JPS61294320A - Method and instrument for measuring substrate temperature - Google Patents

Method and instrument for measuring substrate temperature

Info

Publication number
JPS61294320A
JPS61294320A JP60135971A JP13597185A JPS61294320A JP S61294320 A JPS61294320 A JP S61294320A JP 60135971 A JP60135971 A JP 60135971A JP 13597185 A JP13597185 A JP 13597185A JP S61294320 A JPS61294320 A JP S61294320A
Authority
JP
Japan
Prior art keywords
substrate
thermocouple
temperature
thin film
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60135971A
Other languages
Japanese (ja)
Inventor
Yuichi Matsui
松居 祐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60135971A priority Critical patent/JPS61294320A/en
Priority to AU59161/86A priority patent/AU595210B2/en
Priority to EP19860108604 priority patent/EP0209746B1/en
Priority to DE8686108604T priority patent/DE3670156D1/en
Publication of JPS61294320A publication Critical patent/JPS61294320A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure accurately and quickly the temperature and the temperature distribution of the upper face of a substrate independently of the shape and the thickness of the substrate by bringing directly a thermocouple into contact with the surface of the substrate, on which a thin film should be formed, to measure the substrate temperature. CONSTITUTION:In preparation for depositing a thin film having a prescribed film composition on a substrate 3 in a growing chamber 1, a high vacuum flange 11 is pulled to stretch bellows 12, and a thermocouple 6 is prevented from intercepting a molecular beam evaporated from an evaporation source cell 2. When the temperature of the substrate 3 is measured before deposition of the thin film, the flange 11 is compressed to the growing chamber side to bring the front end of the thermocouple 6 into contact with the surface of the substrate. If a substrate holder 15 is earthed to the wall face of the growing chamber, it is confirmed whether the thermocouple 6 is brought into contact with the surface of the substrate or not according as a thermocouple terminal 15 and an optional point on the wall face of the growing chamber are connected electrically or not, and the substrate temperature is measured by the output of the thermocouple terminal 15.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は真空蒸着、化学気相成長、分子線エピタキシ
ー成長などの方法により真空の成長室内において、基板
上面に所望する膜組成の薄膜を堆積させるときの基板温
度の測定方法および装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> This invention is a method for depositing a thin film with a desired film composition on the upper surface of a substrate in a vacuum growth chamber by a method such as vacuum evaporation, chemical vapor deposition, or molecular beam epitaxy. The present invention relates to a method and apparatus for measuring substrate temperature when

〈従来の技術〉 たとえば分子線エピタキシー成長法は、溶融Inでは9
つけた基板に、0αAsのエピタキシー成長膜を堆積さ
せるときは、従来は図2に示すように高真空の成長室1
中に、エピタキシー成長膜を形成する構成元素Ga 、
 Asをそれぞれ別々の蒸発源セル2(簡単のため、1
個の蒸発源セルのみを図示。)に入れて、蒸発源セル2
を加熱し、出てくる蒸発物質を分子線の形で加熱基&3
に当てると共に、蒸着Vこ寄与しない蒸発分子は成長室
外へ排除することにより基板3上にGa Asのエピタ
キシー成長膜を堆積させていた。基板3上に入射するA
sの強度がInの入射強度よシも十分大きくすれば、G
aと反応してGaAsを形成したAsは基板3上にとど
まるが、反応しない余分なAsは、蒸気圧が高いために
基板より脱離することができる。この基板3は通常、成
長室lのマニピュレータ(非図示)に取シ付けられ回転
するので直接加熱されないが、基板を接着した基板ホル
ダ4の裏面凹部のヒータ5からの輻射熱によって加熱さ
れる。そして基板3の温度測定方法は、従来はたとえば
工業調査会発行、高橋清編の単行本「分子線エピタキシ
ー」第72頁〜第73頁に示されるように基板ホルダ4
裏面の凹部中央に挿入した熱電対6 (W −%%” 
Reを使用)により測定していた。
<Conventional technology> For example, in the molecular beam epitaxy growth method, 9
Conventionally, when depositing an epitaxially grown film of 0αAs on the attached substrate, a high vacuum growth chamber 1 is used as shown in FIG.
The constituent element Ga that forms the epitaxially grown film,
As is stored in separate evaporation source cells 2 (for simplicity, 1
Only one evaporation source cell is shown. ) and place it in the evaporation source cell 2.
is heated, and the evaporated substance that comes out is converted into a heating group in the form of a molecular beam.
At the same time, an epitaxially grown film of GaAs was deposited on the substrate 3 by expelling evaporated molecules that did not contribute to the deposition V to the outside of the growth chamber. A incident on the substrate 3
If the intensity of s is made sufficiently larger than the incident intensity of In, G
As that has reacted with a to form GaAs remains on the substrate 3, but excess As that does not react can be detached from the substrate because of its high vapor pressure. The substrate 3 is normally attached to a manipulator (not shown) in the growth chamber 1 and rotated, so it is not directly heated, but is heated by radiant heat from the heater 5 in the recess on the back of the substrate holder 4 to which the substrate is bonded. Conventionally, the temperature of the substrate 3 is measured as shown in the book "Molecular Beam Epitaxy" published by Kogyo Kenkyukai, edited by Kiyoshi Takahashi, pages 72 to 73.
Thermocouple 6 (W -%%”) inserted into the center of the recess on the back side
(Re) was used.

この方法では、基板を回転しなからGaAsをエピタキ
シー成長させるため熱電対6の先端は基板ホルダ4と直
接触させないで行われるO また、基板3の温度測定に熱電対を使用せず、図4に示
すように成長室1の窓7を通して、成長室外の放射温度
計8によシ、基板表面から放射される熱輻射線を受光し
、測温する方法も行われていた。
In this method, GaAs is epitaxially grown without rotating the substrate, so the tip of the thermocouple 6 is not brought into direct contact with the substrate holder 4. In addition, a thermocouple is not used to measure the temperature of the substrate 3; As shown in FIG. 1, a method of measuring the temperature by receiving thermal radiation emitted from the substrate surface through a window 7 of the growth chamber 1 with a radiation thermometer 8 outside the growth chamber has also been used.

〈発明が解決しようとする問題点〉 ゛しかじ、上述の方法によって、基板ホルダの裏面プ1
ら基板温度を測定すると熱電対と基板間に熱容量の異な
る基板ホルダが介在し、しかも基板から熱電対までの距
離も離れているため熱電対で検出する温度は基板上面の
温度と異っている。さらに1基板ホルダーや基板の厚さ
ならびに形状を変えた場合には熱容量が変わる、熱電対
で検出する温度と基板上面の温度差も一定せず、変動す
る。さらに、熱電対の断線などによシ、熱電対交換した
際にも熱電対先端の9位置が変動し、上記温度差も変動
する。
<Problem to be solved by the invention><However, by the above method, the back plate 1 of the substrate holder
When measuring the board temperature, there is a board holder with a different heat capacity between the thermocouple and the board, and the distance from the board to the thermocouple is also far, so the temperature detected by the thermocouple is different from the temperature on the top surface of the board. . Furthermore, if the thickness and shape of a substrate holder or substrate are changed, the heat capacity will change, and the difference between the temperature detected by the thermocouple and the temperature on the top surface of the substrate will not be constant, but will vary. Furthermore, when the thermocouple is replaced due to breakage of the thermocouple, etc., the position of the tip of the thermocouple changes, and the above-mentioned temperature difference also changes.

ま九、放射温度計で基板表面の温度を測定する方法は、
通常、基板上面は鏡面状になっておシ、放射温度計の焦
点を正確に再現性よく合せることが困難であり、焦点の
合わせ万次第で読み取る温度の値が違ってくる。また、
基板の面積は約1 cm X 1 cmと広いため、測
定する温度は放射温度計の場合はその面積内の平均化さ
れ九温度を測定するにすぎず、基板ホルダ裏面に設置し
た熱電対は基板ホルダ裏面の中央凹所に固定された状態
のため、基板面内の温度分布測定は困難であった。
Nine, how to measure the temperature of the substrate surface with a radiation thermometer:
Normally, the top surface of the substrate is mirror-like, making it difficult to focus the radiation thermometer accurately and reproducibly, and the temperature reading will vary depending on how well the radiation thermometer is focused. Also,
Since the area of the board is large, approximately 1 cm x 1 cm, the temperature measured by a radiation thermometer is only averaged within the area, and the thermocouple installed on the back of the board holder measures only 9 temperatures within that area. Because it was fixed in the central recess on the back of the holder, it was difficult to measure the temperature distribution within the substrate surface.

この発明は、真空蒸着、化学気相成長、分子線エピタキ
シー成長などの方法で薄膜形成する基板温度測定方法に
おける従来方法の欠点を除去するためになされたもので
あって、薄膜形成基板の形状や厚みに関係なく基板上面
の温度および温度分布を正確かつ迅速に測定できる基板
温度測定方法および装置を提供しようとするものでおる
This invention was made in order to eliminate the drawbacks of conventional methods for measuring the temperature of a substrate that forms a thin film using methods such as vacuum evaporation, chemical vapor deposition, and molecular beam epitaxy. It is an object of the present invention to provide a substrate temperature measuring method and apparatus that can accurately and quickly measure the temperature and temperature distribution on the upper surface of a substrate regardless of its thickness.

〈問題点を解決するための手段〉 上述の問題点を解決するためのこの発明の基板温度の測
定方法は、薄膜形成を行う側の基板面に熱気対を直接接
触させて基板温度を測定することを特徴とするものであ
る。
<Means for Solving the Problems> In order to solve the above-mentioned problems, the substrate temperature measurement method of the present invention measures the substrate temperature by bringing a hot air pair into direct contact with the substrate surface on which a thin film is to be formed. It is characterized by this.

1蛇、この発明の基板温度測定装置は、熱電対を薄膜形
成基板面に接触できるように、成長室外から前進・後退
および左右・上下動自在に設けたことを特徴とするもの
である。
First, the substrate temperature measuring device of the present invention is characterized in that the thermocouple is provided so that it can move forward and backward from outside the growth chamber and can move horizontally and vertically so that it can come into contact with the surface of the substrate on which the thin film is formed.

く作用〉 このように、この発明の基板温度測定方法は薄膜形成基
板面に熱電対を直接接触させてu1温するものであるか
ら、薄膜形成基板の表面温度を正確に測定できる。
As described above, since the method for measuring the substrate temperature of the present invention brings the thermocouple into direct contact with the surface of the substrate on which the thin film is formed to heat it up, the surface temperature of the substrate on which the thin film is formed can be accurately measured.

ま友、熱電対を成長室外から薄膜形成基板面の所定位置
に接触できるように前進・後退および左右・上下動自在
に設けられているから、薄膜を形成しようとする基板表
面の温度分布を正確に把損することも可能となる。
Mayu, the thermocouple is installed so that it can move forward and backward, as well as left and right and up and down, so that it can be brought into contact with a predetermined position on the surface of the thin film forming substrate from outside the growth chamber, making it possible to accurately measure the temperature distribution on the surface of the substrate on which the thin film is to be formed. It is also possible to lose the item.

〈実施例〉 つぎに、この発明の一実施例について説明する。<Example> Next, one embodiment of the present invention will be described.

実施例の基板温度測定*e1oは、成長室1の壁面の一
部に高真空用フランジ11を介して取シつけられたもの
である。この基板温度測定装置lOは、図1 (a) 
、 (b)に示すように、二組の高真空用7ランジ11
.11間に伸縮自在に取り付けたベロー12と、ペロー
12内に挿入され、後端を成長室外高真空用7ランジ1
1に支持され、前端は成長室外高真空用フランジ11の
開口117Lを通して成長室内に突出できるように取り
付けられた絶縁性中空円筒管13と、絶縁性中空円筒管
13円に挿入された熱電対6とから成っており、熱電対
6は後端部は成長室の外側高真空7ランジ11に絶縁シ
ールドおよび真空シールされ比熱電子端子15に接続し
、先端部は絶縁性中空円筒管13の先端に突出させ、熱
電対に生じる出力を測定できる構造になっている。
The substrate temperature measurement *e1o in the example is attached to a part of the wall surface of the growth chamber 1 via a high vacuum flange 11. This substrate temperature measuring device IO is shown in Figure 1 (a).
, As shown in (b), two sets of high vacuum 7-lunges 11
.. A bellows 12 is extendably attached between bellows 11 and a bellows 12 is inserted into the bellows 12, and the rear end is attached to a 7-lunge 1 for high vacuum outside the growth chamber.
1, the front end of which is attached so that it can protrude into the growth chamber through the opening 117L of the high vacuum flange 11 outside the growth chamber, and a thermocouple 6 inserted into the insulating hollow cylindrical tube 13. The rear end of the thermocouple 6 is insulated and vacuum sealed to the outer high vacuum 7 flange 11 of the growth chamber and connected to the specific heat electronic terminal 15, and the tip end is connected to the tip of the insulating hollow cylindrical tube 13. It has a structure that allows it to be protruded and measure the output generated by the thermocouple.

このような基板温度測定装置10を備えた成長室1にお
いて、基板3に所定の膜組成の薄膜を堆積させる場合は
、先ず図1の(a)のように、成長室外の高真空フラン
ジ11を成長室と反対側に引いてベロー12を引き伸ば
し、熱電対6が蒸発源セル2から蒸発する分子線を遮え
ぎらぬようにしておく。
When depositing a thin film of a predetermined film composition on the substrate 3 in the growth chamber 1 equipped with such a substrate temperature measuring device 10, first, as shown in FIG. 1(a), the high vacuum flange 11 outside the growth chamber is The bellows 12 is stretched by pulling it to the opposite side of the growth chamber so that the thermocouple 6 does not block the molecular beam evaporating from the evaporation source cell 2.

薄膜堆積前に、基板3の温度測定するときは、ペロー1
2を圧縮すべく成長室外高真空フランジ11を成長室側
へ圧縮し、熱電対6の先端を基板表面に接触させる。す
ると、基板ホルダ15が成長室の壁面にアース接続して
おくと、熱電対4が基板3表面に当っているかどうかは
熱電対端子15と成長室壁面の任意の一点との間で電気
的導通があるかどうかを確認することによって判断でき
る一方、熱電対端子15から取り出される出力によって
基板温度を測定することができる。
When measuring the temperature of the substrate 3 before thin film deposition, use the Perot 1
2, the high vacuum flange 11 outside the growth chamber is compressed toward the growth chamber, and the tip of the thermocouple 6 is brought into contact with the substrate surface. Then, if the substrate holder 15 is grounded to the wall of the growth chamber, whether or not the thermocouple 4 is in contact with the surface of the substrate 3 is determined by the fact that there is electrical continuity between the thermocouple terminal 15 and any point on the wall of the growth chamber. On the other hand, the substrate temperature can be measured by the output taken out from the thermocouple terminal 15.

この実施例では熱電対6の移動は基板面方向に前進・後
退できる構造のものについて説明したが、たとえば成長
室側高真空用フランジ11の上部又は下部あるいは左側
、又は右側にねじ機構によυ進退自在のねじを設け、ね
じ先端により絶縁性中空円筒管13を押し、この絶縁性
中空円筒管13の先端を基板面の任意の面に向ければ、
基板3表面の任意の点を測温できる。
In this embodiment, the thermocouple 6 is moved forward and backward in the direction of the substrate surface. If a screw is provided that can move forward and backward, the insulating hollow cylindrical tube 13 is pushed by the tip of the screw, and the tip of the insulating hollow cylindrical tube 13 is directed toward any surface of the substrate.
The temperature can be measured at any point on the surface of the substrate 3.

また、熱電対を交換することによる基板最表面と熱電対
先端部との間の相対位置は、殆んどなく、図3曲iaK
示すように、基板温度の測定値が従来の方法では400
°±20℃の間でバラツキがあるが、本発明の場合は(
曲線b)は4000±0.5℃であシ、殆んど生じない
ことが判った。
In addition, the relative position between the top surface of the substrate and the tip of the thermocouple due to replacing the thermocouple is almost non-existent, and the curve iaK in Figure 3
As shown, the measured value of the substrate temperature is 400% using the conventional method.
There is variation between °±20 °C, but in the case of the present invention (
Curve b) was found to hardly occur at 4000±0.5°C.

〈発明の効果〉 以上の説明から明らかなように、この発明の基板温度測
定方法および装置によれば、■薄膜形成基板表面に直接
熱電対を接触させて測温する方法のため、目的とする薄
膜形成基版上面の温度を正確に測定することができる。
<Effects of the Invention> As is clear from the above description, according to the substrate temperature measuring method and apparatus of the present invention, ■ the method of measuring temperature by directly contacting the surface of the thin film-formed substrate with a thermocouple; The temperature of the upper surface of the thin film forming substrate can be accurately measured.

■また、基板最上面に熱電対を接触させる方法のため、
熱電対先端部と基板最上面の温度差が、従来の測温方法
に比べて著るしく小 ・さい0 ■”チた、基板の厚み、基板ホルダの厚さや形状に影響
されずに基板上面の温度を正確に測定することができる
■Also, due to the method of contacting the thermocouple to the top surface of the board,
The temperature difference between the tip of the thermocouple and the top surface of the board is significantly smaller than with conventional temperature measurement methods. can accurately measure the temperature of

■基板上面と熱電対先端部の接触面積は0.5−以下で
極めて小さいので、従来の基板ホルダ裏面側から基板温
度を測る方法に比べて基板面内の温度分布測定も可能に
なる。
(2) Since the contact area between the top surface of the substrate and the tip of the thermocouple is extremely small, less than 0.5, it becomes possible to measure the temperature distribution within the surface of the substrate, compared to the conventional method of measuring the substrate temperature from the back side of the substrate holder.

■ま之、熱電対を交換しても、従来の方法と異なり、基
板表面に熱電対を接触させているため、熱電対先端部と
基板表面との間の相対位置変化は殆んどないので、基板
温度を極めて正確に測ることができる。
■Even if you replace the thermocouple, unlike the conventional method, since the thermocouple is in contact with the substrate surface, there is almost no change in the relative position between the thermocouple tip and the substrate surface. , the substrate temperature can be measured extremely accurately.

■さらに、この基板温度測定方法および装置は、単に分
子線エピタキシー成長のみならず、有機金属エピタキシ
ー成長、化学気相成長、クラスターイオンビームエピタ
キシー成長、真空蒸着方法などにおける薄膜形成基板の
温度測定にも利用できる。
■Furthermore, this substrate temperature measuring method and device can be used not only for molecular beam epitaxy growth, but also for measuring the temperature of thin film forming substrates in organometallic epitaxy, chemical vapor deposition, cluster ion beam epitaxy, vacuum evaporation, etc. Available.

【図面の簡単な説明】[Brief explanation of the drawing]

図1 (a) 、 (b)はこの発明の基板温度測定装
置の一実施例の妥部断面図、図2は従来の基板温度測定
方法の一例を示す断面図、図3はこの発明の基板温度測
定方法と、従来の基板温度測定方法により測定した熱電
対交換による基板表面温度の測定値の変動状態図、図4
は従来の基板温度測定法の他の例の断面図である。 図  面  中、 1・・・成長室、 2・・・蒸発源セル、 3・・・基板、 4・・・基本ホルダ、 5・・・ヒータ、 6・・・熱電対、 10・・・基板温度測定装置、 11・・・高真空用7ランジ、 12・・・ベロー、 13・・・絶縁性中空円筒、 15・・・熱電子端子 特許出願人 住友電気工業株式会社 代理八 弁理士 光石士部(他1名) 第1図 (b) 第2図 第3図
1(a) and 1(b) are cross-sectional views of an embodiment of the substrate temperature measuring device of the present invention, FIG. 2 is a cross-sectional view showing an example of a conventional substrate temperature measuring method, and FIG. 3 is a cross-sectional view of the substrate temperature measuring device of the present invention. Figure 4: Temperature measurement method and diagram of changes in substrate surface temperature measured by thermocouple exchange measured by conventional substrate temperature measurement method.
is a cross-sectional view of another example of the conventional substrate temperature measurement method. In the drawing, 1... Growth chamber, 2... Evaporation source cell, 3... Substrate, 4... Basic holder, 5... Heater, 6... Thermocouple, 10... Substrate Temperature measuring device, 11... Seven lunges for high vacuum, 12... Bellows, 13... Insulating hollow cylinder, 15... Thermionic terminal patent applicant Sumitomo Electric Industries Co., Ltd. Agent 8 Patent attorney Mitsuishi Shigeru Department (1 other person) Figure 1 (b) Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)基板の薄膜形成側表面に熱電対を直接接触させて
基板温度を測定することを特徴とする基板温度測定方法
(1) A substrate temperature measuring method characterized by measuring the substrate temperature by bringing a thermocouple into direct contact with the thin film forming side surface of the substrate.
(2)熱電対を基板の薄膜形成側面に接触できるように
、成長室外から前進・後退および左右上下動自在に設け
たことを特徴とする基板温度測定装置。
(2) A substrate temperature measuring device characterized in that a thermocouple is provided so as to be able to move forward and backward from outside the growth chamber and move horizontally and vertically so as to be able to contact the side surface of the substrate on which the thin film is formed.
JP60135971A 1985-06-24 1985-06-24 Method and instrument for measuring substrate temperature Pending JPS61294320A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60135971A JPS61294320A (en) 1985-06-24 1985-06-24 Method and instrument for measuring substrate temperature
AU59161/86A AU595210B2 (en) 1985-06-24 1986-06-24 Method and apparatus for measuring temperature of substrate
EP19860108604 EP0209746B1 (en) 1985-06-24 1986-06-24 Method and apparatus for measuring temperature of substrate
DE8686108604T DE3670156D1 (en) 1985-06-24 1986-06-24 DEVICE AND METHOD FOR MEASURING THE TEMPERATURE OF A SUBSTRATE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60135971A JPS61294320A (en) 1985-06-24 1985-06-24 Method and instrument for measuring substrate temperature

Publications (1)

Publication Number Publication Date
JPS61294320A true JPS61294320A (en) 1986-12-25

Family

ID=15164142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60135971A Pending JPS61294320A (en) 1985-06-24 1985-06-24 Method and instrument for measuring substrate temperature

Country Status (1)

Country Link
JP (1) JPS61294320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029595A1 (en) * 2006-09-06 2008-03-13 Tokyo Electron Limited Temperature measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226882A (en) * 1975-08-26 1977-02-28 Ulvac Corp Apparatus for direct measurement of substrate temperatures
JPS5830199U (en) * 1981-08-24 1983-02-26 東芝モノフラックス株式会社 Fireproof material for heat storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226882A (en) * 1975-08-26 1977-02-28 Ulvac Corp Apparatus for direct measurement of substrate temperatures
JPS5830199U (en) * 1981-08-24 1983-02-26 東芝モノフラックス株式会社 Fireproof material for heat storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029595A1 (en) * 2006-09-06 2008-03-13 Tokyo Electron Limited Temperature measuring device

Similar Documents

Publication Publication Date Title
Vogel et al. Observations of dislocations in lineage boundaries in germanium
Brown et al. On the mechanism of the thermal transformations in solid ammonium nitrate
US2527747A (en) Apparatus for coating articles by thermal evaporation
JPS57158380A (en) Counter target type sputtering device
JPS61294320A (en) Method and instrument for measuring substrate temperature
US5391323A (en) Conductivity in carbonaceous compounds and devices using such compounds
Spindt et al. Stable, Distributed‐Dynode Electron Multiplier
Hoch et al. The Reaction Occurring on Thoriated Cathodes1
CN103805956B (en) A kind of original position pattern and optical performance monitor evaporation source and vacuum sediment equipment
McKay Expansion of annealed pyrolytic graphite
CN114672782B (en) Integrated sample stage device for thin film deposition and continuous film growth monitoring and monitoring method
US2562770A (en) Thermal receiver and method for producing same
JPS62195139A (en) Substrate temperature measurement and device thereof
JPS6084716A (en) Transparent conductive film and method of producing same
JPS5618336A (en) Electron emission cathode
Anderson The Contact Difference of Potential Between Barium and Silver. The External Work Function of Silver
JPH0421638B2 (en)
Yamashita et al. Thermal conductivity switching for a Y–Mg alloy hydride thin film due to hydrogenation/dehydrogenation reactions using dilute H2 gas
Lagnado et al. rf-Sputtered Cadmium Sulfide “Thin Crystals”
CN211112182U (en) Close space sublimation device
JPS5685878A (en) Manufacture of photoelectric conversion element
Shen et al. Apparatus for measuring the thermoelectric power of thin film and bulk samples
JPS5462776A (en) Production of compound semiconductor thin films
JPS60178618A (en) Forming method of thin-film
Stephens et al. Thin films of triglycine sulfate by laser evaporation