1.
  • the compound represented by the general formula (31j) can be produced by esterifying the compound represented by the general formula (30j) (Example 17).
  • reaction can be carried out in the same manner as in Step B-2.
  • the general formula (14j 1) can be produced by subjecting the compound represented by the general formula (31j) to a deprotection reaction of a protecting group of a commonly used alcohol ( ⁇ ) 3 ⁇ 4 8).
  • reaction can be carried out in the same manner as in Step C5.
  • the compound represented by the general formula (14j2) can be produced by oxidizing the compound represented by the general formula (14j1) (see Example 19).
  • the reaction may be carried out using any method commonly used to oxidize alcohols to aldehydes or ketones, and may be performed, for example, in the same manner as in Step A-5.
  • the reaction can be carried out using THF, CPME, ether, 1,4 dioxane or the like as a reaction solvent at a reaction temperature of -78 ° C to room temperature.
  • the compound represented by the general formula (14j 4) can be produced by oxidizing the compound represented by the general formula (14j 3) (Example 111).
  • the reaction is an oxidative process of commonly used alcohols to aldehydes or ketones. For example, it can be carried out in the same manner as in Step A-5.
  • the compound represented by can also be produced by the following synthesis route K.
  • the compound represented by the general formula (34k) in the synthesis route K can be produced by formylating the compound represented by the general formula (19g) (step K-1).
  • the compound represented by the general formula (35k) in the synthesis route K can be produced by reducing the compound represented by the general formula (34k) (step K-2).
  • the compound represented by the general formula (36k) is produced by reacting the compound represented by the general formula (35k) and the compound represented by the general formula (16) in the presence of a base. (Step K-3). [0296] The reaction is based on sodium hydride, potassium hydride, lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, silver carbonate, silver oxide, etc., with toluene, THF, CPME, acetonitrinol, Doing at O ° C to 100 ° C using DMF, DMSO, etc. as a solvent.
  • the compound represented by the general formula (6k) in the synthetic route K can be produced by subjecting the compound represented by the general formula (36k) to a deprotection reaction of a commonly used protecting group for alcohols. Yes (Step K-4).
  • reaction can be carried out in the same manner as in Step C5.
  • the compound represented by the general formula (1) is a compound in which R 13 is a hydrogen atom among the compounds represented by the general formula (1), that is, the general formula (lm)
  • the reaction consists of hydrogen peroxide, m-chloroperbenzoic acid, peracetic acid, permaleic acid, magnesium monoperoxyphthalate, sodium perborate, etc., water, acetic acid, methylene chloride, black mouth Honolem,
  • the reaction can be carried out in a solvent such as 1,2-dichloroethane at a reaction temperature of O ° C to 150 ° C.
  • R 14 represents a halogen atom, R 1 , IT, R 3 , R 4 , R 5 , R 6 , n and
  • the compound represented by the general formula (1) is a compound in which R 13 is a hydrogen atom among the compounds represented by the general formula (1), that is, the general formula (lp)
  • [0316] can be produced from a compound represented by the above formula.
  • reaction is carried out by reacting the compound represented by the general formula (lp) with sodium hypochlorite, sodium chlorite, bleached powder, chlorine, N chlorosuccinimide, bromine, N— Using succinimide, iodine, or N succinimide, etc., it can be heated from 0 ° C to 100 ° C.
  • O-mesitylsulfonylacetohydroxamic acid ethyl (87.8 g) was dissolved in 1,4-dioxane (70 mL), and 70% aqueous perchloric acid (31.0 mL) was added and stirred under ice cooling. Ice water was added and the precipitated solid was collected by filtration and dissolved in dichloromethane. The dichloromethane layer was dried over anhydrous magnesium sulfate and then added dropwise to a dichloromethane solution (20 mL) of the compound of Example 1 (35.7 g). Stir for 1 hour.
  • the target product (38.2 g) was obtained as a yellow oily substance in the same manner as in Example 2 using mesitylsulfonylacetohydroethyl ester (33.5 g) and 3 hydroxymethylpyridine (11.2 g). It was.
  • Example 2 The compound of Example 2 (66.2 g) was dissolved in DMF (300 mL), 2 ethyl pentinate (16.4 mL) and potassium carbonate (51.4 g) were added, and the mixture was stirred at room temperature for 23 hours. Insoluble with Celite After the product was filtered off, the filtrate was diluted with water and extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate.
  • the target compound was obtained as a yellow powder in the same manner as in Example 4 from the compound of Example 2 and 4, 4, 4 trifluoro-2-butyric acid ethyl ester.
  • the target compound (5.07 g) was obtained as a white solid from the compound of Example 2 (21.3 g) and cyclopropylpropionic acid benzyl ester (8.01 g) in the same manner as in Example 4.
  • Example 4 Using the compound of Example 3 (38.2 g) and 2-ethyl pentylate (6.97 g), Example 4 and In a similar manner, the target compound (7.33 g) was obtained as a yellow solid.
  • Example 2 The compound of Example 2 (56.6 g) was dissolved in DMF (320 mL), 4,4-diethoxy-2 butyric acid ethyl ester (21.2 g) and potassium carbonate (43.9 g) were sequentially added thereto, and the mixture was stirred at room temperature for 30 hours. Stirred. Insoluble material was removed by filtration through Celite, and the filtrate was diluted with water and extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain the desired product (2.01 g) as a yellow oil.
  • Example 2 The compound of Example 2 (44.9 g) was dissolved in DMF (500 mL), 4 (tetrahydropyran-2-yloxy) 2-butynoic acid ethyl ester (17.8 g) and potassium carbonate (34.8 g) were added, Stir at room temperature for 17 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The extract layer was washed with saturated brine and dried over anhydrous sodium sulfate.
  • DMF 500 mL
  • 4 (tetrahydropyran-2-yloxy) 2-butynoic acid ethyl ester 17.8 g
  • potassium carbonate 34.8 g
  • Example 4 The compound of Example 4 (6.22 g) was dissolved in ethanol (150 mL), 10% aqueous potassium hydroxide solution (37 mL) was added, and the mixture was heated to reflux for 2 hr. After the solvent was distilled off under reduced pressure, the residue was dissolved in water and washed with ether. Concentrated hydrochloric acid was added to the aqueous layer to acidify the solution, and the mixture was extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain the target compound (4.58 g) as a gray solid.
  • Example 6 The compound of Example 6 (4.63 g) was dissolved in ethanol (70 mL), potassium hydroxide (2.82 g) and water (30 mL) were added at room temperature, and the mixture was stirred for 2.5 hours with heating under reflux. . The solvent of the reaction solution was distilled off under reduced pressure, diluted with water (100 mL), and concentrated hydrochloric acid (6.0 mL) was added. The precipitated solid was collected by filtration to obtain the target compound (3.32 g) as a white solid.
  • Example 7 The compound of Example 7 (6.10 g) was dissolved in ethanol (91 mL), and potassium hydroxide was dissolved at room temperature.
  • Example 8 The compound of Example 8 (4.54 g) was dissolved in ethanol (96 mL), potassium hydroxide (3.54 g) and water (41 mL) were added at room temperature, and the mixture was stirred with heating under reflux for 1 hr. . The solvent of the reaction solution was distilled off under reduced pressure, diluted with water (100 mL), and concentrated hydrochloric acid (8.3 mL) was added. The precipitated solid was collected by filtration to obtain the desired product (3.86 g) as a white solid.
  • Example 11 The compound of Example 11 (4.64 g) was dissolved in ethanol (60 mL), hydroxylated lithium (2.51 g) and water (19.2 mL) were added at room temperature, and the mixture was heated under reflux for 1.5 hours. Stir. The solvent of the reaction solution was distilled off under reduced pressure, diluted with water (70 mL), and diluted hydrochloric acid (35 mL) was added. The precipitated solid was collected by filtration to obtain the desired product (3.60 g) as a white solid.
  • a 40% aqueous sulfuric acid solution (130 mL) was added to the compound of Example 9 (7.33 g) and heated at 100 ° C for 1 hour.
  • the target compound was obtained as a white solid in the same manner as in Example 13 and Example 18 using the compound of Example 5.
  • Example 12 The compound of Example 12 (14.9 g) was dissolved in ethanol (250 mL), 10% aqueous potassium hydroxide solution (80 mL) was added, and the mixture was heated to reflux for 3 hours. The solvent was concentrated under reduced pressure, the aqueous layer of the residue was washed with diethyl ether, concentrated hydrochloric acid was added to the aqueous layer, the precipitated solid was collected by filtration, washed with water and dried. This solid was suspended in 0-dichlorobenzene (300 mL) and heated at 150 ° C. for 17 hours. After standing to cool, the solvent was distilled off under reduced pressure,
  • Example 18 The compound of Example 18 (2.50 g) was dissolved in dichloromethane (60 mL), activated manganese dioxide (10.5 g) was added, and the mixture was stirred at room temperature for 24 hours. Insoluble material was removed by filtration through Celite, and the solvent of the filtrate was evaporated under reduced pressure to obtain the target compound (2.28 g) as a gray solid.
  • the target compound was obtained as a white solid in the same manner as in Example 26, using the compound of Example 24.
  • Example 20 The compound of Example 20 (1.00 g) was dissolved in black mouth form (45 mL), and activated manganese dioxide (2.63 g) was added at room temperature, followed by stirring at 50 ° C. for 3 hours. Insoluble material was removed by filtration through Celite, and the solvent of the filtrate was evaporated under reduced pressure to give the object product (938 mg) as a yellow solid.
  • Example 21 The compound of Example 21 (1.00 g) was dissolved in black mouth form (56 mL), and activated manganese dioxide (3.25 g) was added at room temperature, followed by stirring at 50 ° C for 3 hours. Insoluble material was removed by filtration through Celite, and the solvent of the filtrate was evaporated under reduced pressure to give the object product (966 mg) as a yellow solid.
  • Example 23 Using the compound of Example 23 (500 mg), the target compound was obtained as a yellow solid in the same manner as in Example 26.
  • Example 22 The compound of Example 22 (1.02 g) was dissolved in black mouth form (35 mL), and activated manganese dioxide (1.51 g) was added at room temperature, followed by stirring at 50 ° C for 4.5 hours. Insoluble material was removed by filtration through Celite, and the solvent of the filtrate was evaporated under reduced pressure to give the object compound (876 mg) as a yellow solid.
  • Example 26 The compound of Example 26 (1.02 g) was suspended in water (100 mL), potassium permanganate (3.16 g) was added, and the mixture was stirred at room temperature for 21 hr. 10% Aqueous sodium hydroxide solution was added to make the solution alkaline, and insolubles were removed by filtration through Celite, and the filtrate was washed with ether. The aqueous layer was acidified with 10% hydrochloric acid and extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate.
  • Example 33 The compound of Example 33 (286 mg) was dissolved in methanol (3.0 mL), 10% aqueous potassium hydroxide solution (2.0 mL) was added, and the mixture was stirred at room temperature for 17 hr. The reaction solution was washed with ether, the aqueous layer was acidified with 10% hydrochloric acid, and extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain the desired compound (121 mg).
  • Example 27 The compound of Example 27 (1.23 g) was dissolved in t-butanol (36 mL), water (12 mL), sodium dihydrogen phosphate dihydrate (787 mg), 2 methyl-2-butene (2.4 mL) And sodium chlorite (2.00 g) were added, and the mixture was stirred at room temperature for 5 hours. A 10% aqueous sodium hydroxide solution was added to the reaction solution to make the solution alkaline, and the mixture was washed with ether. The aqueous layer was charged with 10% hydrochloric acid, and the precipitated crystals were collected by filtration and washed with water to obtain the target compound (885 mg) as a white solid.
  • Example 31 Using the compound of Example 31, the target compound was obtained as a white solid in the same manner as in Example 35.
  • Example 32 Silver nitrate (1.36 g), sodium hydroxide (623 mg), and water (30 mL) were added to the compound of Example 32 (876 mg), and the mixture was stirred at room temperature for 4 hours. Insoluble material was removed by filtration through Celite, and the filtrate was washed with diethyl ether. The aqueous layer was acidified with dilute hydrochloric acid and extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain the target compound (789 mg) as a white solid.
  • Example 10 The compound of Example 10 (2.10 g) was dissolved in pyridine (20 mL), acetic anhydride (1.12 mL) was added, and the mixture was stirred at room temperature for 6 hr. The reaction mixture was diluted with water and extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain the target product (2.01 g) as a colorless oil.
  • Example 44 The compound of Example 44 (582 mg) was dissolved in dichloromethane (20 mL), activated manganese dioxide (2.22 was added, and the mixture was stirred at room temperature for 11 hours. Insoluble materials were filtered off using Celite, and the filtrate was filtered. The solvent was distilled off under reduced pressure to obtain the desired product (580 mg) as a white solid.
  • Example 45 The compound of Example 45 (580 mg) was dissolved in THF (13 mL) under an argon atmosphere, and -78. Ethylmagnesium bromide (1.0 mol / LTHF solution, 3.1 mL) was added dropwise at C, and then at ambient temperature.
  • Example 46 The compound of Example 46 (550 mg) was dissolved in black mouth form (10 mL), activated manganese dioxide (5.61 g (1.87 g added every 24 hours)) was added, and the mixture was heated to reflux for 2 days. Insoluble material was removed by filtration through Celite, and the solvent of the filtrate was distilled off under reduced pressure to obtain the desired product (415 mg).
  • Triethylamine (1.51 mL) and anhydrous trifluoroacetic acid (0.60 mL) were added to a methylene chloride (22 mL) solution of the obtained solid, and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction mixture, and the mixture was extracted with methylene chloride. The extract layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure.
  • P-Toluenesulfonic acid monohydrate (411 mg) was added to a methanol (22 mL) solution of the obtained residue, and the mixture was stirred at room temperature for 1 hour. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, followed by extraction with ethyl acetate. The extract layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was washed with isopropyl ether to obtain the desired product (389 mg) as a pale yellow solid.
  • Example 50 The compound of Example 50 (380 mg) was mixed with black mouth form (45 mL) and active manganese dioxide (1.
  • Example 40 The compound of Example 40 (437 mg) was dissolved in methanol (14 mL), p-toluenesulfonic acid monohydrate (27.0 mg) was added at room temperature, and the mixture was stirred at 50 ° C. for 30 min. The reaction solution is ice-cooled and analyzed.
  • Example 53 The compound of Example 53 (253 mg) was dissolved in DMF (11 mL), silver oxide (2.64 g) and odomethane (1.42 mL) were added, and the mixture was stirred at room temperature for 15 hours. Insoluble material was filtered off using Celite, and the filtrate The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate) to obtain the desired product (224
  • Example 54 The compound of Example 54 (222 mg) was dissolved in methanol (4.20 mL), potassium hydroxide (174 mg) and water (1.35 mL) were added at room temperature, and the mixture was stirred at room temperature for 4 hours. .
  • the solvent of the reaction solution was distilled off under reduced pressure, water was added to the residue, and the residue was washed with jetyl ether.
  • the aqueous layer was acidified with dilute hydrochloric acid, extracted with ethyl acetate, and the extracted layer was dried over anhydrous sodium sulfate.
  • the solvent was distilled off under reduced pressure to obtain the desired product (207 mg) as a white solid.
  • Example 25 The compound of Example 25 (3.05 g) was dissolved in DMF (30 mL), imidazole (1.92 g) and tert-butyldimethylsilyl chloride (3.19 g) were added, and the mixture was stirred at room temperature for 2.5 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. Remove the solvent under reduced pressure,
  • Example 57 The compound of Example 57 (6.44 g) was dissolved in THF (50 mL), tetraptylammonium fluoride (1.0 mol / L THF solution, 17.0 mL) was added at 0 ° C, and the mixture was stirred at 0 ° C for 2 hours. did.
  • the reaction mixture was diluted with water and extracted with ethyl acetate.
  • the extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate.
  • Example 58 The compound of Example 58 (4.47 g) was dissolved in black mouth form (60 mL), activated manganese dioxide (8.54 g) was added, and the mixture was stirred at 50 ° C. for 8 hr. Insoluble material was removed by filtration through Celite, and the solvent in the filtrate was distilled off under reduced pressure to obtain the desired product (4.26 g) as a yellow solid.
  • Example 60 The compound of Example 60 (516 mg) was suspended in tert-butanol (6.0 mL) and water (2.0 mL), and sodium dihydrogen phosphate dihydrate (309 mg), 2-methyl-2-butene (0.94 mL), and Sodium chlorate (448 mg) was added and stirred at room temperature for 1.5 hours. 10% Aqueous sodium hydroxide solution is added to make the solution alkaline, the aqueous layer is washed with jetyl ether, concentrated hydrochloric acid is added to make the solution acidic, and the precipitated solid is collected by filtration and washed with water. It dried and obtained the target object (210 mg) as pale yellow solid.
  • Example 62 The compound of Example 62 (410 mg) was dissolved in acetonitrile (10 mL), di-tertbutyl-dicarbonate (736 mg) and dimethylaminopyridine (8.4 mg) were added, and the mixture was stirred at room temperature for 3 days. did.
  • the reaction mixture was diluted with water and extracted with ethyl acetate.
  • the extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate.
  • Example 63 The compound of Example 63 (562 mg) was suspended in tert-butanol (9.0 mL) and water (3.0 mL), sodium dihydrogen phosphate dihydrate (264 mg), 2-methyl-2 butene (0.81 mL) ) And sodium chlorite (535 mg) were added, and the mixture was stirred at room temperature for 6 hours. Add 10% aqueous sodium hydroxide solution to make the solution alkaline, wash the aqueous layer with jetyl ether, and then acidify the solution with concentrated hydrochloric acid. The precipitated solid was collected by filtration, washed with water and dried to give the object product (84.7 mg) as a white solid.
  • Example 65 compound (2.75 g) was dissolved in THF (30 mU) under argon gas atmosphere, and n-butyllithium (1.54 mol / L hexane solution, 5.6 mL) was added dropwise at -78 ° C. The mixture was stirred for 30 minutes at _78 ° C. Ethyl formate (0.75 mL) was added to the reaction mixture, and the mixture was stirred for 30 minutes at room temperature, saturated aqueous ammonium chloride solution was added to the reaction mixture, and the organic layer was extracted with ethyl acetate.
  • Example 69 The compound of Example 69 (1.22 g) was dissolved in DMF (22 mL), pyridinium dichromate (12.9 g) and celite (200 mg) were added, and the mixture was stirred at room temperature for 2 days. Insoluble material was removed by filtration through Celite, and the filtrate was diluted with water and extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to obtain the desired product (1.08 g) as a brown solid.
  • n-butyllithium (2.67 mol / L hexane solution, 14.0 mL) was added dropwise to a THF (200 mL) solution of the compound of Example 56 (12.4 g) at 78 ° C. Stir for 30 minutes at ° C. This solution was added dropwise to a solution of ethyl formate (9.06 mL, 113 mmol) in THF (100 mL) at 78 ° C. After stirring at room temperature for 30 minutes, a saturated aqueous ammonium chloride solution was added, and the mixture was extracted with ethyl acetate (400 mL).
  • the extract layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate.
  • the insoluble material was filtered off using Celite, and the organic layer of the filtrate was separated, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to obtain the target product ( 470 mg) was obtained as a pale yellow solid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Pulmonology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pain & Pain Management (AREA)
  • Otolaryngology (AREA)
  • Dermatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

