JP2008064551A - Temperature measuring apparatus - Google Patents

Temperature measuring apparatus Download PDF

Info

Publication number
JP2008064551A
JP2008064551A JP2006241594A JP2006241594A JP2008064551A JP 2008064551 A JP2008064551 A JP 2008064551A JP 2006241594 A JP2006241594 A JP 2006241594A JP 2006241594 A JP2006241594 A JP 2006241594A JP 2008064551 A JP2008064551 A JP 2008064551A
Authority
JP
Japan
Prior art keywords
temperature
container
temperature measuring
measuring device
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006241594A
Other languages
Japanese (ja)
Other versions
JP4803596B2 (en
Inventor
Kentaro Asakura
賢太朗 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006241594A priority Critical patent/JP4803596B2/en
Priority to KR1020087021633A priority patent/KR20080109747A/en
Priority to PCT/JP2007/065854 priority patent/WO2008029595A1/en
Priority to CN2007800127392A priority patent/CN101421599B/en
Priority to TW96133124A priority patent/TWI403702B/en
Publication of JP2008064551A publication Critical patent/JP2008064551A/en
Application granted granted Critical
Publication of JP4803596B2 publication Critical patent/JP4803596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • G01K1/10Protective devices, e.g. casings for preventing chemical attack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/146Supports; Fastening devices; Arrangements for mounting thermometers in particular locations arrangements for moving thermometers to or from a measuring position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/08Sensor arrangement

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature measuring apparatus which can measure the temperature of an object of temperature measurement while preventing damage to a sheathed thermocouple or the object of temperature measurement caused by a reduction in the pressure in a container. <P>SOLUTION: The temperature measuring apparatus 5 comprises the sheathed thermocouple 50 having a tip part 50a which is movable by following a susceptor 4 and a buffer part 50b which is provided extending out of a chamber 1 and allows the tip part 50a to move, a compression coil spring 53 for biasing the tip part 50a against the susceptor 4, a sealing member 51 which houses the compression coil spring 53 and the buffer part 50b, is in a close contact with a bottom wall 19 of the chamber 1 so that its inside is in communication with the chamber 1, and out of which the end part of the buffer part 50b extends outwardly, and a connecting part 55 which is formed at the part at which the end part of the buffer part 50b of the sealing member 51 extends outwardly in an airtight manner by welding. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、容器内に配置された被測温体の温度を測定する測温装置に関する。   The present invention relates to a temperature measuring device that measures the temperature of a temperature-measured body arranged in a container.

半導体の製造プロセスにおいては、半導体基板を処理容器内の載置台上に載置した状態で、処理容器内に処理ガスを供給しつつ、載置台に内蔵したヒーター等の加熱機構によって半導体基板を加熱して、半導体基板に所定の処理を施すといったことが行われている。このような処理では、加熱温度が半導体基板の品質に大きく影響するため、載置台(または加熱機構)の温度を正確に測定する必要がある。このため、載置台の温度測定には、熱応答性に優れた熱電対が多く用いられており、中でも、耐熱性を有する金属等からなるシースで熱電対を覆うことにより構成されたシース熱電対が多く用いられている(例えば特許文献1、2参照)。   In a semiconductor manufacturing process, a semiconductor substrate is heated by a heating mechanism such as a heater built in the mounting table while supplying the processing gas into the processing chamber while the semiconductor substrate is mounted on the mounting table in the processing chamber. Then, a predetermined process is performed on the semiconductor substrate. In such processing, since the heating temperature greatly affects the quality of the semiconductor substrate, it is necessary to accurately measure the temperature of the mounting table (or heating mechanism). For this reason, thermocouples with excellent thermal response are often used for temperature measurement of the mounting table, and in particular, a sheathed thermocouple configured by covering the thermocouple with a sheath made of heat-resistant metal or the like. Are often used (see, for example, Patent Documents 1 and 2).

シース熱電対は通常、先端部が載置台に接触するように処理容器の壁部に気密に取り付けられるが、長尺であるために長さ方向の取り付け誤差が生じやすい。また、処理容器内に処理ガスを供給すると、処理容器内の圧力変化等によって載置台が多少動くことから、シース熱電対の先端部は載置台と非接触状態になりやすい。先端部が載置台と非接触状態になっていると、載置台の温度を正確に測定することができない。このため、シース熱電対は、取り付け誤差を吸収するとともに載置台の動きに追従することができるように、載置台に対する進退方向、すなわち長さ方向の自由度を有するように処理容器の壁部に取り付けられることが好ましい。   The sheath thermocouple is usually attached airtight to the wall of the processing container so that the tip is in contact with the mounting table. However, since the sheath thermocouple is long, an attachment error in the length direction tends to occur. In addition, when the processing gas is supplied into the processing container, the mounting table moves somewhat due to a pressure change in the processing container, and therefore the distal end portion of the sheath thermocouple is likely to be in a non-contact state with the mounting table. If the tip is not in contact with the mounting table, the temperature of the mounting table cannot be measured accurately. For this reason, the sheath thermocouple absorbs attachment errors and can follow the movement of the mounting table, so that the sheath thermocouple has a degree of freedom in the advancing and retreating direction relative to the mounting table, that is, in the length direction. Preferably it is attached.

そこで、図6に示すように、多少伸縮、ここでは伸長させた状態のベローズCの一端部および他端部をそれぞれシース熱電対Aおよび処理容器の壁部、例えば底壁部Dに気密に取り付けることによりシース熱電対Aをあらかじめ載置台Bに弱く押し付けておき、ベローズCの伸縮によってシース熱電対Aを載置台の動きに追従させるといったことが行われている。   Therefore, as shown in FIG. 6, one end and the other end of the bellows C that are slightly expanded and contracted, here, are attached to the sheath thermocouple A and the wall of the processing vessel, for example, the bottom wall D, respectively. Thus, the sheath thermocouple A is pressed weakly against the mounting table B in advance, and the sheath thermocouple A follows the movement of the mounting table by the expansion and contraction of the bellows C.

しかしながら、半導体の製造プロセスにおいては一般的に、処理ガス供給の際に処理容器内を例えば真空圧に減圧するといったことが行われていることに加え、ベローズは一般的に、製造過程の都合上、ある程度の径Rを有しているため、前述のベローズCを用いたシース熱電対の取り付け態様では、処理容器内を例えば真空圧に減圧することによりベローズCにその径Rに応じた大気と真空との差圧がかかり、シース熱電対Aに著しく大きい載置台Bへの押し付け力(図6の矢印E参照)が作用してしまう。この結果、シース熱電対Aが載置台Bに強く押し付けられてしまい、シース熱電対Aまたは載置台Bが損傷するおそれがある。   However, in the semiconductor manufacturing process, in general, the inside of the processing container is reduced to, for example, a vacuum pressure when the processing gas is supplied. In addition, since the sheath thermocouple is attached using the bellows C described above because of having a certain diameter R, the atmosphere corresponding to the diameter R is reduced in the bellows C by, for example, reducing the inside of the processing container to a vacuum pressure. A pressure difference from the vacuum is applied, and a significantly large pressing force (see arrow E in FIG. 6) against the mounting table B acts on the sheath thermocouple A. As a result, the sheath thermocouple A is strongly pressed against the mounting table B, and the sheath thermocouple A or the mounting table B may be damaged.

このような事態を回避するには、ベローズを用いずに、剛性を有する密閉部材によってシース熱電対および処理容器の壁部の間を密閉するとともに、シース熱電対の金属製シースの一部を剥がし、テフロン(登録商標)等の樹脂コーティングが施された熱電対素線の一部を露出させて弛ませておくことにより、シース熱電対の載置台に対する進退方向への自由度を確保し、かつ、ばねによってシース熱電対の先端部を載置台に押し付ける方向に付勢しておくといったことも考えられる。ところが、このような態様では、樹脂コーティングされた熱電対素線が処理容器内の雰囲気に曝されるため、処理ガスがハロゲン系ガス等の腐食ガスである場合には、樹脂が腐食ガスによって腐食するおそれがあり、有機汚染につながる懸念もある。   In order to avoid such a situation, the sheath thermocouple and the wall of the processing vessel are sealed with a rigid sealing member without using a bellows, and a part of the metal sheath of the sheath thermocouple is peeled off. In addition, by exposing a part of a thermocouple wire coated with a resin coating such as Teflon (registered trademark) to be loosened, the sheath thermocouple has a degree of freedom in the advancing / retreating direction with respect to the mounting table, and It is also conceivable that the tip of the sheath thermocouple is urged by a spring in the direction of pressing against the mounting table. However, in such an embodiment, since the resin-coated thermocouple wire is exposed to the atmosphere in the processing container, when the processing gas is a corrosive gas such as a halogen-based gas, the resin is corroded by the corrosive gas. There is also a concern of organic contamination.

本発明はかかる事情に鑑みてなされたものであって、シース熱電対を用いた測温装置であって、容器内の減圧に起因するシース熱電対または被測温体の損傷を防止しつつ、被測温体の温度を正確に測定することが可能な測温装置を提供することを目的とする。   The present invention has been made in view of such circumstances, a temperature measuring device using a sheath thermocouple, while preventing damage to the sheath thermocouple or the temperature-measured body due to decompression in the container, It is an object of the present invention to provide a temperature measuring device capable of accurately measuring the temperature of a temperature measuring object.

また、本発明は、シース熱電対を用いた測温装置であって、容器内の減圧に起因するシース熱電対または被測温体の損傷を防止しつつ、被測温体の温度を正確に測定することに加えて、容器内の腐食ガスに起因する腐食を防止することが可能な測温装置を提供することを目的とする。
特開平4−63281号公報 特開平6−176855号公報
The present invention is also a temperature measuring device using a sheathed thermocouple, and accurately controls the temperature of the temperature-measured body while preventing damage to the sheath thermocouple or the temperature-measured body due to the reduced pressure in the container. An object of the present invention is to provide a temperature measuring device capable of preventing corrosion caused by the corrosive gas in the container in addition to the measurement.
JP-A-4-63281 JP-A-6-176855

上記課題を解決するために、本発明の第1の観点では、容器内に配置された被測温体の温度を測定する測温装置であって、熱電対素線をシースで覆った構造を有し、前記容器内に位置されるとともに前記被測温体に追従して移動可能な先端部と、前記容器外に延出するように設けられ、前記先端部の移動を許容する緩衝部とを有するシース熱電対と、前記シース熱電対の前記先端部を前記被測温体に押し付ける方向に付勢するばね部材と、前記ばね部材と前記緩衝部とを収容し、その内部が前記容器の内部と連通するように前記容器の壁部に密着して設けられ、前記緩衝部の終端部分が外部に延出される密閉部材と、前記密閉部材の前記緩衝部の終端部分が外部に延出される部分に溶接またはろう付けにより気密に形成された接合部とを具備することを特徴とする測温装置を提供する。   In order to solve the above-described problem, according to a first aspect of the present invention, there is provided a temperature measuring device for measuring the temperature of a temperature-measured body arranged in a container, wherein a thermocouple element is covered with a sheath. A tip portion that is positioned in the container and is movable following the temperature-measured body; and a buffer portion that is provided so as to extend outside the container and allows the tip portion to move. A sheath thermocouple, a spring member that urges the distal end of the sheath thermocouple in a direction to press the temperature-measured body, the spring member, and the buffer portion, and the inside of the container A sealing member provided in close contact with the wall portion of the container so as to communicate with the inside, and an end portion of the buffer portion extending to the outside, and an end portion of the buffer portion of the sealing member extending to the outside With joints formed hermetically by welding or brazing Providing a temperature measuring device according to claim Rukoto.

また、本発明の第2の観点では、腐食ガス雰囲気の容器内に配置された被測温体の温度を測定する測温装置であって、熱電対素線を前記腐食ガスに対して耐食性を有する材料からなるシースで覆った構造を有し、前記容器内に位置されるとともに前記被測温体に追従して移動可能な先端部と、前記容器外に延出するように設けられ、前記先端部の移動を許容する緩衝部とを有するシース熱電対と、前記シース熱電対の前記先端部を前記被測温体に押し付ける方向に付勢する、前記腐食ガスに対して耐食性を有する材料からなるばね部材と、前記ばね部材と前記緩衝部とを収容し、その内部が前記容器の内部と連通するように前記容器の壁部に密着して設けられ、前記緩衝部の終端部分が外部に延出される、前記腐食ガスに対して耐食性を有する材料からなる密閉部材と、前記密閉部材の前記緩衝部の終端部分が外部に延出される部分に溶接またはろう付けにより気密に形成された接合部とを具備することを特徴とする測温装置を提供する。   According to a second aspect of the present invention, there is provided a temperature measuring device for measuring the temperature of a temperature-measured body arranged in a container having a corrosive gas atmosphere, wherein the thermocouple element has a corrosion resistance against the corrosive gas. Having a structure covered with a sheath made of a material having, a tip positioned within the container and movable following the temperature-measured body, provided to extend out of the container, A sheath thermocouple having a buffer portion that allows movement of the tip portion, and a material that urges the tip portion of the sheath thermocouple in a direction in which the tip portion is pressed against the temperature-measured body, and that is resistant to the corrosive gas. A spring member, and the spring member and the buffer portion are accommodated and provided in close contact with the wall portion of the container so that the inside thereof communicates with the interior of the container, and the end portion of the buffer portion is externally provided. Extends and has corrosion resistance to the corrosive gas A temperature measuring device comprising: a sealing member made of a material; and a joint portion formed by welding or brazing on a portion where the end portion of the buffer portion of the sealing member extends to the outside. provide.

本発明の第2の観点において、前記ばね部材はコイルばねであり、前記密閉部材には、前記コイルばねの伸縮に伴って前記被測温体に対する進退方向に移動する、前記腐食ガスに対して耐食性を有する材料からなるピストンが収容されており、前記シース熱電対は、前記ピストンに固定されていることができる。   In the second aspect of the present invention, the spring member is a coil spring, and the sealing member moves against the corrosive gas that moves in the advancing and retracting direction with respect to the temperature-measured body as the coil spring expands and contracts. A piston made of a material having corrosion resistance is accommodated, and the sheath thermocouple can be fixed to the piston.

さらに、以上の本発明の第2の観点において、前記腐食ガスがハロゲンを含むガスである場合に、前記腐食ガスに対して耐食性を有する材料はニッケル(Ni)またはニッケル合金であることが好ましい。   Furthermore, in the above second aspect of the present invention, when the corrosive gas is a gas containing halogen, the material having corrosion resistance to the corrosive gas is preferably nickel (Ni) or a nickel alloy.

また、以上の本発明において、前記ばね部材はインコネル(登録商標)からなることが好ましい。   In the present invention described above, the spring member is preferably made of Inconel (registered trademark).

さらに、以上の本発明において、前記緩衝部は、前記被測温体に対する進退方向に伸縮可能に屈曲していることが好ましい。この場合に、前記緩衝部は螺旋状または波形に屈曲していることがなお好ましい。   Furthermore, in the above-mentioned this invention, it is preferable that the said buffer part is bent so that it can expand-contract in the advancing / retreating direction with respect to the said to-be-measured body. In this case, it is more preferable that the buffer portion is bent in a spiral shape or a waveform.

本発明の第1の観点によれば、シース熱電対を、容器内に位置されるとともに被測温体に追従して移動可能な先端部と、容器外に延出するように設けられ、先端部の移動を許容する緩衝部とから構成し、シース熱電対の先端部を被測温体に押し付ける方向に付勢するばね部材を設けたため、容器内外の圧力差に大きく影響を受けるベローズを用いることなく、シース熱電対の先端部を被測温体に確実に接触させることができる。したがって、容器内の減圧に起因するシース熱電対または被測温体の損傷を防止しつつ、被測温体の温度を正確に測定することが可能となる。   According to the first aspect of the present invention, the sheath thermocouple is provided in the container so that the sheath thermocouple is positioned in the container and is movable following the temperature measurement object, and extends outside the container. A bellows that is greatly influenced by the pressure difference between the inside and outside of the container is used because the spring member that urges the tip of the sheath thermocouple in the direction to press the temperature-measured body is provided. Without this, the distal end portion of the sheath thermocouple can be reliably brought into contact with the temperature object. Therefore, it is possible to accurately measure the temperature of the temperature-measured body while preventing the sheath thermocouple or the temperature-measured body from being damaged due to the reduced pressure in the container.

また、本発明の第2の観点によれば、シース熱電対を、容器内に位置されるとともに被測温体に追従して移動可能な先端部と、容器外に延出するように設けられ、先端部の移動を許容する緩衝部とから構成し、シース熱電対の先端部を被測温体に押し付ける方向に付勢するばね部材を設けたため、容器内外の圧力差に大きく影響を受けるベローズを用いたり、耐食性を低下させる要因となるシースの一部を剥がしたりすることなく、シース熱電対の先端部を被測温体に確実に接触させることができる。しかも、容器内の腐食ガスの雰囲気に曝されるシース、密閉部材およびばね部材をいずれも、腐食ガスに対する耐食性材料によって形成し、密閉部材とシースとの接合部を溶接またはろう付けによって形成したため、腐食ガスによる腐食を防止することができる。したがって、容器内の減圧に起因するシース熱電対または被測温体の損傷ならびに容器内の腐食ガスに起因する腐食を防止しつつ、被測温体の温度を正確に測定することが可能となる。   In addition, according to the second aspect of the present invention, the sheath thermocouple is provided so as to be positioned inside the container and movable following the temperature object, and to extend outside the container. The bellows is composed of a buffer part that allows movement of the tip part, and is provided with a spring member that urges the tip part of the sheath thermocouple in a direction to press the temperature-measured body, so that the bellows is greatly affected by the pressure difference between the inside and outside of the container The tip of the sheath thermocouple can be reliably brought into contact with the temperature-measured body without using or removing a part of the sheath that causes a decrease in corrosion resistance. Moreover, the sheath, the sealing member, and the spring member that are exposed to the atmosphere of the corrosive gas in the container are all formed of a corrosion-resistant material against the corrosive gas, and the joint between the sealing member and the sheath is formed by welding or brazing. Corrosion due to corrosive gas can be prevented. Accordingly, it is possible to accurately measure the temperature of the temperature-measured body while preventing the sheath thermocouple or the temperature-measured body from being damaged due to the decompression in the container and the corrosion due to the corrosive gas in the container. .

以下、添付図面を参照して本発明の実施形態について具体的に説明する。
図1は本発明に係る一実施形態としての測温装置を備えたウエハ処理装置を概略的に示す断面図である。
Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view schematically showing a wafer processing apparatus provided with a temperature measuring device as one embodiment according to the present invention.

ウエハ処理装置100は、半導体基板であるウエハWを収容可能な処理容器としてのチャンバー1と、このチャンバー1内に収容されたウエハWを載置して、ウエハWの温度を調整する温調部としてのサセプタ4と、このサセプタ4(被測温体)の温度を測定する測温装置5と、ウエハWに所定の処理を施すための腐食ガスを含む処理ガスをチャンバー1内に供給する処理ガス供給機構2と、チャンバー1内を減圧可能な減圧機構3とを備えている。   The wafer processing apparatus 100 includes a chamber 1 as a processing container capable of storing a wafer W, which is a semiconductor substrate, and a temperature control unit that places the wafer W stored in the chamber 1 and adjusts the temperature of the wafer W. As a susceptor 4, a temperature measuring device 5 for measuring the temperature of the susceptor 4 (temperature object), and a process for supplying a processing gas containing a corrosive gas for performing a predetermined process to the wafer W into the chamber 1. A gas supply mechanism 2 and a decompression mechanism 3 capable of decompressing the inside of the chamber 1 are provided.

チャンバー1は、上部が開口した略筒状に形成されており、チャンバー1の側壁には、ウエハWを搬入出するための搬入出口13が形成されているとともに、この搬入出口13を開閉するゲートバルブ14が設けられている。サセプタ4は、高さ方向に延びる支柱部材11を介してチャンバー1の底壁19に設けられ、内部にヒーター40が埋設されており、このヒーター40はヒーター電源41に接続されている。ヒーター電源41、すなわちヒーター40は、測温装置5の測定温度に基づき、後述するコントローラ90によって制御されており、これにより、サセプタ4に載置されたウエハWの温度が調整されるように構成されている。   The chamber 1 is formed in a substantially cylindrical shape with an open top, and a loading / unloading port 13 for loading / unloading the wafer W is formed on the side wall of the chamber 1 and a gate for opening / closing the loading / unloading port 13. A valve 14 is provided. The susceptor 4 is provided on the bottom wall 19 of the chamber 1 via a column member 11 extending in the height direction, and a heater 40 is embedded therein, and the heater 40 is connected to a heater power supply 41. The heater power supply 41, that is, the heater 40, is controlled by a controller 90 described later based on the measured temperature of the temperature measuring device 5, thereby adjusting the temperature of the wafer W placed on the susceptor 4. Has been.

チャンバー1の上部には、開口を閉塞し、かつサセプタ4に対向するようにシャワーヘッド15が設けられている。シャワーヘッド15は、内部に、処理ガス供給機構2による処理ガスを拡散させる拡散空間16を有するとともに、サセプタ4との対向面に、処理ガス供給機構2による処理ガスを吐出する複数または多数の吐出孔17が形成されている。   A shower head 15 is provided on the upper portion of the chamber 1 so as to close the opening and to face the susceptor 4. The shower head 15 has a diffusion space 16 for diffusing the processing gas by the processing gas supply mechanism 2 inside, and a plurality or a plurality of discharges for discharging the processing gas by the processing gas supply mechanism 2 on the surface facing the susceptor 4. A hole 17 is formed.

チャンバー1の側壁の下部には排気口18が形成されている。減圧機構3は、排気口18に接続された排気管31と、排気管31を介してチャンバー1内を排気する排気装置32とを有している。   An exhaust port 18 is formed in the lower part of the side wall of the chamber 1. The decompression mechanism 3 includes an exhaust pipe 31 connected to the exhaust port 18 and an exhaust device 32 that exhausts the inside of the chamber 1 through the exhaust pipe 31.

処理ガス供給機構2は、ハロゲン系ガス(ハロゲンを含むガス)等の腐食ガスを含む処理ガスが貯留された処理ガス貯留部21と、処理ガス貯留部21からの処理ガスをシャワーヘッド15の拡散空間16内に導く導管22と、導管22を流通する処理ガスの流量を調整する流量調整機構としてのマスフローコントローラ23およびバルブ24とを有している。なお、複数種類の異なる処理ガスをチャンバー1内に供給する場合には、例えば、複数の処理ガス供給機構2が設けられる。   The processing gas supply mechanism 2 includes a processing gas storage unit 21 storing a processing gas containing a corrosive gas such as a halogen-based gas (a gas containing halogen), and diffusion of the processing gas from the processing gas storage unit 21 into the shower head 15. A conduit 22 led into the space 16, and a mass flow controller 23 and a valve 24 as a flow rate adjusting mechanism for adjusting the flow rate of the processing gas flowing through the conduit 22 are provided. In addition, when supplying several types of different process gas in the chamber 1, the several process gas supply mechanism 2 is provided, for example.

次に、測温装置5について詳細に説明する。
図2は測温装置5の断面図である。
Next, the temperature measuring device 5 will be described in detail.
FIG. 2 is a cross-sectional view of the temperature measuring device 5.

測温装置5は、先端部(軸方向一端部)50aがチャンバー1内に位置されるとともにサセプタ4に追従して移動可能に設けられ、この先端部の後側(軸方向他方側)に、先端部の移動を許容する緩衝部50bがチャンバー1外に延出するように設けられたシース熱電対50と、シース熱電対50の先端部50aをサセプタ4に押し付ける方向に付勢するばね部材としての圧縮コイルばね53と、この圧縮コイルばね53と緩衝部50bとを収容し、その内部がチャンバー1の内部と連通するようにチャンバー1の壁部、例えば底壁19と気密に密着して設けられ、緩衝部50bの終端部分が外部に延出される密閉部材51と、密閉部材51の緩衝部50bの終端部分が外部(チャンバー1外の雰囲気側)に延出される部分に気密に形成された接合部55とを備えている。   The temperature measuring device 5 is provided such that a tip portion (one axial end portion) 50a is positioned in the chamber 1 and is movable following the susceptor 4, and on the rear side (the other axial side) of the tip portion, A sheath thermocouple 50 provided so that the buffer portion 50b that allows the movement of the tip portion extends out of the chamber 1 and a spring member that biases the tip portion 50a of the sheath thermocouple 50 in the direction of pressing the susceptor 4 The compression coil spring 53, and the compression coil spring 53 and the buffer portion 50b are accommodated and provided in close contact with the wall portion of the chamber 1, for example, the bottom wall 19, so that the inside thereof communicates with the inside of the chamber 1. The end portion of the buffer portion 50b is extended to the outside, and the end portion of the buffer portion 50b of the seal member 51 is hermetically formed in the portion extending to the outside (atmosphere side outside the chamber 1). And a joint portion 55.

シース熱電対50は、熱電対素線と、この熱電対素線を被覆する中空のシースと、このシース内に重点されたマグネシア等の絶縁材とを有して構成されており、シース熱電対50のシースは、ハロゲン系ガスに対する耐食性を有する材料、例えば、純ニッケル(Ni)またはニッケル・クロム・モリブデン(NiCrMo)やハステロイ等のニッケル合金によって形成されている。なお、シースおよび絶縁材は、外部に延出する部分には必ずしも設けなくてもよい。   The sheath thermocouple 50 includes a thermocouple element, a hollow sheath that covers the thermocouple element, and an insulating material such as magnesia that is emphasized in the sheath. The sheath 50 is made of a material having corrosion resistance to a halogen-based gas, for example, pure nickel (Ni), nickel-chromium-molybdenum (NiCrMo), or a nickel alloy such as Hastelloy. Note that the sheath and the insulating material are not necessarily provided in the portion extending to the outside.

シース熱電対50の先端部50aは、例えば、サセプタ4の下面に形成された挿入孔4a内に挿入されることによりサセプタ4に接触している。シース熱電対50の緩衝部50bは、サセプタ4に対する進退方向に伸縮可能なように、例えば螺旋状に屈曲または湾曲している。シース熱電対50は、その終端部が信号送信部52に接続されており、信号送信部52がシース熱電対50による測定温度信号を後述するコントローラ90に送信し、この測定温度信号に基づいてコントローラ90がヒーター電源41、すなわちヒーター40の温度を制御するように構成されている。   The distal end portion 50 a of the sheath thermocouple 50 is in contact with the susceptor 4 by being inserted into an insertion hole 4 a formed on the lower surface of the susceptor 4, for example. The buffer portion 50b of the sheath thermocouple 50 is bent or curved, for example, spirally so that it can expand and contract in the advancing and retracting direction with respect to the susceptor 4. The end portion of the sheath thermocouple 50 is connected to the signal transmission unit 52, and the signal transmission unit 52 transmits a measurement temperature signal from the sheath thermocouple 50 to a controller 90 described later, and the controller is based on the measurement temperature signal. 90 is configured to control the temperature of the heater power supply 41, that is, the heater 40.

密閉部材51は、ハロゲン系ガスに対する耐食性を有する材料、例えば、シース熱電対50のシースと同種の金属である純ニッケルまたはニッケル合金からなる筒状に形成され、軸方向一方側から他方側に向かって順に、圧縮コイルばね53および圧縮コイルばね53の伸縮に伴ってサセプタ4に対する進退方向に移動可能なピストン54を収容するシリンダー部51bと、シース熱電対50の緩衝部50bを収容する緩衝収容部51cとを有しいている。密閉部材51の軸方向一端部にはフランジ51aが形成されており、密閉部材51は、フランジ51aの一端面がチャンバー1の底壁19の外面(底面)に気密に取り付けられている。密閉部材51の軸方向他端の壁部には前述の接合部55が設けられており、接合部55は、溶接またはろう付けによって形成されている。ここで、密閉部材51を、シース熱電対50のシースと同種の金属製とすることにより、両者の溶接またはろう付けが良好となり、接合部55によってシースに確実に固定することができる。   The sealing member 51 is formed in a cylindrical shape made of a material having corrosion resistance against a halogen-based gas, for example, pure nickel or a nickel alloy, which is the same kind of metal as the sheath of the sheath thermocouple 50, and extends from one side in the axial direction to the other side. In order, the compression coil spring 53 and the cylinder portion 51b that houses the piston 54 that can move in the forward and backward direction with respect to the susceptor 4 as the compression coil spring 53 expands and contracts, and the buffer housing portion that houses the buffer portion 50b of the sheath thermocouple 50 51c. A flange 51 a is formed at one end of the sealing member 51 in the axial direction. The sealing member 51 has one end surface of the flange 51 a attached to the outer surface (bottom surface) of the bottom wall 19 of the chamber 1 in an airtight manner. The aforementioned joint portion 55 is provided on the wall portion at the other axial end of the sealing member 51, and the joint portion 55 is formed by welding or brazing. Here, when the sealing member 51 is made of the same kind of metal as the sheath of the sheath thermocouple 50, both of them can be welded or brazed well, and can be reliably fixed to the sheath by the joint portion 55.

圧縮コイルばね53は、ハロゲン系ガスに対する耐食性を有し、かつ弾性力が確保される材料、例えばインコネル(登録商標)やニッケル、モリブデンを含むSUS316L等によって形成され、ピストン54は、ハロゲン系ガスに対する耐食性を有する材料、例えば、シース熱電対50のシースと同種の金属である純ニッケルまたはニッケル合金によって形成されている。ピストン54には、シース熱電対50のシースが内部を貫通するような貫通口が設けられ、これら両者は溶接やろう付け、またはカシメ等によって固定されており、これにより、シース熱電対50の先端部50aが、ピストン54を介した圧縮コイルばね53の弾発力によってサセプタ4に押し付けられるように付勢されている(矢印F方向)。ここで、ピストン54を、シース熱電対50のシースと同種の金属製とすることにより、両者の溶接またはろう付けが良好となり、シースに確実に固定することができる。   The compression coil spring 53 is formed of a material that has corrosion resistance to the halogen-based gas and has an elastic force, such as SUS316L including Inconel (registered trademark), nickel, and molybdenum, and the piston 54 is resistant to the halogen-based gas. It is formed of a material having corrosion resistance, for example, pure nickel or a nickel alloy which is the same kind of metal as the sheath of the sheath thermocouple 50. The piston 54 is provided with a through-hole through which the sheath of the sheath thermocouple 50 penetrates, and both of these are fixed by welding, brazing, caulking, or the like. The portion 50a is biased so as to be pressed against the susceptor 4 by the elastic force of the compression coil spring 53 via the piston 54 (in the direction of arrow F). Here, when the piston 54 is made of the same kind of metal as the sheath of the sheath thermocouple 50, the welding or brazing of both is improved, and the piston 54 can be securely fixed to the sheath.

ウエハ処理装置100の各構成部は、マイクロプロセッサ(コンピュータ)を備えたコントローラ90(制御部)に接続されて制御される構成となっている。コントローラ90には、ウエハ処理装置100の各構成部を管理するためにコマンドの入力操作等を行うキーボードや、ウエハ処理システム1の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェースと、ウエハ処理装置100で実行される処理をコントローラ90の制御にて実現するための制御プログラムや処理条件データ等が記録されたレシピが格納された記憶部とが接続されており、必要に応じて、ユーザーインターフェースからの指示等にて任意のレシピを記憶部から呼び出してコントローラ90に実行させることで、コントローラ90の制御下でウエハ処理装置100での所望の処理が行われる。   Each component of the wafer processing apparatus 100 is connected to and controlled by a controller 90 (control unit) having a microprocessor (computer). The controller 90 includes a user interface including a keyboard that performs command input operations and the like to manage each component of the wafer processing apparatus 100, a display that visualizes and displays the operating status of the wafer processing system 1, and the wafer. A control program for realizing processing executed by the processing apparatus 100 under the control of the controller 90 and a storage unit storing a recipe in which processing condition data is recorded are connected. By calling an arbitrary recipe from the storage unit according to an instruction from the interface or the like and causing the controller 90 to execute it, desired processing in the wafer processing apparatus 100 is performed under the control of the controller 90.

このように構成されたウエハ処理装置100においては、以下のようにしてウエハWの処理が行われる。まず、ゲートバルブ14によって搬入出口13を開放した状態で、ウエハWを搬入出口13からチャンバー1内に搬入してサセプタ4上に載置し、ゲートバルブ14によって搬入出口13を閉塞する。   In the wafer processing apparatus 100 configured as described above, the wafer W is processed as follows. First, in a state where the loading / unloading port 13 is opened by the gate valve 14, the wafer W is loaded into the chamber 1 from the loading / unloading port 13 and placed on the susceptor 4, and the loading / unloading port 13 is closed by the gate valve 14.

次に、減圧機構3の排気装置32を作動させ、チャンバー1内を所定の圧力、例えば真空圧に減圧するとともに、処理ガス供給機構2によりシャワーヘッド15を介してチャンバー1内に処理ガスを所定の流量供給しつつ、ヒーター40によりサセプタ4を介してウエハWを加熱する。ヒーター40による加熱の際には、前述のように、シース熱電対50がサセプタ4の温度を測定し、信号送信部52がシース熱電対50によるサセプタ4の測定温度信号をコントローラ90に送信し、この測定温度信号に基づいてコントローラ90がヒーター40の温度を制御することで、サセプタ4上のウエハWが所定の温度に調整される。これにより、ウエハWに所定の処理が施されることとなる。   Next, the exhaust device 32 of the depressurization mechanism 3 is operated to depressurize the chamber 1 to a predetermined pressure, for example, a vacuum pressure, and the process gas supply mechanism 2 causes the process gas to enter the chamber 1 via the shower head 15. The wafer W is heated by the heater 40 via the susceptor 4 while supplying the flow rate of. When heating by the heater 40, as described above, the sheath thermocouple 50 measures the temperature of the susceptor 4, and the signal transmission unit 52 transmits the measurement temperature signal of the susceptor 4 by the sheath thermocouple 50 to the controller 90. The controller 90 controls the temperature of the heater 40 based on the measured temperature signal, so that the wafer W on the susceptor 4 is adjusted to a predetermined temperature. Thereby, a predetermined process is performed on the wafer W.

ここで、処理ガス供給機構2によるチャンバー1内への処理ガスの供給および/または減圧機構3によるチャンバー1内の減圧の際には、チャンバー1内の圧力が変化することにより、サセプタ4に揺れ等の動きが多少生じるが、シース熱電対50の先端部50aは、緩衝部50bがサセプタ4に対する進退方向に伸縮することとともに、圧縮コイルばね53によってサセプタ4に押し付けられるように付勢されているため、サセプタ4の動きに追従して移動して、サセプタ4との接触が保たれる。したがって、サセプタ4の温度を正確に測定することができ、これにより、ヒーター40の温度を精緻に制御してウエハWの処理品を高めることが可能となる。   Here, when the processing gas is supplied into the chamber 1 by the processing gas supply mechanism 2 and / or the pressure in the chamber 1 is reduced by the pressure reducing mechanism 3, the pressure in the chamber 1 changes, and the susceptor 4 is shaken. However, the distal end portion 50a of the sheath thermocouple 50 is biased so that the buffer portion 50b expands and contracts in the advancing / retreating direction with respect to the susceptor 4 and is pressed against the susceptor 4 by the compression coil spring 53. Therefore, the susceptor 4 is moved following the movement of the susceptor 4 so that the contact with the susceptor 4 is maintained. Therefore, it is possible to accurately measure the temperature of the susceptor 4, and thereby it is possible to precisely control the temperature of the heater 40 and increase the processed product of the wafer W.

また、ばね部材、例えば圧縮コイルばね53によってシース熱電対50の先端部50aをサセプタ4に押し付けるように付勢したことにより、従来のように、大気と真空との差圧によって著しく大きな押し付け力を作用させてしまうベローズを用いる必要がないため、チャンバー1内の減圧によってシース熱電対50がサセプタ4に強く押し付けられることを防止することができ、これにより、シース熱電対50およびサセプタ4の損傷を防止して、装置の耐久性を高めることが可能となる。   Further, the spring member, for example, the compression coil spring 53, is biased so as to press the distal end portion 50a of the sheath thermocouple 50 against the susceptor 4, so that a remarkably large pressing force is generated by the pressure difference between the atmosphere and the vacuum as in the prior art. Since it is not necessary to use a bellows that acts, it is possible to prevent the sheath thermocouple 50 from being strongly pressed against the susceptor 4 due to the reduced pressure in the chamber 1, thereby damaging the sheath thermocouple 50 and the susceptor 4. And the durability of the apparatus can be increased.

また、シース熱電対50をシースごと例えば螺旋状に屈曲させて緩衝部50bを形成したことにより、従来のようにシースの一部を剥がして熱電対素線を露出させる必要がないため、耐熱性が確保され、これにより、チャンバー1内が高温に保たれる場合にも対応することが可能となる。   In addition, since the sheath thermocouple 50 is bent together with the sheath, for example, in a spiral shape to form the buffer portion 50b, it is not necessary to peel off a part of the sheath and expose the thermocouple element as in the conventional case. Therefore, it is possible to cope with the case where the inside of the chamber 1 is kept at a high temperature.

なお、緩衝部50bは、伸縮の際の負荷が軽減されるように、極力小さい曲率を有することが好ましく、また、伸縮の際の負荷が分散されるように、サセプタ4に対する進退方向に一定の規則性を有する形状であることが好ましい。このような形状としては、図2に示した螺旋状以外に、例えば図3に示すような波形が挙げられる。   In addition, it is preferable that the buffer part 50b has a curvature as small as possible so that the load at the time of expansion / contraction is reduced, and is constant in the advancing / retreating direction with respect to the susceptor 4 so that the load at the time of expansion / contraction is distributed. A shape having regularity is preferred. Examples of such a shape include a waveform as shown in FIG. 3 in addition to the spiral shape shown in FIG.

さらに、チャンバー1内の処理ガス、例えばハロゲン系ガス等の腐食ガスの雰囲気に曝される測温装置5の各部材、すなわちシース熱電対50のシース、密閉部材51、圧縮コイルスプリング53およびピストン54をいずれも、処理ガスに対する耐食性を有する材料、例えばニッケルまたはニッケル合金によって形成し、シース熱電対50のシースと密閉部材51とを気密に接合する接合部55を溶接またはろう付けによって形成したため、樹脂等の有機系材料を一切用いる必要がなく、処理ガスによる測温装置5の腐食を防止して、有機汚染を回避することができる。   Furthermore, each member of the temperature measuring device 5 that is exposed to an atmosphere of a processing gas in the chamber 1, for example, a corrosive gas such as a halogen gas, that is, the sheath of the sheath thermocouple 50, the sealing member 51, the compression coil spring 53, and the piston 54. Are formed of a material having corrosion resistance to the processing gas, for example, nickel or a nickel alloy, and the joint portion 55 that hermetically joins the sheath of the sheath thermocouple 50 and the sealing member 51 is formed by welding or brazing. It is not necessary to use any organic material such as, and corrosion of the temperature measuring device 5 due to the processing gas can be prevented to avoid organic contamination.

減圧機構3によるチャンバー1内の減圧、処理ガス供給機構2によるチャンバー1内への処理ガスの供給およびヒーター40によるウエハWの加熱を所定の時間行って、ウエハWに所定の処理を施したら、処理ガス供給機構2によるチャンバー1内への処理ガスの供給およびヒーター40によるウエハWの加熱を停止し、ゲートバルブ14によって搬入出口13を開放して、ウエハWを搬入出口13からチャンバー1外に搬出する。   When the decompression mechanism 3 decompresses the chamber 1, the process gas supply mechanism 2 supplies the process gas into the chamber 1, and the wafer 40 is heated by the heater 40 for a predetermined time. The supply of the processing gas into the chamber 1 by the processing gas supply mechanism 2 and the heating of the wafer W by the heater 40 are stopped, the loading / unloading port 13 is opened by the gate valve 14, and the wafer W is moved out of the chamber 1 from the loading / unloading port 13. Take it out.

なお、本発明は上記実施形態に限定されることなく種々の変形が可能である。上記実施形態では、シース熱電対50がチャンバー1内で露出するように測温装置5を配置したが、例えば図4に示すように、シース熱電対50が筒状の支柱部材11内に収まるように測温装置5を配置してもよい。   The present invention is not limited to the above embodiment, and various modifications can be made. In the above embodiment, the temperature measuring device 5 is arranged so that the sheath thermocouple 50 is exposed in the chamber 1. However, as shown in FIG. 4, for example, the sheath thermocouple 50 is accommodated in the cylindrical column member 11. The temperature measuring device 5 may be arranged in the area.

また、上記実施形態では、緩衝部50bを収容する緩衝収容部51cと、圧縮コイルばね53およびピストン54を収容するシリンダー部51bと、シリンダー部51bの一端部から突出するフランジ51aとから一体形成して密閉部材51を構成し、この密閉部材51をフランジ51aの一端面が密着するようにチャンバー1の底壁19の外面に取り付けたが、例えば図5に示すように、密閉部材51を、チャンバー1の底壁19の外面(底面)に取り付けられる外側部材51dと、チャンバー1の底壁19の内面(上面)に取り付けられる内側部材51eとを有して構成し、外側部材51dと内側部材51eとの間に緩衝部50b、圧縮コイルばね53およびピストン54が配置されるように構成してもよい。この場合には、例えば、外側部材51dを、緩衝部50bを収容する容器状に形成するとともに、内側部材51eを、シース熱電対50を囲繞するリング状に形成し、圧縮コイルばね53およびピストン54が外側部材51dと内側部材51eとの間に挟まれるようにチャンバー1の底壁19内に配置される構成とすることができる。この場合には、チャンバー1の底壁19の圧縮コイルばね53およびピストン54を囲繞する部分も密閉部材51の一部として機能する。このような構成により、密閉部材51(密閉部材51のチャンバー1の底壁19から突出する部分)の小型化を図ることができる。なお、内側部材を用いずに、圧縮コイルばね53およびピストン54が外側部材とチャンバー1の底壁19との間に挟まれるように配置される構成としてもよく、あるいは、外側部材を用いずに内側部材を容器状に形成しておき、緩衝部50b、圧縮コイルばね53およびピストン54が内側部材内に収容される構成としてもよい。   Moreover, in the said embodiment, it forms integrally from the buffer accommodating part 51c which accommodates the buffer part 50b, the cylinder part 51b which accommodates the compression coil spring 53 and the piston 54, and the flange 51a which protrudes from the one end part of the cylinder part 51b. The sealing member 51 is configured, and this sealing member 51 is attached to the outer surface of the bottom wall 19 of the chamber 1 so that one end surface of the flange 51a is in close contact. For example, as shown in FIG. The outer member 51d attached to the outer surface (bottom surface) of the bottom wall 19 and the inner member 51e attached to the inner surface (upper surface) of the bottom wall 19 of the chamber 1 are configured, and the outer member 51d and the inner member 51e are formed. The shock absorber 50b, the compression coil spring 53, and the piston 54 may be arranged between them. In this case, for example, the outer member 51d is formed in a container shape that accommodates the buffer portion 50b, and the inner member 51e is formed in a ring shape surrounding the sheath thermocouple 50, and the compression coil spring 53 and the piston 54 are formed. Can be arranged in the bottom wall 19 of the chamber 1 so as to be sandwiched between the outer member 51d and the inner member 51e. In this case, the portion surrounding the compression coil spring 53 and the piston 54 on the bottom wall 19 of the chamber 1 also functions as a part of the sealing member 51. With such a configuration, the sealing member 51 (the portion of the sealing member 51 protruding from the bottom wall 19 of the chamber 1) can be reduced in size. The compression coil spring 53 and the piston 54 may be arranged so as to be sandwiched between the outer member and the bottom wall 19 of the chamber 1 without using the inner member, or without using the outer member. The inner member may be formed in a container shape, and the buffer portion 50b, the compression coil spring 53, and the piston 54 may be accommodated in the inner member.

また、上記実施形態では、ばね部材として圧縮コイルばねを用いたが、これに限らず、引張コイルばね等の他のばねを用いてもよい。   Moreover, in the said embodiment, although the compression coil spring was used as a spring member, you may use other springs, such as not only this but a tension coil spring.

さらに、上記実施形態では、ヒーターの加熱によって半導体ウエハの温度を調整する場合の適用例について説明したが、これに限らず、例えば、クーリングプレートの冷却によってウエハの温度を調整する場合にも適用することができる。また、被処理体も半導体ウエハに限らず、FPD用ガラス基板等であってもよい。   Furthermore, in the above-described embodiment, the application example in the case of adjusting the temperature of the semiconductor wafer by heating the heater has been described. However, the present invention is not limited to this, and for example, the present invention is applied to the case of adjusting the wafer temperature by cooling the cooling plate. be able to. Further, the object to be processed is not limited to a semiconductor wafer, but may be a glass substrate for FPD.

本発明は、半導体基板に成膜処理を施すCVD(Chemical Vapor Deposition)装置やCOR(Chemical Oxide Removal)処理後の半導体基板に熱処理を施すポストヒート装置など、腐食ガス雰囲気の容器内に配置されたサセプタ等の被測温体の温度を測定する用途全般に適用可能である。   The present invention is disposed in a container having a corrosive gas atmosphere, such as a CVD (Chemical Vapor Deposition) apparatus for performing a film forming process on a semiconductor substrate or a post-heat apparatus for performing a heat treatment on a semiconductor substrate after COR (Chemical Oxide Removal) process. The present invention can be applied to all purposes of measuring the temperature of a temperature sensing object such as a susceptor.

本発明に係る一実施形態としての測温装置を備えたウエハ処理装置を概略的に示す断面図である。It is sectional drawing which shows schematically the wafer processing apparatus provided with the temperature measuring device as one Embodiment which concerns on this invention. 測温装置の断面図である。It is sectional drawing of a temperature measuring device. 測温装置に設けられた緩衝部の変形例を示す図である。It is a figure which shows the modification of the buffer part provided in the temperature measuring device. 測温装置の処理容器への別の取り付け態様を示す図である。It is a figure which shows another attachment aspect to the processing container of a temperature measuring device. 測温装置に設けられた密閉部材の変形例を示す図である。It is a figure which shows the modification of the sealing member provided in the temperature measuring device. 従来のシース熱電対の処理容器への取り付け態様を示す図である。It is a figure which shows the attachment aspect to the processing container of the conventional sheathed thermocouple.

符号の説明Explanation of symbols

1:チャンバー(容器:処理容器)
2:処理ガス供給機構
4:サセプタ(被測温体)
5:測温装置
19:底壁(壁部)
40:ヒーター
50:シース熱電対
50a:先端部
50b:緩衝部
51:密閉部材
53:圧縮コイルばね(ばね部材)
54:ピストン
55:接合部
90:コントローラ(制御部)
1: Chamber (container: processing container)
2: Processing gas supply mechanism 4: Susceptor (temperature object)
5: Temperature measuring device 19: Bottom wall (wall)
40: Heater 50: Sheath thermocouple 50a: Tip portion 50b: Buffer portion 51: Sealing member 53: Compression coil spring (spring member)
54: Piston 55: Joining part 90: Controller (control part)

Claims (8)

容器内に配置された被測温体の温度を測定する測温装置であって、
熱電対素線をシースで覆った構造を有し、前記容器内に位置されるとともに前記被測温体に追従して移動可能な先端部と、前記容器外に延出するように設けられ、前記先端部の移動を許容する緩衝部とを有するシース熱電対と、
前記シース熱電対の前記先端部を前記被測温体に押し付ける方向に付勢するばね部材と、
前記ばね部材と前記緩衝部とを収容し、その内部が前記容器の内部と連通するように前記容器の壁部に密着して設けられ、前記緩衝部の終端部分が外部に延出される密閉部材と、
前記密閉部材の前記緩衝部の終端部分が外部に延出される部分に溶接またはろう付けにより気密に形成された接合部と
を具備することを特徴とする測温装置。
A temperature measuring device for measuring the temperature of a temperature-measured body arranged in a container,
It has a structure in which a thermocouple wire is covered with a sheath, and is provided so as to extend to the outside of the container, and a tip portion that is located in the container and is movable following the temperature-measured body, A sheathed thermocouple having a buffer part that allows movement of the tip part;
A spring member that biases the distal end portion of the sheath thermocouple in a direction in which the distal end portion is pressed against the temperature measurement object;
A sealing member that houses the spring member and the buffer portion, is provided in close contact with the wall portion of the container so that the inside thereof communicates with the interior of the container, and the terminal portion of the buffer portion extends to the outside. When,
A temperature measuring device comprising: a joint portion formed hermetically by welding or brazing at a portion where the end portion of the buffer portion of the sealing member extends to the outside.
腐食ガス雰囲気の容器内に配置された被測温体の温度を測定する測温装置であって、
熱電対素線を前記腐食ガスに対して耐食性を有する材料からなるシースで覆った構造を有し、前記容器内に位置されるとともに前記被測温体に追従して移動可能な先端部と、前記容器外に延出するように設けられ、前記先端部の移動を許容する緩衝部とを有するシース熱電対と、
前記シース熱電対の前記先端部を前記被測温体に押し付ける方向に付勢する、前記腐食ガスに対して耐食性を有する材料からなるばね部材と、
前記ばね部材と前記緩衝部とを収容し、その内部が前記容器の内部と連通するように前記容器の壁部に密着して設けられ、前記緩衝部の終端部分が外部に延出される、前記腐食ガスに対して耐食性を有する材料からなる密閉部材と、
前記密閉部材の前記緩衝部の終端部分が外部に延出される部分に溶接またはろう付けにより気密に形成された接合部と
を具備することを特徴とする測温装置。
A temperature measuring device for measuring the temperature of a temperature measuring object arranged in a corrosive gas atmosphere container,
Having a structure in which a thermocouple wire is covered with a sheath made of a material having corrosion resistance against the corrosive gas, and positioned at the inside of the container and movable in accordance with the measured object; and A sheathed thermocouple provided to extend out of the container and having a buffer portion that allows movement of the tip portion;
A spring member made of a material having corrosion resistance with respect to the corrosive gas, which urges the distal end portion of the sheath thermocouple in a direction of pressing the temperature-measured body;
The spring member and the buffer portion are accommodated, the inner portion thereof is provided in close contact with the wall portion of the container so as to communicate with the interior of the container, and the terminal portion of the buffer portion extends to the outside. A sealing member made of a material having corrosion resistance against corrosive gas;
A temperature measuring device comprising: a joint portion formed hermetically by welding or brazing at a portion where the end portion of the buffer portion of the sealing member extends to the outside.
前記ばね部材はコイルばねであり、
前記密閉部材には、前記コイルばねの伸縮に伴って前記被測温体に対する進退方向に移動する、前記腐食ガスに対して耐食性を有する材料からなるピストンが収容されており、
前記シース熱電対は、前記ピストンに固定されていることを特徴とする請求項2に記載の測温装置。
The spring member is a coil spring;
The sealing member accommodates a piston made of a material having corrosion resistance against the corrosive gas, which moves in the advancing and retracting direction with respect to the temperature-measured body as the coil spring expands and contracts.
The temperature measuring device according to claim 2, wherein the sheath thermocouple is fixed to the piston.
前記腐食ガスはハロゲンを含むガスであり、
前記腐食ガスに対して耐食性を有する材料はニッケル(Ni)またはニッケル合金であることを特徴とする請求項2または請求項3に記載の測温装置。
The corrosive gas is a gas containing halogen,
The temperature measuring device according to claim 2 or 3, wherein the material having corrosion resistance to the corrosive gas is nickel (Ni) or a nickel alloy.
前記ばね部材はインコネル(登録商標)からなることを特徴とする請求項1から請求項4のいずれか1項に記載の測温装置。   The temperature measuring device according to claim 1, wherein the spring member is made of Inconel (registered trademark). 前記緩衝部は、前記被測温体に対する進退方向に伸縮可能に屈曲していることを特徴とする請求項1から請求項5のいずれか1項に記載の測温装置。   6. The temperature measuring device according to claim 1, wherein the buffer portion is bent so as to be extendable and retractable in an advancing and retreating direction with respect to the temperature measuring object. 前記緩衝部は螺旋状に屈曲していることを特徴とする請求項6に記載の測温装置。   The temperature measuring device according to claim 6, wherein the buffer portion is bent in a spiral shape. 前記緩衝部は波形に屈曲していることを特徴とする請求項6に記載の測温装置。   The temperature measuring device according to claim 6, wherein the buffer portion is bent in a waveform.
JP2006241594A 2006-09-06 2006-09-06 Temperature measuring device Expired - Fee Related JP4803596B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006241594A JP4803596B2 (en) 2006-09-06 2006-09-06 Temperature measuring device
KR1020087021633A KR20080109747A (en) 2006-09-06 2007-08-14 Temperature measuring device
PCT/JP2007/065854 WO2008029595A1 (en) 2006-09-06 2007-08-14 Temperature measuring device
CN2007800127392A CN101421599B (en) 2006-09-06 2007-08-14 Temperature measuring device
TW96133124A TWI403702B (en) 2006-09-06 2007-09-05 Temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241594A JP4803596B2 (en) 2006-09-06 2006-09-06 Temperature measuring device

Publications (2)

Publication Number Publication Date
JP2008064551A true JP2008064551A (en) 2008-03-21
JP4803596B2 JP4803596B2 (en) 2011-10-26

Family

ID=39157037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241594A Expired - Fee Related JP4803596B2 (en) 2006-09-06 2006-09-06 Temperature measuring device

Country Status (5)

Country Link
JP (1) JP4803596B2 (en)
KR (1) KR20080109747A (en)
CN (1) CN101421599B (en)
TW (1) TWI403702B (en)
WO (1) WO2008029595A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042070A (en) * 2007-08-09 2009-02-26 Sei Hybrid Kk Temperature measuring device for semiconductor manufacturing device, and semiconductor manufacturing device loaded therewith
KR101187436B1 (en) 2010-06-22 2012-10-02 주식회사 우진 A leakproof spring-load type thermocouple assembly
TWI484312B (en) * 2011-08-30 2015-05-11 Fujikin Kk Fluid control device
CN110739252A (en) * 2019-11-27 2020-01-31 北京北方华创微电子装备有限公司 Semiconductor processing equipment

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853774B (en) * 2009-03-31 2012-06-06 北京北方微电子基地设备工艺研究中心有限责任公司 Heating cavity and semiconductor processing device
CN102269629A (en) * 2010-06-07 2011-12-07 北京北方微电子基地设备工艺研究中心有限责任公司 Temperature measuring device and temperature measuring system
CN102095515B (en) * 2011-01-05 2012-07-04 北京航空航天大学 Temperature-measuring device for cylindrical combustion chamber wall
CN103515177A (en) * 2012-06-20 2014-01-15 北京北方微电子基地设备工艺研究中心有限责任公司 Reaction chamber, substrate processing equipment and its temperature control method
GB2504284B (en) * 2012-07-23 2015-09-16 Weston Aerospace Ltd Improved sensing device for a gas turbine unit
CN104296887B (en) * 2013-07-17 2017-04-05 中微半导体设备(上海)有限公司 A kind of temperature measuring equipment for realizing stable thermometric and its semiconductor equipment at place
CN106653644B (en) * 2015-10-29 2021-01-29 北京北方华创微电子装备有限公司 Temperature measuring device, base and reaction chamber
CN106935470B (en) * 2015-12-31 2019-03-08 中微半导体设备(上海)有限公司 A kind of plasma processor with temperature measuring device
CN106153209A (en) * 2016-07-13 2016-11-23 云南大学 Between a kind of temp controlled meter temperature display degree and Material growth temperature, deviation revises method
KR102038232B1 (en) * 2018-10-24 2019-10-29 (주)에스티아이 Apparatus for Measuring Temperature of Substrate and the method thereof
CN111982317A (en) * 2020-08-28 2020-11-24 安徽瑞尔特仪表科技有限公司 Thermocouple

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195139A (en) * 1986-02-21 1987-08-27 Sumitomo Electric Ind Ltd Substrate temperature measurement and device thereof
JPH0418443U (en) * 1990-05-31 1992-02-17
JPH072940U (en) * 1993-04-30 1995-01-17 株式会社サーモ理工 Temperature measuring device with propulsion mechanism
JPH09145485A (en) * 1995-11-28 1997-06-06 Kokusai Electric Co Ltd Temperature detecting device
JP2002527733A (en) * 1998-10-09 2002-08-27 クラウド エス. ゴードン カンパニー Surface temperature sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294320A (en) * 1985-06-24 1986-12-25 Sumitomo Electric Ind Ltd Method and instrument for measuring substrate temperature
CN2103135U (en) * 1991-05-06 1992-04-29 赵金富 Tile thermometric element
JP3653879B2 (en) * 1996-08-07 2005-06-02 ソニー株式会社 Fluorescent thermometer
SG70035A1 (en) * 1996-11-13 2000-01-25 Applied Materials Inc Systems and methods for high temperature processing of semiconductor wafers
US6635114B2 (en) * 1999-12-17 2003-10-21 Applied Material, Inc. High temperature filter for CVD apparatus
TW521369B (en) * 2002-01-29 2003-02-21 Taiwan Semiconductor Mfg Chamber with wafer temperature measurement capability and the measuring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195139A (en) * 1986-02-21 1987-08-27 Sumitomo Electric Ind Ltd Substrate temperature measurement and device thereof
JPH0418443U (en) * 1990-05-31 1992-02-17
JPH072940U (en) * 1993-04-30 1995-01-17 株式会社サーモ理工 Temperature measuring device with propulsion mechanism
JPH09145485A (en) * 1995-11-28 1997-06-06 Kokusai Electric Co Ltd Temperature detecting device
JP2002527733A (en) * 1998-10-09 2002-08-27 クラウド エス. ゴードン カンパニー Surface temperature sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042070A (en) * 2007-08-09 2009-02-26 Sei Hybrid Kk Temperature measuring device for semiconductor manufacturing device, and semiconductor manufacturing device loaded therewith
KR101187436B1 (en) 2010-06-22 2012-10-02 주식회사 우진 A leakproof spring-load type thermocouple assembly
TWI484312B (en) * 2011-08-30 2015-05-11 Fujikin Kk Fluid control device
CN110739252A (en) * 2019-11-27 2020-01-31 北京北方华创微电子装备有限公司 Semiconductor processing equipment

Also Published As

Publication number Publication date
WO2008029595A1 (en) 2008-03-13
TW200823439A (en) 2008-06-01
CN101421599A (en) 2009-04-29
KR20080109747A (en) 2008-12-17
TWI403702B (en) 2013-08-01
JP4803596B2 (en) 2011-10-26
CN101421599B (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4803596B2 (en) Temperature measuring device
JP5245268B2 (en) Mounting table structure and heat treatment apparatus
KR102230543B1 (en) Substrate processing apparatus, injector, and substrate processing method
JP5135915B2 (en) Mounting table structure and heat treatment apparatus
JP5368393B2 (en) Vaporizer, substrate processing apparatus, and coating and developing apparatus
JP4450106B1 (en) Mounting table structure and processing device
US5462603A (en) Semiconductor processing apparatus
JP5235407B2 (en) Substrate mounting mechanism and substrate processing apparatus
KR101018506B1 (en) Film forming apparatus
JP2009054871A (en) Placing stand structure and treatment apparatus
JP4690368B2 (en) Substrate heating apparatus and substrate heating method
JP5025109B2 (en) Substrate mounting mechanism, substrate processing apparatus, and method of manufacturing substrate mounting mechanism
JP2006517747A (en) Purged heated susceptor for ALD / CVD reactor
JP5985316B2 (en) Plasma etching equipment
JP2009064917A (en) Mounting table structure and treatment apparatus
JPH06260687A (en) Gas processor
JP2007162873A (en) Air operated valve
JP2024065406A (en) Bellows Valve
JP2021039008A (en) Thermocouple structure, thermal treatment device, and thermocouple structure manufacturing method
JPH0463281A (en) Temperature measuring instrument for inorganic base material and heater utilizing the same
JP2010059443A (en) Quartz heater and film deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees