JP2003278943A - High temperature operating valve - Google Patents

High temperature operating valve

Info

Publication number
JP2003278943A
JP2003278943A JP2002084907A JP2002084907A JP2003278943A JP 2003278943 A JP2003278943 A JP 2003278943A JP 2002084907 A JP2002084907 A JP 2002084907A JP 2002084907 A JP2002084907 A JP 2002084907A JP 2003278943 A JP2003278943 A JP 2003278943A
Authority
JP
Japan
Prior art keywords
flow passage
heat
flow path
high temperature
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002084907A
Other languages
Japanese (ja)
Other versions
JP4044776B2 (en
Inventor
Masahiro Noguchi
雅弘 野口
Hiroyuki Takeda
裕之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Ricoh Co Ltd
Original Assignee
Tohoku Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Ricoh Co Ltd filed Critical Tohoku Ricoh Co Ltd
Priority to JP2002084907A priority Critical patent/JP4044776B2/en
Publication of JP2003278943A publication Critical patent/JP2003278943A/en
Application granted granted Critical
Publication of JP4044776B2 publication Critical patent/JP4044776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high temperature operating valve capable of effectively heating a flow passage of a flow passage body to a high temperature condition and capable of eliminating influence by the heat on other parts except the flow passage body. <P>SOLUTION: This high temperature operating valve is provided with the flow passage body 2 having the flow passage 3 through which a fluid flows, a valve element actuation part 12 having a valve element 17 for opening and closing the flow passage 3, a heat receiving part 23 provided on the flow passage body 2 and receiving the heat energy imparted to the flow passage 3, and heat insulating parts 16, 19 and 25 for shutting off heat transmission from the flow passage body 2 to parts except the flow passage body 2. Therefore, the temperature of the flow passage body 2 is raised when the heat energy is imparted to the heat receiving part 23. The transmission of the heat of the flow passage body 2 to the part except the flow passage body 2 is insulated by the heat insulating parts 13, 16 and 25, and thereby the temperature of the flow passage 3 of the flow passage body 2 can be effectively raised. Further, the influence by the heat transmission to the part other than the flow passage 2 of which temperature is raised can be avoided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体を高温に高め
て移送する場合に用いる高温動作バルブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature operating valve used when a fluid is heated to a high temperature and then transferred.

【0002】[0002]

【従来の技術】気体もしくは液体などの流体を流す管路
には、必要に応じてバルブを備えている。バルブは、管
路の開閉切り替え、或いは流量を調節するために弁体を
作動する弁体作動部を有しているが、この弁体を操作す
る方式として、手動方式と自動方式とがある。後者で
は、空気圧駆動方式や電磁駆動方式のバルブが知られて
いる。
2. Description of the Related Art A conduit for flowing a fluid such as a gas or a liquid is equipped with a valve as required. The valve has a valve body operating unit that operates a valve body for switching the opening / closing of a pipeline or adjusting the flow rate. There are a manual system and an automatic system as a system for operating the valve body. In the latter case, valves of pneumatic drive type and electromagnetic drive type are known.

【0003】また、流す流体によっては、流路やバルブ
内において断熱膨張による温度低下が生じるために凝縮
し、この結果、流量、流速、圧力などを制御することが
できなくなる。例えば、半導体ウエハのCVD(Chemi
cal Vapor Deposition:化学的気相成長)処理を行う
場合に必要なガスは高温で流す必要がある。そのため
に、流量の制御のために用いるバルブは、流路を加熱す
ることができる高温動作バルブを用いている。
Further, depending on the flowing fluid, the temperature is lowered due to adiabatic expansion in the flow passage and the valve, so that the fluid is condensed, and as a result, the flow rate, flow velocity, pressure, etc. cannot be controlled. For example, CVD of a semiconductor wafer (Chemi
Cal Vapor Deposition (Chemical Vapor Deposition) treatment requires a high temperature gas flow. Therefore, the valve used for controlling the flow rate is a high temperature operating valve capable of heating the flow path.

【0004】[0004]

【発明が解決しようとする課題】従来の高温動作バルブ
は内部にシール部材を具備しているが、熱に弱いシール
部材の適用はできないので、SUS316L、Ni−C
o合金、黄銅などの金属製のシール部材を具備する。し
たがって、加熱した流路の熱が金属製のシール部材によ
り高温動作バルブ全体に伝導してしまう。また、装置は
種類を問わず小型化の要求が強く、このことはCVD処
理を行うための装置でも同様であるので、管路の集積化
が強く要求されている。このため、高温動作バルブ全体
に伝わった熱が、他の管路や、その管路中の接続機器に
伝導してしまい、その熱の影響によるトラブルが発生す
るおそれがある。
The conventional high temperature operation valve has a seal member inside, but since a seal member weak against heat cannot be applied, SUS316L, Ni-C.
A seal member made of metal such as o alloy or brass is provided. Therefore, the heat of the heated flow path is conducted to the entire high temperature operation valve by the metal seal member. Further, there is a strong demand for miniaturization of the apparatus regardless of the type, and since this is the same for the apparatus for performing the CVD process, there is a strong demand for the integration of pipelines. For this reason, the heat transmitted to the entire high temperature operation valve may be conducted to other pipelines or connected devices in the pipelines, and trouble may occur due to the influence of the heat.