明 細 書
ピラゾ口ピリジン誘導体及びそれらを有効成分とするホスホジエステラーゼ
(PDE)阻害剤
技術分野
[0001] 本発明は、ホスホジエステラーゼ (PDE)阻害剤として有用なピラゾ口ピリジン誘導 体に関する。
背景技術
[0002] ホスホジエステラーゼ(PDE)は生体内のセカンドメッセンジャーである cyclic AMP (cAMP)、及び cyclic GMP(cGMP)を分解する酵素である。現在までに、 PDEは 1 〜; 11までのタイプが見つ力、つており、タイプ毎に cAMPを特異的に分解する力、、 cG MPを特異的に分解するかあるいは両方を分解するかが決まって!/、る。各タイプの P DE組織分布には差がみられ、臓器の種類により、様々なタイプの PDEにより細胞反 応がコントロールされてレ、ると考えられてレ、る。
[0003] PDE阻害剤の開発はこれまでに数多く行われており、例えば PDE3阻害剤は狭心 症、心不全、高血圧症などの治療薬や血小板凝集抑制薬あるいは抗喘息薬として、 また PDE4阻害剤は気管支喘息、慢性閉塞性肺疾患 (COPD)、間質性肺炎、ァレ ルギー性鼻炎、アトピー性皮膚炎、関節リウマチ、多発性硬化症、アルツハイマー病 、認知症、パーキンソン病などの治療薬として期待されている。 PDE5阻害剤は男性 性機能障害治療薬としてすでに臨床において利用されている。さらに最近では PDE 10A modulatorとして、 minocyclineをハンチントン病患者に試用して有効であつたと いう報告があり(特許文献 1)、 PDE10阻害剤がハンチントン病、アルツハイマー病、 認知症、パーキンソン病、統合失調症などの各種精神障害治療薬として有効である ことを示した公開特許公報も開示されてきている(特許文献 2)。
[0004] 一方、 PDE阻害作用を有するピラゾ口ピリジン誘導体が(特許文献 3〜6)に開示さ れて!/、る力 本出願化合物である炭素鎖を介してピリジン環とピラゾ口ピリジン環が連 結した誘導体は含まれていない。またべンゾフラン、ベンゾジォキソール、ベンゾジォ キソシン、ベンゾジォキセピンやインドールと!/、つた複素環を基調とした本特許に類 似した PDE阻害剤が報告されているが(特許文献 7〜; 14)、本特許の特徴であるビラ ゾロピリジンを基調とした化合物は報告されて!/、なレ、。
特許文献 1: WO01024781号ノ ンフレット
特許文献 2:特開 2002— 363103号公報
特許文献 3:再公表 W09814448号公報
特許文献 4 :特開平 10— 109988号公報
特許文献 5:特開 2006 - 117647号公報
特許文献 6 :特開 2006— 169138号公報
特許文献 7: WO2003066044号ノ ンフレット
特許文献 8 : US2002128290号ノ ンフレット
特許文献 9: WO9937640号ノ ンフレット
特許文献 10 :WO9916768号パンフレット
特許文献 11 :W〇9636624号パンフレット
特許文献 12 :特開 2004— 196785号公報
特許文献 13: W09822455号パンフレット
特許文献 14 :W09748697号パンフレット
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、優れたホスホジエステラーゼ阻害作用を有し、かつ副作用の少ないビラ ゾロピリジン誘導体を提供することにある。
課題を解決するための手段
[0006] 本発明者らは、ホスホジエステラーゼ阻害活性を有し、かつ安全性の高!/、化合物を 創製すべく鋭意研究を重ねた結果、これまでに知られている PDE阻害剤とは構造を 異にした新規なピラゾ口ピリジン誘導体が強力な PDE阻害作用を有することを見出し
、本発明を完成した。
[0007] 即ち本発明は、
1)一般式 (1)
[0008] [化 1]
Figure imgf000005_0001
[0009] [式中、 R1は水素原子、置換されていてもよい炭素数 1〜6のアルキル基(置換基は、 ハロゲン原子、炭素数 1〜6のアルコキシ基又は水酸基である)、炭素数 3〜8のシク 口アルキル基、炭素数 1〜6のアルカノィル基、ォキシム基又はシァノ基を示し、 R2は水素原子、置換されていてもよい炭素数;!〜 6のアルキル基(置換基は、炭素数 ;!〜 6のアルコキシ基又は水酸基である)、炭素数 1〜6のアルコキシ基、炭素数;!〜 6 のアルキルスルファニル基、炭素数 1〜6のアルキルスルフィエル基、炭素数 1〜6の アルキルスルホニル基、置換されて!/、てもよ!/、ァミノ基(炭素数;!〜 6のアルキル基で 置換されてレ、てもよ!/、)又は炭素数 1〜6のアルカノィル基を示し、
R5及び R6は同一又は異なって水素原子又はハロゲン原子を示し、
R13は水素原子又はハロゲン原子を示し、
nは 0又は 1を示し、
[0010] [化 2]
[0011] は単結合又は二重結合を示し、
[0012] [化 3]
[0013] が二重結合の場合、 R3は前記二重結合の形成に関与し、 R4は水素原子又はフエ二 ノレ基を示し、
[0014] [化 4] [0015] が単結合の場合、 は水素原子又は水酸基を示し、 R4は水素原子又はフエニル基 を示すか、あるいは と R4が一緒になつてォキソを形成する。 ]
で表されるピラゾ口ピリジン誘導体、その薬理学的に許容しうる塩又はそれらの水和 物。
[0016] 2)—般式(1)で表される化合物が、一般式(la)
[0017] [化 5]
[0018] [式
Figure imgf000006_0001
及び nは前記定義に同じ]で表される 1)記載のビラゾロピ リジン誘導体、その薬理学的に許容しうる塩又はそれらの水和物。
[0019] 3)—般式(1)で表される化合物が、一般式(lb)
[0020] [化 6]
Figure imgf000006_0002
[0021] [式中、 R1 R2、 R5、 R6、 R13、 n及び
[0022] [化 7]
[0023] は前記定義に同じ]で表される 1)記載のピラゾ口ピリジン誘導体、その薬理学的に許 容しうる塩又はそれらの水和物。 [0024] 4)一般式(1)で表される化合物において、 Rldが水素原子である 1)記載のビラゾロピ リジン誘導体、その薬理学的に許容しうる塩又はそれらの水和物。
[0025] 5)—般式(1)で示される化合物が、
7 メトキシ 4— [ (2 ピリジン一 4 ィル)ビニノレ 2 トリフルォロメチルピラゾ口 [ 1, 5— a]ピリジン、
7 メトキシ 4— [ (2 ピリジン一 4 ィル)ェチル] 2 トリフルォロメチルピラゾ口 [ 1, 5— a]ピリジン、
1— (7 メトキシ一 2 トリフルォロメチルピラゾロ [1, 5 a]ピリジン一 4 ィル
) -2- (ピリジン一 4—ィル)エタノン、
2- (3, 5 ジクロロピリジン一 4 ィル) 1— (7 メトキシ一 2 トリフルォロメチル ピラゾ口 [1, 5— a]ピリジン一 4—ィル)エタノン、
(E)— 4— [2— (3, 5 ジクロロピリジン一 4 ィル)ビュル]— 7 メトキシ一 2 トリフ ルォロメチルピラゾロ [1, 5— a]ピリジン、
2- (ピリジン一 4 ィル) 1— (7 メトキシ一 2 トリフルォロメチルピラゾロ [1, 5 a ]ピリジン 4—ィル)エタノン、
4— (2— (7 メトキシ一 2— (トリフルォロメチル)ピラゾ口 [1、 5-a]ピリジン一 4 ィル) ェチル)ピリジン
1一才キシド、
3, 5 ジクロロー 4 (2— (7 メトキシー2 (トリフルォロメチル)ピラゾ口 [1、 5-a]ピ リジン 4 ィル) 2—ォキソェチル)ピリジン 1ーォキシド、
4一(2—(7 メトキシー2 (トリフルォロメチル)ピラゾ口 [1,5— a]ピリジンー4ーィル )一 2—ォキソェチル)ピリジン
1一才キシド、
2- (3,5 ジクロロピリジン- 4 ィル) 1— (7— (メチルァミノ) -2- (トリフルォロメ チル)ピラゾ口 [1,5— a]ピリジンー4 ィル)エタノン、
3,5 ジクロロー 4一(2—(2 (ジフルォロメチル)ー7 メトキシピラゾロ [l,5— a]ピ リジン 4 ィル) 2 ォキソェチル)ピリジン
1一才キシド、 1— (2 シクロプロピル一 7 メトキシピラゾ口 [1,5— a]ピリジン一 4 ィル) 2— (ピ リジン 4ーィノレ)エタノン、
1一(3 クロロー 2 シクロプロピノレー 7 メトキシピラゾロ [ 1, 5— a]ピリジン 4ーィ ル) - 2- (3,5—ジクロ口ピリジンー4 ィル)エタノン、
3, 5 ジクロロー 4 (2— (2 シァノー 7 メトキシピラゾロ [1 , 5— a]ピリジンー4 ィル)ー2—ォキソェチル)ピリジン 1ーォキシドである 1)記載のピラゾ口ピリジン誘導 体、その薬理学的に許容しうる塩又はそれらの水和物。
[0026] 6) 1)〜5)のいずれかに記載のピラゾ口ピリジン誘導体、その薬理学的に許容しうる 塩又はそれらの水和物を含有するホスホジエステラーゼ(PDE)阻害剤。
[0027] 7) 1)〜5)のいずれかに記載のピラゾ口ピリジン誘導体、その薬理学的に許容しうる 塩又はそれらの水和物を含有する医薬。
発明の効果
[0028] 本発明に係る新規なピラゾ口ピリジン誘導体とその付加塩は優れた PDE阻害作用 を有するため、気管支喘息、慢性閉塞性肺疾患(COPD)、間質性肺炎、アレルギー 性鼻炎、アトピー性皮膚炎、関節リウマチ、多発性硬化症、ハンチントン病、アルッハ イマ一病、認知症、パーキンソン病、統合失調症などの予防又は治療薬として有用 である。
発明を実施するための最良の形態
[0029] 本発明において、 R1及び R2の「炭素数 1〜6のアルコキシ基」とは、炭素数 1〜6の 直鎖又は分岐鎖のアルコキシ基であり、好ましくは炭素数 1〜4のアルコキシ基であ る。例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ィ ソブトキシ基、 sec-ブトキシ基、 t ブトキシ基などを挙げることができる。
[0030] R5、 R6及び R13の「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又は ヨウ素原子を意味する。
[0031] R1及び R2の「炭素数 1〜6のアルキル基」とは、炭素数;!〜 6の直鎖又は分岐鎖の アルキル基であり、好ましくは炭素数 1〜4のアルキル基である。例えば、メチル基、 ェチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 sec-ブチル基、 t ブチル基などを挙げることができる。 [0032] R1の「置換されていてもよい炭素数;!〜 6のアルキル基」の置換基を有する例として は、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ィ ソプロポキシメチル基、ブトキシメチル基、イソブトキシメチル基、 sec-ブトキシメチル 基、 t ブトキシメチル基、モノフルォロメチル基、ジフルォロメチル基、トリフルォロメ チル基などを挙げることができる。好ましくはヒドロキシメチル基、メトキシメチル基、トリ フルォロメチル基である。
[0033] R2の「置換されていてもよい炭素数;!〜 6のアルキル基」の置換基を有する例として は、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ィ ソプロポキシメチル基、ブトキシメチル基、イソブトキシメチル基、 sec-ブトキシメチル 基、 t—ブトキシメチル基などを挙げることができる。好ましくはヒドロキシメチル基、メト キシメチノレ基である。
[0034] R1の「炭素数 3〜8のシクロアルキル基」としては、例えばシクロプロピル基、シクロ ブチル基、シクロペンチル基、シクロへキシル基、シクロォクチル基などを挙げること ができる。
[0035] R1及び R2の「炭素数 1〜6のアルカノィル基」とは、炭素数;!〜 6の直鎖又は分岐鎖 のアルカノィル基であり、好ましくは炭素数 1〜4のアルカノィル基である。例えば、ホ ルミル基、ァセチル基、プロピオニル基、ブチリル基、イソブチリル基などを挙げること ができる。
[0036] R2の「炭素数 1〜6のアルキルスルファニル基」とは、炭素数;!〜 6の直鎖又は分岐 鎖のアルキルスルファニル基であり、好ましくは炭素数 1〜4のアルキルスルファニル 基である。例えば、メチルスルファニル基、ェチルスルファニル基、プロピルスルファ 二ノレ基、イソプロピノレスノレファニノレ基、ブチノレスノレファニノレ基、イソブチノレスノレファニ ノレ基、 sec-ブチルスルファニル基、 tーブチルスルファニル基などを挙げることができ
[0037] R2の「炭素数 1〜6のアルキルスルフィエル基」とは、炭素数;!〜 6の直鎖又は分岐 鎖のアルキルスルフィエル基であり、好ましくは炭素数 1〜4のアルキルスルフィエル 基である。例えば、メチルスルフィニル基、ェチルスルフィニル基、プロピルスルフィニ ノレ基、イソプロピノレスノレフィニノレ基、ブチノレスノレフィニノレ基、イソブチノレスノレフィニノレ 基、 sec-ブチルスルフィエル基、 tーブチルスルフィエル基などを挙げることができる。
[0038] R2の「炭素数;!〜 6のアルキルスルホニル基」とは、炭素数;!〜 6の直鎖又は分岐鎖 のアルキルスルホニル基であり、好ましくは炭素数 1〜4のアルキルスルホニル基であ る。例えば、メチルスルホニル基、ェチルスルホニル基、プロピルスルホニル基、イソ プロピルスルホニル基、ブチルスルホニル基、イソブチルスルホニル基、 sec-ブチノレ スルホニル基、 tーブチルスルホニル基などを挙げることができる。
[0039] R2の「置換されていてもよいアミノ基」とは、炭素数;!〜 6の直鎖又は分岐鎖のアル キル基により置換されて!/、てもよ!/、ァミノ基であり、好ましくは炭素数 1〜4のアルキル アミノ基である。置換基を有するァミノ基の例としては、メチルァミノ基、ェチルァミノ基 、プロピルアミノル基、イソプロピルアミノ基、ブチルァミノ基、イソブチルァミノ基、 sec- ブチルァミノ基、 tーブチルァミノ基、ジメチルァミノ基、ジェチルァミノ基、ジプロピル アミノル基、ジイソプロピルアミノ基、ェチルメチルァミノ基などを挙げることができる。
[0040] の「前記二重結合の形成に関与」とは、 R3が結合する炭素原子とこれに隣接する 炭素原子との結合を R3が形成することにより、炭素鎖が前記二重結合を有することを 示す。
[0041] 本発明における薬理学的に許容される塩として、例えば塩酸塩、臭化水素酸塩、 酢酸塩、トリフルォロ酢酸塩、メタンスルホン酸塩、クェン酸塩、酒石酸塩のような酸 付加塩を挙げること力 Sできる。
[0042] 本発明の一般式(1)で表される化合物のうち、 R3が水酸基、 R4がフエニル基、 R13 が水素原子、 nが 0で、
[0043] [化 8]
[0044] が単結合である化合物、即ち一般式(lc)
[0045] [化 9] [0046] [式
Figure imgf000011_0001
R6は前述の通り]
で表される化合物は、例えば以下に示す合成経路 Aにより製造することができる。
[0047] <合成経路 A〉
[0048] [化 10]
Figure imgf000011_0002
[0049] 合成経路 Aで一般式(3)で表される化合物は、一般式(2)で表される化合物を 0- メシチレンスルホニルヒドロキシルァミン(以下、 MSHとする)と作用させることによつ て製造することができる(工程 A-l)。反応は一般式(2)で表される化合物を塩化メチ レンに溶解し、 0°C〜常温下にて MSHの塩化メチレン溶液を作用させることが好まし い。
[0050] 合成経路 Aで一般式 (4)
[0051] [化 11]
Figure imgf000012_0001
[0052] [式中、 R7は炭素数 1〜6の低級アルキル基、又はベンジル基を示し、 R1及び R2は 前述の通り]
で表される化合物は、一般式(3)で表される化合物と一般式(10)
[0053] [化 12]
R1-≡-C02R7 (10)
[0054] [式中、 R1及び R7は前述の通り]
で表される化合物を塩基存在下に作用させることによって製造することができる(ェ 程 A- 2)。
[0055] 反応は、メタノール、エタノール、 1 , 4 ジォキサン、ジメチルスルホキシド(DMSO )、 N,N-ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、シクロペンチルメチ ノレエーテル(CPME)、トルエン、ベンゼン、シクロへキサン、シクロペンタン、塩化メ チレン、クロ口ホルム、ァセトニトリルなどを反応溶媒として用い、炭酸水素ナトリウム、 炭酸ナトリウム、炭酸水素カリウム、炭酸カリウムなどの無機塩基又は、トリェチルアミ ンなどの有機塩基の存在下、反応温度としては 0°C〜常温下にて行うことができる。
[0056] 合成経路 Aで一般式(5)で表される化合物は、一般式 (4)で表される化合物をカロ 水分解反応に付すことによって製造することができる(工程 A— 3)。
[0057] 反応は、メタノール、エタノール、 THF、 CPME、 DMSO, DMF、 1 , 4 ジォキサ ンなどの溶媒中で水酸化カリウム水溶液、水酸化ナトリウム水溶液又は、水酸化リチ ゥム水溶液、好ましくは水酸化ナトリウム水溶液を常温〜加熱還流下に作用させて行 うこと力 Sでさる。
[0058] 合成経路 Aで一般式(6)で表される化合物は、一般式(5)で表される化合物を脱 炭酸させるか(工程 A— 4)又は、一般式 (4)で表される化合物を加水分解及び脱炭 酸することによって製造すること力 Sできる。 [0059] 工程 A— 4における反応は、一般式(5)で表される化合物をベンゼン、クロ口べンゼ ン、ジクロロベンゼン、ブロモベンゼン、トノレェン、キシレンなどの有機溶媒を用い、 10 0°C〜160°Cに加熱して行うことができる。また本反応は、エタノール又は 1 , 4ージォ キサン中、 2〜10%硫酸水溶液を加えて 80°C〜120°Cで加熱するか又は、 50%硫酸 中で 80°C〜120°Cに加熱して行うこともできる。
[0060] 一般式 (4)で表される化合物を用いる場合の反応は、臭化水素酸又は臭化水素含 有酢酸を用い、加熱還流下に作用させて行うことができる。また本反応は、エタノー ル又は 1 , 4 ジォキサン中、 2〜10%硫酸水溶液を加ぇて80°じ〜120°じで加熱する か又は、 50%硫酸中で 80°C〜120°Cに加熱して行うこともできる。
[0061] 合成経路 Aで一般式(7)で表される化合物は一般式 (6)で表される化合物を酸化 することによって製造することができる(工程 A— 5)。
[0062] 反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化的手 法を用いることができ、例えばクロ口クロム酸ピリジニゥム、ニクロム酸ピリジニゥムなど の酸化クロム ピリジン錯体、酸化クロム、炭酸銀、二酸化マンガンなどの金属酸化 剤、三酸化硫黄 ピリジン錯体、塩化ォキサリル、無水トリフルォロ酢酸、無水酢酸 又は、ジシクロへキシルカルポジイミド(DCC)などの DMSO活性化剤を用いた DM SO酸化又は、 Dess Martin酸化反応により行うことができる。反応温度としては- 78 °C〜100°Cにて行なうことができる。
[0063] 合成経路 Aで一般式 (8)で表される化合物は一般式(7)で表される化合物と一般 式(11)
[0064] [化 13] Μ (")
[0065] [式中 Μは Li、 MgCl、 MgBr及び Mglを示す]
で表される化合物を反応させることによって製造することができる (工程 A— 6)。
[0066] 反応は、 THF、 1 , 4 ジォキサン、エーテルを溶媒として用い、 _78°C〜0°Cにて 両者を混合させた後、常温にまでゆるやかに昇温させることが好ましい。
[0067] 合成経路 Aで一般式 (9)で表される化合物は一般式 (8)で表される化合物を酸化 することによって製造することができる(工程 A— 7)。
[0068] 反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化的手 法を用いることができ、例えば工程 A— 5と同様に行うことができる。
[0069] 合成経路 Aで一般式(lc)で表される化合物は一般式 (9)で表される化合物と一般 式(12)
[0070] [化 14]
Figure imgf000014_0001
[0071] [式中、 R5、 R6及び Mは前述の通り]
で表される化合物を反応させることによって製造することができる(工程 A— 8)。
[0072] 反応は、 THF、 1 , 4 ジォキサン、エーテルを溶媒として用い、 _78°C〜0°Cにて 両者を混合させた後、常温にまでゆるやかに昇温させることが好ましい。
[0073] 一般式(1)で表される化合物のうち、 R4がフエニル基、 R13が水素原子、 nが 0で、
[0074] [化 15]
[0075] が二重結合である化合物 (ITは二重結合の形成に関与)、即ち一般式(Id)
[0076] [化 16]
Figure imgf000014_0002
[式中、
Figure imgf000014_0003
R2、 R5及び R6は前述の通り]
で表される化合物は一般式(lc)で表される化合物を脱水することによって製造する こと力 Sでさる。 [0078] 反応は、ベンゼン、トルエン又はキシレンを反応溶媒として用い、パラトルエンスル ホン酸、ピリジニゥムパラトルエンスルホネート、硫酸又はメタンスルホン酸を脱水剤と して加え、好ましくはメタンスルホン酸を用い 70°C〜加熱還流下に反応させることが できる。
[0079] 一般式(1)で表される化合物のうち、 が水素原子、 R4がフエニル基、 R13が水素 原子、 nが 0で、
[0080] [化 17]
[0081] が単結合である化合物、即ち一般式(le)
[0082] [化 18]
Figure imgf000015_0001
[0083] [式中、
Figure imgf000015_0002
R2、 R5及び R。は前述の通り]
で表される化合物は一般式(Id)で表される化合物を還元することによって製造する こと力 Sでさる。
[0084] 反応は接触還元触媒であるパラジウム炭素、白金炭素、酸化白金、ロジウム炭素、 ルテニウム炭素の存在下、エタノール、メタノール、 THF、 DMF、酢酸ェチル等の溶 媒中、常圧〜加圧下の水素圧下にて常温にて行うことができる。
[0085] また、一般式(le)で表される化合物は一般式(lc)で表される化合物からも製造す ること力 Sできる。反応は接触還元触媒であるパラジウム炭素、白金炭素、酸化白金、 ロジウム炭素、ルテニウム炭素の存在下、塩酸又は酢酸を加え、エタノール、メタノー ノレ、 THF、 DMF、酢酸ェチル等の溶媒中、常圧〜加圧下の水素圧下にて常温にて 行うこと力 Sできる。また、 THFなどの溶媒中、 0°C〜常温下にメタンスルホユルクロリド やパラトルエンスルホユルク口リドと例えばトリェチルァミンやピリジンなどの塩基の存 在下に反応させスルホン酸エステルを形成した後、 THFなどの溶媒中、 LiAlHを 0°C
4
〜常温下に作用させることによつても製造することができる。
[0086] 一般式(1)で表される化合物のうち、 R3が水酸基、 R4が水素原子、 R13が水素原子
、 nが 0で、
[0087] [化 19]
[0088] が単結合である化合物、即ち一般式(If)
[0089] [化 20]
[0090] [式
Figure imgf000016_0001
び R。は前述の通り]
で表される化合物、一般式(1)で表される化合物のうち、 R4が水素原子、 R13が水素 原子、 nが 0で、
[0091] [化 21]
[0092] が二重結合である化合物 (R3は二重結合の形成に関与)、即ち一般式(lg)
[0093] [化 22]
Figure imgf000016_0002
[0094] [式中、
Figure imgf000017_0001
R2、 R5及び R6は前述の通り]
で表される化合物、一般式(1)で表される化合物のうち、 及び R4が一緒になつて ォキソを形成し、 R13が水素原子、 nが 0で、
[0095] [化 23]
[0096] が単結合である化合物、即ち一般式(lh)
[0097] [化 24]
Figure imgf000017_0002
[0098] [式中、
Figure imgf000017_0003
R2、 R5及び R6は前述の通り]
で表される化合物、並びに一般式(1)で表される化合物のうち、 R3及び R4が水素原 子、 R13が水素原子、 nが 0で、
[0099] [化 25]
[0100] が単結合である化合物、即ち一般式(lj)
[0101] [化 26]
[0102] [式
Figure imgf000017_0004
び R。は前述の通り] で表される化合物は、例えば合成経路 Bによって製造することができる。
[0103] <合成経路 B〉
[0104] [化 27]
Figure imgf000018_0001
[0105] 合成経路 Bで一般式(13)で表される化合物は、一般式(7)で表される化合物を酸 化するか(工程 B— 1 1)又は、一般式(6)で表される化合物を酸化する(工程 B— 1 —2)ことによって製造することができる。
[0106] 工程 B— 1 1における酸化反応は、一般に用いられるアルデヒド類のカルボン酸 類への酸化的手法を用いることができ、例えば空気酸化、酸素酸化、クロ口クロム酸 ピリジニゥム、ニクロム酸ピリジニゥムなどの酸化クロム ピリジン錯体、酸化クロム、酸 化銀、硝酸銀、過マンガン酸カリウム、酸化ルテニウム、ルテニウムを触媒とした過ョ ゥ素酸ナトリウム、ルテニウムを触媒としたョードソベンゼン、亜塩素酸ナトリウム、さら し粉、過酸化水素、塩素、 N プロモコハク酸イミドによる酸化反応などにより行うこと ができる。反応温度としては 0°C〜100°Cにて行うことができる。
[0107] また、工程 B— 1 2における酸化反応は、一般に用いられるアルコール類のカル ボン酸類への酸化的手法を用いることができ、例えば酸素酸化、クロム酸、クロム酸 カリウム、クロ口クロム酸ピリジニゥム、ニクロム酸ピリジニゥムなどの酸化クロム ピリジ ン錯体、過マンガン酸カリウム、酸化ルテニウム、ルテニウムを触媒とした過ヨウ素酸 ナトリウム、酸化銀、さらし粉、過酸化水素による酸化反応などにより行うことができる
。反応温度としては O°C〜100°Cにて行うことができる。
[0108] 合成経路 Bで一般式(14)
[0109] [化 28]
Figure imgf000019_0001
[0110] [式中、 R8は炭素数 1〜6のアルキル基を示し、 R1及び R2は前述の通り]
で表される化合物は一般式(13)で表される化合物をエステル化することによって製 造することができる(工程 B— 2)。
[0111] 反応は一般に用いられるカルボン酸からエステルへの変換手法を利用することが でき、例えば一般式(15)
[0112] [化 29]
R8OH as)
[0113] [式中、 R8は前述の通り]
で表される化合物を溶媒として用い、硫酸又は塩酸を加え加熱還流することによって 製造すること力 Sできる。また、ジェチルァゾジカルボキシレートや DCCなどの縮合剤 を用いて一般式(15)で表される化合物と DMF、塩化メチレン、クロ口ホルム、ベンゼ ン、トルエン、 THF、 1 , 4ージォキサンなどの溶媒中、 0°C〜常温下に作用させ製造 することあでさる。
[0114] また、一般式(14)で表される化合物は、一般式(13)で表される化合物を塩化チォ ニル、塩化ォキサリルなどにより酸クロリドとした後、一般式(15)で表される化合物と 塩化メチレン、クロ口ホルム、ベンゼン、トルエン、 THF、 1 , 4—ジォキサンなどの溶 媒中、トリェチルァミン、ピリジンなどの塩基の存在下、 0°C〜常温下に作用させ製造 することあでさる。 [0115] さらに、一般式(14)で表される化合物は、炭酸ナトリウム、炭酸カリウム、炭酸水素 ナトリウム、炭酸水素カリウム、炭酸リチウムを塩基として用い、 DMF、 THF、 1 , 4— ジォキサンを溶媒として用い、一般式(13)で表される化合物と一般式(16)
[0116] [化 30]
R8X (16)
[0117] [式中、 Xはハロゲン原子を示し、 R8は前述の通り]
で表される化合物と常温〜 50°Cにて反応させることによって収率良く製造することが できる。
[0118] 合成経路 Bで一般式(If)で表される化合物は一般式(7)で表される化合物と一般 式(12)で表される化合物を反応させるか(工程 B— 3)、一般式(lh)で表される化合 物を還元する(工程 B— 7)ことによって製造すること力 Sできる。
[0119] 工程 B— 3を経由する反応は、工程 A— 8と同様に行うことができる。
[0120] また工程 B— 7を経由する反応は、ボランや 9—ボラビシクロ [3. 3.1]ノナン(9— BB N)のようなアルキルボラン誘導体、ジイソブチノレアノレミニゥムヒドリド((iBu) A1H)、水 素化ホウ素ナトリウム(NaBH )、水素化ホウ素リチウム(LiBH )、水素化アルミニウムリ
4 4
チウム(LiAlH )などの金属水素錯化合物を用い、反応溶媒として THF、 1 , 4ージォ
4
キサン、メタノール、エタノールを用い o°c〜常温下に行うことができる。
[0121] 合成経路 Bで一般式(lh)で表される化合物は、一般式(If)で表される化合物を 酸化するか(工程 B— 4)、一般式(13)で表される化合物と一般式(12)で表される化 合物を反応させるか(工程 B— 5)、あるいは一般式(14)で表される化合物と一般式( 12)で表される化合物を反応させる(工程 B— 6)ことによって製造することができる。
[0122] 工程 B— 4を経由する反応は、一般に用いられるアルコール類のアルデヒド類又は ケトン類への酸化的手法を用いることができ、例えば工程 A— 5と同様に行うことがで きる。
[0123] また、工程 B— 5及び工程 B— 6を経由する反応は、工程 A— 8と同様に行うことが できる。
[0124] 合成経路 Bで一般式(lg)で表される化合物は、一般式(If)で表される化合物を脱 水することによって製造することができる(工程 B— 8)。
[0125] 反応は、ベンゼン、トルエン又はキシレンを反応溶媒として用い、パラトルエンスル ホン酸、ピリジニゥムパラトルエンスルホネート、硫酸又はメタンスルホン酸を脱水剤と して加え、好ましくはメタンスルホン酸を用い 70°C〜加熱還流下に反応させることが 好ましい。
[0126] 合成経路 Bで一般式(lj)で表される化合物は、一般式(If)で表される化合物を脱 ヒドロキシ化する力、(工程 B— 10)、一般式(lg)で表される化合物を還元すること(ェ 程 B— 9)によって製造することができる。
[0127] 工程 B— 9の反応は接触還元触媒であるパラジウム炭素、白金炭素、酸化白金、口 ジゥム炭素、ルテニウム炭素の存在下、エタノール、メタノール、 THF、 DMF、酢酸 ェチル等の溶媒中、常圧〜加圧下の水素圧下にて常温にて行うことができる。
[0128] また、工程 B— 10の反応は上記工程 B— 9の反応に塩酸又は酢酸を加えて行う手 法が簡便である。また、 THFなどの溶媒中、メタンスルホユルク口リドゃパラトルエンス ルホユルク口リドと例えばトリェチルァミン、ピリジンなどの塩基の存在下に 0°C〜常温 下に反応させスルホン酸エステルを形成した後、 THFなどの溶媒中、 0°C〜常温下 にて LiAlHを作用させることによつても製造できる。
4
[0129] 合成経路 A及び Bで一般式(6)又は(7)で表される化合物のうち、 R1がジフルォロ メチル基、即ち一般式(6c)
[0130] [化 31]
Figure imgf000021_0001
[0131] [式中、 R2は前述の通り]
で表される化合物及び一般式(7c)
[0132] [化 32]
Figure imgf000022_0001
[0133] [式中、 R2は前述の通り]
で表される化合物は、下記合成経路 Cによっても製造することができる c
[0134] <合成経路 C〉
[0135] [化 33]
Figure imgf000022_0002
[0136] 合成経路 Cで一般式 (4c)
[0137] [化 34]
Figure imgf000022_0003
[0138] [式中、 R9は炭素数 1〜6の低級アルキル基を示す力、、あるいは 2つの R9が連結して 炭素数が 2〜4のメチレン鎖(メチレン鎖上に炭素数 1〜4の低級アルキル基を有して いてもよレ、)を形成し、 R2及び R7は前述の通り]
で表される化合物は、一般式 (3)で表される化合物と一般式(10c) [0139] [化 35]
Figure imgf000023_0001
[0140] [式中、 R7及び R9は前述の通り]
で表される化合物を塩基存在下に作用させることによって製造することができる(ェ 程 C- 1)。
[0141] 反応は、工程 A— 2と同様に行うことができる。
[0142] 合成経路 Cで一般式(8c)
[0143] [化 36]
Figure imgf000023_0002
[0144] [式中、 Proはメトキシメチル基、 tーブチルジメチルシリル基、 tーブチルジフエニルシ リル基、トリイソプロビルシリル基、テトラヒドロビラニル基、ァセチル基などのアルコー ルの保護基を示し、 R2、 R7及び は前述の通り]
で表される化合物は、一般式 (4c)で表される化合物を各種アルコール保護基導入 反応に付すことによって製造することができる(工程 C— 2)。
反応は例えば、メトキシメチル基を導入する場合、反応は水素化ナトリウム、トリェチ ルァミン、ジイソプロピルェチルァミンなどの塩基存在下、メトキシメチルクロリド又は、 メトキシメチルブロミドを、 THF、ァセトニトリル又は、塩化メチレン中で 0°C〜常温下 に作用させて行うことができる。また、 t プチルジメチルシリル基、 t プチルジフエ ニルシリル基、トリイソプロビルシリル基を導入する場合、反応はトリエチルァミン、イミ ダゾールなどの塩基存在下、対応するシリルクロリド、シリルプロミド、シリルトリフルォ ロメタンスルホナートを、 THF、 CPME、 DMF、ァセトニトリル、塩化メチレンなどの 溶媒中、 0°C〜常温で作用させて行うことができる。また、テトラヒドロビラ二ル基を導 入する場合、反応は、ジヒドロピランをパラトルエンスルホン酸などの酸触媒存在下、 塩化メチレンなどの溶媒中、 o°c〜常温下に作用させることが好ましい。さらにァセチ ル基を導入する場合、反応はァセチルクロリド、ァセチルブロミド又は、無水酢酸を、 トリェチルァミン、ジイソプロピルェチルァミン、ピリジンなどの有機塩基の存在下、 T HF、 1 , 4 ジォキサン、塩化メチレンなどを溶媒として 0°C〜常温下に行うことがで きる。またこの場合、塩基を兼ねた溶媒としてピリジンなどを用いて反応を行うこともで きる。
合成経路 Cで一般式(9c)で表される化合物は、一般式(8c)で表される化合物を、 一般に用いられるァセタール基のホルミル基への変換反応に付すことによって製造 することができる(工程 C 3)。
[0145] 反応はアセトン溶媒中、パラトルエンスルホン酸一水和物、ピリジニゥムパラトルエン スルホネートなどの酸触媒を用い、常温〜加熱還流下に作用させる力、、又は塩化水 素を含有したメタノール、エタノール、酢酸ェチル又は、ジェチルエーテルなどを用
V、o°c〜常温下に行うことができる。
[0146] 合成経路 Cで一般式(11c)で表される化合物は、一般式(9c)で表される化合物を フッ素化反応に付すことによって製造することができる(工程 C 4)。
[0147] 反応は、ジクロロメタンなどの溶媒中、ジメチルアミノサルファートリフルオリドゃジェ チルアミノサルファートリフルオリドなどのフッ素化剤を用いて、 0°C〜常温下にて行う こと力 Sでさる。
[0148] 合成経路 Cで一般式(5c)で表される化合物は、一般式(11c)で表される化合物を 一般に用いられるアルコール類の保護基の脱保護反応及びエステル類の加水分解 反応に付すことによって製造することができる(工程 C 5)。
[0149] アルコール類の保護基の脱保護反応は、保護基がメトキシメチル基、テトラヒドロピ ラニル基の場合、塩化水素含有メタノール、エタノール、酢酸ェチル、ジェチルエー テルを溶媒として用い、 0°C〜常温下にて反応させることができる。保護基力 ¾ プチ ノレジメチルシリル基、 tーブチルズフエニルシリル基、トリイソプロビルシリル基などのシ リル基の場合、フッ化カリウム、フッ化セシウム、テトラプチルアンモニゥムフルオリドを 用い、ァセトニトリル又は、 THFなどの溶媒中 0°C〜常温下に行うことができる。また 保護基がァセチル基の場合、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸 化リチウム水溶液を用い、 THF、 CPME、メタノール、エタノール、 1 , 4 ジォキサン などを溶媒として用い 0°C〜常温下に行うことができる。
[0150] エステル類の加水分解反応は、メタノール、エタノール、 THF、 CPME、 DMSO、
DMF、 1 , 4 ジォキサンなどの溶媒中で水酸化カリウム水溶液、水酸化ナトリウム水 溶液又は、水酸化リチウム水溶液、好ましくは水酸化ナトリウム水溶液を常温〜加熱 還流下に作用させて行うことができる。
[0151] 合成経路 Cで一般式(6c)で表される化合物は、一般式(5c)で表される化合物を 脱炭酸することによって製造することができる(工程 C 6)。反応は、工程 A— 4と同 様に fiうことができる。
[0152] 合成経路 Cで一般式(7c)で表される化合物は一般式(6c)で表される化合物を酸 化することによって製造することができる(工程 C - 7)。
[0153] 反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化的手 法を用いることができ、例えば工程 A— 5と同様に行うことができる。
[0154] 合成経路 Bで一般式(13)で表される化合物のうち、 R1がジフルォロメチル基、即ち 一般式(13c)
[0155] [化 37]
Figure imgf000025_0001
[0156] [式中、 R2は前述の通り]
で表される化合物は下記合成経路 C'によっても製造することができる。
[0157] <合成経路 C'〉
[0158] [化 38]
Figure imgf000026_0001
C-4
——► (13C)
[0159] 合成経路 C 'で一般式(lc ' )
[0160] [化 39]
Figure imgf000026_0002
[0161] [式中、 R1()は水素原子又は炭素数 1〜5の低級アルキル基を示し、 R2は前述の通り] で表される化合物は、一般式(7c)で表される化合物と一般式(17)
[0162] [化 40]
M^R10 (17)
[0163] [式中、 R1()及び Mは前述の通り]
で表される化合物を反応させることによって製造することができる(工程 C ' 1)。
[0164] 反応は、 THF、 1 , 4 ジォキサン、エーテルを溶媒として用い、 _78°C〜0°Cにて 両者を混合させた後、常温にまでゆるやかに昇温させることが好ましい。
[0165] 合成経路 C 'で一般式(2c ' )で表される化合物は一般式(1 )で表される化合物を 酸化することによって製造することができる(工程 C 2)。
[0166] 反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化的手 法を用いることができ、例えば工程 A— 5と同様に行うことができる。
[0167] 合成経路 C 'で一般式(3c ' )で表される化合物は一般式(2c ' )で表される化合物と 一般式(18)
[0168] [化 41] T 8)
O
[0169] [式中、 R8は前述の通り]
で表される化合物を塩基の存在下に作用させることによって製造することができる(ェ 程 C' 3)。
[0170] 反応は、水素化ナトリウム、ナトリウムアルコキシド、カリウムアルコキシド、水素化カリ ゥムなどの塩基、好ましくは水素化ナトリウムの存在下、一般式(18)で表される化合 物を溶媒量用い、 80°C〜120°Cに加熱して行うことが好ましい。
[0171] 合成経路 C'で一般式(13c)で表される化合物は、一般式(3c' )で表される化合物 を加水分解反応に付すことによって製造することができる(工程 C' 4)。反応は、ェ 程 A— 3と同様に行うことができる。
[0172] 合成経路 A及び Bで一般式(7)又は(13)で表される化合物のうち R1がヒドロキシメ チル基である化合物、即ち一般式(7d)
[0173] [化 42]
Figure imgf000027_0001
[0174] [式中、 R2は前述の通り]
で表される化合物、又は一般式(13d)
[0175] [化 43]
Figure imgf000027_0002
[0176] [式中、 R2は前述の通り]
で表される化合物は、下記合成経路 Dによって製造することもできる。
[0177] <合成経路 D〉 [0178] [化 44]
Figure imgf000028_0001
[0181] [式中、 Pro'はメトキシメチル基、 tーブチルジメチルシリル基、 tーブチルジフエニル シリル基、トリイソプロビルシリル基、テトラヒドロビラニル基などのアルコール保護基を 示し、 R2及び R7は前述の通り]
で表される化合物は、一般式(3)で表される化合物と一般式(10d)
[0182] [化 46]
/ ^^-C02R7 (10d)
Pro'O
[0183] [式中、 R7及び Pro'は前述の通り]
で表される化合物を塩基存在下に作用させることによって製造することができる(ェ 程 D- 1)。 [0184] 反応は、工程 A— 2と同様に行うことができる。
[0185] 合成経路 Dで一般式(5d)で表される化合物は、一般式 (4d)で表される化合物を 一般に用いられるエステル類の加水分解反応に付すことによって製造することができ る(工程 D— 2)。反応は、工程 A— 3と同様に行うことができる。
[0186] 合成経路 Dで一般式(6d)で表される化合物は、一般式(5d)で表される化合物を 脱炭酸することによって製造することができる(工程 D— 3)。反応は、工程 A— 4と同 様に fiうことができる。
[0187] 合成経路 Dで一般式(7d' )で表される化合物は、一般式(6d)で表される化合物を 酸化することによって製造することができる(工程 D— 4)。
[0188] 反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化的手 法を用いることができ、例えば工程 A— 5と同様に行うことができる。
[0189] 合成経路 Dで一般式(8d)で表される化合物は、一般式(7d' )で表される化合物を 酸化するか(工程 D— 5)または、一般式(6d)で表される化合物を酸化することによつ て製造すること力できる。
[0190] 工程 D— 5における酸化反応は、一般に用いられるアルデヒド類のカルボン酸類へ の酸化的手法を用いることができ、例えば工程 B— 1— 1と同様に行うことができる。
[0191] また、一般式(6d)で表される化合物を酸化する場合は、一般に用いられるアルコ ール類のカルボン酸類への酸化的手法を用いることができ、例えば工程 B— 1 2と 同様に行うことができる。
[0192] 合成経路 Dで一般式(13d)で表される化合物は、一般式(8d)で表される化合物を 一般に用レ、られるアルコール類の保護基の脱保護反応に付すことによって製造する ことができる(工程 D— 6)。
[0193] 脱保護反応は、保護基がメトキシメチル基、テトラヒドロビラニル基の場合、塩化水 素含有メタノール、エタノール、酢酸ェチル、ジェチルエーテルを溶媒として用い、 0
°C〜常温下にて反応させることができる。保護基力 ¾ プチルジメチルシリル基、 t ブチルズフエニルシリル基、トリイソプロビルシリル基などのシリル基の場合、フッ化力 リウム、フッ化セシウム、テトラプチルアンモニゥムフルオリドを用い、ァセトニトリル又 は、 THFなどの溶媒中 0°C〜常温下に行うことができる。 [0194] 合成経路 Dで一般式(7d)で表される化合物は、一般式(7d' )で表される化合物を 一般に用いられるアルコール類の保護基の脱保護反応に付すことによって製造する ことができる(工程 D— 7)。脱保護反応は、工程 D— 6と同様に行うことができる。
[0195] 合成経路 A及び Bで一般式(6)で表される化合物のうち、 R1がシァノ基、即ち一般 式(6e)
[0196] [化 47]
Figure imgf000030_0001
[0197] [式中、 R2は前述の通り]
で表される化合物、及び R1がォキシム基、即ち一般式(6e ' )
[0198] [化 48]
Figure imgf000030_0002
[0199] [式中、 R2は前述の通り]
で表される化合物は、下記合成経路 Eによって製造することもできる。
[0200] <合成経路 E〉
[0201] [化 49]
Figure imgf000031_0001
[0202] 合成経路 Eで一般式(19e)で表される化合物は、一般式(6d)で表される化合物を 一般に用いられるアルコール類の保護基の脱保護反応に付すことによって製造する ことができる(工程 E—l)。
[0203] 脱保護反応は、例えば、工程 D— 6と同様に行うことができる。
[0204] 合成経路 Eで一般式(20e)で表される化合物は、一般式(19e)で表される化合物 を各種アルコール保護基導入反応に付すか(工程 E— 2)又は、一般式(6d)で表さ れる化合物を各種アルコール保護基導入反応に付した後に、一般に用いられるアル コール類の保護基の脱保護反応に付すことによって製造することができる。
[0205] 工程 E— 2の各種アルコール保護基導入反応としては、例えば、工程 C 2と同様 に fiうことができる。
[0206] また、アルコール類の保護基の脱保護反応は例えば、工程 D— 6と同様に行うこと ができる。
[0207] 合成経路 Eで一般式(21e)で表される化合物は、一般式(20e)で表される化合物 を酸化することによって製造することができる(工程 E— 3)。
[0208] 反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化的手 法を用いることができ、例えば工程 A— 5と同様に行うことができる。
[0209] 合成経路 Eで一般式(22e)で表される化合物は、一般式(21e)で表される化合物 に、ヒドロキシルァミンまたはヒドロキシルァミン塩酸塩を、塩基存在下または非存在 下に反応させることによって製造することができる(工程 E— 4)。 [0210] 反応は、水、メタノール、エタノールなどの溶媒中、塩基としては酢酸ナトリウム、炭 酸ナトリウムなどを用いて、 O°C〜100°Cで行うことができる。
[0211] 合成経路 Eで一般式(23e)で表される化合物は、一般式(22e)で表される化合物 を脱水反応に付すことによって製造することができる(工程 E— 5)
反応は、五酸化二リン、五塩化リン、塩化チォニル、無水酢酸、無水トリフルォロ酢 酸、 DCC、 N,N,-カルボニルジイミダゾール、トリフエニルホスフィン一四塩化炭素な どを脱水剤として、トリェチルァミン、ジイソプロピルェチルァミン、ピリジンなどの塩基 の存在下又は、非存在下に、溶媒としてトルエン、エーテル、 THF、 CPME、 1 , 4 ジォキサン、ジクロロメタン、クロ口ホルム、ピリジンなどを用いて 0°C〜100°Cで行うこと ができる。
[0212] また、一般式(23e)で表される化合物は、一般式(21e)で表される化合物を工程 E
4の方法により一般式(22e)で表される化合物に変換し、これを単離することなく 工程 E— 5の方法により脱水反応に付すことによつても製造することができる。
[0213] 合成経路 Eで一般式(6e)で表される化合物は、一般式(23e)で表される化合物を 、一般に用いられるアルコール類の保護基の脱保護反応に付すことによって製造す ることができる(工程 E— 6)。
[0214] 脱保護反応は、工程 C 5と同様に行うことができる。
[0215] 合成経路 Eで一般式(6e' )で表される化合物は、一般式(22e)で表される化合物 を、一般に用いられるアルコール類の保護基の脱保護反応に付すことによって製造 すること力 Sできる(工程 E— 7)。
[0216] 脱保護反応は、例えば、工程 C 5と同様に行うことができる。
[0217] 合成経路 Bで一般式(13)で表される化合物のうち、 R1が炭素数 1〜6のアルコキシ 基で置換されてもよいメチル基、即ち一般式(13f)
[0218] [化 50]
Figure imgf000032_0001
[0219] [式中、 R2及び R8は前述の通り]
で表される化合物は、下記合成経路 Fによって製造することもできる。
[0220] <合成経路 F〉
[0221] [化 51]
Figure imgf000033_0001
[0222] 合成経路 Fで一般式(14f)
[0223] [化 52]
Figure imgf000033_0002
[0224] [式中、 R2及び R8は前述の通り]
で表される化合物は、一般式(13d)で表される化合物と一般式(16)で表される化合 物を、塩基存在下作用させることによって製造することができる(工程 F— 1)。 反応 は、水素化ナトリウム、水素化カリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリ ゥム、炭酸ナトリウム、炭酸カリウム、炭酸銀、酸化銀などを塩基とし、トルエン、 THF 、 CPME、ァセトニトリル、 DMF、 DMSOなどを溶媒として 0°C〜100°Cで行うことが できる。
[0225] 合成経路 Fで一般式(13f)で表される化合物は、一般式(14f)で表される化合物 を、一般に用いられるエステル類の加水分解反応に付すことによって製造することが できる(工程 F— 2)。
[0226] 反応は、工程 A— 3と同様に行うことができる。
[0227] 合成経路 A及び Bで一般式(7)で表される化合物のうち R2が炭素数 1〜6のアルコ キシ基、又は炭素数 1〜6のアルキルスルファニル基である化合物、即ち一般式(7g ) [0228] [化 53]
Figure imgf000034_0001
[0229] [式中、 Zは炭素数 1〜6のアルコキシ基又は炭素数 1〜6のアルキルスルファニル基 を
示し、 R1は前述の通り]
で表される化合物は、下記合成経路 Gによって製造することもできる。
[0230] <合成経路 G〉
[0231] [化 54]
Figure imgf000034_0002
[0232] 合成経路 Gで一般式(19g)で表される化合物は、一般式 ½)で表される化合物で R2が水素原子である化合物、即ち一般式 ½g)を、各種アルコール保護基導入反応 に付すことによって製造することができる(工程 G—l)。反応は工程 C— 2と同様に行 うこと力 Sでさる。
[0233] 合成経路 Gで一般式(20g)で表される化合物は、一般式(19g)表される化合物を ノ、ロゲン化することによって製造することができる(工程 G— 2)。
[0234] 反応は、ブチルリチウム、リチウムジイソプロピルアミド、リチウムビストリメチルシリル アミドなどの塩基を、 THFや CPMEなどの溶媒中、 -78°C〜0°Cで反応させた後、 N フルォロベンゼンスルホンイミド、 N—クロロコハク酸イミド、 N ブロモコハク酸イミ ド、 1 , 2—ジブロモェタン、臭素、 N ョードコハク酸イミド、ヨウ素、 1 , 2—ジョードエ タンなどのハロゲン化剤を作用させて、 -78°C〜常温で行うことができる。
[0235] 合成経路 Gで一般式(21g)で表される化合物は、一般式(20g)表される化合物を
、一般に用レ、られるアルコール類の保護基の脱保護反応に付すことによって製造す ることができる(工程 G— 3)。
[0236] 反応は、工程 C 5と同様に行うことができる。
[0237] 合成経路 Gで一般式(22g)で表される化合物は、一般式(21g)表される化合物を
、酸化することによって製造することができる(工程 G— 4)。
[0238] 反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化的手 法を用いることができ、例えば工程 A— 5と同様に行うことができる。
[0239] 合成経路 Gで一般式(7g)で表される化合物は、一般式(22g)で表される化合物を アルコキシ化又はスルファニル化することによって製造することができる(工程 G— 5)
[0240] 反応は、対応するアルコールまたはチオール (ZH)であらわされる化合物に水素化 ナトリウム又は水素化カリウムなどを塩基として加え、 DMF、 THF、 CPME、 DMSO 、好ましくは DMFを溶媒として常温〜 60°Cにて行うことができる。
[0241] 合成経路 A及び Bで一般式(7)で表される化合物のうち R2がァミノ基又は、炭素数 ;!〜 6のアルキルアミノ基である化合物、即ち一般式(7h)
[0242] [化 55]
Figure imgf000035_0001
[0243] [式中、 R11及び まそれぞれ独立して、水素原子、炭素数 1〜6のアルキル基又は 、ァミノ基の保護基を示し、 R1は前述の通り]
で表される化合物は、一般式(22g)で表される化合物と一般式(24)
[0244] [化 56]
R11 NHR12 (24) [0245] [式中、 R11及び R12は前述の通り]
で表される化合物を用いて製造することができる。
[0246] 反応は、ブチルリチウム、水素化ナトリウム又は水素化カリウムなどの存在下又は非 存在下、 THF、 CPME、 DMSO又は、 DMFなどを溶媒として 0°C〜100°Cにて行う こと力 Sでさる。また、一般式(7h)で表される化合物のうち、 R11と R12のどちらか一方又 は両方がァミノ基の保護基である場合は、 R11と R12のどちらか一方又は両方が水素 原子である一般式(7h)で表される化合物を製造した後、その化合物に、一般的なァ ミノ基の保護基導入反応を行って製造することもできる。ここで、一般的なァミノ基の 保護基とは、例えば PROTECTIVE GROUPS IN ORGANIC SYNTHESIS THIRD EDI TION (Theodora W.
Greene, Peter G. M. Wats著、 JOHN WILEY & SONS, INC. )に記載のァミノ基の保 護基などがあるが、好ましくは t-ブトキシカルボニル基が挙げられる。ァミノ基の保護 基として t ブトキシカルボ二ル基を導入する場合、反応はジ t ブチルジカーボネ ートを用い、 THF、 CPME、 DMSO , DMF、ァセトニトリルなどを溶媒として、 4—ジ メチルアミノビリジンなどの存在下又は非存在下に、 0°C〜100°Cの反応温度にて行う こと力 Sでさる。
[0247] 合成経路 A及び Bで一般式(14)で表される化合物のうち, R2がヒドロキシメチル基
、即ち一般式(14j 1 )
[0248] [化 57]
Figure imgf000036_0001
[0249] [式中、 R1及び R8は前述の通り]
で表される化合物、若しくは R2がホルミル基、即ち一般式(14j 2)
[0250] [化 58]
Figure imgf000037_0001
[0251] [式中、 R1及び R8は前述の通り]
で表される化合物、若しくは R2が炭素数 2〜6の 1ーヒドロキシアルキル基、即ち一般 式(14j 3)
[0252] [化 59]
Figure imgf000037_0002
[0253] [式中、 R1Qは炭素数 1〜5のアルキル基を示し、 IT及び R8は前述の通り]
で表される化合物、若しくは R2が炭素数 2〜6のアルカノィル基、即ち一般式(14j— 4)
[0254] [化 60]
[0255] [式
Figure imgf000037_0003
は前述の通り]
で表される化合物は、下記合成経路 Jによって製造することもできる。
[0256] <合成経路 J〉
[0257] [化 61]
Figure imgf000038_0001
(14-4)
[0258] 合成経路 Jで一般式(25j)で表される化合物は、一般式(7)で表される化合物のう ち R2が水素原子である化合物、即ち一般式(7j)で表される化合物と一般式(32) [0259] [化 62]
V-0R9 (32)
[0260] [式中、 Vは水素原子又はトリアルキルシリル基を示し、 R9は前述の通り]
で表される化合物を用いたァセタール化反応によって製造することができる(ェ禾¾1- 1)。
[0261] 反応は、塩化水素、硫酸、 p トルエンスルホン酸、ピリジニゥムパラトルエンスルホ ネート、カンファースルホン酸、トリメチルシリルメタンスルホネート、モンモリロナイト K 10、酸性イオン交換樹脂等の触媒存在下、ベンゼン、トルエン、キシレン、塩化メ チレンなどの溶媒中、 0°C〜150°Cで行うことができる。
[0262] 合成経路 Jで一般式(2¾)で表される化合物は、一般式(2 )で表される化合物を ホルミル化することによって製造することができる(ェ禾¾1_2)。
[0263] 反応は、ブチルリチウム、リチウムジイソプロピルアミド、リチウムビストリメチルシリル アミド、好ましくはリチウムジイソプロピルアミドを塩基として用い、 THF溶媒中、 -78°C にて反応させた後、ギ酸ェチル又は DMFを- 78°C〜常温にて作用させて行うことが できる。
[0264] 合成経路 Jで一般式(27j)で表される化合物は、一般式(26j)で表される化合物を 還元することによって製造することができる(ェ禾¾1_3)。
[0265] 反応は、水素化ホウ素ナトリウム、水素化ホウ素リチウム、 DIBAL、水素化リチウムァ ノレミニゥムなどの還元剤を、 0°C〜常温下に作用させて行うことができる。反応溶媒と しては、水素化ホウ素ナトリウムの場合、 THF、 CPME、 1 , 4—ジォキサンなどのェ 一テル系溶媒又は、エタノール、メタノールなどのアルコール系溶媒を、水素化ホウ 素リチウムの場合、 THF又は、 THFにエタノールなどのアルコール系溶媒を添加し た溶媒を、 DIBALの場合、 THF、トルエン、塩化メチレンなどを、水素化リチウムアル ミニゥムの場合、 THF、ジェチルエーテルなどのエーテル系溶媒を用いて反応を行 うことが好ましい。
[0266] 合成経路 Jで一般式(2¾)で表される化合物は、一般式(27j)で表される化合物を 各種アルコール保護基導入反応に付すことによって製造することができる(ェ禾 ¾j 4
)。
[0267] 反応は、工程 C 2と同様に行うことができる。
[0268] 合成経路 Jで一般式(2 )で表される化合物は、一般式(28j)で表される化合物を 脱ァセタール化することによって製造することができる(ェ禾¾1 5)。
[0269] 反応はアセトン溶媒中、パラトルエンスルホン酸一水和物、ピリジニゥムパラトルエン スルホネートなどの酸触媒を用い、常温〜加熱還流下に作用させるか又は、塩化水 素を含有したメタノール、エタノール、酢酸ェチル又は、ジェチルエーテルなどを用 V、o°c〜常温下にて反応させて行うことができる。
[0270] 合成経路 Jで一般式(30j)
[0271] [化 63]
Figure imgf000039_0001
[0272] [式中、 R1及び Proは前述の通り]
で表される化合物は、一般式(2 )で表される化合物を酸化することによって製造す ることができる(ェ禾¾1 6)。
[0273] 反応は、一般に用いられるアルデヒド類のカルボン酸類への酸化的手法を用いるこ とができ、例えば工程 B— 1—1と同様に行うことができる。
[0274] 合成経路 Jで一般式(31j)で表される化合物は一般式(30j)で表される化合物をェ ステル化することによって製造することができる(ェ禾¾1 7)。
[0275] 反応は工程 B— 2と同様に行うことができる。
[0276] 合成経路 Jで一般式(14j 1)は一般式(31j)で表される化合物を一般に用いられ るアルコール類の保護基の脱保護反応に付すことによって製造することができる(ェ 禾¾ 8)。
[0277] 反応は、工程 C 5と同様に行うことができる。
[0278] 合成経路 Jで一般式(14j 2)で表される化合物は、一般式(14j 1)で表される化 合物を酸化することによって製造することができる(ェ禾¾1 9)。
[0279] 反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化的手 法を用いることができ、例えば工程 A— 5と同様に行うことができる。
[0280] 合成経路 Jで一般式(14j 3)で表される化合物は、一般式(14j 2)で表される化 合物に、一般式 (33)
[0281] [化 64]
M-R10 03)
[0282] [式中、 R1()'及び Mは前述の通り]
で表される化合物を反応させることによって製造することができる(ェ禾¾1— 10)。
[0283] 反応は THF、 CPME、エーテル、 1 , 4 ジォキサンなどを反応溶媒として用い、反 応温度としては- 78°C〜常温下に行うことができる。
[0284] 合成経路 Jで一般式(14j 4)で表される化合物は、一般式(14j 3)で表される化 合物を酸化することによって製造することができる(ェ禾¾1 11)。
[0285] 反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化的手 法を用いることができ、例えば工程 A— 5と同様に行うことができる。
[0286] 合成経路 A及び Bで一般式(6)で表される化合物のうち R2が炭素数 1 6のアルコ キシメチル基である化合物、即ち一般式(6k)
[0287] [化 65]
Figure imgf000041_0001
[0288] [式中、 R1及び R8は前述の通り]
で表される化合物は、下記合成経路 Kによって製造することもできる。
[0289] <合成経路 K〉
[0290] [化 66]
Figure imgf000041_0002
[0291] 合成経路 Kで一般式(34k)で表される化合物は、一般式(19g)で表される化合物 をホルミル化することによって製造することができる(工程 K-1)
[0292] 反応は、ェ禾¾1 2と同様に行うことができる。
[0293] 合成経路 Kで一般式(35k)で表される化合物は、一般式(34k)で表される化合物 を還元することによって製造することができる(工程 K-2)。
[0294] 反応は、ェ禾¾1 3と同様に行うことができる。
[0295] 合成経路 Κで一般式(36k)で表される化合物は、一般式(35k)で表される化合物 と一般式(16)で表される化合物を塩基存在下作用させることによって製造することが できる(工程 K— 3)。 [0296] 反応は、水素化ナトリウム、水素化カリウム、水酸化リチウム、水酸化ナトリウム、水 酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸銀、酸化銀などを塩基とし、トルエン 、 THF、 CPME、ァセトニトリノレ、 DMF、 DMSOなどを溶媒として O°C〜100°Cで行う こと力 Sでさる。
[0297] 合成経路 Kで一般式(6k)で表される化合物は、一般式(36k)で表される化合物を 一般に用いられるアルコール類の保護基の脱保護反応に付すことによって製造する ことができる(工程 K— 4)。
[0298] 反応は、工程 C 5と同様に行うことができる。
[0299] 一般式(1)で表される化合物のうち、 R13が水素原子、 nが 1である化合物、即ち一 般式(lk)
[0300] [化 67]
Figure imgf000042_0001
[0301] [式中、 R1, R2, R3、 R4、 R5、 R。及び
[0302] [化 68]
[0303] は前述の通り]
で表される化合物は、一般式(1)で表される化合物のうち、 R13が水素原子である化 合物即ち、一般式(lm)
[0304] [化 69]
Figure imgf000043_0001
[0305] [式中、 R1, R2, R: R4、 R5、 R6及び
[0306] [化 70]
[0307] は前述の通り]
で表される化合物から製造することができる。
[0308] 反応は、過酸化水素、 m—クロ口過安息香酸、過酢酸、過マレイン酸、マグネシウム モノパーォキシフタレート、過ホウ酸ナトリウムなどを、水、酢酸、塩化メチレン、クロ口 ホノレム、 1 , 2—ジクロロェタンなどの溶媒中で、反応温度 O°C〜150°Cで行うことがで きる。
一般式(1)で表される化合物のうち、 R13がハロゲン原子である化合物即ち、一般 式(In)
[0309] [化 71]
Figure imgf000043_0002
[0310] [式中、 R14はハロゲン原子を示し、 R1, IT, R3、 R4、 R5、 R6、 n及び
[0311] [化 72] [0312] は前述の通り]
で表される化合物は、一般式(1)で表される化合物のうち、 R13が水素原子である化 合物即ち、一般式(lp)
[0313] [化 73]
Figure imgf000044_0001
[0314] [式中、 R1, R2, R3、 R4、 R5、 R6、 n及び
[0315] [化 74]
[0316] は前述の通り]で表される化合物から製造することができる。
[0317] 反応は、一般式(lp)で表される化合物に、 DMFなどの溶媒中、次亜塩素酸ナトリ ゥム、亜塩素酸ナトリウム、さらし粉、塩素、 N クロロコハク酸イミド、臭素、 N—プロ モコハク酸イミド、ヨウ素又は、 N ョードコハク酸イミドなどを用いて 0°C〜; 100°Cに て fiうこと力 Sできる。
[0318] 実施例
次に本発明を具体例によって説明するが、これらの例によって本発明が限定される ものではない。
[0319] <実施例 1〉
5 ヒドロキシメチノレ 2 メトキシピリジン
[0320] [化 75]
Figure imgf000045_0001
[0321] 水素化リチウムアルミニウム(11.4 g)の THF (600 mL)懸濁液に、 0°Cにて 6—メトキ シニコチン酸メチルエステル(50.0 g)の THF (300 mL)溶液を加えて、 0°Cで 1時間攪 拌した。反応液に 10%水酸化ナトリウム水溶液(25.0 mL)を加えた後、無水硫酸ナトリ ゥムを加えて乾燥し、セライトを用いて不溶物を濾去した。濾液の溶媒を減圧留去し 、 目的化合物 (41.1 g)を無色油状物として得た。
'H-NMR (400 MHz, CDCl ): δ 1.75 (1H, brs), 3.94 (3Η, s), 4.62 (2Η, s), 6.75 (1Η, d, J = 8.0 Hz), 7.62 (1H, dd, J = 2.4, 8.0 Hz), 8.12 (1H, d, J= 2.4 Hz).
[0322] <実施例 2〉
1—ァミノ一 5—ヒドロキシメチル一 2—メトキシピリジニゥム 2, 4, 6—トリメチルベン ゼンスノレホネート
[0323] [化 76]
Figure imgf000045_0002
O—メシチルスルホニルァセトヒドロキサム酸ェチル(87.8 g)を 1,4-ジォキサン (70 m L)に溶解し、氷冷下にて 70%過塩素酸水溶液(31.0 mL)を加え攪拌した。氷水を 加え析出した固体を濾取してジクロロメタンに溶解し、そのジクロロメタン層を無水硫 酸マグネシウムで乾燥後、実施例 1の化合物 (35.7 g)のジクロロメタン溶液(20 mL) に滴下し、常温で 1時間攪拌した。反応液の溶媒を減圧下に留去し、析出した固体を 濾取し、ジェチルエーテルで洗浄して、 目的化合物 (58.7 g)を白色固体として得た。 'H-NMR (400 MHz, DMSO-d ): δ 2.15 (3H, s), 2.49 (6Η, s), 4.24 (3Η, s), 4.57 (2Η , s), 6.74 (2H, s), 7.70 (1H, d, J = 9.2 Hz), 7.71 (2H, br s), 8.16 (1H, dd, J = 9.2, 1. 4 Hz), 8.46 (1H, d, J = 1.4 Hz).
[0325] <実施例 3〉
1 アミノー 3—ヒドロキシメチルピリジニゥム 2, 4, 6—トリメチルベンゼンスルホネー 卜
[0326] [化 77]
Figure imgf000046_0001
0
[0327] O メシチルスルホニルァセトヒドロキサム酸ェチル(33.5 g)および 3 ヒドロキシメ チルピリジン(11.2 g)を用いて、実施例 2と同様な方法により、 目的物(38.2 g)を黄色 油状物質として得た。
'H-NMR (400 MHz, DMSO-d ): δ 2.33 (3H, s), 2.50 (6Η, s), 4.69 (2Η, s), 5.86 (1
6
Η, brs), 6.74 (2Η, s), 7.96 (1Η, dd, J = 8.0, 6.1 Hz), 8.15 (1H, d, J = 8.0 Hz), 8.50 (2H, s), 8.66 (1H, d, J = 6.1Hz), 8.71 (1H, s).
[0328] <実施例 4〉
2 ェチルー 4ーヒドロキシメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジンー3 カル ボン酸 ェチルエステル
[0329] [化 78]
Figure imgf000046_0002
[0330] 実施例 2の化合物 (66.2 g)を DMF(300 mL)に溶解し、 2 ペンチン酸ェチル (16.4 mL)及び炭酸カリウム (51.4 g)を加え、常温で 23時間攪拌した。セライトを用いて不溶 物を濾去後、濾液を水で希釈し、酢酸ェチルにて抽出後、抽出層を水、飽和食塩水 の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲ ルカラムクロマトグラフィー (へキサン:酢酸ェチル = 1: 1→酢酸ェチル)にて精製する ことで目的化合物 (6.70 g)を白色固体として得た。
MS (EI+): 278 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.34 (3H, t, J = 8.0 Hz), 1.44 (3H, t, J= 6.7 Hz), 3.1
2 (2H, q, J = 8.0 Hz), 4.16 (3H, s), 4.41 (2H, q, J= 6.7 Hz), 4.81 (2H, d, J = 7.3 Hz
), 4.94 (1H, t, J = 7.3 Hz), 6.22 (1H, d, J = 7.3 Hz), 7.30 (1H, d, J = 7.3 Hz).
[0331] <実施例 5〉
4 ヒドロキシメチル一 7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン 3—力ルボン酸 ェチルエステル
[0332] [化 79]
Figure imgf000047_0001
[0333] 実施例 2の化合物と 4, 4, 4 トリフルオロー 2 ブチン酸ェチルエステルから、実 施例 4と同様にして、 目的化合物を黄色粉末として得た。
:H-NMR (400 MHz, CDC1 ) : δ 1.42 (3Η, t, J= 7.0 Hz), 4.20 (3H, s), 4.43 (2H, q,
J = 7.0 Hz), 4.62 (1H, t, J= 7.6 Hz), 4.83 (2H, d, J = 7.6 Hz), 6.36(1H, d, J = 7.6 H z), 7.44 (1H, d, J = 7.6 Hz).
[0334] <実施例 6〉
2 -シクロプロピル 4—ヒドロキシメチル 7 メトキシピラゾロ [1 , 5 - a]ピリジン 3 一力ルボン酸 ベンジルエステル
[0335] [化 80]
Figure imgf000048_0001
[0336] 実施例 2の化合物(21.3 g)とシクロプロピルプロピン酸べンジルエステル(8.01 g)か ら、実施例 4と同様にして、 目的化合物(5.07 g)を白色固体として得た。
MS (EI+): 352 [M+]
'H-NMR (400 MHz, CDC1 ) : δ 0.82 (2H, m), 1.06—1.10 (2H, m), 2.49—2.56 (1H, m
),
4.11 (3H, s), 4.81 (2H, s), 5.42 (2H, s), 6.19 (1H, d, J = 7.9 Hz), 7.29 (1H, d, J = 7.
9 Hz), 7.33-7.41 (3H, m), 7.45-7.49 (2H, m).
[0337] <実施例 7〉
4ーヒドロキシメチノレ 2 イソプロピノレー 7 メトキシピラゾ口 [ 1 , 5 a]ピリジン 3— カルボン酸 ベンジルエステル
[0338] [化 81]
Figure imgf000048_0002
実施例 2の化合物(16.3 g)を DMF(224 mL)に溶解し、 4ーメチルー 2 ペンチン酸 ベンジルエステル (6.21 g)及び炭酸カリウム (12.7 g)を加え、常温で 8時間攪拌した。 反応液に水を加え、酢酸ェチルにて抽出後、抽出層を飽和食塩水で洗浄し、無水 硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー( へキサン:酢酸ェチル = 1 : 1→1: 2)にて精製し、 目的物 (6.10 g)を白色固体として得 た。
'H-NMR (400 MHz, CDC1 ): δ 1.34 (6H, d, J= 6.7 Hz), 3.65-3.73 (1H, m), 4.14 (3 H, s), 4.72 (1H, brs), 4.80 (2H, s), 5.40 (2H, s), 6.20 (1H, d, J = 7.3 Hz ), 7.30 (1H , d, J = 7.3 Hz ), 7.34-7.42 (3H, m), 7.46-7.49 (2H, m).
[0340] <実施例 8〉
4ーヒドロキシメチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー3—力ルボン酸 ェチノレエステノレ
[0341] [化 82]
Figure imgf000049_0001
[0342] 実施例 2の化合物 (16.3 g)を DMF(224 mL)に溶解し、プロピオール酸ェチル (3.13 mL)及び炭酸カリウム (12.7 g)を加え、常温で 8時間攪拌した。反応液に水を加え、酢 酸ェチルにて抽出後、抽出層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し た。溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー (へキサン:酢酸ェチル = 1: 1→1: 5)にて精製し、 目的物 (4.54 g)を白色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.42 (3H, t, J= 7.3 Hz), 4.18 (3H, s), 4.39 (2H, q, J
= 7.3 Hz), 4.86 (2H, d, J= 6.7 Hz), 5.05 (1H, t , J = 6.7 Hz), 6.28 (1H, d, J = 7.3 H z), 7.35 (1H, d, J = 7.3 Hz), 8.51 (1H, s).
[0343] <実施例 9〉
2—ェチルー 4ーヒドロキシメチルピラゾロ [1 , 5— a]ピリジンー3—力ルボン酸 ェチ ノレエステノレ
[0344] [化 83]
Figure imgf000049_0002
[0345] 実施例 3の化合物 (38.2 g)および 2—ペンチン酸ェチル (6.97 g)を用いて実施例 4と 同様な方法により、 目的化合物 (7.33 g)を黄色固体として得た。
MS (EI+): 248 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.35 (3H, t, J = 7.3 Hz), 1.44 (3H, t, J = 7.3 Hz), 3
.08 (2H, q, J = 7.3 Hz), 4.41 (2H, q, J = 7.3 Hz), 4.86 (2H, d, J = 7.3 Hz), 5.02 (1H , t, J= 7.3 Hz), 6.87 (1H, t, J = 6.7 Hz), 7.30 (1H, d, J = 6.7 Hz), 8.40 (1H, d, J = 6 .7 Hz).
[0346] <実施例 10〉
2 ジェトキシメチルー 4ーヒドロキシメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジン
3—力ルボン酸 ェチルエステル
[0347] [化 84]
Figure imgf000050_0001
[0348] 実施例 2の化合物 (56.6 g)を DMF (320 mL)に溶解し、 4, 4ージエトキシー2 ブチ ン酸ェチルエステル (21.2 g)、炭酸カリウム (43.9 g)を順次加え、室温で 30時間攪拌し た。セライトを用いて不溶物を濾去後、濾液を水で希釈し酢酸ェチルで抽出し、抽出 層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留 去して、 目的物 (2.01 g)を黄色油状物として得た。
MS (FAB+): 353 [M+H+]
'H-NMR (400 MHz, CDC1 ): δ 1.25 (6H, t, J = 7.3 Hz), 1.44 (3H, t, J = 7.3 Hz), 3
.66-3.74 (4H, m), 4.12 (3H, s), 4.42 (2H, q, J = 7.3 Hz), 4.77-4.81 (2H, m), 6.19 (1 H, s), 6.22 (1H, d, J = 7.3 Hz), 7.31 (1H, d, J = 7.3 Hz).
[0349] <実施例 11〉
4ーヒドロキシメチルー 7 メトキシ 2—(テトラヒドロピラン 2 ィルォキシメチル)ピ ラゾロ [1 , 5— a]ピリジンー3—力ルボン酸 ェチルエステル
[0350] [化 85]
Figure imgf000051_0001
[0351] 実施例 2の化合物 (44.9 g)を DMF(500 mL)に溶解し、 4 (テトラヒドロピランー2— ィルォキシ) 2—ブチン酸ェチルエステル (17.8 g)及び炭酸カリウム (34.8 g)を加え、 常温で 17時間攪拌した。反応液に水を加え、酢酸ェチルにて抽出後、抽出層を飽和 食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣をシリカ ゲルクロマトグラフィー (へキサン:酢酸ェチル = 1: 1→酢酸ェチル)にて精製し、 目的 物 (17.4 g)を白色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 1.44 (3H, t, J= 7.3 Hz), 1.51-1.73 (6H, m), 3.54-3.
58 (1H, m), 3.93-3.99 (1H, m), 4.16 (3H, s), 4.42 (2H, q, J = 7.3 Hz), 4.78-4.85 (3 H, m), 4.92 (1H, d, J = 12.2 Hz), 5.19 (1H, d, J = 12.2 Hz), 6.24 (1H, d, J = 8.0 Hz) , 7.33 (1H, d, J = 8.0 Hz).
[0352] <実施例 12〉
4ーヒドロキシメチルー 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン 3 カルボン 酸ェチルエステノレ
[0353] [化 86]
Figure imgf000051_0002
実施例 3の化合物 (64.9 g)のエタノール (750 mU溶液にェチル 4,4,4 トリフルォロ 2 ブチノエート (22.1 g)と粉砕した炭酸カリウム (55.3 g)を加え、常温で 12時間攪拌 した。セライトを用いて不溶物を濾去後、濾液を減圧下に濃縮し、残渣を酢酸ェチル で抽出した。抽出層を水、及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、 溶媒を減圧留去した残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 2: 1)により精製し、 目的物(18.9 g)を黄色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.43 (3H, t, J = 7.3 Hz), 4.43 (2H, q, J = 7.3 Hz),
4.65 (1H, t, J = 7.3 Hz), 4.89 (2H, d, J = 7.3 Hz), 7.06 (1H, t, J = 7.3 Hz), 7.45 (1H , d, J = 7.3 Hz), 8.50 (1H, d, J = 7.3 Hz).
[0355] <実施例 13〉
2 ェチルー 4ーヒドロキシメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジンー3 カル ボン酸
[0356] [化 87]
Figure imgf000052_0001
[0357] 実施例 4の化合物 (6.22 g)をエタノール (150 mL)に溶解し、 10%水酸化カリウム水溶 液 (37 mL)を加え、 2時間加熱還流した。溶媒を減圧下に留去した後、残渣を水に溶 解し、エーテルで洗浄した。水層に濃塩酸を加えて、液性を酸性にした後、酢酸ェチ ルで抽出し、抽出層を、水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥し た。溶媒を減圧下に留去し、 目的化合物 (4.58 g)を灰色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 1.37 (3H, t, J = 7.4 Hz), 3.19 (2H, q, J= 7.4 Hz), 4.
18 (3H, s), 4.88 (2H, s), 6.29 (1H, d, J = 7.9 Hz), 7.38 (1H, d, J = 7.9 Hz).
[0358] <実施例 14〉
2 -シクロプロピル 4—ヒドロキシメチル 7 メトキシピラゾロ [1 , 5 - a]ピリジン 3 一力ノレボン酸
[0359] [化 88]
Figure imgf000052_0002
[0360] 実施例 6の化合物(4.63 g)をエタノール (70 mL)に溶解し、常温にて水酸化カリウム (2.82 g)と水 (30 mL)を加え、加熱還流下にて 2.5時間攪拌した。反応液の溶媒を減 圧留去し、水 (100 mL)で希釈し、濃塩酸 (6.0 mL)を加えた。析出した固体を濾取し、 目的化合物 (3.32 g)を白色固体として得た。
:H-NMR (400 MHz, CDCl ): δ 1.05—1.11 (2H, m), 1.14-1.18 (2Η, m), 2.70—2.76 (1
Η, m), 4.13 (3Η, s), 4.86 (2Η, s), 6.25 (1Η, d, J= 8.0 Hz), 7.35 (1H, d, J = 8.0 Hz).
[0361] <実施例 15〉
4ーヒドロキシメチノレ 2 イソプロピノレー 7 メトキシピラゾ口 [ 1 , 5 a]ピリジン 3— 力ノレボン酸
[0362] [化 89]
Figure imgf000053_0001
[0363] 実施例 7の化合物(6.10 g)をエタノール (91 mL)に溶解し、常温にて水酸化カリウム
(3.37 g)と水 (39 mL)を加え、加熱還流下にて 4時間攪拌した。反応液の溶媒を減圧 留去し、水 (100 mL)で希釈し、濃塩酸 (5.0 mL)を加えた。析出した固体を濾取し、 目 的化合物 (4.45 g)を白色固体として得た。
:H-NMR (400 MHz, CDCl ): δ 1.44 (6H, d, J= 6.7 Hz), 3.84—3.95 (1H, m), 4.16 (3
H, s), 4.90 (2H, s), 6.27 (1H, d, J= 8.0 Hz ), 7.38 (1H, d, J = 8.0 Hz).
[0364] <実施例 16〉
4ーヒドロキシメチルー 7 メトキシピラゾロ [1 , 5— a]ピリジンー3—力ルボン酸
[0365] [化 90]
Figure imgf000053_0002
[0366] 実施例 8の化合物(4.54 g)をエタノール (96 mL)に溶解し、常温にて水酸化カリウム (3.54 g)と水 (41 mL)を加え、加熱還流下にて 1時間攪拌した。反応液の溶媒を減圧 留去し、水 (100 mL)で希釈し、濃塩酸 (8.3 mL)を加えた。析出した固体を濾取し、 目 的物 (3.86 g)を白色固体として得た。
:H-NMR (400 MHz, CDCl ): δ 4.20 (3H, s), 4.89 (2Η, s), 6.34 (1Η, d, J = 8.0 Hz),
7.42 (1H, d, J = 8.0 Hz), 8.59 (1H, s).
[0367] <実施例 17〉
4ーヒドロキシメチルー 7 メトキシ 2—(テトラヒドロピラン 2 ィルォキシメチル)ピ ラゾロ [1 , 5— a]ピリジン一 3—カルボン酸
[0368] [化 91]
Figure imgf000054_0001
[0369] 実施例 11の化合物(4.64 g)をエタノール (60 mL)に溶解し、常温にて水酸化力リウ ム(2.51 g)と水 (19.2 mL)を加え、加熱還流下にて 1.5時間攪拌した。反応液の溶媒を 減圧留去し、水 (70 mL)で希釈し、希塩酸 (35 mL)を加えた。析出した固体を濾取し、 目的物 (3.60 g)を白色固体として得た。
'H-NMR (400 MHz, CDCl ): δ 1.57-1.81 (6H, m), 3.61—3.64 (1Η, m), 3.88—3.93 (1
Η, m), 4.18 (3Η, s), 4.81-4.86 (2Η, m), 4.81-4.86 (2Η, m), 4.92-4.94 (1Η, m), 4.99 (1Η, d, J = 12.2 Hz), 5.24 (1H, d, J = 12.2 Hz), 6.32 (1H, d, J = 7.3 Hz), 7.41 (1H, d, J= 7.3 Hz).
[0370] <実施例 18〉
2—ェチル - 4—ヒドロキシメチル 7 メトキシピラゾ口 [1 , 5 - a]ピリジン
[0371] [化 92]
Figure imgf000055_0001
[0372] 実施例 13の化合物 (4.10 g)をブロモベンゼン (150 mL)に懸濁し、 5時間加熱還流し た。溶媒を減圧下に留去した後、残渣をシリカゲルカラムクロマトグラフィー (へキサン :酢酸ェチル= 1 : 2→1 : 4)にて精製することで目的化合物 (2.49 g)を白色固体とし て得た。
MS (EI+): 206 [M+]
'H-NMR (400 MHz, CDCl ): δ 1.36 (3H, t, J = 8.0 Hz), 1.65 (1H, brs), 2.92 (2H, q
, J = 8.0 Hz), 4.13 (3H, s), 4.81 (2H, s), 5.99 (1H, d, J = 7.3 Hz), 6.43 (1H, s), 7.08 (1H, d, J = 7.3 Hz).
[0373] <実施例 19〉
2 -シクロプロピル 4—ヒドロキシメチル 7 メトキシピラゾロ [1 , 5 - a]ピリジン
[0374] [化 93]
Figure imgf000055_0002
[0375] 実施例 14の化合物(3.32 g)を o_ジクロロベンゼン(130 mL)に懸濁し、 150°Cで 22時 間攪拌した。反応液の溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー (へキ サン:酢酸ェチル= 1 : 3→1 : 4)にて精製し、 目的化合物 (2.05 g)を白色固体として得 た。
'H-NMR (400 MHz, CDCl ): δ 0.85-0.90 (2H, m), 1.01—1.06 (2Η, m), 2.17-2.25 (1
Η, m), 4.12 (3Η, s), 4.77 (2Η, s), 5.96 (1Η, d, J= 7.3 Hz), 6.19 (1H, s), 7.05 (1H, d, J = 7.3 Hz).
[0376] <実施例 20〉 4ーヒドロキシメチノレ 2 イソプロピノレー 7 メトキシピラゾ口 [ 1 , 5 a]ピリジン
[0377] [化 94]
Figure imgf000056_0001
[0378] 実施例 15の化合物(4.45 g)を o_ジクロロベンゼンに懸濁し、 150°Cで 15時間攪拌し た。減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー (へキサン:酢酸ェチ ノレ = 1 : 4→酢酸ェチル)にて精製し、 目的化合物 (3.21 g)を淡赤色固体として得た。 'H-NMR (400 MHz, CDC1 ): δ 1.38 (6H, d, J= 7.3 Hz), 3.23-3.32 (1H, m), 4.12 (3
H, s), 4.81 (2H, s), 5.98 (1H, d, J= 8.0 Hz ), 6.43 (1H, s), 7.07 (1H, d, J = 8.0 Hz).
[0379] <実施例 21〉
4ーヒドロキシメチルー 7—メトキシピラゾロ [1 , 5— a]ピリジン
[0380] [化 95]
Figure imgf000056_0002
[0381] 実施例 16の化合物 (3.86 g)を o_ジクロロベンゼンに懸濁し、 150°Cで 17時間攪拌し た。反応液の溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー (酢酸ェチル→ 酢酸ェチル:メタノール = 50 : 1→30: 1)にて精製し、 目的物 (2.77 g)を白色固体として 得た。
'H-NMR (400 MHz, CDC1 ): δ 4.14 (3H, s), 4.84 (2Η, s), 6.05 (1Η, d, J = 8.0 Hz),
6.61 (1H, d, J = 2.4 Hz), 7.12 (1H, d, J = 8.0 Hz), 8.01 (1H, d, J = 2.4 Hz).
[0382] <実施例 22〉
4ーヒドロキシメチルー 7 メトキシ 2—(テトラヒドロピラン 2 ィルォキシメチル)ピ ラゾロ [1 , 5— a]ピリジン [0383] [化 96]
Figure imgf000057_0001
[0384] 実施例 17の化合物 (15.9 g)を o_ジクロロベンゼン(480 mL)に懸濁し、 150°Cで 13時 間攪拌した。反応終了後、減圧下に溶媒を留去し、残渣をシリカゲルクロマトグラフィ 一 (酢酸ェチル:メタノール = 10 : 1)にて精製し、 目的物 (3.83 g)を白色固体として、ま た 2, 4 ジヒドロキシメチル一 7 メトキシピラゾ口 [1 , 5 a]ピリジン(4.10 g)を得た。 'H-NMR (400 MHz, CDCl ): δ 1.53-1.80 (6H, m), 3.56-3.58 (1Η, m), 3.93-3.99 (1
Η, m), 4.13 (3Η, s), 4.81 (1Η, d, J = 12.8 Hz), 4.77-4.82 (3H, m), 5.02 (1H, d, J = 12.8 Hz), 6.04 (1H, d, J= 7.4 Hz), 6.61 (1H, s), 7.12 (1H, d, J = 7.4 Hz).
2, 4 ジヒドロキシメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジン
:H-NMR (400 MHz, CDCl ): δ 4.15 (3H, s), 4.83 (2Η, s), 4.94 (2Η, s), 6.07 (1Η, d
, J = 7.4 Hz), 6.63 (1H, s), 7.14 (1H, d, J = 7.4 Hz).
[0385] <実施例 23〉
2 ェチル 4ーヒドロキシメチルピラゾロ [1 , 5 a]ピリジン
[0386] [化 97]
Figure imgf000057_0002
[0387] 実施例 9の化合物 (7.33 g)に 40%硫酸水溶液(130 mL)を加えて 100°Cで 1時間加 熱した。反応液に 10%水酸化ナトリウム水溶液を加えて析出した固体を濾取し、これ をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 1 : 1)で精製し、 目的化 合物 (4.52 g)を白色固体として得た。
:H-NMR (400 MHz, CDCl ): δ 1.36 (3H, t, J= 7.9 Hz), 2.11—2.13 (1H, brm), 2.86 (
2H, q, J = 7.3 Hz), 4.85 (2H, d, J= 5.5 Hz), 6.37 (1H, s), 6.66 (1H, dd, J = 6.7, 7.4 Hz), 7.09 (1H, d, J= 6.7 Hz), 8.30 (1H, d, J = 7.4 Hz).
[0388] <実施例 24〉
4—ヒドロキシメチル一 7—メトキシ一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン [0389] [化 98]
Figure imgf000058_0001
[0390] 実施例 5の化合物を用いて、実施例 13および実施例 18と同様の方法により、 目的 化合物を白色固体として得た。
'H-NMR (400 MHz, CDC1 ) : δ 1.56 (1Η, brs), 4.18 (3Η, s), 4.87 (2Η, d, J = 0.9 Hz
3
), 6.22 (1H, d, J = 7.6 Hz), 6.92 (1H, s), 7.24-7.27 (1H, m).
[0391] <実施例 25〉
4—ヒドロキシメチル一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン
[0392] [化 99]
Figure imgf000058_0002
実施例 12の化合物(14.9 g)をエタノール (250 mL)に溶解し、 10%水酸化カリウム水 溶液 (80 mL)を加え、 3時間加熱還流した。溶媒を減圧下に濃縮し、残渣の水層をジ ェチルエーテルで洗浄後、水層に濃塩酸を加え、析出した固体を濾取し、水で洗浄 後、乾燥した。この固体を 0-ジクロロベンゼン (300 mL)に懸濁し、 150°Cで 17時間加 熱した。放冷後、減圧下に溶媒を留去し、
Figure imgf000058_0003
へキサン:酢酸ェチル = 2 : 1)にて精製して目的化合物 (3.05 g)を白色固体として 得た。
MS (EI+): 216 [M+] Ή-NMR (400 MHz, CDC1 ): δ 1.89 (1H, t, J= 6.1 Hz), 4.93 (2H, d, J = 6.1 Hz), 6
.88 (1H, s), 6.94 (1H, t, J= 7.3 Hz), 7.27-7.29 (1H, m), 8.45 (1H, d, J = 7.3 Hz).
[0394] <実施例 26〉
2—ェチル - 7—メトキシピラゾロ [1 , 5 - a]ピリジン一 4—カルボアルデヒド
[0395] [化 100]
Figure imgf000059_0001
[0396] 実施例 18の化合物 (2.50 g)をジクロロメタン (60 mL)に溶解し、活性二酸化マンガン( 10.5 g)を加え、常温で 24時間攪拌した。セライトを用いて不溶物を濾去後、濾液の溶 媒を減圧留去し、 目的化合物 (2.28 g)を灰色固体として得た。
MS (EI+): 204 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.38 (3H, t, J = 8.0 Hz), 2.95 (2H, q, J= 8.0 Hz), 4.
26 (3H, s), 6.20 (1H, d, J = 7.3 Hz), 7.18 (1H, s), 7.71 (1H, d, J = 7.3 Hz), 9.93 (1 H, s).
[0397] <実施例 27〉
7—メトキシ一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—カルボアルデヒド [0398] [化 101]
Figure imgf000059_0002
[0399] 実施例 24の化合物を用いて、実施例 26と同様の方法により、 目的化合物を白色固 体として得た。
[0400] LRMS (EI+): 244 [M+]
'H-NMR (400 MHz, CDC1 ): δ 4.31 (3Η, s), 6.43 (1Η, d, J= 7.9 Hz), 7.64 (1H, s), 7.87 (1H, d, J = 7.9Hz), 9.98 (1H, s).
[0401] <実施例 28〉
2 -シクロプロピル 7 メトキシピラゾロ [1 , 5 - a]ピリジン一 4 カルボアルデヒド [0402] [化 102]
Figure imgf000060_0001
[0403] 実施例 19の化合物(2.04 g)をクロ口ホルム(94 mL)に溶解し、常温にて活性二酸化 マンガン (5.42 g)を加え、 50°Cで 5時間攪拌した。セライトを用いて不溶物を濾去後、 濾液の溶媒を減圧留去した残渣を、シリカゲルクロマトグラフィー (へキサン:酢酸ェチ ル= 1: 3)にて精製し、 目的化合物 (1.94 g)を黄色固体として得た。
:H-NMR (400 MHz, CDCl ) : δ 0.91-0.95 (2H, m), 1.06—1.11 (2Η, m), 2.21-2.27 (1
Η, m), 4.25 (3Η, s), 6.18 (1Η, d, J = 8.0 Hz), 6.92 (1H, s), 7.69 (1H, d, J = 8.0 Hz )
, 9.89 (1H, s).
[0404] <実施例 29〉
2 イソプロピル一 7 -メトキシ一ピラゾ口 [1 , 5 - a]ピリジン 4 カルボアルデヒド [0405] [化 103]
Figure imgf000060_0002
実施例 20の化合物(1.00 g)をクロ口ホルム (45 mL)に溶解し、常温にて活性二酸化 マンガン (2.63 g)を加え、 50°Cで 3時間攪拌した。セライトを用いて不溶物を濾去後、 濾液の溶媒を減圧留去し、 目的物 (938 mg)を黄色固体として得た。
'H-NMR (400 MHz, CDCl ) : δ 1.40 (6H, d, J= 7.3 Hz), 3.21-3.36 (1H, m), 4.26 (3
H, s), 6.20 (1H, d, J = 8.0 Hz), 7.18 (1H, s ), 7.71 (1H, d, J = 8.0 Hz), 9.92 (1H, s). [0407] <実施例 30〉
7 -メトキシピラゾ口 [ 1 , 5— a]ピリジン一 4—カルボアルデヒド
[0408] [化 104]
Figure imgf000061_0001
[0409] 実施例 21の化合物(1.00 g)をクロ口ホルム (56 mL)に溶解し、常温にて活性二酸化 マンガン (3.25 g)を加え、 50°Cで 3時間攪拌した。セライトを用いて不溶物を濾去後、 濾液の溶媒を減圧留去し、 目的物 (966 mg)を黄色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 4.28 (3H, s), 6.80 (1Η, d, J = 8.0 Hz), 7.35 (1H, d,
J = 2.4 Hz), 7.67 (1H, d, J= 8.0 Hz), 8.16 (1H, d, J = 2.4 Hz), 9.96 (1H, s).
[0410] <実施例 31〉
2—ェチルピラゾ口 [1 , 5— a]ピリジンー4 カルボアルデヒド
[0411] [化 105]
Figure imgf000061_0002
[0412] 実施例 23の化合物 (500 mg)を用いて、実施例 26と同様の方法により目的化合物を 黄色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.39 (3H, t, J = 7.3 Hz), 2.92 (2H, q, J= 7.3 Hz), 6.
85 (1H, dd, J = 6.7, 6.9 Hz), 7.13 (1H, s), 7.67 (1H, d, J= 6.9 Hz), 8.59 (1H, d, J =
6.7 Hz), 9.93 (1H, s).
[0413] <実施例 32〉
7 メトキシ一 2— (テトラヒドロピラン一 2 ィルォキシメチル)ピラゾ口 [1 , 5 a]ピリジ ン 4 カルボアルデヒド
[0414] [化 106]
Figure imgf000062_0001
[0415] 実施例 22の化合物(1.02 g)をクロ口ホルム(35 mL)に溶解し、常温にて活性二酸化 マンガン(1.51 g)を加え、 50°Cで 4.5時間攪拌した。セライトを用いて不溶物を濾去後 、濾液の溶媒を減圧留去し、 目的化合物 (876 mg)を黄色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 1.52-1.90 (6Η, m), 3.50-3.59 (1Η, m), 3.92-3.98 (1
Η m), 4.26 (3Η, s), 4.80 (1Η, d, J = 12.2 Hz), 4.81-4.83 (1H, d, J = 12.2 Hz), 6.25 (1H, d, J = 7.3 Hz), 7.40 (1H, s), 7.74 (1H, d, J = 7.3 Hz), 9.95 (1H, s).
[0416] <実施例 33〉
2—ェチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー4一力ルボン酸 ェチルエステ ノレ
[0417] [化 107]
Figure imgf000062_0002
[0418] 実施例 26の化合物 (1.02 g)を水 (100 mL)に懸濁し、過マンガン酸カリウム (3.16 g)を 加え、常温で 21時間攪拌した。 10%水酸化ナトリウム水溶液を加えて液性をアルカリ 性にした後、セライトを用いて不溶物を濾去し、濾液をエーテルで洗浄した。水層を 1 0%塩酸で酸性にした後、酢酸ェチルにて抽出し、抽出層を、水、飽和食塩水の順 で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した残渣 (154 mg)を DM F(7.0 mUに溶解し、ヨウ化工チル (0.0844 mU及び炭酸カリウム (145 mg)を加え、常 温で 1.5時間攪拌した。反応液を水で希釈後、酢酸ェチルで抽出し、抽出層を、水、 飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残 (へキサン:酢酸ェチル = 1 : 1)にて精製し、 目 的化合物 (55.6 mg)を白色固体として得た。
MS (EI+): 248 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.38 (3H, t, J = 8.6 Hz), 1.45 (3H, t, J= 6.7 Hz), 2.
93 (2H, q, J = 8.6 Hz), 4.21 (3H, s), 4.42 (2H, q, J= 6.7 Hz), 6.10 (1H, d, J = 8.0 H z), 6.94 (1H, s), 8.01 (1H, d, J= 8.0 Hz).
[0419] <実施例 34〉
2ーェチノレ 7ーメトキシピラゾロ [1 , 5 a]ピリジン 4一力ノレボン酸
[0420] [化 108]
Figure imgf000063_0001
[0421] 実施例 33の化合物 (286 mg)をメタノール (3.0 mL)に溶解し、 10%水酸化カリウム水溶 液 (2.0 mL)を加え、常温で 17時間攪拌した。反応液をエーテルで洗浄し、水層を 10 %塩酸で反応液を酸性にした後に、酢酸ェチルにて抽出した。抽出層を、水、飽和 食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して目的化合 物 (121 mg)を得た。
'H-NMR (400 MHz, CDC1 ): δ 1.39 (3H, t, J = 7.3 Hz), 2.85 (2H, q, J= 7.3 Hz), 4.
24 (3H, s), 6.15 (1H, d, J = 7.9 Hz), 7.01 (1H, s), 8.12 (1H, d, J = 7.9 Hz).
[0422] <実施例 35〉
7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸
[0423] [化 109]
Figure imgf000063_0002
実施例 27の化合物 (1.23 g )を t-ブタノール (36 mL)、水 (12 mL)に溶解し、リン酸二 水素ナトリウム二水和物 (787 mg)、 2 メチル—2 ブテン (2.4 mL)、および亜塩素酸 ナトリウム (2.00 g)を加え、常温にて 5時間攪拌した。反応液に 10%水酸化ナトリウム水 溶液を加え、液性をアルカリ性にした後、エーテルで洗浄した。水層に 10%塩酸をカロ え、析出晶をろ取し、水で洗浄することで目的化合物 (885 mg)を白色固体として得た
H-NMR (400 MHz, CDCl ): δ 4.29 (3H, s), 6.37 (1H, d, J = 8.0 Hz), 7.49 (1H, s)
8.25 (1H, d, J = 8.0 Hz).
[0425] <実施例 36〉
2 -シクロプロピル 7 メトキシピラゾロ [1 , 5 - a]ピリジン一 4 カルボン酸
[0426] [化 110]
Figure imgf000064_0001
[0427] 実施例 28の化合物 (1.83 g)に硝酸銀 (3.60 g)、水酸化ナトリウム (1.75 g)、水 (85 mL) を加え、常温にて 73時間攪拌した。セライトを用いて不溶物を濾去後、濾液をジェチ ルエーテルにて洗浄した。水層に希塩酸を加えて液性を酸性とし、酢酸ェチルで抽 出した。有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶 媒を減圧留去して目的化合物 (1.06 g)を白色固体として得た。
'H-NMR (400 MHz, CDCl ): δ 0.92—0.96 (2H, m), 1.06—1.11 (2Η, m), 2.22-2.29 (1
Η, m), 4.23 (3Η, s), 6.13 (1Η, d, J = 8.0 Hz), 7.27 (1H, s), 8.10 (1H, d, J = 8.0 Hz )
[0428] <実施例 37〉
2 -イソプロピル 7 メトキシピラゾロ [1, 5 - a]ピリジン 4—カルボン酸
[0429] [化 111]
Figure imgf000065_0001
実施例 29の化合物(938 mg)に硝酸銀 (1.82 g)、水酸化ナトリウム (859 mg)、水 (43 m L)を加え、常温にて 2時間攪拌した。セライトを用いて不溶物を濾去後、濾液をジェチ ルエーテルにて洗浄した。水層に希塩酸を加えて液性を酸性とし、酢酸ェチルおよ びクロ口ホルム:メタノール = 9 : 1で抽出した。抽出層を飽和食塩水で洗浄し、無水硫 酸ナトリウムで乾燥した。溶媒を減圧留去して目的物 (887 mg)を白色固体として得た
H-NMR (400 MHz, CDC1 ): δ 1.41 (6H, d, J= 7.3 Hz), 3.30—3.37 (1H, m), 4.25 (3
H, s), 6.17 (1H, d, J = 8.0 Hz), 7.02 (1H, s ), 8.13 (1H, d, J = 8.0 Hz).
[0431] <実施例 38〉
7—メトキシピラゾロ [1 , 5— a]ピリジン一 4—カルボン酸
[0432] [化 112]
Figure imgf000065_0002
[0433] 実施例 30の化合物(965 mg)に硝酸銀 (2.33 g)と水酸化ナトリウム (1.10 g)の懸濁水( 55 mL)を加え、常温にて 1.5時間攪拌した。セライトを用いて不溶物を濾去後、濾液を ジェチルエーテルにて洗净した。水層に希塩酸を加えて液性を酸性とし、酢酸ェチ ルおよびクロ口ホルム:メタノール = 9 : 1で抽出した。抽出層を飽和食塩水で洗浄し、 無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して、 目的物 (769 mg)を白色固体と して得た。
'H-NMR (400 MHz, CDC1 ): δ 4.26 (3H, s), 6.22 (1Η, d, J = 8.0 Hz), 7.19 (1H, s), 8.13 (1H, d, J = 1.8 Hz), 8.16 (1H, d, J = 8.0 Hz).
[0434] <実施例 39〉
2—ェチルピラゾ口 [1 , 5— a]ピリジンー4一力ルボン酸
[0435] [化 113]
Figure imgf000066_0001
[0436] 実施例 31の化合物を用いて、実施例 35と同様の方法により、 目的化合物を白色個 体として得た。
'H-NMR (400 MHz, CDCl ): δ 1.40 (3H, t, J = 7.3 Hz), 2.92 (2H, q, J= 7.3 Hz), 6.
78 (1H, dd, J = 6.7, 7.3 Hz), 6.98 (1H, s), 8.03 (1H, dd, J= 1.2, 7.3 Hz), 8.63 (1H, dd, J = 1.2, 6.7 Hz).
[0437] <実施例 40〉
7—メトキシ一 2— (テトラヒドロピラン一 2—ィルォキシメチル)ピラゾ口 [1 , 5— a]ピリジ ンー4一力ノレボン酸
[0438] [化 114]
Figure imgf000066_0002
実施例 32の化合物 (876 mg)に硝酸銀 (1.36 g)、水酸化ナトリウム (623 mg)、水 (30 mL)を加え、常温にて 4時間攪拌した。セライトを用いて不溶物を濾去後、濾液をジ ェチルエーテルで洗浄し、水層を希塩酸で酸性とした後、酢酸ェチルで抽出した。 抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧 留去して、 目的化合物 (789 mg)を白色固体として得た。
'H-NMR (400 MHz, CDCl ): δ 1.54-1.91 (6H, m), 3.56-3.60 (1Η, m), 3.94-4.00 (1
Η, m), 4.23 (3Η, s), 4.80 (2Η, m), 5.05 (1Η, d, J= 12.8 Hz), 6.20 (1H, d, J = 8.0 Hz ), 7.24 (1H, s), 8.15 (1H, d, J= 8.0 Hz).
[0440] <実施例 41〉
4 ァセトキシメチルー 2 ジェトキシメチルー 7 メトキシピラゾロ [1, 5 a]ピリジン 3—力ルボン酸 ェチルエステル
[0441] [化 115]
Figure imgf000067_0001
[0442] 実施例 10の化合物 (2.10 g)をピリジン (20 mL)に溶解し、無水酢酸 (1.12 mL)を加え、 常温で 6時間攪拌した。反応液を水で希釈後、酢酸ェチルで抽出し、抽出層を水、 飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して、 目 的物 (2.01 g)を無色油状物として得た。
MS (EI+): 394 [M+]
'H-NMR (400 MHz, CDC1 ): δ 1.25 (6H, t, J = 7.3 Hz), 1.41 (3H, t, J= 7.3 Hz), 2.
04 (3H, s), 3.67-3.75 (4H, m), 4.13 (3H, s), 4.37 (2H, q, J= 7.3 Hz), 5.47 (2H, s), 6 .17 (1H, s), 6.19 (1H, d, J = 8.0 Hz), 7.35 (1H, d, J = 8.0 Hz).
[0443] <実施例 42〉
4 -ァセトキシメチル 2 ホルミル 7 メトキシピラゾロ [1, 5 a]ピリジン一 3 力 ノレボン酸 ェチルエステル
[0444] [化 116]
Figure imgf000067_0002
[0445] 実施例 41の化合物 (2.01 g)をアセトン-水 (2: 1)の混合溶媒(20 mL)に溶解し、 p-トル エンスルホン酸一水和物 (97.3 mg)を加え、 70°Cで 2時間攪拌した。反応液を放冷後 、酢酸ェチルで抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウム で乾燥した。溶媒を減圧留去した残渣をシリカゲルカラムクロマトグラフィー (へキサン :酢酸ェチル = 1 : 2)にて精製し、 目的物 (1.47 g)を白色固体として得た。
MS (EI+): 320 [Μ+]
'H-NMR (400 MHz, CDC1 ): δ 1.43 (3H, t, J = 7.3 Hz), 2.05 (3H, s), 4.21 (3H, s),
4.45 (2H, q, J = 7.3 Hz), 5.50 (2H, s), 6.36 (1H, d, J = 8.0 Hz), 7.46 (1H, d, J = 8.0
Hz), 10.49 (1H, s).
[0446] <実施例 43〉
4 ァセトキシメチルー 2 ジフルォロメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジン 3—力ルボン酸 ェチルエステル
[0447] [化 117]
Figure imgf000068_0001
[0448] アルゴン雰囲気下、実施例 42の化合物 (1.47 g)をジクロロメタン (23 mL)に溶解し、 氷冷下にてジェチルアミノサルファートリフルオリド (1.52 mL)を滴下し、常温にて 1.5 時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えて、酢酸ェチルで抽 出後、抽出層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒 を減圧留去し、
Figure imgf000068_0002
酢酸ェチノレ = 2:
3)にて精製することで目的物 (1.21 g)を白色固体として得た。
MS (EI+): 342 [M+]
'H-NMR (400 MHz, CDC1 ): δ 1.42 (3H, t, J = 7.3 Hz), 2.06 (3H, s), 4.20 (3H, s)
4.40 (2H, q, J = 7.3 Hz), 5.60 (2H, s), 6.35 (1H, d, J = 7.9 Hz), 7.26 (1H, t, J = 53.8 Hz), 7.49 (1H, d, J = 7.9 Hz).
[0449] <実施例 44 >
2 ジフルォロメチルー 4ーヒドロキシメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジン [0450] [化 118]
Figure imgf000069_0001
[0451] 実施例 43の化合物 (1.21 g)をエタノール (10 mL)に溶解し、 10%水酸化カリウム水溶 液 (6.0 mL)を加え、 3.5時間加熱還流した。放冷後、反応液をジェチルエーテルで洗 浄後、 10%塩酸を用いて、液性を酸性とし、酢酸ェチルで抽出した。抽出層を水、飽 和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥し溶媒を減圧留去した。得られ た残渣 (871 mg)をブロモベンゼン (50 mL)に懸濁し、 3.5時間加熱還流した。溶媒を減 圧留去後、残渣をシリカゲルカラムクロマトグラフィー(へキサン:酢酸ェチル = 1 : 1) にて精製することで目的物 (583 mg)を白色固体として得た。
MS (EI+): 228 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.77 (1H, t, J = 5.5 Hz), 4.18 (3H, s), 4.87 (2H, d,
J = 5.5 Hz), 6.17 (1H, d, J = 7.3 Hz), 6.86 (1H, s), 6.94 (1H, t, J = 55.4 Hz), 7.22 ( 1H, d, J = 7.3 Hz).
[0452] <実施例 45〉
2 ジフルォロメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジンー4 カルボアルデヒド [0453] [化 119]
Figure imgf000069_0002
[0454] 実施例 44の化合物 (582 mg)をジクロロメタン (20 mL)に溶解し、活性二酸化マンガン (2.22 加え、常温にて 11時間攪拌した。セライトを用いて不溶物を濾去し、濾液の 溶媒を減圧留去して、 目的物 (580 mg)を白色固体として得た。
MS (EI+): 226 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 4.30 (3H, s), 6.37 (1H, d, J = 8.0 Hz), 6.95 (1H, t,
J = 55.4 Hz), 7.59 (1H, s), 7.83 (1H, d, J = 8.0 Hz), 9.98 (1H, s).
[0455] <実施例 46 >
2—ジフルォロメチルー 4一(1ーヒドロキシプロピル)ー7—メトキシピラゾロ [1 , 5-a] ピリジン
[0456] [化 120]
Figure imgf000070_0001
[0457] アルゴン雰囲気下、実施例 45の化合物 (580 mg)を THF (13 mL)に溶解し、 -78。C にてェチルマグネシウムブロミド(1.0 mol/LTHF溶液、 3.1 mL)を滴下し、その後常 温に
て 2時間攪拌した。反応液に飽和塩化アンモユウム水溶液を加えた後、酢酸ェチル にて抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した 。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチ ノレ = 3 : 2)にて精製し、 目的物 (602 mg)を黄色固体として得た。
MS (EI+): 256 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 0.96 (3H, t, J = 7.3 Hz), 1.86—1.99 (3H, m), 4.17 (3
H, s), 4.88 (1H, t, J = 6.7 Hz), 6.18 (1H, d, J = 7.9 Hz), 6.87 (1H, s), 6.94 (1H, t, J = 55.0 Hz), 7.22 (1H, d, J = 7.9 Hz).
[0458] <実施例 47〉
2 -ジフルォロメチル一 7—メトキシ一 4 -プロピオ二ルビラゾロ [1 , 5 - a]ピリジン [0459] [化 121]
Figure imgf000071_0001
[0460] 実施例 46の化合物 (550 mg)をクロ口ホルム (10 mL)に溶解し、活性二酸化マンガン ( 5.61 g (1.87 gを 24時間おきに追加))を加え、 2日間加熱還流した。セライトを用いて 不溶物を濾去し、濾液の溶媒を減圧留去して、 目的物 (41 5mg)を得た。
MS (EI+): 254 [M+]
'H-NMR (400 MHz, CDC1 ): δ 1.27 (3H, t, J = 7.3 Hz), 3.03 (2H, q, J= 7.3 Hz), 4.
27 (3H, s), 6.26 (1H, d, J = 8.0 Hz), 6.94 (1H, t, J= 55.0 Hz), 7.62 (1H, s), 7.98 (1 H, d, J = 8.0 Hz).
[0461] <実施例 48〉
2—ジフルォロメチル一 7—メトキシピラゾロ [1 , 5— a]ピリジン一 4—カルボン酸 メチルエステル
[0462] [化 122]
Figure imgf000071_0002
実施例 47の化合物(185 mg)に、炭酸ジメチル(10 mL)、 60%水素化ナトリウム(87. 0 mg)およびメタノール 1滴を加えて 1時間 40分加熱還流した。反応液に飽和塩化ァ ン
モユウム水溶液を加えて酢酸ェチルで抽出し、抽出層を無水硫酸ナトリウムで乾燥 後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(へキサン:酢酸ェチル = 3: 2)で精製し、 目的物 (33.2 mg)を黄色固体として得た。 MS (EI+): 256 [M+]
:H-NMR (400 MHz, CDC1 ): δ 3.99 (3H, s), 4.26 (3H, s), 6.28 (1H, d, J = 8.0 Hz).
6.95 (1H, t, J = 55.2 Hz), 7.36 (1H, s), 8.13 (1H, d, J = 8.0 Hz).
[0464] <実施例 49 >
7 メトキシ一 4— (テトラヒドロピラン一 2 ィルォキシメチル)ピラゾ口 [1 , 5 a]ピリジ ン 2—カルボアルデヒド
[0465] [化 123]
Figure imgf000072_0001
[0466] 実施例 22で得られた 2, 4—ジヒドロキシメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジ ン(1.75 g)の DMF (30 mL)溶液に 3, 4 ジヒドロ一 2H ピラン(707 mg )および p トルエンスルホン酸一水和物(79.9 mg)を加えて常温で 4日間攪拌した。反応液に 飽和炭酸水素ナトリウム水溶液を加えて、酢酸ェチルで抽出し、抽出層を無水硫酸 ナトリウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー( 酢酸ェチル)に付し、淡黄色油状の [7ーメトキシー 4 (テトラヒドロピラン 2ーィル ォキシメチル)ピラゾ口 [1 , 5 a]ピリジンー2 ィル]メタノール(0.59 g)及び、淡黄色 油状の 4ーヒドロキシメチルー 7 メトキシー 2—(テトラヒドロピランー2 ィルォキシメ チル)ピラゾ口 [1 , 5— a]ピリジン(0.65 g)を得た。
[7 メトキシ一 4— (テトラヒドロピラン一 2 ィルォキシメチル)ピラゾ口 [1 , 5 a]ピリジンー2 ィル]メタノール(922 mg)にクロ口ホルム(40 mL)及び、活性二酸 化マンガン(1.38 g)を加えて 15時間加熱還流した。セライトを用いて不溶物を濾去し 、温クロ口ホルムで洗浄した。濾液と洗浄液を合わせて溶媒を減圧留去し、残渣をシ リカゲルカラムクロマトグラフィー(酢酸ェチル)で精製し、 目的物 (738 mg)を淡黄色油 状物として得た。
LRMS (CI+): 291 [M+H+] [0467] <実施例 50〉
4—ヒドロキシメチル一 7—メトキシピラゾ口 [1 , 5— a]ピリジン一 2—カルボ二トリル
[0468] [化 124]
Figure imgf000073_0001
実施例 49の化合物(627 mg)のメタノール(22 mL)溶液に、常温にて酢酸ナトリウム (1.00 g)及び塩酸ヒドロキシルァミン (450 mg)を加えて常温で 30分撹拌した。溶媒を 減圧下に留去し、
Figure imgf000073_0002
(酢酸ェチル)で精製し、 白色固体 (671 mg)を得た。
得られた個体の塩化メチレン(22 mL)溶液にトリェチルァミン (1.51 mL)、および無 水トリフルォロ酢酸 (0.60 mL)を加え、常温で 1時間撹拌した。反応液に水を加えて 塩化メチレンで抽出し、抽出層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去 した。
得られた残渣のメタノール(22 mL)溶液に、 p-トルエンスルホン酸一水和物(411 m g)を加えて常温で 1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え た後、酢酸ェチルで抽出し、抽出層を無水硫酸マグネシウムで乾燥後、溶媒を減圧 留去した。残渣をイソプロピルエーテルで洗浄し、 目的物 (389 mg)を淡黄色固体とし て得た。
MS (EI+): 203 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.84 (1H, t, J= 6.1 Hz), 4.19 (3H, s), 4.86 (2H, d,
J = 6.1 Hz), 6.28 (1H, d, J= 7.9 Hz), 7.06 (1H, s), 7.29 (1H, d, J = 7.9 Hz).
[0470] <実施例 51〉
4ーホノレミノレー 7—メトキシピラゾロ [1 , 5— a]ピリジン一 2 -カルボ二トリル
[0471] [化 125]
Figure imgf000074_0001
[0472] 実施例 50の化合物(380 mg)にクロ口ホルム(45 mL)及び、活性二酸化マンガン(1.
63 g)を加えて 3時間加熱還流した。セライトを用いて不溶物を濾去し、温クロロホノレ ムで洗浄した。濾液と洗浄液を合わせて溶媒を減圧留去し、 目的物 (360 mg)を淡黄 色固体として得た。
MS (EI+): 201 [M+]
'H-NMR (400 MHz, CDC1 ): δ 4.32 (3H, s), 6.48 (1H, d, J = 7.9 Hz), 7.67 (1H, s),
7.90 (1H, d, J = 7.9 Hz), 9.98 (1H, s).
[0473] <実施例 52〉
2 シァノー 7 メトキシピラゾロ [ 1 , 5 a]ピリジン 4一力ノレボン酸
[0474] [化 126]
Figure imgf000074_0002
[0475] 実施例 51の化合物(183 mg)の DMSO (9 mL)溶液に、 2—メチルー 2—ブテン(3 mL)、亜塩素酸ナトリウム(740 mg)及びリン酸二水素ナトリウム(753 mg)の水(5 mL) 溶液を加えて常温で 12時間攪拌した。反応液に、 1 mol/L水酸化ナトリウム(5 mL) を
加えた後、水(15 mL)および酢酸ェチル(10 mL)を加えて攪拌した。有機層を分離し た後、水層を濃塩酸で pH3として、クロ口ホルム:メタノール = 7 : 1で抽出し、抽出層 を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣を水で洗浄して、 目 的物 (149 mg)を白色固体として得た。
LRMS (EI+): 217 [M+] Ή-NMR (400 MHz, DMSO— d ): δ 4.22 (3H, s), 6.78 (1H, d, J = 8.6 Hz), 7.61 (1H
6
s), 8.15 (1H, d, J = 8.6 Hz).
[0476] <実施例 53〉
2—ヒドロキシメチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー4一力ルボン酸
[0477] [化 127]
Figure imgf000075_0001
実施例 40の化合物(437 mg)をメタノール (14 mL)に溶解し、常温にて p—トルエンス ルホン酸一水和物(27.0 mg)を加え、 50°Cにて 30分間攪拌した。反応液を氷冷し、析 出
物を濾取して目的物 (254 mg)を白色固体として得た。
'H-NMR (400 MHz, DMSO-d ): δ 4.15 (3H, s), 4.64 (2Η, d,, J = 4.9 Hz), 5.31 (1
H, t, J = 4.9 Hz), 6.44 (1H, d, J= 8.0 Hz), 6.98 (1H, d, J = 8.0 Hz), 7.95 (1H, s), 1 2.90 (1H, brs).
[0479] <実施例 54〉
7—メトキシ一 2—メトキシメチルビラゾロ [ 1 , 5— a]ピリジン一 4—カルボン酸メチ ノレエステノレ
[0480] [化 128]
Figure imgf000075_0002
実施例 53の化合物(253 mg)を DMF(11 mL)に溶解し、酸化銀 (2.64 g)とョードメタ ン (1.42 mL)を加え、常温にて 15時間攪拌した。セライトを用いて不溶物を濾去し、濾 液 の溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー (酢酸ェチル)にて精製し、 目的物 (224
mg)を黄白色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 3.47 (3H, s), 3.97 (3Η, s), 4.23 (3Η, s), 4.76 (2Η, s
), 6.16 (1Η, d, J = 8.0 Hz), 7.14 (1H, s), 8.05 (1H, d, J = 8.0 Hz).
[0482] <実施例 55〉
7—メトキシ一 2—メトキシメチルビラゾロ [ 1 , 5— a]ピリジン一 4—カルボン酸
[0483] [化 129]
Figure imgf000076_0001
[0484] 実施例 54の化合物(222 mg)をメタノール (4.20 mL)に溶解し、常温にて水酸化カリ ゥム (174 mg)と水 (1.35 mL)を加え、常温にて 4時間攪拌した。反応液の溶媒を減圧留 去し、残渣に水を加えてジェチルエーテルで洗浄した。水層を希塩酸で酸性にし、 酢酸ェチルで抽出し、抽出層を無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して 目的物 (207 mg)を白色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 3.48 (3H, s), 4.25 (3Η, s), 4.77 (2Η, s), 6.20 (1Η, d
, J = 8.0 Hz), 7.22 (1H, s), 8.15 (1H, d, J = 8.0 Hz).
[0485] <実施例 56 > a]ピリジン
[0486] [化 130]
Figure imgf000076_0002
実施例 25の化合物 (3.05 g)を DMF(30 mL)に溶解し、イミダゾール (1.92 g)と tert-ブ チルジメチルシリルクロリド (3.19 g)を加え、常温で 2.5時間攪拌した。反応液を水で希 釈し、酢酸ェチルで抽出後、抽出層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリ ゥムで乾燥した。溶媒を減圧留去し、
Figure imgf000077_0001
サン:酢酸ェチル = 3 : 1)で精製し、 目的物(4.84 g)を無色油状物として得た。
MS (EI+): 330 [Μ+]
'H-NMR (400 MHz, CDC1 ): δ 0.14 (6H, s), 0.96 (9H, s), 4.90 (2H, s), 6.77 (1H, s
), 6.93 (1H, t, J = 7.3 Hz), 7.27-7.29 (1H, m), 8.41 (1H, d, J = 7.3 Hz).
[0488] <実施例 57〉
4一(tーブチルジメチルシリルォキシメチル)ー7—ョードー 2—トリフルォロメチルビラ ゾロ [1 , 5— a]ピリジン
[0489] [化 131]
Figure imgf000077_0002
[0490] アルゴン雰囲気下、実施例 56の化合物 (4.84 g)を THF(20 ml)に溶解し、 _78°Cで n_ ブチルリチウム (1.59 mol/M THF溶液, 11.7 mL)を滴下し、 _78°Cで 2時間攪拌した。 ジョードエタン (4.77 g)の THF(10 mL)溶液を、反応液に滴下し、 _78°Cで 30分攪拌し た。反応液に飽和塩化アンモユウム水溶液を加え、酢酸ェチルで抽出し、抽出層を 水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、 残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 4 : 1)で精製し、 目的物(6.44 g)をオレンジ色固体として得た。
MS (EI+): 456 [M+]
'H-NMR (400 MHz, CDC1 ): δ 0.14 (6H, s), 0.95 (9H, s), 4.89 (2H, s), 7.01 (1H, s
), 7.02-7.05 (1H, m), 7.48 (1H, d, J = 7.3 Hz).
[0491] <実施例 58〉 4ーヒドロキシメチルー 7 ョードー 2 口 [1 , 5— a]ピリジン
[0492] [化 132]
Figure imgf000078_0001
実施例 57の化合物 (6.44 g)を THF(50 mL)に溶解し、 0°Cにて、テトラプチルアンモ ニゥムフルオリド (1.0 mol/L THF溶液, 17.0 mL)を加え、 0°Cで 2時間攪拌した。反応 液を水で希釈し、酢酸ェチルで抽出後、抽出層を水、飽和食塩水の順で洗浄し、無 水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトダラ フィー (へキサン:酢酸ェチル = 2 : 1)で精製し目的物(4.47 g)を白色固体として得た
MS (EI+): 342 [Mつ
'H-NMR (400 MHz, CDC1 ): δ 1.75 (1H, brs), 4.92 (2Η, d, J
d, J = 7.3 Hz), 7.11 (1H, s), 7.49 (1H, d, J = 7.3 Hz).
[0494] <実施例 59 >
7—ョードー 2 '口 [1 , 5— a]ピリジンー4 カルボアルデヒド
[0495] [化 133]
Figure imgf000078_0002
実施例 58の化合物(4.47 g)をクロ口ホルム (60 mL)に溶解し、活性二酸化マンガン ( 8.54 g)を加え、 50°Cで 8時間攪拌した。セライトを用いて不溶物を濾去し、濾液の溶 媒を減圧留去して目的物(4.26 g)を黄色固体として得た。
MS (EI+): 340 [M+]
'H-NMR (400 MHz, CDC1 ): δ 7.52 (1H, d, J= 7.3 Hz), 7.73 (1H, d, J = 7.3 Hz), 7.85 (1H, s), 10.10 (1H, s).
[0497] <実施例 60 >
7ーメチルスルファニル 2
Figure imgf000079_0001
5— a]ピリジン一 4—カル
Figure imgf000079_0002
[0498] [化 134]
Figure imgf000079_0003
[0499] 実施例 59の化合物 (1.02 g)を DMF(10 mL)に溶解し、ナトリウムチオメトキシド (252 mg)を加え、 60°Cで 2時間攪拌した。反応液を水で希釈し、酢酸ェチルで抽出後、有 機層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留 去した残渣を、シリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 2 : 1)で精 製し目的物 (570 mg)を黄色固体として得た。
MS (EI+): 260 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 2.72 (3H, s), 6.86 (1H, d, J = 8.0 Hz), 7.65 (1H, s)
, 7.80 (1H, d, J = 8.0 Hz), 10.05 (1H, s).
[0500] <実施例 61〉
7 メチルスルファ二ルー 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジンー4 カル ボン酸
[0501] [化 135]
Figure imgf000079_0004
[0502] 実施例 60の化合物 (516 mg)を tert-ブタノール (6.0 mL)、水 (2.0 mL)に懸濁し、リン 酸二水素ナトリウム二水和物 (309 mg)、 2 メチルー 2 ブテン (0.94 mL)、および亜 塩素酸ナトリウム (448 mg)を加え、常温で 1.5時間攪拌した。 10%水酸化ナトリウム水 溶液を加え、液性をアルカリ性にし、水層をジェチルエーテルにて洗浄後、濃塩酸を 加えて液性を酸性にし、析出した固体を濾取し、水で洗浄後乾燥して目的物 (210 mg )を淡黄色固体として得た。
'H-NMR (400 MHz, DMSOd ): δ 3.09 (3H, s), 7.54 (1Η, s), 7.64 (1Η, d, J = 7.3 Η z), 8.32 (1H, d, J = 7.3 Hz).
[0503] <実施例 62〉
7 メチルァミノ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 カルボアル デヒド
[0504] [化 136]
Figure imgf000080_0001
[0505] 実施例 59の化合物 (680 mg)をメチルァミン (2.0 mol/L THF溶液, 20 mL)に加え、 封管中、 60°Cで 16時間攪拌した。溶媒を留去し、残渣をシリカゲルカラムクロマトダラ フィー(へキサン:酢酸ェチル = 3 : 1)で精製し、 目的物 (460 mg)を黄色固体として得 た。
MS (EI+): 243 [M+]
'H-NMR (400 MHz, CDC1 ): δ 3.22 (3H, s),
6.12 (1H, d, J = 8.0 Hz), 6.75 (1H, brs), 7.55 (1H, s), 7.80 (1H, d, J = 8.0
Hz), 9.84 (1H, s).
[0506] <実施例 63 >
7—(t—ブトキシカルボ二ルーメチルーァミノ) 2 トリフルォロメチルピラゾロ [
1 , 5— a]ピリジンー4 カルボアルデヒド
[0507] [化 137]
Figure imgf000081_0001
[0508] 実施例 62の化合物 (410 mg)をァセトニトリル (10 mL)に溶解し、ジ -tertブチル -ジカ ーボネート (736 mg)とジメチルァミノピリジン (8.4 mg)を加え、常温で 3日間攪拌した。 反応液を水で希釈後、酢酸ェチルで抽出し、抽出層を水、飽和食塩水の順で洗浄 後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロ マトグラフィー (へキサン:酢酸ェチル = 3 : 1)で精製し目的物(561 mg)をオレンジ色 油状物として得た。
MS (EI+): 343 [M+]
:H-NMR (400 MHz, CDC1 ): δ 1.34 (9H, s), 3.40 (3H, s), 7.02 (1H, d, J = 8.0 Hz)
, 7.67 (1H, s), 7.84 (1H, d, J = 8.0 Hz), 10.08 (1H, s).
[0509] <実施例 64〉
7—(t—ブトキシカルボ二ルーメチルーァミノ) 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン 4 - [0510] [化 138]
Figure imgf000081_0002
実施例 63の化合物 (562 mg)を tert-ブタノール (9.0 mL)、水 (3.0 mL)に懸濁し、リン 酸二水素ナトリウム二水和物 (264 mg)、 2-メチル -2 ブテン (0.81 mL)及び亜塩素酸 ナトリウム (535 mg)を加え、常温で 6時間攪拌した。 10%水酸化ナトリウム水溶液を加 え、液性をアルカリ性にし、水層をジェチルエーテルにて洗浄後、濃塩酸で液性を酸 性にし、析出した固体を濾取し、水で洗浄後乾燥して、 目的物 (84.7 mg)を白色固体 として得た。
MS (EI+): 359 [Μ+]
:H-NMR (400 MHz, DMSO-d ): δ 1.20 (9H, s), 3.28 (3H, s), 7.32 (1H, d, J = 8.0
Hz), 7.46 (1H, s), 8.12 (1H, d, J = 8.0 Hz).
[0512] <実施例 65〉
4- [l , 3]ジォキサン一 2 ィル一 7 ョード 2 トリフルォロメチルピラゾロ [1 , 5- a]ピリジン
[0513] [化 139]
Figure imgf000082_0001
実施例 59の化合物 (2.55 g)をトルエン (70 mL)に溶解し、 p-トルエンスルホン酸一水 和物 (142 mg)とエチレングリコール (2.51 mL)を加え、 Dean-Stark装置を用いて 18時 間加熱還流した。放冷後、反応液を水で希釈し、酢酸ェチルで抽出後、抽出層を水 、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残
Figure imgf000082_0002
酢酸ェチル = 3 : 1)で精製し、 目的 物 (2.75 g)を黄色固体として得た。
MS (EI+): 384 [M+]
'H-NMR (400 MHz, CDC1 ): δ 4.11-4. 15 (4H, m), 6.07 (1H, s), 7.11 (1H, d, J = 7
.3 Hz), 7.20 (1H, s), 7.49 (1H, d, J= 7.3 Hz).
[0515] <実施例 66〉
4- [l , 3]ジォキサン一 2—ィル一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一
7—カルボアルデヒド
[0516] [化 140]
Figure imgf000083_0001
[0517] アルゴンガス雰囲気下、実施例 65の化合物 (2.75 g)を THF(30 mUに溶解し、 -78 °Cにて n-ブチルリチウム (1.54 mol/Lへキサン溶液, 5.6 mL)を滴下し、 _78°Cで 30分 攪拌した。反応液にギ酸ェチル (0.75 mL)を加え、常温で 30分攪拌した。反応液に飽 和塩化アンモユウム水溶液を加え、酢酸ェチルで抽出後、有機層を水、飽和食塩水 の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲル カラムクロマトグラフィー (へキサン:酢酸ェチル = 2 : 1)で精製し、 目的物 (1.87 g)を黄 色固体として得た。 MS (EI+): 286 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 4.14 (4H, s), 6.12 (1H, s), 7.15 (1H, s), 7.49 (1H, d, J = 7.3 Hz), 7.63 (1H, d, J = 7.3 Hz), 10.94 (1H, s).
[0518] <実施例 67〉
4 - [l , 3]ジォキサンー2—ィルー 7—ヒドロキメチルー 2—トリフルォロメチルピラゾロ [
1 , 5— a]ピリジン
[0519] [化 141]
Figure imgf000083_0002
[0520] 実施例 66の化合物 (1.87 g)をメタノール (30 mL)に溶解し、 0°Cで水素化ホウ素ナトリ ゥム (247 mg)を加え、 0°Cで 1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液 を加え、酢酸ェチルで抽出後、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナ トリウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (へ キサン:酢酸ェチル = 1 : 1)で精製し、 目的物 (1.82 g)を白色固体として得た。
MS (EI+): 288 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 3.74 (1H, t, J= 6.7 Hz), 4.11—4.16 (4H, m), 5.08 (2
H, d, J = 6.7 Hz), 6.08 (1H, s), 6.95 (1H, d, J = 6.7 Hz), 7.02 (1H, s), 7.40 (1H, d, J = 6.7 Hz).
[0521] <実施例 68〉
7—ァセトキシメチルー 4— [1 , 3]ジォキサンー2—ィルー 2—トリフルォロメチルビラ ゾロ [1 , 5— a]ピリジン
[0522] [化 142]
Figure imgf000084_0001
[0523] 実施例 67の化合物 (1.82 g)をピリジン (20 mL)に溶解し、無水酢酸 (1.2 mL)を加え、 常温で 30分攪拌した。反応液を水で希釈後、酢酸ェチルで抽出し、有機層を水、飽 和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣を シリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル =3 : 2)で精製し、 目的化合 物 (1.96 g)を白色固体として得た。
MS (EI+): 330 [M+]
'H-NMR (400 MHz, CDC1 ): δ 2.20 (3H, s), 4.12-4.16 (4H, m), 5.63 (2H, s), 6.08
(1H, s), 6.99 (1H, d, J = 7.3 Hz), 7.02 (1H, s), 7.39 (1H, d, J = 7.3 Hz).
[0524] <実施例 69〉
7 -ァセトキシメチル一 2 -トリフルォロメチルピラゾロ [1 , 5 - a]ピリジン一 4—カルボ アルデヒド
[0525] [化 143]
Figure imgf000085_0001
[0526] 実施例 68の化合物 (1.93 g)をアセトン/水混合溶媒 (2: 1, 20 mL)に溶解し、 p-トノレ エンスルホン酸一水和物 (111 mg)を加え、 70°Cで 2時間攪拌した。反応液を水で希釈 後、酢酸ェチルで抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリ ゥムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (へキ サン:酢酸ェチル = 3 : 2)で精製し、 目的物 (1.43 g)を黄色固体として得た。
MS (EI+): 286 [M+]
'H-NMR (400 MHz, CDC1 ): δ 2.26 (3H, s), 5.72 (2H, s), 7.18 (1H, d, J = 7.3 Hz),
7.67 (1H, s), 7.85 (1H, d, J = 7.3 Hz), 10.11 (1H, s).
[0527] <実施例 70〉
7 -ァセトキシメチル一 2 -トリフルォロメチルピラゾロ [1 , 5 - a]ピリジン一 4—カルボ ン酸
[0528] [化 144]
Figure imgf000085_0002
[0529] 実施例 69の化合物 (1.22 g)を DMF(22 mL)に溶解し、ニクロム酸ピリジユウム (12.9 g )とセライト (200 mg)を加え、常温で 2日間攪拌した。セライトを用いて不溶物を濾去後 、濾液を水で希釈し、酢酸ェチルで抽出した。抽出層を水、飽和食塩水の順で洗浄 後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して、 目的物 (1.08 g)を茶色固体と して得た。
MS (EI+): 302 [Μ+] H-NMR (400 MHz, DMSO-d ): δ 2.18 (3H, s), 5.60 (2H, s), 7.34 (1H, d, J = 7.3
6
Hz), 7.47 (1H, s), 8.13 (1H, d, J= 7.3 Hz), 13.78 (1H, brs).
[0530] <実施例 71〉 a]ピリジン 7—カルボアルデヒド
[0531] [化 145]
Figure imgf000086_0001
[0532] アルゴン雰囲気下、実施例 56の化合物 (12.4 g)の THF(200 mL)溶液に、 78°Cで n ブチルリチウム(2.67 mol/Lへキサン溶液、 14.0 mL)を滴下し、—78°Cで 30分間 攪拌した。この溶液をギ酸ェチル (9.06 mL, 113 mmol)の THF(100 mL)溶液に 78 °Cで滴下した。常温で 30分攪拌後、飽和塩化アンモニゥム水溶液を加えて、酢酸ェ チル (400 mL)で抽出した。抽出層を水、及び飽和食塩水で洗浄後、無水硫酸ナトリ ゥムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (へキ サン:酢酸ェチル = 15: 1 )により精製し、粗製の目的化合物(12.3 g)を黄色固体とし て得た。
[0533] <実施例 72〉
4一(tーブチルジメチルシリルォキシメチル) 7 ヒドロキシメチルー 2 トリフルォロ メチノレピラゾ口 [1 , 5— a]ピリジン
[0534] [化 146]
Figure imgf000086_0002
[0535] 実施例 71の化合物 (12.3 g)のメタノール (200 mL)溶液に 0°Cで水素化ホウ素ナトリウ ム (1.56 g)を加え、 0°Cで 1時間攪拌した。反応液に飽和塩化アンモニゥム水溶液を加 えて、減圧下に濃縮後、酢酸ェチル (700 mL)で抽出した。抽出層を水、及び飽和食 塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲ ルカラムクロマトグラフィー (へキサン:酢酸ェチル =9: 1 )により精製し、 目的物(9.86 g)を白色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 0.14 (6H, s), 0.96 (9Η, s), 4.91 (2Η, d, J = 1.2 Hz)
, 5.06 (2H, s), 6.85 (1H, s), 6.94 (1H, d, J = 7.3 Hz), 7.30 (1H, dt, J = 7.3, 1.2 Hz).
[0536] <実施例 73〉
4一(tーブチルジメチルシリルォキシメチル) 7 メトキシメチルー 2 トリフルォロメ チノレビラゾロ [1 , 5— a]ピリジン
[0537] [化 147]
Figure imgf000087_0001
[0538] 実施例 72の化合物(9.53 g)のァセトニトリル (300 mL)溶液に酸化銀 (30.0 g)とョード メタン (16.1 mL)を加え、室温で 85時間攪拌した。セライトを用いて不溶物を濾去し、 濾液を減圧下に濃縮し、残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェ チル = 15 : 1)により精製し、 目的物(8.76 g)を蛍光淡黄色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 0.13 (6H, s), 0.95 (9Η, s), 3.60 (3Η, s), 4.91 (2Η, s), 4.97 (2Η, s), 6.83 (1Η, s), 7.07 (1Η, d, J = 7.3 Hz), 7.32 (1H, d, J = 7.3 Hz).
[0539] <実施例 74〉
4ーヒドロキシメチルー 7 メトキシメチルー 2 トリフルォロメチルピラゾロ [1 , 5 a]ピ
[0540] [化 148]
Figure imgf000088_0001
[0541] 実施例 73の化合物 (8.76 g)の THF(120 mL)溶液に 0°Cでテトラブチルアンモニゥム フノレオライド(1 mol/L— THF溶液、 35.1 mL)を滴下し、 0°Cで 30分間攪拌した。反応 液に水を加えて酢酸ェチル (300 mL)で抽出し、抽出層を水、及び飽和食塩水で洗 浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムク 口マトグラフィー (へキサン:酢酸ェチル = 3: 1 )により精製し、 目的化合物(6.00 g)を 白色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 1.79 (1H, br, s), 3.61 (3H, s), 4.93 (2H, s), 4.98 (2
H, s), 6.93 (1H, s), 7.07 (1H, d, J= 7.3 Hz), 7.31 (1H, d, J = 7.3 Hz).
[0542] <実施例 75〉
7—メトキシメチル一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—カルボア ルデヒド
[0543] [化 149]
Figure imgf000088_0002
[0544] 実施例 74の化合物 (6.00 g)のクロ口ホルム (120 mL)溶液に活性二酸化マンガン (20.
0 g)を加え、 50°Cで 5時間攪拌した。セライトを用いて不溶物を濾去し、濾液を減圧下 に濃縮して、 目的物(5.74 g)を淡黄色個体として得た。
'H-NMR (400 MHz, CDC1 ): δ 3.65 (3H, s), 5.06 (2Η, s), 7.32 (1Η, d, J = 7.3 Hz)
, 7.65 (1H, s), 7.89 (1H, d, J= 7.3 Hz), 10.10 (1H, s).
[0545] <実施例 76〉 7 メトキシメチル一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 カルボン
Figure imgf000089_0001
[0547] 硝酸銀 (658 mg)の水溶液 (5 mUに水酸化ナトリウム (310 mg)の水溶液 (5 mUを加え 、攪拌しながら実施例 75の化合物 (500 mg)を 0°Cで加え、常温で 1時間攪拌した。セラ イトを用いて不溶物を濾去し、熱水で洗浄後、合わせた濾液と洗液を 1 mol/L塩酸 水溶液で酸性にした。これに酢酸ェチル (100 mL)を加え、セライトを用いて不溶物を 濾去し、濾液の有機層を分取し、水、及び飽和食塩水で洗浄後、無水硫酸ナトリウム で乾燥し、溶媒を減圧留去して、 目的物(470 mg)を淡黄色個体として得た。
'H-NMR (400 MHz, DMSO-d ): δ 3.53 (3H, s), 4.99 (2Η, s), 7.30 (1Η, d, J = 7.3
6
Hz), 7.46 (1H, s), 8.17 (1H, d, J = 7.3 Hz), 13.72 (1H, br s).
[0548] <実施例 77〉
1— (7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 ィル) 2—
(ピリジンー4 ィル)エタノール
[0549] [化 151]
Figure imgf000089_0002
[0550] アルゴン気流下、ジイソプロピルアミン (257 H L)を THF(10 mL)に溶解し、 0°Cに冷 却後、 1.54M/L n-ブチルリチウムへキサン溶液 (1.2 mL)を滴下し 0°Cで 30分攪拌した 。その後、 _78°Cまで冷却後、 4-ピコリン (160 [I L)を滴下し 30分攪拌し、 0°Cで 3分攪 拌した。その後、再び- 78°Cまで冷却後、実施例 27の化合物 (300 mg)を加え、 30分攪 拌した。飽和塩化アンモユウム水溶液を加え、酢酸ェチルで抽出後、水、飽和食塩 水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を濃縮した。残渣をシリカゲルカラム クロマトグラフィー (酢酸ェチル→酢酸ェチル:メタノール = 10 : 1)で精製し、 目的物 (3 13mg)を白色粉末として得た。
元素分析 (%): C H F N Oとして
16 14 3 3 2
C H N
計算値 56.97 4.18 12.45
実測値 56.62 4.08 12.28
MS(EI+): 337[M+]
HRMS(EI+): 337.1024 (― 1.4mmu)
'H-NMR (400MHZ, CDCl ): δ 2.56 (1H, brs), 3.11—3.20 (2H, m), 4.17 (3H, s), 5.1
3
8 (1H, dd, J = 5.6, 7.2 Hz), 6.18 (1H, d, J = 8.0 Hz), 6.97 (1H, s), 7.10 (2H, d, J =
5.5 Hz), 7.14 (1H, d, J = 8.0 Hz), 8.48 (2H, d, J = 5.5 Hz)
[0551] <実施例 78〉
7 メトキシ 4— [ (2 ピリジン一 4 ィル)ビニノレ 2 トリフルォロメチルピラゾ口 [
1 , 5— a]ピリジン
[0552] [化 152]
Figure imgf000090_0001
[0553]
実施例 77の化合物 (291 mg)をトルエン (8.0 mL)に溶解し、メタンスルホン酸 (280 μ L) を滴下し、常温で 2時間攪拌した。反応液に 10%水酸化ナトリウム水溶液を加え、酢酸 ェチルで抽出後、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を濃 縮した。残渣をシリカゲルカラムクロマトグラフィー (酢酸ェチル)で精製し、 目的物 (243 mg)を橙色粉末として得た。
元素分析 (%): C H F N 0として
16 12 3 3
C H N
計算値 60.19 3.79 13.16
実測ィ直 60.06 3.76 12.95
MS(EI+): 319[M+]
'H-NMR (400MHZ, CDCl ): δ 4.23 (3H, s), 6.33 (1H, d, J = 8.0 Hz), 7.08— 7· 12(2Η
3
, m), 7.39-7.43 (3H, m), 7.48 (1H, d, J = 8.0 Hz), 8.62 (2H, brs)
[0554] <実施例 79〉
7 メトキシ 4— [ (2 ピリジン一 4 ィル)ェチル] 2 トリフルォロメチルピラゾ口 [
1 , 5— a]ピリジン
[0555] [化 153]
Figure imgf000091_0001
[0556] 実施例 78の化合物 (77.3 mg)をエタノール (5.0 mL)に溶解し、 10%Pd/C(7.0 mg)を加え 、水素置換し、常温で 6時間激しく攪拌した。セライトを用いて触媒を除去後、有機層 を濃縮し得られた粉末をジイソプロピルエーテルで洗浄後乾燥し、 目的物 (48.0 mg) を白色粉末として得た。
元素分析 (%): C H F N 0として
16 14 3 3
C H N
計算ィ直 59.81 4.39 13.08
実測ィ直 59.61 4.29 12.90 MS(EI+): 321[M+]
:H-NMR (400MHz, CDC1 ) : δ 3.00—3.13 (4H, m), 4.15 (3H, s), 6.12 (1H, d, J= 8.0
3
Hz), 6.81 (1H, s), 6.87 (1H, d, J = 8.0 Hz), 7.07 (2H, d, J= 6.1 Hz), 8.50 (2H, d, J
= 6.1 Hz)
[0557] <実施例 80〉
1— (7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 ィル) 2—
(ピリジン一 4—ィル)エタノン
[0558] [化 154]
Figure imgf000092_0001
[0559] 実施例 77の化合物 (252 mg)をアセトン (12 mL)に溶解し、酸化クロム (149 mg)の硫酸 (130 ,i L)、水(0.8 mL)溶液を滴下し、常温で 3時間攪拌した。反応液をセライトろ過 し、有機層を分取し、水層を酢酸ェチルで抽出した。有機層を水、飽和食塩水で洗 浄後、無水硫酸ナトリウムで乾燥し、溶媒を濃縮した。残渣をシリカゲルカラムクロマト グラフィー (酢酸ェチル)で精製し、 目的物 (10.0 mg)を白色粉末として得た。
MS(EI+): 335[M+]
HRMS(EI+): 335.0891 (+1.0mmu)
'H-NMR (400MHZ, CDCl ) : δ 4.28 (3H, s), 4.31 (2H, s), 6.31 (1H, d, J= 8.0 Hz),
3
7.23 (2H, d, J = 6.1 Hz), 7.68 (1H, s), 8.03( 1H, d, J= 8.0 Hz), 8.59 (2H, d, J = 6.1 Hz)
[0560] <実施例 81〉
(7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 ィル)フエニルメ タノ一ノレ
[0561] [化 155]
Figure imgf000093_0001
[0562] アルゴン気流下、実施例 27の化合物 (515 mg)を THF(10 mL)に溶解し、 _78°Cに冷却 した。その後、 1.02mol/Lフエニルマグネシウムブロミドの THF溶液 (2.48 mUを滴下し 、常温で 2時間攪拌した。飽和塩化アンモニゥム水溶液を加え、酢酸ェチルで抽出 後、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を濃縮した。残渣 をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 1: 1)で精製し、 目的物 (646 mg)を黄色粉末として得た。
MS(EI+): 322[M+]
'H-NMR (400MHZ, CDCl ): δ 2.31 ( 1H, brs), 4. 17 (3H, s), 6.04( 1H, s), 6.24 (1H,
3
d, J = 8.0 Hz), 6.73 (1H, s), 7.30-7.43 (6H, m)
[0563] <実施例 82〉
( 7—メトキシ一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—ィル)フエニルメ タノン
[0564] [化 156]
Figure imgf000093_0002
[0565] 実施例 81の化合物 (640 mg)をトルエン (10 mL)に溶解し,活性二酸化マンガン (1.73 g)を加え、 100°Cで 1時間攪拌した。反応液をセライトろ過後、ろ液を濃縮し目的物 (54 7 mg)を白色粉末として得た。
元素分析 (%): C H F N Oとして
16 11 3 2 2
C H N 計算値 60.00 3.46 8.74
実測値 59.71 3.44 8.63
MS(EI+): 320[M+]
:H-NMR (400MHz, CDC1 ): δ 4.28 (3H, s), 6.30 (1H, d, J = 7.9 Hz), 7.50-7.54 (3
3
H, m), 7.60-7.64 (1H, m), 7.73—7.75 (3H, m)
[0566] <実施例 83〉
1— (7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—ィル) 1— フエ二ノレ一 2— (ピリジン一 4 ィノレ)エタノール
[0567] [化 157]
Figure imgf000094_0001
[0568] 実施例 82の化合物を実施例 77と同様に反応させ目的物を白色粉末として得た。
元素分析 (%): C H F N Oとして
22 18 3 3 2
C H N
計算値 63.92 4.39 10.16
実測値 63.51 4.35 9.98
MS(CI+): 414[M+]
HRMS(EI+): 414.4070 (+3.2mmu)
'H-NMR (400MHZ, CDCl ): δ 2.41 (1H, brs), 3.69 (2H, dd, J = 12.8, 20.8 Hz), 4.1
3
7 (3H, s), 6.17 (1H, d, J = 8.0 Hz), 6.42 (1H, s), 6.72-6.74 (2H, m), 7.31-7.34 (6H, m), 8.32-8.33 (2H, m)
[0569] <実施例 84及び 85 >
(E)— 7 メトキシ一 4— [1—フエ二ノレ 2 (ピリジン一 4 ィル)ビュル] 2 トリフ ルォロメチルピラゾロ [1 , 5— a]ピリジン及び (Z)— 7 メトキシ一 4— [1—フエ二ノレ 2 (ピリジン一 4 ィル)ビュル] 2 トリフ ルォロメチルピラゾロ [1 , 5— a]ピリジン
[0570] [化 158]
Figure imgf000095_0001
実施例 83の化合物 (211 mg)をトルエン (5.0 ml)に溶解し、メタンスルホン酸 (0.33 mL) を滴下し、 65°Cで 40分加熱攪拌した。反応液に 10%水酸化ナトリウム水溶液をカロえ、 酢酸ェチルで抽出後、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶 媒を濃縮した。
Figure imgf000095_0002
酢酸ェチル
2)で精製し、 E体 (84.4 mg)を白色粉末(実施例 84 )、 体(12.3 mg)を黄色粉末 (実施 例 85)として得た。
[0572] 実施例 84
MS(EI+): 395[M+]
HRMS(EI+): 395.1282 (+3.7mmu)
'H-NMR (400MHZ, CDCl ): δ 4.20 (3H, s), 6.25 (1H, d, J = 8.0 Hz), 6.51 (1H, s)
3
, 6.92-6.95 (3H, m), 7.14 (1H, d, J = 8.0 Hz), 7.18-7.21 (2H, m), 7.32-7.34 (3H, m ), 8.40 (2H, d, J = 5.5 Hz)
[0573] 実施例 85
MS(EI+): 395[M+]
HRMS(EI+): 395.1214 (_3.1mmu)
'H-NMR (400MHZ, CDCl ): δ 4.22( 3H, s), 6.23 (1H, d, J = 7.3 Hz), 6.32 (1H, s),
3
6.87 (2H, d, J = 5.5 Hz), 7.06—7.09 (2H, m), 7.33-7.37 (5H, m), 8.37 (2H, d, J = 5. 5 Hz)
[0574] <実施例 86〉 7 メトキシ一 4— [1—フエ二ルー 2— (ピリジン
メチノレピラゾ口 [1 , 5— a]ピリジン
[0575] [化 159]
Figure imgf000096_0001
[0576] 実施例 84の化合物 (80.7 mg)をエタノール (5.0 mL)に溶解し、 10%Pd/C(12.0 mg)を 加え、水素置換し、常温で 3日間激しく攪拌した。セライトを用いて触媒を除去後、有 機層を濃縮し、残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 1: 3)で精製し、 目的物 (24.0 mg)を無色油状物として得た。
MS(EI+): 397[M+]
HRMS(EI+): 397.1392 (-l.Ommu)
:H-NMR (400MHz, CDC1 ): δ 3.39—3.45 (2H, m), 4· 15(3Η, s), 4.44 (1H, t, J = 7.3
Hz), 6.21 (1H, d, J = 7.9 Hz), 6.62 (1H, s), 6.91—6.94 (2H, m), 7.14-7.28 (6H, m),
8.40 (2H, d, J = 6.1 Hz)
[0577] <実施例 87〉
2- (3, 5 ジクロロピリジン一 4 ィル) 1— (7 メトキシ一 2 トリフルォロメチル ピラゾ口 [1 , 5— a]ピリジンー4 ィル)エタノール
[0578] [化 160]
Figure imgf000096_0002
[0579] アルゴン気流下、ジイソプロピルアミン (86 H L)をテトラヒドロフラン (5.0 mL)に溶解し 、 0°Cにて 1.54mol/L n_ブチルリチウムへキサン溶液 (0.40 mUを滴下し 0°Cで 30分攪 拌した。その後、 _78°Cまで冷却後、 3, 5 ジクロロー 4 メチルピリジン (100 mg)を滴 下しそもまま 30分攪拌し、 0°Cでさらに 3分攪拌した。その後、再び- 78°Cまで冷却後、 実施例 27の化合物 (101 mg)を加え、 30分攪拌した。飽和塩化アンモニゥム水溶液を 加え、酢酸ェチルで抽出後、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し 、溶媒を濃縮した。残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 3 : 1)で精製し、 目的物 (138 mg)を白色粉末として得た。
MS(EI+): 405[M+]
HRMS(EI+): 405 0244(- 1.4mmu)
'H-NMR (400MHZ, CDCl ): δ 3.41 (1H, dd, J = 4.8, 13.5 Hz), 3.62 (1H, dd, J = 8.
3
5, 13.5 Hz), 4.19 (3H, s), 5.37 (1H, dd, J = 4.8, 8.5 Hz), 6.21 (1H, d, J = 7.3 Hz),
7.07 (1H, s), 7.24 (1H, d, J = 7.3 Hz), 8.49 (2H, brs)
[0580] <実施例 88 >
2- (3, 5 ジクロロピリジン一 4 ィル) 1— (7 メトキシ一 2 トリフルォロメチル ピラゾ口 [1 , 5— a]ピリジン一 4—ィル)エタノン
[0581] [化 161]
Figure imgf000097_0001
実施例 87の化合物 (300 mg)をアセトン (10 mL)に溶解し、酸化クロム (148 mg)の硫酸 (130 11 L)の水 (2.0 mL)溶液を滴下し、常温で 2.5時間攪拌した。反応液をセライトろ 過し、有機層を分取し、水層を酢酸ェチルで抽出した。有機層を水、飽和食塩水で 洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を濃縮した。残渣をシリカゲルカラムクロ マトグラフィー (へキサン:酢酸ェチル = 1: 1)で精製し、 目的物 (142 mg)を白色粉末と して得た。
元素分析 (%): C H C1 F N 0として
16 10 2 3 3 2
C H N
計算値 47.55 2.49 10.40
実測値 47.46 2.53 10.48
MS(EI+): 404[M+]
'H-NMR (400MHZ, CDCl ): δ 4.32 (3H, s), 4.71 (2H, s), 6.40 (1H, d, J
3
7.64 (1H, s), 8.19 (1H, d, J = 8.6 Hz), 8.57 (2H, brs)
[0583] <実施例 89〉
(E)— 4— [2— (3, 5—ジクロロピリジン一 4—ィル)ビュル]— 7—メトキシ- ルォロメチルピラゾロ [1 , 5— a]ピリジン
[0584] [化 162]
Figure imgf000098_0001
[0585] 実施例 87の化合物 (406 mg)をテトラヒドロフラン (15 mL)に溶解し、メタンスルホン酸( 0.32 mL)を滴下し、 70°Cで 3時間加熱攪拌した。反応液に 10%水酸化ナトリウム水溶 液を加え、酢酸ェチルで抽出後、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾 燥し、溶媒を濃縮した。残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチ ノレ = 3 : 1)で精製し、 目的物 (291 mg)を黄色粉末として得た。
MS(EI+): 387[M+]
HRMS(EI+): 387.0136(-1.7mmu)
:H-NMR (400MHz, CDCl ): δ 4.24 (3H,s), 6.35 (1H, d, J = 7.9 Hz), 7.10(1H, s),
3
7.20 (1H, d, J = 17.1 Hz), 7.51 (1H, d, J = 7.9 Hz), 7.63 (1H, d, J = 17.1 Hz), 8.55 (2h, brs) [0586] <実施例 90〉
1— (7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 ィル) 2—
(ピリジン一 4—ィル)一エタノン
[0587] [化 163]
Figure imgf000099_0001
[0588] アルゴン雰囲気下、実施例 35の化合物 (500 mg)を DMF(9.60 ml)に溶解し、氷冷下 にて炭酸カリウム (531 mg)及びョードエタン (231 L)を加え、常温にて 5時間攪拌し た。氷冷下、反応液に希塩酸を加えた後、酢酸ェチルで抽出した。有機層を飽和食 塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルクロ マトグラフィー (へキサン:酢酸ェチル = 2 : 1)にて精製し、エステル体 (481 mg)を白色 粉末として得た。
これを次の反応に用いた。アルゴン雰囲気下、ジイソプロピルアミン (428 し)をテトラ ヒドロフラン (20.0 mUに溶解し、 0°Cにて 1.58 mol/L n_ブチルリチウムへキサン溶液( 1.94 mL)を滴下し 0°Cで 30分攪拌した。その後、 78°Cで、 4 ピコリン (297 mg)を滴 下し、 2時間攪拌した。この反応液を上記操作で得たエステル (294 mg)のテトラヒドロ フラン (lO mL)溶液に— 78°Cで滴下し— 78°Cで 1時間攪拌した。反応液に飽和塩化 アンモユウム水溶液を加えた後、酢酸ェチルで抽出した。抽出層を飽和食塩水で洗 浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルクロマトグラフィ 一 (酢酸ェチル→酢酸ェチル:メタノール = 20 : 1)にて精製し、 目的物 (66.6 mg)を白 色粉末として得た。
MS(EI+): 335[M+]
HRMS(EI+): 335.0852(-3.0mmu)
1H-NMR(400 MHz, CDC1 ): δ 4.29 (3H, s), 4.32 (2H, s), 6.33 (1H, d, J = 8.0 Hz), 7.25 (2H, d, J = 5.5 Hz), 7.69 (1H, s), 8.05 (1H, d, J = 8.0 Hz), 8.60 (2H, d, J = 5.5 Hz).
[0589] <実施例 91〉
4— (2— (7—メトキシ一 2— (トリフルォロメチル)ピラゾ口 [1、 5-a]ピリジン一 4—ィル) ェチル)ピリジン
1一才キシド
[0590] [化 164]
Figure imgf000100_0001
[0591] 実施例 79の化合物 (177 mg)のクロ口ホルム (1.1 mL)溶液に、 70% m_クロ口過安息香 酸 (163 mg)を加え、常温にて 1.5時間攪拌した。反応液に飽和チォ硫酸ナトリウム水 溶液を加え、酢酸ェチルで 3回抽出した。抽出層を飽和炭酸水素ナトリウム水溶液、 飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残 渣を NHタイプシリカゲルカラムクロマトグラフィー(富士シリシァ化学 (株)製、酢酸ェ チル:メタノール = 10: 1)にて精製した後、ジイソプロピルエーテルで洗浄すること により目的物 (127 mg)を白色固体として得た。
融点: 203-205 °C.
IR (KBr) : 3397, 1636, 1546, 1489, 1352, 1246, 1165, 1120, 961, 800 cm—
:H NMR (CDCl 400 MHz) d: 3.00—3.13 (4H, m), 4.15 (3H, s), 6.12 (1H, d, J = 7.9
Hz), 6.81 (1H, d, J = 7.9 Hz), 6.83 (1H, s), 6.99 (2H, d, J = 6.7 Hz), 8.09-8.12 (2 H, m).
CMS (+): 338 [M+H] +·
元素分析:実測値 C 56.76%, H 4.16%, N
12.31%, C H C1 F N 0として計算値 C 56.87%, H 4.18%, N 12.46%. [0592] <実施例 92〉
3, 5 ジクロロー 4 (2— (7 メトキシー2 (トリフルォロメチル)ピラゾ口 [1、 5-a]ピ リジン 4 ィル) 2 ォキソェチル)ピリジン 1ーォキシド
[0593] [化 165]
Figure imgf000101_0001
OMe
[0594] 実施例 88の化合物 (1.00 g)のクロ口ホルム (5.00 mL)溶液に、 70% m_クロ口過安息香 酸 (730 mg)を加え、常温にて 5.5時間攪拌した。反応液に飽和チォ硫酸ナトリウム水 溶液を加え、酢酸ェチルで 3回抽出した。合わせた抽出層を飽和炭酸水素ナトリウム 水溶液、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留 去後、残渣をシリカゲルカラムクロマトグラフィー(酢酸ェチル:メタノール = 10: 1) にて精製した後、ジイソプロピルエーテルで洗浄することにより目的物(630 mg)を黄 色固体として得た。
融点: 204-208 °C (d).
:H NMR (CDCl 400 MHz) d: 4.33 (3H, s), 4.64 (2H, s), 6.40 (1H, d, J = 8.6 Hz),
3,
7.62 (1H, s), 8.18 (1H, d, J = 8.6 Hz), 8.25 (2H, s).
CMS (+): 420 [M+H] +·
元素分析:実測値 C 45.79%, H 2.47%, N 9.89%, C H CI F N 0として計算値 C
16 10 2 3 3 3
45.74%, H 2.40%, N 10.00%.
[0595] <実施例 93〉
4一(2—(7 メトキシー2 (トリフルォロメチル)ピラゾ口 [1,5— a]ピリジンー4ーィル
)一 2—ォキソェチル)ピリジン
1一才キシド
[0596] [化 166]
Figure imgf000102_0001
実施例 90の化合物 (325 mg)のクロ口ホルム (5.0 mL)溶液に、 70% m_クロ口過安息香 酸 (478 mg)を加え、常温にて 1.5時間攪拌した。反応液に飽和チォ硫酸ナトリウム水 溶液を加え、酢酸ェチルで 3回抽出した。抽出層を飽和炭酸水素ナトリウム水溶液、 飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残
Figure imgf000102_0002
(クロ口ホルム:メタノール = 5: 1)にて精製し た後、ジイソプロピルエーテルで洗浄することにより目的物(43.0 mg)を茶色固体とし て得た。
融点: 157-161 °C (d).
IR (KBr) : 3448, 1624, 1560, 1500, 1229, 1182, 1127, 964, 805 cm—
:Η NMR (CDCl 400 MHz) d: 4.306 (3H, s), 4.314 (2H, s), 6.35 (1H, d, J = 7.9 Hz
3,
), 7.21 (2H, d, J = 6.7 Hz), 7.66 (1H, s), 8.05 (1H, d, J = 7.9 Hz), 8.20 (2H, d, J = 6 .7 Hz).
ESIMS (+): 351 [M]
元素分析:実測値 C 53.83%, H 3.42%, N 11.45%, C H F N O - 0.5H 0として計算
16 12 3 3 3 2
値 C 53.74%, H 3.58%, N 11.75%.
[0598] <実施例 94〉
4— (クロロメチル) 7 メトキシ一 2 トリフルォロメチルピラゾロ [1 ,5— a]ピリジン [0599] [化 167]
Figure imgf000102_0003
[0600] 実施例 24の化合物(2.40 g)のジクロロメタン (80.0 mL)溶液に 0°Cにて塩化チォニル (1.42 mL)を滴下し、同温にて 1時間撹拌した。反応液を飽和炭酸水素ナトリウム水溶 液に注ぎ、分取した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶 媒を減圧留去した。
Figure imgf000103_0001
:酢 酸ェチル = 1 : 1)で精製し、 目的物 (2.12 g)を白色固体として得た。
:H NMR (CDC1 400 MHz) d: 4.19 (3H, s), 4.77 (2H, s), 6.22 (1H, d, J = 7.9 Hz),
6.96 (1H, s), 7.28 (1H, d, J = 7.9 Hz).
EIMS (+): 264 [M]
[0601] <実施例 95〉
4一(2—(3,5 ジクロ口ピリジンー4 ィル)ェチル)ー7 メトキシー 2 (トリフルォ ロメチル)ピラゾ口 [1,5— a]ピリジン
[0602] [化 168]
Figure imgf000103_0002
[0603] 3,5-ジクロロ -4-ピコリン (122 mg)の THF(7.5 mL)溶液に、 _78°Cにて 1.0 mol/Lナトリ ゥムビス(トリメチルシリル)アミド THF溶液 (0.907 mL)を滴下し、 0°Cにて 10分攪拌した 。 _78°Cにて実施例 94の化合物 (100 mg)の THF(4.0 mL)を滴下し、常温にて 1.5時間 攪拌した。反応液に飽和塩化アンモユウム水溶液を加え、酢酸ェチルで 3回抽出し た。抽出層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を 減圧留去後、残渣を NHタイプシリカゲルカラムクロマトグラフィー(富士シリシァ化学( 株)製、酢酸ェチル:へキサン = 1 : 1)にて精製した後、ジイソプロピルエーテルで 洗浄することにより目的物(124 mg)を白色固体として得た。
融点: 158-160。C (d).
IR (KBr) : 1636, 1545, 1506, 1428, 1255, 1230, 1161, 1142, 1095 cm—
:Η NMR (CDC1 400 MHz) d: 3.00—3.07 (2H, m), 3.25-3.32 (2H, m), 4.17 (3H, s),
6.18 (1H, d, J = 7.9 Hz), 6.90 (1H, s), 7.01 (1H, d, J = 7.9 Hz), 8.47 (2H, s). EIMS (+): 389 [M] +·
元素分析:実測値 C 48.98%, H 3.04%, N 10.68%, C H CI F N 0として計算値 C
16 14 2 3 3
49.25%, H 3.10%, N 10.77%.
[0604] <実施例 96 >
3,5 ジクロロー 4一(2—(7 メトキシー2 (トリフルォロメチル)ピラゾ口 [1,5— a]ピ リジン 4 ィル)ェチル)ピリジン
1一才キシド
[0605] [化 169]
Figure imgf000104_0001
実施例 95の化合物 (312 mg)のクロ口ホルム (1.6 mL)溶液に、 0°Cにて 70% m_クロ口 過安息香酸 (394 mg)を加え、常温にて 10時間攪拌した。反応液に飽和チォ硫酸ナト リウム水溶液を加え、酢酸ェチルで 3回抽出した。合わせた抽出層を飽和炭酸水素 ナトリウム水溶液、水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶 媒を減圧留去後、
Figure imgf000104_0002
= 10: 1 、次にクロ口ホルム:メタノール = 10: 1)にて精製した後、ジイソプロピ ルエーテルで洗浄することにより目的物(40.0 mg)を白色固体として得た。
融点: 187-189 °C.
IR (KBr) : 1635, 1544, 1505, 1427, 1268, 1230, 1166, 1094, 964 cm—
:H NMR (CDC1 400 MHz) d: 3.01—3.07 (2H, m), 3.21—3.28 (2H, m), 4.17 (3H, s),
3,
6.17 (1H, d, J = 7.4 Hz), 6.88 (1H, s), 6.95 (1H, d, J = 7.4 Hz), 8.17 (2H, s).
CMS (+): 406 [M+H] +·
元素分析:実測値 C 47.18%, H 2.95%, N 10.28%, C H CI F N 0として計算値 C
16 12 2 3 3 2
47.31%, H 2.98%, N 10.35%. [0607] <実施例 97〉
2—(3 クロ口ピリジン- 4一ィル)一 1一(7 メトキシー 2
口 [1,5— a]ピリジンー4 ィル)エタノン
[0608] [化 170]
Figure imgf000105_0001
[0609] 実施例 88の化合物 (500 mg)の酢酸 (25.0 mL)溶液に、 10%パラジウム-炭素 (50.0 mg )を常温にて加え、水素雰囲気下、同温にて 10時間激しく攪拌した。反応液を濾過し 、濾液の有機溶媒を減圧留去後、残渣を NHタイプシリカゲルカラムクロマトグラフィー (富士シリシァ化学 (株)製、酢酸ェチル:へキサン = 3: 1)にて精製した後、ジイソ プロピルエーテルで洗浄することにより目的物(47.0 mg)を黄色固体として得た。 融点: 188-191 °C.
IR (KBr) : 3436, 1677, 1623, 1556, 1230, 1172, 1137, 964, 803 cm—
:H NMR (CDCl 400 MHz) d: 4.30 (3H, s), 4.46 (2H, s), 6.37 (1H, d, J = 7.9 Hz),
3,
7.24-7.27 (1H, m), 7.67 (1H, s), 8.12 (1H, d, J = 7.9 Hz), 8.48 (1H, d, J = 4.3 Hz),
8.64 (1H, s).
EIMS (+): 369 [M]
元素分析:実測値 C 51.25%, H 2.93%, N 11.17%, C H C1F N 0 -0.3H 0として計
16 11 3 3 2 2 算値 C 51.23%, H 3.12%, N 11.20%.
[0610] <実施例 98〉
1 (3 クロロー 7 メトキシー2 (トリフルォロメチル)ピラゾ口 [1,5— a]ピリジンー4
—ィル) 2— (3,5 ジクロロピリジン一 4 ィル)エタノン
[0611] [化 171]
Figure imgf000106_0001
[0612] 実施例 88の化合物 (205 mg)の DMF(5.00 mL)溶液に、常温にて N_クロロスクシンィ ミド (102 mg)を加え、 60°Cにて 5時間攪拌した。反応液に飽和チォ硫酸ナトリウム水溶 液を加え、酢酸ェチルで 2回抽出した。合わせた抽出層を水、飽和食塩水の順で洗 浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルカラムク 口マトグラフィー(酢酸ェチル)にて精製した後、ジイソプロピルエーテルで洗浄するこ とにより目的物 (132 mg)を青白色固体として得た。
:H NMR (CDC1 400 MHz) d: 4.28 (3H, s), 4.65 (2H, s), 6.34 (1H, d, J = 7.9 Hz),
3,
7.83 (1H, d, J = 7.9 Hz), 8.55 (2H, s).
EIMS (+): 437[M] +·
元素分析:実測値 C 43.52%, H 2.15%, N 9.54%, C H CI F N 0として計算値 C 4
16 9 3 3 3 2
3.81%, H 2.07%, N 9.58%.
[0613] <実施例 99〉
2- (3,5 ジクロロピリジン- 4 ィル) 1— (7— (メチルァミノ) - 2- (トリフルォロメ チル)ピラゾ口 [1,5— a]ピリジンー4 ィル)エタノン
[0614] [化 172]
Figure imgf000106_0002
実施例 88の化合物 (100 mg)に、 2.0 mol/Lメチルァミン THF溶液 (5.00 mL)を常温 にて加え、同温にて 30分攪拌した。溶媒等を減圧留去後、残渣をジイソプロピルエー テルで洗浄することにより目的物(80.0 mg)を淡黄色固体として得た。 融点: 220-223 °C.
IR (KBr) : 3260, 1664, 1621, 1593, 1546, 1237, 1178, 1123, 1099, 797 cm—
:H NMR (CDC1 400 MHz) d: 3.24 (3H, d, J = 4.9 Hz), 4.67 (2H, s), 6.10 (1H, d, J
3,
= 7.9 Hz), 6.77 (1H, brd, J = 4.9 Hz), 7.56 (1H, s), 8.16 (1H, d, J = 7.9 Hz), 8.53 ( 2H, s).
EIMS (+): 402 [M] +·
元素分析:実測値 C 47.58%, H 2.94%, N 13.37%, C H CI F N 0として計算値 C
16 11 2 3 4
47.66%, H 2.94%, N 13.37%.
[0616] <実施例 100〉
2- (3,5 ジクロロピリジン- 4 ィル) 1— (7— (ジメチルァミノ) - 2- (トリフルォロ メチル)ピラゾ口 [1,5— a]ピリジンー4 ィル)エタノン
[0617] [化 173]
Figure imgf000107_0001
[0618] 実施例 88の化合物 (95.0 mg)に、 2.0 mol/Lジメチルァミン THF溶液 (2.00 mL)を常 温にて加え、同温にて 35分攪拌した。溶媒等を減圧留去し、残渣をシリカゲルカラム クロマトグラフィー(酢酸ェチル:へキサン = 1: 1)にて精製した後、残渣をジイソプ ロピ
ルエーテルで洗浄することにより目的物(50.0 mg)を橙色固体として得た。
融点: 234-238 °C.
IR (KBr) : 1596, 1566, 1551, 1364, 1233, 1173, 1120, 896 cm—
:H NMR (CDC1 400 MHz) d: 3.38 (6H, s), 4.68 (2H, s), 6.25 (1H, d, J = 8.6 Hz),
3,
7.62 (1H, s), 8.08 (1H, d, J = 8.6 Hz), 8.54 (2H, s).
EIMS (+): 416 [M] +·
元素分析:実測値 C 48.84%, H 3.13%, N 13.42%, C H CI F N 0として計算値 C 48.94%, H 3.14%, N 13.43%.
[0619] <実施例 101〉
4— (クロロメチル) 2— (ジフルォロメチル) 7 メトキシピラゾ口 [1,5— a]ピリジン [0620] [化 174]
Figure imgf000108_0001
[0621] 実施例 44の化合物 (300 mg)のジクロロメタン (13.0 mL)溶液に 0°Cにて塩化チォニル (0.191 mL)を滴下し、同温にて 1.5時間撹拌した。反応液を飽和炭酸水素ナトリウム 水溶液に注ぎ、酢酸ェチルで 2回抽出した。合わせた抽出層を水、飽和食塩水の順 で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去することにより、 目的物 (316 mg)を白色固体として得た。
:H NMR (CDCl 400 MHz) d: 4.18 (3H, s), 4.77 (2H, s), 6.16 (1H, d, J = 7.9 Hz),
6.91 (1H, s), 6.95 (1H, t, J = 55.0 Hz), 7.24 (1H, d, J = 7.9 Hz).
EIMS (+): 246 [M] +
[0622] <実施例 102〉
4一(2—(3,5 ジクロ口ピリジンー4 ィル)ェチル)ー2 (ジフルォロメチル)ー7— メトキシピラゾ口 [ 1, 5— a]ピリジン
[0623] [化 175]
Figure imgf000108_0002
[0624] 3,5-ジクロロ -4-ピコリン (204 mg)の THF(2.00 mL)溶液に、 _78°Cにて 1.0 mol/Lナト リウムビス(トリメチルシリル)アミド- THF溶液 (1.51 mL)を滴下し、 0°Cにて 10分攪拌し た。この反応液に- 78°Cにて実施例 101の化合物 (155 mg)の THF(6.00 mL)溶液を滴 下し、常温にて 1時間攪拌した。反応液に飽和塩化アンモユウム水溶液を加え、酢酸 ェチルで 2回抽出した。合わせた抽出層を水、飽和食塩水の順で洗浄し、無水硫酸 ナトリウムで乾燥した。溶媒を減圧留去後、
Figure imgf000109_0001
グラフィー(富士シリシァ化学 (株)製、酢酸ェチル:へキサン = 1: 1)にて精製した 後、ジイソプロピルエーテルで洗浄することにより目的物(246 mg)を白色固体として 得た。
融点: 153-156 °C.
IR (KBr) : 1637, 1574, 1542, 1498, 1453, 1370, 1297, 1156, 1088, 1033, 785 cm— :H NMR (CDCl 400 MHz) d: 3.01—3.07 (2H, m), 3.27-3.31 (2H, m), 4.16 (3H, s),
3,
6.12 (1H, d, J = 7.9 Hz), 6.87 (1H, s), 6.95 (1H, t, J = 55.0 Hz), 6.97 (1H, d, J = 7. 9 Hz), 8.47 (2H, s).
EIMS (+): 371 [M]
元素分析:実測値 C 51.34%, H 3.38%, N 11.19%, C H CI F N 0として計算値 C
16 13 2 2 3
51.63%, H 3.52%, N 11.29%.
[0625] <実施例 103〉
3,5 ジクロロー 4一(2—(2 (ジフルォロメチル)ー7 メトキシピラゾロ [l,5— a]ピ リジン 4 ィル)ェチル)ピリジン
1一才キシド
[0626] [化 176]
Figure imgf000109_0002
実施例 102の化合物 (27.5 mg)のクロ口ホルム (0.300 mL)溶液に、 0°Cにて 70% m_ク ロロ過安息香酸 (45.6 mg)を加え、遮光下に常温にて 8.5時間攪拌した。反応液に飽 和チォ硫酸ナトリウム水溶液を加え、酢酸ェチルで 2回抽出した。合わせた抽出層を 飽和炭酸水素ナトリウム水溶液、水、飽和食塩水の順で洗浄し、無水硫酸ナトリウム で乾燥した。溶媒を減圧留去後、残渣をシリカゲルプレート(クロ口ホルム:メタノール
= 10: 1)にて精製することにより目的物(4.0 mg)を褐色固体として得た。 融点: 165-170 °C.
IR (KBr) : 1637, 1543, 1437, 1430, 1264, 1090, 1037, 818 cm—
:H NMR (CDC1 400 MHz) d: 3.01—3.07 (2H, m), 3.22—3.28 (2H, m), 4.16 (3H, s),
3,
6.11 (1H, d, J = 7.3 Hz), 6.84 (1H, s), 6.91 (1H, d, J = 7.3 Hz), 6.95 (1H, t, J = 55.0 Hz), 8.20 (2H, s).
HRESIMS (+): 388.0439 (C H CI F N Oとして計算値 388.0431).
16 14 2 2 3 2
[0628] <実施例 104〉
2 (ジフルォロメチル) 7 メトキシー4一(2 (ピリジンー4 ィル)ェチル)ピラゾ 口 [1 ,5— a]ピリジン
[0629] [化 177]
Figure imgf000110_0001
[0630] 実施例 102の化合物 (80.0 mg)の酢酸 (4.00 mL)溶液に、 10%パラジウム-炭素 (8.00 mg)を常温にて加え、水素雰囲気下、同温にて 80時間激しく攪拌した。反応液の不 溶物を濾去し、濾液の溶媒を減圧留去後、トリェチルァミン一水を加え、酢酸ェチル で 2回抽出した。合わせた抽出層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去後 、残渣をシリカゲルプレート(酢酸ェチル:メタノール = 10: 1)にて分離精製した後、 ジイソプロピルエーテルで洗浄することにより目的物 (25.6 mg)を白色固体として得た 融点: 121-123 °C.
IR (KBr) : 1635, 1601, 1575, 1538, 1376, 1316, 1290, 1182, 1094, 1043, 809 cm— :H NMR (CDC1 400 MHz) d: 3.00-3.04 (2H, m), 3.07-3.13 (2H, m), 4.14 (3H, s) 6.07 (1H, d, J = 7.3 Hz), 6.78 (1H, s), 6.83 (1H, d, J = 7.3 Hz), 6.95 (1H, t, J = 55. 1 Hz), 7.06-7.08 (2H, m), 8.47-8.51 (2H, m).
EIMS (+): 303 [M] +·
元素分析:実測値 C 63.08%, H 4.98%, N 13.69%, C H F N 0として計算値 C 63.
16 15 2 3
36%, H 4.98%, N 13.85%.
[0631] <実施例 105〉
4一(2—(2—(ジフルォロメチル)ー7—メトキシピラゾロ [1,5— a]ピリジンー4ーィル
)ェチル)ピリジン
1一才キシド
[0632] [化 178]
Figure imgf000111_0001
実施例 104の化合物 (40.0 mg)のクロ口ホルム (0.300 mL)溶液に、 0°Cにて 70% m_ク ロロ過安息香酸 (81.4 mg)を加え、遮光下に常温にて 1時間攪拌した。反応液に飽和 チォ硫酸ナトリウム水溶液を加え、酢酸ェチルで 2回抽出した。抽出層を飽和炭酸水 素ナトリウム水溶液、水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。 溶媒を減圧留去後、残渣をシリカゲルプレート(クロ口ホルム:メタノール = 10 : 1) にて精製した後、 NHタイプカラムクロマトグラフィー (富士シリシァ化学 (株)製、クロ口 ホルム)にて精製することにより目的物(12.0 mg)を淡黄色固体として得た。
融点: 150-152 °C.
IR (KBr) : 1639, 1577, 1543, 1491, 1452, 1296, 1220, 1184, 1080, 817 cm—
:H NMR (CDCl 400 MHz) d: 3.01-3.12 (4H, m), 4.15 (3H, s), 6.06 (1H, d, J = 7.9
3,
Hz), 6.77 (1H, d, J = 7.9 Hz), 6.79
(1H, s), 6.95 (1H, t, J = 55.0 Hz), 7.00 (2H, d, J = 7.0 Hz), 8.10 (2H, d, J = 7.0 Hz) HRESIMS (+): 320.1216 (C H F N Oとして計算値
16 16 2 3 2
320.1211).
[0634] <実施例 106〉
2—(3,5 ジクロ口ピリジンー4ーィル)ー1 (2 (ジフルォロメチル) 7 メトキシ ピラゾ口 [ 1, 5— a]ピリジン 4 ィル)エタノール
[0635] [化 179]
Figure imgf000112_0001
[0636] ジイソプロピルアミン (0.392 mL)の THF(20.0 mL)溶液に 0°Cにて 1.58 mol/L n_ブチ ノレリチウム—へキサン溶液 (1.77 mL)を滴下し、同温にて 30分撹拌した。この反応液 に- 78°Cにて 3,5-ジクロロ -4-ピコリン (452 mg)の THF(3.00 mU溶液を滴下し、 0°Cに て 3分撹拌後、 _78°Cにて実施例 45の化合物 (420 mg)の THF(6.00 mL)溶液を滴下し 、同温にて 40分間攪拌した。反応液に飽和塩化アンモユウム水溶液を加え、酢酸ェ チルで 2回抽出した。抽出層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで 乾燥した。溶媒を減圧留去後、残渣をジイソプロピルエーテルで洗浄することにより 目的物 (668 mg)を白色固体として得た。
:H NMR (CDCl 400 MHz) d: 3.41 (1H, dd, J = 13.1, 5.2 Hz), 3.61 (1H, dd, J = 13
3,
.1, 8.9 Hz), 4.18 (3H, s), 5.35-5.39 (1H, m), 6.16 (1H, d, J = 7.9 Hz), 6.95 (1H, t, J = 55.1 Hz), 7.00 (1H, s), 7.23 (1H, d, J = 7.9 Hz), 8.46 (2H, s).
EIMS (+): 387 [M]
[0637] <実施例 107〉
2—(3,5 ジクロ口ピリジンー4ーィル)ー1 (2 (ジフルォロメチル) 7 メトキシ ピラゾ口 [ , 5a]ピリジン 4 ィル)エタノン
[0638] [化 180]
Figure imgf000113_0001
[0639] 実施例 106の化合物 (638 mg)のクロ口ホルム (16.0 mL)溶液に、 0°Cにてデスマーチ ンペルョージナン (903 mg)を加え、同温にて 1.5時間攪拌した。反応液に飽和炭酸水 素ナトリウム水溶液を加え、酢酸ェチルで 3回抽出した。抽出層を水、飽和食塩水の 順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をメタノール 力 再結晶することにより目的物(527 mg)を白色針状結晶として得た。
融点: 208-211 °C (d).
IR (KBr) : 1667, 1620, 1555, 1325, 1247, 1088, 1075, 1055, 780 cm—
:Η NMR (CDC1 400 MHz) d: 4.32 (3H, s), 4.71 (2H, s), 6.35 (1H, d, J = 7.9 Hz),
3,
6.93 (1H, t, J = 55.1 Hz), 7.57 (1H, s), 8.16 (1H, d, J = 7.9 Hz), 8.55 (2H, s). EIMS (+): 385 [M] +·
元素分析:実測値 C 49.95%, H 2.95%, N 10.86%, C H CI F N 0として計算値 C
16 11 2 2 3 2
49.76%, H 2.87%, N 10.88%.
[0640] <実施例 108〉
3,5 ジクロロー 4一(2—(2 (ジフルォロメチル)ー7 メトキシピラゾロ [l,5— a]ピ リジン 4 ィル) 2 ォキソェチル)ピリジン
1一才キシド
[0641] [化 181]
Figure imgf000113_0002
[0642] 実施例 107の化合物 (100 mg)のクロ口ホルム (0.500 mL)溶液に、 0°Cにて 70% m_クロ 口過安息香酸 (76.7 mg)を加え、遮光下に常温にて 19.5時間攪拌した。反応液に飽 和チォ硫酸ナトリウム水溶液を加え、酢酸ェチルで 2回抽出した。抽出層を飽和炭酸 水素ナトリウム水溶液、水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した 。溶媒を減圧留去後、残渣をシリカゲルプレート(クロ口ホルム:メタノール = 10: 1 )にて精製した後、ジイソプロピルエーテルで洗浄することにより目的物(60.3 mg)を 淡黄色固体として得た。
融点: 220-226。C (d).
IR (KBr) : 1667, 1617, 1555, 1440, 1427, 1324, 1241, 1085, 1057, 784 cm—
:Η NMR (CDCl 400 MHz) d: 4.32 (3H, s), 4.63 (2H, s), 6.35 (1H, d, J = 7.9 Hz),
3,
6.93 (1H, t, J = 54.4 Hz), 7.56 (1H, s), 8.14 (1H, d, J = 7.9 Hz), 8.24 (2H, s).
CMS (+): 402 [M+H]
元素分析:実測値 C 46.28%, H 2.83%, N 9.98%, C H CI F N 0 - 0.7H 0として計
16 11 2 2 3 3 2 算値 C 46.33%, H 3.01%, N 10.13%.
[0643] <実施例 109〉
1 - (2 - (ジフルォロメチル)ー7 メトキシピラゾロ [1 ,5— a]ピリジンー4 ィル)ー2
- (ピリジン一 4—ィル)エタノン
[0644] [化 182]
Figure imgf000114_0001
実施例 107の化合物 (338 mg)の酢酸 (18.0 mL)溶液に、 10%パラジウム-炭素 (33.8 m g)を常温にて加え、水素雰囲気下、同温にて 44時間激しく攪拌した。反応液の不溶 物を濾去し、濾液の溶媒を減圧留去後、トリェチルァミン一水を加え、酢酸ェチルで 2 回抽出した。抽出層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去後、残渣をシリ 力ゲルカラムクロマトグラフィー(酢酸ェチル:メタノール = 10: 1)にて分離精製し目 的物 (101 mg)を淡黄色固体として得た。
融点: 186-191。C (d).
IR (KBr) : 1671, 1624, 1561, 1554, 1311, 1082, 1042, 782 cm—
:Η NMR (CDC1 400 MHz) d: 4.28 (3H, s), 4.31 (2H, s), 6.27 (1H, d, J = 7.9 Hz),
3,
6.93 (1H, t, J = 54.4 Hz), 7.20-7.24 (2H, m), 7.63 (1H, s), 8.01 (1H, d, J = 7.9 Hz), 8.56-8.60 (2H, m).
EIMS (+) : 317 [M]
元素分析:実測値 C 60.31%, H 4.10%, N 13.10%, C H F N Oとして計算値 C 60
16 13 2 3 2
.57%, H 4.13%, N 13.24%.
[0646] <実施例 110〉
4一(2—(2—(ジフルォロメチル)ー7—メトキシピラゾロ [1 ,5— a]ピリジンー4ーィル
)一 2—ォキソェチル)ピリジン
1一才キシド
[0647] [化 183]
Figure imgf000115_0001
[0648] 実施例 109の化合物 (31.0 mg)のクロ口ホルム (0.200 mL)溶液に、 0°Cにて 70% m_ク ロロ過安息香酸 (60.2 mg)を加え、遮光下に常温にて 40分攪拌した。反応液に飽和チ ォ硫酸ナトリウム水溶液を加え、酢酸ェチルで 2回抽出した。抽出層を飽和炭酸水素 ナトリウム水溶液、水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶 媒を減圧留去後、残渣をシリカゲルプレート(クロ口ホルム:メタノール = 10 : 1)に て精製した後、ジイソプロピルエーテルで洗浄することにより目的物(2.00 mg)を黄色 固体として得た。
:H NMR (CDC1 400 MHz) d: 4.30 (3H, s), 4.34 (2H, s), 6.29 (1H, d, J = 8.6 Hz), 6.94 (1H, t, J = 55.0 Hz), 7.25-7.29 (2H, m), 7.59 (1H, s), 8.02 (1H, d, J = 8.6 Hz) 8.31 (2H, d, J = 6.7 Hz).
ESIMS (+): 334 [M+H] +·
[0649] <実施例 111〉
2—(3 クロ口ピリジンー4ーィル)ー1 (2 (ジフルォロメチル) 7 メトキシピラ ゾロ [ 1, 5— a]ピリジン一 4—ィル)エタノン
[0650] [化 184]
Figure imgf000116_0001
[0651] 実施例 107の化合物 (338 mg)の酢酸 (18.0 mL)溶液に、 10%パラジウム-炭素 (33.8 m g)を常温にて加え、水素雰囲気下、同温にて 44時間激しく攪拌した。反応液の不溶 物を濾去し、濾液の溶媒を減圧留去後、トリェチルァミン一水を加え、酢酸ェチルで 2 回抽出した。抽出層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去後、残渣をシリ 力ゲルカラムクロマトグラフィー(酢酸ェチル:メタノール = 10: 1)にて分離精製し目 的物 (94.5 mg)を黄色固体として得た。
融点: 191-194 °C (d).
IR (KBr) : 1676, 1620, 1557, 1492, 1452, 1323, 1246, 1151, 1090, 791 cm—
:Η NMR (CDCl 400 MHz) d: 4.30 (3H, s), 4.46 (2H, s), 6.31 (1H, d, J = 7.9 Hz),
3,
6.93 (1H, t, J = 54.4 Hz), 7.25 (1H, s), 7.60 (1H, s), 8.09 (1H, d, J = 7.9 Hz), 8.47 (1H, d, J = 4.9 Hz), 8.64 (1H, s).
EIMS (+): 351 [M]
元素分析:実測値 C 54.41%, H 3.52%, N 11.86%, C H C1F N 0として計算値 C
16 12 2 3 2
54.64%, H 3.44%, N 11.95%.
[0652] <実施例 112〉
4 (クロロメチル) 2 シクロプロピル 7 メトキシピラゾロ [ 1, 5— a]ピリジン [0653] [化 185]
Figure imgf000117_0001
[0654] 実施例 19の化合物 (100 mg)のジクロロメタン (4.50 mL)溶液に 0°Cにて塩化チォニル (0.0668 mL)を滴下し、同温にて 2時間撹拌した。反応液を飽和炭酸水素ナトリウム水 溶液に注ぎ、酢酸ェチルで 2回抽出した。合わせた抽出層を水、飽和食塩水の順で 洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去することにより、 目的物 (82.0 m g)を白色固体として得た。
:H NMR (CDCl 400 MHz) d: 0.88—0.93 (2H, m), 1.02-1.08 (2H, m), 2.18-2.27 (1
H, m), 4.13 (3H, s), 4.71 (2H, s), 5.96 (1H, d, J = 7.3 Hz), 6.24 (1H, s), 7.09 (1H, d , J = 7.3 Hz).
EIMS (+): 236 [M] +
[0655] <実施例 113〉
2 シクロプロピルー4一(2—(3,5 ジクロ口ピリジンー4ーィノレ)ェチル) 7 メトキ シピラゾロ [ 1, 5— a]ピリジン
[0656] [化 186]
Figure imgf000117_0002
3,5-ジクロロ- 4-ピコリン (137 mg)の THF(8.50 mU溶液に、 - 78°Cにて 1.0 mol/Lナト リウムビス(トリメチルシリル)アミド THF溶液 (1.01 mL)を滴下し、 0°Cにて 10分攪拌し た。この反応液に- 78°Cにて実施例 112の化合物 (100 mg)の THF(4.00 mL)溶液を滴 下し、常温にて 1時間攪拌した。反応液に飽和塩化アンモユウム水溶液を加え、酢酸 ェチルで 2回抽出した。合わせた抽出層を水、飽和食塩水の順で洗浄し、無水硫酸 ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルカラムクロマトグラフィー (酢酸ェチル:へキサン =2: 1)にて精製した後、ジイソプロピルエーテルで洗浄す ることにより目的物 (126 mg)を白色固体として得た。
:H NMR (CDC1 400 MHz) d: 0.84-0.90 (2H, m), 1.00-1.06 (2H, m), 2.17-2.26 (1
3,
H, m), 2.90-2.98 (2H, m), 3.22-3.29 (2H, m), 4.11 (3H, s), 5.92 (1H, d, J = 7.9 Hz) , 6.20 (1H, s), 6.83 (1H, d, J = 7.9 Hz), 8.45 (2H, s).
ESIMS (+): 362 [M+H]
元素分析:実測値 C 59.51%, H 4.65%, N 11.55%, C H CI N 0として計算値 C 59
18 17 2 3
.68%, H 4.73%, N 11.60%.
[0658] <実施例 114〉
4一(2—(2 シクロプロピルー7 メトキシピラゾロ [1,5— a]ピリジンー4 ィル)ェチ ル)
3,5—ジクロ口ピリジン 1一才キシド
[0659] [化 187]
Figure imgf000118_0001
実施例 112の化合物 (154 mg)および 3,5-ジクロロ- 4-ピコリン- N-ォキシド (347 mg)の THF(6.50 mL)溶液に、 0°Cにて 1.0 mol/Lナトリウムビス(トリメチルシリル)アミド THF 溶液 (1.01 mL)を滴下し、同温にて 1.5時間攪拌した。反応液に飽和塩化アンモユウ ム水溶液を加え、酢酸ェチルで 2回抽出した。合わせた抽出層を飽和食塩水で洗浄 し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルカラムクロ マトグラフィー(酢酸ェチル:メタノール = 10 : 1)にて精製した後、ジイソプロピルェ 一テルで洗浄することにより目的物(32.0 mg)を褐色固体として得た。
:H NMR (CDC1 400 MHz) d: 0.86-0.90 (2H, m), 1.02-1.08 (2H, m), 2.18-2.26 (1 H, m), 2.92-2.98 (2H, m), 3.18-3.24 (2H, m), 4.11 (3H, s), 5.91 (1H, d, J = 7.9 Hz) , 6.17 (1H, s), 6.76 (1H, d, J = 7.9 Hz), 8.16 (2H, s).
ESIMS (+): 378[M+H] +·
元素分析:実測値 C 57.52%, H 4.64%, N 10.82%, C H CI N 0として計算値 C 5
18 17 2 3 2
7.16%, H 4.53%, N 11.11%.
[0661] <実施例 115〉
1— (2 シクロプロピル一 7 メトキシピラゾ口 [1,5— a]ピリジン一 4 ィル) 2— (3,
5—ジクロ口ピリジン 4 ィル)エタノール
[0662] [化 188]
Figure imgf000119_0001
[0663] ジイソプロピルアミン (0.391 mL)の THF(20.0 mL)溶液に 0°Cにて 1.58 mol/L n_ブチ ノレリチウム—へキサン溶液 (1.76 mL)を滴下し、同温にて 30分撹拌した。この反応液 に- 78°Cにて 3,5-ジクロロ -4-ピコリン (450 mg)の THF(2.00 mU溶液を滴下し、 0°Cに て 3分撹拌後、 _78°Cにて実施例 28の化合物 (400 mg)の THF(4.00 mL)溶液を滴下し 、同温にて 1時間攪拌した。反応液に飽和塩化アンモユウム水溶液を加え、酢酸ェチ ルで 2回抽出した。抽出層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾 燥した。溶媒を減圧留去後、残渣をジイソプロピルエーテルで洗浄することにより目 的物(627 mg)を白色固体として得た。
:H NMR (CDCl 400 MHz) d: 0.84-0.89 (2H, m), 1.01—1.07 (2H, m), 2.09 (1H, brs
3,
), 2.16-2.25 (1H, m), 3.38 (1H, dd, J = 13.1, 5.2 Hz), 3.59 (1H, dd, J = 13.1, 8.9 H z), 4.13 (3H, s), 5.25-5.30 (1H, m), 5.97 (1H, d, J = 7.3 Hz), 6.31 (1H, s), 7.09 (1H , d, J = 7.3 Hz), 8.45 (2H, s).
EIMS (+): 377 [M] +·
[0664] <実施例 116〉 2 -シクロプロピル 7 メトキシ 4— (2 (ピリジン一 4 ィル)ェチル)ピラゾ口 [ 1 5— a]ピリジン
[0665] [化 189]
Figure imgf000120_0001
[0666] 実施例 115の化合物 (2.00 g)の THF(75.0 mL)溶液に 0°Cにてメタンスルホン酸 (5.15 mL)を加え、 60°Cにて 4.5時間撹拌した。反応液に水酸化ナトリウム水溶液を加え、 酢酸ェ
チルで 2回抽出した。合わせた抽出層を水、飽和食塩水の順で洗浄し、無水硫酸ナ トリウムで乾燥し、溶媒を減圧留去後、残渣をシリカゲルカラムクロマトグラフィー(酢 酸ェチル : へキサン =2: 1)にて精製することにより粗製の 2-シクロプロピル- 4-( 2-(3,5-ジクロロピリジン- 4-ィル)ビュル) - 7-メトキシピラゾ口 [l,5-a]ピリジン (1.62 g)を 橙色固体として得た。
粗製の 2-シクロプロピル- 4-(2-(3,5-ジクロロピリジン- 4-ィル)ビュル) -7-メトキシピラ ゾロ [l,5-a]ピリジン (800 mg)の酢酸 (45.0 mU溶液に、 10%パラジウム-炭素 (80.0 mg) を常温にて加え、水素雰囲気下、同温にて 12.5時間激しく攪拌した。反応液の不溶 物を濾去し、濾液の溶媒を減圧留去後、残渣をシリカゲルカラムクロマトグラフィー( 酢酸ェチル:メタノール:トリェチルァミン = 10: 1 : 0.1)にて精製した後、ジイソプロピ ルエーテルで洗浄することにより目的物(353 mg)を褐色固体として得た。
:H NMR (CDCl 400 MHz) d: 0.85-0.90 (2H, m), 1.02-1.07 (2H, m), 2.18—2.26 (1
H, m), 2.97-3.01 (4H, m), 4.09 (3H, s), 5.87 (1H, d, J = 7.9 Hz), 6.09 (1H, s), 6.69 (1H, d, J = 7.9 Hz), 7.04-7.07 (2H, m), 8.46-8.49 (2H, m).
EIMS (+): 293 [M] +·
元素分析:実測ィ直 C 73.52%, H 6.59%, N 14.22%, C H N 0として計算ィ直 C 73.6 9%, H 6.53%, N 14.32%.
[0667] <実施例 117〉
4一(2—(2 シクロプロピルー7 メトキシピラゾロ [1,5— a]ピリジンー4 ィル)ェチ ル)ピリジン 1ーォキシド
[0668] [化 190]
Figure imgf000121_0001
[0669] 実施例 112の化合物 (150 mg)および 4-ピコリン- N-ォキシド (207 mg)の THF(6.50 m L)溶液に、 0°Cにて 1.0 mol/Lナトリウムビス(トリメチルシリル)アミド THF溶液 (1.27 m L)を滴下し、同温にて 1時間攪拌した。反応液に飽和塩化アンモニゥム水溶液を加え 、塩化ナトリウムにより塩析出後、酢酸ェチルで 2回抽出した。合わせた抽出層の溶 媒を減圧留去後、残渣をシリカゲルプレート(クロ口ホルム:メタノール = 10 : 1)にて 精製することにより目的物(16.0 mg)を褐色アモルファスとして得た。
:H NMR (CDCl 400 MHz) d: 0.86-0.90 (2H, m), 1.02-1.08 (2H, m), 2.18—2.26 (1
3,
H, m), 2.99 (4H, s), 4.09 (3H, s), 5.86 (1H, d, J = 7.9 Hz), 6.10 (1H, s), 6.61 (1H, d , J = 7.9 Hz), 6.95-6.98 (2H, m), 8.06-8.11 (2H, m).
HRESIMS (+): 310.1557 (C H N Oとして計算値
18 20 3 2
310.1556).
[0670] <実施例 118〉
1— (2 シクロプロピル一 7 メトキシピラゾ口 [1,5— a]ピリジン一 4 ィル) 2— (3,
5—ジクロロピリジン一 4—ィル)エタノン
[0671] [化 191]
Figure imgf000122_0001
[0672] 実施例 115の化合物 (300 mg) ( DM S 0(8.00 mU溶液に、常温にてトリエチルァミン (1.11 mL)および三酸化硫黄ピリジン錯体(632 mg)を加え、同温にて 1.5時間攪拌し た。反応液に水を加え、酢酸ェチルで 4回抽出した。合わせた抽出層を飽和食塩水 で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルカラ ムクロマトグラフィー(酢酸ェチル)にて精製した後、ジイソプロピルエーテルで洗浄す ることにより目的物 (99.0 mg)を白色固体として得た。
融点: 220-224。C (d).
:H NMR (CDC1 400 MHz) d: 0.85—0.91 (2H, m), 1.02-1.08 (2H, m), 2.18—2.26 (1
3,
H, m), 4.27 (3H, s), 4.68 (2H, s), 6.15 (1H, d, J = 7.9 Hz), 6.90 (1H, s), 8.04 (1H, d , J = 7.9 Hz), 8.53 (2H, s).
CMS (+): 376 [M+H]
元素分析:実測値 C 56.87%, H 3.88%, N 11.07%, C H CI N 0 -0.2H 0として計
18 15 2 3 2 2
算値 C 56.92%, H 4.09%, N 11.06%.
[0673] <実施例 119〉
3,5 ジクロロー 4一(2—(2 シクロプロピルー7 メトキシピラゾロ [1,5— a]ピリジン 4 ィル) 2 ォキソェチル)ピリジン 1 ォキシド
[0674] [化 192]
Figure imgf000122_0002
[0675] 実施例 118の化合物 (200 mg)およびタングステン酸 (26.5 mg)の N-メチル -2-ピロリジ ノン (2.10 mL)溶液に、常温にて 30%過酸化水素水 (0.600 mL)を加え、 80°Cにて 9.5時 間攪拌した後、同温にてタングステン酸 (26.5 mg)を加え、 14.5時間攪拌した。常温に て反応液に二酸化マンガン (2 mg)を加え、同温にて 1時間攪拌の後、反応液をシリカ ゲルカラムクロマトグラフィー(酢酸ェチル:メタノール = 10: 1)にて精製した後、シ リカゲルプレート(クロ口ホルム:メタノール = 10: 1)にて精製した。得られた化合 物をジイソプロピルエーテルで洗浄することにより目的物(19.0 mg)を黄色固体として 得た。
:H NMR (CDCl 400 MHz) d: 0.87—0.92 (2H, m), 1.03—1.10 (2H, m), 2.18-2.27 (1
3,
H, m), 4.27 (3H, s), 4.61 (2H, s), 6.15 (1H, d, J = 7.9 Hz), 6.89 (1H, s), 8.02 (1H, d , J = 7.9 Hz), 8.23 (2H, s).
CMS (+): 392 [M+H]
元素分析:実測値 C 53.37%, H 3.94%, N 10.35%, C H CI N 0 - 0.7H 0として計
18 15 2 3 3 2
算値 C 53.40%, H 4.08%, N 10.35%.
[0676] <実施例 120〉
2—(3 クロ口ピリジン 4ーィノレ) 1一(2 シクロプロピノレー 7 メトキシピラゾロ [1
, 5— a]ピリジン一 4—ィル)エタノン
[0677] [化 193]
Figure imgf000123_0001
実施例 118の化合物 (170 mg)の酢酸 (9.00 mL)溶液に、 10%パラジウム-炭素 (34.0 m g)を常温にて加え、水素雰囲気下、同温にて 30時間激しく攪拌した。反応液の不溶 物を濾去し、濾液の溶媒を減圧留去後、炭酸カリウム水溶液を加え、酢酸ェチルで 3 回抽出した。抽出層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去後、残渣をシリ 力ゲルプレート(クロ口ホルム:メタノール = 10: 1)にて分離精製し目的物 (21.7 mg) を黄色固体として得た。
:H NMR (CDC1 400 MHz) d: 0.87—0.92 (2H, m), 1.02-1.09 (2H, m), 2.18-2.27 (1
3,
H, m), 4.25 (3H, s), 4.43 (2H, s), 6.12 (1H, d, J = 7.9 Hz), 6.93 (1H, s), 7.24 (1H, d , J = 4.9 Hz), 7.97 (1H, d, J = 7.9 Hz), 8.46 (1H, d, J = 4.9 Hz), 8.62 (1H, s).
EIMS (+): 341 [M] +·
元素分析:実測値 C 62.22%, H 4.66%, N 11.94%, C H C1N 0 - 0.3H 0として計算
18 16 3 2 2
値 C 62.27%, H 4.82%, N 12.10%.
[0679] <実施例 121〉
1— (2 シクロプロピル一 7 メトキシピラゾ口 [1 ,5— a]ピリジン一 4 ィル) 2— (ピ リジン 4ーィノレ)エタノン
[0680] [化 194]
Figure imgf000124_0001
実施例 118の化合物 (170 mg)の酢酸 (9.00 mL)溶液に、 10%パラジウム-炭素 (34.0 m g)を常温にて加え、水素雰囲気下、同温にて 30時間激しく攪拌した。反応液の不溶 物を濾去し、濾液の溶媒を減圧留去後、炭酸カリウム水溶液を加え、酢酸ェチルで 3 回抽出した。抽出層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去後、残渣をシリ 力ゲルプレート(クロ口ホルム:メタノール = 10: 1)にて分離精製し目的物 (61.6 mg) を黄色固体として得た。
:H NMR (CDC1 400 MHz) d: 0.87-0.92 (2H, m), 1.04-1.10 (2H, m), 2.18-2.27 (1
3,
H, m), 4.23 (3H, s), 4.27 (2H, s), 6.08 (1H, d, J = 7.9 Hz), 6.96 (1H, s), 7.21 (2H, d , J = 5.5 Hz), 7.90 (1H, d, J = 7.9 Hz), 8.57 (2H, d, J = 5.5 Hz).
EIMS (+): 307 [M]
元素分析:実測値 C 70.18%, H 5.61%, N 13.54%, C H N 0として計算値 C 70.3
18 17 3 2
4%, H 5.58%, N 13.67%. [0682] <実施例 122〉
1— (3 クロ口一 2 シクロプロピノレー 7 メトキシピラゾロ [ 1, 5— a]ピリジン一 4 ィ ル) - 2- (3,5 ジクロ口ピリジンー4 ィル)エタノン
[0683] [化 195]
Figure imgf000125_0001
[0684] ォキサリルクロリド (0.0502 mL)のジクロロメタン (3.00 mL)溶液に、 _78°Cにてジメチル スルホキシド (0.0563 mUのジクロロメタン (0.15 mU溶液を滴下し、同温にて 10分攪拌 した。同温にて反応液に実施例 115の化合物 (100 mg)のジクロロメタン (2.50 mL)溶液 を加え、同温にて 1時間攪拌した。反応液に同温にてトリエチルァミン (0.269 mL)を滴 下し、 0°Cにて 1.5時間攪拌した。反応液に飽和塩化アンモユウム水溶液を加え、酢 酸ェチルで 2回抽出した。合わせた抽出層を水、飽和食塩水の順で洗浄し、無水硫 酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルプレート(酢酸ェチル )にて精製した後、ジイソプロピルエーテルで洗浄することにより目的物(27.0 mg)を 青白色固体として得た。
:H NMR (CDC1 400 MHz) d: 1.04-1.12 (2H, m), 1.13—1.18 (2H, m), 2.16—2.24 (1
3,
H, m), 4.20 (3H, s), 4.64 (2H, s), 6.09 (1H, d, J = 7.9 Hz), 7.70 (1H, d, J = 7.9 Hz), 8.53 (2H, s).
EIMS (+): 409 [M]
元素分析:実測ィ直 C 50.91%, H 3.35%, N 9.85%, C H CI N 0 -0.75H 0として計
18 14 3 3 2 2
算値 C 50.97%, H 3.68%, N 9.91%.
[0685] <実施例 123〉
1 (2 シクロプロピルー7 (メチルァミノ)ピラゾ口 [1,5— a]ピリジンー4 ィル)
2—(3,5 ジクロ口ピリジンー4 ィル)エタノン
[0686] [化 196]
Figure imgf000126_0001
[0687] 実施例 118の化合物 (150 mg)に、 2.0 mol/Lメチルァミン THF溶液 (5.00 mL)を常温 にて加え、同温にて 3.5時間攪拌した。溶媒等を減圧留去後、残渣をジイソプロピル エーテルで洗浄することにより目的物(136 mg)を淡黄色固体として得た。
融点: 196-200 °C.
IR (KBr) : 3414, 1654, 1601, 1588, 1540, 1380, 1251, 1139, 1093, 791 cm—
:H NMR (CDCl 400 MHz) d: 0.85—0.91 (2H, m), 1.00-1.05 (2H, m), 2.05—2.13 (1
H, m), 3.19 (3H, d, J = 4.9 Hz), 4.65 (2H, s), 5.89 (1H, d, J = 8.6 Hz), 6.68 (1H, br d, J = 4.9 Hz), 6.89 (1H, s), 8.02 (1H, d, J = 8.6 Hz), 8.51 (2H, s).
EIMS (+): 374 [M] +·
元素分析:実測値 C 57.37%, H 4.41%, N 14.61%, C H CI N 0として計算値 C 57
18 16 2 4
.61%, H 4.30%, N 14.93%.
[0688] <実施例 124〉
1— (2 シクロプロピル 7 (ジメチルァミノ)ピラゾ口 [ 1, 5— a]ピリジン一 4 ィル)
- 2- (3,5 ジクロロピリジン一 4 ィル)エタノン
[0689] [化 197]
Figure imgf000126_0002
実施例 118の化合物 (150 mg)に、 2.0 mol/Lジメチルァミン THF溶液 (5.00 mL)を常 温にて加え、同温にて 9時間攪拌した後、 24時間静置した。溶媒等を減圧留去し、残 渣をシリカゲルカラムクロマトグラフィー(酢酸ェチル:へキサン = 3: 1)にて精製し た後
、ジイソプロピルエーテルで洗浄することにより目的物(56.0
mg)を黄色固体として得た。
融点: 216-220 °C.
IR (KBr) : 1654, 1649, 1595, 1555, 1437, 1294, 1203, 1104, 908 cm—
:H NMR (CDCl 400 MHz) d: 0.86—0.92 (2H, m), 1.00-1.05 (2H, m), 2.11-2.19 (1
3,
H, m), 3.32 (6H, s), 4.66 (2H, s), 6.06 (1H, d, J = 7.9 Hz), 6.94 (1H, s), 7.95 (1H, d , J = 7.9 Hz), 8.52 (2H, s).
EIMS (+): 388 [M]
元素分析:実測値 C 58.43%, H 4.68%, N 14.41%, C H CI N 0として計算値 C 58
19 18 2 4
.62%, H 4.66%, N 14.39%.
[0691] <実施例 125〉
4 (ァセトキシメチノレ) 2— (1 , 3 ジォキソラン 2 ィノレ) 7 メトキシピラゾロ [
1 , 5— a]ピリジンー3—力ルボン酸 ェチルエステル
[0692] [化 198]
Figure imgf000127_0001
実施例 42の化合物 (5.27 g)をジクロロメタン (150 mL)に溶解し、 _78°Cにて 1,2-ビスト リメチルシ口キシェタン (8.04 mL)およびトリメチルシリルトリフルォロメタンスルホネート( 0.148 mL)を加え、 _78°Cにて 30分、常温にて 1.5時間攪拌した。反応液に飽和炭酸 水素ナトリウム水溶液を加えた後、酢酸ェチルにて 3回抽出した。合わせた抽出層を 飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。残渣を シリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 1: 3→酢酸ェチル)で精 製し、 目的物(5.46 g)を無色粉末として得た。
:H NMR (CDCl, 400 MHz) : δ 1.41 (3Η, t, J = 7.0 Hz), 2.04 (3H, s), 4.07-4.10 (2 H, m), 4.14 (3H, s), 4.23-4.26 (2H, m), 4.38 (2H, q, J = 7.1 Hz), 5.54 (2H, s), 6.24 (1H, d, J = 7.9 Hz), 6.60 (1H, s), 7.40 (1H, d, J = 7.9 Hz).
EIMS (+) : 364 [M]+.
[0694] <実施例 126〉
2 - (1 , 3 ジォキソラン一 2 ィル) 4— (ヒドロキシメチル) 7 メトキシピラゾ口 [ 1 , 5— a]ピリジン一 3—カルボン酸
[0695] [化 199]
Figure imgf000128_0001
[0696] 実施例 125の化合物 (5.05 g)をエタノール (70 mL)と水 (70 mL)の混合溶媒に溶解し 、水酸化カリウム (3.89 g)を加え、加熱還流下 2時間攪拌した。減圧下エタノールを留 去した後、 1.0 mol/L塩酸を加え pH2とし、酢酸ェチルで 3回抽出した。合わせた抽出 層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去すること で目的物 (3.34 g)を緑色粉末として得た。
:H NMR (DMSO-d, 400 MHz) : δ 3.94-3.97 (2H, m), 4.06-4.07 (2Η, m), 4.09 (3Η,
6
s), 4.79 (2Η, s), 6.49 (1Η, s), 6.59 (1Η, d, J = 7.9 Hz), 7.51 (1H, d, J = 7.9 Hz).
ESIMS (+): 295 [M+H]+.
[0697] <実施例 127〉
2 - (1 , 3 ジォキソラン一 2 ィル) 4— (ヒドロキシメチル) 7 メトキシピラゾ口 [
1 , 5— a]ピリジン
[0698] [化 200]
Figure imgf000128_0002
[0699] 実施例 126の化合物 (3.34 g)を o_ジクロロベンゼン (100 mL)に溶解し、 150°Cにて 3 時間攪拌した。減圧下 0-ジクロロベンゼンを留去後、残渣をシリカゲルカラムクロマト グラフィー (酢酸ェチル)で精製し、 目的物 (1.83 g)を無色粉末として得た。
:H NMR (CDC1, 400 MHz) : δ 4.08—4· 10 (2H, m), 4.14 (3H, s), 4.18—4.22 (2H, m),
3
4.83 (2H, d, J = 4.3 Hz), 6.08 (1H, d, J = 7.9 Hz), 6.18 (1H, s), 6.72 (1H, s), 7.14 (
1H, d, J = 7.9 Hz).
EIMS (+) : 250 [M]+.
[0700] <実施例 128〉
4— (2— (3, 5 ジクロロピリジン一 4 ィル)ェチル)一2— (1 , 3 ジォキソラン一 2 ーィノレ) 7 メトキシピラゾロ [1 , 5— a]ピリジン
[0701] [化 201]
Figure imgf000129_0001
[0702] アルゴン雰囲気下、実施例 127の化合物 (1.00 g)をジクロロメタン (40 mL)に溶解し、 トリェチルァミン (1.67 mL)を加え、 0°Cにてチォユルクロリド (0.583 mUを加え、 0°Cに て 25分間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸ェチルに て 3回抽出した。合わせた抽出層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥 し、減圧下溶媒を留去することで粗製のクロロメチル体を得た。アルゴン雰囲気下、 3, 5-ジクロロ- 4-ピコリン (972 mg)を THF(40 mL)に溶解し、 -78°Cにてナトリウムへキサメ チルジシラジドの THF溶液 (1.0 mol/L, 6.60 mL)を加え、 _78°Cから 0°Cまで昇温した 後、 -78°Cにて粗製のクロロメチル体の THF(30 mL)溶液を加え、 _78°Cで 1時間、常 温にて更に 1時間攪拌した。反応液に飽和塩化アンモユウム水溶液を加えた後、酢 酸ェチルにて 3回抽出した。合わせた抽出層を飽和食塩水で洗浄後、無水硫酸ナト リウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー( へキサン:酢酸ェチル = 1: 3)で精製することで目的物 (361 mg)を黄色油状物として 得た。
:H NMR (CDC1, 400 MHz) : δ 3.00 (2H, dd, J = 9.2, 6.7 Hz), 3.28 (2H, dd, J = 9.2
, 6.7 Hz), 4.08-4.10 (2H, m), 4.13 (3H, s), 4.20-4.22 (2H, m), 6.03 (1H, d, J = 7.3
Hz), 6.19 (1H, s), 6.73 (1H, s), 6.90 (1H, d, J = 7.3 Hz), 8.46 (2H, s).
EIMS (+) : 393 [M]+.
[0703] <実施例 129〉
4— (2— (3, 5 ジクロ口ピリジンー4 ィル)ェチル)ー7 メトキシピラゾロ [1 , 5 - a] ピリジンー2—カルボアルデヒド
[0704] [化 202]
Figure imgf000130_0001
[0705] 実施例 128の化合物 (376 mg)をアセトン (5.0 mL)及び水 (5.0 mL)に溶解し、 p-トルェ ンスルホン酸一水和物 (18.1 mg)を加え、 60°Cにて 2.5時間攪拌した。反応液に飽和 炭酸水素ナトリウム水溶液を加えた後、アセトンを減圧留去し、不溶物を濾取すること で目的物 (322 mg)を黄色粉末として得た。
:H NMR (CDC1, 400 MHz) : δ 3.06 (2Η, dd, J = 8.6, 7.3 Hz), 3.29 (2H, dd, J = 10.
4, 8.6 H), 4.20 (3H,s), 6.19 (1H, d, J = 7.9 Hz), 6.97 (1H, d, J = 7.9 Hz), 7.18 (1H, s), 8.47 (2H, s), 10.31 (1H, s).
EIMS (+): 349 [M]+.
[0706] <実施例 130〉
4— (2— (3, 5 ジクロ口ピリジンー4 ィル)ェチル)ー7 メトキシピラゾロ [1 , 5 - a] ピリジンー2—カルボ二トリル
[0707] [化 203]
Figure imgf000131_0001
[0708] 実施例 129の化合物 (320 mg)をメタノール (10 mL)に溶解し、酢酸ナトリウム (450 mg) 及びヒドロキシルァミン塩酸塩 (191 mg)を加え、常温にて 2時間攪拌した。反応液の溶 媒を減圧留去後、残渣を水で洗浄することで黄色粉末を得た。得られた粉末をジクロ ロメタン (10 mL)に懸濁し、トリェチルァミン (0.375 mL)及びトリフルォロ酢酸無水物 (0. 249 mL)を加え、常温にて 2.5時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶 液を加えた後、酢酸ェチルにて 3回抽出した。合わせた抽出層を飽和食塩水で洗浄 後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。残渣を再結晶 (エタノール) することで目的物 (225 mg)を黄色粉末として得た。
融点: 208-209°C
:H NMR (DMSO-d, 400 MHz) : δ 3.05 (2H, t, J = 7.6 Hz), 3.21 (2H, t, J = 7.6 Hz)
6
, 4.09 (3H,s), 6.56 (1H, d, J = 7.9 Hz), 7.11 (1H, d, J = 7.9 Hz), 7.42 (1H, s), 8.57 (2H, s).
HRESIMS (+) : 347.04773 (C H CI N Oとして計算ィ直 347.04664).
16 13 2 4
元素分析:実測値 C 55.15%, H 3.49%, N 15.93%, C H CI N 0として計算値 C 55.3
16 12 2 4
5%, H 3.49%, N 15.93%.
[0709] <実施例 131〉
3, 5 ジクロロー 4 (2— (2 シァノー 7 メトキシピラゾロ [1 , 5— a]ピリジンー4 ィル)ェチル)ピリジン 1一才キシド
[0710] [化 204]
Figure imgf000132_0001
[0711] 実施例 130の化合物 (114 mg)をクロ口ホルム (3.3 mL)に溶解し、 mCPBA(262 mg)を 加え、常温にて 4.5時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えた 後、酢酸ェチルにて 3回抽出した。合わせた抽出層を飽和食塩水で洗浄後、無水硫 酸ナトリウムで乾燥し、減圧下溶媒を留去した。残渣を薄層シリカゲルクロマトグラフィ 一 (酢酸ェチル:メタノール = 10 : 1)で精製することで目的物 (21.9 mg)を無色粉末とし て得た。
融点: 212-213°C
:H NMR (DMSO-d, 400 MHz) : δ 3.02 (2H, t, J = 7.3 Hz), 3.12 (2H, t, J = 7.3 Hz)
, 4.09 (3H, s), 6.56 (1H, d, J = 7.9 Hz), 7.12 (1H, d, J = 7.9 Hz), 7.45 (1H, s), 8.53 (2H, s).
HRESIMS (+) : 363.04173 (C H CI N Oとして計算値 363.04156).
16 13 2 4 2
[0712] <実施例 132〉
2- (1 , 3—ジォキソランー2—ィノレ)ー7—メトキシピラゾロ [1 , 5— a]ピリジンー4一力 ルポアルデヒド
[0713] [化 205]
Figure imgf000132_0002
実施例 127の化合物 (1.83 g)をクロ口ホルム (70 mL)に溶解し、活性二酸化マンガン ( 6.36 g)を加え、 50°Cにて 1.5時間攪拌した。不溶物をセライトを用いて濾去し、濾液の 溶媒を減圧留去することで目的物 (1.75 g)を黄色粉末として得た。 H NMR (CDC1, 400 MHz) : δ 4.07—4.11 (2H, m), 4.20—4.22 (2H, m), 4.26 (3H, s),
6.23 (1H, s), 6.28 (1H, d, J = 7.9 Hz), 7.43 (1H, s), 7.76 (1H, d, J = 7.9 Hz), 9.95 ( 1H, s).
CMS (+): 249 [M+H]+.
[0715] <実施例 133〉
l - (2 - (l , 3 ジォキソランー2 ィノレ)ー7 メトキシピラゾロ [1 , 5 a]ピリジン 4ーィノレ)ー2—(3, 5 ジクロ口ピリジンー4 ィル)エタノール
[0716] [化 206]
Figure imgf000133_0001
[0717] アルゴン雰囲気下、ジイソプロピルアミン (0.724 mL)を THF(30 mL)に溶解し、 0°Cに て n-ブチルリチウムのへキサン溶液 (1.58 mol/L, 3.06 mL)を加え、 0°Cにて 30分攪拌 した。 -78°Cにて 3,5-ジクロロ- 4-ピコリン (773 mg)の THF溶液 (3.0 mL)を加え、 _78°C 力、ら 0°Cまで昇温させた後、 _78°Cにて実施例 132の化合物 (800 mg)の THF溶液 (5.0 mL)を加え、 -78°Cにて 30分攪拌した。反応液に飽和塩化アンモニゥム水溶液をカロえ た後、酢酸ェチルにて 3回抽出した。合わせた抽出層を飽和食塩水で洗浄後、無水 硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。残渣をジイソプロピルエーテルで 洗浄することで目的物 (1.27 g)を無色粉末として得た。
:H NMR (CDC1, 400 MHz) : δ 3.41 (1Η, dd, J = 13.4, 4.9 Hz), 3.60 (1H, dd, J = 1
3.4, 8.6 Hz), 4.07-4.11 (2H, m), 4.15 (3H, s), 4.17-4.21 (2H, m), 5.32-5.36 (1H, m ), 6.08 (1H, d, J = 7.9 Hz), 6.19 (1H, s), 6.85 (1H, s), 7.17 (1H, d, J = 7.9 Hz), 8.46 (2H, s).
ESIMS (+) : 410 [M+H]+.
[0718] <実施例 134〉
4— (2— (3, 5 ジクロロピリジン一 4 ィル)ビュル)一 2— (1 , 3 ジォキソラン一 2 ィノレ) 7 メトキシピラゾロ [1 , 5— a]ピリジン
[0719] [化 207]
Figure imgf000134_0001
[0720] アルゴン雰囲気下、実施例 133の化合物 (1.09 g)をジクロロメタン (25 mL)に溶解し、 ピリジン (2.16 mL)を加えた後、 0°Cにてトリフルォロメタンスルホン酸無水物 (0.539 mL )を加え、常温にて 1.5時間攪拌した。反応液に 10%水酸化ナトリウム水溶液 (25 mL)を 加え、 50°Cにて 2.5時間攪拌した。反応液に水を加えた後、酢酸ェチルにて 3回抽出 した。合わせた抽出層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下 溶媒を留去することで目的物 (979 mg)を黄色粉末として得た。
:H NMR (CDCl, 400 MHz) : δ 4.09—4· 10 (2Η, m), 4.20 (3Η, s), 4.21-4.23 (2Η, m),
3
6.20-6.21 (2Η, m), 6.94 (1Η, s), 7.19 (1Η, d, J = 17.1 Hz), 7.40 (1H, d, J = 7.9 Hz
), 7.63 (1H, d, J = 17.1 Hz), 8.52 (2H, s).
ESIMS (+): 392 [M+H]+.
[0721] <実施例 135〉
2- (1 , 3 ジォキソラン一 2 ィル) 7 メトキシ一 4— (2- (ピリジン一 4 ィル) ェチル)ピラゾ口 [1 , 5— a]ピリジン
[0722] [化 208]
Figure imgf000134_0002
[0723] 実施例 134の化合物 (600 mg)を DMF(30 mL)に溶解し、 10%パラジウム炭素 (60.0 mg) 及びトリェチルァミン (2.13 mL)を加え、水素雰囲気下、常温にて 2時間攪拌した。不 溶物をセライトを用いて濾去し、濾液に水を加えた後、酢酸ェチルにて 3回抽出した。 合わせた抽出層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒 を留去した。残渣を DMF(15 mL)に溶解し、 10%パラジウム炭素 (60.0 mg)及びトリェチ ルァミン (2.13 mL)を加え、水素雰囲気下、常温にて 3時間攪拌した。不溶物をセライ トを用いて濾去し、濾液に水を加えた後、酢酸ェチルにて 3回抽出した。合わせた抽 出層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去する ことで目的物 (470 mg)を黄色油状物として得た。
:H NMR (CDCl, 400 MHz) : δ 3.01-3.06 (4Η, m), 4.07—4.13 (5Η, m), 4.17—4.23 (2
Η, m), 5.98 (1Η, d, J = 7.9 Hz), 6.18 (1H, s), 6.65 (1H, s), 6.75 (1H, d, J = 7.9 Hz): 7.07 (2H, d, J = 6.1 Hz), 8.49 (2H, d, J = 6.1 Hz).
EIMS (+) : 325[M]+.
[0724] <実施例 136〉
7—メトキシ一 4— ( 2— (ピリジン一 4—ィル)ェチル)ピラゾ口 [1 , 5— a]ピリジン一 2— カルボアルデヒド
[0725] [化 209]
Figure imgf000135_0001
[0726] 実施例 135の化合物 (470 mg)をアセトン (7.0 mL)及び水 (7.0 mL)に溶解し、 p-トルェ ンスルホン酸一水和物 (299 mg)を加え、 70°Cにて 1時間攪拌した。反応液に飽和炭 酸水素ナトリウム水溶液を加えた後、酢酸ェチルにて 3回抽出した。合わせた抽出層 を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。残渣 をシリカゲルカラムクロマトグラフィー (酢酸ェチル:メタノール = 20: 1)で精製し、 目的 物 (292 mg)を無色粉末として得た。 H NMR (CDC1, 400 MHz) : δ 3.01—3.03 (2H, m), 3.10—3.11 (2H, m), 4.18 (3H, s),
6.14 (1H, d, J = 7.3 Hz), 6.84 (1H, d, J = 7.3 Hz), 7.06 (2H, d, J = 6.1 Hz), 7.10 (1
H, s), 8.50 (2H, d, J = 6.1 Hz), 10.31 (1H, s).
EIMS (+) : 281 [M]+.
[0727] <実施例 137〉
7—メトキシ一 4— ( 2— (ピリジン一 4—ィル)ェチル)ピラゾ口 [1 , 5— a]ピリジン一 2— カルボ二トリノレ
[0728] [化 210]
Figure imgf000136_0001
[0729] 実施例 136の化合物 (159 mg)をメタノール (6.0 mL)に溶解し、酢酸ナトリウム (295 mg )及びヒドロキシルァミン塩酸塩 (125 mg)を加え、常温にて 2時間攪拌した。反応液の 溶媒を減圧留去後、残渣を水で洗浄することで黄色粉末を得た。得られた粉末をジ クロロメタン (5.0 mUに懸濁し、トリェチルァミン (0.329 mU及びトリフルォロ酢酸無水 物 (0.131 mL)を加え、常温にて 2時間攪拌した。反応液に飽和炭酸水素ナトリウム水 溶液を加えた後、酢酸ェチルにて 3回抽出した。合わせた抽出層を飽和食塩水で洗 浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラム クロマトグラフィー (酢酸ェチル:メタノール = 20 : 1)で精製し、ジイソプロピルエーテル で洗浄することで目的物 (105 mg)を黄色粉末として得た。
融点: 191-192°C
:H NMR (DMSO-d, 400 MHz) : δ 2.96 (2H, dd, J = 8.6, 5.5 Hz), 3.09 (2H, dd, J =
8.6, 5.5 Hz), 4.08 (3H, s), 6.57 (1H, d, J = 7.3 Hz), 7.19 (1H, d, J = 7.3 Hz), 7.27 ( 2H, d, J = 6.1 Hz), 7.57 (1H, s), 8.43 (2H, d, J = 6.1 Hz)..
HREIMS (+) : 278.1135 (C H N Oとして計算値 278.1168). 元素分析:実測値 C 68.81%, H 5.14%, N 19.92%, C H N 0として計算値 C 69.05%
16 14 4
H 5.07%, N 20.13%.
[0730] <実施例 138〉
4一(2—(2 シァノー 7 メトキシピラゾロ [1, 5 a]ピリジン 4 ィル)ェチル)ピリ ジン 1ーォキシド
[0731] [化 211]
Figure imgf000137_0001
[0732] 実施例 137の化合物 (18.1 mg)をクロ口ホルム (1.0 mL)に溶解し、 0°Cにて mCPBA(25 .9 mg)を加え、常温にて 45分間攪拌した。反応液を薄層クロマトグラフィー (酢酸ェチ ル:メタノール = 4 : 1)で精製することで目的物 (13.7 mg)を無色粉末として得た。
融点: 206-208°C (decomp.)
:H NMR (DMSO-d, 400 MHz) : δ 3.02—3.10 (4H, m), 4.16 (3H, s), 6.18 (1H, d, J =
6
7.9 Hz), 6.85 (1H, d, J = 7.9 Hz), 6.98 (1H, s), 6.99 (2H, d, J = 6.7 Hz), 8.11 (2H, d, J = 6.7 Hz).
HRCIMS (+) : 295.11756 (C H N Oとして計算値 295.11950).
16 15 4 2
[0733] <実施例 139〉
1 - (2 - (1 , 3—ジォキソランー2 ィノレ)ー7 メトキシピラゾロ [1 , 5 a]ピリジン
4ーィノレ) 2— (3, 5 ジクロロピリジン一 4 ィル)ェ
[0734] [化 212]
Figure imgf000138_0001
[0735] アルゴン雰囲気下、実施例 133の化合物 (1.10 g)をジクロロメタン (30 mL)に溶解し、 0°Cにてデスマーチンペルョージナン (1.49 g)を加え、 0°Cにて 1時間攪拌した。反応 液に飽和炭酸水素ナトリウム水溶液を加えた後、酢酸ェチルにて 3回抽出した。合わ せた抽出層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留 去した。残渣をシリカゲルカラムクロマトグラフィー (酢酸ェチル)で精製し、 目的物 (973 mg)を黄色粉末として得た。
:H NMR (CDCl, 400 MHz) : δ 4.06-4.08 (2Η, m), 4.14-4.17 (2Η, m), 4.28 (3Η, s),
4.70 (2Η, s), 6.22 (1Η, s), 6.25 (1Η, d, J = 7.9 Hz), 7.40 (1H,s), 8.10 (1H, d, J = 7
.9 Hz), 8.54 (2H, s).
EIMS (+): 407 [M]+.
[0736] <実施例 140〉
4— (2— (3, 5 ジクロ口ピリジンー4 ィル)ァセチル)ー7 メトキシピラゾロ [1 , 5— a]ピリジンー2—カルボアルデヒド
[0737] [化 213]
Figure imgf000138_0002
実施例 139の化合物 (973 mg)をアセトン (20 mL)及び水 (10 mL)に溶解し、 p-トルェ ンスルホン酸一水和物 (97.0 mg)を加え、 60°Cにて 8時間攪拌した。反応液に飽和炭 酸水素ナトリウム水溶液を加えた後、アセトンを減圧留去し、析出物を濾取することで 目的物 (801 mg)を黄色粉末として得た。
:H NMR (CDC1, 400 MHz) : δ 4.35 (3H, s), 4.71 (2H, s), 6.41 (1H, d, J = 7.9 Hz),
3
7.81 (1H, s), 8.16 (1H, d, J = 7.9 Hz), 8.55 (2H, s), 10.31 (1H, s).
EIMS (+) : 203 [M]+.
[0739] <実施例 141〉
4— (2— (3, 5 ジクロ口ピリジンー4 ィル)ァセチル)ー7 メトキシピラゾロ [1 , 5— a]ピリジン 2—カルボ二トリル
[0740] [化 214]
Figure imgf000139_0001
[0741] 実施例 140の化合物 (801 mg)をメタノール (25 mL)に溶解し、酢酸ナトリウム (1.08 g) 及びヒドロキシルァミン塩酸塩 (459 mg)を加え、常温にて 4時間攪拌した。反応液の溶 媒を減圧留去後、残渣を水で洗浄することで黄色粉末を得た。得られた粉末をジクロ ロメタン (20 mL)に懸濁し、トリェチルァミン (0.882 mL)及びトリフルォロ酢酸無水物 (0. 586 mL)を加え、常温にて 2時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液 を加えた後、酢酸ェチルにて 3回抽出した。合わせた抽出層を飽和食塩水で洗浄後 、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。残渣を再結晶 (メタノール)す ることで目的物 (489 mg)を緑色粉末として得た。
融点: 194-196°C
:H NMR (DMSO-d, 400 MHz) : δ 4.30 (3H, s), 4.88 (2H, s), 6.91 (1H, d, J = 7.9 H
6
z), 7.73 (1H, s), 8.68 (2H, s), 8.72 (1H, d, J = 7.9 Hz).
HREIMS (+) : 360.0154 (C H CI N Oとして計算値 360.0181).
16 10 2 4 2
元素分析:実測値 C 52.99%, H 2.89%, N 15.31%, C H CI N 0として計算値 C 53.2
16 10 2 4 2
1%, H 2.79%, N 15.51%. [0742] <実施例 142〉
3, 5 ジクロロー 4 (2— (2 シァノー 7 メトキシピラゾロ [1 , 5— a]ピリジン 4 - ィル) 2—ォキソェチル)ピリジン 1ーォキシド
[0743] [化 215]
Figure imgf000140_0001
[0744] 実施例 141の化合物 (100 mg)をクロ口ホルム (5.0 mL)に溶解し、 mCPBA(220 mg)を 加え、常温にて 25時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えた 後、酢酸ェチルにて 3回抽出した。合わせた抽出層を飽和食塩水で洗浄後、無水硫 酸ナトリウムで乾燥
し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー (酢酸ェチル:メ タノール =4: 1)で精製した後、ジイソプロピルエーテルで洗浄することで目的物 (57.8 mg)を黄色粉末として得た。
融点: 186-189°C
:H NMR (DMSO-d, 400 MHz) : δ 4.29 (3H, s), 4.78 (2H, s), 6.90 (1H, d, J = 7.9 H
6
z), 7.74 (1H, s), 8.65 (2H, s), 8.70 (1H, d, J = 7.9 Hz).
HRESIMS (+) : 377.02108 (C H CI N Oとして計算値 377.02082).
16 11 2 4 3
[0745] <実施例 143〉
7 メトキシ 4— (2 (ピリジン一 4 ィル)ァセチル)ピラゾ口 [1 , 5— a]ピリジン一 2 カルボ二トリノレ
[0746] [化 216]
Figure imgf000141_0001
[0747] 実施例 141の化合物 (361 mg)を DMF(10 mUに溶解し、トリェチルァミン (1.39 mU及 び 10%パラジウム炭素 (35 mg)を加え、水素雰囲気下、常温にて 15.5時間攪拌した。 反応液に飽和炭酸水素ナトリウム水溶液及び酢酸ェチルを加えた後、不溶物をセラ イトを用いて濾去した。濾液を酢酸ェチルにて 3回抽出した。合わせた抽出層を飽和 食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。残渣をシリ 力ゲルカラムクロマトグラフィー (酢酸ェチル:メタノール = 10 : 1)で精製した後、再結 晶 (エタノール)することで目的物 (60.0 mg)を黄色粉末として得た。
:H NMR (DMSO-d, 400 MHz) : δ 4.27 (3Η, s), 4.52 (2Η, s), 6.86 (1Η, d, J = 7.9 Η
6
ζ), 7.31 (2Η, d, J = 6.1 Hz), 7.76 (1Η, s), 8.50 (2Η, d, J = 6.1 Hz), 8.56 (1H, d, J = 7.9 Hz).
HREIMS (+) : 292.0983 (C H N Oとして計算値 292.0960).
16 12 4 2
[0748] <実施例 144〉
4— (2 - (2 シァノ 7 メトキシピラゾロ [1 , 5— a]ピリジン一 4 ィル) 2 ォキソ ェチル)ピリジン 1ーォキシド
[0749] [化 217]
Figure imgf000141_0002
実施例 143の化合物 (19.0 mg)をクロ口ホルム (1.0 mUに溶解し、 0°Cにて mCPBA(28 .0 mg)を加え、常温にて 1時間攪拌した。反応液を薄層クロマトグラフィーにて精製す ることで目的物 (9.9 mg)を黄色粉末として得た。
融点: 170-172°C
:H NMR (DMSO-d, 400 MHz) : δ 4.27 (3H, s), 4.52 (2H, s), 6.87 (1H, d, J = 7.9 H
6
z), 7.31 (2H, d, J = 6.8 Hz), 7.77 (1H, s), 8.17 (2H, d, J = 6.8 Hz), 8.53 (1H, d, J = 7.9 Hz).
HRESIMS (+) : 309.09877 (C H N Oとして計算ィ直 309.09876).
16 13 4 3
[0751] <実施例 145〉
4一(2—(7 メトキシ 2 (トリフルォロメチル)ピラゾ口 [1 , 5— a]ピリジンー4ーィル
)ー2—フエニルェチル)ピリジン 1ーォキシド
[0752] [化 218]
Figure imgf000142_0001
実施例 86の化合物 (189 mg)をクロ口ホルム (5.0 mL)に溶解し、 mCPBA(160 mg)をカロ え、常温にて 1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えた後、 酢酸ェチルで 3回抽出した。得られた有機層を飽和食塩水で洗浄し、無水硫酸ナトリ ゥムで乾燥した後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィ 一 (酢酸ェチル:メタノール = 4 : 1)で精製することで目的物 (190 mg)を黄色ァモルファ スとして得た。
1H NMR (CDC1, 400 MHz) : δ 3.35 (1H, dd, J = 13.8, 7.9 Hz), 3.47 (1H, dd, J = 1
3
3.8, 7.9 Hz), 4.17 (3H, s), 4.34 (1H, t, J = 7.9 Hz), 6.23 (1H, d, J = 7.9 Hz), 6.60 ( 1H, s), 6.86 (2H, d, J = 7.3 Hz), 7.13-7.17 (3H, m), 7.23-7.29 (3H, m), 8.05 (2H, d , J = 7.3 Hz).
HREIMS (+) : 414.1388 (C H F N Oとして計算値 414.1429). [0754] <実験例 1〉 ホスホジエステラーゼ阻害活性
PDE4B触媒領域(以下 Catと略す)の cDNAはヒト由来の RNAより RT-PCRを行い単 離した。単離した cDNA断片を Gateway system (Invitrogen社製)及び Bac-to-Bac (登 録商標) Baculovirus Expression system (Invitrogen社製)で昆虫細胞 Sf に 入し、 目的の各 PDEタンパクを発現させた。この組み換え PDE4Bcatはこの PDEタンパクを高 発現した Si9細胞の培養上清もしくは細胞抽出液からイオン交換クロマトグラフィーで 精製し、以下に示す実験に用いた。
[0755] 被験化合物は 4 mmol/L溶液を段階的に 15%DMSO溶液で 4倍希釈し、 15 nmol/L 力、ら 4 mmol/Lまでの濃度の溶液を用意した(実験での最終濃度は 1.5 nmol/L力 40 0 μ mol/L)。これら被験化合物溶液 10 μ L、緩衝液 [40 mmol/L Tris-HCl (pH 7.4), 10 mmol/L MgCl ]で希釈した [3H] cAMP及び 2 X 10— 6皿 量(1 unitは pH 7.5、 30 °C の条件下で 1 μ mol/Lの cAMPを 1分間に分解する PDE量を示す)のヒト由来組み換 え PDEタンパク 40 しを 96穴プレートに添加し、 30 °Cで 20分間反応した。その後 65 しで 2分間反 J心させに後、 1 mg/mL 5 nucleotidase (Crotalus atrox venom, sigma社 製) 25 μ Lを添加し、 30 °Cで 10分間反応した。反応終了後、 Dowex溶液 [300 mg/m L Dowex 1x8-400 (Sigma Aldrich社製), 33 % Ethanol] 200 μ Lを添カロし、 4。Cで 20分 間振動混合した後 MicroScint 20 (Packard社製) 200 Lを添加し、シンチレーシヨン カウンター(Topcount、 Packard社製)を用いて測定した。 IC 値の算出は GraphPad P rism v3.03 (GraphPad Software社製)を用いて行った。なお、 1 mol/L 〉IC50値≥0· 1 ^ mol/Lを( + )、 0· 1 mol/L > IC ィ直 を(+ + )として表記した。
[0756] 結果を表 1に示す。
[0757] [表 1] 表 1
50(μπιοΙ/ϋ Ι05ο(μηιοΙ/ϋ
実施例番号 PDE4 実施例番号 PDE4
77 + 91 ++
78 ++ 92 ++
79 十 + 93 ++
80 (90) ++ 99 ++
84 ++ 108 ++
86 ++ 121 ++
87 ++ 122 ++
88 ++ 142 ++
89 ++
[0758] <実験例 2〉モルモットにおけるヒスタミン誘発気道収縮反応
モルモットをペントバルビタール (30 mg/kg, ί·ρ·)で麻酔し、左外頸静脈に静脈投与 用力ニューレ、右内頸動脈に採血及び血圧測定用力ニューレ、 気管に気管力ニュー レを揷入した。 60 times/min, 10 mL/kg/strokeの条件で人工呼吸し、気管力ニュー レの側枝からオーバフローする空気(エアフロー)を bronchospasm transducer(Ugo-B asile)にて測定し、 Power Lab (ADInstruments Japan)を介してコンピューターに記録し た。ガラミン (10 mg/kg, ί·ν·)にて不動化した後、 10分おきにヒスタミン (12.5 μ g/kg, i. v.)を投与した。ヒスタミンによる気道収縮が安定した後、 DMSOに溶解した被検化合 物 (0.1 mg/kg, i.v.)を投与し、投与 30秒後のヒスタミンによる気道収縮反応を測定し、 被検化合物の気道収縮抑制作用を調べた。気道収縮をエアフロー値で記録し、結 果は投与 30秒後のヒスタミンによるエアフローの最大値を投与前の最大値に対する 割合で表した。なお、抑制率≥ 90%を( + + + )、 90% >抑制率^ 70%を( + + ) , 70 % >抑制率≥ 30%を ( + )として表記した。
[0759] 結果を表 2に示す。
[0760] [表 2] 表 2 実施例番号 抑制率
77 +
78 +
79 +
80(90) +++
88 ++
89 +
[0761] <実験例 3 >ラットにおける LPS急性炎症モデル
Lipopolysaccharide from E.coli serotype 055:B5 (LPS)吸入の 1時間前に化合物 3 m g/kgをラットに経口投与し、 50 mlの LPS溶液をネブライザ一で霧化して 30分間吸入さ せた。 LPS吸入 3時間後,ラットを 20% urethane (5 ml/rat, i.p.)で安楽死させた。気道 より 5 mlの気管支 ·肺胞洗浄用生理食塩液を気管支 ·肺胞内腔に注入し、 5 ml注射 筒で 3回洗浄し、この操作を 2回繰り返し気管支 ·肺胞洗浄液 (BALF)として回収した 回収した BALFを 1200 rpm, 10 min, 4°C (Hirtachi; himac CR 5 DL)で遠心し、沈查 を 10 mlの 0.1% Bovine serum albumin/生理食塩液で再懸濁した後、等量のチュルク 液を加え白血球を染色し、顕微鏡下にて総白血球数を数え抑制率を算出した。なお 、抑制率≥ 60% ( + + )、 60% >抑制率≥ 30% ( + )として表記した。
[0762] 結果を表 3に示す。
[0763] [表 3]
実施例番号 抑制率 実施例番号 抑制率
77 NT 92 ++
78 + 93 ++
79 ++ 1 08 ++
80 (90) NT 1 21 ++
88 ++ 1 22 ++
89 + 142 ++
91 ++
[0764] 以上のように、一般式(1 )で表される本発明化合物は PDE阻害活性を有し、各種 動物実験モデルにおいてその有効性が確認された。 産業上の利用可能性
上述のように、本発明は、新規なピラゾ口ピリジン誘導体とその付加塩が優れた PD E阻害作用を有することを見出したものである。このような PDE阻害剤作用を有する 化合物は、気管支喘息、慢性閉塞性肺疾患 (COPD)、間質性肺炎、アレルギー性 鼻炎、アトピー性皮膚炎、関節リウマチ、多発性硬化症、ハンチントン病、ァルツハイ マー病、認知症、パーキンソン病、統合失調症などの予防又は治療薬として有用で ある。

Claims

請求の範囲
般式 (1)
Figure imgf000147_0001
[式中、 R1は水素原子、置換されていてもよい炭素数 1〜6のアルキル基(置換基は、 ハロゲン原子、炭素数 1〜6のアルコキシ基又は水酸基である)、炭素数 3〜8のシク 口アルキル基、炭素数 1〜6のアルカノィル基、ォキシム基又はシァノ基を示し、 R2は水素原子、置換されていてもよい炭素数;!〜 6のアルキル基(置換基は、炭素数 ;!〜 6のアルコキシ基又は水酸基である)、炭素数 1〜6のアルコキシ基、炭素数;!〜 6 のアルキルスルファニル基、炭素数 1〜6のアルキルスルフィエル基、炭素数 1〜6の アルキルスルホニル基、置換されて!/、てもよ!/、ァミノ基(炭素数;!〜 6のアルキル基で 置換されてレ、てもよ!/、)又は炭素数 1〜6のアルカノィル基を示し、
R5及び R6は同一又は異なって水素原子又はハロゲン原子を示し、
R13は水素原子又はハロゲン原子を示し、
nは 0又は 1を示し、
[化 2]
は単結合又は二重結合を示し、
[化 3]
が二重結合の場合、 は前記二重結合の形成に関与し、 R4は水素原子又はフエ二 ノレ基を示し、
[化 4]
が単結合の場合、 は水素原子又は水酸基を示し、 R4は水素原子又はフエニル基 を示すか、あるいは R3と R4が一緒になつてォキソを形成する。 ]
で表されるピラゾ口ピリジン誘導体、その薬理学的に許容しうる塩又はそれらの水和 物。
前記一般式(1)で表される化合物が、一般式(la)
[化 5]
[式
Figure imgf000148_0001
3及び nは前記定義に同じ]で表される請求項 1記載のビラ ゾロピリジン誘導体、その薬理学的に許容しうる塩又はそれらの水和物。
[3] 前記一般式(1)で表される化合物が、一般式(lb)
[化 6]
Figure imgf000148_0002
[化 7] は前記定義に同じ]で表される請求項 1記載のピラゾ口ピリジン誘導体、その薬理学 的に許容しうる塩又はそれらの水和物。
[4] 前記一般式(1)で表される化合物において、 R13が水素原子である請求項 1記載の ピラゾ口ピリジン誘導体、その薬理学的に許容しうる塩又はそれらの水和物。
[5] 前記一般式(1)で示される化合物が、
7 メトキシ 4— [ (2 ピリジン一 4 ィル)ビニノレ 2 トリフルォロメチルピラゾ口 [ 1 , 5— a]ピリジン、
7 メトキシ 4— [ (2 ピリジン一 4 ィル)ェチル] 2 トリフルォロメチルピラゾ口 [ 1 , 5— a]ピリジン、
1— (7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 ィル) 2— (ピリジン一 4—ィル)エタノン、
2 - (3, 5 ジクロロピリジン一 4 ィル) 1— (7 メトキシ一 2 トリフルォロメチル ピラゾ口 [1 , 5— a]ピリジン一 4—ィル)エタノン、
(E)— 4— [2— (3, 5 ジクロロピリジン一 4 ィル)ビュル]— 7 メトキシ一 2 トリフ ルォロメチルピラゾロ [1 , 5— a]ピリジン、
2 - (ピリジン一 4 ィル) 1— (7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a ]ピリジン 4—ィル)エタノン、
4— (2— (7 メトキシ一 2— (トリフルォロメチル)ピラゾ口 [1、 5-a]ピリジン一 4 ィル) ェチル)ピリジン
1一才キシド、
3, 5 ジクロロー 4 (2— (7 メトキシー2 (トリフルォロメチル)ピラゾ口 [1、 5-a]ピ リジン 4 ィル) 2—ォキソェチル)ピリジン 1ーォキシド、
4一(2—(7 メトキシー2 (トリフルォロメチル)ピラゾ口 [1 ,5— a]ピリジンー4ーィル )一 2—ォキソェチル)ピリジン
1一才キシド、
2 - (3,5 ジクロロピリジン- 4 ィル) 1— (7— (メチルァミノ) - 2 - (トリフルォロメ チル)ピラゾ口 [1 ,5— a]ピリジンー4 ィル)エタノン、
3, 5 ジクロロー 4一(2—(2 (ジフルォロメチル)ー7 メトキシピラゾロ [l,5— a]ピ リジン 4 ィル) 2 ォキソェチル)ピリジン
1一才キシド、
1— (2 シクロプロピル一 7 メトキシピラゾ口 [1 ,5— a]ピリジン一 4 ィル) 2— (ピ リジン 4ーィノレ)エタノン、
1一(3 クロロー 2 シクロプロピノレー 7 メトキシピラゾロ [ 1, 5— a]ピリジン 4ーィ ル) - 2 - (3,5—ジクロ口ピリジンー4 ィル)エタノン、
3, 5 ジクロロー 4 (2— (2 シァノー 7 メトキシピラゾロ [1 , 5— a]ピリジンー4 ィル) 2—ォキソェチル)ピリジン 1ーォキシドである請求項 1記載のピラゾ口ピリジ ン誘導体、その薬理学的に許容しうる塩又はそれらの水和物。
[6] 請求項 1〜5のいずれ力、 1項に記載のピラゾ口ピリジン誘導体、その薬理学的に許容 しうる塩又はそれらの水和物を含有するホスホジエステラーゼ(PDE)阻害剤。
[7] 請求項 1〜5のいずれ力、 1項に記載のピラゾ口ピリジン誘導体、その薬理学的に許容 しうる塩又はそれらの水和物を含有する医薬。
PCT/JP2007/067267 2006-09-06 2007-09-05 Dérivé de pyrazolopyridine et inhibiteur de la phosphodiestérase (pde) qui le contient en tant que matière active WO2008029829A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07828195A EP2060572A4 (en) 2006-09-06 2007-09-05 PYRAZOLOPYRIDINE DERIVATIVE AND THIS ACTIVE PHOSPHODIESTERASE (PDE) INHIBITOR
JP2008533178A JPWO2008029829A1 (ja) 2006-09-06 2007-09-05 ピラゾロピリジン誘導体及びそれらを有効成分とするホスホジエステラーゼ(pde)阻害剤
CA002661992A CA2661992A1 (en) 2006-09-06 2007-09-05 Pyrazolopyridine derivative and phosphodiesterase (pde) inhibitor containing the same as active ingredient
US12/310,736 US20090318385A1 (en) 2006-09-06 2007-09-05 Pyrazolopyride derivative and phosphodiesterase ( pde) inhibitors containing the same as active ingredient

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-241617 2006-09-06
JP2006241617 2006-09-06

Publications (1)

Publication Number Publication Date
WO2008029829A1 true WO2008029829A1 (fr) 2008-03-13

Family

ID=39157255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067267 WO2008029829A1 (fr) 2006-09-06 2007-09-05 Dérivé de pyrazolopyridine et inhibiteur de la phosphodiestérase (pde) qui le contient en tant que matière active

Country Status (5)

Country Link
US (1) US20090318385A1 (ja)
EP (1) EP2060572A4 (ja)
JP (1) JPWO2008029829A1 (ja)
CA (1) CA2661992A1 (ja)
WO (1) WO2008029829A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035745A1 (ja) 2008-09-25 2010-04-01 杏林製薬株式会社 ヘテロ環ビアリール誘導体及びそれらを有効成分とするpde阻害剤
WO2010041711A1 (ja) 2008-10-09 2010-04-15 杏林製薬株式会社 イソキノリン誘導体及びそれらを有効成分とするpde阻害剤
WO2013018374A1 (ja) * 2011-08-03 2013-02-07 杏林製薬株式会社 ケトン誘導体、及びそれを含む医薬

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504442A (ja) * 1992-12-23 1995-05-18 セルテック リミテッド ホスホジエステラーゼ阻害剤としての三置換フェニル誘導体
JPH07504687A (ja) * 1992-12-23 1995-05-25 セルテック リミテッド スチリル誘導体およびそれらの製造方法
WO1996036624A1 (fr) 1995-05-19 1996-11-21 Kyowa Hakko Kogyo Co., Ltd. Composes heterocycliques contenant de l'oxygene
WO1997048697A1 (en) 1996-06-19 1997-12-24 Rhone-Poulenc Rorer Limited Substituted azabicylic compounds and their use as inhibitors of the production of tnf and cyclic amp phosphodiesterase
WO1998014448A1 (fr) 1996-10-04 1998-04-09 Kyorin Pharmaceutical Co., Ltd. Derives de pyrazolopyridylpyridazinone et procede de preparation des ces derniers
JPH10109988A (ja) 1996-10-04 1998-04-28 Kyorin Pharmaceut Co Ltd テトラヒドロピラゾロピリジンピリダジノン誘導体及びその製造法
WO1998022455A1 (fr) 1996-11-19 1998-05-28 Kyowa Hakko Kogyo Co., Ltd. Composes heterocycliques d'oxygene
WO1999016768A1 (en) 1997-10-01 1999-04-08 Kyowa Hakko Kogyo Co., Ltd. Benzofuran derivatives
WO1999037640A1 (fr) 1998-01-26 1999-07-29 Kyowa Hakko Kogyo Co., Ltd. Composes heterocycliques oxygenes
WO2001024781A2 (en) 1999-10-07 2001-04-12 Novaneuron Inc. Gene necessary for striatal function, uses thereof, and compounds for modulating same
US20020128290A1 (en) 1995-05-19 2002-09-12 Etsuo Ohshima Derivatives of benzofuran or benzodioxole
JP2002363103A (ja) 2001-04-20 2002-12-18 Pfizer Prod Inc 選択的pde10阻害剤の治療的使用
WO2003066044A1 (de) 2002-02-08 2003-08-14 Kyowa Hakko Kogyo Co., Ltd. Neue arzneimittelkompositionen enthaltend neben anticholinergika heterocyclische verbindungen
JP2004196785A (ja) 2002-12-02 2004-07-15 Kyowa Hakko Kogyo Co Ltd フロピリジン誘導体
JP2006117647A (ja) 2004-09-22 2006-05-11 Kyorin Pharmaceut Co Ltd ハロゲノピラゾロピリジンピリダジノン誘導体とその付加塩及びそれを有効成分とするpde阻害剤
JP2006169138A (ja) 2004-12-14 2006-06-29 Kyorin Pharmaceut Co Ltd ピラゾロピリジンピラゾロン誘導体とその付加塩及びpde阻害剤

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622977A (en) * 1992-12-23 1997-04-22 Celltech Therapeutics Limited Tri-substituted (aryl or heteroaryl) derivatives and pharmaceutical compositions containing the same
US20040152106A1 (en) * 1999-10-07 2004-08-05 Robertson Harold A. Gene necessary for striatal function, uses thereof, and compounds for modulating same
US20030018047A1 (en) * 2001-04-20 2003-01-23 Pfizer Inc. Therapeutic use of selective PDE10 inhibitors
US20030032579A1 (en) * 2001-04-20 2003-02-13 Pfizer Inc. Therapeutic use of selective PDE10 inhibitors
KR20060017494A (ko) * 2003-04-11 2006-02-23 그렌마크 파머수티칼스 에스. 아. 염증 및 알레르기성 질환 치료용으로 유용한 신규 헤테로사이클릭 화합물, 이의 제조방법 및 이를 함유하는 약학 조성물
WO2006041120A1 (ja) * 2004-10-13 2006-04-20 Kyowa Hakko Kogyo Co., Ltd. 医薬組成物
US7432266B2 (en) * 2004-10-15 2008-10-07 Memory Pharmaceuticals Corporation Phosphodiesterase 4 inhibitors

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504687A (ja) * 1992-12-23 1995-05-25 セルテック リミテッド スチリル誘導体およびそれらの製造方法
JPH07504442A (ja) * 1992-12-23 1995-05-18 セルテック リミテッド ホスホジエステラーゼ阻害剤としての三置換フェニル誘導体
US20020128290A1 (en) 1995-05-19 2002-09-12 Etsuo Ohshima Derivatives of benzofuran or benzodioxole
WO1996036624A1 (fr) 1995-05-19 1996-11-21 Kyowa Hakko Kogyo Co., Ltd. Composes heterocycliques contenant de l'oxygene
WO1997048697A1 (en) 1996-06-19 1997-12-24 Rhone-Poulenc Rorer Limited Substituted azabicylic compounds and their use as inhibitors of the production of tnf and cyclic amp phosphodiesterase
WO1998014448A1 (fr) 1996-10-04 1998-04-09 Kyorin Pharmaceutical Co., Ltd. Derives de pyrazolopyridylpyridazinone et procede de preparation des ces derniers
JPH10109988A (ja) 1996-10-04 1998-04-28 Kyorin Pharmaceut Co Ltd テトラヒドロピラゾロピリジンピリダジノン誘導体及びその製造法
WO1998022455A1 (fr) 1996-11-19 1998-05-28 Kyowa Hakko Kogyo Co., Ltd. Composes heterocycliques d'oxygene
WO1999016768A1 (en) 1997-10-01 1999-04-08 Kyowa Hakko Kogyo Co., Ltd. Benzofuran derivatives
WO1999037640A1 (fr) 1998-01-26 1999-07-29 Kyowa Hakko Kogyo Co., Ltd. Composes heterocycliques oxygenes
WO2001024781A2 (en) 1999-10-07 2001-04-12 Novaneuron Inc. Gene necessary for striatal function, uses thereof, and compounds for modulating same
JP2002363103A (ja) 2001-04-20 2002-12-18 Pfizer Prod Inc 選択的pde10阻害剤の治療的使用
WO2003066044A1 (de) 2002-02-08 2003-08-14 Kyowa Hakko Kogyo Co., Ltd. Neue arzneimittelkompositionen enthaltend neben anticholinergika heterocyclische verbindungen
JP2004196785A (ja) 2002-12-02 2004-07-15 Kyowa Hakko Kogyo Co Ltd フロピリジン誘導体
JP2006117647A (ja) 2004-09-22 2006-05-11 Kyorin Pharmaceut Co Ltd ハロゲノピラゾロピリジンピリダジノン誘導体とその付加塩及びそれを有効成分とするpde阻害剤
JP2006169138A (ja) 2004-12-14 2006-06-29 Kyorin Pharmaceut Co Ltd ピラゾロピリジンピラゾロン誘導体とその付加塩及びpde阻害剤

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035745A1 (ja) 2008-09-25 2010-04-01 杏林製薬株式会社 ヘテロ環ビアリール誘導体及びそれらを有効成分とするpde阻害剤
WO2010041711A1 (ja) 2008-10-09 2010-04-15 杏林製薬株式会社 イソキノリン誘導体及びそれらを有効成分とするpde阻害剤
WO2013018374A1 (ja) * 2011-08-03 2013-02-07 杏林製薬株式会社 ケトン誘導体、及びそれを含む医薬

Also Published As

Publication number Publication date
EP2060572A1 (en) 2009-05-20
JPWO2008029829A1 (ja) 2010-01-21
CA2661992A1 (en) 2008-03-13
US20090318385A1 (en) 2009-12-24
EP2060572A4 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP6212678B1 (ja) 置換された多環性ピリドン誘導体の製造方法およびその結晶
EP1491540B1 (en) Intermediates useful for the synthesis of pyridazinone aldose reductase inhibitors
JP4890439B2 (ja) ピラゾロピリジン−4−イルピリダジノン誘導体とその付加塩及びそれらを有効成分とするpde阻害剤
JP2008543824A (ja) アシッドポンプアンタゴニストとしてのクロマン置換ベンゾイミダゾール誘導体
WO2008026687A1 (fr) Dérivé de pyrazolopyridine carboxamide et inhibiteur de phosphodiestérase (pde) comprenant le dérivé
JP2006117647A (ja) ハロゲノピラゾロピリジンピリダジノン誘導体とその付加塩及びそれを有効成分とするpde阻害剤
WO2013018371A1 (ja) ビアリールエステル誘導体、及びそれを含む医薬
WO2008029882A1 (fr) Dérivé de 2-alkyl-6-(pyrazolopyridin-4-yl)pyridazinone, sel d&#39;addition de celui-ci et inhibiteur de la pde comprenant le dérivé ou le sel en tant que matière active
WO2008029829A1 (fr) Dérivé de pyrazolopyridine et inhibiteur de la phosphodiestérase (pde) qui le contient en tant que matière active
JP2005514328A5 (ja)
JPWO2008156102A1 (ja) ピラゾロン誘導体及びそれらを有効成分とするpde阻害剤
CZ281853B6 (cs) Deriváty benzopyranu, jako takové, pro použití jako léčiva a pro léčení, způsob a meziprodukty pro jejich výrobu, farmaceutické prostředky na jejich bázi a způsob jejich výroby
JPWO2017164379A1 (ja) 2−アルキルカルボニルナフト[2,3−b]フラン−4,9−ジオンの関連物質の製造方法、及びその関連物質
JP2022543666A (ja) (ヘテロ)アリール-メチル-チオ-ベータ-d-ガラクトピラノシド誘導体
JP3545332B2 (ja) 新規カンプトテシン類似化合物、それらの製造方法、及びそれらを含有する医薬組成物
JP2008024599A (ja) ピリダジノン誘導体、それらを有効成分とするpde阻害剤及び医薬
JP2008069144A (ja) ピラゾロン誘導体及びそれらを有効成分とするpde阻害剤
IE862888L (en) Pyridine derivatives
JP7429236B2 (ja) ホステムサビルの調製方法
JPH0570434A (ja) 新規な2−ヒドロキシメチル−4−メトキシ−3,5−ジメチルピリジンの製造方法及びその製造中間体ならびにそれらの製造法
JP2007119397A (ja) ピラゾロピリジン誘導体とその付加塩及びそれらを有効成分とするpde阻害剤
JP2008222580A (ja) 2−置換−5−(ピラゾロピリジン−4−イル)ピラゾロン誘導体及びそれらを有効成分とするホスホジエステラーゼ阻害剤
WO1989012048A1 (en) Cis-2,6-diazabicyclo[3.3.0]octane derivatives and their medicinal use
Buonora et al. Synthesis of chiral 4, 4-disubstituted-dihydropyridazines
KR101519011B1 (ko) 비스무트 촉매를 이용한 피라노쿠마린 유도체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008533178

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007828195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2661992

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12310736

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE