WO2008023776A1 - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
WO2008023776A1
WO2008023776A1 PCT/JP2007/066397 JP2007066397W WO2008023776A1 WO 2008023776 A1 WO2008023776 A1 WO 2008023776A1 JP 2007066397 W JP2007066397 W JP 2007066397W WO 2008023776 A1 WO2008023776 A1 WO 2008023776A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate electrode
substrate
semiconductor layer
semiconductor
semiconductor device
Prior art date
Application number
PCT/JP2007/066397
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Takeuchi
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2008530957A priority Critical patent/JP5544715B2/en
Publication of WO2008023776A1 publication Critical patent/WO2008023776A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and in particular, a MIS (Metal Insulator Semiconductor) type in which characteristics can be adjusted by a control terminal and high integration and driving capability can be realized.
  • MIS Metal Insulator Semiconductor
  • MISFETs MIS field effect transistors
  • the thickness of the gate insulating thin film has reached the level of 2 nm or less and the gate length is 50 nm or less, and it is becoming difficult to simply reduce the size due to an increase in leakage current. For this reason, it is difficult to further improve the driving force and the degree of integration in the conventional planar MISFET formed on the semiconductor substrate plane.
  • FIG. 9 is a conceptual diagram showing the structure of the conventional MISFET disclosed in Patent Documents 1 and 2, (c) is a plan view thereof, (a) is a cross-sectional view taken along line AA shown in (c), (b) ) Is a cross-sectional view taken along the line B-B shown in (c).
  • the MISFET is an N-channel MISFET.
  • N and P which are impurity conductivity types, can be exchanged for reading.
  • the substrate side is the lower side and the opposite side is the upper side.
  • 102b and 102a are sequentially stacked apart from each other.
  • the upper and lower surfaces and two side surfaces of the semiconductor layers 102a and 102b are surrounded by the gate electrode 105 with the gate insulating film 104 interposed therebetween. That is, as shown in FIG. 9A, gates are formed on the upper and lower surfaces of the semiconductor layer 102b.
  • Gate electrodes 105b and 105c are provided via the insulating film 104, respectively, and gate electrodes 105a and 105b are provided on the upper and lower surfaces of the semiconductor layer 102a via the gate insulating film 104, respectively. ing. Further, as shown in FIG.
  • the cross sections of the semiconductor layers 102 a and 102 b formed by the BB cross section are surrounded by the gate electrode 105.
  • the gate electrode 105 is penetrated by the semiconductor layers 102a and 102b through the gate insulating film 104 in the horizontal direction.
  • the other two sides of the semiconductor layers 102a and 102b are one source / drain region 103a, one side of which is common to both semiconductor layers, and the other source / drain of the other side common to both semiconductor layers. Connected to region 103b.
  • Source and drain contact conductors 106a and 106b are provided above the source 'drain regions 103a and 103b, respectively, and a gate contact conductor 106c is provided above the gate electrode 105.
  • the source / drain regions 103a and 103b are doped N-type. Thus, a single MISFET is configured.
  • the channel is formed in the thin semiconductor layers 102a and 102b, and the gate electrode 105 sandwiches the semiconductor layers 102a and 102b from both sides, so-called double gate SOI (Silicon On Insulator) structure.
  • double gate SOI Silicon On Insulator
  • the channel length can be reduced approximately in proportion to the thickness of the semiconductor layer.
  • the gate electrode is sandwiched between both sides (double gate)
  • the channel length can be reduced to approximately half compared to when the gate electrode is only on one side (single gate). Therefore, the conventional MIS FET of FIG. 9 is suitable for miniaturization and can meet the demand for high integration.
  • a MOS transistor is formed on a silicon substrate via an insulating film, and a gate on a thin film semiconductor layer in this MOS transistor is formed.
  • a buried gate insulating film and a buried gate electrode are sequentially formed on the side opposite to the side on which the oxide film is formed. Then, by controlling the voltage applied to the buried gate electrode, it is possible to control the threshold voltage of the MOS transistor with the force S.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-324200
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-128508
  • Patent Document 3 Japanese Patent Application Laid-Open No. 05-167073
  • the threshold voltage of the MISFET can be changed by controlling the potential of the semiconductor substrate. Also, in the MISFET using the SOI substrate, the threshold voltage of the MISFET can be changed by controlling the potential of the semiconductor substrate under the buried insulating film embedded in the SOI substrate. In the above, the substrate functions as the fourth terminal. If the threshold voltage of the MISFET can be controlled by the fourth terminal, the threshold voltage is increased when the circuit is in standby state to reduce leakage current, and the threshold voltage is decreased when the circuit is in operation to drive the MISFET. By increasing the capability, variable threshold operation becomes possible.
  • the threshold value of the MISFET deviates from the target value due to manufacturing variations, it is possible to adjust the threshold voltage to a desired value by the substrate potential.
  • the semiconductor devices disclosed in Patent Documents 1 and 2 since the semiconductor layer in which the channel is formed is surrounded on all sides by a single gate electrode 105, the influence of the substrate potential does not reach the channel. The threshold voltage can be adjusted. I can't.
  • the threshold voltage can be controlled by controlling the voltage applied to the embedded gate electrode, but the semiconductor layer of the MOS transistor is one layer. These are arranged in a plane and are different from a structure in which a plurality of semiconductor layers are formed in parallel in the vertical direction. For this reason, it is difficult to improve the degree of integration and driving force.
  • the present invention has been made in view of the above-mentioned problems, and a semiconductor device capable of realizing a high integration degree and a high driving capability and capable of controlling a threshold voltage by an externally applied voltage, and its manufacture It aims to provide a method.
  • a semiconductor device is stacked with a substrate, a source region and a drain region formed on the substrate, and a space between the source region and the drain region on the substrate. Between a plurality of channel formation regions, a plurality of gate electrodes formed so as to sandwich each of the channel formation regions, and each of the channel formation regions and at least one of the pair of gate electrodes adjacent thereto Each channel forming region is separated from each other by the displacement of the gate electrode, and the gate electrodes adjacent to each channel forming region are separated from each other. It is characterized by not being short-circuited to each other.
  • the gate insulating film is formed between each of the channel formation regions and the pair of gate electrodes adjacent thereto.
  • the source region, the drain region, and the force can be configured to be continuous semiconductor regions over the plurality of channel formation regions.
  • the gate electrode disposed between a pair of channel forming regions adjacent to each other can be a common gate electrode for both of the pair of channel forming regions.
  • the odd-numbered gate electrodes from the substrate side are short-circuited to a first conductor connected to a first common wiring
  • the even-numbered gate electrodes from the substrate side are short-circuited to a second common electrode. It can be configured to be short-circuited to the second conductor connected to the wiring.
  • the first conductor that short-circuits the odd-numbered gate electrodes from the substrate side is insulated from the even-numbered gate electrodes by the first insulator sidewalls standing on the substrate.
  • the second conductor for short-circuiting the even-numbered gate electrodes from the substrate side is insulated from the odd-numbered gate electrodes by a second insulator sidewall standing on the substrate. It can be constituted as follows.
  • the channel formation region is preferably formed of a single crystal semiconductor layer.
  • a method for manufacturing a semiconductor device includes a step of alternately stacking a first semiconductor layer made of a first material and a second semiconductor layer made of a second material on a substrate, Embedding the first and second semiconductor layers in an insulator, selectively removing the first semiconductor layer to form a cavity in the insulator, and embedding a gate electrode in the cavity. Forming a first conductor connected to the odd-numbered gate electrodes from the substrate side, and forming a second conductor connected to the even-numbered gate electrodes from the substrate side; It is characterized by having.
  • the step of alternately laminating the first semiconductor layer and the second semiconductor layer on the substrate is performed on the single-crystal first semiconductor layer formed on the substrate.
  • the second semiconductor layer and the first semiconductor layer are alternately and sequentially grown by the force S.
  • gate electrodes that are not short-circuited with each other are provided above and below each semiconductor layer in which the channel is formed, and the voltage applied to these gate electrodes is set.
  • the semiconductor device By independently controlling the semiconductor device, it is possible to provide a semiconductor device having a high degree of integration and a high driving capability, as well as a variable threshold voltage.
  • FIG. 1 is a conceptual diagram showing the structure of a multilayer channel MISFET according to an embodiment of the present invention, in which (c) is a plan view thereof, (a) is an AA sectional view shown in (c), (b) is a BB cross-sectional view shown in (c).
  • FIG. 2 is a conceptual diagram showing a case where there are three semiconductor layers in this embodiment, (a) is a cross-sectional view corresponding to FIG. 1 (a), and (b) is equivalent to FIG. 1 (b). It is sectional drawing.
  • FIG. 3 is a conceptual diagram showing the manufacturing method of the present embodiment.
  • FIG. 4 is a conceptual diagram showing the manufacturing method of the present embodiment following FIG. 3.
  • FIG. 5 is a conceptual diagram showing the manufacturing method of the present embodiment following FIG. 4.
  • FIG. 6 is a conceptual diagram showing the manufacturing method of this embodiment following FIG. 5.
  • FIG. 7 is a conceptual diagram showing the manufacturing method of the present embodiment following FIG. 6.
  • FIG. 8 is a conceptual diagram showing a method for forming a gate electrode contact conductor in the present embodiment.
  • FIG. 9 is a conceptual diagram showing the structure of a conventional MISFET disclosed in Patent Documents 1 and 2, (c) is a plan view thereof, (a) is a cross-sectional view taken along line AA in (c), (b) ) Is a cross-sectional view taken along the line B-B shown in (c).
  • FIG. 1 is a conceptual diagram showing the structure of a multilayer channel MIS FET according to an embodiment of the present invention, where (c) is a plan view, (a) is an AA cross-sectional view shown in (c), (b) ) Is a cross-sectional view along the line B-B shown in (c).
  • a gate electrode 5c is formed on a substrate 1, and a semiconductor layer 2b is formed on the gate electrode 5c via a gate insulating film 4. Is formed.
  • a gate electrode 5b is formed on the semiconductor layer 2b via a gate insulating film 4, and a semiconductor layer 2b is formed on the gate electrode 5b via a gate insulating film 4.
  • semiconductor A gate electrode 5a is formed on the body layer 2b with a gate insulating film 4 interposed therebetween.
  • the semiconductor layers 2a and 2b are thin semiconductor layers in which MISFET channels are formed.In this way, the semiconductor layers 2b and 2a are sequentially formed above the substrate 1 while being spaced apart from each other. They are stacked.
  • odd-numbered gate electrodes 5a and 5c from the substrate side are short-circuited to each other through a conductor 7a and connected to a wiring (not shown).
  • the even-numbered gate electrode 5b from the substrate side is connected to a wiring (not shown) via another conductor 7b.
  • the odd-numbered gate electrodes from the substrate side are short-circuited to form the first gate electrode
  • the even-numbered gate electrodes from the substrate side are short-circuited to form the second gate electrode.
  • the odd-numbered gate electrode and the even-numbered gate electrode are not short-circuited with each other so that the first gate electrode and the second gate electrode are independent gate electrodes.
  • the conductor 7a is insulated from the even-numbered gate electrode 5b by an insulator side wall (not shown).
  • the conductor 7b is insulated from the odd-numbered gate electrode 5a by an insulator side wall (not shown).
  • the insulator side wall will be described in detail in the manufacturing method of the present embodiment described later.
  • FIG. 1 (a) two side surfaces of semiconductor layers 2a and 2b facing each other (two side surfaces provided facing the left and right sides in the illustrated example) are arranged on both semiconductor layers.
  • one side of the common source'drain region 3a is connected to the other side of the source'drain region 3b common to both semiconductor layers.
  • the source / drain regions 3a and 3b are doped N-type, respectively.
  • source and drain contact conductors 6a and 6b are provided on the source and drain regions 3a and 3b, respectively.
  • a single MISFET having the fourth terminal is configured.
  • the substrate 1 is made of an insulating material. However, if the source / drain regions 3a and 3b are not short-circuited with each other! / So that the surface of the substrate 1 has a polarity opposite to that of the source / drain regions (P-type in the N-channel MISFET), the substrate 1
  • the surface or the whole may be a semiconductor.
  • the source / drain region is preferably made entirely of semiconductor.
  • 1S At least a part of the source / drain region may be made of metal. Especially in contact with the channel region A metal source / drain type transistor may be formed by using a metal for the region to be formed.
  • a channel is formed in the semiconductor layers 2a and 2b when the potentials of the first and second gate electrodes are sufficiently high, and the source / drain regions 3a and 3b are electrically connected.
  • the potentials of the first and second gate electrodes are sufficiently low, no channel is formed, and the source / drain regions 3a and 3b are electrically disconnected.
  • the on-current of the MISFET can be obtained as the sum of the current flowing through each channel.
  • the first gate electrode can be a main gate electrode
  • the second gate electrode can be an auxiliary gate electrode for threshold voltage control, that is, a fourth electrode. Increasing the auxiliary gate potential decreases the threshold for the main gate, and decreasing the auxiliary gate potential increases the threshold for the main gate.
  • the roles of the first gate and the second gate may be interchanged.
  • the MISFET in FIG. 1 is considered to be a parallel connection of a first MISFET having a first gate electrode as a gate electrode and a second MISFET having a second gate electrode as a gate electrode. Can also be used.
  • a plurality of semiconductor layers each having a channel formed thereon are stacked so as to be separated from each other, and the first gate electrode and the first gate electrode independent from each other above and below each semiconductor layer are stacked.
  • the second gate electrode it is possible to realize a semiconductor device that can variably control the threshold voltage in addition to high integration and high driving force.
  • N double gate MISFETs having gate electrodes above and below each semiconductor layer
  • the number of gate electrodes becomes 2N.
  • one layer of the gate electrode is shared by the upper and lower semiconductor layers.
  • the number of gate electrode layers required is N + 1, which reduces the manufacturing process and reduces the total thickness of the stacked layers.
  • the gate insulating film 4 is provided between the semiconductor layer 2a and the gate electrodes 5a and 5b disposed above and below the semiconductor layer 2a. Similarly, the semiconductor layer 2b A gate insulating film 4 is also provided between the gate electrodes 5b and 5c disposed above and below the gate electrodes.
  • the gate insulating film 4 does not necessarily have to be interposed between the gate electrode corresponding to the back gate (substrate potential side of the planar FET) and the semiconductor layer. That is, a gate insulating film is not necessarily interposed between the gate electrode corresponding to the substrate side and the semiconductor layer. A configuration in which an insulating film is not provided between the second gate electrode as the auxiliary gate electrode and the semiconductor layer is also possible.
  • the odd-numbered gate electrodes from the substrate side are configured as first gate electrodes that are short-circuited with each other, and the even-numbered gate electrodes from the substrate side are short-circuited with each other.
  • FIG. 1 shows the force S when there are two semiconductor layers
  • FIG. 2 shows the case where there are three semiconductor layers
  • FIG. 2 is a conceptual diagram showing a case where there are three semiconductor layers in this embodiment.
  • (A) is a cross-sectional view corresponding to FIG. 1 (a)
  • (b) is equivalent to FIG. 1 (b). It is sectional drawing.
  • the odd-numbered gate electrodes 5b and 5d from the substrate side are short-circuited to each other via the conductor 7a to form the first gate electrode in the same manner.
  • the even-numbered gate electrodes 5a and 5c are short-circuited to each other via the conductor 7b to form a second gate electrode, and the odd-numbered gate electrode and the even-numbered gate electrode are not short-circuited to each other.
  • the one gate electrode and the second gate electrode can be independent gate electrodes.
  • FIG. 2 the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. The same can be achieved when there are four or more semiconductor layers. With such a configuration, the degree of integration and driving force can be further improved.
  • FIGS. 3 to Fig. 7 are conceptual diagrams showing the manufacturing method of this embodiment in the order of steps.
  • (C) is a plan view thereof,
  • (a) is a cross-sectional view taken along line AA in (c), and
  • FIG. 4B is a sectional view taken along line BB in (c).
  • a gate electrode is formed on a substrate, then a gate insulating film is formed thereon, and then a semiconductor layer is formed thereon.
  • a semiconductor layer is formed thereon.
  • the semiconductor layers 2a and 2b shown in FIG. 1 cannot be formed into a single crystal.
  • the base layer on which the semiconductor layer is deposited is a gate insulating film, but the gate insulating film (silicon oxide film or the like) is usually amorphous, and when a semiconductor is deposited thereon, the semiconductor is amorphous or polycrystalline. It becomes. Amorphous or polycrystalline can be used for the channel part of the MISFET, but the driving capability and uniformity of characteristics are significantly degraded compared to single crystals. [0038] Therefore, since the semiconductor layer forming the channel is a single crystal, the MISFET of this embodiment can be manufactured as follows. First, the structure of FIG. 3 is formed.
  • a semiconductor layer 11 made of a first material (for example, SiGe (silicon germanium)) and a semiconductor layer 12 made of a second material (for example, Si (silicon)) are formed on a substrate 1. And are alternately deposited.
  • the semiconductor layers 11 and 12 are both single crystals.
  • the semiconductor layer 12 is retracted laterally from the semiconductor layer 1 1.
  • the semiconductor layer 12 becomes the semiconductor layers 2a and 2b in which channels are formed later.
  • the semiconductor layer 11 functions as a saddle shape.
  • a single-crystal semiconductor layer 11 is formed on the entire surface of the substrate 1, and a silicon_on_insulator ( ⁇ iOI) tomb, or a silicon germanium on insulator (SGOI) substrate, etc. Departs from. Manufacturing methods of SOI substrates or SGOI substrates are well known. For example, when starting from an SGOI substrate, the SiGe layer originally on the SGOI substrate becomes the lowermost semiconductor layer 11. On this, the semiconductor layer 12 and the semiconductor layer 11 are sequentially epitaxially grown. In the example of FIG. 3, the semiconductor layer 12 and the semiconductor layer 11 are deposited twice each.
  • the semiconductor layer 12 and the semiconductor layer 11 can all be single crystals.
  • the deposited multilayer semiconductor is processed into a desired planar shape by using lithography and etching. In Fig. 3, it is processed into a horizontally long rectangle.
  • the semiconductor layer 12 is selectively retracted laterally.
  • an insulator 13 is deposited so as to bury all of the semiconductor layers 11 and 12, and the structure shown in FIG. 3 is obtained. In FIG. 3C, the uppermost insulator 13 is seen through to show the state of the lower layer.
  • the semiconductor layers 11 and 12 and the insulator 13 are shaped so as to leave the range shown in FIG. 4 (c).
  • the semiconductor layer 11 is selectively retracted in the lateral direction to obtain the structure of FIG.
  • the uppermost insulator 13 is seen through to show the state of the lower layer.
  • Insulator 14 includes the remaining portion of insulator 13.
  • holes are formed in the insulator 14 for forming the source / drain regions 3a and 3b, and a semiconductor is buried in the holes to form the source / drain regions 3a and 3b (FIG. 5).
  • the source and drain regions 3a and 3b can be formed by epitaxial growth using the semiconductor layer 12 as a seed. In this case, at least a part of the source and drain regions 3a and 3b is used. Can be a single crystal.
  • the source and drain regions 3a and 3b are appropriately doped with impurities by ion implantation or impurity mixing during deposition, and the source and drain regions 3a and 3b are made to be N-type. As a result, the structure of FIG. 5 is obtained. In FIG. 5 (c), the uppermost insulator 14 is seen through to show the state of the lower layer.
  • the semiconductor layers 11 and 12 and the source / drain regions 3a and 3b are buried again in the insulator 15 (FIG. 6).
  • holes are formed in the insulator 15 from above so that a part of the semiconductor layer 11 is exposed in all the layers inside the holes. For example, a hole reaching the substrate 1 is made in the circular two-dot chain line portion in FIG.
  • the semiconductor layer 11 is completely removed from the hole by isotropic etching.
  • the gate insulating film 4 is formed on the surface of the semiconductor layer 12 in the cavity after the semiconductor layer 11 is removed.
  • the gate insulating film 4 is formed by oxidizing the semiconductor layer 12 or chemical vapor deposition of an insulator.
  • the inside of the cavity is filled with the gate electrode material 5.
  • the gate electrode material 5 formed in the hole provided in the insulator 15 is removed, and the hole is backfilled to obtain the structure of FIG.
  • a conductor 7a for connecting the odd-numbered gate electrode layer from the substrate side to the wiring and a conductor 7b for connecting the even-numbered gate electrode layer from the substrate side to the wiring are formed.
  • a hole reaching the lowermost gate electrode layer to be connected is provided at a position where the conductor 7a of the insulator 15 is to be formed.
  • an insulator covering the inside of the hole is deposited and anisotropically etched to provide an insulator side wall 8a at the bottom of the hole.
  • a conductor is embedded in the hole to form a conductor 7a.
  • the conductor 7a is connected only to the odd-numbered gate electrode, and is insulated from the even-numbered gate electrode by the insulator side wall 8a.
  • a hole reaching the lowermost gate electrode layer to be connected is provided at a position where the conductor 7b of the insulator 15 is to be formed.
  • an insulator covering the inside of the hole is deposited and anisotropically etched to provide an insulator side wall 8b at the bottom of the hole.
  • a conductor is embedded in the hole to form a conductor 7b.
  • the conductor 7b is connected only to the even-numbered gate electrode, and is insulated from the odd-numbered gate electrode by the insulator side wall 8b.
  • the source and drain contact conductors 6a and 6b that connect the source and drain regions 3a and 3b to the wiring are also formed by making holes in the insulator 15 and embedding the conductors therein.
  • FIG. 7 is obtained.
  • the structure in FIG. 7 is equivalent to the structure in FIG. 1.
  • the semiconductor layer 12 corresponds to the semiconductor layers 2a and 2b, and the gate electrode material 5 comprises the gate electrodes 5a, 5b, and 5c. To do.
  • wet etching using a mixed aqueous solution of peracetic acid and hydrogen fluoride can be used. Further, wet etching using a mixed aqueous solution of peracetic acid and hydrogen fluoride can also be used in the step of selectively removing the semiconductor layer 11 to form a cavity in which the gate electrode is embedded.
  • a multilayer channel MISFET can be manufactured such that a semiconductor layer in which a channel is formed is a single crystal.
  • a method of forming a conductor that selectively connects only odd-numbered or even-numbered gate electrode layers may be performed as described below.
  • contact holes are made up to the lowest gate electrode layer to be connected.
  • the insulator sidewall 8 is formed on the side surface from the lowermost layer to the second layer upward.
  • the conductor 7 is filled in the contact hole.
  • the conductor 7 is filled up to the depth that is not connected to the fourth layer above the force that is connected to the third layer upward from the bottom layer! As a result, the structure shown in FIG.
  • the structure of FIG. 8B can be obtained. If the formation of the insulator side wall and the filling of the conductor are repeated as appropriate, it is possible to form a conductor that selectively connects only the odd-numbered or even-numbered gate electrode layers with respect to the arbitrary number of layers.
  • the semiconductor device according to the present invention can be suitably mounted on various integrated circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

Semiconductor layers (2a, 2b) for forming a channel are stacked above a substrate (1) by being separated one from the other. The semiconductor layer (2a) has its upper surface in contact with a gate electrode (5a) through a gate insulating film (4), and a lower surface in contact with a gate electrode (5b) through the gate insulating film (4). The semiconductor layer (2b) has its upper surface in contact with the gate electrode (5b) through the gate insulating film (4), and a lower surface in contact with a gate electrode (5c) through the gate insulating film (4). The gate electrodes (5a, 5c) are short-circuited to each other through a gate contact conductor (7a), and are connected to a wiring not shown in the figure. The gate electrode (5b) is connected to a wiring not shown in the figure through other gate contact conductor (7b).

Description

明 細 書  Specification
半導体装置及びその製造方法  Semiconductor device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、半導体装置及びその製造方法に関し、特に、特性を制御端子によって 調整することが可能であり、且つ高い集積度と駆動能力を実現することができる MIS (Metal Insulator Semiconductor)型電界効果トランジスタ及びその製造方法に関する  TECHNICAL FIELD [0001] The present invention relates to a semiconductor device and a manufacturing method thereof, and in particular, a MIS (Metal Insulator Semiconductor) type in which characteristics can be adjusted by a control terminal and high integration and driving capability can be realized. Field effect transistor and method of manufacturing the same
背景技術 Background art
[0002] MIS型電界効果トランジスタ(MISFET)は、寸法の微細化により駆動能力の向上 と集積度の向上とを同時に実現してきた。しかし、近時、ゲート絶縁薄膜の厚さが 2n m以下、ゲート長が 50nm以下、といったレベルにまで達し、単純に微細化を進める ことはリーク電流の増大等の理由により困難になりつつある。このため、従来の半導 体基板平面上に形成する平面型 MISFETでは、駆動力と集積度とを更に向上する ことが難しくなつている。  [0002] MIS field effect transistors (MISFETs) have simultaneously improved driving ability and integration by miniaturizing dimensions. However, recently, the thickness of the gate insulating thin film has reached the level of 2 nm or less and the gate length is 50 nm or less, and it is becoming difficult to simply reduce the size due to an increase in leakage current. For this reason, it is difficult to further improve the driving force and the degree of integration in the conventional planar MISFET formed on the semiconductor substrate plane.
[0003] この課題を解決する手段として、チャネルを形成する薄膜半導体を基板に対して上 下方向に複数個並べ、これらを並列接続して一個のトランジスタとする多層チャネル 型 MISFETが特許文献 1及び 2に記載されている。図 9は、特許文献 1及び 2で開示 された従来の MISFETの構造を示す概念図であり、(c)はその平面図、(a)は(c)に 示す A— A断面図、(b)は(c)に示す B— B断面図である。以下、 MISFETが Nチヤ ネル MISFETであるとして説明する。 Pチャネル MISFETの場合は、電位の極性を 逆とし、不純物の導電型である Nと Pとを入れ替えて読みかえればよい。なお、以下 本明細書において、上下方向というときは、基板側を下側とし、その反対側を上側と する。  As a means for solving this problem, a multilayer channel type MISFET in which a plurality of thin film semiconductors forming a channel are arranged in a vertical direction with respect to a substrate and these are connected in parallel to form one transistor is disclosed in Patent Document 1 and It is described in 2. FIG. 9 is a conceptual diagram showing the structure of the conventional MISFET disclosed in Patent Documents 1 and 2, (c) is a plan view thereof, (a) is a cross-sectional view taken along line AA shown in (c), (b) ) Is a cross-sectional view taken along the line B-B shown in (c). In the following description, it is assumed that the MISFET is an N-channel MISFET. In the case of a P-channel MISFET, the polarity of the potential is reversed, and N and P, which are impurity conductivity types, can be exchanged for reading. In the following description, when referring to the vertical direction, the substrate side is the lower side and the opposite side is the upper side.
[0004] 図 9に示すように、基板 100の上方には、 MISFETのチャネルとなる薄い半導体層  As shown in FIG. 9, above the substrate 100, a thin semiconductor layer that becomes a channel of the MISFET
102bと 102aとが相互に離隔して順次積み重ねられている。半導体層 102a及び 10 2bは、その上下面と 2側面を、ゲート絶縁膜 104を介して、ゲート電極 105によって 取り囲まれている。即ち、図 9 (a)に示すように、半導体層 102bの上下面には、ゲート 絶縁膜 104を介して、夫々ゲート電極 105b及び 105cが設けられており、また、半導 体層 102aの上下面には、ゲート絶縁膜 104を介して、夫々ゲート電極 105a及び 10 5bが設けられている。更に、図 9 (b)に示すように、 B— B断面により形成される半導 体層 102a及び 102bの断面はゲート電極 105によって取り囲まれている。言い換え れば、ゲート電極 105は半導体層 102aと 102bとによって、ゲート絶縁膜 104を介し て水平方向に貫通されている。半導体層 102aと 102bの上記以外の 2側面は、その 一側面が両半導体層に対して共通の一方のソース'ドレイン領域 103aに、他側面が 両半導体層に対して共通の他のソース.ドレイン領域 103bに接続されている。ソース 'ドレイン領域 103a及び 103bの上部には、夫々ソース'ドレイン用コンタクト導体 106 a及び 106bが設けられ、また、ゲート電極 105上部には、ゲート用コンタクト導体 106 cが設けられている。そして、ソース'ドレイン領域 103aと 103bは N型にドーピングさ れている。以上により、単一の MISFETが構成される。 102b and 102a are sequentially stacked apart from each other. The upper and lower surfaces and two side surfaces of the semiconductor layers 102a and 102b are surrounded by the gate electrode 105 with the gate insulating film 104 interposed therebetween. That is, as shown in FIG. 9A, gates are formed on the upper and lower surfaces of the semiconductor layer 102b. Gate electrodes 105b and 105c are provided via the insulating film 104, respectively, and gate electrodes 105a and 105b are provided on the upper and lower surfaces of the semiconductor layer 102a via the gate insulating film 104, respectively. ing. Further, as shown in FIG. 9B, the cross sections of the semiconductor layers 102 a and 102 b formed by the BB cross section are surrounded by the gate electrode 105. In other words, the gate electrode 105 is penetrated by the semiconductor layers 102a and 102b through the gate insulating film 104 in the horizontal direction. The other two sides of the semiconductor layers 102a and 102b are one source / drain region 103a, one side of which is common to both semiconductor layers, and the other source / drain of the other side common to both semiconductor layers. Connected to region 103b. Source and drain contact conductors 106a and 106b are provided above the source 'drain regions 103a and 103b, respectively, and a gate contact conductor 106c is provided above the gate electrode 105. The source / drain regions 103a and 103b are doped N-type. Thus, a single MISFET is configured.
[0005] 半導体層 102aと 102bには、ゲート電極 105の電位が閾値より十分高いときにはチ ャネルが形成され、ソース'ドレイン 103aと 103bとの間が電気的に導通される。一方 、ゲート電極 105の電位が閾値より十分低いときにはチャネルが形成されず、ソース- ドレイン 103aと 103bとの間が電気的に遮断される。  [0005] When the potential of the gate electrode 105 is sufficiently higher than the threshold value, a channel is formed in the semiconductor layers 102a and 102b, and the source and drain 103a and 103b are electrically connected. On the other hand, when the potential of the gate electrode 105 is sufficiently lower than the threshold value, a channel is not formed, and the source-drain 103a and 103b are electrically disconnected.
[0006] 上記した従来の MISFETの構造においては、チャネルは薄い半導体層 102aと 10 2bに形成され、且つゲート電極 105が半導体層 102a及び 102bを両側から挟みこ む、いわゆるダブルゲート SOI (Silicon On Insulator)構造となっている。このように薄 い半導体層にチャネルを形成する場合、半導体層を薄くすることにより短チャネル効 果を抑制し、ソース'ドレイン領域間の距離 (チャネル長)を短くすることが可能である 。チャネル長はほぼ半導体層の厚さに比例して縮小できる。また、ゲート電極が両側 力、ら挟みこむことにより(ダブルゲート)、ゲート電極が片側にしかない場合 (シングル ゲート)に比べて、チャネル長を概ね 1/2に縮小できる。従って、図 9の従来の MIS FETは微細化に適し、高集積化の要求に応えることができる。  In the above-described conventional MISFET structure, the channel is formed in the thin semiconductor layers 102a and 102b, and the gate electrode 105 sandwiches the semiconductor layers 102a and 102b from both sides, so-called double gate SOI (Silicon On Insulator) structure. When a channel is formed in such a thin semiconductor layer, it is possible to suppress the short channel effect and reduce the distance between the source and drain regions (channel length) by thinning the semiconductor layer. The channel length can be reduced approximately in proportion to the thickness of the semiconductor layer. In addition, when the gate electrode is sandwiched between both sides (double gate), the channel length can be reduced to approximately half compared to when the gate electrode is only on one side (single gate). Therefore, the conventional MIS FET of FIG. 9 is suitable for miniaturization and can meet the demand for high integration.
[0007] 上記した従来の MISFETの構造は、チャネルを形成する半導体層が上下方向に 2 層並列に形成されている。このため、 MISFETが占める投影面積を増すことなぐ半 導体層を 1層しか形成しない通常のダブルゲート形 MISFETに比べて、ほぼ 2倍の 駆動能力を得ることができる。また、半導体層を 1層しか形成しない通常のシングノレ ゲート形 MISFET (チャネルが半導体層の片面にしか形成されない)に比べて、ほぼ 4倍の駆動能力を得ることができる。このように、高集積化を妨げることなく大幅に駆 動能力を向上させることができる。 [0007] In the conventional MISFET structure described above, two semiconductor layers forming a channel are formed in parallel in the vertical direction. For this reason, it is almost twice as large as a normal double-gate MISFET in which only one semiconductor layer is formed without increasing the projected area occupied by the MISFET. Driving ability can be obtained. In addition, the drive capability is almost four times that of a normal single-gate MISFET (a channel is formed only on one side of the semiconductor layer) in which only one semiconductor layer is formed. In this way, the driving ability can be greatly improved without hindering high integration.
[0008] また、特許文献 3に記載の従来の SOI構造の半導体装置においては、シリコン基板 上に絶縁膜を介して MOSトランジスタが形成されており、この MOSトランジスタにお ける薄膜半導体層上のゲート酸化膜が形成された側とは反対側には、埋め込みグー ト絶縁膜、埋め込みゲート電極が順次形成されている。そして、この埋め込みゲート 電極に印加する電圧を制御することにより、 MOSトランジスタの閾値電圧を制御する こと力 Sでさる。  [0008] Further, in the conventional SOI structure semiconductor device described in Patent Document 3, a MOS transistor is formed on a silicon substrate via an insulating film, and a gate on a thin film semiconductor layer in this MOS transistor is formed. A buried gate insulating film and a buried gate electrode are sequentially formed on the side opposite to the side on which the oxide film is formed. Then, by controlling the voltage applied to the buried gate electrode, it is possible to control the threshold voltage of the MOS transistor with the force S.
[0009] 特許文献 1 :特開 2003— 324200号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-324200
特許文献 2:特開 2004— 128508号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-128508
特許文献 3:特開平 05— 167073号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 05-167073
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] しかしながら、上述の従来技術には以下に示すような問題点がある。 However, the above-described conventional techniques have the following problems.
[0011] バルタ半導体基板を用いた MISFETにおいては、半導体基板の電位を制御する ことにより、 MISFETの閾値電圧を変化させることができる。また、 SOI基板を用いた MISFETにおいても、 SOI基板に埋め込まれた埋め込み絶縁膜下の半導体基板の 電位を制御することにより、 MISFETの閾値電圧を変化させることができる。以上に おいては、基板が第四の端子として機能する。第四の端子によって MISFETの閾値 電圧の制御が可能であると、回路が待機状態のときに閾値電圧を高めてリーク電流 を削減し、回路が動作状態のときに閾値電圧を下げて MISFETの駆動能力を高め ることにより、可変閾値動作が可能となる。又は、 MISFETの閾値が製造上のばらつ きによって目標値からずれた場合、基板の電位によって閾値電圧を所望の値に調整 すること力 Sできる。し力もながら、特許文献 1及び 2に開示された半導体装置において は、チャネルが形成される半導体層が四方を単一のゲート電極 105によって取り囲ま れるため、基板の電位の影響はチャネルに及ばず、閾値電圧の調整を行うことがで きない。 [0011] In a MISFET using a Balta semiconductor substrate, the threshold voltage of the MISFET can be changed by controlling the potential of the semiconductor substrate. Also, in the MISFET using the SOI substrate, the threshold voltage of the MISFET can be changed by controlling the potential of the semiconductor substrate under the buried insulating film embedded in the SOI substrate. In the above, the substrate functions as the fourth terminal. If the threshold voltage of the MISFET can be controlled by the fourth terminal, the threshold voltage is increased when the circuit is in standby state to reduce leakage current, and the threshold voltage is decreased when the circuit is in operation to drive the MISFET. By increasing the capability, variable threshold operation becomes possible. Or, if the threshold value of the MISFET deviates from the target value due to manufacturing variations, it is possible to adjust the threshold voltage to a desired value by the substrate potential. However, in the semiconductor devices disclosed in Patent Documents 1 and 2, since the semiconductor layer in which the channel is formed is surrounded on all sides by a single gate electrode 105, the influence of the substrate potential does not reach the channel. The threshold voltage can be adjusted. I can't.
[0012] また、特許文献 3に開示された従来技術においては、埋め込みゲート電極に印加 する電圧を制御することにより閾値電圧の制御は可能であるものの、 MOSトランジス タの半導体層は 1層であり、且つこれらが平面的に配置されており、半導体層が上下 方向に複数層並列に形成されている構造とは異なる。このため、集積度及び駆動力 を向上させることが困難である。  [0012] In the prior art disclosed in Patent Document 3, the threshold voltage can be controlled by controlling the voltage applied to the embedded gate electrode, but the semiconductor layer of the MOS transistor is one layer. These are arranged in a plane and are different from a structure in which a plurality of semiconductor layers are formed in parallel in the vertical direction. For this reason, it is difficult to improve the degree of integration and driving force.
[0013] 本発明は力、かる問題点に鑑みてなされたものであって、高集積度、高駆動能力を 実現でき、且つ外部印加電圧による閾値電圧の制御を可能とする半導体装置及び その製造方法を提供することを目的とする。  [0013] The present invention has been made in view of the above-mentioned problems, and a semiconductor device capable of realizing a high integration degree and a high driving capability and capable of controlling a threshold voltage by an externally applied voltage, and its manufacture It aims to provide a method.
課題を解決するための手段  Means for solving the problem
[0014] 本発明に係る半導体装置は、基板と、この基板上に形成されたソース領域及びドレ イン領域と、前記基板上の前記ソース領域及びドレイン領域間に相互に離隔して積 層された複数個のチャネル形成領域と、前記各チャネル形成領域を挟むように形成 された複数個のゲート電極と、前記各チャネル形成領域とこれに隣接する 1対の前記 ゲート電極の少なくとも一方との間に形成されたゲート絶縁膜と、を有し、前記各チヤ ネル形成領域は前記ゲート電極の!/、ずれかによつて相互に離間され、前記各チヤネ ル形成領域に隣接する前記ゲート電極同士は相互に短絡されていないことを特徴と する。  [0014] A semiconductor device according to the present invention is stacked with a substrate, a source region and a drain region formed on the substrate, and a space between the source region and the drain region on the substrate. Between a plurality of channel formation regions, a plurality of gate electrodes formed so as to sandwich each of the channel formation regions, and each of the channel formation regions and at least one of the pair of gate electrodes adjacent thereto Each channel forming region is separated from each other by the displacement of the gate electrode, and the gate electrodes adjacent to each channel forming region are separated from each other. It is characterized by not being short-circuited to each other.
[0015] また、前記各チャネル形成領域とこれに隣接する 1対の前記ゲート電極の双方との 間に前記ゲート絶縁膜が形成されているように構成することが好ましい。  [0015] Preferably, the gate insulating film is formed between each of the channel formation regions and the pair of gate electrodes adjacent thereto.
[0016] また、前記ソース領域と前記ドレイン領域と力 前記複数個のチャネル形成領域に 亘つて夫々連続した半導体領域であるように構成することができる。 [0016] Further, the source region, the drain region, and the force can be configured to be continuous semiconductor regions over the plurality of channel formation regions.
[0017] また、相互に隣接する 1対の前記チャネル形成領域の間に配置された前記ゲート 電極は、前記 1対のチャネル形成領域の双方に対して共通のゲート電極とすることが できる。 [0017] The gate electrode disposed between a pair of channel forming regions adjacent to each other can be a common gate electrode for both of the pair of channel forming regions.
[0018] また、前記基板側から奇数番目の前記ゲート電極は、第 1の共通配線に接続され た第 1の導体に短絡され、前記基板側から偶数番目の前記ゲート電極は、第 2の共 通配線に接続された第 2の導体に短絡されているように構成することができる。 [0019] 更にまた、前記基板側から奇数番目の前記ゲート電極を相互に短絡する前記第 1 の導体は、前記基板に立設された第 1の絶縁体側壁によって偶数番目の前記ゲート 電極から絶縁され、前記基板側から偶数番目の前記ゲート電極を相互に短絡する前 記第 2の導体は、前記基板に立設された第 2の絶縁体側壁によって奇数番目の前記 ゲート電極から絶縁されているように構成することができる。 [0018] The odd-numbered gate electrodes from the substrate side are short-circuited to a first conductor connected to a first common wiring, and the even-numbered gate electrodes from the substrate side are short-circuited to a second common electrode. It can be configured to be short-circuited to the second conductor connected to the wiring. [0019] Further, the first conductor that short-circuits the odd-numbered gate electrodes from the substrate side is insulated from the even-numbered gate electrodes by the first insulator sidewalls standing on the substrate. The second conductor for short-circuiting the even-numbered gate electrodes from the substrate side is insulated from the odd-numbered gate electrodes by a second insulator sidewall standing on the substrate. It can be constituted as follows.
[0020] また、前記チャネル形成領域が単結晶の半導体層からなることが好ましい。  [0020] The channel formation region is preferably formed of a single crystal semiconductor layer.
[0021] 本発明に係る半導体装置の製造方法は、第 1の材料からなる第 1の半導体層と第 2 の材料からなる第 2の半導体層とを基板上に交互に積層する工程と、前記第 1及び 第 2の半導体層を絶縁体内に埋設する工程と、前記第 1の半導体層を選択的に除去 して前記絶縁体内に空洞を形成する工程と、前記空洞内にゲート電極を埋め込むェ 程と、前記基板側から奇数番目の前記ゲート電極に接続する第 1の導体を形成する 工程と、前記基板側から偶数番目の前記ゲート電極に接続する第 2の導体を形成す る工程と、を有することを特徴とする。  [0021] A method for manufacturing a semiconductor device according to the present invention includes a step of alternately stacking a first semiconductor layer made of a first material and a second semiconductor layer made of a second material on a substrate, Embedding the first and second semiconductor layers in an insulator, selectively removing the first semiconductor layer to form a cavity in the insulator, and embedding a gate electrode in the cavity. Forming a first conductor connected to the odd-numbered gate electrodes from the substrate side, and forming a second conductor connected to the even-numbered gate electrodes from the substrate side; It is characterized by having.
[0022] この場合に、前記第 1の半導体層と前記第 2の半導体層とを前記基板上に交互に 積層する工程は、前記基板上に形成された単結晶の前記第 1の半導体層上に、前 記第 2の半導体層と前記第 1の半導体層とを交互に順次ェピタキシャル成長させるも のとすること力 Sでさる。  [0022] In this case, the step of alternately laminating the first semiconductor layer and the second semiconductor layer on the substrate is performed on the single-crystal first semiconductor layer formed on the substrate. In addition, the second semiconductor layer and the first semiconductor layer are alternately and sequentially grown by the force S.
発明の効果  The invention's effect
[0023] 本発明によれば、多層チャネル型 MISFETにお!/、て、チャネルが形成される各半 導体層の上下に相互に短絡されないゲート電極を設け、これらのゲート電極に印加 する電圧を独立に制御することにより、高集積度、高駆動能力に加えて閾値電圧の 可変性を備えた半導体装置を提供することができる。  [0023] According to the present invention, in the multilayer channel MISFET, gate electrodes that are not short-circuited with each other are provided above and below each semiconductor layer in which the channel is formed, and the voltage applied to these gate electrodes is set. By independently controlling the semiconductor device, it is possible to provide a semiconductor device having a high degree of integration and a high driving capability, as well as a variable threshold voltage.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]本発明の実施形態に係る多層チャネル型 MISFETの構造を示す概念図であり 、(c)はその平面図、 (a)は(c)に示す A— A断面図、 (b)は(c)に示す B— B断面図 である。  FIG. 1 is a conceptual diagram showing the structure of a multilayer channel MISFET according to an embodiment of the present invention, in which (c) is a plan view thereof, (a) is an AA sectional view shown in (c), (b) is a BB cross-sectional view shown in (c).
[図 2]本実施形態において、半導体層が 3層の場合を示す概念図であり、(a)は図 1 ( a)に相当する断面図、(b)は図 1 (b)に相当する断面図である。 [図 3]本実施形態の製造方法を示す概念図である。 FIG. 2 is a conceptual diagram showing a case where there are three semiconductor layers in this embodiment, (a) is a cross-sectional view corresponding to FIG. 1 (a), and (b) is equivalent to FIG. 1 (b). It is sectional drawing. FIG. 3 is a conceptual diagram showing the manufacturing method of the present embodiment.
[図 4]図 3に続ぐ本実施形態の製造方法を示す概念図である。  FIG. 4 is a conceptual diagram showing the manufacturing method of the present embodiment following FIG. 3.
[図 5]図 4に続ぐ本実施形態の製造方法を示す概念図である。  FIG. 5 is a conceptual diagram showing the manufacturing method of the present embodiment following FIG. 4.
[図 6]図 5に続ぐ本実施形態の製造方法を示す概念図である。  FIG. 6 is a conceptual diagram showing the manufacturing method of this embodiment following FIG. 5.
[図 7]図 6に続ぐ本実施形態の製造方法を示す概念図である。  FIG. 7 is a conceptual diagram showing the manufacturing method of the present embodiment following FIG. 6.
[図 8]本実施形態におけるゲート電極用コンタクト導体の形成方法を示す概念図であ  FIG. 8 is a conceptual diagram showing a method for forming a gate electrode contact conductor in the present embodiment.
[図 9]特許文献 1及び 2で開示された従来の MISFETの構造を示す概念図であり、 ( c)はその平面図、(a)は(c)に示す A— A断面図、(b)は(c)に示す B— B断面図で ある。 FIG. 9 is a conceptual diagram showing the structure of a conventional MISFET disclosed in Patent Documents 1 and 2, (c) is a plan view thereof, (a) is a cross-sectional view taken along line AA in (c), (b) ) Is a cross-sectional view taken along the line B-B shown in (c).
符号の説明  Explanation of symbols
[0025] 1 ;基板 [0025] 1; substrate
2a、 2b、 2c ;半導体層  2a, 2b, 2c: Semiconductor layer
3a、 3b ;ソース'ドレイン領域  3a, 3b: source and drain regions
4 ;ゲート絶縁膜  4; Gate insulation film
5a、 5b、 5c、 5d ;ゲート電極  5a, 5b, 5c, 5d; gate electrode
7a、 7b ;導体  7a, 7b; conductor
11、 12 ;半導体層  11, 12; Semiconductor layer
13、 14 ;絶縁体  13, 14; insulator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.
図 1は、本発明の実施形態に係る多層チャネル型 MIS FETの構造を示す概念図で あり、(c)はその平面図、(a)は(c)に示す A— A断面図、(b)は(c)に示す B— B断面 図である。  FIG. 1 is a conceptual diagram showing the structure of a multilayer channel MIS FET according to an embodiment of the present invention, where (c) is a plan view, (a) is an AA cross-sectional view shown in (c), (b) ) Is a cross-sectional view along the line B-B shown in (c).
[0027] 図 1 (a)に示すように、本実施形態においては、基板 1上にはゲート電極 5cが形成 されており、このゲート電極 5c上にはゲート絶縁膜 4を介して半導体層 2bが形成され ている。半導体層 2b上には、ゲート絶縁膜 4を介してゲート電極 5bが形成され、グー ト電極 5b上には、ゲート絶縁膜 4を介して半導体層 2bが形成されている。更に、半導 体層 2b上には、ゲート絶縁膜 4を介してゲート電極 5aが形成されている。半導体層 2 aと 2bは、 MISFETのチャネルが形成される薄い半導体層であり、このように、半導 体層 2bと 2aとが、基板 1に対して上方に、相互に間を空けながら順次積み重ねられ ている。 As shown in FIG. 1 (a), in the present embodiment, a gate electrode 5c is formed on a substrate 1, and a semiconductor layer 2b is formed on the gate electrode 5c via a gate insulating film 4. Is formed. A gate electrode 5b is formed on the semiconductor layer 2b via a gate insulating film 4, and a semiconductor layer 2b is formed on the gate electrode 5b via a gate insulating film 4. Furthermore, semiconductor A gate electrode 5a is formed on the body layer 2b with a gate insulating film 4 interposed therebetween. The semiconductor layers 2a and 2b are thin semiconductor layers in which MISFET channels are formed.In this way, the semiconductor layers 2b and 2a are sequentially formed above the substrate 1 while being spaced apart from each other. They are stacked.
[0028] 図 1 (b)に示すように、基板側から奇数番目のゲート電極 5aと 5cとは、導体 7aを介 して互いに短絡され、図示しない配線に接続される。また、基板側から偶数番目のゲ ート電極 5bは、他の導体 7bを介して、図示しない配線に接続される。以上の状況を 言い換えると、基板側から奇数番目のゲート電極は互いに短絡されて第一ゲート電 極を構成し、基板側から偶数番目のゲート電極は互いに短絡されて第二ゲート電極 を構成し、奇数番目のゲート電極と偶数番目のゲート電極とは相互に短絡しないよう にして、第一ゲート電極と第二ゲート電極とを独立したゲート電極としている。但し、 本実施形態においては、偶数番目のゲート電極は一個しかないため、複数個を相互 に短絡される形態とはなっていない。また、導体 7aは、偶数番目のゲート電極 5bとは 、絶縁体側壁(図示せず)により絶縁されている。同様に、導体 7bは、奇数番目のゲ ート電極 5aとは絶縁体側壁(図示せず)により絶縁されている。なお、前記絶縁体側 壁については、後述の本実施形態の製造方法において、詳細に説明する。  As shown in FIG. 1 (b), odd-numbered gate electrodes 5a and 5c from the substrate side are short-circuited to each other through a conductor 7a and connected to a wiring (not shown). The even-numbered gate electrode 5b from the substrate side is connected to a wiring (not shown) via another conductor 7b. In other words, the odd-numbered gate electrodes from the substrate side are short-circuited to form the first gate electrode, and the even-numbered gate electrodes from the substrate side are short-circuited to form the second gate electrode. The odd-numbered gate electrode and the even-numbered gate electrode are not short-circuited with each other so that the first gate electrode and the second gate electrode are independent gate electrodes. However, in this embodiment, since there is only one even-numbered gate electrode, a plurality of gate electrodes are not short-circuited to each other. The conductor 7a is insulated from the even-numbered gate electrode 5b by an insulator side wall (not shown). Similarly, the conductor 7b is insulated from the odd-numbered gate electrode 5a by an insulator side wall (not shown). The insulator side wall will be described in detail in the manufacturing method of the present embodiment described later.
[0029] 図 1 (a)に示すように、半導体層 2aと 2bの対向する 2側面(図示例における左右方 向に対向して設けられた 2側面)は、その一側面が両半導体層に対して共通の一方 のソース'ドレイン領域 3aに、他側面が両半導体層に対して共通の他のソース'ドレイ ン領域 3bに接続されている。そして、ソース'ドレイン領域 3aと 3bは夫々 N型にドーピ ングされている。また、図 1 (b)に示すように、ソース'ドレイン領域 3a及び 3b上には、 夫々ソース'ドレイン用コンタクト導体 6a及び 6bが設けられている。以上により、第四 の端子を備えた単一の MISFETが構成される。  [0029] As shown in FIG. 1 (a), two side surfaces of semiconductor layers 2a and 2b facing each other (two side surfaces provided facing the left and right sides in the illustrated example) are arranged on both semiconductor layers. On the other hand, one side of the common source'drain region 3a is connected to the other side of the source'drain region 3b common to both semiconductor layers. The source / drain regions 3a and 3b are doped N-type, respectively. Further, as shown in FIG. 1B, source and drain contact conductors 6a and 6b are provided on the source and drain regions 3a and 3b, respectively. As described above, a single MISFET having the fourth terminal is configured.
[0030] 基板 1は少なくともその表面を絶縁性材料とすることが好ましい。但し、ソース'ドレイ ン領域 3aと 3bとが互いに短絡しな!/、よう、基板 1の表面をソース ·ドレイン領域と逆極 性(Nチャネル MISFETにおいては P型)とするなら、基板 1の表面又は全体を半導 体とすることもできる。ソース'ドレイン領域はその全体を半導体とするのが好適である 1S 少なくともその一部領域が金属から成っていてもよい。特にチャネル領域と接す る領域を金属とすることで、金属ソース'ドレイン型トランジスタとしてもよい。 [0030] It is preferable that at least the surface of the substrate 1 is made of an insulating material. However, if the source / drain regions 3a and 3b are not short-circuited with each other! / So that the surface of the substrate 1 has a polarity opposite to that of the source / drain regions (P-type in the N-channel MISFET), the substrate 1 The surface or the whole may be a semiconductor. The source / drain region is preferably made entirely of semiconductor. 1S At least a part of the source / drain region may be made of metal. Especially in contact with the channel region A metal source / drain type transistor may be formed by using a metal for the region to be formed.
[0031] 次に、本実施形態の動作について説明する。半導体層 2aと 2bには、第一及び第 二ゲート電極の電位が十分高いときにはチャネルが形成され、ソース'ドレイン領域 3 aと 3bとの間が電気的に導通される。第一及び第二ゲート電極の電位が十分低いと きにはチャネルが形成されず、ソース'ドレイン領域 3aと 3bとの間が電気的に遮断さ れる。このようにして、 MISFETのオン電流は、各チャネルを流れる電流の和として 得ること力 Sできる。そして、第一ゲート電極を主ゲート電極とし、第二ゲート電極を閾 値電圧制御のための補助ゲート電極、即ち第四の電極とすることができる。補助グー トの電位を高くすると、主ゲートに対する閾値が下がり、補助ゲートの電位を低くする と、主ゲートに対する閾値が上がる。第一ゲートと第二ゲートの役割は、入れ替えても 良い。また、図 1の MISFETを、第一のゲート電極をゲート電極とする第一の MISF ETと、第二のゲート電極をゲート電極とする第二の MISFETと、の並列接続であると 看做して用いることも可能である。  Next, the operation of this embodiment will be described. A channel is formed in the semiconductor layers 2a and 2b when the potentials of the first and second gate electrodes are sufficiently high, and the source / drain regions 3a and 3b are electrically connected. When the potentials of the first and second gate electrodes are sufficiently low, no channel is formed, and the source / drain regions 3a and 3b are electrically disconnected. In this way, the on-current of the MISFET can be obtained as the sum of the current flowing through each channel. The first gate electrode can be a main gate electrode, and the second gate electrode can be an auxiliary gate electrode for threshold voltage control, that is, a fourth electrode. Increasing the auxiliary gate potential decreases the threshold for the main gate, and decreasing the auxiliary gate potential increases the threshold for the main gate. The roles of the first gate and the second gate may be interchanged. In addition, the MISFET in FIG. 1 is considered to be a parallel connection of a first MISFET having a first gate electrode as a gate electrode and a second MISFET having a second gate electrode as a gate electrode. Can also be used.
[0032] 本実施形態によれば、夫々チャネルが形成される複数個の半導体層を相互に離隔 するように積層し、且つ、各半導体層の上下に相互に独立な第一のゲート電極と第 二のゲート電極とを配置することにより、高集積度、高駆動力に加えて、閾値電圧を 可変に制御することができる半導体装置を実現することができる。  According to the present embodiment, a plurality of semiconductor layers each having a channel formed thereon are stacked so as to be separated from each other, and the first gate electrode and the first gate electrode independent from each other above and below each semiconductor layer are stacked. By arranging the second gate electrode, it is possible to realize a semiconductor device that can variably control the threshold voltage in addition to high integration and high driving force.
[0033] また、単純にダブルゲート型 MISFET (各半導体層に対して、上下にゲート電極を 有する)を N個積み重ねると、ゲート電極の層数は 2Nとなる。し力、しながら、本実施形 態においては、ある一層のゲート電極はその上下の半導体層によって共有される。こ のため、半導体層が N個の場合、必要なゲート電極の層の数は N+ 1個で済み、製 造工程が低減されると共に、積層された総膜厚も薄くなる。  [0033] Further, when N double gate MISFETs (having gate electrodes above and below each semiconductor layer) are stacked, the number of gate electrodes becomes 2N. However, in this embodiment, one layer of the gate electrode is shared by the upper and lower semiconductor layers. For this reason, when N semiconductor layers are used, the number of gate electrode layers required is N + 1, which reduces the manufacturing process and reduces the total thickness of the stacked layers.
[0034] なお、本実施形態においては、半導体層 2aと、その上下に配置されたゲート電極 5 a、 5bとの間にはゲート絶縁膜 4が設けられており、同様に、半導体層 2bと、その上 下に配置されたゲート電極 5b、 5cとの間にもゲート絶縁膜 4が設けられている。しか しながら、バックゲート (プレーナ型 FETの基板電位側)に相当するゲート電極と半導 体層との間には、必ずしもゲート絶縁膜 4を介する構成となっていなくても良い。即ち 、基板側に相当するゲート電極と半導体層との間には必ずしもゲート絶縁膜を介する 必要はなぐ補助ゲート電極としての第二ゲート電極と半導体層との間には、絶縁膜 を設けな!/、ような構成も可能である。 In the present embodiment, the gate insulating film 4 is provided between the semiconductor layer 2a and the gate electrodes 5a and 5b disposed above and below the semiconductor layer 2a. Similarly, the semiconductor layer 2b A gate insulating film 4 is also provided between the gate electrodes 5b and 5c disposed above and below the gate electrodes. However, the gate insulating film 4 does not necessarily have to be interposed between the gate electrode corresponding to the back gate (substrate potential side of the planar FET) and the semiconductor layer. That is, a gate insulating film is not necessarily interposed between the gate electrode corresponding to the substrate side and the semiconductor layer. A configuration in which an insulating film is not provided between the second gate electrode as the auxiliary gate electrode and the semiconductor layer is also possible.
[0035] また、本実施形態におレ、ては、基板側から奇数番目のゲート電極を互いに短絡さ れた第一ゲート電極として構成し、基板側から偶数番目のゲート電極を互いに短絡さ れた第二ゲート電極として構成したが、各ゲート電極を相互に独立な配線に接続し、 その印加電圧を独立に制御することもできる。  In this embodiment, the odd-numbered gate electrodes from the substrate side are configured as first gate electrodes that are short-circuited with each other, and the even-numbered gate electrodes from the substrate side are short-circuited with each other. However, it is also possible to connect the gate electrodes to mutually independent wirings and control the applied voltage independently.
[0036] また、図 1は半導体層が 2層の場合である力 S、半導体層が 3層ある場合を図 2に示 す。図 2は、本実施形態において、半導体層が 3層の場合を示す概念図であり、 (a) は図 1 (a)に相当する断面図、(b)は図 1 (b)に相当する断面図である。図 2 (a)及び ( b)に示すように、全く同様にして、基板側から奇数番目のゲート電極 5b、 5dは、導体 7aを介して互いに短絡され第一ゲート電極を成し、基板側から偶数番目のゲート電 極 5a、 5cは、導体 7bを介して互いに短絡されて第二ゲート電極を成し、奇数番目の ゲート電極と偶数番目のゲート電極とは互いに短絡しないようにして、第一ゲート電 極と第二ゲート電極とを独立したゲート電極とすることができる。なお、図 2において は、図 1と同一の構成物には同一の符号を付して、その詳細な説明を省略する。半 導体層が 4層以上ある場合も同様にして実現することができる。このような構成により 、更に、集積度と駆動力を向上させることができる。  [0036] FIG. 1 shows the force S when there are two semiconductor layers, and FIG. 2 shows the case where there are three semiconductor layers. FIG. 2 is a conceptual diagram showing a case where there are three semiconductor layers in this embodiment. (A) is a cross-sectional view corresponding to FIG. 1 (a), and (b) is equivalent to FIG. 1 (b). It is sectional drawing. As shown in FIGS. 2 (a) and 2 (b), the odd-numbered gate electrodes 5b and 5d from the substrate side are short-circuited to each other via the conductor 7a to form the first gate electrode in the same manner. The even-numbered gate electrodes 5a and 5c are short-circuited to each other via the conductor 7b to form a second gate electrode, and the odd-numbered gate electrode and the even-numbered gate electrode are not short-circuited to each other. The one gate electrode and the second gate electrode can be independent gate electrodes. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. The same can be achieved when there are four or more semiconductor layers. With such a configuration, the degree of integration and driving force can be further improved.
[0037] 次に、本実施形態の製造方法について、図 3乃至図 7を参照して説明する。図 3乃 至図 7は、本実施形態の製造方法を工程順に示す概念図であり、夫々、(c)はその 平面図、(a)は(c)における A— A断面図、(b)は(c)における B— B断面図である。 図 3及び図 4に示すような構造を形成するために、先ず基板上にゲート電極を形成し 、次にその上にゲート絶縁膜を形成し、次にその上に半導体層を形成する、というよ うに下から順次 MISFETの構成層を形成していく方法が考えられる。し力もながら、 このような方法では、図 1に示す半導体層 2a及び 2bを単結晶に形成することが出来 ない。なぜなら、半導体層を堆積する下地はゲート絶縁膜であるが、ゲート絶縁膜( シリコン酸化膜等)は通常非晶質であり、その上に半導体を堆積した場合、半導体は 非晶質又は多結晶となる。非晶質又は多結晶を MISFETのチャネル部分に使用す ることは可能であるが、単結晶に比べて駆動能力及び特性の均一性が著しく劣化す [0038] そこで、チャネルを形成する半導体層を単結晶とするため、以下のようにして本実 施形態の MISFETを製造することができる。先ず、図 3の構造を形成する。即ち、図 3に示すように、基板 1上に第一材料 (例えば、 SiGe (シリコンゲルマニウム))から成 る半導体層 1 1と、第二材料 (例えば、 Si (シリコン))から成る半導体層 12とが交互に 堆積されている。半導体層 1 1と 12は共に単結晶である。半導体層 12は半導体層 1 1 より横方向に後退されている。半導体層 12は、後にチャネルが形成される半導体層 2a及び 2bとなる。また、半導体層 1 1は铸型として機能する。 Next, the manufacturing method of the present embodiment will be described with reference to FIGS. 3 to 7. Fig. 3 to Fig. 7 are conceptual diagrams showing the manufacturing method of this embodiment in the order of steps. (C) is a plan view thereof, (a) is a cross-sectional view taken along line AA in (c), and (b). FIG. 4B is a sectional view taken along line BB in (c). In order to form a structure as shown in FIGS. 3 and 4, first, a gate electrode is formed on a substrate, then a gate insulating film is formed thereon, and then a semiconductor layer is formed thereon. Thus, it is conceivable to form the constituent layers of the MISFET sequentially from the bottom. However, with such a method, the semiconductor layers 2a and 2b shown in FIG. 1 cannot be formed into a single crystal. This is because the base layer on which the semiconductor layer is deposited is a gate insulating film, but the gate insulating film (silicon oxide film or the like) is usually amorphous, and when a semiconductor is deposited thereon, the semiconductor is amorphous or polycrystalline. It becomes. Amorphous or polycrystalline can be used for the channel part of the MISFET, but the driving capability and uniformity of characteristics are significantly degraded compared to single crystals. [0038] Therefore, since the semiconductor layer forming the channel is a single crystal, the MISFET of this embodiment can be manufactured as follows. First, the structure of FIG. 3 is formed. That is, as shown in FIG. 3, a semiconductor layer 11 made of a first material (for example, SiGe (silicon germanium)) and a semiconductor layer 12 made of a second material (for example, Si (silicon)) are formed on a substrate 1. And are alternately deposited. The semiconductor layers 11 and 12 are both single crystals. The semiconductor layer 12 is retracted laterally from the semiconductor layer 1 1. The semiconductor layer 12 becomes the semiconductor layers 2a and 2b in which channels are formed later. The semiconductor layer 11 functions as a saddle shape.
[0039] 図 3の構造を形成するには、先ず、単結晶の半導体層 1 1が基板 1上全面に形成さ れに Silicon_on_insulator (≥iOI)墓や 、又は Silicon Germanium on insulator (SGOI) 基板等から出発する。 SOI基板又は SGOI基板の製造方法は公知である。例えば、 SGOI基板から出発すると、元々 SGOI基板上にあった SiGe層が最も下層の半導体 層 1 1となる。この上に半導体層 12と半導体層 1 1とを順次ェピタキシャル成長させる 。図 3の例では、半導体層 12と半導体層 1 1とを夫々 2回ずつ堆積する。ェピタキシャ ル成長では、下地半導体結晶の周期性が上層に引き継がれるため、半導体層 12と 半導体層 1 1は全て単結晶とすることができる。次に、堆積された多層の半導体を、リ ソグラフィとエッチングを用いるなどして、所望の平面形状に加工する。図 3では横長 の長方形に加工している。次に半導体層 12を選択的に横方向に後退させる。更に、 半導体層 1 1と 12の全てを埋設するように絶縁体 13を堆積して、図 3の構造を得る。 なお、図 3 (c)では、下層の様子を示すため、最上層の絶縁体 13を透視している。  In order to form the structure of FIG. 3, first, a single-crystal semiconductor layer 11 is formed on the entire surface of the substrate 1, and a silicon_on_insulator (≥iOI) tomb, or a silicon germanium on insulator (SGOI) substrate, etc. Departs from. Manufacturing methods of SOI substrates or SGOI substrates are well known. For example, when starting from an SGOI substrate, the SiGe layer originally on the SGOI substrate becomes the lowermost semiconductor layer 11. On this, the semiconductor layer 12 and the semiconductor layer 11 are sequentially epitaxially grown. In the example of FIG. 3, the semiconductor layer 12 and the semiconductor layer 11 are deposited twice each. In the epitaxial growth, since the periodicity of the underlying semiconductor crystal is inherited by the upper layer, the semiconductor layer 12 and the semiconductor layer 11 can all be single crystals. Next, the deposited multilayer semiconductor is processed into a desired planar shape by using lithography and etching. In Fig. 3, it is processed into a horizontally long rectangle. Next, the semiconductor layer 12 is selectively retracted laterally. Further, an insulator 13 is deposited so as to bury all of the semiconductor layers 11 and 12, and the structure shown in FIG. 3 is obtained. In FIG. 3C, the uppermost insulator 13 is seen through to show the state of the lower layer.
[0040] 次に、図 4 (c)に示す範囲を残すように半導体層 1 1と 12、及び絶縁体 13を整形す る。次に、半導体層 1 1のみを選択的に横方向に後退させて、図 4の構造を得る。な お、図 4 (c)では、下層の様子を示すため、最上層の絶縁体 13を透視している。  Next, the semiconductor layers 11 and 12 and the insulator 13 are shaped so as to leave the range shown in FIG. 4 (c). Next, only the semiconductor layer 11 is selectively retracted in the lateral direction to obtain the structure of FIG. In FIG. 4C, the uppermost insulator 13 is seen through to show the state of the lower layer.
[0041] 次に、再び半導体層 1 1と 12を絶縁体 14内に埋設する。絶縁体 14は絶縁体 13の 残留部分を含む。次に、絶縁体 14に、ソース'ドレイン領域 3aと 3bを形成するための 穴を設け、この穴の中に半導体を埋め込んでソース ·ドレイン領域 3aと 3bを形成する (図 5)。ソース'ドレイン領域 3aと 3bは半導体層 12を種とするェピタキシャル成長に よって形成することができ、この場合はソース'ドレイン領域 3aと 3bの少なくとも一部 は単結晶とすることができる。ソース'ドレイン領域 3aと 3bには適宜不純物をイオン注 入又は堆積中の不純物混入により不純物ドーピングを行い、ソース'ドレイン領域 3a と 3bとを N型とする。これにより、図 5の構造を得る。なお、図 5 (c)では、下層の様子 を示すため、最上層の絶縁体 14を透視している。 Next, the semiconductor layers 11 and 12 are again embedded in the insulator 14. Insulator 14 includes the remaining portion of insulator 13. Next, holes are formed in the insulator 14 for forming the source / drain regions 3a and 3b, and a semiconductor is buried in the holes to form the source / drain regions 3a and 3b (FIG. 5). The source and drain regions 3a and 3b can be formed by epitaxial growth using the semiconductor layer 12 as a seed. In this case, at least a part of the source and drain regions 3a and 3b is used. Can be a single crystal. The source and drain regions 3a and 3b are appropriately doped with impurities by ion implantation or impurity mixing during deposition, and the source and drain regions 3a and 3b are made to be N-type. As a result, the structure of FIG. 5 is obtained. In FIG. 5 (c), the uppermost insulator 14 is seen through to show the state of the lower layer.
[0042] 次に、再び半導体層 11と 12と、ソース'ドレイン領域 3aと 3bとを、絶縁体 15内に埋 設する(図 6)。次に、絶縁体 15に上方から穴を開け、穴の内部に半導体層 11の一 部が、すべての層について露出するようにする。例えば、図 5 (c)における円形の二 点鎖線部分に基板 1に達する穴を開ける。次に、この穴から等方性エッチングにより 半導体層 11をすベて除去する。次に、半導体層 11を除去した後の空洞内の、少なく とも半導体層 12の表面上にゲート絶縁膜 4を形成する。ゲート絶縁膜 4の形成は、半 導体層 12を酸化すること、又は、絶縁体を化学気相堆積すること、等によって行う。 次に、空洞内部をゲート電極材料 5によって充填する。次に、絶縁体 15に設けた穴 の中に形成されたゲート電極材料 5を除去し、穴を埋め戻して、図 6の構造を得る。  Next, the semiconductor layers 11 and 12 and the source / drain regions 3a and 3b are buried again in the insulator 15 (FIG. 6). Next, holes are formed in the insulator 15 from above so that a part of the semiconductor layer 11 is exposed in all the layers inside the holes. For example, a hole reaching the substrate 1 is made in the circular two-dot chain line portion in FIG. Next, the semiconductor layer 11 is completely removed from the hole by isotropic etching. Next, the gate insulating film 4 is formed on the surface of the semiconductor layer 12 in the cavity after the semiconductor layer 11 is removed. The gate insulating film 4 is formed by oxidizing the semiconductor layer 12 or chemical vapor deposition of an insulator. Next, the inside of the cavity is filled with the gate electrode material 5. Next, the gate electrode material 5 formed in the hole provided in the insulator 15 is removed, and the hole is backfilled to obtain the structure of FIG.
[0043] 次に、基板側から奇数番目のゲート電極層を配線に接続するための導体 7aと、基 板側から偶数番目のゲート電極層を配線に接続するための導体 7bとを形成する。先 ず、絶縁体 15の導体 7aを形成すべき箇所に、接続すべき最も下のゲート電極層に 達する穴を設ける。次に、穴内部を被覆する絶縁体を堆積し、これを異方性エツチン グして絶縁体側壁 8aを穴の下部に設ける。次に、穴内部に導体を埋設し、導体 7aを 形成する。これにより導体 7aは奇数番目のゲート電極のみと接続され、偶数番目の ゲート電極とは絶縁体側壁 8aにより絶縁される。次に、絶縁体 15の導体 7bを形成す べき箇所に、接続すべき最も下のゲート電極層に達する穴を設ける。次に、穴内部を 被覆する絶縁体を堆積し、これを異方性エッチングして絶縁体側壁 8bを穴の下部に 設ける。次に穴内部に導体を埋設し、導体 7bを形成する。これにより導体 7bは偶数 番目のゲート電極のみと接続され、奇数番目のゲート電極とは絶縁体側壁 8bにより 絶縁される。また、ソース'ドレイン領域 3a、 3bを配線に接続するソース'ドレイン用コ ンタクト導体 6a、 6bも、絶縁体 15に穴を開け、その内部に導体を埋設することで形成 する。以上により、図 7の構造を得る。図 7の構造は、図 1の構造と等価であり、半導 体層 12は半導体層 2a、 2bに相当し、ゲート電極材料 5はゲート電極 5a、 5b、 5cを構 成する。 Next, a conductor 7a for connecting the odd-numbered gate electrode layer from the substrate side to the wiring and a conductor 7b for connecting the even-numbered gate electrode layer from the substrate side to the wiring are formed. First, a hole reaching the lowermost gate electrode layer to be connected is provided at a position where the conductor 7a of the insulator 15 is to be formed. Next, an insulator covering the inside of the hole is deposited and anisotropically etched to provide an insulator side wall 8a at the bottom of the hole. Next, a conductor is embedded in the hole to form a conductor 7a. Thus, the conductor 7a is connected only to the odd-numbered gate electrode, and is insulated from the even-numbered gate electrode by the insulator side wall 8a. Next, a hole reaching the lowermost gate electrode layer to be connected is provided at a position where the conductor 7b of the insulator 15 is to be formed. Next, an insulator covering the inside of the hole is deposited and anisotropically etched to provide an insulator side wall 8b at the bottom of the hole. Next, a conductor is embedded in the hole to form a conductor 7b. Thus, the conductor 7b is connected only to the even-numbered gate electrode, and is insulated from the odd-numbered gate electrode by the insulator side wall 8b. Further, the source and drain contact conductors 6a and 6b that connect the source and drain regions 3a and 3b to the wiring are also formed by making holes in the insulator 15 and embedding the conductors therein. Thus, the structure of FIG. 7 is obtained. The structure in FIG. 7 is equivalent to the structure in FIG. 1. The semiconductor layer 12 corresponds to the semiconductor layers 2a and 2b, and the gate electrode material 5 comprises the gate electrodes 5a, 5b, and 5c. To do.
[0044] なお、半導体層 11として SiGe、半導体層 12として Siを用いる場合には、半導体層  Note that when SiGe is used as the semiconductor layer 11 and Si is used as the semiconductor layer 12, the semiconductor layer
12を横方向に選択的に後退させて図 3の構造を得る工程において、 SF、 H、及び  In the process of selectively retracting 12 laterally to obtain the structure of FIG. 3, SF, H, and
6 2 6 2
CFの混合ガスを用いたドライエッチングを用いることができる。また、半導体層 11を Dry etching using a mixed gas of CF can be used. In addition, the semiconductor layer 11 is
4  Four
横方向に選択的に後退させて図 4の構造を得る工程において、過酢酸とフッ化水素 の混合水溶液を用いたウエットエッチングを用いることができる。また、半導体層 11を 選択的に除去してゲート電極を埋め込む空洞を形成する工程においても、過酢酸と フッ化水素の混合水溶液を用いたウエットエッチングを用いることができる。  In the step of selectively retracting in the lateral direction to obtain the structure of FIG. 4, wet etching using a mixed aqueous solution of peracetic acid and hydrogen fluoride can be used. Further, wet etching using a mixed aqueous solution of peracetic acid and hydrogen fluoride can also be used in the step of selectively removing the semiconductor layer 11 to form a cavity in which the gate electrode is embedded.
[0045] 本実施形態の製造方法によれば、チャネルが形成される半導体層が単結晶となる ように多層チャネル型 MISFETを製造することができる。  [0045] According to the manufacturing method of the present embodiment, a multilayer channel MISFET can be manufactured such that a semiconductor layer in which a channel is formed is a single crystal.
[0046] 以上は半導体層が 2層の場合の製造方法について説明したが、半導体層が 3層以 上の場合であっても、同様の製造方法を適用することができる。但し、奇数番目又は 偶数番目のゲート電極層のみを選択的に接続する導体の形成法は以下に説明する ように行えばよい。図 8に示すように、先ず、接続をしたい最も下のゲート電極層まで コンタクト穴を開ける。次に、最下層から上方に 2番目の層までの側面に絶縁体側壁 8を形成する。次に、コンタクト穴に導体 7を充填する。但し、このとき、導体 7は最下 層から上方に 3番目の層とは接続される力 上方に 4番目の層とは接続されな!/、深さ まで充填する。これにより、図 8 (a)の構造を得る。この後、更に側壁絶縁体を形成し 、導体を充填するという工程を行うと、図 8 (b)の構造を得られる。絶縁体側壁の形成 、導体の充填、を更に適宜繰り返せば、任意層数に対して、奇数番目又は偶数番目 のゲート電極層のみを選択的に接続する導体の形成が可能である。  The manufacturing method in the case where there are two semiconductor layers has been described above, but the same manufacturing method can be applied even in the case where there are three or more semiconductor layers. However, a method of forming a conductor that selectively connects only odd-numbered or even-numbered gate electrode layers may be performed as described below. As shown in Fig. 8, first, contact holes are made up to the lowest gate electrode layer to be connected. Next, the insulator sidewall 8 is formed on the side surface from the lowermost layer to the second layer upward. Next, the conductor 7 is filled in the contact hole. However, at this time, the conductor 7 is filled up to the depth that is not connected to the fourth layer above the force that is connected to the third layer upward from the bottom layer! As a result, the structure shown in FIG. Thereafter, when a step of further forming a sidewall insulator and filling the conductor is performed, the structure of FIG. 8B can be obtained. If the formation of the insulator side wall and the filling of the conductor are repeated as appropriate, it is possible to form a conductor that selectively connects only the odd-numbered or even-numbered gate electrode layers with respect to the arbitrary number of layers.
[0047] この出願 (ま、 2006年 8月 23曰 ίこ出願された曰本出願特願 2006— 226821を基 礎とする優先権を主張し、その開示の全てをここに取り込む。  [0047] This application (until 23 August 2006, filed with Japanese Patent Application No. 2006-226821, filed on August 23, 2006), and the disclosure of which is incorporated herein in its entirety.
産業上の利用可能性  Industrial applicability
[0048] 本発明に係る半導体装置は、各種集積回路へ好適に搭載することができる。 The semiconductor device according to the present invention can be suitably mounted on various integrated circuits.

Claims

請求の範囲 The scope of the claims
[1] 基板と、この基板上に形成されたソース領域及びドレイン領域と、前記基板上の前記 ソース領域及びドレイン領域間に相互に離隔して積層された複数個のチャネル形成 領域と、前記各チャネル形成領域を挟むように形成された複数個のゲート電極と、前 記各チャネル形成領域とこれに隣接する 1対の前記ゲート電極の少なくとも一方との 間に形成されたゲート絶縁膜と、を有し、前記各チャネル形成領域は前記ゲート電極 のレ、ずれかによつて相互に離間され、前記各チャネル形成領域に隣接する前記ゲ ート電極同士は相互に短絡されていないことを特徴とする半導体装置。  [1] A substrate, a source region and a drain region formed on the substrate, a plurality of channel forming regions stacked on the substrate so as to be spaced apart from each other, and each of the channel forming regions A plurality of gate electrodes formed so as to sandwich the channel formation region, and a gate insulating film formed between each channel formation region and at least one of the pair of gate electrodes adjacent thereto. The channel forming regions are separated from each other by the displacement or misalignment of the gate electrode, and the gate electrodes adjacent to the channel forming regions are not short-circuited to each other. Semiconductor device.
[2] 前記各チャネル形成領域とこれに隣接する 1対の前記ゲート電極の双方との間に前 記ゲート絶縁膜が形成されていることを特徴とする請求項 1に記載の半導体装置。  [2] The semiconductor device according to [1], wherein the gate insulating film is formed between each of the channel forming regions and a pair of the gate electrodes adjacent thereto.
[3] 前記ソース領域と前記ドレイン領域と力 前記複数個のチャネル形成領域に亘つて 夫々連続した半導体領域であることを特徴とする請求項 1に記載の半導体装置。 [3] The semiconductor device according to [1], wherein each of the source region, the drain region, and the force is a semiconductor region continuous over the plurality of channel formation regions.
[4] 相互に隣接する 1対の前記チャネル形成領域の間に配置された前記ゲート電極は、 前記 1対のチャネル形成領域の双方に対して共通のゲート電極であることを特徴とす る請求項 1に記載の半導体装置。 [4] The gate electrode disposed between the pair of channel forming regions adjacent to each other is a common gate electrode for both of the pair of channel forming regions. Item 2. The semiconductor device according to Item 1.
[5] 前記基板側から奇数番目の前記ゲート電極は、第 1の共通配線に接続された第 1の 導体に短絡され、前記基板側から偶数番目の前記ゲート電極は、第 2の共通配線に 接続された第 2の導体に短絡されてレ、ることを特徴とする請求項 1に記載の半導体装 置。 [5] The odd-numbered gate electrode from the substrate side is short-circuited to the first conductor connected to the first common wiring, and the even-numbered gate electrode from the substrate side is connected to the second common wiring. 2. The semiconductor device according to claim 1, wherein the semiconductor device is short-circuited to the connected second conductor.
[6] 前記基板側から奇数番目の前記ゲート電極を相互に短絡する前記第 1の導体は、 前記基板に立設された第 1の絶縁体側壁によって偶数番目の前記ゲート電極から絶 縁され、前記基板側から偶数番目の前記ゲート電極を相互に短絡する前記第 2の導 体は、前記基板に立設された第 2の絶縁体側壁によって奇数番目の前記ゲート電極 力、ら絶縁されていることを特徴とする請求項 5に記載の半導体装置。  [6] The first conductor that short-circuits the odd-numbered gate electrodes from the substrate side is isolated from the even-numbered gate electrodes by a first insulator side wall erected on the substrate, The second conductor for short-circuiting the even-numbered gate electrodes from the substrate side is insulated from the odd-numbered gate electrode force by a second insulator sidewall standing on the substrate. 6. The semiconductor device according to claim 5, wherein:
[7] 前記チャネル形成領域が単結晶の半導体層からなることを特徴とする請求項 1に記 載の半導体装置。  7. The semiconductor device according to claim 1, wherein the channel formation region is made of a single crystal semiconductor layer.
[8] 第 1の材料からなる第 1の半導体層と第 2の材料からなる第 2の半導体層とを基板上 に交互に積層する工程と、前記第 1及び第 2の半導体層を絶縁体内に埋設する工程 と、前記第 1の半導体層を選択的に除去して前記絶縁体内に空洞を形成する工程と[8] A step of alternately laminating a first semiconductor layer made of a first material and a second semiconductor layer made of a second material on a substrate, and the first and second semiconductor layers in an insulator Embedding process And selectively removing the first semiconductor layer to form a cavity in the insulator;
、前記空洞内にゲート電極を埋め込む工程と、前記基板側から奇数番目の前記グー ト電極に接続する第 1の導体を形成する工程と、前記基板側から偶数番目の前記ゲ ート電極に接続する第 2の導体を形成する工程と、を有することを特徴とする半導体 装置の製造方法。 A step of embedding a gate electrode in the cavity, a step of forming a first conductor connected to the odd-numbered gate electrode from the substrate side, and a connection to the even-numbered gate electrode from the substrate side. Forming a second conductor to be manufactured. A method for manufacturing a semiconductor device, comprising:
前記第 1の半導体層と前記第 2の半導体層とを前記基板上に交互に積層する工程 は、前記基板上に形成された単結晶の前記第 1の半導体層上に、前記第 2の半導体 層と前記第 1の半導体層とを交互に順次ェピタキシャル成長させるものであることを 特徴とする請求項 8に記載の半導体装置の製造方法。 The step of alternately stacking the first semiconductor layer and the second semiconductor layer on the substrate includes the step of stacking the second semiconductor on the single-crystal first semiconductor layer formed on the substrate. 9. The method of manufacturing a semiconductor device according to claim 8, wherein the layers and the first semiconductor layer are alternately and epitaxially grown sequentially.
PCT/JP2007/066397 2006-08-23 2007-08-23 Semiconductor device and method for manufacturing the same WO2008023776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008530957A JP5544715B2 (en) 2006-08-23 2007-08-23 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006226821 2006-08-23
JP2006-226821 2006-08-23

Publications (1)

Publication Number Publication Date
WO2008023776A1 true WO2008023776A1 (en) 2008-02-28

Family

ID=39106859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066397 WO2008023776A1 (en) 2006-08-23 2007-08-23 Semiconductor device and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP5544715B2 (en)
WO (1) WO2008023776A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2979303A4 (en) * 2013-03-29 2016-11-30 Lg Display Co Ltd Thin-film transistor, method for manufacturing the same and display device including the same
WO2018056117A1 (en) * 2016-09-20 2018-03-29 シャープ株式会社 Semiconductor device and display device
US10043833B2 (en) 2011-12-01 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2019150856A1 (en) * 2018-01-30 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102264A (en) * 1986-10-20 1988-05-07 Nissan Motor Co Ltd Thin film semiconductor device
JPH0548108A (en) * 1991-08-08 1993-02-26 Fujitsu Ltd Semiconductor device and its manufacture
JPH06216257A (en) * 1993-01-13 1994-08-05 Sony Corp Semiconductor device of multilayer interconnection structure
JP2003324200A (en) * 2002-05-02 2003-11-14 Tokyo Inst Of Technol Field effect transistor and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465868A (en) * 1990-07-06 1992-03-02 Kawasaki Steel Corp Mos transistor
JPH06291269A (en) * 1993-04-06 1994-10-18 Sony Corp Filed-effect transistor
JP2003008008A (en) * 2001-06-22 2003-01-10 Sanyo Electric Co Ltd Insulated gate semiconductor device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102264A (en) * 1986-10-20 1988-05-07 Nissan Motor Co Ltd Thin film semiconductor device
JPH0548108A (en) * 1991-08-08 1993-02-26 Fujitsu Ltd Semiconductor device and its manufacture
JPH06216257A (en) * 1993-01-13 1994-08-05 Sony Corp Semiconductor device of multilayer interconnection structure
JP2003324200A (en) * 2002-05-02 2003-11-14 Tokyo Inst Of Technol Field effect transistor and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10043833B2 (en) 2011-12-01 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
EP2979303A4 (en) * 2013-03-29 2016-11-30 Lg Display Co Ltd Thin-film transistor, method for manufacturing the same and display device including the same
WO2018056117A1 (en) * 2016-09-20 2018-03-29 シャープ株式会社 Semiconductor device and display device
CN109716533A (en) * 2016-09-20 2019-05-03 夏普株式会社 Semiconductor device and display device
WO2019150856A1 (en) * 2018-01-30 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device
CN111656529A (en) * 2018-01-30 2020-09-11 索尼半导体解决方案公司 Semiconductor device with a plurality of semiconductor chips
JPWO2019150856A1 (en) * 2018-01-30 2021-01-28 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device
EP3748688A4 (en) * 2018-01-30 2021-03-17 Sony Semiconductor Solutions Corporation Semiconductor device
US11133396B2 (en) 2018-01-30 2021-09-28 Sony Semiconductor Solutions Corporation Semiconductor device
TWI791078B (en) * 2018-01-30 2023-02-01 日商索尼半導體解決方案公司 Semiconductor device
JP7289797B2 (en) 2018-01-30 2023-06-12 ソニーセミコンダクタソリューションズ株式会社 semiconductor equipment
US11728403B2 (en) 2018-01-30 2023-08-15 Sony Semiconductor Solutions Corporation Semiconductor device

Also Published As

Publication number Publication date
JPWO2008023776A1 (en) 2010-01-14
JP5544715B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP4852694B2 (en) Semiconductor integrated circuit and manufacturing method thereof
KR100781580B1 (en) A dual structure finfet and the manufacturing method the same
US7309635B2 (en) Phosphorous doping methods of manufacturing field effect transistors having multiple stacked channels
US7229884B2 (en) Phosphorous doping methods of manufacturing field effect transistors having multiple stacked channels
TWI394232B (en) Semiconductor apparatus
JP2007180362A (en) Semiconductor device
KR20080094897A (en) Semiconductor device
JP2006521020A (en) Semiconductor device and manufacturing method thereof
JPWO2019065208A1 (en) Semiconductor device
KR20050110081A (en) Semiconductor device comprising finfet and fabricating method thereof
US20070241400A1 (en) Semiconductor device
JP5544715B2 (en) Semiconductor device and manufacturing method thereof
JP2005310921A (en) Mos semiconductor device and its manufacturing method
US8941186B2 (en) Semiconductor device having vertical type transistor
TW200826230A (en) Semiconductor device and method for manufacturing the same
US20230079697A1 (en) Semiconductor device
JP2000068517A (en) Manufacture of semiconductor device
KR20220151109A (en) Backside source/drain contacts and methods of forming the same
US7915713B2 (en) Field effect transistors with channels oriented to different crystal planes
US7391109B2 (en) Integrated circuit interconnect
JP2004253470A (en) Semiconductor device and its fabricating process
US20220139900A1 (en) Semiconductor device
US20230197726A1 (en) Method for Forming a Stacked FET Device
US7842575B2 (en) Vertical MOS transistor device with asymmetrical source and drain and its manufacturing method
KR20230034902A (en) Backside power rail to deep vias

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806020

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530957

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07806020

Country of ref document: EP

Kind code of ref document: A1