【0005】そこで本発明の目的は、流路本体の流路に
対しては効率よく高温状態に高めることができ、流路本
体以外の部分には熱による影響を排除できる高温動作バ
ルブを提供することである。
Therefore, an object of the present invention is to provide a high temperature operating valve capable of efficiently raising the temperature of the flow passage body to a high temperature state and eliminating the influence of heat on the portion other than the flow passage body. That is.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
流体を流す流路が形成された流路本体と、前記流路を開
閉する弁体を有する弁体作動部と、前記流路本体に設け
られ付与される熱エネルギーを受け付ける受熱部と、前
記流路本体からこの流路本体以外の部分への熱の伝達を
遮断する断熱部と、を具備する。
The invention according to claim 1 is
A flow path body in which a flow path for flowing a fluid is formed, a valve body operating unit having a valve body that opens and closes the flow path, a heat receiving unit that is provided in the flow path body and receives heat energy applied, and the flow And a heat insulating section that blocks the transfer of heat from the passage body to the portion other than the passage body.

【0007】したがって、受熱部に熱エネルギーを付与
すると流路本体の温度が高められる。流路本体の熱は、
この流路本体以外の部分への伝導が断熱部によって断熱
される。これに伴い、流路本体以外の部分への熱の伝導
による影響を回避することが可能となる。
Therefore, when heat energy is applied to the heat receiving portion, the temperature of the flow path body is raised. The heat of the flow path body is
The conduction to the portion other than the flow path body is insulated by the heat insulating portion. Along with this, it becomes possible to avoid the influence of heat conduction to the portion other than the flow path body.

【0008】請求項2記載の発明は、流体を流す流路が
形成された流路本体と、前記流路を開閉する弁体を有す
る弁体作動部と、前記流路本体に設けられ付与される熱
エネルギーを受け付ける受熱部と、前記流路本体からこ
の流路本体以外の部分への熱の伝達を遮断する断熱部
と、前記断熱部に接触して設けられた放熱部と、を具備
する。
According to a second aspect of the present invention, there is provided a flow passage body provided with a flow passage body, a valve body having a valve body for opening and closing the flow passage, and a flow passage body provided with the flow passage body. A heat receiving portion that receives heat energy, a heat insulating portion that blocks heat transfer from the flow passage body to a portion other than the flow passage body, and a heat radiating portion that is provided in contact with the heat insulating portion. .

【0009】したがって、受熱部に熱エネルギーを付与
すると流路本体の温度が高められる。流路本体の熱は、
この流路本体以外の部分への伝導が断熱部によって断熱
される。これに伴い、流路本体以外の部分への熱の伝導
による影響を回避することが可能となる。さらに、断熱
部に接触して設けられた放熱部を具備するので、流路本
体の熱が多少断熱部を介して流路本体の外部に伝導され
たとしても、その熱は放熱部により放熱される。
Therefore, when heat energy is applied to the heat receiving portion, the temperature of the flow path body is raised. The heat of the flow path body is
The conduction to the portion other than the flow path body is insulated by the heat insulating portion. Along with this, it becomes possible to avoid the influence of heat conduction to the portion other than the flow path body. Further, since the heat dissipation part is provided in contact with the heat insulating part, even if some heat of the flow path body is conducted to the outside of the flow path body through the heat insulating part, the heat is radiated by the heat dissipation part. It

【0010】請求項3記載の発明は、請求項1又は2記
載の発明において、前記受熱部は、電力が供給されるヒ
ータが用いられ、前記流路本体には、この流路本体の温
度を検出してその温度に対応する検出信号を出力する測
温素子が設けられている。
According to a third aspect of the present invention, in the first or second aspect of the invention, a heater to which electric power is supplied is used as the heat receiving portion, and the temperature of the flow passage body is set in the flow passage body. A temperature measuring element that detects and outputs a detection signal corresponding to the temperature is provided.

【0011】したがって、ヒータに熱エネルギーとして
の電力を付与すると流路本体の温度が高められる。流路
本体の温度は測温素子が出力する検出信号によって認識
できるので、ヒータへの電力供給制御の精度を高めるこ
とが可能となる。
Therefore, when electric power as thermal energy is applied to the heater, the temperature of the flow path body is raised. Since the temperature of the flow path body can be recognized by the detection signal output from the temperature measuring element, it is possible to improve the accuracy of power supply control to the heater.

【0012】請求項4記載の発明は、請求項1又は2記
載の発明において、前記断熱部は、前記流路本体と、こ
の流路本体に近接して配置される部材との間に設けられ
た断熱材である。
According to a fourth aspect of the present invention, in the first or second aspect of the invention, the heat insulating portion is provided between the flow passage body and a member arranged in proximity to the flow passage body. It is a heat insulating material.

【0013】したがって、流路本体の熱は断熱材により
断熱されるため、流路本体以外への熱の伝導が防止され
る。また、断熱部としての構成も容易である。
Therefore, since the heat of the flow path body is insulated by the heat insulating material, the conduction of the heat to other than the flow path body is prevented. Moreover, the structure as a heat insulating portion is also easy.

【0014】請求項5記載の発明は、請求項2記載の発
明において、放熱部は冷却フィン又は冷却用配管を具備
する。
According to a fifth aspect of the present invention, in the second aspect of the invention, the heat radiating portion includes cooling fins or cooling pipes.

【0015】したがって、放熱作用を効率よく行わせる
ことが可能となる。
Therefore, it becomes possible to efficiently perform the heat dissipation action.

【0016】[0016]

【発明の実施の形態】本発明の一実施の形態における高
温動作バルブを図1に基づいて説明する。図1は高温動
作バルブ1の内部構造を示す断面図である。図中、2は
金属製の流路本体で、この流路本体2には、流体を流す
流路3と、拡開室4と、この拡開室4の底面の中央部に
頂部が一致する突部5とが形成されている。流路3は、
突部5によって入口6に連通された入口側流路7と、吐
出口8に連通された吐出口側流路9とに分けられ、入口
側流路7と吐出口側流路9との一端の開口面10,11
は拡開室4の底面に開口されている。
BEST MODE FOR CARRYING OUT THE INVENTION A high temperature operation valve according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing the internal structure of the high temperature operation valve 1. In the figure, reference numeral 2 denotes a metal flow path main body, and the flow path main body 2 has a flow path 3 through which a fluid flows, an expansion chamber 4, and a top portion which coincides with the central portion of the bottom surface of the expansion chamber 4. The protrusion 5 is formed. The flow path 3 is
It is divided into an inlet side flow passage 7 communicated with the inlet 6 by the protrusion 5 and a discharge port side flow passage 9 communicated with the discharge port 8, and one end of the inlet side flow channel 7 and the discharge port side flow passage 9 Opening faces 10, 11
Is opened at the bottom of the expansion chamber 4.

【0017】流路本体2の拡開室4側は、流路3を開閉
する弁体作動部12に結合されている。この弁体作動部
12は、圧縮空気が吸排気可能な金属製のシリンダ13
と、このシリンダ13内に摺動自在に嵌合された金属製
のピストン14と、このピストン14の一端から延出さ
れたに金属製の連結棒15に支持されたセラミック製の
ボタン16と、このボタン16に押圧されて流路3を閉
塞する弁体としての金属製のダイヤフラム17と、ピス
トン14を上方の復帰方向に付勢するスプリング18
と、流路本体2とシリンダ13との間に設けられたセラ
ミック製の第二のシリンダ19とにより構成されてい
る。この第二のシリンダ19は、連結棒15の周囲を囲
繞するとともに、ボタン16を摺動自在に支持してい
る。流路本体2と第二のシリンダ19との接合部は金属
製のOリング20によりシールされ、第二のシリンダ1
9とシリンダ13との接合面はOリング21によりシー
ルされ、ピストン14の外周にはシリンダ13の内周面
との間をシールするOリング22が嵌め込まれている。
Oリング21,22は、バイトン(デュポン社の登録商
標)などのフッ素ゴムにより形成されている。
The expansion chamber 4 side of the flow passage body 2 is connected to a valve body operating portion 12 that opens and closes the flow passage 3. The valve body operating unit 12 is a cylinder 13 made of metal capable of sucking and exhausting compressed air.
A metal piston 14 slidably fitted in the cylinder 13; a ceramic button 16 extending from one end of the piston 14 and supported by a metal connecting rod 15; A metal diaphragm 17 as a valve body that is pressed by the button 16 to close the flow path 3 and a spring 18 that biases the piston 14 in the upward returning direction.
And a second ceramic cylinder 19 provided between the flow path body 2 and the cylinder 13. The second cylinder 19 surrounds the periphery of the connecting rod 15 and slidably supports the button 16. The joint between the flow path body 2 and the second cylinder 19 is sealed by a metal O-ring 20, and the second cylinder 1
A joint surface between the cylinder 9 and the cylinder 13 is sealed by an O-ring 21, and an O-ring 22 that seals between the inner peripheral surface of the cylinder 13 and the outer circumference of the piston 14 is fitted.
The O-rings 21 and 22 are made of fluororubber such as Viton (registered trademark of DuPont).

【0018】そして、流路本体2には、熱エネルギー
(電力)を受け付ける受熱部としてのヒータ23が流路
3の近傍に配置されて埋設され、さらに、流路本体2の
温度を検出してその温度に対応する検出信号を出力する
測温素子としての熱電対24が埋設されている。また、
流路本体2の下部には、セラミック製のベース25と金
属製のベース26とが順次連結されている。
A heater 23 as a heat receiving portion for receiving thermal energy (electric power) is arranged and buried in the flow path body 2 in the vicinity of the flow path 3, and the temperature of the flow path body 2 is detected. A thermocouple 24 as a temperature measuring element that outputs a detection signal corresponding to the temperature is embedded. Also,
A ceramic base 25 and a metal base 26 are sequentially connected to the lower portion of the flow path body 2.

【0019】ここで、セラミック製のボタン16と第二
のシリンダ19とは、流路本体2からこの流路本体2以
外の部分(この例では弁体作動部12)への熱の伝達を
遮断する断熱部及び断熱部材として機能する。セラミッ
ク製のベース25は、流路本体2からこの流路本体2以
外の部分(例えば、CVD処理装置の管路に接続して使
用する場合には、その処理装置の配管筐体)への熱の伝
達を遮断する断熱部及び断熱部材として機能する。ま
た、金属製のシリンダ13は外周面に多数の冷却フィン
13aを有し、放熱部として機能する。同様に、金属製
のベース26も複数の冷却フィン26aを有し、放熱部
として機能する。CVD処理に必要なガスなどの流体
は、矢印で示すように入口6から吐出口8に向けて流れ
る。シリンダ13内に圧縮空気を供給し、その供給圧が
スプリング18の圧力を超えると、ピストン14、連結
棒15、ボタン16が一体に下降するため、ダイヤフラ
ム17はボタン16に押圧されて弾性的に屈撓する。そ
の屈撓作用の大きさによってダイヤフラム17と拡開室
4の底面との隙間が制御される。隙間がある状態は流路
3が絞られた状態、隙間のない状態は流路3が遮断され
た状態である。シリンダ13内の圧縮空気を減圧する
と、その圧力がスプリング18の圧力以下になったとき
に、ピストン14、連結棒15、ボタン16が一体にス
プリング18の圧力によって上方に復帰する。したがっ
て、ダイヤフラム17は自らの弾性により元の形状に復
元するため、流路3におけるガスの流量が増加する。
Here, the ceramic button 16 and the second cylinder 19 block the transfer of heat from the flow passage main body 2 to the portion other than the flow passage main body 2 (the valve body operating portion 12 in this example). Functions as a heat insulating portion and a heat insulating member. The ceramic base 25 heats the flow passage body 2 to a portion other than the flow passage body 2 (for example, when used by connecting to a pipe passage of a CVD processing apparatus, a pipe casing of the processing apparatus). It functions as a heat insulating part and a heat insulating member that cut off the transmission of electricity. Further, the metal cylinder 13 has a large number of cooling fins 13a on its outer peripheral surface and functions as a heat radiating portion. Similarly, the metal base 26 also has a plurality of cooling fins 26a and functions as a heat radiating portion. A fluid such as gas necessary for the CVD process flows from the inlet 6 toward the discharge port 8 as shown by an arrow. When compressed air is supplied into the cylinder 13 and the supply pressure exceeds the pressure of the spring 18, the piston 14, the connecting rod 15, and the button 16 descend integrally, so that the diaphragm 17 is elastically pressed by the button 16. To bend. The magnitude of the bending action controls the gap between the diaphragm 17 and the bottom surface of the expansion chamber 4. A state where there is a gap is a state where the flow passage 3 is narrowed, and a state where there is no gap is a state where the flow passage 3 is blocked. When the compressed air in the cylinder 13 is decompressed, when the pressure becomes equal to or lower than the pressure of the spring 18, the piston 14, the connecting rod 15, and the button 16 are integrally returned upward by the pressure of the spring 18. Therefore, the diaphragm 17 restores to its original shape by its elasticity, and the flow rate of gas in the flow path 3 increases.

【0020】CVD処理などに使用するガスを流すとき
は、外部からヒータ23に電力を付与する。これによ
り、流路本体2が高温となり、ガスは高温状態に維持さ
れて所望の部位に供給される。この場合、熱電対24か
らの検出信号を監視し、ヒータ23への電力を制御する
ことにより、流路本体2の温度制御を行うことが可能で
ある。
When the gas used for the CVD process or the like is supplied, electric power is applied to the heater 23 from the outside. As a result, the temperature of the flow path main body 2 becomes high, and the gas is maintained at a high temperature and supplied to the desired portion. In this case, the temperature of the flow path body 2 can be controlled by monitoring the detection signal from the thermocouple 24 and controlling the electric power to the heater 23.

【0021】このように、流路本体2を高温に加熱する
場合、流路本体2からこの流路本体2以外の部分への熱
の伝導が、セラミック製の第二のシリンダ19と、ボタ
ン16と、ベース25とによって阻止されるので、流路
本体2の流路3の温度を短時間に効率よく高めることが
できる。その実験結果を表1及び表2に示す。
As described above, when the flow path body 2 is heated to a high temperature, the heat is conducted from the flow path body 2 to the parts other than the flow path body 2 by the ceramic second cylinder 19 and the button 16. Since it is blocked by the base 25, the temperature of the flow passage 3 of the flow passage body 2 can be efficiently raised in a short time. The experimental results are shown in Tables 1 and 2.

【0022】この実験は、本実施の形態の高温動作バル
ブ(図1参照)と、従来の高温動作バルブとの比較であ
る。従来の高温動作バルブは、図1に示す構成から、断
熱部としてのベース25と放熱部としてのベース26と
を除き、第二のシリンダ19を除いてシリンダ13を直
接流路本体2に連結し、ボタン16を金属製とした構成
である。実験方法は、本実施の形態における高温動作バ
ルブ1については、ベース26をCVD処理装置の配管
筐体(1.5mm厚のステンレス板)の上に固定し、従
来の高温動作バルブについては、流路本体2をCVD処
理装置の配管筐体(ステンレス製)の上に固定し、それ
ぞれ窒素ガスを流すためにヒータ23に電力を供給し、
その供給開始から3分毎に、熱電対24の温度と、高温
動作バルブの真下におけるステンレス板の温度と、高温
動作バルブから外側に3cm離れたステンレス板の温度
と、を測定した。
This experiment is a comparison between the high temperature operating valve of this embodiment (see FIG. 1) and a conventional high temperature operating valve. In the conventional high temperature operation valve, the cylinder 13 is directly connected to the flow path main body 2 except for the base 25 as a heat insulating portion and the base 26 as a heat radiating portion, except for the second cylinder 19 from the configuration shown in FIG. The button 16 is made of metal. The experimental method is as follows. For the high temperature operating valve 1 in the present embodiment, the base 26 is fixed on the pipe casing (1.5 mm thick stainless plate) of the CVD processing apparatus, and for the conventional high temperature operating valve, the flow is set. The channel main body 2 is fixed on the pipe casing (made of stainless steel) of the CVD processing apparatus, and electric power is supplied to the heater 23 to flow nitrogen gas,
Every 3 minutes from the start of the supply, the temperature of the thermocouple 24, the temperature of the stainless steel plate immediately below the high temperature operation valve, and the temperature of the stainless steel plate 3 cm outside the high temperature operation valve were measured.

【0023】[0023]

【表1】 [Table 1]

【0024】表1で明らかなように、本実施の形態の高
温動作バルブ1の場合、熱電対24の温度は、短時間の
内に上昇し、24分後には安定している(表1中、左欄
参照)。高温動作バルブ1の真下におけるステンレス板
の温度は、最低が22.9℃、最高が38.2℃と変化
が微小で安定している(表1中、中央欄参照)。高温動
作バルブ1から外側に3cm離れたステンレス板の温度
も、最低が23.1℃、最高が23.8℃と変化が微小
で安定している(表1中、右欄参照)。これらは、流路
本体2の熱が断熱部として機能するボタン16、第二の
シリンダ19、ベース25の存在によって流路本体2か
ら逃げないことによるものである。したがって、少ない
熱エネルギーで流路本体2を短時間に加熱することがで
きる。また、フッ素ゴム製のOリング21,22などの
劣化を防止することができ、他の管路への熱の影響を皆
無にすることができる。
As is apparent from Table 1, in the case of the high temperature operation valve 1 of the present embodiment, the temperature of the thermocouple 24 rises within a short time and is stable after 24 minutes (in Table 1). , See left column). The temperature of the stainless steel plate just below the high temperature operation valve 1 is stable, with a minimum change of 22.9 ° C. and a maximum temperature of 38.2 ° C. (see the central column in Table 1). Regarding the temperature of the stainless steel plate 3 cm outside from the high temperature operation valve 1, the minimum is 23.1 ° C. and the maximum is 23.8 ° C. The change is minute and stable (see the right column in Table 1). These are due to the fact that the heat of the flow path body 2 does not escape from the flow path body 2 due to the existence of the button 16, the second cylinder 19, and the base 25 which function as a heat insulating portion. Therefore, the flow path body 2 can be heated in a short time with a small amount of heat energy. Further, it is possible to prevent deterioration of the O-rings 21 and 22 made of fluororubber, and it is possible to eliminate the influence of heat on the other pipelines.

【0025】さらに、金属製のシリンダ13は外周面に
多数の冷却フィン13aを有し、放熱部として機能す
る。同様に、金属製のベース26も複数の冷却フィン2
6aを有し、放熱部として機能するので、流路本体2の
熱が、ボタン16、第二のシリンダ13、ベース25を
介して流路本体2の外部に伝導されたとしても、その熱
は冷却フィン13aを有する第二のシリンダ13、冷却
フィン26aを有するベース26から放熱される。した
がって、流路本体2以外の部分への熱の伝導による影響
を、さらに確実に回避することができる。
Further, the metal cylinder 13 has a large number of cooling fins 13a on its outer peripheral surface and functions as a heat radiating portion. Similarly, the metal base 26 also has a plurality of cooling fins 2.
Since 6a is provided and functions as a heat dissipation portion, even if the heat of the flow path main body 2 is conducted to the outside of the flow path main body 2 via the button 16, the second cylinder 13, and the base 25, the heat is not generated. Heat is radiated from the second cylinder 13 having the cooling fins 13a and the base 26 having the cooling fins 26a. Therefore, the influence of heat conduction to the portion other than the flow path body 2 can be more surely avoided.

【0026】[0026]

【表2】 [Table 2]

【0027】これに対して、従来の高温動作バルブの場
合、熱電対24の温度は、39分経過後に最高値に達し
たが安定するには至らないほど上昇が遅い(表2中、左
欄参照)。高温動作バルブ1の真下におけるステンレス
板の温度は、時間の経過とともに上昇し、39分経過後
には219.3℃の高温に達している(表2中、中央欄
参照)。同様に、高温動作バルブ1から外側に3cm離
れたステンレス板の温度も、時間の経過とともに上昇
し、39分経過後には167.9℃の高温に達している
(表2中、右欄参照)。これらは、流路本体2の熱が流
路本体2から逃げ易いことによるものである。したがっ
て、流路本体2を加熱するために、多くの熱エネルギー
を必要とし、時間も長くかかる。また、フッ素ゴム製の
Oリング21,22などの熱劣化の原因ともなり、さら
に、他の管路への熱の影響を及ぼすおそれがある。
On the other hand, in the case of the conventional high-temperature operating valve, the temperature of the thermocouple 24 reached the maximum value after 39 minutes, but the increase was slow enough not to stabilize (Table 2, left column). reference). The temperature of the stainless steel plate just below the high temperature operation valve 1 rises with the passage of time, and reaches a high temperature of 219.3 ° C. after 39 minutes (see the center column in Table 2). Similarly, the temperature of the stainless steel plate 3 cm outside from the high temperature operation valve 1 also rises with the passage of time and reaches a high temperature of 167.9 ° C. after 39 minutes (see the right column in Table 2). . These are due to the fact that the heat of the channel body 2 easily escapes from the channel body 2. Therefore, in order to heat the flow path main body 2, much heat energy is required and it takes a long time. Further, it may cause heat deterioration of the O-rings 21 and 22 made of fluororubber, and there is a possibility that heat may affect other pipelines.

【0028】[0028]

【発明の効果】請求項1記載の発明によれば、受熱部が
設けられた流路本体からこの流路本体以外の部分への熱
の伝達を遮断する断熱部を具備するので、受熱部に熱エ
ネルギーを付与することにより高温度に高めた流路本体
の熱は、この流路本体以外の部分への伝導が断熱部によ
って断熱されるので、流路本体の流路の温度を短時間に
効率よく高めることができる。また、断熱部により流路
本体以外への熱の伝導による影響を回避することができ
る。
According to the first aspect of the invention, the heat receiving portion is provided with the heat insulating portion that blocks the transfer of heat from the flow passage main body provided with the heat receiving portion to the portion other than the flow passage main body. The heat of the flow passage main body, which has been raised to a high temperature by applying thermal energy, is conducted to the parts other than the flow passage main body by the heat insulating portion, so that the temperature of the flow passage of the flow passage main body can be shortened in a short time. It can be increased efficiently. Further, the heat insulating portion can avoid the influence of heat conduction to other than the flow path body.

【0029】請求項2記載の発明によれば、受熱部が設
けられた流路本体からこの流路本体以外の部分への熱の
伝達を遮断する断熱部を具備するので、受熱部に熱エネ
ルギーを付与することにより高温度に高めた流路本体の
熱は、この流路本体以外の部分への伝導が断熱部によっ
て断熱されるので、流路本体の流路の温度を短時間に効
率よく高めることができる。また、断熱部により流路本
体以外への熱の伝導による影響を回避することができ
る。さらに、断熱部に接触して設けられた放熱部を具備
するので、流路本体の熱が多少断熱部を介して流路本体
の外部に伝導されたとしても、その熱を放熱部により放
熱することができる。
According to the second aspect of the present invention, the heat receiving portion is provided with the heat insulating portion that blocks the transfer of heat from the flow passage main body provided with the heat receiving portion to the portion other than the flow passage main body. The heat of the flow path main body, which has been raised to a high temperature by applying the above, is conducted to the parts other than the flow path main body by the heat insulating section, so that the temperature of the flow path of the flow path main body can be efficiently increased in a short time. Can be increased. Further, the heat insulating portion can avoid the influence of heat conduction to other than the flow path body. Further, since the heat dissipation portion provided in contact with the heat insulating portion is provided, even if a little heat of the flow passage body is conducted to the outside of the flow passage main body through the heat insulating portion, the heat is radiated by the heat radiation portion. be able to.

【0030】請求項3記載の発明によれば、請求項1又
は2記載の発明において、受熱部は、電力が供給される
ヒータが用いられ、流路本体には、この流路本体の温度
を検出してその温度に対応する検出信号を出力する測温
素子が設けられているので、ヒータに熱エネルギーとし
ての電力を付与すると流路本体の温度が高められるが、
流路本体の温度は測温素子が出力する検出信号によって
認識できるので、ヒータへの電力供給制御の精度を高め
ることができる。
According to a third aspect of the present invention, in the first or second aspect of the invention, a heater to which electric power is supplied is used as the heat receiving section, and the temperature of the flow channel main body is set to the flow channel main body. Since a temperature measuring element that detects and outputs a detection signal corresponding to the temperature is provided, the temperature of the flow path main body is raised by applying electric power as heat energy to the heater,
Since the temperature of the flow path body can be recognized by the detection signal output from the temperature measuring element, the accuracy of power supply control to the heater can be improved.

【0031】請求項4記載の発明によれば、請求項1又
は2記載の発明において、断熱部は、流路本体と、この
流路本体に近接して配置される部材との間に設けられた
断熱材であるので、流路本体の熱は断熱材により断熱さ
れるため、流路本体以外への熱の伝導が防止される。ま
た、断熱部としての構成も容易となる。
According to the invention of claim 4, in the invention of claim 1 or 2, the heat insulating portion is provided between the flow path body and a member arranged in proximity to the flow path body. Since it is a heat insulating material, the heat of the flow path main body is insulated by the heat insulating material, so that the conduction of heat to other than the flow path main body is prevented. In addition, the structure as a heat insulating section becomes easy.

【0032】請求項5記載の発明によれば、請求項2記
載の発明において、放熱部は冷却フィン又は冷却用配管
を具備するので、放熱作用を効率よく行わせることがで
きる。
According to a fifth aspect of the present invention, in the second aspect of the invention, since the heat radiating portion includes the cooling fins or the cooling pipes, the heat radiating action can be efficiently performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態における高温動作バルブ
の内部構造を示す断面図である。
FIG. 1 is a cross-sectional view showing an internal structure of a high temperature operation valve according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 流路本体 3 流路 12 弁体作動部 13,26 放熱部 13a,26a 冷却フィン 16,19,25 断熱部、断熱材 17 弁体 23 受熱部、ヒータ 24 測温素子、熱電対 2 channel body 3 channels 12 Valve operating part 13,26 Heat dissipation part 13a, 26a Cooling fin 16,19,25 Thermal insulation, thermal insulation 17 valve body 23 Heat receiving part, heater 24 Temperature measuring element, thermocouple

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 流体を流す流路が形成された流路本体
と、 前記流路を開閉する弁体を有する弁体作動部と、 前記流路本体に設けられ付与される熱エネルギーを受け
付ける受熱部と、 前記流路本体からこの流路本体以外の部分への熱の伝達
を遮断する断熱部と、を具備する高温動作バルブ。
1. A flow passage body in which a flow passage for a fluid is formed, a valve body operating portion having a valve body for opening and closing the flow passage, and a heat receiving unit that is provided in the flow passage body and receives heat energy applied thereto. A high temperature operation valve comprising: a portion; and a heat insulating portion that blocks heat transfer from the flow passage body to a portion other than the flow passage body.
【請求項2】 流体を流す流路が形成された流路本体
と、 前記流路を開閉する弁体を有する弁体作動部と、 前記流路本体に設けられ付与される熱エネルギーを受け
付ける受熱部と、 前記流路本体からこの流路本体以外の部分への熱の伝達
を遮断する断熱部と、 前記断熱部に接触して設けられた放熱部と、を具備する
高温動作バルブ。
2. A flow passage main body in which a flow passage for flowing a fluid is formed, a valve body actuating portion having a valve body for opening and closing the flow passage, and a heat receiving unit which is provided in the flow passage main body and receives heat energy applied thereto. A high-temperature operation valve comprising: a section, a heat insulating section that blocks transfer of heat from the flow channel body to a portion other than the flow channel body, and a heat radiating section provided in contact with the heat insulating section.
【請求項3】 前記受熱部は、電力が供給されるヒータ
が用いられ、前記流路本体には、この流路本体の温度を
検出してその温度に対応する検出信号を出力する測温素
子が設けられている請求項1又は2記載の高温動作バル
ブ。
3. The temperature receiving element, wherein a heater to which electric power is supplied is used as the heat receiving portion, and the temperature measuring element that detects the temperature of the flow path body and outputs a detection signal corresponding to the temperature of the flow path body. The high temperature operation valve according to claim 1 or 2, further comprising:
【請求項4】 前記断熱部は、前記流路本体と、この流
路本体に近接して配置される部材との間に設けられた断
熱材である請求項1又は2記載の高温動作バルブ。
4. The high temperature operation valve according to claim 1, wherein the heat insulating portion is a heat insulating material provided between the flow path body and a member arranged in the vicinity of the flow path body.
【請求項5】 放熱部は冷却フィン又は冷却用配管を具
備する請求項2記載の高温動作バルブ。
5. The high temperature operation valve according to claim 2, wherein the heat radiating portion comprises a cooling fin or a cooling pipe.
JP2002084907A 2002-03-26 2002-03-26 High temperature operation valve Expired - Fee Related JP4044776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002084907A JP4044776B2 (en) 2002-03-26 2002-03-26 High temperature operation valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002084907A JP4044776B2 (en) 2002-03-26 2002-03-26 High temperature operation valve

Publications (2)

Publication Number Publication Date
JP2003278943A true JP2003278943A (en) 2003-10-02
JP4044776B2 JP4044776B2 (en) 2008-02-06

Family

ID=29232060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084907A Expired - Fee Related JP4044776B2 (en) 2002-03-26 2002-03-26 High temperature operation valve

Country Status (1)

Country Link
JP (1) JP4044776B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138972A (en) * 2005-11-15 2007-06-07 Ckd Corp Sticking material removing method of process gas control valve and control device of process gas control valve
WO2013018539A1 (en) * 2011-07-29 2013-02-07 Ckd株式会社 Fluid control valve
WO2015045987A1 (en) * 2013-09-30 2015-04-02 日立金属株式会社 Flow volume control valve and mass flow controller using same
CN110878846A (en) * 2018-09-05 2020-03-13 和正丰科技股份有限公司 Diaphragm valve structure and heat source isolation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686340B2 (en) * 2005-11-15 2011-05-25 シーケーディ株式会社 Process gas control valve deposit removal method and process gas control valve control apparatus
JP2007138972A (en) * 2005-11-15 2007-06-07 Ckd Corp Sticking material removing method of process gas control valve and control device of process gas control valve
US9200721B2 (en) 2011-07-29 2015-12-01 Ckd Corporation Fluid control valve
WO2013018539A1 (en) * 2011-07-29 2013-02-07 Ckd株式会社 Fluid control valve
CN103717954A (en) * 2011-07-29 2014-04-09 喜开理株式会社 Fluid control valve
JPWO2013018539A1 (en) * 2011-07-29 2015-03-05 Ckd株式会社 Fluid control valve
KR20160062015A (en) * 2013-09-30 2016-06-01 히타치 긴조쿠 가부시키가이샤 Flow volume control valve and mass flow controller using same
CN105593587A (en) * 2013-09-30 2016-05-18 日立金属株式会社 Flow volume control valve and mass flow controller using the same
WO2015045987A1 (en) * 2013-09-30 2015-04-02 日立金属株式会社 Flow volume control valve and mass flow controller using same
JPWO2015045987A1 (en) * 2013-09-30 2017-03-09 日立金属株式会社 Flow control valve and mass flow control device using the same
US9903497B2 (en) 2013-09-30 2018-02-27 Hitachi Metals, Ltd. Flow control valve and a mass flow controller using the same
KR102079533B1 (en) * 2013-09-30 2020-02-21 히타치 긴조쿠 가부시키가이샤 Flow volume control valve and mass flow controller using same
CN110878846A (en) * 2018-09-05 2020-03-13 和正丰科技股份有限公司 Diaphragm valve structure and heat source isolation method thereof
TWI692593B (en) * 2018-09-05 2020-05-01 和正豐科技股份有限公司 Diaphragm valve structure and thermal isolation method of the diaphragm valve
CN110878846B (en) * 2018-09-05 2022-05-24 和正丰科技股份有限公司 Diaphragm valve structure and heat source isolation method thereof
CN114704669A (en) * 2018-09-05 2022-07-05 和正丰科技股份有限公司 Diaphragm valve structure and heat source isolation method thereof

Also Published As

Publication number Publication date
JP4044776B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
US6478043B2 (en) Opening/closing valve
TWI631653B (en) Substrate support chuck cooling for deposition chamber
JP2020532106A (en) Annealing chamber under high pressure and high temperature
JP2004156720A (en) Poppet valve with heater
CN104377155B (en) Electrostatic chuck and plasma processing device
JP3032708B2 (en) On-off valve for vacuum
KR20040041150A (en) Heating medium circulating device and thermal treatment equipment using the device
US20040045813A1 (en) Wafer processing apparatus, wafer stage, and wafer processing method
JP2001057344A (en) Semiconductor processing system
JP2003532842A (en) Small gate valve
JP2003278943A (en) High temperature operating valve
CN210378978U (en) Wafer etching system and heating device of etching chamber
KR20010098675A (en) Method of cooling an induction coil
KR20130084965A (en) Air valve
JP7313169B2 (en) vacuum bellows hot valve
JP4150480B2 (en) Vacuum proportional on-off valve
KR20010056330A (en) Apparatus for fabricating a semiconductor device
KR100826295B1 (en) Vacuum valve with heating unit
JP2000121153A (en) Fluid heater and base processor using it
KR20210083217A (en) Cooling system for Rapid Thermal Processing
JPH11118067A (en) Body uniformly heating device
KR100660797B1 (en) A gas heating device
KR100475746B1 (en) exhaust system of equipment for semiconductor device fabrication and method there of
JP2021021444A (en) Heating mechanism of vacuum valve
JP5346538B2 (en) Fluid heating apparatus and semiconductor processing apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071116

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees