JP4686340B2 - Process gas control valve deposit removal method and process gas control valve control apparatus - Google Patents

Process gas control valve deposit removal method and process gas control valve control apparatus Download PDF

Info

Publication number
JP4686340B2
JP4686340B2 JP2005329633A JP2005329633A JP4686340B2 JP 4686340 B2 JP4686340 B2 JP 4686340B2 JP 2005329633 A JP2005329633 A JP 2005329633A JP 2005329633 A JP2005329633 A JP 2005329633A JP 4686340 B2 JP4686340 B2 JP 4686340B2
Authority
JP
Japan
Prior art keywords
valve
process gas
valve seat
gas control
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005329633A
Other languages
Japanese (ja)
Other versions
JP2007138972A (en
Inventor
雅之 渡辺
康典 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2005329633A priority Critical patent/JP4686340B2/en
Priority to KR1020060112563A priority patent/KR101197080B1/en
Publication of JP2007138972A publication Critical patent/JP2007138972A/en
Application granted granted Critical
Publication of JP4686340B2 publication Critical patent/JP4686340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Magnetically Actuated Valves (AREA)
  • Details Of Valves (AREA)

Description

本発明は、プロセスガス制御弁の流路内に付着した付着物を除去するプロセスガス制御弁の付着物除去方法及びプロセスガス制御弁の制御装置に関する。   The present invention relates to a deposit removal method for a process gas control valve and a control apparatus for the process gas control valve that remove deposits adhered to the flow path of the process gas control valve.

例えば、半導体制御工程におけるプラズマCVD装置は、各種プロセスガスをチャンバに供給し、プロセスガスを反応させてウエハ上に絶縁膜を堆積させる。チャンバの上流側には、プロセスガス制御弁が配設され、チャンバに供給するプロセスガスを制御する。プロセスガス制御弁は、プロセスガスが流路内に残留物として残ると、その残留物がパーティクルになって歩留まり率を低下させる恐れがある。パージガスをプロセスガス制御弁に流して流路内の残留物を除去する場合には、パージに丸1日時間がかかる上、パージガスを大量に消費する不都合がある。また、パージガスに変えてクリーニングガスを使用して残留物除去時間を短縮しようとすると、クリーニングガスによってプロセスガス制御弁自身がダメージを受け、寿命が短くなる。
そのため、例えば、特許文献1に記載されるバルブは、ウエーブジェネレータがエネルギーを与えられて圧電アクチュエータに超音波を出し、フレキシブルプレートを超音波速度で振動させて残留物を取り除いている。
For example, a plasma CVD apparatus in a semiconductor control process supplies various process gases to a chamber and reacts the process gases to deposit an insulating film on the wafer. A process gas control valve is disposed upstream of the chamber and controls the process gas supplied to the chamber. In the process gas control valve, when the process gas remains as a residue in the flow path, the residue may become particles and reduce the yield rate. When removing the residue in the flow path by flowing the purge gas through the process gas control valve, the purge takes a whole day, and there is a disadvantage that a large amount of the purge gas is consumed. Further, if the cleaning gas is used instead of the purge gas to shorten the residue removal time, the process gas control valve itself is damaged by the cleaning gas, and the life is shortened.
For this reason, for example, in the valve described in Patent Document 1, the wave generator is energized to emit ultrasonic waves to the piezoelectric actuator, and the flexible plate is vibrated at an ultrasonic speed to remove the residue.

特開2000−311864号公報(段落0020、0021、図2B参照)。Japanese Unexamined Patent Publication No. 2000-311864 (see paragraphs 0020 and 0021, FIG. 2B).

しかしながら、特許文献1に記載される方法では、振幅の小さい超音波振動を与えて残留物を除去しようとするが、残留物は一定の粘着力をもって弁体や弁座に付着するため、超音波振動だけでは十分に残留物を落としきれなかった。そのため、プロセスガス制御弁は、弁座や弁体に付着した残留物がプロセスガスとともに流れてパーティクルを発生したり、弁座に付着した残留物により流体漏れが発生することがあった。このような特許文献1に記載される方法で残留物を完全に除去しようとすると、結局、残留物除去に時間がかかってしまっていた。   However, in the method described in Patent Document 1, an attempt is made to remove the residue by applying ultrasonic vibration having a small amplitude, but the residue adheres to the valve body and the valve seat with a certain adhesive force. The vibration was not enough to remove the residue. Therefore, in the process gas control valve, the residue attached to the valve seat and the valve body flows together with the process gas to generate particles, or fluid leakage may occur due to the residue attached to the valve seat. When trying to completely remove the residue by the method described in Patent Document 1, it took a long time to remove the residue.

本発明は、上記問題点を解決するためになされたものであり、弁体や弁座に付着した付着物を短時間で除去し、プロセスガス制御弁のパーティクル発生量を減少させるとともに、弁座と弁体のシール面に付着する付着物による流体漏れを生じにくくできるプロセスガス制御弁の付着物除去方法及びプロセスガス制御弁の制御装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and removes deposits adhering to a valve body and a valve seat in a short time, thereby reducing the amount of particles generated in a process gas control valve and reducing the valve seat. It is an object of the present invention to provide a process gas control valve deposit removal method and a process gas control valve control apparatus that can hardly cause fluid leakage due to deposits adhering to a sealing surface of a valve body.

本発明は、上記目的を達成するために次のような構成を有している。
(1)プロセスガス制御弁の付着物除去方法であって、弁体を弁座に当接又は離間させることによりプロセスガスの供給を制御するプロセスガス制御弁にパージガスを流し、前記プロセスガス制御弁を高頻度で所定時間開閉弁動作させることを特徴とする。
The present invention has the following configuration in order to achieve the above object.
(1) A method for removing deposits from a process gas control valve, wherein a purge gas is caused to flow through a process gas control valve that controls supply of the process gas by bringing a valve element into contact with or away from a valve seat, and the process gas control valve Is frequently operated for a predetermined time.

(2)コイルを巻回したコイルボビンに固定鉄心を装填したソレノイド部を備え、前記固定鉄心に吸着される板状の可動鉄心に板バネと弁シートとを装着し、前記板バネのバネ力により前記弁シートを弁座に当接させており、前記コイルに電圧を印加したときに前記固定鉄心が励磁されて前記可動鉄心を前記板バネのバネ力に抗して吸引し、前記弁シートを前記弁座から離間させるプロセスガス制御弁に対して、パージガスを流し、前記コイルに電圧を高周波で印加することにより、前記可動鉄心を前記ソレノイド部側に高頻度で所定時間衝突させることを特徴とする。
(3)(2)に記載の発明において、前記可動鉄心が前記ソレノイド部側に衝突する部分に樹脂部材を配設したことを特徴とする。
(2) A solenoid bobbin in which a fixed iron core is loaded on a coil bobbin around which a coil is wound is provided, a plate spring and a valve seat are mounted on a plate-shaped movable core attracted to the fixed iron core, and the spring force of the plate spring The valve seat is brought into contact with a valve seat, and when a voltage is applied to the coil, the fixed iron core is excited to attract the movable iron core against the spring force of the leaf spring, and the valve seat is A purge gas is supplied to the process gas control valve separated from the valve seat, and a voltage is applied to the coil at a high frequency to cause the movable iron core to collide with the solenoid portion side at a high frequency for a predetermined time. To do.
(3) In the invention described in (2), a resin member is disposed in a portion where the movable iron core collides with the solenoid portion side.

(4)(1)乃至(3)の何れか1つに記載の発明において、前記弁座が設けられたボディをヒータで加熱することを特徴とする。
(5)プロセスガス制御弁の制御装置であって、(1)乃至(4)の何れか1つに記載するプロセスガス制御弁の付着物除去方法を実行する付着物除去手段を有することを特徴とする。
(4) The invention according to any one of (1) to (3), wherein the body provided with the valve seat is heated by a heater.
(5) A control device for a process gas control valve, comprising a deposit removal means for executing the deposit removal method for a process gas control valve described in any one of (1) to (4). And

本発明のプロセスガス制御弁の付着物除去方法は、パージガスをプロセスガス制御弁に流した状態で、プロセスガス制御弁を高頻度で所定時間開閉弁動作させることにより、弁体や弁座に衝撃を与え、弁体や弁座に付着した付着物を剥がれ落とさせる。剥がれ落ちた付着物は、パージガスによって下流側へ流され除去される。一般的に、付着物は粘着力を持つが、弁体を弁座にぶつけた際に発生する衝撃は、超音波振動より大きく、超音波振動を弁体や弁座に与える場合より付着物を弁体や弁座から剥がれ落とさせやすい。よって、本発明のプロセスガス制御弁の付着物除去方法によれば、パージガスのみを流して付着物を除去する方法や、超音波振動を与えて付着物を除去する方法と比べて、弁体や弁座に付着した付着物を除去する時間を短くすることができ、また、プロセスガス制御弁が発生するパーティクルを低減させることができるとともに、弁座や弁体のシール面に付着する付着物による流体漏れを発生しにくい。   In the process gas control valve deposit removal method of the present invention, with the purge gas flowing through the process gas control valve, the process gas control valve is operated on and off frequently for a predetermined period of time, thereby impacting the valve body and the valve seat. To remove the adhering matter adhering to the valve body and the valve seat. The deposits that have been peeled off are removed by flowing downstream with a purge gas. In general, adherents have adhesive strength, but the impact that occurs when the valve body is struck against the valve seat is greater than the ultrasonic vibration, which is greater than when ultrasonic vibration is applied to the valve body or valve seat. Easy to peel off from the disc and valve seat. Therefore, according to the deposit removal method of the process gas control valve of the present invention, compared with a method of removing deposits by flowing only purge gas, or a method of removing deposits by applying ultrasonic vibration, It is possible to shorten the time for removing the deposits adhering to the valve seat, to reduce the particles generated by the process gas control valve, and due to the deposits adhering to the seal surface of the valve seat and the valve body. Less likely to cause fluid leakage.

本発明のプロセスガス制御弁の付着物除去方法は、プロセスガス制御弁が、コイルに電圧を印加しないときには、板バネのバネ力により弁シートを弁座に当接させて流体を遮断し、コイルに電圧を印加したときに、固定鉄心が励磁されて板バネのバネ力に抗して可動鉄心を吸引し、弁シートを弁座から離間させるものであり、そのプロセスガス制御弁にパージガスを流した状態で、プロセスガス制御弁のコイルに電圧を高周波で印加し、可動鉄心をソレノイド部側へ高頻度で所定時間衝突させることにより、可動鉄心や板バネ、弁シートに付着した付着物を剥がれ落とさせる。剥がれ落ちた付着物は、パージガスによって下流側へ流され除去される。一般的に、付着物は粘着力を持つが、可動鉄心をソレノイド部側に衝突させる際に発生する衝撃は、超音波振動より大きく、超音波振動を可動鉄心や板バネ、弁シートに与える場合より付着物を可動鉄心や板バネ、弁シートから剥がれ落とさせやすい。よって、本発明のプロセスガス制御弁の付着物除去方法によれば、パージガスのみを流して付着物を除去する方法や、超音波振動を与えて付着物を除去する方法と比べて、可動鉄心や板バネ、弁シートに付着した付着物を除去する時間を短くすることができ、また、プロセスガス制御弁が発生するパーティクルを低減させることができるとともに、弁シートのシール面に付着する付着物による流体漏れを発生しにくい。
特に、可動鉄心がソレノイド部側に衝突する部分に樹脂部材を設けた場合には、可動鉄心がソレノイド部側の金属に直接衝突して摩耗する不具合を減らし、パーティクル発生量を抑制することができる。
In the process gas control valve deposit removing method of the present invention, when the process gas control valve does not apply a voltage to the coil, the valve seat is brought into contact with the valve seat by the spring force of the leaf spring to shut off the fluid. When a voltage is applied to the motor, the fixed iron core is excited to attract the movable iron core against the spring force of the leaf spring, and the valve seat is separated from the valve seat. Purge gas flows through the process gas control valve. In this state, voltage is applied to the coil of the process gas control valve at a high frequency, and the movable iron core is collided with the solenoid part at a high frequency for a predetermined time, so that the deposits attached to the movable iron core, leaf spring, and valve seat are peeled off. Drop it. The deposits that have been peeled off are removed by flowing downstream with a purge gas. In general, the adherent has adhesive force, but the impact generated when the movable iron core collides with the solenoid part is greater than the ultrasonic vibration, and the ultrasonic vibration is applied to the movable iron core, leaf spring, and valve seat. It is easier to peel off deposits from the movable iron core, leaf spring, and valve seat. Therefore, according to the deposit removal method of the process gas control valve of the present invention, compared with a method of removing deposits by flowing only purge gas or a method of removing deposits by applying ultrasonic vibration, It is possible to shorten the time for removing deposits adhering to the leaf spring and the valve seat, to reduce particles generated by the process gas control valve, and to adhere to the seal surface of the valve seat. Less likely to cause fluid leakage.
In particular, when a resin member is provided in a portion where the movable iron core collides with the solenoid part, the problem that the movable iron core directly wears against the metal on the solenoid part side can be reduced, and the amount of particles generated can be suppressed. .

また、本発明のプロセスガス制御弁の付着物除去方法は、ボディをヒータで加熱することにより、弁体や弁座に冷え固まった付着物を熱によって軟化、液化若しくは気化させ、弁体や弁座から剥がれ落ち易くすることができる。
また、本発明のプロセスガス制御弁の制御装置は、上記プロセスガス制御弁の付着物除去方法を実行する付着物除去手段を備えているので、モード切替などによりプロセスガス制御弁の付着物除去を簡単に行うことができる。
Further, in the process gas control valve deposit removal method of the present invention, the body is heated by a heater to soften, liquefy or vaporize deposits that have cooled and hardened on the valve body and the valve seat by heat. It can be easily peeled off from the seat.
In addition, the process gas control valve control device of the present invention includes the deposit removal means for executing the deposit removal method for the process gas control valve, so that the deposit on the process gas control valve is removed by mode switching or the like. It can be done easily.

次に、本発明に係るプロセスガス制御弁の付着物除去方法及びプロセスガス制御弁の制御装置に関する一実施の形態について図面を参照して説明する。   Next, an embodiment related to a process gas control valve deposit removal method and a process gas control valve control apparatus according to the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、電磁弁1の側面図である。
第1実施形態では、図1に示すフラッパ式の電磁弁1をプロセスガス制御弁として使用する。電磁弁1は、例えば、半導体製造工程のプロセスガスを制御するために用いられ、ボディ2にソレノイド部10を保持部材7を介して連結し、外観が構成されている。
(First embodiment)
FIG. 1 is a side view of the electromagnetic valve 1.
In the first embodiment, the flapper type electromagnetic valve 1 shown in FIG. 1 is used as a process gas control valve. The solenoid valve 1 is used, for example, to control process gas in a semiconductor manufacturing process, and has an external appearance configured by connecting a solenoid unit 10 to a body 2 via a holding member 7.

図2は、図1に示す電磁弁1のA−A断面図である。
電磁弁1のボディ2は、SUSなどの金属を直方体のブロック状に成形したものである。ボディ2は、取付孔3が図中上面から円柱状に穿設されている。また、ボディ2は、第1流路4が図中下面から取付孔3と同軸上に穿設されて取付孔3に連通しており、第1流路4が取付孔3の内壁に開口する開口部分に、弁座6が略円筒状に突設されている。また、ボディ2は、第2流路5が、弁座6より外側の取付孔3の内壁に開口するように図中下面から穿設されている。ボディ2の取付孔3には、弁座6の外側に段差が設けられ、板バネ23の基準面を設定している。
2 is a cross-sectional view of the electromagnetic valve 1 shown in FIG.
The body 2 of the electromagnetic valve 1 is formed by molding a metal such as SUS into a rectangular parallelepiped block shape. The body 2 has a mounting hole 3 formed in a cylindrical shape from the upper surface in the drawing. Further, in the body 2, the first flow path 4 is formed coaxially with the mounting hole 3 from the lower surface in the drawing and communicates with the mounting hole 3, and the first flow path 4 opens on the inner wall of the mounting hole 3. A valve seat 6 projects from the opening in a substantially cylindrical shape. Further, the body 2 is drilled from the lower surface in the drawing so that the second flow path 5 opens in the inner wall of the mounting hole 3 outside the valve seat 6. The mounting hole 3 of the body 2 is provided with a step on the outside of the valve seat 6 to set a reference surface for the leaf spring 23.

プランジャ組立20は、プランジャ(可動鉄心)21、弁シート(弁体)22、板バネ23、押圧板24とを積層して一体に組み立てたものであり、取付孔3の段差に板バネ23を載置して、ボディ2の取付孔3に保持部材7を嵌め込むことにより、ボディ2の段差と保持部材7との間で板バネ23の外縁部を強固に挟み込んで固定される。   The plunger assembly 20 is an assembly in which a plunger (movable iron core) 21, a valve seat (valve element) 22, a leaf spring 23, and a pressing plate 24 are laminated and assembled together. By mounting and fitting the holding member 7 into the mounting hole 3 of the body 2, the outer edge portion of the leaf spring 23 is firmly sandwiched and fixed between the step of the body 2 and the holding member 7.

プランジャ組立20は、プランジャ21の中央凹部に弁シート22を装着し、弁シート22を押さえるように板バネ23と押圧板24をプランジャ21に重ね合わせ、押圧板24と板バネ23とプランジャ21をスポット溶接接合したものである。弁シート22は、ゴム、PTFE(ポリテトラフルオロエチレン)、PTEE(四フッ化エチレン樹脂)などの熱可塑性を有する弾性体を、弁座6の外径より大きい円形状に成形したものであり、弁座6に当接するシール面に鏡面加工を施してシール性能を向上させている。板バネ23と押圧板24は、中央部に孔が形成されており、弁シート22を露出させている。このようなプランジャ組立20は、弁シート22がプランジャ21の自重と板バネ23のバネ力との合成力によって弁シート22を弁座6にシールさせる。尚、板バネ23のバネ力は、基準面高さにより変化し、板バネ23の上下面にスペーサ25を挿入することにより調整できる。   In the plunger assembly 20, the valve seat 22 is mounted in the central recess of the plunger 21, the leaf spring 23 and the pressing plate 24 are superimposed on the plunger 21 so as to hold the valve seat 22, and the pressing plate 24, the leaf spring 23, and the plunger 21 are put together. Spot welded joint. The valve seat 22 is formed by molding an elastic body having thermoplasticity such as rubber, PTFE (polytetrafluoroethylene), PTEE (tetrafluoroethylene resin) into a circular shape larger than the outer diameter of the valve seat 6, The sealing surface that contacts the valve seat 6 is mirror-finished to improve the sealing performance. The leaf spring 23 and the pressing plate 24 are formed with a hole in the center, and the valve seat 22 is exposed. In such a plunger assembly 20, the valve seat 22 seals the valve seat 22 to the valve seat 6 by the combined force of the weight of the plunger 21 and the spring force of the leaf spring 23. The spring force of the leaf spring 23 varies depending on the reference surface height, and can be adjusted by inserting spacers 25 on the upper and lower surfaces of the leaf spring 23.

保持部材7は、磁性材料を略円筒状に形成したものであり、内周面に段差が設けられている。保持部材7の段差には、樹脂部材19が嵌め合わされている。樹脂部材19は、保持部材7にきっちり嵌め込まれるように、PTFEなどの硬めの樹脂を円筒状に成形したものであり、一端外周面にフランジが設けられ、そのフランジを保持部材7の段差に突き合わせて係合させることにより、樹脂部材19を保持部材7に対して位置決めするようになっている。   The holding member 7 is formed of a magnetic material in a substantially cylindrical shape, and has a step on the inner peripheral surface. A resin member 19 is fitted into the step of the holding member 7. The resin member 19 is formed by molding a hard resin such as PTFE into a cylindrical shape so that the resin member 19 is fitted into the holding member 7, and a flange is provided on the outer peripheral surface of the resin member 19, and the flange is abutted against the step of the holding member 7. By engaging with each other, the resin member 19 is positioned with respect to the holding member 7.

中間部材8は、非磁性材料を円筒状に形成したものであり、樹脂部材19に突き当たるように保持部材7に嵌め込まれている。ソレノイド部10は、中間部材8に固定鉄心13を圧入固定することにより、保持部材7に保持されている。ソレノイド部10は、胴部にコイル11を巻回された中空円筒状のコイルボビン12に、固定鉄心13が装填されている。固定鉄心13は、強磁性材料を円柱状に成形したものであり、第1固定鉄心13Aと第2固定鉄心13Bとに分割されている。第1固定鉄心13Aは、コイルボビン12の図中上方開口部から圧入され、下端面が図中下方開口部より少し入り込んだ位置に配置されるようにコイルボビン12に位置決め固定されている。また、第2固定鉄心13Bは、中間部材8の中空孔に圧入されて嵌め込まれ、保持部材7及び中間部材8とともにボディ2の取付孔3の開口部を気密に塞いで弁室9を形成している。第2固定鉄心13Bの図中上端部は、中間部材8から突き出し、第1固定鉄心13Aに突き当たるようにコイルボビン12の図中下方開口部に嵌め込まれている。第1固定鉄心13Aと第2固定鉄心13Bとの当接面には、凹凸が設けられ、第1固定鉄心13Aと第2固定鉄心13Bを同軸上に位置決めしている。   The intermediate member 8 is formed of a nonmagnetic material in a cylindrical shape, and is fitted into the holding member 7 so as to abut against the resin member 19. The solenoid unit 10 is held by the holding member 7 by press-fitting and fixing the fixed iron core 13 to the intermediate member 8. In the solenoid unit 10, a fixed iron core 13 is loaded on a hollow cylindrical coil bobbin 12 in which a coil 11 is wound around a body part. The fixed iron core 13 is formed by forming a ferromagnetic material into a cylindrical shape, and is divided into a first fixed iron core 13A and a second fixed iron core 13B. 13 A of 1st fixed iron cores are press-fitted from the upper opening part of the coil bobbin 12 in the figure, and are positioned and fixed to the coil bobbin 12 so that the lower end surface is disposed at a position slightly inserted from the lower opening part in the figure. Further, the second fixed iron core 13B is press-fitted into the hollow hole of the intermediate member 8 and is fitted together with the holding member 7 and the intermediate member 8 to airtightly close the opening of the mounting hole 3 of the body 2 to form the valve chamber 9. ing. The upper end of the second fixed iron core 13B in the figure protrudes from the intermediate member 8 and is fitted into the lower opening of the coil bobbin 12 in the figure so as to abut against the first fixed iron core 13A. The contact surface between the first fixed iron core 13A and the second fixed iron core 13B is provided with irregularities to position the first fixed iron core 13A and the second fixed iron core 13B coaxially.

ボンネット14は、磁性材料を一方に開口する円筒状に成形したものであり、開口部内周面が保持部材7の外周面に重なり合うようにコイルボビン12に被せられ、固定ネジ15を用いて固定鉄心13に固定されている。固定ネジ15は、第1,第2固定鉄心13A,13Bにねじ込まれ、第1,第2固定鉄心13A,13Bを一体化させている。このようなソレノイド部10は、コイル11の周りがコイルボビン12とボンネット14により覆われて磁気回路を形成され、コイル11に電圧を印加されたときに、第1,第2固定鉄心13A,13Bが励磁されてプランジャ21を吸引する。   The bonnet 14 is formed by forming a magnetic material into a cylindrical shape that opens to one side. The bonnet 14 is covered with the coil bobbin 12 so that the inner peripheral surface of the opening overlaps the outer peripheral surface of the holding member 7, and the fixed iron core 13 is fixed using a fixing screw 15. It is fixed to. The fixing screw 15 is screwed into the first and second fixed iron cores 13A and 13B to integrate the first and second fixed iron cores 13A and 13B. In such a solenoid unit 10, the coil 11 is covered with a coil bobbin 12 and a bonnet 14 to form a magnetic circuit, and when a voltage is applied to the coil 11, the first and second fixed iron cores 13 </ b> A and 13 </ b> B are The plunger 21 is attracted by being excited.

保持部材7と第2固定鉄心13Bは、下端面が樹脂部材19より弁室9側に突出しており、保持部材7の内周面と第2固定鉄心13Bの外周面との間に磁気漏洩空間9aを形成している。プランジャ21は、突縁部21aが弁シート22を装着する面と反対側の面(図中上面)に設けられている。突縁部21aは、保持部材7及び第2固定鉄心13Bの下端面と、樹脂部材19の下端面との間に設けられた段差の高さより大きく突出し、プランジャ21は、固定鉄心13に吸引されると、突縁部21aにより磁気漏洩空間9aを埋めるように非接触で上昇し、更に上昇すると、樹脂部材19にぶつかって係止される。   The lower end surface of the holding member 7 and the second fixed iron core 13B protrudes toward the valve chamber 9 from the resin member 19, and a magnetic leakage space is formed between the inner peripheral surface of the holding member 7 and the outer peripheral surface of the second fixed iron core 13B. 9a is formed. The plunger 21 is provided on the surface (upper surface in the drawing) opposite to the surface on which the protruding portion 21 a is mounted with the valve seat 22. The protruding portion 21a protrudes larger than the height of the step provided between the lower end surface of the holding member 7 and the second fixed iron core 13B and the lower end surface of the resin member 19, and the plunger 21 is sucked by the fixed iron core 13. Then, it rises in a non-contact manner so as to fill the magnetic leakage space 9a by the projecting edge portion 21a, and when it further rises, it hits the resin member 19 and is locked.

図1に示すように、電磁弁1のボディ2には、棒状ヒータ30(図2参照)を挿入するためのヒータ挿入孔27が形成され、弁座6付近を中心にボディ2を加熱できるようになっている。また、電磁弁1のボディ2には、温度センサ29(図3参照)を挿入するための温度センサ挿入孔28が形成されている。   As shown in FIG. 1, a heater insertion hole 27 for inserting a rod-shaped heater 30 (see FIG. 2) is formed in the body 2 of the electromagnetic valve 1 so that the body 2 can be heated around the valve seat 6. It has become. The body 2 of the solenoid valve 1 is formed with a temperature sensor insertion hole 28 for inserting a temperature sensor 29 (see FIG. 3).

電磁弁1は、コイル11が図3に示す制御装置31に接続され、印加電圧を制御される。図3は、制御装置31の電気ブロック図である。
制御装置31は、中央演算装置(以下「CPU」という。)CPU32、入出力インターフェース33、ROM34、RAM35を備える周知の汎用コンピュータであるため、詳細な説明を省略する。ROM34には、付着物除去プログラム37が格納されている。付着物除去プログラム(付着物除去手段)37は、電磁弁1にパージガスを供給しながら電磁弁1を高頻度で所定時間開閉弁動作させることにより、プランジャ組立20や弁座6に付着した付着物を除去するものである。
In the solenoid valve 1, the coil 11 is connected to the control device 31 shown in FIG. 3, and the applied voltage is controlled. FIG. 3 is an electric block diagram of the control device 31.
Since the control device 31 is a well-known general-purpose computer including a central processing unit (hereinafter referred to as “CPU”) CPU 32, an input / output interface 33, a ROM 34, and a RAM 35, detailed description thereof is omitted. The ROM 34 stores a deposit removal program 37. The deposit removing program (attached matter removing means) 37 operates the solenoid valve 1 to open and close the valve at a high frequency for a predetermined time while supplying purge gas to the solenoid valve 1, thereby depositing the deposit on the plunger assembly 20 and the valve seat 6. Is to be removed.

次に、電磁弁1の付着物除去方法について説明する。
電磁弁1は、プロセスガスの制御を行っていると、流路内に付着物が生成され、パーティクルの発生要因となったり、シール部分に付着した付着物により流体漏れを発生する恐れがある。そのため、電磁弁1は、制御装置31を流量制御モードから付着物除去モードに切り替えて付着物除去プログラム37を実行し、付着物の除去を行う。
Next, the deposit removal method of the solenoid valve 1 will be described.
When the process gas is controlled in the solenoid valve 1, deposits are generated in the flow path, which may cause generation of particles or cause fluid leakage due to deposits attached to the seal portion. Therefore, the solenoid valve 1 switches the control device 31 from the flow rate control mode to the deposit removal mode, executes the deposit removal program 37, and removes deposits.

具体的には、制御装置31が付着物除去モードにされると、電磁弁1にパージガスが供給され、制御装置31が電磁弁1に制御装置31自身の最大周波数(本実施形態では10Hzとする。)で電圧を印加して、電磁弁1を高頻度で所定時間開閉弁動作させる。このとき、制御装置31は、図4に示すように電磁弁1に供給する印加電圧を制御する。図4は、図1に示す電磁弁1の付着物除去方法を実施する際に図1に示す電磁弁1のコイルの印加する電圧波形を示す図である。   Specifically, when the control device 31 is set to the deposit removal mode, purge gas is supplied to the electromagnetic valve 1, and the control device 31 supplies the electromagnetic valve 1 with the maximum frequency of the control device 31 itself (in this embodiment, 10 Hz). )), The solenoid valve 1 is operated as an on-off valve at a high frequency for a predetermined time. At this time, the control device 31 controls the applied voltage supplied to the electromagnetic valve 1 as shown in FIG. FIG. 4 is a diagram showing a voltage waveform applied by the coil of the electromagnetic valve 1 shown in FIG. 1 when the deposit removal method for the electromagnetic valve 1 shown in FIG. 1 is performed.

制御装置31は、最初に電磁弁1のコイル11に定格電圧を超える過電圧を印加した後、定格電圧を所定時間印加し、その後に印加電圧を遮断する。コイル11は誘導負荷であるため、定格電圧を印加しても電流はすぐに上昇せず、ゆっくり上昇する。このため、初期的に過電圧を印加し、電流の上昇を早めている。このように過電圧を最初に印加することにより、弁が開きだす応答時間を早めることが可能になる。また、過電圧を印加した後に定格電圧に低下させるのは、弁が開いた後は、弁を動きださせる力より小さい力で弁を開位置で保持することができ、電力消費量を節減するためである。   The control device 31 first applies an overvoltage exceeding the rated voltage to the coil 11 of the electromagnetic valve 1, then applies the rated voltage for a predetermined time, and then cuts off the applied voltage. Since the coil 11 is an inductive load, even if the rated voltage is applied, the current does not rise immediately but rises slowly. For this reason, an overvoltage is initially applied to speed up the current. By applying the overvoltage first in this way, it is possible to speed up the response time for the valve to open. The reason for reducing the rated voltage after applying an overvoltage is that, after the valve is opened, the valve can be held in the open position with a force smaller than the force that starts moving the valve, thus reducing power consumption. It is.

電磁弁1は、弁シート22が弁座6に衝突する際の衝撃で、プランジャ21、弁シート22のシール面、板バネ23、弁座6に付着した付着物が剥がれ落ちたり、ヒビが入る。特に、プランジャ21、弁シート22、板バネ23に付着する付着物には、プランジャ組立20の移動によって生じる運動エネルギーが作用しており、弁シート22が弁座6に衝突してプランジャ組立20の運動を急激に停止されると、付着物が慣性力によって弁シート21のシール面から剥がれ落ちやすい。そして、電磁弁1は、開閉弁動作を高頻度で繰り返すことにより、ヒビが入った付着物がそのヒビを大きくして剥がれ落ちやすくなる。剥がれ落ちた付着物は、パージガスに巻き込まれて第2流路5から外部へ排出される。付着物除去を開始した後所定時間(例えば30分〜1時間)が経過すると、制御装置31は、電磁弁1のコイル11へ電圧を印加しなくなり、付着物除去を完了する。   The electromagnetic valve 1 is impacted when the valve seat 22 collides with the valve seat 6, and the adhered matter adhered to the plunger 21, the sealing surface of the valve seat 22, the leaf spring 23, and the valve seat 6 is peeled off or cracked. . In particular, the kinetic energy generated by the movement of the plunger assembly 20 acts on the deposits attached to the plunger 21, the valve seat 22, and the leaf spring 23, and the valve seat 22 collides with the valve seat 6 and When the movement is suddenly stopped, the deposits are easily peeled off from the sealing surface of the valve seat 21 due to inertial force. And the solenoid valve 1 repeats the on-off valve operation at a high frequency, so that the adhered matter containing cracks enlarges the cracks and is easily peeled off. The deposits peeled off are caught in the purge gas and discharged from the second flow path 5 to the outside. When a predetermined time (for example, 30 minutes to 1 hour) elapses after the start of removing the deposits, the control device 31 stops applying the voltage to the coil 11 of the electromagnetic valve 1 and completes the deposit removal.

このように付着物除去を行うときに、制御装置31は、棒状ヒータ30でボディ2を加熱する。この加熱温度は、温度センサ29が検出した温度に基づいてフィードバック制御され、一定温度に維持される。付着物は、プロセスガスの凝結などによって生成されているため、ボディ2を加熱することにより弁座6などに付着した付着物が軟化、液化若しくは気化し、弁座6から剥がれ落ちやすくなる。   When removing the deposits in this way, the control device 31 heats the body 2 with the rod-shaped heater 30. The heating temperature is feedback-controlled based on the temperature detected by the temperature sensor 29 and is maintained at a constant temperature. Since the deposit is generated by the condensation of process gas or the like, the deposit adhered to the valve seat 6 is softened, liquefied or vaporized by heating the body 2 and is easily peeled off from the valve seat 6.

ここで、上記付着物除去方法は、プロセスガスを制御する場面以外で電磁弁1に開閉弁動作を行わせるため、電磁弁1の耐久性についても検討しておく。例えば、周波数10Hzで電圧を30分間印加して付着物除去を行うと、電磁弁1は、1回の付着物除去につき1800回開閉弁動作する。電磁弁1は、ボディ2と弁座6が剛性の高い金属で形成され、3000万〜6000万回の開閉弁動作を行い得る耐久性を有する。そのため、付着物除去時の開閉弁動作回数は、電磁弁1の耐久回数に対して僅か0.01%程度であり、耐久性に殆ど影響しない。また、付着物除去をこまめに実施すれば、1回当たりの付着物除去時間を短縮して電磁弁1の開閉弁動作を少なくし、トータル的に付着物除去時に電磁弁1を開閉弁動作させる回数を減らすことが可能である。   Here, since the deposit removing method causes the solenoid valve 1 to perform the on-off valve operation except for the scene of controlling the process gas, the durability of the solenoid valve 1 is also examined. For example, when a deposit is removed by applying a voltage at a frequency of 10 Hz for 30 minutes, the electromagnetic valve 1 opens and closes 1800 times for each deposit removal. The electromagnetic valve 1 has a body 2 and a valve seat 6 made of a metal having high rigidity, and has durability capable of performing an opening / closing valve operation of 30 million to 60 million times. Therefore, the number of opening / closing valve operations at the time of removing the deposit is only about 0.01% with respect to the durability of the solenoid valve 1 and hardly affects the durability. Moreover, if the deposit removal is frequently performed, the deposit removal time per time is shortened to reduce the on-off valve operation of the solenoid valve 1, and the solenoid valve 1 is operated on the on-off valve when removing the deposit totally. It is possible to reduce the number of times.

ところで、出願人は、電磁弁1の流体漏れを調べる試験と、パーティクル発生量を調べる試験を実施し、上記プロセスガス制御弁の付着物除去方法の効果を裏付けた。   By the way, the applicant conducted a test for checking the fluid leakage of the electromagnetic valve 1 and a test for checking the amount of generated particles, and proved the effect of the deposit removal method of the process gas control valve.

そこで、先ず、流体漏れを調べる試験について説明する。図5は、電磁弁1の流体漏れを調べるための試験回路50を示す図である。
試験回路50は、圧力レギュレータ51、フィルタ52、入口開閉弁53、圧力計54、電磁弁1を直列に接続して構成した。試験では、電磁弁1を使用して、電磁弁1に付着物を生成させて内部リークを生じさせるようにし、その電磁弁1を試験回路50に組み付けた。そして、その電磁弁1に10Hzの電圧を印加して開閉弁動作させる動作時間、電磁弁1の第1流路4に供給するパージガスの流量、棒状ヒータ30によるヒーティングの有無などの試験条件を変えて電磁弁1の付着物除去を行った。そして、付着物除去作業終了後に、電磁弁1を全閉して試験回路に窒素ガスを170kPaまで加圧封入してから入口開閉弁53を全閉し、入口開閉弁53と電磁弁1との間の圧力変動量を圧力計54で計測した。
First, a test for checking fluid leakage will be described. FIG. 5 is a diagram showing a test circuit 50 for examining the fluid leakage of the solenoid valve 1.
The test circuit 50 was configured by connecting a pressure regulator 51, a filter 52, an inlet on-off valve 53, a pressure gauge 54, and the electromagnetic valve 1 in series. In the test, the electromagnetic valve 1 was used to generate deposits on the electromagnetic valve 1 to cause internal leakage, and the electromagnetic valve 1 was assembled in the test circuit 50. Then, test conditions such as an operation time for applying a voltage of 10 Hz to the solenoid valve 1 to operate the on-off valve, a flow rate of the purge gas supplied to the first flow path 4 of the solenoid valve 1, and the presence or absence of heating by the rod-shaped heater 30 are set. The deposit on the solenoid valve 1 was removed. Then, after the deposit removal operation is completed, the solenoid valve 1 is fully closed and nitrogen gas is pressurized and sealed up to 170 kPa in the test circuit, and then the inlet on / off valve 53 is fully closed. The pressure fluctuation amount was measured with a pressure gauge 54.

図6は、電磁弁1の付着物除去方法の試験結果を示す図である。
図中短い点線で示す初期条件(図中「初期」参照)では、動作時間が0minで、パージガスの供給及び棒状ヒータ30による加熱を行っていない。すなわち、初期条件では、付着物除去を行っていない。
また、図中二点鎖線で示す条件1では、棒状ヒータ30による加熱を行わない状態で、電磁弁1の第1流路4にパージガスを1SLMずつ供給し、電磁弁1を30分間開閉弁動作させた。
また、図中長い点線で示す条件2では、棒状ヒータ30による加熱を行わない状態で、電磁弁1の第1流路4にパージガスを5SLMずつ供給し、電磁弁1を30分間開閉弁動作させた。
また、図中実線で示す条件3では、棒状ヒータ30で電磁弁1のボディ2を150℃に加熱した状態で、電磁弁1の第1流路4にパージガスを1SLMずつ供給し、電磁弁1を30分間開閉弁動作させた。
また、図中一点鎖線で示す条件4では、棒状ヒータ30で電磁弁1のボディ2を150℃に加熱した状態で、電磁弁1の第1流路4にパージガスを5SLMずつ供給し、電磁弁1を30分間開閉弁動作させた。
また、図中太線で示す条件5では、棒状ヒータ30で電磁弁1のボディ2を150℃に加熱した状態で、電磁弁1の第1流路4にパージガスを5SLMずつ供給し、付着物除去モードの下で電磁弁1を60分間開閉弁動作させた。
FIG. 6 is a diagram showing test results of the deposit removal method for the electromagnetic valve 1.
Under an initial condition indicated by a short dotted line in the figure (see “Initial” in the figure), the operation time is 0 min, and the supply of purge gas and the heating by the rod heater 30 are not performed. That is, the deposit removal is not performed under the initial conditions.
Further, in the condition 1 indicated by a two-dot chain line in the figure, the purge gas is supplied to the first flow path 4 of the solenoid valve 1 by 1 SLM without heating by the rod heater 30, and the solenoid valve 1 is operated for opening and closing for 30 minutes. I let you.
Further, in condition 2 indicated by a long dotted line in the figure, purge gas is supplied to the first flow path 4 of the solenoid valve 1 in increments of 5 SLM without heating by the rod-shaped heater 30, and the solenoid valve 1 is operated to open and close for 30 minutes. It was.
Further, in condition 3 indicated by a solid line in the figure, the purge gas is supplied to the first flow path 4 of the solenoid valve 1 by 1 SLM at a time while the body 2 of the solenoid valve 1 is heated to 150 ° C. by the rod heater 30, and the solenoid valve 1. Was operated for 30 minutes.
Further, in condition 4 indicated by a one-dot chain line in the figure, the purge gas is supplied to the first flow path 4 of the solenoid valve 1 in increments of 5 SLM while the body 2 of the solenoid valve 1 is heated to 150 ° C. by the rod heater 30. 1 was opened and closed for 30 minutes.
Further, in condition 5 indicated by a bold line in the figure, the purge gas is supplied to the first flow path 4 of the solenoid valve 1 by 5 SLM in a state where the body 2 of the solenoid valve 1 is heated to 150 ° C. by the rod heater 30 to remove the deposits. Under the mode, the solenoid valve 1 was operated for 60 minutes.

上記試験の結果、以下のことが判明した。
図6に示すように、初期条件の電磁弁1は、圧力が急降下し、約3時間後には圧力が0kPaになってしまった。これに対して、パージガスを流しながら電磁弁1を高頻度で開閉弁動作させた条件1〜5は、付着物除去を実施しない初期と比べると、圧力降下率が小さく、約6時間経過しても圧力が0kPaになっていない。これらの試験結果より、パージガスを流しながら電磁弁1を高頻度で開閉弁動作させれば、弁部の付着物が除去され、流体漏れを生じにくくできることが判明した。これは、電磁弁1の開閉弁動作時に、弁部に衝撃が加えられ、付着物が弁部から剥がれ落ちるためと考えられる。
As a result of the above test, the following was found.
As shown in FIG. 6, the pressure of the electromagnetic valve 1 in the initial condition suddenly dropped, and the pressure became 0 kPa after about 3 hours. On the other hand, conditions 1 to 5 in which the solenoid valve 1 is frequently operated while opening and closing the purge gas have a lower pressure drop rate than the initial stage in which the deposit removal is not performed, and about 6 hours have passed. However, the pressure is not 0 kPa. From these test results, it has been found that if the solenoid valve 1 is operated to open and close with high frequency while flowing purge gas, deposits on the valve portion are removed and fluid leakage is less likely to occur. This is considered to be because an impact is applied to the valve portion during the opening / closing operation of the solenoid valve 1 and the deposits are peeled off from the valve portion.

また、ヒーティングを行っていない初期、条件1,2は、下向きの放物線を描いて急激に圧力降下し、圧力変動率が大きく、試験開始後2時間経過すると、内部圧力が初期時の半分未満(85kPa未満)に低下してしまった。これに対して、ヒーティングを行った条件3,4,5は、リニアに圧力降下し、圧力変動率が小さく、試験開始後6時間が経過しても、内部圧力が初期時の圧力の半分を超える110kPa以上である。この試験結果より、付着物除去時にヒーティングを行えば、弁部の付着物が大量に除去され、流体漏れが生じにくくなることが判明した、これは、電磁弁1のボディを加熱することにより、弁座6やプランジャ21、弁シート22、板バネ23に付着した付着物が軟化、液化若しくは気化し、剥がれ落ちやすくなるためと考えられる。   Also, in the initial stage, when heating is not performed, conditions 1 and 2 draw a downward parabola, the pressure drops rapidly, the pressure fluctuation rate is large, and after 2 hours from the start of the test, the internal pressure is less than half of the initial value. (Lower than 85 kPa). On the other hand, in the conditions 3, 4 and 5 where the heating was performed, the pressure dropped linearly, the pressure fluctuation rate was small, and the internal pressure was half of the initial pressure even after 6 hours passed from the start of the test. It is 110 kPa or more exceeding. From this test result, it has been found that if heating is performed at the time of removing the deposit, a large amount of deposit on the valve is removed and fluid leakage is less likely to occur. This is because heating the body of the solenoid valve 1 It is considered that the deposits attached to the valve seat 6, the plunger 21, the valve seat 22, and the leaf spring 23 are softened, liquefied or vaporized and easily peeled off.

また、図6に示すように、ヒーティングを行っていない条件下において、パージ流量が5SLMの条件2は、パージ流量が1SLMの条件1より圧力降下率が小さい。また、ヒーティングを行う条件下において、パージ流量が5SLMの条件4,5は、パージ流量が1SLMの条件3より圧力低下率が小さい。これらの試験結果より、パージガスの流量が多いほど、付着物を除去して、流体漏れを防止できるようになることが判明した。これは、弁シート22が弁座6に衝突する際の衝撃に加え、パージガスの流体圧で付着物を吹きとばしやすいためと考えられる。   Further, as shown in FIG. 6, under the condition where no heating is performed, the condition 2 where the purge flow rate is 5 SLM has a smaller pressure drop rate than the condition 1 where the purge flow rate is 1 SLM. Further, under the conditions for heating, conditions 4 and 5 with a purge flow rate of 5 SLM have a lower pressure drop rate than condition 3 with a purge flow rate of 1 SLM. From these test results, it was found that the larger the purge gas flow rate, the more the deposits can be removed and the fluid leakage can be prevented. This is presumably because the deposit is easily blown off by the fluid pressure of the purge gas in addition to the impact when the valve seat 22 collides with the valve seat 6.

また、図6に示すように、付着物除去を60分間行った条件5は、付着物除去を30分間行った条件4より圧力低下率が小さい。この試験結果より、付着物除去時間が長いほど、付着物を除去して流体漏れを防止できることが判明した。   Further, as shown in FIG. 6, the condition 5 in which the deposit removal was performed for 60 minutes has a smaller pressure drop rate than the condition 4 in which the deposit removal was performed for 30 minutes. From this test result, it was found that the longer the adhering material removal time, the more the adhering material can be removed to prevent fluid leakage.

以上より、パージガスを流しながら電磁弁1を高頻度で所定時間開閉弁動作させることにより、付着物を除去して流体漏れを防止できるようになることが明らかになった。もっとも、上記試験では劣悪な電磁弁1を用いているが、実際に半導体製造工程で電磁弁1を使用する場合には、定期的或いは一定条件下で電磁弁1の付着物を除去すると考えられ、電磁弁1が本試験ほど劣悪な環境にさらされるとは考えにくい。これを考慮すれば、パージガスの流量を1SLMとし、30分程度の付着物除去時間でも十分に付着物を除去しうると考えられる。   From the above, it has been clarified that the leakage of fluid can be prevented by removing the deposits by operating the on-off valve of the solenoid valve 1 for a predetermined period of time while flowing the purge gas. However, in the above test, the poor solenoid valve 1 is used. However, when the solenoid valve 1 is actually used in the semiconductor manufacturing process, it is considered that the deposits on the solenoid valve 1 are removed periodically or under certain conditions. It is unlikely that the solenoid valve 1 is exposed to an environment as bad as this test. Considering this, it is considered that the flow rate of the purge gas is 1 SLM, and the deposits can be sufficiently removed even in the deposit removal time of about 30 minutes.

次に、パーティクル発生量を調べる試験について説明する。
この試験では、付着物を生成させた電磁弁1について、150℃にヒーティングし、パージガスを1SLMずつ流しながら10Hzの電圧を印加し、電磁弁1を高頻度で開閉弁動作させる付着物除去を行った後、作用ガスを流した場合におけるパーティクル発生量と、付着物除去を行わずに作用ガスを流した場合のパーティクル発生量を測定した。
Next, a test for examining the amount of generated particles will be described.
In this test, the electromagnetic valve 1 that generated deposits was heated to 150 ° C., applied with a voltage of 10 Hz while flowing a purge gas at a rate of 1 SLM, and removed deposits that caused the solenoid valve 1 to open and close frequently. After the measurement, the amount of particles generated when the working gas was flowed and the amount of particles generated when the working gas was flowed without removing the deposits were measured.

この結果、付着物除去を行わない電磁弁1は、0.1μm以上のパーティクルが約20000個発生し、特に1.0μm以上の大きなパーティクルが400個発生した。これに対して、付着物除去を行った電磁弁1は、0.1μm以上のパーティクルが3000個発生し、そのうち1.0μm以上の大きなパーティクルが2個発生した。
従って、電磁弁1の付着物除去を行うことにより、パーティクル発生量を20000個から3000個に減少させ、約85%の削減に成功した。また、1.0μm以上の大きなパーティクルに至っては、400個から2個に発生量を減らし、殆ど発生させないようにすることができた。
As a result, the solenoid valve 1 that does not remove the deposits generated about 20000 particles having a size of 0.1 μm or more, and particularly 400 large particles having a size of 1.0 μm or more. In contrast, the electromagnetic valve 1 from which the deposits were removed generated 3000 particles having a size of 0.1 μm or more, and 2 particles having a size of 1.0 μm or more were generated.
Therefore, by removing the deposit on the solenoid valve 1, the amount of generated particles was reduced from 20000 to 3000, and the reduction was about 85%. In addition, the generation amount of particles as large as 1.0 μm or more could be reduced from 400 to 2, and hardly generated.

従って、本実施形態の電磁弁1の付着物除去方法は、パージガスを電磁弁1に流した状態で、弁シート22を弁座6に繰り返し衝突させて弁シート22や弁座6に衝撃を与え、弁シート22や弁座6に付着した付着物を剥がれ落とさせる。剥がれ落ちた付着物は、パージガスによって下流側へ流され除去される。一般的に、付着物は粘着力を持つが、弁シート22を弁座6に繰り返し衝突させて、超音波振動より大きい振動を弁シート22や弁座6に与えるため、従来技術のように超音波振動を弁シート22や弁座6に与える場合より付着物を弁シート22や弁座6から剥がれ落とさせやすい。   Therefore, the deposit removal method for the solenoid valve 1 according to the present embodiment causes the valve seat 22 to repeatedly collide with the valve seat 6 with the purge gas flowing through the solenoid valve 1 to give an impact to the valve seat 22 and the valve seat 6. Then, deposits adhered to the valve seat 22 and the valve seat 6 are peeled off. The deposits that have been peeled off are removed by flowing downstream with a purge gas. In general, the adhering material has adhesive force, but the valve seat 22 is repeatedly collided with the valve seat 6 to give the valve seat 22 and the valve seat 6 vibrations larger than ultrasonic vibrations. It is easier to peel off deposits from the valve seat 22 and the valve seat 6 than when applying sonic vibration to the valve seat 22 and the valve seat 6.

よって、本実施形態の電磁弁1の付着物除去方法によれば、パージガスのみを流して付着物を除去する方法や、超音波振動を与えて付着物を除去する方法と比べて、弁シート22や弁座6に付着した付着物を除去する時間を短くすることができる。具体的には、パージガスのみで付着物を除去する場合には、付着物除去に丸一日を要したが、本実施形態の付着物除去方法を使用することにより、付着物除去時間を30分程度まで大幅に短縮することができる。特に、電磁弁1は、エアオペレイト弁などと比べて高速動作可能であり、付着物を効率よく除去することができる。   Therefore, according to the deposit removing method of the electromagnetic valve 1 of the present embodiment, the valve seat 22 is compared with the method of removing the deposit by flowing only the purge gas or the method of removing the deposit by applying ultrasonic vibration. In addition, the time for removing the deposits attached to the valve seat 6 can be shortened. Specifically, when removing the deposit with only the purge gas, it took a whole day to remove the deposit. By using the deposit removal method of this embodiment, the deposit removal time is 30 minutes. It can be greatly shortened to the extent. In particular, the electromagnetic valve 1 can operate at a higher speed than an air operated valve and the like, and can remove deposits efficiently.

また、本実施形態の電磁弁1の付着物除去方法によれば、プロセスガス制御弁が発生するパーティクルを、付着物除去方法を実施しない場合と比べて約85%も低減させることができる。しかも、1.0μm以上の大きなパーティクルが殆ど発生しなくなるので、例えば、半導体製造装置に電磁弁1を組み付けたときに、上記付着物除去方法を電磁弁1に実施すれば、歩留まりを向上させることができる。尚、電磁弁1は、弁シート22をプランジャ21と板バネ23に一体に組み付けたものであるので、開閉弁動作時の衝撃によりプランジャ21や板バネ23に付着した付着物も除去して、パーティクル発生量を減らすことができる。
また、本実施形態の電磁弁1の付着物除去方法によれば、弁座6や弁シート22のシール面に付着する付着物を除去して、流体漏れを発生しにくくすることができる(図6の条件2〜5参照)。
上記電磁弁1を組み付けた半導体製造装置では、電磁弁1のパーティクル発生量が減少するため、歩留まりが向上するとともに、パーティクルを除去するためにガスラインのパージを行う際のパージガス消費量が減少し、また、電磁弁1の漏れ量が減少するため、プロセスガス消費量が減少し、この結果、ランニングコストを安価にすることができる。
Moreover, according to the deposit removal method of the electromagnetic valve 1 of this embodiment, the particles generated by the process gas control valve can be reduced by about 85% compared to the case where the deposit removal method is not performed. Moreover, since large particles of 1.0 μm or more are hardly generated, for example, when the electromagnetic valve 1 is assembled in a semiconductor manufacturing apparatus, the yield can be improved if the deposit removing method is applied to the electromagnetic valve 1. Can do. In addition, since the solenoid valve 1 is an assembly in which the valve seat 22 is integrally assembled with the plunger 21 and the leaf spring 23, the deposits attached to the plunger 21 and the leaf spring 23 due to the impact during the opening / closing valve operation are also removed. Particle generation amount can be reduced.
Moreover, according to the deposit removal method of the electromagnetic valve 1 of this embodiment, the deposit attached to the seal surface of the valve seat 6 or the valve seat 22 can be removed, and fluid leakage is less likely to occur (FIG. 6 condition 2-5).
In the semiconductor manufacturing apparatus in which the solenoid valve 1 is assembled, the amount of particles generated in the solenoid valve 1 is reduced, so that the yield is improved and the purge gas consumption amount when purging the gas line to remove particles is reduced. Moreover, since the leakage amount of the electromagnetic valve 1 is reduced, the process gas consumption is reduced, and as a result, the running cost can be reduced.

また、本実施形態の電磁弁1の付着物除去方法は、ボディ2を棒状ヒータ30で加熱することにより、弁シート22や弁座6に冷え固まって付着した付着物が熱によって軟化、液化又は気化し、弁シート22や弁座6から剥がれ落ち易くなるので、効率よく付着物を除去することができる(図6の条件3、条件4、条件6参照)。
また、本実施形態の電磁弁1の制御装置31は、上記電磁弁1の付着物除去方法を実行する付着物除去プログラム37を備えているので、電磁弁1の付着物除去を制御装置31に設けたモード切替スイッチの切り替え等により簡単に行うことができる。
Further, in the method for removing deposits of the electromagnetic valve 1 of this embodiment, the body 2 is heated by the rod-shaped heater 30 so that the deposits cooled and solidified on the valve seat 22 and the valve seat 6 are softened, liquefied or adhered by heat. Since it evaporates and easily peels off from the valve seat 22 and the valve seat 6, it is possible to efficiently remove deposits (see Condition 3, Condition 4 and Condition 6 in FIG. 6).
Further, the control device 31 of the electromagnetic valve 1 according to the present embodiment includes the deposit removal program 37 that executes the deposit removal method of the solenoid valve 1. This can be done easily by switching the provided mode change switch.

(第2実施形態)
次に、本発明のプロセスガス制御弁の付着物除去方法に係る第2実施形態について説明する。
本実施形態のプロセスガス制御弁の付着物除去方法も、図2に示す電磁弁1をプロセスガス制御弁として用いるが、電磁弁1のプランジャ21を樹脂部材19に衝突させて付着物を除去する点で第1実施形態と相違する。そこで、ここでは、第1実施形態と相違する点について説明し、その他の説明は割愛する。
(Second Embodiment)
Next, a second embodiment according to the deposit removal method for a process gas control valve of the present invention will be described.
2 also uses the electromagnetic valve 1 shown in FIG. 2 as a process gas control valve, but the plunger 21 of the electromagnetic valve 1 collides with the resin member 19 to remove the deposit. This is different from the first embodiment. Therefore, here, a point different from the first embodiment will be described, and other description will be omitted.

電磁弁1の付着物を除去するときには、電磁弁1にパージガスを供給し、プランジャ21の突縁部21aを樹脂部材19に衝突させるようにコイル11へ過電圧を印加し、その後電圧を定格電圧に落とし、その後、コイル11への印加を停止する。電磁弁1は、この一連の動作を高頻度で所定時間繰り返すと、プランジャ21が樹脂部材19に衝突する際の衝撃で、プランジャ21、弁シート22、板バネ23に付着した付着物が剥がれ落ちる。このとき、第1実施形態と異なり、プランジャ21や弁シート22、板バネ23に付着する付着物を剥がれ落とさせる方向に、慣性力が作用しない。しかし、プランジャ21が樹脂部材19に衝突する際の衝撃で付着物にヒビが入り、衝突を繰り返すうちにヒビが大きくなるため、付着物が剥がれ落ちやすくなる。   When removing the deposit on the solenoid valve 1, purge gas is supplied to the solenoid valve 1, an overvoltage is applied to the coil 11 so as to cause the protrusion 21 a of the plunger 21 to collide with the resin member 19, and then the voltage is set to the rated voltage. After that, the application to the coil 11 is stopped. When the solenoid valve 1 repeats this series of operations at a high frequency for a predetermined time, the deposits attached to the plunger 21, the valve seat 22, and the leaf spring 23 are peeled off by the impact when the plunger 21 collides with the resin member 19. . At this time, unlike the first embodiment, the inertial force does not act in the direction in which the deposits attached to the plunger 21, the valve seat 22, and the leaf spring 23 are peeled off. However, the deposit 21 is cracked by the impact when the plunger 21 collides with the resin member 19, and the crack becomes larger as the collision is repeated, so that the deposit is easily peeled off.

ところで、金属同士が衝突すると、金属の摩耗によってパーティクルが発生する。しかし、電磁弁1は、金属製のプランジャ21をPTFEなどの樹脂を材質とする樹脂部材19に衝突させ、他の金属に衝突させないため、パーティクルの発生を抑制しながら付着物を除去できる。また、流量制御中に固定鉄心13がプランジャ21を吸引しすぎた場合でも、プランジャ21が突縁部21aを樹脂部材19に係止されて移動を制限されるため、保持部材7や第2固定鉄心13Bにぶつかってパーティクルを発生する恐れもない。   By the way, when metals collide, particles are generated due to metal wear. However, since the solenoid valve 1 causes the metal plunger 21 to collide with the resin member 19 made of a resin such as PTFE and not collide with other metal, the deposit can be removed while suppressing generation of particles. Further, even when the fixed iron core 13 sucks the plunger 21 too much during the flow rate control, the plunger 21 is locked to the protruding portion 21a by the resin member 19, and the movement is restricted. There is no risk of hitting the iron core 13B and generating particles.

よって、本実施形態の電磁弁1の付着物除去方法によれば、電磁弁1にパージガスを流した状態で、電磁弁1のコイル11に電圧を高周波で印加し、プランジャ21をソレノイド部10側に設けた樹脂部材19に高頻度で所定時間衝突させることにより、プランジャ21や板バネ23、弁シート22に付着した付着物を剥がれ落とさせるので、パージガスのみを流して付着物を除去する方法や、超音波振動を与えて付着物を除去する方法と比べて、プランジャ21や板バネ23、弁シート22に付着した付着物を除去する時間を短くすることができ、また、電磁弁1が発生するパーティクルを低減させることができるとともに、弁シート22のシール面に付着する付着物による流体漏れを発生しにくい。
特に、プランジャ21がソレノイド部10側に衝突する部分に樹脂部材19を設けているので、プランジャ21がソレノイド部10側の金属に直接衝突して摩耗する不具合を減らし、パーティクル発生量を抑制することができる。
Therefore, according to the deposit removing method of the solenoid valve 1 of the present embodiment, a voltage is applied to the coil 11 of the solenoid valve 1 at a high frequency in a state in which the purge gas is allowed to flow through the solenoid valve 1, and the plunger 21 is placed on the solenoid unit 10 side. Since the adhering matter adhering to the plunger 21, the leaf spring 23, and the valve seat 22 is peeled off by colliding with the resin member 19 provided at a predetermined frequency for a predetermined time, a method of removing the adhering matter by flowing only the purge gas, Compared with the method of removing the deposits by applying ultrasonic vibration, the time for removing the deposits adhering to the plunger 21, the leaf spring 23 and the valve seat 22 can be shortened, and the electromagnetic valve 1 is generated. Particles can be reduced, and fluid leakage due to deposits adhering to the seal surface of the valve seat 22 is less likely to occur.
In particular, since the resin member 19 is provided in the portion where the plunger 21 collides with the solenoid unit 10 side, the problem that the plunger 21 directly wears against the metal on the solenoid unit 10 side is reduced, and the amount of particles generated is suppressed. Can do.

尚、本発明の実施の形態について説明したが、本発明は、上記実施の形態に限定されることなく、色々な応用が可能である。
例えば、上記実施の形態では、可動鉄心を非接触で移動させるフラッパ構造を備える電磁弁1をプロセスガス制御弁の一例として挙げたが、プロセスガス制御弁としてポペット構造を備える電磁弁、エアオペレイトバルブ、ダイアフラム弁、開閉弁などを使用してもよい。
例えば、上記実施形態では、棒状ヒータ30をヒータ挿入孔27に挿入してボディ2を加熱するようにしたが、テープ状ヒータをボディ2に巻き付けてもよいし、ヒータをボディ2の外側面に取り付けてもよい。
例えば、上記実施形態では、第1流路4から第2流路5へプロセスガス及びパージガスを流す場合を例に挙げて説明したが、第2流路5から第1流路4へプロセスガス及びパージガスを流す場合でも同様の効果が得られる。
例えば、上記実施形態では、付着物除去時に10Hzで電圧を印加したが、15Hzなど制御装置31が供給しうる、或いは、プロセスガス制御弁1が供給されうる最大周波数であれば、高周波数は10Hzに限定されない。
Although the embodiments of the present invention have been described, the present invention is not limited to the above-described embodiments, and various applications are possible.
For example, in the above embodiment, the electromagnetic valve 1 having the flapper structure that moves the movable iron core in a non-contact manner is given as an example of the process gas control valve. However, the electromagnetic valve having the poppet structure as the process gas control valve, the air operated A valve, a diaphragm valve, an on-off valve or the like may be used.
For example, in the above embodiment, the rod-shaped heater 30 is inserted into the heater insertion hole 27 to heat the body 2. However, the tape-shaped heater may be wound around the body 2, or the heater may be wound around the outer surface of the body 2. It may be attached.
For example, in the above embodiment, the case where the process gas and the purge gas are flowed from the first flow path 4 to the second flow path 5 has been described as an example. However, the process gas and the first flow path 4 are flown from the second flow path 5 to the first flow path 4. The same effect can be obtained even when purge gas is passed.
For example, in the above-described embodiment, the voltage is applied at 10 Hz when removing the deposit. However, if the control device 31 can supply 15 Hz or the maximum frequency to which the process gas control valve 1 can be supplied, the high frequency is 10 Hz. It is not limited to.

本実施形態に係る電磁弁の側面図である。It is a side view of the solenoid valve concerning this embodiment. 図1に示す電磁弁のA−A断面図である。It is AA sectional drawing of the solenoid valve shown in FIG. 図1に示す電磁弁に接続される制御装置の電気ブロック図である。It is an electrical block diagram of the control apparatus connected to the solenoid valve shown in FIG. 図1に示す電磁弁の付着物除去方法を実施する際に図1に示す電磁弁のコイルの印加する電圧波形を示す図である。It is a figure which shows the voltage waveform which the coil of the solenoid valve shown in FIG. 1 applies when implementing the deposit removal method of the solenoid valve shown in FIG. 図1に示す電磁弁の流体漏れを調べるための試験回路を示す図である。It is a figure which shows the test circuit for investigating the fluid leak of the solenoid valve shown in FIG. 図1に示す電磁弁の付着物除去方法の試験結果を示す図である。It is a figure which shows the test result of the deposit removal method of the solenoid valve shown in FIG.

符号の説明Explanation of symbols

1 電磁弁(プロセスガス制御弁)
2 ボディ
6 弁座
10 ソレノイド部
11 コイル
12 コイルボビン
13 固定鉄心
19 樹脂部材
21 プランジャ(可動鉄心)
22 弁シート(弁体)
23 板バネ
30 棒状ヒータ(ヒータ)
31 制御装置
37 付着物除去プログラム(付着物除去手段)
1 Solenoid valve (process gas control valve)
2 Body 6 Valve seat 10 Solenoid part 11 Coil 12 Coil bobbin 13 Fixed iron core 19 Resin member 21 Plunger (movable iron core)
22 Valve seat (valve)
23 Leaf spring 30 Bar heater (heater)
31 control device 37 deposit removal program (attachment removal means)

Claims (4)

弁体を弁座に当接又は離間させることによりプロセスガスの供給を制御するプロセスガス制御弁にパージガスを流し、前記プロセスガス制御弁を高頻度で所定時間開閉弁動作させること
前記弁座が設けられたボディをヒータで加熱することにより、前記弁体や前記弁座に冷え固まった付着物を熱によって軟化、液化、若しくは気化させ、前記弁体や前記弁座から剥がれ落ち易くすること、
を特徴とするプロセスガス制御弁の付着物除去方法。
A purge gas is allowed to flow through a process gas control valve that controls supply of process gas by contacting or separating the valve body from the valve seat, and the process gas control valve is operated to open and close for a predetermined time at a high frequency .
Heating the body provided with the valve seat with a heater softens, liquefies, or vaporizes deposits that have cooled and hardened on the valve body or the valve seat, and are peeled off from the valve body or the valve seat. Making it easier,
A process gas control valve deposit removal method characterized by the above.
コイルを巻回したコイルボビンに固定鉄心を装填したソレノイド部を備え、前記固定鉄心に吸着される板状の可動鉄心に板バネと弁体とを装着し、前記板バネのバネ力により前記弁体を弁座に当接させており、前記コイルに電圧を印加したときに前記固定鉄心が励磁されて前記可動鉄心を前記板バネのバネ力に抗して吸引し、前記弁体を前記弁座から離間させるプロセスガス制御弁に対して、パージガスを流し、前記コイルに電圧を高周波で印加することにより、前記可動鉄心を前記ソレノイド部側に高頻度で所定時間衝突させること
前記弁座が設けられたボディをヒータで加熱することにより、前記弁体や前記弁座に冷え固まった付着物を熱によって軟化、液化、若しくは気化させ、前記弁体や前記弁座から剥がれ落ち易くすること、
を特徴とするプロセスガス制御弁の付着物除去方法。
Includes a solenoid unit loaded with fixed iron core coil bobbin wound with a coil, and a plate-shaped leaf spring and the valve element to the movable core of which is adsorbed is attached to the fixed iron core, said valve body by a spring force of the leaf spring The fixed iron core is excited when a voltage is applied to the coil, and the movable iron core is attracted against the spring force of the leaf spring, and the valve body is moved to the valve seat. The process gas control valve to be separated from the purge gas is allowed to flow, and a voltage is applied to the coil at a high frequency to cause the movable iron core to collide with the solenoid part side at a high frequency for a predetermined time ;
Heating the body provided with the valve seat with a heater softens, liquefies, or vaporizes deposits that have cooled and hardened on the valve body or the valve seat, and are peeled off from the valve body or the valve seat. Making it easier,
A process gas control valve deposit removal method characterized by the above.
請求項2に記載するプロセスガス制御弁の付着物除去方法において、
前記可動鉄心が前記ソレノイド部側に衝突する部分に樹脂部材を配設したことを特徴とするプロセスガス制御弁の付着物除去方法。
In the process gas control valve deposit removal method according to claim 2,
A process gas control valve deposit removing method, wherein a resin member is disposed at a portion where the movable iron core collides with the solenoid portion.
請求項1乃至請求項の何れか1つに記載するプロセスガス制御弁の付着物除去方法を実行する付着物除去手段を有することを特徴とするプロセスガス制御弁の制御装置。 A control apparatus for a process gas control valve, comprising deposit removal means for performing the deposit removal method for a process gas control valve according to any one of claims 1 to 3 .
JP2005329633A 2005-11-15 2005-11-15 Process gas control valve deposit removal method and process gas control valve control apparatus Expired - Fee Related JP4686340B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005329633A JP4686340B2 (en) 2005-11-15 2005-11-15 Process gas control valve deposit removal method and process gas control valve control apparatus
KR1020060112563A KR101197080B1 (en) 2005-11-15 2006-11-15 The method for removing the extraneous matter of the control valve of the process gas and the control device for the process gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329633A JP4686340B2 (en) 2005-11-15 2005-11-15 Process gas control valve deposit removal method and process gas control valve control apparatus

Publications (2)

Publication Number Publication Date
JP2007138972A JP2007138972A (en) 2007-06-07
JP4686340B2 true JP4686340B2 (en) 2011-05-25

Family

ID=38202111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329633A Expired - Fee Related JP4686340B2 (en) 2005-11-15 2005-11-15 Process gas control valve deposit removal method and process gas control valve control apparatus

Country Status (2)

Country Link
JP (1) JP4686340B2 (en)
KR (1) KR101197080B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998218B2 (en) * 2007-11-08 2012-08-15 パナソニック株式会社 Fluid shut-off device
JP5300327B2 (en) * 2008-05-29 2013-09-25 日産自動車株式会社 Fluid control valve
FR2955908B1 (en) * 2010-02-02 2012-05-04 Asco Joucomatic Sa PILOT SOLENOID VALVE
KR101521490B1 (en) * 2013-01-29 2015-05-20 구용우 Apparatus and method for cleaning valve
JP6334255B2 (en) * 2014-05-15 2018-05-30 三菱電機株式会社 Fluid control device
AT517969B1 (en) * 2015-11-26 2017-10-15 Roland Aschauer Dr Vapor Pressure Monitor
KR20170003483U (en) 2016-03-31 2017-10-12 현대중공업 주식회사 Valve soot removal device
JP2018179213A (en) * 2017-04-18 2018-11-15 株式会社新領域技術研究所 Electric valve
JP7148443B2 (en) * 2019-03-12 2022-10-05 リンナイ株式会社 gas solenoid valve

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154879U (en) * 1987-03-30 1988-10-12
JPH06123381A (en) * 1992-10-12 1994-05-06 Hitachi Ltd Part for gas supply system
JPH1089532A (en) * 1995-12-13 1998-04-10 Rintetsuku:Kk Valve structure for vaporization device
JPH10296196A (en) * 1997-04-28 1998-11-10 Jatco Corp Device for removing foreign matter in product incorporating movable body
JPH11507116A (en) * 1996-03-26 1999-06-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング solenoid valve
JP2000035151A (en) * 1998-05-13 2000-02-02 Ckd Corp Process gas supply unit
JP2000045839A (en) * 1998-07-24 2000-02-15 Nissan Motor Co Ltd Control device of variable pressure regulator for internal combustion engine
JP2000311864A (en) * 1999-02-12 2000-11-07 Applied Materials Inc Clogging-resistant injection valve
JP2003156169A (en) * 2001-09-04 2003-05-30 Denso Corp Electromagnetic fluid control device
JP2003278943A (en) * 2002-03-26 2003-10-02 Tohoku Ricoh Co Ltd High temperature operating valve
JP2005172063A (en) * 2003-12-09 2005-06-30 Ckd Corp Solenoid valve

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154879U (en) * 1987-03-30 1988-10-12
JPH06123381A (en) * 1992-10-12 1994-05-06 Hitachi Ltd Part for gas supply system
JPH1089532A (en) * 1995-12-13 1998-04-10 Rintetsuku:Kk Valve structure for vaporization device
JPH11507116A (en) * 1996-03-26 1999-06-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング solenoid valve
JPH10296196A (en) * 1997-04-28 1998-11-10 Jatco Corp Device for removing foreign matter in product incorporating movable body
JP2000035151A (en) * 1998-05-13 2000-02-02 Ckd Corp Process gas supply unit
JP2000045839A (en) * 1998-07-24 2000-02-15 Nissan Motor Co Ltd Control device of variable pressure regulator for internal combustion engine
JP2000311864A (en) * 1999-02-12 2000-11-07 Applied Materials Inc Clogging-resistant injection valve
JP2003156169A (en) * 2001-09-04 2003-05-30 Denso Corp Electromagnetic fluid control device
JP2003278943A (en) * 2002-03-26 2003-10-02 Tohoku Ricoh Co Ltd High temperature operating valve
JP2005172063A (en) * 2003-12-09 2005-06-30 Ckd Corp Solenoid valve

Also Published As

Publication number Publication date
JP2007138972A (en) 2007-06-07
KR101197080B1 (en) 2012-11-07
KR20070051753A (en) 2007-05-18

Similar Documents

Publication Publication Date Title
JP4686340B2 (en) Process gas control valve deposit removal method and process gas control valve control apparatus
JP2726788B2 (en) Shut-off and flow control valve for controlling fluid flow
JP2014519714A (en) Solenoid actuator
JP4735468B2 (en) Valve unit
JP6445538B2 (en) Electromagnetic switch with damping interface
JP4209281B2 (en) Normally closed solenoid valve
JP2004316835A (en) Piezo-electric air valve and composite piezoelectric air valve
JP2016215197A (en) Piezoelectric jetting system and piezoelectric jetting method
JP2010101349A (en) Solenoid-operated solenoid valve device
US8098121B2 (en) Method of switching a magnetic MEMS switch
JP2004183678A (en) Solenoid valve
CN111981145B (en) Vacuum opening and closing valve
US6091314A (en) Piezoelectric booster for an electromagnetic actuator
WO2009113212A1 (en) Plasma processing apparatus
JP6860336B2 (en) Flow control valve
JP2002310029A (en) Fuel injection valve
JP2010506084A (en) Electromagnetically driven valve with energy consumption monitor and control method thereof
JP2011027191A (en) On-off valve
JP3186524U (en) Horn
JP5898966B2 (en) solenoid valve
JP5066678B2 (en) Magnetostrictive gas valve
JPH07208635A (en) Electromagnet for electromagnetic type air control valve
CN217272240U (en) Solenoid device
CN102163483B (en) A kind of method of calutron multiparty control and device
JP2006140272A (en) Electromagnetic control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees