WO2008029595A1 - Temperature measuring device - Google Patents

Temperature measuring device Download PDF

Info

Publication number
WO2008029595A1
WO2008029595A1 PCT/JP2007/065854 JP2007065854W WO2008029595A1 WO 2008029595 A1 WO2008029595 A1 WO 2008029595A1 JP 2007065854 W JP2007065854 W JP 2007065854W WO 2008029595 A1 WO2008029595 A1 WO 2008029595A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
temperature measuring
temperature
sheath
thermocouple
Prior art date
Application number
PCT/JP2007/065854
Other languages
French (fr)
Japanese (ja)
Inventor
Kentaro Asakura
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2007800127392A priority Critical patent/CN101421599B/en
Publication of WO2008029595A1 publication Critical patent/WO2008029595A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • G01K1/10Protective devices, e.g. casings for preventing chemical attack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/146Supports; Fastening devices; Arrangements for mounting thermometers in particular locations arrangements for moving thermometers to or from a measuring position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/08Sensor arrangement

Definitions

  • the present invention relates to a temperature measuring device that measures the temperature of a temperature-measuring object arranged in a container.
  • thermocouples with excellent thermal responsiveness are often used to measure the temperature of the mounting table.
  • a sheath made of a metal having heat resistance and a thermocouple element disposed in the sheath are used. Many sheathed thermocouples with wires are used! (See, for example, Patent Documents 1 and 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 4 63281
  • Patent Document 2 JP-A-6 176855
  • Sheath thermocouples are generally long enough to be hermetically attached to the wall of the processing vessel so that the tip is in contact with the mounting table.
  • the mounting table moves a little due to a change in pressure in the processing container, and therefore, the distal end portion of the sheath thermocouple tends to be out of contact with the mounting table. If the tip is not in contact with the mounting table, the temperature of the mounting table cannot be measured accurately.
  • the sheath thermocouple since the sheath thermocouple absorbs attachment errors and follows the movement of the mounting table, the sheath thermocouple uses a bellows on the wall of the processing container so as to have a degree of freedom in the advancing and retreating direction relative to the mounting table, that is, in the length direction. It is considered to be attached.
  • thermocouple when the sheath thermocouple is attached to the wall of the processing container using the bellows, when the inside of the processing container is depressurized, the inside of the bellows is also depressurized, and the sheath thermocouple is pressed toward the mounting table, and the sheath The thermocouple may be damaged.
  • the present invention has been made in view of the force and the circumstances, and is a temperature measuring device using a sheathed thermocouple, in which a sheathed thermocouple or a temperature-measured body is damaged due to decompression in the container.
  • An object of the present invention is to provide a temperature measuring device capable of accurately measuring the temperature of the temperature measuring object while preventing the above.
  • the present invention is a temperature measuring device using a sheath thermocouple, and the temperature of the temperature-measured body is prevented while preventing damage to the sheath thermocouple or the temperature-measured body due to decompression in the container.
  • a temperature measuring device capable of preventing corrosion caused by the corrosive gas in the container is provided.
  • the present invention relates to a temperature measuring device for measuring the temperature of a temperature-measured body arranged in a processing container, and comprises a sheath and a thermocouple wire arranged in the sheath, A tip that extends inward of the processing container and abuts the temperature-measured body and moves in the forward / backward direction following the temperature-measured body, and a buffer that extends outward from the process container and allows movement of the tip A sheathed thermocouple, a sealing member that is fixed to the outer surface of the processing container and that houses the buffer portion of the sheathed thermocouple, and a spring member that is disposed in the sealing member and biases the distal end of the sheathed thermocouple toward the temperature-measured body
  • the end portion of the buffer portion of the sheath thermocouple extends further outward through the sealing member force welded portion or the brazed portion.
  • the inside of the processing vessel has a corrosive gas atmosphere
  • the sheath, the sealing member, and the spring member are made of a material having corrosion resistance against corrosive gas. It is a temperature device.
  • the spring member comprises a coil spring, and the sealing member moves in the advancing and retreating direction with respect to the temperature-measured body as the coil spring expands and contracts.
  • the temperature measuring device is characterized in that a piston made of a material having the above is housed, and the sheath thermocouple is fixed to the piston.
  • the present invention provides the temperature measuring device, wherein the corrosive gas is a gas containing halogen, and the material having corrosion resistance to the corrosive gas is nickel (Ni) or a nickel alloy. is there.
  • the temperature measuring device is characterized in that the spring member is made of Inconel (registered trademark). It is a position.
  • the present invention is the temperature measuring device, wherein the buffer portion is bent so as to expand and contract in the advancing and retreating direction with respect to the temperature measuring object!
  • the present invention is the temperature measuring device, wherein the buffer portion is bent in a spiral shape.
  • the present invention is the temperature measuring device, wherein the buffer portion is bent in a waveform.
  • the sheath thermocouple is provided in the container so as to be positioned in the container and movable in the advancing and retreating direction following the temperature measurement object, and to extend out of the container.
  • This is composed of a buffer part that allows movement of the tip part, and is provided with a spring member that urges the tip part of the sheath thermocouple in the direction to press against the body to be measured.
  • the tip of the sheathed thermocouple without using rose can be brought into contact with the object to be measured reliably. Therefore, it is possible to accurately measure the temperature of the temperature-measured body while preventing damage to the sheath thermocouple or the temperature-measured body due to the reduced pressure in the container.
  • the sheath thermocouple is provided so as to be positioned inside the container and move in the advancing and retreating direction following the temperature measurement object, and to extend outside the container. And a spring member that urges the tip of the sheath thermocouple in the direction of pressing the temperature-measured body, which greatly affects the pressure difference inside and outside the container.
  • the tip of the sheath thermocouple which uses the received bellows or peels off part of the sheath that causes a decrease in corrosion resistance, can be reliably brought into contact with the object to be measured.
  • the sheath, sealing member, and spring member that are exposed to the corrosive gas atmosphere in the container are all formed of a corrosion-resistant material against the corrosive gas, and the joint between the sealing member and the sheath is formed by welding or brazing. Therefore, corrosion by corrosive gas can be prevented. Therefore, it is possible to accurately measure the temperature of the temperature-measured body while preventing damage to the sheathed thermocouple or temperature-measured body due to the decompression of the container and corrosion caused by the corrosive gas in the container. It becomes.
  • FIG. 1 is a cross-sectional view schematically showing a wafer processing apparatus provided with a temperature measuring device as one embodiment according to the present invention.
  • FIG. 2 (a) is a cross-sectional view of a temperature measuring device
  • FIG. 2 (b) is a cross-sectional view showing a sheath thermocouple
  • FIG. 3 is a view showing a modification of the buffer portion provided in the temperature measuring device.
  • FIG. 4 is a view showing another manner of attaching the temperature measuring device to the processing container.
  • FIG. 5 is a view showing a modification of the sealing member provided in the temperature measuring device.
  • Fig. 6 is a view showing an aspect of attachment of a sheathed thermocouple as a comparative example to a processing vessel.
  • FIG. 1 is a cross-sectional view schematically showing a wafer processing apparatus provided with a temperature measuring device as one embodiment according to the present invention.
  • the wafer processing apparatus 100 is a chamber 11 as a processing container capable of accommodating a wafer W, which is a semiconductor substrate, and is disposed in the chamber 11, and the temperature of the wafer W is set by placing the wafer W thereon.
  • a susceptor 4 as a temperature control unit to be adjusted, a temperature measuring device 5 for measuring the temperature of the susceptor 4 (temperature measurement object), and a processing gas containing a corrosive gas for performing predetermined processing on the wafer W are provided in a chamber.
  • a processing gas supply mechanism 2 for supplying the inside of the chamber 1 and a decompression mechanism 3 for reducing the pressure inside the chamber 1 are provided.
  • the chamber 11 is formed in a substantially cylindrical shape having an upper opening, and a loading / unloading port 13 for loading and unloading the wafer W is formed on the side wall of the chamber 11.
  • a gate valve 14 for opening and closing the loading / unloading port 13 is provided.
  • the susceptor 4 is provided on the bottom wall 19 of the chamber 1 through a column member 11 extending in the height direction, and a heater 40 is embedded therein, and the heater 40 is connected to a heater power supply 41. .
  • the heater power source 41 that is, the heater 40, is controlled by a controller 90 described later based on the measured temperature of the temperature measuring device 5, and thereby the temperature of the wafer W placed on the susceptor 4 is adjusted.
  • a shower head 15 is provided on the upper portion of the chamber 11 so as to close the opening and to face the susceptor 4.
  • the shower head 15 has a diffusion space 16 for diffusing the processing gas by the processing gas supply mechanism 2 inside, and a plurality or many of the processing gas discharges by the processing gas supply mechanism 2 on the surface facing the susceptor 4.
  • the discharge hole 17 is formed.
  • An exhaust port 18 is formed in the lower part of the side wall of the chamber 11. Pressure reducing mechanism 3 is exhaust An exhaust pipe 31 connected to the port 18 and an exhaust device 32 for exhausting the inside of the chamber 11 through the exhaust pipe 31 are provided.
  • the processing gas supply mechanism 2 includes a processing gas storage unit 21 in which a processing gas containing a corrosive gas such as a halogen-based gas (a gas containing gas or rhogen) is stored, and a processing gas from the processing gas storage unit 21.
  • a conduit 22 led into the diffusion space 16 of the shower head 15, and a mass flow controller 23 and a valve 24 as a flow rate adjusting mechanism for adjusting the flow rate of the processing gas flowing through the conduit 22 are provided.
  • a plurality of processing gas supply mechanisms 2 are provided.
  • FIG. 2 (a) is a cross-sectional view of the temperature measuring device 5, and FIG. 2 (b) is a cross-sectional view of the sheath thermocouple 50.
  • the temperature measuring device 5 extends inward of the chamber 1 and contacts the susceptor 4, and moves in the forward and backward direction following the susceptor 4 (one axial side) 50a and the chamber 1
  • a sheath thermocouple 50 having a buffer portion (the other side in the axial direction) 50b extending outward and allowing the tip portion 50a to move, and a buffer portion 50b of the sheath thermocouple 50 fixed to the outer surface of the chamber 1 are accommodated.
  • a sealing member 51 is accommodated.
  • the sealing member 51 there is a compression as a spring member that biases the piston 54 attached to the sheath thermocouple 50 and the tip 50a of the sheath thermocouple 50 attached to the piston 54 in a direction to press against the susceptor 4.
  • the coil spring 53 is housed.
  • the sealing member 51 that accommodates the piston 54, the compression coil spring 53, and the buffer portion 50b is connected to the wall portion of the chamber 11 such as the bottom wall 19 so that the inside thereof communicates with the inside of the chamber 11. It is provided in close airtight contact.
  • the end portion of the buffer portion 50b extends to the outside of the sealing member 51, and the joint portion 55 is formed in the portion of the sealing member 51 where the end portion of the buffer portion 50b extends to the outside (atmosphere side outside the chamber 1). It is airtight.
  • the sheath thermocouple 50 includes a thermocouple wire 50c, a hollow sheath 50d covering the thermocouple wire 50c, and magnesia filled in the sheath 50d. Insulation material 50e.
  • the sheath 50d of the sheath thermocouple 50 is made of a material having corrosion resistance to a halogen-based gas, for example, a nickel alloy such as pure nickel (Ni) or nickel 'chromium' molybdenum iCrMo) or hastelloy. Note that the sheath 50d and the insulating material 50e do not necessarily have to be provided in a portion extending from the sealing member 51 to the outside. Good.
  • the distal end portion 50a of the sheath thermocouple 50 is in contact with the susceptor 4 by being inserted into, for example, a insertion hole 4a formed in the lower surface of the susceptor 4.
  • the buffer portion 50b of the sheath thermocouple 50 is bent or curved, for example, spirally so that it can expand and contract in the advancing and retracting direction with respect to the susceptor 4.
  • the end portion of the sheathed thermocouple 50 is connected to the signal transmission unit 52, and the signal transmission unit 52 transmits a measurement temperature signal from the sheath thermocouple 50 to the controller 90 described later, and the controller based on the measurement temperature signal 90 is configured to control the temperature of the heater power supply 41, namely the heater 40.
  • the sealing member 51 is made of a material having corrosion resistance to a halogen-based gas, for example, pure nickel or a nickel alloy, which is the same kind of metal as the sheath 50d of the sheath thermocouple 50, and has a cylindrical shape. Yes.
  • the sealing member 51 is a cylinder portion 51b that houses a compression coil spring 53 and a piston 54 that can move in the forward and backward direction relative to the susceptor 4 as the compression coil spring 53 expands and contracts in order from one side to the other side in the axial direction.
  • a buffer housing portion 51c for housing the buffer portion 50b of the sheath thermocouple 50.
  • a flange 51a is formed at one end in the axial direction of the sealing member 51, and the sealing member 51 is attached by one end surface of the flange 51a being in airtight contact with the outer surface (bottom surface) of the bottom wall 19 of the chamber 1. It has been.
  • the above-mentioned joint portion 55 is provided on the wall portion on the other axial side of the sealing member 51, and the joint portion 55 is formed by welding or brazing.
  • the sealing member 51 is made of the same type of metal as the sheath 50d of the sheath thermocouple 50, so that the welding or brazing of both is good, and the sheath 50d is securely fixed to the sealing member 51 by the joint portion 55. can do.
  • the compression coil spring 53 is formed of a material that has corrosion resistance against halogen-based gas and has an elastic force, such as SUS316L containing Inconel (registered trademark), nickel, and molybdenum. It is made of a material having corrosion resistance to the system gas, for example, pure nickel or nickel alloy which is the same kind of metal as the sheath of the sheath thermocouple 50.
  • the piston 54 is provided with a through-hole through which the sheath of the sheath thermocouple 50 penetrates, and both of them are fixed by welding, brazing, caulking, or the like.
  • 50a is the pressure through piston 54 It is urged so as to be pressed against the susceptor 4 by the repulsive force of the compression coil spring 53 (in the direction of arrow F in FIG. 2 (a)).
  • the piston 54 is made of the same kind of metal as the sheath 50d of the sheath thermocouple 50, the welding or brazing of both is improved, and the piston 54 can be reliably fixed to the sheath 50d.
  • Each component of the wafer processing apparatus 100 is connected to and controlled by a controller 90 (control unit) that includes a microprocessor (computer).
  • the controller 90 includes a keyboard that performs command input operations to manage each component of the wafer processing apparatus 100, a user interface that includes a display that visualizes and displays the operating status of the wafer processing system 1, and the like.
  • a control program for realizing processing executed by the wafer processing apparatus 100 by control of the controller 90 and a storage unit storing a recipe including processing condition data are connected. If necessary, an arbitrary recipe is called from the storage unit by an instruction from the user interface and the controller 90 executes the recipe, so that a desired process is performed in the wafer processing apparatus 100 under the control of the controller 90. .
  • processing of wafer W is performed as follows. First, in a state where the loading / unloading port 13 is opened by the gate valve 14, the wafer W is loaded into the chamber 11 from the loading / unloading port 13 and placed on the susceptor 4, and the loading / unloading port 13 is closed by the gate valve 14.
  • the exhaust device 32 of the decompression mechanism 3 is operated to decompress the interior of the chamber 1 to a predetermined pressure, for example, a vacuum pressure, and the interior of the chamber 1 through the shower head 15 by the processing gas supply mechanism 2
  • the wafer W is heated by the heater 40 via the susceptor 4 while supplying a predetermined flow rate of the processing gas.
  • the sheath thermocouple 50 measures the temperature of the susceptor 4, and the signal transmission unit 52 transmits the measured temperature signal of the susceptor 4 by the sheath thermocouple 50 to the controller 90. Based on this measured temperature signal, the controller 90 controls the temperature of the heater 40, so that the wafer W on the susceptor 4 is adjusted to a predetermined temperature. Thereby, the wafer W is subjected to predetermined processing.
  • the processing gas when the processing gas is supplied into the chamber 11 by the processing gas supply mechanism 2 and / or the pressure in the chamber 1 is reduced by the pressure reducing mechanism 3, the pressure in the chamber 11 changes. As a result, the susceptor 4 slightly moves.
  • Sheath thermocouple Since 50 buffer portions 50b expand and contract in the forward and backward direction with respect to the susceptor 4, and the distal end portion 50a of the sheath thermocouple 50 is biased to be pressed against the susceptor 4 by the compression coil spring 53, the distal end of the sheath thermocouple 50 The part 50a moves following the movement of the susceptor 4 so that the contact with the susceptor 4 is maintained. Therefore, the temperature of the susceptor 4 can be accurately measured, and thereby the temperature of the heater 40 can be accurately controlled to improve the processing quality of the wafer W.
  • the spring member biases the distal end portion 50a of the sheath thermocouple 50 against the susceptor 4, so that it is significantly increased by the pressure difference between the atmosphere and vacuum as in the prior art. Since it is not necessary to use a bellows that exerts a pressing force, it is possible to prevent the sheath thermocouple 50 from being strongly pressed against the susceptor 4 due to the reduced pressure in the chamber 1. In addition, it is possible to prevent damage to the susceptor 4 and increase the durability of the device.
  • the spring member for example, the compression coil spring 53, biases the distal end portion 50a of the sheath thermocouple 50 against the susceptor 4, so that it is significantly increased by the pressure difference between the atmosphere and vacuum as in the prior art. Since it is not necessary to use a bellows that exerts a pressing force, it is possible to prevent the sheath thermocouple 50 from being strongly pressed against the susceptor 4 due to the reduced pressure in the chamber 1. In addition, it is possible to prevent damage to the susceptor 4 and
  • the sheath thermocouple 50 is bent together with the sheath 50d, for example, in a spiral shape to form the buffer portion 50b, there is no need to peel off a part of the sheath and expose the thermocouple wire as in the conventional case. Therefore, heat resistance is ensured, which makes it possible to cope with the case where the inside of the chamber 11 is kept at a high temperature.
  • the buffer 50b preferably has a curvature S that is as small as possible so that the load during expansion and contraction is reduced, and the susceptor 4b is distributed so that the load during expansion and contraction is distributed. It is preferable that the shape has a certain regularity in the advancing and retreating direction. Examples of the shape of the buffer portion 52b include a waveform as shown in FIG. 3 in addition to the spiral shape shown in FIG. 2 (a).
  • a corrosive gas such as a halogen-based gas
  • both the spring 53 and the piston 54 are made of a material having corrosion resistance against the processing gas, for example, nickel or a nickel alloy.
  • the joint 55 that hermetically joins the sheath 50d of the sheath thermocouple 50 and the sealing member 51 is formed by welding or brazing. For this reason, it is possible to prevent organic contamination by preventing corrosion of the temperature measuring device 5 due to processing gas that does not require the use of any organic material such as resin. it can.
  • the decompression mechanism 3 depressurizes the chamber 11, the processing gas supply mechanism 2 supplies the processing gas into the chamber 11, and the heater 40 heats the wafer W for a predetermined time.
  • the wafer W After the wafer W has been subjected to a predetermined process, supply of the processing gas into the chamber 1 by the processing gas supply mechanism 2 and heating of the wafer W by the heater 40 are stopped, and the loading / unloading port 13 is opened by the gate valve 14. Then, the wafer W is transferred out of the chamber 11 through the loading / unloading port 13.
  • one end and the other end of the bellows C in a slightly expanded / contracted state are hermetically sealed to the sheath thermocouple A and the wall of the processing vessel, for example, the bottom wall D. It is also conceivable that the sheath thermocouple A is pressed weakly against the mounting table B in advance by attaching it, and the sheath thermocouple A follows the movement of the mounting table by the expansion and contraction of the bellows C.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the temperature measuring device 5 is arranged so that the sheath thermocouple 50 is exposed in the chamber 11.
  • the sheath thermocouple 50 is placed in the cylindrical column member 11. Measured to fit A warming device 5 may be arranged.
  • the sealing member 51 is integrally formed with the sealing member 51, and the sealing member 51 is attached so that one end surface of the flange 51a is in close contact with the outer surface of the bottom wall 19 of the chamber 11.
  • the sealing member 51 is attached to the outer member 51d attached to the outer surface (bottom surface) of the bottom wall 19 of the chamber 11 and the inner surface (upper surface) of the bottom wall 19 of the chamber 11.
  • the buffer portion 50b, the compression coil spring 53, and the piston 54 are disposed between the outer member 51d and the inner member 51e.
  • the outer member 51d is formed in a container shape that accommodates the buffer portion 50b
  • the inner member 51e is formed in a ring shape surrounding the sheath thermocouple 50
  • the compression coil spring 53 and the piston 54 are It is disposed in the bottom wall 19 of the chamber 1 so as to be sandwiched between the outer member 5 Id and the inner member 51 e.
  • the portion surrounding the compression coil spring 53 and the piston 54 on the bottom wall 19 of the chamber 11 also functions as a part of the sealing member 51.
  • the sealing member 51 (the portion of the sealing member 51 protruding from the bottom wall 19 of the chamber 11) can be reduced in size.
  • the compression coil spring 53 and the piston 54 may be disposed so as to be sandwiched between the outer member 51d and the bottom wall 19 of the chamber 11, or the outer member may be used.
  • the inner member 50e may be formed in a container shape, and the buffer portion 50b, the compression coil spring 53, and the piston 54 may be accommodated in the inner member 50e.
  • the force S using a compression coil spring as a spring member is not limited to this, and other springs such as a tension coil spring may be used.
  • the force described in the application example in which the temperature of the semiconductor wafer is adjusted by heating the heater is not limited to this.
  • the temperature of the wafer is adjusted by cooling the cooling plate It can also be applied to.
  • the object to be processed is not limited to a semiconductor wafer but may be a glass substrate for FPD.
  • the present invention relates to a CVD (Chemical Vapor Deposition) that performs a film forming process on a semiconductor substrate.
  • CVD Chemical Vapor Deposition

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A temperature measuring device (5) is provided with a sheathed thermocouple (50). The sheathed thermocouple has a leading end section (50a) movable in an advancing/retracing direction by following a susceptor (4), and a buffer section (50b) extending to the outside of a chamber (1) to allow movement of the leading end section (50a). The temperature measuring device is also provided with a compression coil spring (53) for urging the leading end section (50a) in a direction to press the leading end section to the susceptor (4). A hermetically sealing member (51) storing the compression coil spring (53) and the buffer section (50b) is adhered to the bottom wall (19) of the chamber (1) so that inside the hermetically sealed member communicates with the inside of the chamber (1). The end portion of the buffer section (50b) extends to the external of the hermetically sealed member (51), and a connecting section (55) is formed by being welded to a part where the end portion of the buffer section (50b) of the hermetically sealed member (51) extends.

Description

明 細 書  Specification
測温装置  Temperature measuring device
技術分野  Technical field
[0001] 本発明は、容器内に配置された被測温体の温度を測定する測温装置に関する。  The present invention relates to a temperature measuring device that measures the temperature of a temperature-measuring object arranged in a container.
背景技術  Background art
[0002] 半導体の製造プロセスにおいては、半導体基板を処理容器内の載置台上に載置 した状態で、処理容器内に処理ガスを供給しつつ、載置台に内蔵したヒーター等の 加熱機構によって半導体基板を加熱して、半導体基板に所定の処理を施すことが行 われている。このような処理では、加熱温度が半導体基板の品質に大きく影響するた め、載置台ほたは加熱機構)の温度を正確に測定する必要がある。このため、載置 台の温度測定には、熱応答性に優れた熱電対が多く用いられており、中でも、耐熱 性を有する金属等からなるシースと、このシース内に配置された熱電対素線とを有す るシース熱電対が多く用いられて!/、る (例えば特許文献 1、 2参照)。  In a semiconductor manufacturing process, a semiconductor substrate is placed on a mounting table in a processing container, and a processing gas is supplied into the processing container, and a semiconductor is heated by a heating mechanism such as a heater built in the mounting table. A predetermined process is performed on the semiconductor substrate by heating the substrate. In such a process, since the heating temperature greatly affects the quality of the semiconductor substrate, it is necessary to accurately measure the temperature of the mounting table or the heating mechanism. For this reason, thermocouples with excellent thermal responsiveness are often used to measure the temperature of the mounting table. Among them, a sheath made of a metal having heat resistance and a thermocouple element disposed in the sheath are used. Many sheathed thermocouples with wires are used! (See, for example, Patent Documents 1 and 2).
特許文献 1:特開平 4 63281号公報  Patent Document 1: Japanese Patent Laid-Open No. 4 63281
特許文献 2:特開平 6 176855号公報  Patent Document 2: JP-A-6 176855
[0003] シース熱電対は通常、先端部が載置台に接触するように処理容器の壁部に気密に 取り付けられる力 長尺であるために長さ方向の取り付け誤差が生じやすい。また、 処理容器内に処理ガスを供給すると、処理容器内の圧力変化等によって載置台が 多少動くことから、シース熱電対の先端部は載置台と非接触状態になりやすい。先端 部が載置台と非接触状態になっていると、載置台の温度を正確に測定することがで きない。このため、シース熱電対は、取り付け誤差を吸収するとともに載置台の動きに 追従するため、載置台に対する進退方向、すなわち長さ方向の自由度を有するよう に処理容器の壁部にベローズを用いて取り付けられることが考えられている。  [0003] Sheath thermocouples are generally long enough to be hermetically attached to the wall of the processing vessel so that the tip is in contact with the mounting table. In addition, when the processing gas is supplied into the processing container, the mounting table moves a little due to a change in pressure in the processing container, and therefore, the distal end portion of the sheath thermocouple tends to be out of contact with the mounting table. If the tip is not in contact with the mounting table, the temperature of the mounting table cannot be measured accurately. For this reason, since the sheath thermocouple absorbs attachment errors and follows the movement of the mounting table, the sheath thermocouple uses a bellows on the wall of the processing container so as to have a degree of freedom in the advancing and retreating direction relative to the mounting table, that is, in the length direction. It is considered to be attached.
[0004] しかしながら、ベローズを用いてシース熱電対を処理容器の壁部に取付けた場合、 処理容器内を減圧した際、ベローズ内も減圧され、シース熱電対が載置台側に押し つけられ、シース熱電対が破損することがある。  [0004] However, when the sheath thermocouple is attached to the wall of the processing container using the bellows, when the inside of the processing container is depressurized, the inside of the bellows is also depressurized, and the sheath thermocouple is pressed toward the mounting table, and the sheath The thermocouple may be damaged.
発明の開示 [0005] 本発明は力、かる事情に鑑みてなされたものであって、シース熱電対を用いた測温 装置であって、容器内の減圧に起因するシース熱電対または被測温体の損傷を防 止しつつ、被測温体の温度を正確に測定することが可能な測温装置を提供すること を目的とする。 Disclosure of the invention [0005] The present invention has been made in view of the force and the circumstances, and is a temperature measuring device using a sheathed thermocouple, in which a sheathed thermocouple or a temperature-measured body is damaged due to decompression in the container. An object of the present invention is to provide a temperature measuring device capable of accurately measuring the temperature of the temperature measuring object while preventing the above.
[0006] また、本発明は、シース熱電対を用いた測温装置であって、容器内の減圧に起因 するシース熱電対または被測温体の損傷を防止しつつ、被測温体の温度を正確に 測定することに加えて、容器内の腐食ガスに起因する腐食を防止することが可能な 測温装置を提供するこ  [0006] Further, the present invention is a temperature measuring device using a sheath thermocouple, and the temperature of the temperature-measured body is prevented while preventing damage to the sheath thermocouple or the temperature-measured body due to decompression in the container. In addition to accurately measuring the temperature, a temperature measuring device capable of preventing corrosion caused by the corrosive gas in the container is provided.
とを目的とする。  aimed to.
[0007] 本発明は、処理容器内に配置された被測温体の温度を測定する測温装置にお!/ヽ て、シースと、シース内に配置された熱電対素線とからなり、処理容器内方に延び被 測温体に当接するとともにこの被測温体に追従して進退方向に移動する先端部と、 処理容器外方に延びて先端部の移動を許容する緩衝部とを有するシース熱電対と、 処理容器外面に固着され、シース熱電対の緩衝部を収納する密閉部材と、密閉部 材内に配置されシース熱電対の先端部を被測温体側へ付勢するばね部材とを備え 、シース熱電対の緩衝部終端部は、密閉部材力 溶接部またはろう付け部を通って 更に外方へ延出することを特徴とする測温装置である。  [0007] The present invention relates to a temperature measuring device for measuring the temperature of a temperature-measured body arranged in a processing container, and comprises a sheath and a thermocouple wire arranged in the sheath, A tip that extends inward of the processing container and abuts the temperature-measured body and moves in the forward / backward direction following the temperature-measured body, and a buffer that extends outward from the process container and allows movement of the tip A sheathed thermocouple, a sealing member that is fixed to the outer surface of the processing container and that houses the buffer portion of the sheathed thermocouple, and a spring member that is disposed in the sealing member and biases the distal end of the sheathed thermocouple toward the temperature-measured body The end portion of the buffer portion of the sheath thermocouple extends further outward through the sealing member force welded portion or the brazed portion.
[0008] 本発明は、処理容器内は腐食ガス雰囲気となっており、シースと、密閉部材と、ば ね部材は、 V、ずれも腐食ガスに対する耐食性を有する材料からなることを特徴とする 測温装置である。  [0008] In the present invention, the inside of the processing vessel has a corrosive gas atmosphere, and the sheath, the sealing member, and the spring member are made of a material having corrosion resistance against corrosive gas. It is a temperature device.
[0009] 本発明は、前記ばね部材はコイルばねからなり、前記密閉部材内には、前記コイル ばねの伸縮に伴って前記被測温体に対する進退方向に移動する、前記腐食ガスに 対して耐食性を有する材料からなるピストンが収容されており、前記シース熱電対は 、前記ピストンに固定されていることを特徴とする測温装置である。  [0009] In the present invention, the spring member comprises a coil spring, and the sealing member moves in the advancing and retreating direction with respect to the temperature-measured body as the coil spring expands and contracts. The temperature measuring device is characterized in that a piston made of a material having the above is housed, and the sheath thermocouple is fixed to the piston.
[0010] 本発明は、前記腐食ガスはハロゲンを含むガスであり、前記腐食ガスに対して耐食 性を有する材料は、ニッケル (Ni)またはニッケル合金であることを特徴とする測温装 置である。  [0010] The present invention provides the temperature measuring device, wherein the corrosive gas is a gas containing halogen, and the material having corrosion resistance to the corrosive gas is nickel (Ni) or a nickel alloy. is there.
[0011] 本発明は、前記ばね部材はインコネル (登録商標)からなることを特徴とする測温装 置である。 [0011] In the present invention, the temperature measuring device is characterized in that the spring member is made of Inconel (registered trademark). It is a position.
[0012] 本発明は、前記緩衝部は、前記被測温体に対する進退方向に伸縮可能に屈曲し て!/、ることを特徴とする測温装置である。  [0012] The present invention is the temperature measuring device, wherein the buffer portion is bent so as to expand and contract in the advancing and retreating direction with respect to the temperature measuring object!
[0013] 本発明は、前記緩衝部は螺旋状に屈曲していることを特徴とする測温装置である。 [0013] The present invention is the temperature measuring device, wherein the buffer portion is bent in a spiral shape.
[0014] 本発明は、前記緩衝部は波形に屈曲していることを特徴とする測温装置である。 [0014] The present invention is the temperature measuring device, wherein the buffer portion is bent in a waveform.
[0015] 本発明によれば、シース熱電対を、容器内に位置されるとともに被測温体に追従し て進退方向に移動可能な先端部と、容器外に延出するように設けられ、先端部の移 動を許容する緩衝部とから構成し、シース熱電対の先端部を被測温体に押し付ける 方向に付勢するばね部材を設けたため、容器内外の圧力差に大きく影響を受けるベ ローズを用いることなぐシース熱電対の先端部を被測温体に確実に接触させること 力できる。したがって、容器内の減圧に起因するシース熱電対または被測温体の損 傷を防止しつつ、被測温体の温度を正確に測定することが可能となる。 [0015] According to the present invention, the sheath thermocouple is provided in the container so as to be positioned in the container and movable in the advancing and retreating direction following the temperature measurement object, and to extend out of the container. This is composed of a buffer part that allows movement of the tip part, and is provided with a spring member that urges the tip part of the sheath thermocouple in the direction to press against the body to be measured. The tip of the sheathed thermocouple without using rose can be brought into contact with the object to be measured reliably. Therefore, it is possible to accurately measure the temperature of the temperature-measured body while preventing damage to the sheath thermocouple or the temperature-measured body due to the reduced pressure in the container.
[0016] また、本発明によれば、シース熱電対を、容器内に位置されるとともに被測温体に 追従して進退方向に移動可能な先端部と、容器外に延出するように設けられ、先端 部の移動を許容する緩衝部とから構成し、シース熱電対の先端部を被測温体に押し 付ける方向に付勢するばね部材を設けたため、容器内外の圧力差に大きく影響を受 けるベローズを用いたり、耐食性を低下させる要因となるシースの一部を剥がしたり することなぐシース熱電対の先端部を被測温体に確実に接触させることができる。し かも、容器内の腐食ガスの雰囲気に曝されるシース、密閉部材およびばね部材をい ずれも、腐食ガスに対する耐食性材料によって形成し、密閉部材とシースとの接合部 を溶接またはろう付けによって形成したため、腐食ガスによる腐食を防止することがで きる。したがって、容器内の減圧に起因するシース熱電対または被測温体の損傷な らびに容器内の腐食ガスに起因する腐食を防止しつつ、被測温体の温度を正確に 測定することが可能となる。 [0016] Further, according to the present invention, the sheath thermocouple is provided so as to be positioned inside the container and move in the advancing and retreating direction following the temperature measurement object, and to extend outside the container. And a spring member that urges the tip of the sheath thermocouple in the direction of pressing the temperature-measured body, which greatly affects the pressure difference inside and outside the container. The tip of the sheath thermocouple, which uses the received bellows or peels off part of the sheath that causes a decrease in corrosion resistance, can be reliably brought into contact with the object to be measured. In addition, the sheath, sealing member, and spring member that are exposed to the corrosive gas atmosphere in the container are all formed of a corrosion-resistant material against the corrosive gas, and the joint between the sealing member and the sheath is formed by welding or brazing. Therefore, corrosion by corrosive gas can be prevented. Therefore, it is possible to accurately measure the temperature of the temperature-measured body while preventing damage to the sheathed thermocouple or temperature-measured body due to the decompression of the container and corrosion caused by the corrosive gas in the container. It becomes.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は本発明に係る一実施形態としての測温装置を備えたウェハ処理装置を 概略的に示す断面図である。  FIG. 1 is a cross-sectional view schematically showing a wafer processing apparatus provided with a temperature measuring device as one embodiment according to the present invention.
[図 2]図 2 (a)は測温装置の断面図であり、図 2 (b)はシース熱電対を示す断面図であ [図 3]図 3は測温装置に設けられた緩衝部の変形例を示す図である。 [FIG. 2] FIG. 2 (a) is a cross-sectional view of a temperature measuring device, and FIG. 2 (b) is a cross-sectional view showing a sheath thermocouple. FIG. 3 is a view showing a modification of the buffer portion provided in the temperature measuring device.
[図 4]図 4は測温装置の処理容器への別の取り付け態様を示す図である。  [FIG. 4] FIG. 4 is a view showing another manner of attaching the temperature measuring device to the processing container.
[図 5]図 5は測温装置に設けられた密閉部材の変形例を示す図である。  FIG. 5 is a view showing a modification of the sealing member provided in the temperature measuring device.
[図 6]図 6は比較例としてのシース熱電対の処理容器への取り付け態様を示す図であ 発明を実施するための最良の形態  [Fig. 6] Fig. 6 is a view showing an aspect of attachment of a sheathed thermocouple as a comparative example to a processing vessel. BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、添付図面を参照して本発明の実施形態について具体的に説明する。  Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.
図 1は本発明に係る一実施形態としての測温装置を備えたウェハ処理装置を概略 的に示す断面図である。  FIG. 1 is a cross-sectional view schematically showing a wafer processing apparatus provided with a temperature measuring device as one embodiment according to the present invention.
[0019] ウェハ処理装置 100は、半導体基板であるウェハ Wを収容可能な処理容器として のチャンバ一 1と、このチャンバ一 1内に配置され、ウェハ Wを載置してウェハ Wの温 度を調整する温調部としてのサセプタ 4と、このサセプタ 4 (被測温体)の温度を測定 する測温装置 5と、ウェハ Wに所定の処理を施すための腐食ガスを含む処理ガスを チャンバ一 1内に供給する処理ガス供給機構 2と、チャンバ一 1内を減圧可能な減圧 機構 3とを備えている。  The wafer processing apparatus 100 is a chamber 11 as a processing container capable of accommodating a wafer W, which is a semiconductor substrate, and is disposed in the chamber 11, and the temperature of the wafer W is set by placing the wafer W thereon. A susceptor 4 as a temperature control unit to be adjusted, a temperature measuring device 5 for measuring the temperature of the susceptor 4 (temperature measurement object), and a processing gas containing a corrosive gas for performing predetermined processing on the wafer W are provided in a chamber. A processing gas supply mechanism 2 for supplying the inside of the chamber 1 and a decompression mechanism 3 for reducing the pressure inside the chamber 1 are provided.
[0020] チャンバ一 1は、上部が開口した略筒状に形成されており、チャンバ一 1の側壁に は、ウェハ Wを搬入出するための搬入出口 13が形成されている。この搬入出口 13を 開閉するゲートバルブ 14が設けられている。サセプタ 4は、高さ方向に延びる支柱部 材 11を介してチャンバ一 1の底壁 19に設けられ、内部にヒーター 40が埋設されてお り、このヒーター 40はヒーター電源 41に接続されている。ヒーター電源 41、すなわち ヒーター 40は、測温装置 5の測定温度に基づき、後述するコントローラ 90によって制 御されており、これにより、サセプタ 4に載置されたウェハ Wの温度が調整される。  The chamber 11 is formed in a substantially cylindrical shape having an upper opening, and a loading / unloading port 13 for loading and unloading the wafer W is formed on the side wall of the chamber 11. A gate valve 14 for opening and closing the loading / unloading port 13 is provided. The susceptor 4 is provided on the bottom wall 19 of the chamber 1 through a column member 11 extending in the height direction, and a heater 40 is embedded therein, and the heater 40 is connected to a heater power supply 41. . The heater power source 41, that is, the heater 40, is controlled by a controller 90 described later based on the measured temperature of the temperature measuring device 5, and thereby the temperature of the wafer W placed on the susceptor 4 is adjusted.
[0021] チャンバ一 1の上部には、開口を閉塞し、かつサセプタ 4に対向するようにシャワー ヘッド 15が設けられている。シャワーヘッド 15は、内部に、処理ガス供給機構 2による 処理ガスを拡散させる拡散空間 16を有し、かつサセプタ 4との対向面に、処理ガス供 給機構 2による処理ガスを吐出する複数または多数の吐出孔 17が形成されている。  A shower head 15 is provided on the upper portion of the chamber 11 so as to close the opening and to face the susceptor 4. The shower head 15 has a diffusion space 16 for diffusing the processing gas by the processing gas supply mechanism 2 inside, and a plurality or many of the processing gas discharges by the processing gas supply mechanism 2 on the surface facing the susceptor 4. The discharge hole 17 is formed.
[0022] チャンバ一 1の側壁の下部には排気口 18が形成されている。減圧機構 3は、排気 口 18に接続された排気管 31と、排気管 31を介してチャンバ一 1内を排気する排気 装置 32とを有している。 An exhaust port 18 is formed in the lower part of the side wall of the chamber 11. Pressure reducing mechanism 3 is exhaust An exhaust pipe 31 connected to the port 18 and an exhaust device 32 for exhausting the inside of the chamber 11 through the exhaust pipe 31 are provided.
[0023] 処理ガス供給機構 2は、ハロゲン系ガス(ノ、ロゲンを含むガス)等の腐食ガスを含む 処理ガスが貯留された処理ガス貯留部 21と、処理ガス貯留部 21からの処理ガスをシ ャヮーヘッド 15の拡散空間 16内に導く導管 22と、導管 22を流通する処理ガスの流 量を調整する流量調整機構としてのマスフローコントローラ 23およびバルブ 24とを有 している。なお、複数種類の異なる処理ガスをチャンバ一 1内に供給する場合には、 例えば、複数の処理ガス供給機構 2が設けられる。  [0023] The processing gas supply mechanism 2 includes a processing gas storage unit 21 in which a processing gas containing a corrosive gas such as a halogen-based gas (a gas containing gas or rhogen) is stored, and a processing gas from the processing gas storage unit 21. A conduit 22 led into the diffusion space 16 of the shower head 15, and a mass flow controller 23 and a valve 24 as a flow rate adjusting mechanism for adjusting the flow rate of the processing gas flowing through the conduit 22 are provided. In the case where a plurality of types of different processing gases are supplied into the chamber 11, for example, a plurality of processing gas supply mechanisms 2 are provided.
[0024] 次に、測温装置 5について詳細に説明する。  [0024] Next, the temperature measuring device 5 will be described in detail.
図 2 (a)は測温装置 5の断面図であり、図 2 (b)はシース熱電対 50の断面図である。  2 (a) is a cross-sectional view of the temperature measuring device 5, and FIG. 2 (b) is a cross-sectional view of the sheath thermocouple 50.
[0025] 測温装置 5は、チャンバ一 1内方に延びサセプタ 4に当接するとともに、このサセプ タ 4に追従して進退方向に移動する先端部(軸方向一方側) 50aと、チャンバ一 1外 方に延びて先端部 50aの移動を許容する緩衝部(軸方向他方側) 50bとを有するシ ース熱電対 50と、チャンバ一 1外面に固着されシース熱電対 50の緩衝部 50bを収納 する密閉部材 51とを備えている。また密閉部材 51内には、シース熱電対 50に取付 けられたピストン 54と、ピストン 54に取付けられシース熱電対 50の先端部 50aをサセ プタ 4に押し付ける方向に付勢するばね部材としての圧縮コイルばね 53とが収納さ れている。このピストン 54と、圧縮コイルばね 53と、緩衝部 50bとを収容する密閉部 材 51は、その内部がチャンバ一 1の内部と連通するようにチャンバ一 1の壁部、例え ば底壁 19と気密に密着して設けられている。緩衝部 50bの終端部分は密閉部材 51 の外部に延出され、密閉部材 51のうち緩衝部 50bの終端部分が外部(チャンバ一 1 外の雰囲気側)に延出される部分に、接合部 55が気密に設けられている。  [0025] The temperature measuring device 5 extends inward of the chamber 1 and contacts the susceptor 4, and moves in the forward and backward direction following the susceptor 4 (one axial side) 50a and the chamber 1 A sheath thermocouple 50 having a buffer portion (the other side in the axial direction) 50b extending outward and allowing the tip portion 50a to move, and a buffer portion 50b of the sheath thermocouple 50 fixed to the outer surface of the chamber 1 are accommodated. And a sealing member 51. Also, in the sealing member 51, there is a compression as a spring member that biases the piston 54 attached to the sheath thermocouple 50 and the tip 50a of the sheath thermocouple 50 attached to the piston 54 in a direction to press against the susceptor 4. The coil spring 53 is housed. The sealing member 51 that accommodates the piston 54, the compression coil spring 53, and the buffer portion 50b is connected to the wall portion of the chamber 11 such as the bottom wall 19 so that the inside thereof communicates with the inside of the chamber 11. It is provided in close airtight contact. The end portion of the buffer portion 50b extends to the outside of the sealing member 51, and the joint portion 55 is formed in the portion of the sealing member 51 where the end portion of the buffer portion 50b extends to the outside (atmosphere side outside the chamber 1). It is airtight.
[0026] シース熱電対 50は、図 2 (b)に示すように熱電対素線 50cと、この熱電対素線 50c を被覆する中空のシース 50dと、このシース 50d内に充てんされたマグネシア等の絶 縁材 50eとを有している。シース熱電対 50のシース 50dは、ハロゲン系ガスに対する 耐食性を有する材料、例えば、純ニッケル (Ni)またはニッケル 'クロム 'モリブデン iCrMo)やハステロィ等のニッケル合金によって形成されている。なお、シース 50dお よび絶縁材 50eは、密閉部材 51から外部に延出する部分には必ずしも設けなくても よい。 [0026] As shown in Fig. 2 (b), the sheath thermocouple 50 includes a thermocouple wire 50c, a hollow sheath 50d covering the thermocouple wire 50c, and magnesia filled in the sheath 50d. Insulation material 50e. The sheath 50d of the sheath thermocouple 50 is made of a material having corrosion resistance to a halogen-based gas, for example, a nickel alloy such as pure nickel (Ni) or nickel 'chromium' molybdenum iCrMo) or hastelloy. Note that the sheath 50d and the insulating material 50e do not necessarily have to be provided in a portion extending from the sealing member 51 to the outside. Good.
[0027] シース熱電対 50の先端部 50aは、例えば、サセプタ 4の下面に形成された揷入孔 4 a内に挿入されることによりサセプタ 4に接触している。シース熱電対 50の緩衝部 50b は、サセプタ 4に対する進退方向に伸縮可能なように、例えば螺旋状に屈曲または 湾曲している。シース熱電対 50は、その終端部が信号送信部 52に接続されており、 信号送信部 52がシース熱電対 50による測定温度信号を後述するコントローラ 90に 送信し、この測定温度信号に基づいてコントローラ 90がヒーター電源 41、すなわちヒ 一ター 40の温度を制御するように構成されている。  [0027] The distal end portion 50a of the sheath thermocouple 50 is in contact with the susceptor 4 by being inserted into, for example, a insertion hole 4a formed in the lower surface of the susceptor 4. The buffer portion 50b of the sheath thermocouple 50 is bent or curved, for example, spirally so that it can expand and contract in the advancing and retracting direction with respect to the susceptor 4. The end portion of the sheathed thermocouple 50 is connected to the signal transmission unit 52, and the signal transmission unit 52 transmits a measurement temperature signal from the sheath thermocouple 50 to the controller 90 described later, and the controller based on the measurement temperature signal 90 is configured to control the temperature of the heater power supply 41, namely the heater 40.
[0028] 密閉部材 51は、ハロゲン系ガスに対する耐食性を有する材料、例えば、シース熱 電対 50のシース 50dと同種の金属である純ニッケルまたはニッケル合金からなるとと もに筒状形状を有している。密閉部材 51は、軸方向一方側から他方側に向かって順 に、圧縮コイルばね 53および圧縮コイルばね 53の伸縮に伴ってサセプタ 4に対する 進退方向に移動可能なピストン 54とを収容するシリンダー部 51bと、シース熱電対 5 0の緩衝部 50bを収容する緩衝収容部 51cとを有している。密閉部材 51の軸方向一 端部にはフランジ 51aが形成されており、密閉部材 51は、フランジ 51aの一端面がチ ヤンバー 1の底壁 19の外面(底面)に気密に当接することにより取り付けられている。 密閉部材 51の軸方向他側の壁部には前述の接合部 55が設けられており、接合部 5 5は、溶接またはろう付けによって形成されている。ここで、密閉部材 51を、シース熱 電対 50のシース 50dと同種の金属製とすることにより、両者の溶接またはろう付けが 良好となり、接合部 55によってシース 50dを密閉部材 51に確実に固定することがで きる。  [0028] The sealing member 51 is made of a material having corrosion resistance to a halogen-based gas, for example, pure nickel or a nickel alloy, which is the same kind of metal as the sheath 50d of the sheath thermocouple 50, and has a cylindrical shape. Yes. The sealing member 51 is a cylinder portion 51b that houses a compression coil spring 53 and a piston 54 that can move in the forward and backward direction relative to the susceptor 4 as the compression coil spring 53 expands and contracts in order from one side to the other side in the axial direction. And a buffer housing portion 51c for housing the buffer portion 50b of the sheath thermocouple 50. A flange 51a is formed at one end in the axial direction of the sealing member 51, and the sealing member 51 is attached by one end surface of the flange 51a being in airtight contact with the outer surface (bottom surface) of the bottom wall 19 of the chamber 1. It has been. The above-mentioned joint portion 55 is provided on the wall portion on the other axial side of the sealing member 51, and the joint portion 55 is formed by welding or brazing. Here, the sealing member 51 is made of the same type of metal as the sheath 50d of the sheath thermocouple 50, so that the welding or brazing of both is good, and the sheath 50d is securely fixed to the sealing member 51 by the joint portion 55. can do.
[0029] 圧縮コイルばね 53は、ハロゲン系ガスに対する耐食性を有し、かつ弾性力が確保 される材料、例えばインコネル (登録商標)やニッケル、モリブデンを含む SUS316L 等によって形成され、ピストン 54は、ハロゲン系ガスに対する耐食性を有する材料、 例えば、シース熱電対 50のシースと同種の金属である純ニッケルまたはニッケル合 金によって形成されている。ピストン 54には、シース熱電対 50のシースが内部を貫通 するような貫通口が設けられ、これら両者は溶接やろう付け、またはカシメ等によって 固定されており、これにより、シース熱電対 50の先端部 50aが、ピストン 54を介した圧 縮コイルばね 53の弹発力によってサセプタ 4に押し付けられるように付勢されている( 図 2 (a)の矢印 F方向)。ここで、ピストン 54を、シース熱電対 50のシース 50dと同種 の金属製とすることにより、両者の溶接またはろう付けが良好となり、シース 50dに確 実に固定することができる。 [0029] The compression coil spring 53 is formed of a material that has corrosion resistance against halogen-based gas and has an elastic force, such as SUS316L containing Inconel (registered trademark), nickel, and molybdenum. It is made of a material having corrosion resistance to the system gas, for example, pure nickel or nickel alloy which is the same kind of metal as the sheath of the sheath thermocouple 50. The piston 54 is provided with a through-hole through which the sheath of the sheath thermocouple 50 penetrates, and both of them are fixed by welding, brazing, caulking, or the like. 50a is the pressure through piston 54 It is urged so as to be pressed against the susceptor 4 by the repulsive force of the compression coil spring 53 (in the direction of arrow F in FIG. 2 (a)). Here, when the piston 54 is made of the same kind of metal as the sheath 50d of the sheath thermocouple 50, the welding or brazing of both is improved, and the piston 54 can be reliably fixed to the sheath 50d.
[0030] ウェハ処理装置 100の各構成部は、マイクロプロセッサ(コンピュータ)を備えたコン トローラ 90 (制御部)に接続されて制御される構成となっている。コントローラ 90には、 ウェハ処理装置 100の各構成部を管理するためにコマンドの入力操作等を行うキー ボードと、ウェハ処理システム 1の稼働状況を可視化して表示するディスプレイ等から なるユーザーインターフェースと、ウェハ処理装置 100で実行される処理をコントロー ラ 90の制御にて実現するための制御プログラムおよび処理条件データを含むレシピ を格納した記憶部とが接続されている。必要に応じて、ユーザーインターフェースか らの指示等にて任意のレシピを記憶部から呼び出してコントローラ 90に実行させるこ とで、コントローラ 90の制御下でウェハ処理装置 100での所望の処理が行われる。  Each component of the wafer processing apparatus 100 is connected to and controlled by a controller 90 (control unit) that includes a microprocessor (computer). The controller 90 includes a keyboard that performs command input operations to manage each component of the wafer processing apparatus 100, a user interface that includes a display that visualizes and displays the operating status of the wafer processing system 1, and the like. A control program for realizing processing executed by the wafer processing apparatus 100 by control of the controller 90 and a storage unit storing a recipe including processing condition data are connected. If necessary, an arbitrary recipe is called from the storage unit by an instruction from the user interface and the controller 90 executes the recipe, so that a desired process is performed in the wafer processing apparatus 100 under the control of the controller 90. .
[0031] このように構成されたウェハ処理装置 100においては、以下のようにしてウェハ W の処理が行われる。まず、ゲートバルブ 14によって搬入出口 13を開放した状態で、 ウェハ Wを搬入出口 13からチャンバ一 1内に搬入してサセプタ 4上に載置し、ゲート バルブ 14によって搬入出口 13を閉塞する。  In wafer processing apparatus 100 configured as described above, processing of wafer W is performed as follows. First, in a state where the loading / unloading port 13 is opened by the gate valve 14, the wafer W is loaded into the chamber 11 from the loading / unloading port 13 and placed on the susceptor 4, and the loading / unloading port 13 is closed by the gate valve 14.
[0032] 次に、減圧機構 3の排気装置 32を作動させ、チャンバ一 1内を所定の圧力、例えば 真空圧に減圧するとともに、処理ガス供給機構 2によりシャワーヘッド 15を介してチヤ ンバー 1内に処理ガスを所定の流量供給しつつ、ヒーター 40によりサセプタ 4を介し てウェハ Wを加熱する。ヒーター 40による加熱の際には、前述のように、シース熱電 対 50がサセプタ 4の温度を測定し、信号送信部 52がシース熱電対 50によるサセプ タ 4の測定温度信号をコントローラ 90に送信し、この測定温度信号に基づいてコント ローラ 90がヒーター 40の温度を制御することで、サセプタ 4上のウェハ Wが所定の温 度に調整される。これにより、ウェハ Wに所定の処理が施される。  [0032] Next, the exhaust device 32 of the decompression mechanism 3 is operated to decompress the interior of the chamber 1 to a predetermined pressure, for example, a vacuum pressure, and the interior of the chamber 1 through the shower head 15 by the processing gas supply mechanism 2 The wafer W is heated by the heater 40 via the susceptor 4 while supplying a predetermined flow rate of the processing gas. During heating by the heater 40, as described above, the sheath thermocouple 50 measures the temperature of the susceptor 4, and the signal transmission unit 52 transmits the measured temperature signal of the susceptor 4 by the sheath thermocouple 50 to the controller 90. Based on this measured temperature signal, the controller 90 controls the temperature of the heater 40, so that the wafer W on the susceptor 4 is adjusted to a predetermined temperature. Thereby, the wafer W is subjected to predetermined processing.
[0033] ここで、処理ガス供給機構 2によるチャンバ一 1内への処理ガスの供給および/ま たは減圧機構 3によるチャンバ一 1内の減圧の際には、チャンバ一 1内の圧力が変化 することにより、サセプタ 4に揺れ等の動きが多少生じる。し力もながら、シース熱電対 50の緩衝部 50bがサセプタ 4に対する進退方向に伸縮し、かつシース熱電対 50の 先端部 50aは圧縮コイルばね 53によってサセプタ 4に押し付けられるように付勢され ているため、シース熱電対 50の先端部 50aはサセプタ 4の動きに追従して移動して、 サセプタ 4との接触が保たれる。したがって、サセプタ 4の温度を正確に測定すること ができ、これにより、ヒーター 40の温度を精度良く制御してウェハ Wの処理の品質を 高めることが可能となる。 Here, when the processing gas is supplied into the chamber 11 by the processing gas supply mechanism 2 and / or the pressure in the chamber 1 is reduced by the pressure reducing mechanism 3, the pressure in the chamber 11 changes. As a result, the susceptor 4 slightly moves. Sheath thermocouple Since 50 buffer portions 50b expand and contract in the forward and backward direction with respect to the susceptor 4, and the distal end portion 50a of the sheath thermocouple 50 is biased to be pressed against the susceptor 4 by the compression coil spring 53, the distal end of the sheath thermocouple 50 The part 50a moves following the movement of the susceptor 4 so that the contact with the susceptor 4 is maintained. Therefore, the temperature of the susceptor 4 can be accurately measured, and thereby the temperature of the heater 40 can be accurately controlled to improve the processing quality of the wafer W.
[0034] また、ばね部材、例えば圧縮コイルばね 53によってシース熱電対 50の先端部 50a をサセプタ 4に押し付けるように付勢したことにより、従来のように、大気と真空との差 圧によって著しく大きな押し付け力を作用させてしまうベローズを用いる必要がない ため、チャンバ一 1内の減圧によってシース熱電対 50がサセプタ 4に強く押し付けら れることを防止すること力 Sでき、これにより、シース熱電対 50およびサセプタ 4の損傷 を防止して、装置の耐久性を高めることが可能となる。  [0034] Further, the spring member, for example, the compression coil spring 53, biases the distal end portion 50a of the sheath thermocouple 50 against the susceptor 4, so that it is significantly increased by the pressure difference between the atmosphere and vacuum as in the prior art. Since it is not necessary to use a bellows that exerts a pressing force, it is possible to prevent the sheath thermocouple 50 from being strongly pressed against the susceptor 4 due to the reduced pressure in the chamber 1. In addition, it is possible to prevent damage to the susceptor 4 and increase the durability of the device.
[0035] また、シース熱電対 50をシース 50dごと例えば螺旋状に屈曲させて緩衝部 50bを 形成したことにより、従来のようにシースの一部を剥がして熱電対素線を露出させる 必要がないため、耐熱性が確保され、これにより、チャンバ一 1内が高温に保たれる 場合にも対応することが可能となる。  [0035] Further, since the sheath thermocouple 50 is bent together with the sheath 50d, for example, in a spiral shape to form the buffer portion 50b, there is no need to peel off a part of the sheath and expose the thermocouple wire as in the conventional case. Therefore, heat resistance is ensured, which makes it possible to cope with the case where the inside of the chamber 11 is kept at a high temperature.
[0036] なお、緩衝部 50bは、伸縮の際の負荷が軽減されるように、極力小さい曲率を有す ること力 S好ましく、また、伸縮の際の負荷が分散されるように、サセプタ 4に対する進退 方向に一定の規則性を有する形状であることが好ましい。このような緩衝部 52bの形 状としては、図 2 (a)に示した螺旋状以外に、例えば図 3に示すような波形が挙げられ  [0036] It should be noted that the buffer 50b preferably has a curvature S that is as small as possible so that the load during expansion and contraction is reduced, and the susceptor 4b is distributed so that the load during expansion and contraction is distributed. It is preferable that the shape has a certain regularity in the advancing and retreating direction. Examples of the shape of the buffer portion 52b include a waveform as shown in FIG. 3 in addition to the spiral shape shown in FIG. 2 (a).
[0037] さらに、チャンバ一 1内の処理ガス、例えばハロゲン系ガス等の腐食ガスの雰囲気 に曝される測温装置 5の各部材、すなわちシース熱電対 50のシース 50d、密閉部材 51、圧縮コイルスプリング 53およびピストン 54はいずれも、処理ガスに対する耐食性 を有する材料、例えばニッケルまたはニッケル合金によって形成されている。またシ ース熱電対 50のシース 50dと密閉部材 51とを気密に接合する接合部 55は、溶接ま たはろう付けによって形成されている。このため樹脂等の有機系材料を一切用いる必 要がなぐ処理ガスによる測温装置 5の腐食を防止して、有機汚染を回避することが できる。 [0037] Further, each member of the temperature measuring device 5 exposed to an atmosphere of a processing gas in the chamber 11, for example, a corrosive gas such as a halogen-based gas, that is, the sheath 50d of the sheath thermocouple 50, the sealing member 51, and the compression coil Both the spring 53 and the piston 54 are made of a material having corrosion resistance against the processing gas, for example, nickel or a nickel alloy. Further, the joint 55 that hermetically joins the sheath 50d of the sheath thermocouple 50 and the sealing member 51 is formed by welding or brazing. For this reason, it is possible to prevent organic contamination by preventing corrosion of the temperature measuring device 5 due to processing gas that does not require the use of any organic material such as resin. it can.
[0038] 次に減圧機構 3によるチャンバ一 1内の減圧、処理ガス供給機構 2によるチャンバ 一 1内への処理ガスの供給およびヒーター 40によるウェハ Wの加熱を所定の時間行 なう。ウェハ Wに所定の処理を施したら、処理ガス供給機構 2によるチャンバ一 1内へ の処理ガスの供給およびヒーター 40によるウェハ Wの加熱を停止し、ゲートバルブ 1 4によって搬入出口 13を開放して、ウェハ Wを搬入出口 13からチャンバ一 1外に搬 出する。  Next, the decompression mechanism 3 depressurizes the chamber 11, the processing gas supply mechanism 2 supplies the processing gas into the chamber 11, and the heater 40 heats the wafer W for a predetermined time. After the wafer W has been subjected to a predetermined process, supply of the processing gas into the chamber 1 by the processing gas supply mechanism 2 and heating of the wafer W by the heater 40 are stopped, and the loading / unloading port 13 is opened by the gate valve 14. Then, the wafer W is transferred out of the chamber 11 through the loading / unloading port 13.
[0039] 次に本発明の比較例について、図 6により説明する。  Next, a comparative example of the present invention will be described with reference to FIG.
図 6に示すように、多少伸縮、ここでは伸長させた状態のベローズ Cの一端部およ び他端部をそれぞれシース熱電対 Aおよび処理容器の壁部、例えば底壁部 Dに気 密に取り付けることによりシース熱電対 Aをあらかじめ載置台 Bに弱く押し付けておき 、ベローズ Cの伸縮によってシース熱電対 Aを載置台の動きに追従させることも考え られる。  As shown in FIG. 6, one end and the other end of the bellows C in a slightly expanded / contracted state here are hermetically sealed to the sheath thermocouple A and the wall of the processing vessel, for example, the bottom wall D. It is also conceivable that the sheath thermocouple A is pressed weakly against the mounting table B in advance by attaching it, and the sheath thermocouple A follows the movement of the mounting table by the expansion and contraction of the bellows C.
[0040] しかしながら、半導体の製造プロセスにおいては一般的に、処理ガス供給の際に処 理容器内を例えば真空圧に減圧するといつたことが行われていることに加え、ベロー ズは一般的に、製造過程の都合上、ある程度の径 Rを有している。このため、前述の ベローズ Cを用いたシース熱電対の取り付け態様では、処理容器内を例えば真空圧 に減圧することによりべローズ Cにその径 Rに応じた大気と真空との差圧がかかり、シ ース熱電対 Aに著しく大きい載置台 Bへの押し付け力(図 6の矢印 E参照)が作用し てしまう。この結果、シース熱電対 Aが載置台 Bに強く押し付けられてしまい、シース 熱電対 Aまたは載置台 Bが損傷するおそれがある。  [0040] However, in the semiconductor manufacturing process, in general, when a processing gas is supplied, the inside of the processing container is reduced to, for example, a vacuum pressure, and in addition, the bellows is generally used. Because of the manufacturing process, it has a certain diameter R. For this reason, in the above-described manner of attaching the sheath thermocouple using the bellows C, the pressure difference between the atmosphere and the vacuum corresponding to the diameter R is applied to the bellows C by reducing the inside of the processing container to a vacuum pressure, for example. An extremely large pressing force against the mounting base B (see arrow E in Fig. 6) acts on the sheath thermocouple A. As a result, the sheath thermocouple A is strongly pressed against the mounting table B, and the sheath thermocouple A or the mounting table B may be damaged.
[0041] これに対して本願発明によれば、上述のようにべローズを用いる必要がないため、 チャンバ一 1内の減圧によってシース熱電対 50がサセプタ 4に強く押し付けられるこ と力 Sなく、シース熱電対 50およびサセプタ 4の損傷を防止することができる。  [0041] On the other hand, according to the present invention, it is not necessary to use a bellows as described above, so that the sheath thermocouple 50 is strongly pressed against the susceptor 4 due to the reduced pressure in the chamber 11, without the force S. Damage to the sheath thermocouple 50 and the susceptor 4 can be prevented.
なお、本発明は上記実施形態に限定されることなく種々の変形が可能である。上記 実施形態では、シース熱電対 50がチャンバ一 1内で露出するように測温装置 5を配 置したが、例えば図 4に示すように、シース熱電対 50が筒状の支柱部材 11内に収ま るように測 温装置 5を配置してもよい。 The present invention is not limited to the above embodiment, and various modifications can be made. In the above embodiment, the temperature measuring device 5 is arranged so that the sheath thermocouple 50 is exposed in the chamber 11. However, as shown in FIG. 4, for example, the sheath thermocouple 50 is placed in the cylindrical column member 11. Measured to fit A warming device 5 may be arranged.
[0042] また、上記実施形態では、緩衝部 50bを収容する緩衝収容部 51cと、圧縮コイルば ね 53およびピストン 54を収容するシリンダー部 51bと、シリンダー部 51bの一端部か ら突出するフランジ 51aとから一体形成して密閉部材 51を構成し、この密閉部材 51 はフランジ 51aの一端面がチャンバ一 1の底壁 19の外面に密着するよう取り付けられ ている。しかしながら例えば図 5に示すように、密閉部材 51は、チャンバ一 1の底壁 1 9の外面(底面)に取り付けられる外側部材 51dと、チャンバ一 1の底壁 19の内面(上 面)に取り付けられる内側部材 51eとを有していてもよぐこの場合は外側部材 51dと 内側部材 51 eとの間に緩衝部 50b、圧縮コイルばね 53およびピストン 54が配置され る。図 5において、外側部材 51dは、緩衝部 50bを収容する容器状に形成され、内側 部材 51 eは、シース熱電対 50を囲繞するリング状に形成され、圧縮コイルばね 53お よびピストン 54は、外側部材 5 Idと内側部材 51 eとの間に挟まれるようにチャンバ一 1 の底壁 19内に配置される。この場合には、チャンバ一 1の底壁 19の圧縮コイルばね 53およびピストン 54を囲繞する部分も密閉部材 51の一部として機能する。このような 構成により、密閉部材 51 (密閉部材 51のチャンバ一 1の底壁 19から突出する部分) の小型化を図ることができる。なお、内側部材 50eを用いずに、圧縮コイルばね 53お よびピストン 54を外側部材 51dとチャンバ一 1の底壁 19との間に挟まれるように配置 してもよく、あるいは、外側部材を用いずに内側部材 50eを容器状に形成しておき、 緩衝部 50b、圧縮コイルばね 53およびピストン 54を内側部材 50e内に収容してもよ い。 [0042] In the above embodiment, the buffer housing 51c for housing the buffer 50b, the cylinder 51b for housing the compression coil spring 53 and the piston 54, and the flange 51a protruding from one end of the cylinder 51b. The sealing member 51 is integrally formed with the sealing member 51, and the sealing member 51 is attached so that one end surface of the flange 51a is in close contact with the outer surface of the bottom wall 19 of the chamber 11. However, for example, as shown in FIG. 5, the sealing member 51 is attached to the outer member 51d attached to the outer surface (bottom surface) of the bottom wall 19 of the chamber 11 and the inner surface (upper surface) of the bottom wall 19 of the chamber 11. In this case, the buffer portion 50b, the compression coil spring 53, and the piston 54 are disposed between the outer member 51d and the inner member 51e. In FIG. 5, the outer member 51d is formed in a container shape that accommodates the buffer portion 50b, the inner member 51e is formed in a ring shape surrounding the sheath thermocouple 50, and the compression coil spring 53 and the piston 54 are It is disposed in the bottom wall 19 of the chamber 1 so as to be sandwiched between the outer member 5 Id and the inner member 51 e. In this case, the portion surrounding the compression coil spring 53 and the piston 54 on the bottom wall 19 of the chamber 11 also functions as a part of the sealing member 51. With such a configuration, the sealing member 51 (the portion of the sealing member 51 protruding from the bottom wall 19 of the chamber 11) can be reduced in size. Instead of using the inner member 50e, the compression coil spring 53 and the piston 54 may be disposed so as to be sandwiched between the outer member 51d and the bottom wall 19 of the chamber 11, or the outer member may be used. Instead, the inner member 50e may be formed in a container shape, and the buffer portion 50b, the compression coil spring 53, and the piston 54 may be accommodated in the inner member 50e.
[0043] また、上記実施形態では、ばね部材として圧縮コイルばねを用いた力 S、これに限ら ず、引張コイルばね等の他のばねを用いてもよい。  [0043] In the above embodiment, the force S using a compression coil spring as a spring member is not limited to this, and other springs such as a tension coil spring may be used.
[0044] さらに、上記実施形態では、ヒーターの加熱によって半導体ウェハの温度を調整す る場合の適用例について説明した力 これに限らず、例えば、クーリングプレートの冷 却によってウェハの温度を調整する場合にも適用することができる。また、被処理体 も半導体ウェハに限らず、 FPD用ガラス基板等であってもよい。  Furthermore, in the above embodiment, the force described in the application example in which the temperature of the semiconductor wafer is adjusted by heating the heater is not limited to this. For example, when the temperature of the wafer is adjusted by cooling the cooling plate It can also be applied to. Further, the object to be processed is not limited to a semiconductor wafer but may be a glass substrate for FPD.
産業上の利用可能性  Industrial applicability
[0045] 本発明は、半導体基板に成膜処理を施す CVD (Chemical Vapor Deposition) 装置や COR (Chemical Oxide Removal)処理後の半導体基板に熱処理を施すポ ストヒート装置など、腐食ガス雰囲気の容器内に配置されたサセプタ等の被測温体の 温度を測定する用途全般に適用可能である。 The present invention relates to a CVD (Chemical Vapor Deposition) that performs a film forming process on a semiconductor substrate. Applicable to all types of applications that measure the temperature of a temperature sensing object such as a susceptor placed in a vessel in a corrosive gas atmosphere, such as a post-heat device that heat-treats semiconductor substrates after COR (Chemical Oxide Removal) processing. is there.

Claims

請求の範囲 The scope of the claims
[1] 処理容器内に配置された被測温体の温度を測定する測温装置にお!/、て、  [1] A temperature measuring device that measures the temperature of the temperature-measuring object placed in the processing container!
シースと、シース内に配置された熱電対素線とからなり、処理容器内方に延び被測 温体に当接するとともにこの被測温体に追従して進退方向に移動する先端部と、処 理容器外方に延びて先端部の移動を許容する緩衝部とを有するシース熱電対と、 処理容器外面に固着され、シース熱電対の緩衝部を収納する密閉部材と、 密閉部材内に配置されシース熱電対の先端部を被測温体側へ付勢するばね部材 とを備え、  A sheath and a thermocouple wire disposed in the sheath, extending inward of the processing container and abutting against the measured object and moving in the forward and backward direction following the measured object, and a treatment A sheath thermocouple having a buffer portion extending outward from the treatment container and permitting movement of the tip, a sealing member fixed to the outer surface of the processing container and housing the buffer portion of the sheath thermocouple, and disposed in the sealing member A spring member that biases the distal end of the sheath thermocouple toward the temperature-measured body,
シース熱電対の緩衝部終端部は、密閉部材力 溶接部またはろう付け部を通って 更に外方へ延出することを特徴とする測温装置。  The temperature measuring device, wherein the end portion of the buffer portion of the sheath thermocouple extends further outward through the sealing member welded portion or the brazed portion.
[2] 処理容器内は腐食ガス雰囲気となっており、 [2] The inside of the processing vessel has a corrosive gas atmosphere.
シースと、密閉部材と、ばね部材は、いずれも腐食ガスに対する耐食性を有する材 料からなることを特徴とする請求項 1記載の測温装置。  2. The temperature measuring device according to claim 1, wherein each of the sheath, the sealing member, and the spring member is made of a material having corrosion resistance against a corrosive gas.
[3] 前記ばね部材はコイルばねからなり、 [3] The spring member comprises a coil spring,
前記密閉部材内には、前記コイルばねの伸縮に伴つて前記被測温体に対する進 退方向に移動する、前記腐食ガスに対して耐食性を有する材料からなるピストンが収 容されており、  In the sealing member, a piston made of a material resistant to the corrosive gas, which moves in the forward / backward direction with respect to the temperature-measured body as the coil spring expands / contracts, is accommodated.
前記シース熱電対は、前記ピストンに固定されていることを特徴とする請求項 2に記 載の測温装置。  The temperature measuring device according to claim 2, wherein the sheath thermocouple is fixed to the piston.
[4] 前記腐食ガスはハロゲンを含むガスであり、 [4] The corrosive gas is a gas containing halogen,
前記腐食ガスに対して耐食性を有する材料は、ニッケルよ またはニッケル合金 力 なることを特徴とする請求項 2または請求項 3に記載の測温装置。  4. The temperature measuring device according to claim 2, wherein the material having corrosion resistance against the corrosive gas is nickel or nickel alloy.
[5] 前記ばね部材はインコネル (登録商標)からなることを特徴とする請求項 1に記載の 測温装置。 5. The temperature measuring device according to claim 1, wherein the spring member is made of Inconel (registered trademark).
[6] 前記緩衝部は、前記被測温体に対する進退方向に伸縮可能に屈曲していることを 特徴とする請求項 1に記載の測温装置。  6. The temperature measuring device according to claim 1, wherein the buffer portion is bent so as to be extendable and retractable in a forward / backward direction with respect to the temperature measuring object.
[7] 前記緩衝部は螺旋状に屈曲していることを特徴とする請求項 6に記載の測温装置 [8] 前記緩衝部は波形に屈曲していることを特徴とする請求項 6に記載の測温装置。 7. The temperature measuring device according to claim 6, wherein the buffer portion is bent in a spiral shape. 8. The temperature measuring device according to claim 6, wherein the buffer portion is bent in a waveform.
PCT/JP2007/065854 2006-09-06 2007-08-14 Temperature measuring device WO2008029595A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800127392A CN101421599B (en) 2006-09-06 2007-08-14 Temperature measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006241594A JP4803596B2 (en) 2006-09-06 2006-09-06 Temperature measuring device
JP2006-241594 2006-09-06

Publications (1)

Publication Number Publication Date
WO2008029595A1 true WO2008029595A1 (en) 2008-03-13

Family

ID=39157037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065854 WO2008029595A1 (en) 2006-09-06 2007-08-14 Temperature measuring device

Country Status (5)

Country Link
JP (1) JP4803596B2 (en)
KR (1) KR20080109747A (en)
CN (1) CN101421599B (en)
TW (1) TWI403702B (en)
WO (1) WO2008029595A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853774B (en) * 2009-03-31 2012-06-06 北京北方微电子基地设备工艺研究中心有限责任公司 Heating cavity and semiconductor processing device
GB2504284A (en) * 2012-07-23 2014-01-29 Weston Aerospace Ltd Sensing device for a gas turbine unit
CN106153209A (en) * 2016-07-13 2016-11-23 云南大学 Between a kind of temp controlled meter temperature display degree and Material growth temperature, deviation revises method
CN111982317A (en) * 2020-08-28 2020-11-24 安徽瑞尔特仪表科技有限公司 Thermocouple

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905290B2 (en) * 2007-08-09 2012-03-28 住友電気工業株式会社 Temperature measuring device for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
CN102269629A (en) * 2010-06-07 2011-12-07 北京北方微电子基地设备工艺研究中心有限责任公司 Temperature measuring device and temperature measuring system
KR101187436B1 (en) 2010-06-22 2012-10-02 주식회사 우진 A leakproof spring-load type thermocouple assembly
CN102095515B (en) * 2011-01-05 2012-07-04 北京航空航天大学 Temperature-measuring device for cylindrical combustion chamber wall
JP5890984B2 (en) * 2011-08-30 2016-03-22 株式会社フジキン Fluid control device
CN103515177A (en) * 2012-06-20 2014-01-15 北京北方微电子基地设备工艺研究中心有限责任公司 Reaction chamber, substrate processing equipment and its temperature control method
CN104296887B (en) * 2013-07-17 2017-04-05 中微半导体设备(上海)有限公司 A kind of temperature measuring equipment for realizing stable thermometric and its semiconductor equipment at place
CN106653644B (en) * 2015-10-29 2021-01-29 北京北方华创微电子装备有限公司 Temperature measuring device, base and reaction chamber
CN106935470B (en) * 2015-12-31 2019-03-08 中微半导体设备(上海)有限公司 A kind of plasma processor with temperature measuring device
KR102038232B1 (en) * 2018-10-24 2019-10-29 (주)에스티아이 Apparatus for Measuring Temperature of Substrate and the method thereof
CN110739252B (en) * 2019-11-27 2021-09-17 北京北方华创微电子装备有限公司 Semiconductor processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294320A (en) * 1985-06-24 1986-12-25 Sumitomo Electric Ind Ltd Method and instrument for measuring substrate temperature
JPH09145485A (en) * 1995-11-28 1997-06-06 Kokusai Electric Co Ltd Temperature detecting device
JPH1048063A (en) * 1996-08-07 1998-02-20 Sony Corp Fluorescent thermometer
JP2002527733A (en) * 1998-10-09 2002-08-27 クラウド エス. ゴードン カンパニー Surface temperature sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195139A (en) * 1986-02-21 1987-08-27 Sumitomo Electric Ind Ltd Substrate temperature measurement and device thereof
JPH0418443U (en) * 1990-05-31 1992-02-17
CN2103135U (en) * 1991-05-06 1992-04-29 赵金富 Tile thermometric element
JP2595111Y2 (en) * 1993-04-30 1999-05-24 株式会社サーモ理工 Temperature measuring device with propulsion mechanism
SG70035A1 (en) * 1996-11-13 2000-01-25 Applied Materials Inc Systems and methods for high temperature processing of semiconductor wafers
US6635114B2 (en) * 1999-12-17 2003-10-21 Applied Material, Inc. High temperature filter for CVD apparatus
TW521369B (en) * 2002-01-29 2003-02-21 Taiwan Semiconductor Mfg Chamber with wafer temperature measurement capability and the measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294320A (en) * 1985-06-24 1986-12-25 Sumitomo Electric Ind Ltd Method and instrument for measuring substrate temperature
JPH09145485A (en) * 1995-11-28 1997-06-06 Kokusai Electric Co Ltd Temperature detecting device
JPH1048063A (en) * 1996-08-07 1998-02-20 Sony Corp Fluorescent thermometer
JP2002527733A (en) * 1998-10-09 2002-08-27 クラウド エス. ゴードン カンパニー Surface temperature sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853774B (en) * 2009-03-31 2012-06-06 北京北方微电子基地设备工艺研究中心有限责任公司 Heating cavity and semiconductor processing device
GB2504284A (en) * 2012-07-23 2014-01-29 Weston Aerospace Ltd Sensing device for a gas turbine unit
GB2504284B (en) * 2012-07-23 2015-09-16 Weston Aerospace Ltd Improved sensing device for a gas turbine unit
CN106153209A (en) * 2016-07-13 2016-11-23 云南大学 Between a kind of temp controlled meter temperature display degree and Material growth temperature, deviation revises method
CN111982317A (en) * 2020-08-28 2020-11-24 安徽瑞尔特仪表科技有限公司 Thermocouple

Also Published As

Publication number Publication date
TW200823439A (en) 2008-06-01
CN101421599A (en) 2009-04-29
KR20080109747A (en) 2008-12-17
TWI403702B (en) 2013-08-01
JP2008064551A (en) 2008-03-21
JP4803596B2 (en) 2011-10-26
CN101421599B (en) 2011-03-02

Similar Documents

Publication Publication Date Title
WO2008029595A1 (en) Temperature measuring device
JP5135915B2 (en) Mounting table structure and heat treatment apparatus
US5462603A (en) Semiconductor processing apparatus
KR100886505B1 (en) Substrate heating device and method of purging the device
JP5235407B2 (en) Substrate mounting mechanism and substrate processing apparatus
JP5368393B2 (en) Vaporizer, substrate processing apparatus, and coating and developing apparatus
JP2010109346A (en) Mounting table structure and treatment device
JP2008021963A (en) Placement table construction, and heat treatment equipment
US7241346B2 (en) Apparatus for vapor deposition
JP5025109B2 (en) Substrate mounting mechanism, substrate processing apparatus, and method of manufacturing substrate mounting mechanism
JP4690368B2 (en) Substrate heating apparatus and substrate heating method
JP2020026572A (en) Valve device, processing apparatus, and control method
US20080314320A1 (en) Chamber Mount for High Temperature Application of AIN Heaters
JP4905290B2 (en) Temperature measuring device for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP4588653B2 (en) Substrate mounting mechanism and substrate processing apparatus having substrate heating function
JP2006517747A (en) Purged heated susceptor for ALD / CVD reactor
US20100144161A1 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP5985316B2 (en) Plasma etching equipment
JP5242984B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
US20210063247A1 (en) Thermocouple structure, heat treatment apparatus, and method of manufacturing thermocouple structure
KR102251770B1 (en) High temperature faceplate with hybrid material design
JPH06260687A (en) Gas processor
JP2003278943A (en) High temperature operating valve
WO2024064049A1 (en) Bellows seal for low thru-force actuation of temperature probe across vacuum interface
JP2004152866A (en) Stage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087021633

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780012739.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07792497

Country of ref document: EP

Kind code of ref document: A1