WO2008023626A1 - Organic electroluminescent device and method for manufacturing the same - Google Patents

Organic electroluminescent device and method for manufacturing the same Download PDF

Info

Publication number
WO2008023626A1
WO2008023626A1 PCT/JP2007/065950 JP2007065950W WO2008023626A1 WO 2008023626 A1 WO2008023626 A1 WO 2008023626A1 JP 2007065950 W JP2007065950 W JP 2007065950W WO 2008023626 A1 WO2008023626 A1 WO 2008023626A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
substrate
organic layer
layer
electrode
Prior art date
Application number
PCT/JP2007/065950
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Otani
Hideo Taka
Hiroshi Kita
Kiyoshi Endo
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2008530879A priority Critical patent/JPWO2008023626A1/en
Publication of WO2008023626A1 publication Critical patent/WO2008023626A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques

Definitions

  • the present invention relates to an organic electoluminescence (EU element and a method for producing the same) formed by a bonding method. More specifically, the first substrate and the second substrate each having an organic layer are reduced in a reduced pressure environment.
  • the present invention relates to an organic EL element having improved adhesion by bonding together and a manufacturing method thereof.
  • EU element Organic Electricular Luminescence
  • organic material film with a thickness of only 0.1 Hm between electrodes, and the element emits light of 2 to 20V. Because it can be achieved at a relatively low voltage, it is expected to be a next-generation flat display and illumination!
  • the recently discovered organic EL element using phosphorescence emission can in principle achieve light emission efficiency about 4 times that of the previous one using fluorescence emission.
  • Research and development of light-emitting element layer configurations and electrodes are underway around the world.
  • the configuration of the organic EL element is simply a structure in which an organic layer is sandwiched between a transparent electrode and a counter electrode, and the number of components is overwhelming compared to a liquid crystal display that is a typical flat display. Because it is low, the manufacturing cost should be kept low. At present, liquid crystal displays are largely drained in terms of performance and cost.
  • an organic compound layer in an organic EL element can be manufactured by a coating process such as spin coating, ink jet, printing, and spraying.
  • the resistance electrode to be finally formed can be prepared in advance.
  • the organic layer can be easily stacked if the bonding surfaces are made of organic layers,
  • the roll-to-roll method is disclosed in a technique other than the bonding method.
  • Japanese Patent Application Laid-Open No. 2005-327667 describes a method in which a hole transport material is continuously formed on an electrode substrate wound in a ribbon shape on a reel by an ink jet method.
  • the polymer coating method since the formation of the counter electrode eventually becomes a vacuum process, the merit of the roll-to-roll method is greatly diminished, and the productivity is not substantially improved.
  • the bonding method is an effective technical means for innovatively improving productivity, but at present, the organic EL device manufactured by this method has a problem in performance, and No accurate breakthrough has been found and it is still developing.
  • Japanese Patent Application Laid-Open No. 9-7736 discloses a technique for improving the adhesion of a bonding surface by allowing a polymer binder to exist on the bonding surface and bonding or fusing the periphery of the element.
  • Japanese Patent Application Laid-Open No. 2004-79300 describes that the same technical idea can be applied to phosphorescence emission in combination with a technique for forming a light emitting layer by a transfer method.
  • Patent Document 1 discloses that both of the bonding layers are made of the same material, so that Patent Document 2 introduces a technique for improving the adhesion between the two, which are bonded to each other in a film that has not been completely dried. In both cases, the adhesion at the joint surface is inadequate and is a fundamental solution.
  • Patent Document 3 describes a method for improving the adhesion of the joint surface by pressure bonding using a metal substrate having a resin layer and an elastic layer.
  • Adhering the periphery contributes to reducing the adverse effects of moisture and oxygen during driving of the element and improving the light emission lifetime, but is not a technical means that can fundamentally solve the above-mentioned peeling of the joint surface.
  • the peeling of the thin film interface is not only a problem of the bonding method.
  • organic EL elements that are made of glass as a substrate.
  • organic EL elements that are all-solid-state elements as described above are flexible such as films. It is a great feature that it can be applied to a certain substrate (so-called flexible display).
  • a counter electrode (usually a cathode, specifically, A1, Ca, Ba, etc.) is formed.
  • a metal with a small work function such as that
  • the transparent electrode and the counter electrode are formed first.
  • the bonding method When a metal or metal oxide film is formed, in order to obtain a film with good performance, a force that is desired to apply high energy when depositing or after film formation, the bonding method enables this. It can also be thought of as one way to do this. In other words, if the bonding surface for bonding is made of organic layers, the transparent electrode and the counter electrode can be formed in advance by a method most suitable for performance and productivity. If an organic layer is appropriately laminated thereon and bonded, and even the defect on the joint surface is improved, it can be an innovative method with good performance and manufacturing process.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-203675
  • Patent Document 2 JP-A-9 36667
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-296148
  • An object of the present invention is to improve the adhesion between bonded organic layers in the production of an organic EL element by a bonding method, and to improve the carrier movement between bonding interfaces where peeling or the like is eliminated.
  • the goal is to obtain an organic EL device without any problems.
  • An organic electroluminescent device having at least one organic layer between a first electrode and a second electrode, wherein the organic electroluminescent device is formed on a first substrate, at least a first electrode, An organic electrification member A having one or more organic layers;
  • an organic electoluminescence member B having at least one organic layer On the second substrate, a second electrode, an organic electoluminescence member B having at least one organic layer, and
  • organic layer of the organic electoluminescence member A and the organic layer of the organic electroluminescence member B are bonded together by sealing the periphery of the substrate so as to be shielded from the outside air,
  • An organic electoluminescence device wherein a pressure difference between an internal pressure of a sealed portion including the organic layer and an external pressure (atmospheric pressure) is 50 lOOkPa.
  • An organic elect having at least one organic layer between the first electrode and the second electrode
  • a first electrode on the first substrate an organic electoluminescence member A having at least one organic layer
  • a second electrode on the second substrate at least one organic layer.
  • the organic electroluminescent luminescence member B having a layer and the organic layers are brought into close contact with each other,
  • a sealing member is laminated on the second substrate,
  • a method for producing an organic electoluminescence device comprising adhering and sealing the periphery of a first substrate and a sealing member, and bonding the organic electroluminescence device A and the organic electroluminescence device B .
  • a photo-curable adhesive is preliminarily disposed around at least one organic layer of the first substrate or the second substrate,
  • the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other,
  • a photo-curable adhesive is preliminarily disposed around at least one organic layer of the first substrate or the sealing member,
  • the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other,
  • a heat-fusible adhesive is previously installed around at least one organic layer of the first substrate or the second substrate,
  • the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other,
  • a heat-fusible adhesive is previously installed around at least one organic layer of the first substrate or the sealing member,
  • the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other,
  • the carrier movement between the bonding interfaces such as good adhesion between organic layers, is improved, and an organic EL device free from uneven light emission can be obtained. Monkey.
  • Fig. 1 is a diagram showing an example of manufacturing an organic EL element using a vacuum bonding apparatus.
  • FIG. 2 It is a diagram showing another example of manufacturing an organic EL element using a vacuum bonding apparatus.
  • FIG. 3 A diagram showing an example of an organic EL element in which a hygroscopic member is arranged.
  • the present invention relates to production of an organic EL element by a bonding method
  • an organic electroluminescent element having at least one or more organic layers between a first electrode and a second electrode
  • an organic elect having a first electrode and at least one or more organic layers on a first substrate.
  • the organic luminescence member A and the second electrode, the organic electoluminescence member B having at least one organic layer on the second substrate, are shielded from the outside air under the pressure of 0 to 50 kPa.
  • the first substrate is, for example, a glass substrate, and IT is placed on the glass substrate.
  • the organic-elect mouth luminescence member A is an anode side member
  • the organic-elect luminescence member B is a cathode-side member
  • the second electrode is a cathode, and at least the remaining layers are formed on the cathode in this order from the cathode side. Is done.
  • the organic EL member A is an anode side member and is formed from the anode to the light emitting layer on the first substrate
  • the organic EL member B is used as the second electrode (cathode) on the second substrate.
  • the electron injection layer and the electron transport layer are formed (cathode side member).
  • the number of organic layers formed on each substrate may include various organic layers as needed, such as an electron blocking layer and a hole blocking layer. Is not limited, and may be configured according to the order of layers constituting the organic EL element when bonded. Therefore, which organic layer of each layer of the organic EL element is formed on each member, and is used as the organic EL member A (or anode side member) or the organic EL member B (or cathode side member), respectively.
  • the most appropriate material is selected from the viewpoints of properties such as the organic EL material constituting the organic layer, such as glass transition temperature, melting point, crystal structure, and adhesion.
  • the same organic layer may be formed on each member.
  • the light emitting layer may be integrated by bonding. Absent.
  • the organic EL element formed by the method for producing an organic EL element of the present invention includes a first electrode, an organic EL member A having at least one organic layer on the first substrate, and a second substrate.
  • the second electrode, the organic EL member B having at least one organic layer is brought into close contact with each other under pressure of 0 to 50 kPa (under reduced pressure) shut off from the outside air. It is formed by adhering and sealing the periphery of the substrate, adhering the organic-elect mouth luminescence member A and the organic-elect luminescence member B, and returning to atmospheric pressure after sealing.
  • the organic EL element produced by the method of the present invention in which the organic EL member A and the organic EL member B are bonded under reduced pressure, has an internal pressure in the sealed space portion containing the organic layer. And an external pressure (atmospheric pressure) in the range of ⁇ 50 to ⁇ lOOkPa (that is, the internal pressure is low! /).
  • the final pressure can be controlled by adjusting the degree of vacuum at the time of bonding, and the bonding pressure can be controlled. Since a pressure of atmospheric pressure (internal pressure) can be applied uniformly to the surface in a non-contact manner, a stable bonding element can be obtained. It is difficult to apply pressure uniformly by mechanical pressure bonding.
  • FIG. 1 shows an example of manufacturing the organic EL element of the present invention using a vacuum bonding apparatus.
  • FIG. 1 (a) shows an organic EL member A in which a first electrode 11 and an organic layer 12 are formed on a first substrate 1 and a second electrode 21 and an organic layer 22 formed on a second substrate.
  • the organic EL member A represents, for example, an anode substrate
  • the organic EL member B represents a cathode substrate.
  • the first electrode 11 is an ITO electrode
  • the organic layer 12 is, for example, a hole transport layer and a light emitting layer
  • the second electrode is, for example, a cathode made of aluminum
  • the organic layer 22 is, for example, an electron transport layer.
  • the organic layer (bonding layer) to be bonded may be any of the functional layers constituting the organic EL element.
  • a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer Any of these may be used.
  • Fig. 1 (b) shows a sealing material (adhesive) S placed around the organic layer on the first substrate for sealing (adhesion).
  • a sealing material adheresive
  • a photo-curable adhesive may be used.
  • a photocurable adhesive it is preferable to provide a light source in the vacuum bonding apparatus so that light (ultraviolet rays) can be irradiated from the first substrate or the second substrate side.
  • thermosetting adhesive sheet is disposed around the organic layer on the first substrate of the organic EL member A, and then the organic EL member A is adhered and laminated so that the organic layers face each other. Then, temporarily paste.
  • the force of disposing a thermosetting sheet around the first substrate may be on the second substrate, or may be disposed on both substrates.
  • the vacuum bonding apparatus according to the present invention shown in FIG. 1 (c) includes a vacuum chamber (including a frame) 101 on which organic EL members A and B to be bonded are placed, and a laminated organic EL member A.
  • the elastic member 102 that applies pressure to B and B, and fixes them tightly, the cylinder 103 that drives them, and the shape of the thermosetting adhesive sheet so as to surround the periphery of the substrate and the organic layer
  • a heater 104 is provided.
  • the heater 104 is also provided with a cylinder 105, and has a mechanism that allows the heater to be heat-bonded to the adhesive sheet from the back surface of the substrate by the operation of the cylinder.
  • the vacuum chamber 1 can be evacuated by a pressure reducing device (not shown), and is sealed so that the vacuum chamber 1 is shut off from the outside air.
  • the elastic member 102 that presses the two members into close contact to release gas between the two members and forms a surface layer with a heat-resistant elastic body such as silicon rubber or silicon sponge. Plate or the like is used.
  • the heater 104 is, for example, a heat block that can be heated by energization and is arranged in a predetermined shape surrounding the periphery of the substrate and the organic layer. It is possible to perform pressure bonding for a predetermined time.
  • the elastic member 102 is then applied to the back surface of the second substrate with a predetermined pressure by driving the cylinder 103.
  • the organic layer 12 on the first substrate and the organic layer 22 on the second substrate are brought into close contact and fixed (FIG. 1 (d)).
  • the vacuum chamber 101 is closed, shut off from the outside air, and evacuated to a reduced pressure, that is, a pressure of 0 to 50 kPa (FIG. 1 (e)).
  • a reduced pressure that is, a pressure of 0 to 50 kPa (FIG. 1 (e)).
  • the pressure in the vicinity of the organic layer and in the organic layer interface is the same as that in the vacuum chamber 101.
  • FIG. 1 (f) shows the next step in which the heater 104 is lowered by driving the cylinder 105 in a state of being cut off from the outside air, and the energy necessary for the substrates to be cured and bonded is applied. In order to do this, pressure is applied to the back side and heating is performed.
  • a thermosetting adhesive sheet is used as the sealing material S, the temperature is 50 to 100 ° C, and the pressure is 0.05 to 0. Hold at about 20MPa;! ⁇ 10 seconds.
  • the first substrate and the second substrate are bonded by the thermosetting sheet, and the organic EL element is sealed and bonded.
  • the bonding may be performed by using a thermosetting adhesive or a photocurable adhesive described later! /,
  • the heaters 104 and the elastic member 102 are then pulled back to their original positions by driving the cylinders 105 and 103, and further, the vacuum chamber 1 The release of the pressure is released (Fig. 1 (g)), and the sealing and bonding of the organic EL element is completed.
  • the sealing space P blocked by the two substrates and the sealing material has the same degree of vacuum as that of the vacuum chamber.
  • the degree of decompression of the sealed space P slightly increases depending on factors such as the volume of the sealed space, but basically the increase is slight, and the external pressure When A large pressure difference with the sealed space is maintained, whereby the organic layer on the first substrate and the organic layer on the second substrate are adhered uniformly and tightly.
  • the organic EL element under reduced pressure for example, lOkPa
  • two substrates and a sealing material are used.
  • the sealed space P blocked by the pressure S has the same degree of vacuum as that of the vacuum chamber S.
  • the pressure difference between the internal pressure of the sealed space and the external pressure is in the range of -50 lOOkPa.
  • the first and second substrates are uniformly pressed by this differential pressure from the atmospheric pressure. Therefore, it is possible to obtain a preferable adhesion state for carrier movement between organic layers.
  • FIG. 1 (h) shows a cross-sectional view of the extracted organic EL device and a view of the organic EL device viewed from above.
  • the substrates are bonded to each other by a sealing material (adhesive or adhesive sheet) disposed around the organic layer, and the organic layers are bonded to form an organic EL element.
  • thermosetting sheets arranged on the substrate are opposed to each other rather than bonding the periphery at once. It is preferable that the pair of sides are bonded by heat and bonded, and then the remaining pair of sides are bonded, closed, and sealed for uniform bonding.
  • the heater can be driven by an individual cylinder at least for each pair of sides.
  • both the first substrate and the second substrate may be glass substrates, but it is preferable that at least one of them is a flexible substrate.
  • the second substrate is used as a flexible substrate (for example, a base material made of a plastic film).
  • the second substrate is continuously supplied in a strip shape (for example, toward the plane of FIG. (From left to right), an organic EL element can be formed by sequentially bonding and sealing the organic EL member A with an electrode and organic layer formed on a separately formed first substrate. .
  • this can be continuously supplied to improve the productivity of the organic EL element.
  • a moisture-proof layer on at least one of the first substrate and the second substrate in order to maintain the force sealing effect.
  • the moisture-proof layer is not limited as long as it is a layer composed of a material having gas barrier properties such as water vapor, oxygen, etc.
  • a ceramic vapor-deposited layer such as silicon oxide and aluminum oxide, and these Moisture-proof layers with a structure in which ceramic layers and impact-relieving polymer layers are laminated alternately, and metal foils such as laminate layers (6 to 50 111 thickness) of copper (Cu) foil, aluminum (A1) foil, etc. It is preferable to have such a moisture-proof layer on the opposite side (outside) of the organic layer of the first electrode or the second electrode layer.
  • a film having these moisture-proof layers may be used as a substrate.
  • a film having these moisture-proof layers for example, on a resin film substrate (10 to 200 111) such as a PET film.
  • the above ceramic layer is formed by vapor deposition, or a metal foil or the like is laminated with a polyethylene resin film.
  • a resin film on which vapor deposition of silicon oxide, aluminum oxide or the like is deposited is available.
  • a letterpress printing GX film can be obtained.
  • a metal laminate film in which one side of a metal foil is coated with a polymer film is commercially available for packaging materials.
  • a dry laminate film adheresive layer / aluminum film 9 m / polyethylene terephthalate (PET) 38 11 m
  • PET polyethylene terephthalate
  • FIG. 3 Another production example of an organic EL device by bonding according to the present invention is shown based on FIG.
  • FIG. 2 (a) shows a first substrate (organic EL member A) having the first electrode 11 and the organic layer 12 and a second substrate (organic EL member having the second electrode 21 and the organic layer 22 in the same manner as described above. B) is shown respectively.
  • Figure 2 (b) shows a thermosetting adhesive sheet as the sealing material S around the organic layer of the organic EL member A.
  • the organic EL member A and the organic EL member B are laminated with the respective organic layers facing each other, and the second substrate of the organic EL member B is opposite to the organic layer (outside). ) Force The sealing member 3 is laminated and temporarily bonded.
  • the sealing member 3 is a flexible plastic sheet or film having a high gas barrier property such as water vapor or oxygen.
  • a resin film having the moisture-proof layer is preferred.
  • a vapor deposition film using PET as a base material such as a GX film manufactured by Toppan Printing, can be mentioned.
  • the organic EL element can be efficiently sealed from the outside air, such as water vapor and oxygen. The influence of degradable gas can be suppressed.
  • a first electrode 11, a first substrate 1 having an organic layer 12, and a second electrode 21, a second substrate 2 having an organic layer 22, and a sealing, on which a thermosetting adhesive sheet is disposed The material 3 laminated and temporarily bonded is placed in the vacuum chamber 101 of the same vacuum bonding apparatus as shown in FIG. 1 (c) (FIG. 2 (c)).
  • the vacuum bonding apparatus drives a vacuum chamber 101 (including a frame) on which a laminate of the organic EL member A and the organic EL member B to be bonded is placed and an elastic member 102 for pressing.
  • a cylinder 103 is provided.
  • the elastic member is a pressing plate whose surface is made of a material having elasticity such as silicon rubber or silicon sponge.
  • the cylinder 103 is moved up and down by the cylinder, thereby pressing the laminated body from the back surface.
  • the gas between the stacked bodies can be released and the stacked body can be tightly fixed between the stacks.
  • a heater 104 is provided in substantially the same shape as the sealing material S (thermosetting adhesive sheet) so as to surround the periphery of the organic layer.
  • the heater 104 also includes a cylinder 105, and has a function of heating by moving the heater up and down by the cylinder and pressing the heater against the back surface of the sealing member.
  • the vacuum chamber 101 can be evacuated by a decompression device (not shown) after being sealed, and has a structure in which the vacuum chamber 1 is shut off from the outside air to come to decompression.
  • the vacuum chamber 101 is closed, shut off from the outside air, and evacuated to a pressure of 0 to 50 kPa (FIG. 2 (e)).
  • the pressure in the vicinity of the organic layer and in the organic layer interface is the same as that in the vacuum chamber.
  • thermosetting adhesive sheet material S (thermosetting adhesive sheet) is heated and pressed to give the energy required for curing (Fig. 2 (f)).
  • the temperature may be in the range of 50 to 100 ° C.
  • the pressure may be 0.05 to 0.20 Pa
  • the time may be 1 to 10 seconds.
  • bonding with a sealing material is performed by bonding a pair of opposite sides around the substrate in advance and then bonding and closing the remaining pair of sides under reduced pressure. It is preferable to bond the heater block in two stages so that the preferred heater block can be driven separately in this way.
  • sealing is performed by bonding the sealing member 3 and the first substrate by pressure bonding and heating of the heater 104, and the organic layers of the organic EL member A and the organic EL member B are in close contact with each other at the same time.
  • a bonded organic EL element is formed.
  • Fig. 2 (h) shows a cross-sectional view of the extracted organic EL device and a view of the organic EL device viewed from above.
  • the organic EL elements are sealed and formed by bonding the substrates together and bonding the organic layers together with an adhesive placed around the organic layer.
  • the sealing member for example, a flexible gas barrier resin film such as a metal vapor-deposited film can be used. Even when the first substrate is a rigid substrate such as glass, a uniform pressure is applied. Because it is applied between organic layers, the layers between the layers that have better adhesion between the organic layers As a result, a uniform element with less unevenness in the movement of the carrier can be obtained. In addition, since the sealing member can be continuously supplied, the continuous productivity of the element is also excellent.
  • heat treatment is performed in a state where the elastic member is pressed.
  • a heating method a heating function may be imparted to the elastic member, or a heater may be imparted (hot plate) to a gantry provided in the vacuum chamber.
  • the heating temperature is lower than the melting point of any organic layer used, generally 80 to 80 ° C; the softening temperature of the organic material constituting the organic layer that is about 160 ° C, and the lowest glass transition temperature!
  • the temperature is lower than the temperature, and is preferably 0 ° C or higher and 80 ° C or lower, and more preferably 40 ° C or higher and 80 ° C or lower. In view of temperature controllability, it is preferably 40 ° C or higher.
  • the surface of each organic layer is preferably subjected to a pre-beta treatment.
  • Pre-beta treatment can remove some of the solvent contained in the organic layer. Lower than the heating at the time of pasting, short at the temperature! It is particularly effective for a large area element to remove a certain amount of solvent beforehand by pre-beta treatment before bonding.
  • the heating temperature of the pre-beta treatment is a softening temperature lower than the melting point of any organic layer used, and the lowest glass transition temperature! /, A temperature lower than the temperature. , Temperature is preferred!
  • the pre-beta treatment is performed on the surface of both organic layers, but in some cases it may be single-sided. As the heating method, oven drying, hot plate drying, vacuum drying, etc. can be used.
  • the sealing material applied to the periphery of the display portion of both the substrates to adhere the substrates to each other is moisture-proof.
  • an adhesive for example, an adhesive generally used for glass, plastic substrates and the like can be used without limitation.
  • Particularly preferred adhesives include acrylic adhesives and epoxy adhesives. Among them, an epoxy adhesive having a small shrinkage upon curing is preferable.
  • the epoxy adhesive is composed of an epoxy resin as a main agent and a curing agent, and a compound (main agent) containing an epoxy group and a curing agent containing an amine oxalic anhydride are mixed together. An adhesive that adheres by a curing reaction.
  • Examples of the compound containing an epoxy group include bisphenol A type as described above, and amines are often used as curing agents.
  • These adhesives can be applied on the substrate without any particular restrictions such as potting, coating, spraying, printing, etc., and can be polymerized and cured by irradiation with energy rays such as ultraviolet rays and electron beams, and heat. Touch with force S.
  • thermoactive epoxy resin curing agent comprising a bisphenol-based glycidyl epoxy resin and a thermosetting adhesive component that forms a three-dimensional network when heated is also preferable.
  • the adhesive used as the sealing material may be an ultraviolet curable adhesive.
  • an actinic ray curable adhesive that is polymerized and cured by energy rays such as ultraviolet rays and electron beams is preferred. in this case
  • Acrylic adhesives can be used, and specific examples include Three Bond Co., Ltd., 3003, 3027B, 3033B, 3042B, etc., and Cemedine Co., Ltd., Cemedine Y600, Y600H.
  • the vacuum bonding apparatus is provided with a light source capable of irradiating ultraviolet rays from the back surface of the first substrate, the second substrate or the sealing member.
  • the adhesion may be cured by irradiating the substrate with a light amount of about 10 to 100 mW / cm 2 over a range of! To 30 seconds.
  • the "ultraviolet region (light)" in the specification of the present application refers to light having a wavelength in the range of 250 nm to 400 nm, and can be obtained by a high pressure mercury lamp or a halogen lamp.
  • thermosetting adhesive sheet or hot-melt adhesive is used as the sealing material.
  • a pre-formed thermosetting adhesive sheet or hot-melt adhesive is used as the sealing material.
  • TBF series manufactured by Sumitomo 3EM among them low-temperature adhesive type thermosetting adhesive sheets such as TBF560, etc., and these sheets are cut into a desired shape and placed on a substrate by sealing material. This is preferable because it can be applied on a substrate.
  • a moisture absorbing member is provided on a substrate and is present in the sealing region, thereby adsorbing moisture in the element space and degrading the element. Can be suppressed.
  • a method of adhering a powdery moisture absorbing member such as calcium oxide or zeolite onto a base material around the display unit is employed.
  • the moisture absorbing member may be provided on any base material.
  • the sealing material is disposed, the moisture absorbing member may be disposed, for example, in a region around the organic layer.
  • Figure 3 shows an example of an organic EL device in which the moisture absorbing member D is placed around the organic layer inside the sealed space (around the organic layer).
  • An organic EL element has a structure in which one or more organic layers are laminated between electrodes.
  • anode / hole injection, transport layer / light emitting layer / electron injection, transport layer / cathode, etc. are the simplest.
  • the thickness of each organic layer and each thin film in these organic EL devices is a force ranging from 1 nm to several in. These organic layers are the first substrate and the second substrate.
  • the organic EL element of the present invention is formed by separately forming on a substrate and bonding them.
  • each organic layer constituting the organic EL element formed on the substrate will be described.
  • An organic EL element has a structure in which one or more organic layers are laminated between electrodes.
  • anode / hole injection, transport layer / light emitting layer / electron injection, transport layer / cathode, etc. are the simplest.
  • Has a structure consisting of an anode / light-emitting layer / cathode, and other layers such as an electron blocking layer, a hole blocking layer, and a buffer layer are laminated in a predetermined layer order and injected from both electrodes. It is configured so that carriers such as holes and electrons can move smoothly.
  • the organic light-emitting material contained in the light-emitting layer includes aromatic heterocyclic compounds such as canolevazole, carboline, diazacanolevazole, and triarylamine.
  • aromatic heterocyclic compounds such as canolevazole, carboline, diazacanolevazole, and triarylamine.
  • Mining derivatives, stilbene derivatives, polyarylenes, aromatic condensed polycyclic compounds, aromatic heterocondensed ring compounds, metal complex compounds, and the like, and powers such as single oligo or composite oligos are not limited thereto. ! /
  • the layer (film forming material) preferably contains about 0.;! To about 20% by mass of a dopant in the light emitting material.
  • the dopant include known fluorescent pigments such as perylene derivatives and pyrene derivatives, and in the case of phosphorescent light emitting layers, for example, tris (2-phenylpyridine) iridium, bis (2-phenylpyridine) ( Orthometasylated by acetylylacetonate) iridium, bis (2,4-difluorofurpyridine) (picolinato) iridium, etc.
  • a complex compound such as an iridium bromide complex is contained in an amount of about 0 .;
  • the phosphorescence emission method has a light-emitting region inside the light-emitting layer. Because it is difficult to cause the phenomenon, it is compatible with the bonding method of the present invention.
  • the hole-injection transport layer is typified by phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polybutylcarbazole, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), etc.
  • a high-molecular material such as a conductive polymer, and a power rubazole-based light-emitting material such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbenzene, etc.
  • Polymers typified by low molecular luminescent materials such as azacarbazoles, pyrene-based luminescent materials such as 1,3,5 tripyrenylbenzene, polyphenylenevinylenes, polyfluorenes, polybulur rubazoles, etc. Examples include luminescent materials.
  • Examples of the electron injection / transport layer material include metal complex compounds such as 8-hydroxyquinolinatotritium and bis (8-hydroxyquinolinato) zinc, and the following nitrogen-containing five-membered ring derivatives. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred.
  • the thickness of the organic EL element and each organic layer needs to be about 0.05 to 0.3 ⁇ m, preferably 0 • 1—about 0.2 mm.
  • spin coating As the coating, spin coating, transfer coating, extension coating, or the like can be used. Considering the efficiency of material use, transfer coating and transfer coating are preferred, and pattern coating such as transfer coating is preferred. Transfer coating is particularly preferable.
  • the element is thin and the element size is minute, and high precision and high definition printing such as offset printing and ink jet printing is preferable in consideration of overlapping of RGB patterns.
  • Each organic material has solubility characteristics (solubility parameters, ionization potential, polarity), and there are limitations on the solvents that can be dissolved. In this case, since the solubility is different, the concentration cannot be generally determined, but the type of the solvent used in the present invention is suitable for the above conditions depending on the organic EL material to be formed.
  • Hydrogen solvents such as dibutyl ether, tetrahydrofuran, dioxane, and anisole, alcohols such as methanol, ethanol, isopropanol, butanol, cyclohexanol, 2-methoxyethanol, ethylene glycol and glycerin Solvents, benzene, toluene, xylene , Aromatic hydrocarbon solvents such as ethenylbenzene, paraffin solvents such as hexane, octane, decane, and tetralin, ester solvents such as ethyl acetate, butyl acetate, and amyl acetate, N, N-dimethinoformamide, N, N —Amid solvents such as dimethylacetamide and N-methylpyrrolidone; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone and isophor
  • alcohols
  • the usable solvent is not limited to these, and two or more of these may be mixed and used as the solvent.
  • an organic EL material! / Depending on each functional layer material, generally, good solvents include, for example, aromatic solvents and halogen-based solvents. Melting Medium, ether solvents, and the like, preferably aromatic solvents and ether solvents.
  • examples of the poor solvent include leaves, alcohol solvents, ketone solvents, paraffin solvents, and the like. Among them, alcohol solvents and norafin solvents.
  • the first electrode in the present invention, can be formed on the first substrate and the second electrode can be formed on the second substrate in advance. Can be formed.
  • the conductive material used for the anode for injecting holes those having a work function larger than 4 eV are suitable.
  • Metal oxides such as alloys, tin oxide, indium oxide and ITO, and organic conductive resins such as polythiophene polypyrrole are used.
  • ITO is preferred as a transparent electrode that is preferably translucent. The method for forming the ITO transparent electrode is not limited to the force capable of using mask vapor deposition or photolithography patterning.
  • a material having a work function smaller than 4 eV is suitable, such as magnesium and aluminum.
  • Typical examples of alloys include magnesium / silver and lithium / aluminum.
  • the formation method can be mask vapor deposition, photolitho patterning, plating, printing, etc., but is not limited thereto.
  • a glass substrate and a transparent resin film are used as the substrate.
  • transparent resin films include polyethylene, ethylene acetate butyl copolymer, ethylene monobutyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polychlorinated butyl, polybutyl alcohol, polybutyl butyral, naychitone, and polyethylenol.
  • Ethenoleketones polysanolethone, polyethenoresanorephones, tetrafluoroethylene perfluoroalkyl butyl ether copolymers, polybulufluoride, tetrafluoroethylene ethylene copolymers, tetrafluoroethylene monohexaph Fluoropropylene copolymer, polychloroethylene, polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene Ren, and the like.
  • the organic EL device of the present invention has a light-emitting layer of the organic layer that is filtered for each of three colors of RGB. It is possible to make it a full-color display by configuring it with a turn and incorporating a drive circuit.
  • a transparent support substrate was prepared by depositing ITO (indium oxide) with a film thickness of lOOnm as an anode on a lOOmmX lOOmm X l. 1 mm glass substrate. This was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for another 5 minutes.
  • ITO indium oxide
  • a solution in which 5 mg was dissolved in dichlorobenzene was similarly applied by spin coating, and after film formation, vacuum dried at 60 ° C. for 1 hour to form a light emitting layer having a dry film thickness of 30 nm.
  • the solution dissolved in 6 ml of the solution was similarly applied by spin coating, and after film formation, vacuum-dried at 60 ° C. for 1 hour to form a light-emitting layer having a dry film thickness of 30 m.
  • Organic EL member A (anode member);
  • Organic EL member B (cathode member);
  • Polyethersulfone (PES) film // aluminum (120 nm) cathode / lithium fluoride (lnm) cathode buffer layer // BCP (film thickness about 10 nm) electron transport layer // PVK (60 mg) and 1.5 mg Ir ( ppy) (film thickness 30nm) light emitting layer,
  • thermosetting adhesive sheet is disposed around the organic layer on the glass substrate of the organic EL member A produced as described above, and further, the organic EL member B is opposed to the organic EL member A and the respective light emitting layers. Further, a moisture-proof film as a sealing member was further laminated on the back side of the cathode member and temporarily bonded.
  • Figure 2 (b) shows this. S shows the adhesive sheet cut and placed around the organic layer on the glass substrate.
  • thermosetting adhesive sheet a thermosetting adhesive sheet TBF560 (ethylene-butyl acetate copolymer) manufactured by Sumitomo 3EM was used.
  • a GX film made by Toppan Printing which is a ceramic vapor-deposited film, was used.
  • the sealing member was approximately the same size (100 mm ⁇ 100 mm) as the glass substrate of the organic-elect mouth luminescence member A (anode member).
  • Figure 2 (b) shows this state.
  • the above laminate is placed on a frame in the vacuum chamber 101 of the vacuum laminating apparatus with the organic substrate luminescence member A (anode member) facing down on the glass substrate, and the cylinder is driven. Then, the elastic member 102 was lowered and pressed from the back side of the sealing member 3 to bring the organic layers into close contact with each other, thereby fixing the laminate (FIG. 2 (d)). At the same time, the vacuum chamber was shut off from the outside air and evacuated with a vacuum pump (not shown) to raise the vacuum to a pressure of about lkPa (Fig. 2 (e)).
  • an organic EL device was obtained in which the light emitting layers were uniformly and closely adhered and bonded together by the differential pressure from atmospheric pressure (101.3 kPa).
  • thermosetting adhesive sheet encapsulant
  • a rubber roll By passing a rubber roll, the thermosetting adhesive sheet (encapsulant) is thermoset to seal the sealing member and glass.
  • the organic EL element was fabricated by adhering and sealing the substrate and bonding the anode and cathode members together.
  • the organic EL elements bonded by the method of the present invention were compared in terms of all of the light emission unevenness and light emission luminance. It was an element superior to the organic EL element bonded and fabricated using the roll bonding device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is an organic EL device manufactured by a bonding method, wherein adhesion between organic layers bonded together is improved and separation or the like does not occur. This organic EL device is also improved in carrier movement between the bonding interfaces, while having no emission unevenness. Specifically disclosed is an organic EL device comprising at least one organic layer arranged between a first electrode and a second electrode, which is characterized in that an organic EL member A having a first electrode and at least one organic layer on a first substrate and an organic EL member B having a second electrode and at least one organic layer on a second substrate are bonded together so that the organic layers face each other. The organic EL device is further characterized in that the outer periphery of the substrates are sealingly bonded so that the organic layers of the organic EL member A and the organic EL member B are blocked off from the outside air, and the difference between the internal pressure and the external pressure of the sealed portion containing the organic layers is from -50 to -100 kPa.

Description

明 細 書  Specification
有機エレクト口ルミネッセンス素子およびその製造方法  Organic electoluminescence device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、貼合方式により形成された有機エレクト口ルミネッセンス(EU素子とそ の製造方法に関し、より詳しくは、それぞれ有機層を有する第一の基板及び第二の 基板を、減圧環境下において貼り合わせることにより、密着性を向上させた有機 EL 素子及びその製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to an organic electoluminescence (EU element and a method for producing the same) formed by a bonding method. More specifically, the first substrate and the second substrate each having an organic layer are reduced in a reduced pressure environment. The present invention relates to an organic EL element having improved adhesion by bonding together and a manufacturing method thereof.
背景技術  Background art
[0002] 有機エレクト口ルミネッセンス(EU素子は、電極と電極の間を厚さ僅か 0. 1 H m程 度の有機材料の膜で構成する全固体素子であり、なおかつ素子の発光が 2〜20V 程度の比較的低い電圧で達成できることから、次世代の平面ディスプレイや照明とし て期待されて!/、る技術である。  [0002] Organic Electricular Luminescence (EU element is an all-solid-state element composed of an organic material film with a thickness of only 0.1 Hm between electrodes, and the element emits light of 2 to 20V. Because it can be achieved at a relatively low voltage, it is expected to be a next-generation flat display and illumination!
[0003] 更に、最近発見されたリン光発光を利用する有機 EL素子では、以前の蛍光発光を 利用するものに比べ原理的に約 4倍の発光効率が実現可能であることから、その材 料開発をはじめ発光素子の層構成や電極の研究開発が世界中で行われている。  [0003] Furthermore, the recently discovered organic EL element using phosphorescence emission can in principle achieve light emission efficiency about 4 times that of the previous one using fluorescence emission. Research and development of light-emitting element layer configurations and electrodes are underway around the world.
[0004] また、有機 EL素子の構成は、透明電極と対向電極に有機層が挟まれただけの単 純なものであり、平面ディスプレイの代表である液晶ディスプレイに比べ、部品点数が 圧倒的に少ないため、製造コストも低く抑えられるはずである力 現状では必ずしもそ うではなぐ性能的にもコスト的にも液晶ディスプレイに大きく水をあけられている。  [0004] In addition, the configuration of the organic EL element is simply a structure in which an organic layer is sandwiched between a transparent electrode and a counter electrode, and the number of components is overwhelming compared to a liquid crystal display that is a typical flat display. Because it is low, the manufacturing cost should be kept low. At present, liquid crystal displays are largely drained in terms of performance and cost.
[0005] 特にコストに対しては、生産性の悪さがその要因として考えられる。  [0005] In particular, in terms of cost, poor productivity is considered as a factor.
[0006] 現在商品化されている有機 EL素子の殆どが、低分子材料を蒸着して成膜する、所 謂蒸着法で製造されてレ、る。この蒸着法は精製が容易な低分子化合物を有機 EL材 料として用いることが出来る(高純度材料が得やすい)こと、更に積層構造を作るのが 容易なことから、効率、寿命という面で非常に優れている力 反面、 10— 4Pa以下という 高真空条件下で蒸着を行うため、成膜する装置に制約が加わり、実際には小さい面 積の基板にしか適用できず、更に複数層積層するとなると成膜に時間力 Sかかりスノレ 一プットが低いことが欠点である。特に照明用途ゃ大面積の電子ディスプレイに適用 する場合には問題となり、有機 EL素子がそのような用途にお!/、て実用されて!/、な!/、 一つの原因となっている。 [0006] Most of the organic EL devices currently on the market are manufactured by a so-called vapor deposition method in which a low molecular material is deposited to form a film. In this vapor deposition method, low-molecular compounds that can be easily purified can be used as organic EL materials (high-purity materials are easy to obtain), and because it is easy to create a laminated structure, it is extremely efficient in terms of efficiency and life. contrary force is better, in order to perform evaporation under high vacuum conditions of 10- 4 Pa or less, joined by constraints apparatus for forming, in practice can only be applied to the substrate of the surface low product further plurality of layers stacked In that case, the disadvantage is that it takes time to deposit the film and the threshold is low. Especially for lighting applications, large area electronic displays If this is the case, the organic EL device will be used in such applications! /!
[0007] それに対し、高分子材料を用いると、有機 EL素子における有機化合物層をスピン コート、インクジェット、印刷、スプレーといった塗布プロセスにより製造することが出来 [0007] In contrast, when a polymer material is used, an organic compound layer in an organic EL element can be manufactured by a coating process such as spin coating, ink jet, printing, and spraying.
[0008] これは、大気圧下で製造することが出来るため、低コスト化が可能であると同時に、 有機 EL素子の有機層を成膜する際には、必要な材料(高分子材料及び/又は低分 子材料)を溶液調製して薄膜塗布するので、複数の有機材料を精密に混合できる( 例えば発光ホスト材料に対するドーパント等の調製がしゃすい等)ことから、素子を大 面積化しても発光ムラが出来にくいという特徴があり、製造コストの面でも非常に有利 である力 S、一般的な製造工程において有機層を成膜した後に形成される対向電極が やはり蒸着又はスパッタリングなどの真空プロセスでの生産となるため、結局そのェ 程がボトルネックとなり、革新的な生産プロセスにはなり得ていない。 [0008] This can be manufactured under atmospheric pressure, so that the cost can be reduced. At the same time, when forming an organic layer of an organic EL element, necessary materials (polymer materials and / or (Or, low molecular weight materials) are prepared and applied in a thin film, so that multiple organic materials can be mixed precisely (for example, preparation of dopants for the light-emitting host material is not necessary). Features that light emission unevenness is difficult to produce and is very advantageous in terms of manufacturing cost S, and the counter electrode formed after forming an organic layer in a general manufacturing process is still a vacuum process such as evaporation or sputtering. In the end, this process becomes a bottleneck and cannot be an innovative production process.
[0009] また、前記蒸着系とは対照的に、高分子材料の純度が上げられないこと、積層が難 しいことなど、発光性能上は蒸着系に及ばないのが実情であり、殆ど実用には供され ていない。  [0009] In contrast to the above-mentioned vapor deposition system, the fact is that the purity of the polymer material cannot be increased and the lamination is difficult. Is not provided.
[0010] 上記は、主に材料に起因する製造方式の違!/、であるが、素子を形成する方法自体 に着目してみると、  [0010] The above is the difference in the manufacturing method mainly due to the material, but when focusing on the method of forming the element itself,
(1)電極基板上に薄膜を逐次形成してゆく方法 (逐次成膜法)、  (1) A method of sequentially forming a thin film on an electrode substrate (sequential film formation method),
(2)電極基板、及び対向電極基板の二つに適宜薄膜を形成した後に貼合する方法 (貼合法)、  (2) Method of bonding after forming a thin film as appropriate on the electrode substrate and the counter electrode substrate (bonding method),
と力 sある。 And power s .
[0011] 貼合法の利点は、 [0011] The advantage of the bonding method is
(1)逐次成膜法では最後に成膜することになる抵抗電極を予め準備しておけること、 (1) In the sequential film formation method, the resistance electrode to be finally formed can be prepared in advance.
(2)基板にフィルムを用いることでロールツーロール方式での連続生産が可能になる こと、 (2) The roll-to-roll continuous production becomes possible by using a film for the substrate.
(3)接合面を有機層同士にすれば有機層の積層が容易にできること、  (3) The organic layer can be easily stacked if the bonding surfaces are made of organic layers,
など挙げられる。 [0012] 特に(1)や(2)は生産性を飛躍的に改善する原動力になり、もし技術が完成すれ ば有機 EL最大の問題点であった製造コストを大幅に低減することも可能になると思 われる。 Etc. [0012] In particular, (1) and (2) will be the driving force for dramatically improving productivity, and if the technology is completed, it will be possible to significantly reduce the manufacturing cost, which was the biggest problem of OLED. It seems to be.
[0013] 一方、ロールツーロール方式は貼合方式以外でもその技術が開示されている。  [0013] On the other hand, the roll-to-roll method is disclosed in a technique other than the bonding method.
[0014] 例えば特開 2005— 327667号公報では、正孔輸送材料をリボン状にリールに巻 かれた電極基板上にインクジェット法により連続で成膜する方法が記載されているが 、この場合も前記高分子塗布方式で記載したように対向電極の形成が結局真空プロ セスになってしまうために、ロールツーロール方式のメリットが大幅に目減りしてしまい 実質それ程生産性が向上するものではない。  [0014] For example, Japanese Patent Application Laid-Open No. 2005-327667 describes a method in which a hole transport material is continuously formed on an electrode substrate wound in a ribbon shape on a reel by an ink jet method. As described in the polymer coating method, since the formation of the counter electrode eventually becomes a vacuum process, the merit of the roll-to-roll method is greatly diminished, and the productivity is not substantially improved.
[0015] このように、貼合方式は生産性を革新的に改善する有効な技術手段ではあるが、 現在のところ、この方式で作製された有機 EL素子は、性能上の問題を抱え、又、的 確なブレークスルーが見つかっておらず、発展途上にあるといった状態である。  [0015] As described above, the bonding method is an effective technical means for innovatively improving productivity, but at present, the organic EL device manufactured by this method has a problem in performance, and No accurate breakthrough has been found and it is still developing.
[0016] その理由は幾つかある力 S、原理的に考えてみると貼合したときの接合面が必ずしも 分子レベルで密着しておらず結果としてキャリア移動がスムーズに行えなくなる。更 に接合面が剥離し、発光素子として機能しなくなるなどが大きな要因であると予想さ れる。  [0016] There are several reasons for this, S. Considering in principle, the bonding surface when bonded is not necessarily in close contact at the molecular level, and as a result, the carrier cannot move smoothly. Furthermore, it is expected that the bonding surface will peel off and will not function as a light emitting element.
[0017] 特に、ロールツーロール方式では必ず巻き取り工程が存在するため、巻き取り時に 接合面の剥離が起きやすぐ剥離は製造上大きな問題となるし、基板をフィルムゃプ ラスチック基材などの可撓性基材としたときには使用時に素子が破壊されてしまうとい う致命的な欠陥になってしまう恐れがある。  [0017] In particular, in the roll-to-roll method, there is always a winding process. Therefore, peeling of the joint surface occurs immediately when winding, and peeling immediately becomes a serious problem in manufacturing. When a flexible substrate is used, there is a risk that the element will be destroyed during use, resulting in a fatal defect.
[0018] 〈貼合方式の従来技術〉  [0018] <Conventional technology of bonding method>
このような観点から貼合時の接合不良を改善する、貼合法に係わる技術が幾つか 開示されている。  From such a viewpoint, several techniques related to the bonding method for improving the bonding failure at the time of bonding are disclosed.
[0019] 例えば、特開平 9— 7736号公報には、接合面に高分子バインダーを存在させ、か つ、素子周囲を接着または融着することで接合面の密着性を向上させる技術が、ま た、特開 2004— 79300号公報では同様の技術思想を、発光層を転写法により作る 技術と組み合わせ、リン光発光にも適用できることが記載されている。  [0019] For example, Japanese Patent Application Laid-Open No. 9-7736 discloses a technique for improving the adhesion of a bonding surface by allowing a polymer binder to exist on the bonding surface and bonding or fusing the periphery of the element. Japanese Patent Application Laid-Open No. 2004-79300 describes that the same technical idea can be applied to phosphorescence emission in combination with a technique for forming a light emitting layer by a transfer method.
[0020] また、特許文献 1には、両方の接合層を同じ材料で構成されたものにすることで、層 間の密着性を向上させる技術が、特許文献 2では、二つの接合面を湿式法で作製し た、完全に乾燥していない状態の膜において貼合する技術が紹介されているが、両 方とも接合面での密着性は不充分であり根本的な解決とはなってレ、なレ、。 [0020] Further, Patent Document 1 discloses that both of the bonding layers are made of the same material, so that Patent Document 2 introduces a technique for improving the adhesion between the two, which are bonded to each other in a film that has not been completely dried. In both cases, the adhesion at the joint surface is inadequate and is a fundamental solution.
[0021] その他、特許文献 3には、樹脂層と弾性層を有する金属基板を用いて、加圧貼合し て、接合面の密着を向上させる方法が記載されている。  [0021] In addition, Patent Document 3 describes a method for improving the adhesion of the joint surface by pressure bonding using a metal substrate having a resin layer and an elastic layer.
[0022] 周囲を接着することは、素子駆動中の水分や酸素の悪影響を低減し発光寿命を向 上させることには寄与するが、前記接合面剥離を根本的に解決できる技術手段では ない。  [0022] Adhering the periphery contributes to reducing the adverse effects of moisture and oxygen during driving of the element and improving the light emission lifetime, but is not a technical means that can fundamentally solve the above-mentioned peeling of the joint surface.
[0023] 薄膜界面の剥離は、貼合法だけの問題ではない。  [0023] The peeling of the thin film interface is not only a problem of the bonding method.
[0024] 現在商品化されている有機 ELは全てガラスが基板になっており可撓性のない発光 素子であるが、前記の如ぐ全固体素子である有機 EL素子はフィルムなどの可撓性 のある基板への適用が可能(所謂フレキシブルディスプレイの実現)であることが、大 きな特徴である。  [0024] All of the organic EL currently commercialized are non-flexible light-emitting elements that are made of glass as a substrate. However, organic EL elements that are all-solid-state elements as described above are flexible such as films. It is a great feature that it can be applied to a certain substrate (so-called flexible display).
[0025] 現状では、可撓性基材のガスバリア性が不充分なこと力 その実用化を遅らせてい るといわれているが、それ以外の課題として、有機層と対向電極層との剥離も大きな 課題である。  [0025] At present, it is said that the gas barrier property of the flexible substrate is insufficient. It is said that its practical use is delayed, but as another problem, peeling between the organic layer and the counter electrode layer is also large. It is a problem.
[0026] この課題は、現状の可撓性のない素子においては、顕在化した課題として余り取り 上げられていないが、原理上、有機物と対向電極を形成する金属との接着性は低く 、根本的な問題である。  [0026] This problem has not been taken up as an obvious problem in the current inflexible element, but in principle, the adhesion between the organic substance and the metal forming the counter electrode is low, and the fundamental problem is that Problem.
[0027] また、通常適用されている逐次成膜法では発光層やキャリア輸送 ·注入層などの有 機層を成膜した後に、対向電極(通常は陰極、具体的には A1や Ca、 Baなどの仕事 関数の小さい金属)を成膜することになる力 その時、既に成膜されている有機層に ダメージを与えてしまうと有機 EL素子の発光特性や発光寿命などが大きく劣化して しまうという問題点がある。つまり、対向電極と有機層界面の密着性を上げるために 対向電極を強いエネルギー状態で成膜することは不可能であり、実質上、真空蒸着 や、穏和な条件下でのスパッタリングで成膜するしかすべがな!/、状況である。  [0027] In addition, in a sequential film forming method that is usually applied, after forming an organic layer such as a light emitting layer and a carrier transport / injection layer, a counter electrode (usually a cathode, specifically, A1, Ca, Ba, etc.) is formed. The ability to deposit a metal with a small work function such as that) If the organic layer already deposited is damaged, the emission characteristics and lifetime of the organic EL element will be greatly degraded. There is a problem. In other words, it is impossible to form the counter electrode in a strong energy state in order to increase the adhesion between the counter electrode and the organic layer interface. In practice, the film is formed by vacuum evaporation or sputtering under mild conditions. It ’s the situation!
[0028] この問題点を解決する手段として、最も対向電極に近い有機層の上に、半導体材 料や金属からなる緩衝層を設ける技術も開示されている。確かにこのような緩衝層を 間に入れることで、対向電極成膜時のダメージを低減することは可能ではある力 製 造プロセス的には負荷が増えることになり、生産性の面から決して好ましいものでは ない。 [0028] As means for solving this problem, a technique of providing a buffer layer made of a semiconductor material or metal on the organic layer closest to the counter electrode is also disclosed. Certainly such a buffer layer It is possible to reduce the damage at the time of forming the counter electrode by interposing it, but the load increases in the manufacturing process, which is not preferable from the viewpoint of productivity.
[0029] この観点から、貼合法の製造プロセスを考えてみる。  [0029] From this point of view, consider the manufacturing process of the bonding method.
[0030] 貼合は必要な層を全部成膜した後に行われるため、透明電極や対向電極の成膜 はいちばん最初に行われることになる。  [0030] Since the bonding is performed after forming all necessary layers, the transparent electrode and the counter electrode are formed first.
[0031] 金属や金属酸化物を成膜する際は、性能のよい膜とするために、堆積させるとき、 または成膜後に高いエネルギーを印加することが望まれる力、貼合法はそれを可能 にする一つの手段であると考えることもできる。つまり、貼合する際の接合面を有機層 同士にするとすれば、透明電極と対向電極はそれぞれ性能や生産性の面で最も相 応しい方法で予め成膜しておくことができる。その上に適宜有機層を積層して貼合し 、前記接合面での不具合さえ改善してやれば、性能的にも製造プロセス的にも良好 な革新的な方法になりうるものである。  [0031] When a metal or metal oxide film is formed, in order to obtain a film with good performance, a force that is desired to apply high energy when depositing or after film formation, the bonding method enables this. It can also be thought of as one way to do this. In other words, if the bonding surface for bonding is made of organic layers, the transparent electrode and the counter electrode can be formed in advance by a method most suitable for performance and productivity. If an organic layer is appropriately laminated thereon and bonded, and even the defect on the joint surface is improved, it can be an innovative method with good performance and manufacturing process.
[0032] 貼合法の問題点として、先に接合面での不具合を挙げた。この問題に対し鋭意検 討した結果、例えば、有機層同士を接合する際には、その接合界面でのキャリア移 動が面全体に均一ではなぐ局所的にキャリアが流れやすい部分と流れにくい部分 が出来やすいことが判ってきた。特に、有機層界面で発光する蛍光方式はその挙動 が顕著であり、発光ムラが起こりやすいことがわかった。一方、リン光方式は、蛍光方 式と異なり、発光層内部に発光領域を持っためか、比較的このような現象がおきにく ぐ特に、発光層の有機層全体における相対的な膜厚比率を上げたときや、発光層 の膜厚を厚くしたとき、また、発光層同士を接合し発光層を 2層としたときなどは、顕 微鏡観察でもわからないくらい発光ムラを押さえることが可能であることがわかった。 これは貼合法の最大の難点である接合界面でのキャリア移動が遅くなるという現象を 、逆に有効に活用した技術であり、今までに類をみないものであるといえる。  [0032] As a problem of the bonding method, the problem on the joint surface was mentioned earlier. As a result of diligent investigations on this problem, for example, when organic layers are bonded to each other, there are portions where carriers are likely to flow locally and difficult to flow, where carrier movement at the bonding interface is not uniform across the entire surface. I found it easy to do. In particular, the fluorescence method that emits light at the interface of the organic layer has a remarkable behavior, and it has been found that uneven light emission tends to occur. On the other hand, the phosphorescence method, unlike the fluorescence method, has a light-emitting region inside the light-emitting layer, and this phenomenon is relatively rare. In particular, the relative film thickness ratio of the entire organic layer of the light-emitting layer. When increasing the thickness of the light-emitting layer, increasing the thickness of the light-emitting layer, or joining the light-emitting layers to form two light-emitting layers, it is possible to suppress the light-emitting unevenness to the extent that even microscopic observation does not reveal it. I found out. This is a technology that effectively utilizes the phenomenon of slow carrier movement at the bonding interface, which is the biggest difficulty of the bonding method, and it can be said that it has never been seen before.
特許文献 1 :特開 2002— 203675号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-203675
特許文献 2:特開平 9 36667号公報  Patent Document 2: JP-A-9 36667
特許文献 3:特開 2004— 296148号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-296148
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0033] 本発明の目的は、貼合法による有機 EL素子の作製において、貼合された有機層 間の密着性を改善し、剥離等がなぐ接合界面間のキャリア移動が改善された、発光 ムラのない有機 EL素子を得ることにある。 [0033] An object of the present invention is to improve the adhesion between bonded organic layers in the production of an organic EL element by a bonding method, and to improve the carrier movement between bonding interfaces where peeling or the like is eliminated. The goal is to obtain an organic EL device without any problems.
課題を解決するための手段  Means for solving the problem
[0034] 本発明の上記課題は以下の手段により達成されるものである。 [0034] The object of the present invention is achieved by the following means.
[0035] 1.第一電極と第二電極の間に、少なくとも一層以上の有機層を有する有機エレクト 口ルミネッセンス素子において、前記有機エレクト口ルミネッセンス素子は、 第一基板上に、第一電極、少なくとも一層以上の有機層を有する有機エレクト口ルミ ネッセンス部材 Aと、 [0035] 1. An organic electroluminescent device having at least one organic layer between a first electrode and a second electrode, wherein the organic electroluminescent device is formed on a first substrate, at least a first electrode, An organic electrification member A having one or more organic layers;
第二基板上に、第二電極、少なくとも一層以上の有機層を有する有機エレクト口ルミ ネッセンス部材 Bとが、  On the second substrate, a second electrode, an organic electoluminescence member B having at least one organic layer, and
それぞれ有機層が向かいあうように貼合されたものであり、  Each of them is bonded so that the organic layers face each other,
かつ、前記有機エレクト口ルミネッセンス部材 Aの有機層と、前記有機エレクトロルミネ ッセンス部材 Bの有機層は、外気から遮断されるように基板の周囲が封止されること で貼合されており、  And the organic layer of the organic electoluminescence member A and the organic layer of the organic electroluminescence member B are bonded together by sealing the periphery of the substrate so as to be shielded from the outside air,
前記有機層が含まれる封止された部分の内圧と、外圧(大気圧)との圧力差が 50 lOOkPaであることを特徴とする有機エレクト口ルミネッセンス素子。  An organic electoluminescence device, wherein a pressure difference between an internal pressure of a sealed portion including the organic layer and an external pressure (atmospheric pressure) is 50 lOOkPa.
[0036] 2.第一電極と第二電極の間に、少なくとも一層以上の有機層を有する有機エレクト 口ルミネッセンス素子の製造方法において、第一基板上に、第一電極、少なくとも一 層以上の有機層を有する有機エレクト口ルミネッセンス部材 Aと、第二基板上に、第 二電極、少なくとも一層以上の有機層を有する有機エレクト口ルミネッセンス部材 Bと を、 [0036] 2. In the method of manufacturing an organic electroluminescent device having at least one organic layer between the first electrode and the second electrode, the first electrode and at least one organic layer are formed on the first substrate. An organic electroluminescent luminescence member A having a layer, and an organic electroluminescent luminescence member B having at least one organic layer on the second substrate,
外気から遮断した 0 50kPaの圧力下で、それぞれ有機層を向かいあうように密着し 、基板周囲を接着、封止して、有機エレクト口ルミネッセンス部材 A及び有機エレクト 口ルミネッセンス部材 Bを貼合することを特徴とする有機エレクト口ルミネッセンス素子 の製造方法。  Under pressure of 0 kPa that is cut off from the outside air, the organic layers are in close contact with each other, and the periphery of the substrate is adhered and sealed, and the organic electroluminescent luminescent member A and organic electroluminescent luminescent member B are bonded. A manufacturing method of an organic-elect mouth luminescence element characterized by the above.
[0037] 3.第一電極と第二電極の間に、少なくとも一層以上の有機層を有する有機エレクト 口ルミネッセンス素子の製造方法において、第一基板上に、第一電極、少なくとも一 層以上の有機層を有する有機エレクト口ルミネッセンス部材 Aと、第二基板上に、第 二電極、少なくとも一層以上の有機層を有する有機エレクト口ルミネッセンス部材 Bと を、それぞれの有機層を向かいあうように密着させ、 [0037] 3. An organic elect having at least one organic layer between the first electrode and the second electrode In the method for manufacturing an oral luminescence element, a first electrode on the first substrate, an organic electoluminescence member A having at least one organic layer, and a second electrode on the second substrate, at least one organic layer. The organic electroluminescent luminescence member B having a layer and the organic layers are brought into close contact with each other,
さらに、第二基板上に封止部材を積層し、  Furthermore, a sealing member is laminated on the second substrate,
外気から遮断した 0〜50kPaの圧力下で、  Under the pressure of 0-50kPa shut off from outside air,
第一の基板と封止部材の周囲を接着し、封止して、有機エレクト口ルミネッセンス部 材 A及び有機エレクト口ルミネッセンス部材 Bを貼合することを特徴とする有機エレクト 口ルミネッセンス素子の製造方法。  A method for producing an organic electoluminescence device comprising adhering and sealing the periphery of a first substrate and a sealing member, and bonding the organic electroluminescence device A and the organic electroluminescence device B .
[0038] 4.前記封止が、光硬化性接着剤により行われることを特徴とする前記 2または 3に 記載の有機エレクト口ルミネッセンス素子の製造方法。 [0038] 4. The method for producing an organic electoluminescence device according to 2 or 3, wherein the sealing is performed with a photocurable adhesive.
[0039] 5.予め前記第一基板または前記第二基板の少なくとも一方の有機層の周囲に光 硬化性接着剤が設置されており、 [0039] 5. A photo-curable adhesive is preliminarily disposed around at least one organic layer of the first substrate or the second substrate,
外気から遮断した 0〜50kPaの圧力下で、前記有機エレクト口ルミネッセンス部材 A の有機層と前記有機エレクト口ルミネッセンス部材 Bの有機層をそれぞれ向かいあうよ うに密着させ、  Under a pressure of 0 to 50 kPa cut off from the outside air, the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other,
第一の基板と第二の基板の少なくとも一方力も光を照射することで、前記光硬化性 接着剤を硬化させ接着、封止することを特徴とする前記 2に記載の有機エレクト口ルミ ネッセンス素子の製造方法。  3. The organic electoluminescence element according to 2, wherein the photocurable adhesive is cured, adhered, and sealed by irradiating light with at least one of the first substrate and the second substrate. Manufacturing method.
[0040] 6.予め前記第一基板または前記封止部材の少なくとも一方の有機層の周囲に光 硬化性接着剤が設置されており、 [0040] 6. A photo-curable adhesive is preliminarily disposed around at least one organic layer of the first substrate or the sealing member,
外気から遮断した 0〜50kPaの圧力下で、前記有機エレクト口ルミネッセンス部材 A の有機層と前記有機エレクト口ルミネッセンス部材 Bの有機層をそれぞれ向かいあうよ うに密着させ、  Under a pressure of 0 to 50 kPa cut off from the outside air, the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other,
第一の基板と封止部材の少なくとも一方力 光を照射することで、前記光硬化性接 着剤を硬化させ接着、封止することを特徴とする前記 3に記載の有機エレクトロルミネ ッセンス素子の製造方法。  4. The organic electroluminescent element according to 3 above, wherein the photocurable adhesive is cured, adhered, and sealed by irradiating at least one of the first substrate and the sealing member. Production method.
[0041] 7.前記封止が、熱融着性接着剤により行われることを特徴とする前記 2または 3に 記載の有機エレクト口ルミネッセンス素子の製造方法。 [0041] 7. In the above 2 or 3, wherein the sealing is performed with a heat-fusible adhesive. The manufacturing method of the organic electoluminescence device of description.
[0042] 8.予め前記第一基板または前記第二基板の少なくとも一方の有機層の周囲に熱 融着性接着剤が設置されており、 [0042] 8. A heat-fusible adhesive is previously installed around at least one organic layer of the first substrate or the second substrate,
外気から遮断した 0〜50kPaの圧力下で、前記有機エレクト口ルミネッセンス部材 A の有機層と前記有機エレクト口ルミネッセンス部材 Bの有機層をそれぞれ向かいあうよ うに密着させ、  Under a pressure of 0 to 50 kPa cut off from the outside air, the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other,
第一の基板と第二の基板の少なくとも周囲を加熱することで、前記熱融着性接着剤 を熱溶融させ接着、封止することを特徴とする前記 2に記載の有機エレクト口ルミネッ センス素子の製造方法。  3. The organic electroluminescence device according to 2 above, wherein at least the periphery of the first substrate and the second substrate is heated to melt and bond and seal the heat-fusible adhesive. Manufacturing method.
[0043] 9.予め前記第一基板または前記封止部材の少なくとも一方の有機層の周囲に熱 融着性接着剤が設置されており、 [0043] 9. A heat-fusible adhesive is previously installed around at least one organic layer of the first substrate or the sealing member,
外気から遮断した 0〜50kPaの圧力下で、前記有機エレクト口ルミネッセンス部材 A の有機層と前記有機エレクト口ルミネッセンス部材 Bの有機層をそれぞれ向かいあうよ うに密着させ、  Under a pressure of 0 to 50 kPa cut off from the outside air, the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other,
第一の基板と封止部材の少なくとも周囲を加熱することで、前記熱融着性接着剤を 熱溶融させ接着、封止することを特徴とする前記 3に記載の有機エレクト口ルミネッセ ンス素子の製造方法。  4. The organic electroluminescent mouth luminescence device according to 3 above, wherein at least the periphery of the first substrate and the sealing member is heated to thermally melt and bond and seal the heat-fusible adhesive. Production method.
[0044] 10.前記第一の基板及び第二の基板の少なくとも一方に防湿層を有することを特 徴とする前記 1に記載の有機エレクト口ルミネッセンス素子。  [0044] 10. The organic electroluminescent mouth luminescence device as described in 1 above, wherein a moisture-proof layer is provided on at least one of the first substrate and the second substrate.
[0045] 11.前記第一の基板及び第二の基板の少なくとも一方が防湿層を有することを特 徴とする前記 2〜9のいずれか 1項に記載の有機エレクト口ルミネッセンス素子の製造 方法。 [0045] 11. The method for producing an organic electroluminescence device according to any one of 2 to 9, wherein at least one of the first substrate and the second substrate has a moisture-proof layer.
[0046] 12.前記第一の基板及び第二の基板の少なくとも一方に吸湿部材を付与したこと を特徴とする前記 1に記載の有機エレクト口ルミネッセンス素子。  [0046] 12. The organic electoluminescence device according to 1 above, wherein a moisture absorbing member is provided on at least one of the first substrate and the second substrate.
[0047] 13.前記第一の基板及び第二の基板の少なくとも一方に吸湿部材を付与すること を特徴とする前記 2〜9のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子の 製造方法。 [0047] 13. The method for producing an organic electroluminescence device according to any one of 2 to 9, wherein a moisture absorbing member is applied to at least one of the first substrate and the second substrate. .
発明の効果 [0048] 本発明により、貼合法による有機 EL素子の作製において、有機層間の密着性がよ ぐ剥離等なぐ接合界面間のキャリア移動が改善され発光ムラのない有機 EL素子 を得ること力 Sでさる。 The invention's effect [0048] According to the present invention, in the production of an organic EL device by a bonding method, the carrier movement between the bonding interfaces, such as good adhesion between organic layers, is improved, and an organic EL device free from uneven light emission can be obtained. Monkey.
図面の簡単な説明  Brief Description of Drawings
[0049] 園 1]真空貼合装置を用いた有機 EL素子製造の一例を示す図である。  [0049] Fig. 1 is a diagram showing an example of manufacturing an organic EL element using a vacuum bonding apparatus.
園 2]真空貼合装置を用いたもう一つの有機 EL素子製造の例を示す図である。 園 3]吸湿部材を内部に配置した有機 EL素子の例を示す図である。  2] It is a diagram showing another example of manufacturing an organic EL element using a vacuum bonding apparatus. FIG. 3] A diagram showing an example of an organic EL element in which a hygroscopic member is arranged.
園 4]ロール貼合装置による有機 EL素子の製造例を示す図である。  4] A diagram showing an example of manufacturing an organic EL element by a roll bonding apparatus.
符号の説明  Explanation of symbols
[0050] 1 第一基板  [0050] 1 First substrate
2 第二基板  2 Second board
3 封止用部材  3 Sealing material
101 真空チャンバ一  101 Vacuum chamber
102 弾性部材  102 Elastic member
104 ヒータ  104 Heater
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0051] 以下本発明を実施するための最良の形態について詳細に説明するが本発明はこ れのみに限定されるものではない。  [0051] The best mode for carrying out the present invention will be described in detail below, but the present invention is not limited thereto.
[0052] 本発明は、貼合法による有機 EL素子の作製に関するものであり、 [0052] The present invention relates to production of an organic EL element by a bonding method,
第一電極と第二電極の間に、少なくとも一層以上の有機層を有する有機エレクトロル ミネッセンス素子の製造方法において、第一基板上に、第一電極、少なくとも一層以 上の有機層を有する有機エレクト口ルミネッセンス部材 Aと、第二基板上に、第二電 極、少なくとも一層以上の有機層を有する有機エレクト口ルミネッセンス部材 Bとを、 外気から遮断した 0〜50kPaの圧力下で、それぞれの有機層が向かいあうように密 着させ、基板周囲を接着、封止して、有機エレクト口ルミネッセンス部材 A及び有機ェ レクト口ルミネッセンス部材 Bとを貼合することを特徴とする有機エレクト口ルミネッセン ス素子の製造方法である。  In a method for manufacturing an organic electroluminescent element having at least one or more organic layers between a first electrode and a second electrode, an organic elect having a first electrode and at least one or more organic layers on a first substrate. The organic luminescence member A and the second electrode, the organic electoluminescence member B having at least one organic layer on the second substrate, are shielded from the outside air under the pressure of 0 to 50 kPa. Are bonded so that they face each other, and the periphery of the substrate is bonded and sealed, and the organic electroluminescent mouth luminescence member A and the organic electroluminescent mouth luminescence member B are bonded to each other. Is the method.
[0053] より具体的には、第一基板は例えば、例えばガラス基板であり、ガラス基板上に IT oからなる陽極 (第一電極)、更に正孔注入層、正孔輸送層、発光層、電子輸送層等 力、ら選ばれる有機 EL素子を構成すべき各有機層がこの層順で任意の層まで積層さ れたものであり、従ってこれが有機エレクト口ルミネッセンス部材 Aであり、有機 EL部 材 Aはこの場合陽極側部材となる。有機エレクト口ルミネッセンス部材 Aが陽極側部 材のとき、有機エレクト口ルミネッセンス部材 Bは陰極側部材となり、第二電極は陰極 であり、陰極上には少なくとも残りの層が陰極側からこの順で形成される。 [0053] More specifically, the first substrate is, for example, a glass substrate, and IT is placed on the glass substrate. The anode composed of o (first electrode), hole injection layer, hole transport layer, light emitting layer, electron transport layer, etc. Therefore, this is an organic-elect mouth luminescence member A, and the organic EL member A is an anode-side member in this case. When the organic-elect mouth luminescence member A is an anode side member, the organic-elect luminescence member B is a cathode-side member, the second electrode is a cathode, and at least the remaining layers are formed on the cathode in this order from the cathode side. Is done.
[0054] 例えば有機 EL部材 Aが陽極側部材であり、第一基板上に陽極から発光層まで形 成される場合、有機 EL部材 Bとして、第二の基板上の第二電極(陰極)上には、例え ば少なくとも電子注入層、電子輸送層までが形成される(陰極側部材)。  [0054] For example, when the organic EL member A is an anode side member and is formed from the anode to the light emitting layer on the first substrate, the organic EL member B is used as the second electrode (cathode) on the second substrate. For example, at least the electron injection layer and the electron transport layer are formed (cathode side member).
[0055] 有機層の積層構成については、電子阻止層、また正孔阻止層等、必要に応じて、 種々の有機層を適宜含んでいてもよぐ各基板上に形成される有機層の数は限定さ れず、貼合されたときに、有機 EL素子を構成する層順に従って構成されればよい。 従って、前記有機 EL素子各層のどの有機層を、それぞれの部材上に形成して、そ れぞれ有機 EL部材 A (又は陽極側部材)、有機 EL部材 B (又は陰極側部材)とする かは、有機層を構成する有機 EL材料等の性質、例えばガラス転移温度、融点、また 結晶構造等により、また、密着性等の観点で最も妥当なものを選択する。  [0055] Regarding the laminated structure of the organic layers, the number of organic layers formed on each substrate may include various organic layers as needed, such as an electron blocking layer and a hole blocking layer. Is not limited, and may be configured according to the order of layers constituting the organic EL element when bonded. Therefore, which organic layer of each layer of the organic EL element is formed on each member, and is used as the organic EL member A (or anode side member) or the organic EL member B (or cathode side member), respectively. The most appropriate material is selected from the viewpoints of properties such as the organic EL material constituting the organic layer, such as glass transition temperature, melting point, crystal structure, and adhesion.
[0056] また、各部材上に、同じ有機層を形成してもよぐ例えば、前記の場合、両方の部材 に発光層まで形成しても、発光層は貼合により一体化されるので構わない。  [0056] Further, the same organic layer may be formed on each member. For example, in the above case, even if the light emitting layer is formed on both members, the light emitting layer may be integrated by bonding. Absent.
[0057] 従って、本発明の有機 EL素子の作製方法によって形成される有機 EL素子は、第 一基板上に、第一電極、少なくとも一層以上の有機層を有する有機 EL部材 Aと、第 二基板上に、第二電極、少なくとも一層以上の有機層を有する有機 EL部材 Bとを、 外気から遮断した 0〜50kPaの圧力下(減圧下)において、それぞれの有機層同士 が向かいあうように密着させ、基板周囲を接着、封止して、有機エレクト口ルミネッセン ス部材 A及び有機エレクト口ルミネッセンス部材 Bとを貼合し、封止後に、大気圧に戻 すことで形成される。  Accordingly, the organic EL element formed by the method for producing an organic EL element of the present invention includes a first electrode, an organic EL member A having at least one organic layer on the first substrate, and a second substrate. On top of this, the second electrode, the organic EL member B having at least one organic layer, is brought into close contact with each other under pressure of 0 to 50 kPa (under reduced pressure) shut off from the outside air. It is formed by adhering and sealing the periphery of the substrate, adhering the organic-elect mouth luminescence member A and the organic-elect luminescence member B, and returning to atmospheric pressure after sealing.
[0058] 減圧下 (例えば lOkPa)で封止(有機層部を密閉)することにより、これを大気中(大 気圧中)に戻すと、第一、第二基板は、大気圧に押されて、第一基板、第二基板、そ して封止部により形成される有機層を含む密閉空間の容積はやや収縮することで、 封止空間内の気体 (例えば空気)の残り方によっては、大気圧に戻したときの、内圧 がやや変わる(大気圧に押されて、内容積が変わるので一般に気圧が少し上昇(〜5 OkPa)する)ものの、減圧での封止によって、充分減圧が保たれることで有機層同士 が大気圧との差分の圧力を均一に受けることができこれにより有機層同士を均一に 貼合することが出来る。 [0058] When this is returned to the atmosphere (at atmospheric pressure) by sealing under reduced pressure (eg, lOkPa) (sealing the organic layer), the first and second substrates are pushed to atmospheric pressure. The volume of the sealed space including the first substrate, the second substrate, and the organic layer formed by the sealing portion is slightly shrunk, Depending on how the gas (for example, air) remains in the sealed space, the internal pressure changes slightly when it is returned to atmospheric pressure (in general, the atmospheric pressure increases slightly because it is pushed by atmospheric pressure and the internal volume changes). However, if the pressure is sufficiently reduced by sealing under reduced pressure, the organic layers can be uniformly subjected to a differential pressure from the atmospheric pressure, thereby bonding the organic layers uniformly. I can do it.
[0059] 従って、本発明の方法により作製された、減圧条件下で有機 EL部材 Aと有機 EL部 材 Bが貼合された有機 EL素子は、前記有機層が含まれる封止空間部分の内圧と、 外圧(大気圧)との圧力差が— 50〜― lOOkPaの範囲にある(即ち内圧が低!/、)有機 EL素子である。  [0059] Therefore, the organic EL element produced by the method of the present invention, in which the organic EL member A and the organic EL member B are bonded under reduced pressure, has an internal pressure in the sealed space portion containing the organic layer. And an external pressure (atmospheric pressure) in the range of −50 to −lOOkPa (that is, the internal pressure is low! /).
[0060] 本発明の方法によれば、このような貼合時の真空度の調整により最終的な内圧の 制御を行って貼合圧を制御できることと、真空で貼合封止すると常に (大気圧 内圧 )の圧を面に均一に、非接触で加えることができるため、安定した貼合素子を得られ る。機械的圧着では均一に圧を加えることが難しい。  [0060] According to the method of the present invention, the final pressure can be controlled by adjusting the degree of vacuum at the time of bonding, and the bonding pressure can be controlled. Since a pressure of atmospheric pressure (internal pressure) can be applied uniformly to the surface in a non-contact manner, a stable bonding element can be obtained. It is difficult to apply pressure uniformly by mechanical pressure bonding.
[0061] 特に機械的(物理的)に圧を加えることが難しいフレキシブル素子においては有利 である。  [0061] In particular, it is advantageous in a flexible element in which it is difficult to apply pressure mechanically (physically).
[0062] また、貼合と同時に封止することができるという利点を得ることができる。  [0062] Further, it is possible to obtain an advantage that sealing can be performed simultaneously with bonding.
[0063] 以下に、本発明の貼合法による有機 EL素子の製造方法について図を用いて詳細 に説明する。  [0063] Hereinafter, a method for producing an organic EL element by the bonding method of the present invention will be described in detail with reference to the drawings.
[0064] 図 1は、真空貼合装置を用いた本発明の有機 EL素子製造の一例を示す。  FIG. 1 shows an example of manufacturing the organic EL element of the present invention using a vacuum bonding apparatus.
[0065] 図 1 (a)は、第 1基板 1上に第 1電極 11、及び有機層 12が形成された有機 EL部材 A及び第二基板上に第 2電極 21、及び有機層 22が形成された有機 EL部材 Bをそ れぞれ示した。有機 EL部材 Aは例えば陽極基板、また、有機 EL部材 Bは陰極基板 を表す。従って第一電極 11は ITO電極、有機層 12は、例えば、正孔輸送層、発光 層であり、第二電極は例えば、アルミニウムからなる陰極、また有機層 22は、例えば 電子輸送層である。これら二つの基板を貼合することで、最終的に、第一基板 (第一 電極)と第二基板 (第二電極)の間に、少なくとも一層以上の有機層(この場合、陽極 側から、正孔輸送層、発光層、電子輸送層、陰極という構成をもつ)を有する有機ェ レクト口ルミネッセンス素子が得られる。 [0066] 貼合する有機層(接合層)としては、有機 EL素子を構成する機能層のいずれでもよ ぐ例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等のいず れでもよい。 FIG. 1 (a) shows an organic EL member A in which a first electrode 11 and an organic layer 12 are formed on a first substrate 1 and a second electrode 21 and an organic layer 22 formed on a second substrate. Each of the organic EL members B was shown. The organic EL member A represents, for example, an anode substrate, and the organic EL member B represents a cathode substrate. Accordingly, the first electrode 11 is an ITO electrode, the organic layer 12 is, for example, a hole transport layer and a light emitting layer, the second electrode is, for example, a cathode made of aluminum, and the organic layer 22 is, for example, an electron transport layer. By laminating these two substrates, finally, at least one or more organic layers (in this case, from the anode side) between the first substrate (first electrode) and the second substrate (second electrode) An organic electroluminescent device having a structure of a hole transport layer, a light emitting layer, an electron transport layer, and a cathode is obtained. [0066] The organic layer (bonding layer) to be bonded may be any of the functional layers constituting the organic EL element. For example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer Any of these may be used.
[0067] 図 1 (b)は封止 (接着)の為に第一基板上の有機層周辺に封止材 (接着剤) Sを設 置したところである、接着剤としては、熱融着性または熱硬化性接着剤を塗設しても ょレ、し、また熱硬化性接着シート等を用いてこれを周囲に配置してもよレ、。  [0067] Fig. 1 (b) shows a sealing material (adhesive) S placed around the organic layer on the first substrate for sealing (adhesion). Alternatively, you can apply a thermosetting adhesive, or place it around using a thermosetting adhesive sheet.
[0068] また、光硬化性接着剤を用いてもよい。光硬化性接着剤を用いるときは第一基板ま たは第二基板側から光 (紫外線)を照射できるように光源を真空貼合装置中に備える ことが好ましい。  [0068] Further, a photo-curable adhesive may be used. When using a photocurable adhesive, it is preferable to provide a light source in the vacuum bonding apparatus so that light (ultraviolet rays) can be irradiated from the first substrate or the second substrate side.
[0069] 図 1 (b)では、有機 EL部材 Aの第一基板上、有機層周囲に熱硬化性接着シートを 配置したのち、これに有機 EL部材 Aを有機層同士対向するように密着積層して、仮 貼合する。  [0069] In FIG. 1 (b), a thermosetting adhesive sheet is disposed around the organic layer on the first substrate of the organic EL member A, and then the organic EL member A is adhered and laminated so that the organic layers face each other. Then, temporarily paste.
[0070] ここでは第一基板周囲に熱硬化性シートを配置した力 第二基板上であってもよい し、また、両方の基板に配置してもよい。  [0070] Here, the force of disposing a thermosetting sheet around the first substrate may be on the second substrate, or may be disposed on both substrates.
[0071] 次いで、熱硬化性シートを配置した第一電極 11、有機層 12を有する第一基板 1、 及び同じく第二電極 21、有機層 22を有する第二基板 2を有機層 12及び 22同士が 対向し積層された積層体は、図 1 (c)に示す真空貼合装置の真空チャンバ一 101中 に載置される。図 1 (c)で示される本発明に係わる真空貼合装置は、貼合しようとする 有機 EL部材 A及び Bを載置する真空チャンバ一(架台含む) 101及び積層された有 機 EL部材 A及び Bに押圧を加え、これを固定密着させる弾性部材 102、これを駆動 するシリンダ 103、また、熱硬化性接着剤シートと略同一の形状に、基板の周囲、有 機層の周囲を取り囲むように配置されたヒータ 104を備えている。ヒータ 104もまた、 これもシリンダ 105を備え、シリンダの動作によりヒータを基板の背面から接着剤シー トを加熱圧着できる機構を有している。また、真空チャンバ一は図示されていない減 圧装置によって、排気が可能であり、また密閉して真空チャンバ一を外気から遮断出 来る構造となっている。  [0071] Next, the first electrode 11 on which the thermosetting sheet is disposed, the first substrate 1 having the organic layer 12, and the second substrate 21 having the second electrode 21 and the organic layer 22 are connected to the organic layers 12 and 22 with each other. The laminated body facing each other is placed in the vacuum chamber 101 of the vacuum bonding apparatus shown in FIG. 1 (c). The vacuum bonding apparatus according to the present invention shown in FIG. 1 (c) includes a vacuum chamber (including a frame) 101 on which organic EL members A and B to be bonded are placed, and a laminated organic EL member A. The elastic member 102 that applies pressure to B and B, and fixes them tightly, the cylinder 103 that drives them, and the shape of the thermosetting adhesive sheet so as to surround the periphery of the substrate and the organic layer A heater 104 is provided. The heater 104 is also provided with a cylinder 105, and has a mechanism that allows the heater to be heat-bonded to the adhesive sheet from the back surface of the substrate by the operation of the cylinder. Further, the vacuum chamber 1 can be evacuated by a pressure reducing device (not shown), and is sealed so that the vacuum chamber 1 is shut off from the outside air.
[0072] 二つの部材に押圧を加えて密着させ、二つの部材間の気体を逃すための弾性部 材 102としては、シリコンゴム、シリコンスポンジ等の耐熱性の弾性体で表面層を形成 したプレート等が用いられる。 [0072] The elastic member 102 that presses the two members into close contact to release gas between the two members and forms a surface layer with a heat-resistant elastic body such as silicon rubber or silicon sponge. Plate or the like is used.
[0073] また、ヒータ 104としては、例えば、通電により加熱を行える、基板の周囲、有機層 の周囲を取り囲むような所定の形状で配置されたヒートブロックであり、シリンダの駆 動により、部材背面から所定の時間圧着することが可能となっている。  [0073] The heater 104 is, for example, a heat block that can be heated by energization and is arranged in a predetermined shape surrounding the periphery of the substrate and the organic layer. It is possible to perform pressure bonding for a predetermined time.
[0074] 有機 EL部材 Aと有機 EL部材 Bが積層され、真空チャンバ一 101中に載置されると 、次に、シリンダ 103の駆動により弾性部材 102が所定の圧力で第二基板の背面に 押し当てられ、第一基板上の有機層 12と第二基板上の有機層 22は密着、固定され る(図 l (d) )。  [0074] When the organic EL member A and the organic EL member B are laminated and placed in the vacuum chamber 101, the elastic member 102 is then applied to the back surface of the second substrate with a predetermined pressure by driving the cylinder 103. When pressed, the organic layer 12 on the first substrate and the organic layer 22 on the second substrate are brought into close contact and fixed (FIG. 1 (d)).
[0075] 次は、真空チャンバ一 101を閉じて、これを外気から遮断し、減圧に、即ち 0〜50k Paの圧力まで排気する工程である(図 1 (e) )。この段階で、有機層近傍、有機層界 面内は真空チャンバ一 101内と同じ圧力になる。  [0075] Next, the vacuum chamber 101 is closed, shut off from the outside air, and evacuated to a reduced pressure, that is, a pressure of 0 to 50 kPa (FIG. 1 (e)). At this stage, the pressure in the vicinity of the organic layer and in the organic layer interface is the same as that in the vacuum chamber 101.
[0076] 図 1 (f)は、次の工程で、この外気から遮断した状態で、ヒータ 104を、シリンダ 105 を駆動して降下させ、基板同士が、硬化接着するのに必要なエネルギーを付与する ためにこれを背面に圧着して、加熱を行う、封止材 Sとして熱硬化接着性シートを用 いる場合、温度は 50〜; 100°Cの範囲、また圧力としては 0. 05-0. 20MPa程度で 、;!〜 10秒間程度保持すればよい。  [0076] FIG. 1 (f) shows the next step in which the heater 104 is lowered by driving the cylinder 105 in a state of being cut off from the outside air, and the energy necessary for the substrates to be cured and bonded is applied. In order to do this, pressure is applied to the back side and heating is performed. When a thermosetting adhesive sheet is used as the sealing material S, the temperature is 50 to 100 ° C, and the pressure is 0.05 to 0. Hold at about 20MPa;! ~ 10 seconds.
[0077] これにより第一基板、及び第二基板は、熱硬化性シートにより接着し、有機 EL素子 は、封止、貼合される。  [0077] Thereby, the first substrate and the second substrate are bonded by the thermosetting sheet, and the organic EL element is sealed and bonded.
[0078] 勿論接着は、後述する熱硬化性接着剤、または光硬化性接着剤等を用いてもよ!/、 [0078] Of course, the bonding may be performed by using a thermosetting adhesive or a photocurable adhesive described later! /,
Yes
[0079] 所定の加熱により基板周囲を接着、封止したのち、次いでシリンダ 105、及び 103 の駆動により、ヒータ 104及び弾性部材 102は引き上げられて元の位置に戻され、更 に真空チャンバ一 101の減圧が解除されて(図 1 (g) )、有機 EL素子の封止、貼合が 終了する。  [0079] After adhering and sealing the periphery of the substrate by predetermined heating, the heaters 104 and the elastic member 102 are then pulled back to their original positions by driving the cylinders 105 and 103, and further, the vacuum chamber 1 The release of the pressure is released (Fig. 1 (g)), and the sealing and bonding of the organic EL element is completed.
[0080] 図 1 (f)の状態では、二つの基板及び封止材によって遮断された封止空間 Pは真空 チャンバ一と同じ真空度を有している力 真空チャンバ一の減圧が解除され周囲の 圧が上昇すると、この封止空間 Pの減圧度は、その封止空間の容積等の因子により 稍異なりはするものの、少し上昇するが、基本的には、この上昇は僅かであり、外圧と 封止空間との大きな圧力差が維持され、これによつて第一基板上の有機層、第二基 板上の有機層の密着が均一、かつ緊密に行われる。 [0080] In the state of Fig. 1 (f), the sealing space P blocked by the two substrates and the sealing material has the same degree of vacuum as that of the vacuum chamber. When the pressure increases, the degree of decompression of the sealed space P slightly increases depending on factors such as the volume of the sealed space, but basically the increase is slight, and the external pressure When A large pressure difference with the sealed space is maintained, whereby the organic layer on the first substrate and the organic layer on the second substrate are adhered uniformly and tightly.
[0081] 本発明においては、減圧下(例えば lOkPa)で有機 EL素子を封止(有機層部を密 閉)するため、例えば、図 1 (f)の状態では、二つの基板及び封止材料によって遮断 された封止空間 Pは真空チャンバ一と同じ真空度を有している力 S、大気中に戻すこと で、減圧下で封止する際に、有機層の密閉空間内の気体 (例えば空気)の残り方に よって、大気圧に戻したとき、大気圧に押されて内容積が変わるので、内圧が変わり 一般に気圧が少し上昇するものの(例えば、〜50kPa)、前記有機層が含まれる封止 空間部分の内圧と、外圧(大気圧)との圧力差は—50 lOOkPaの範囲にあり、基 本的には、大気圧とのこの差圧により第一、第二基板が均一に押され密着されるの で、有機層間のキャリア移動に好ましい密着状態を得ることが出来る。  In the present invention, in order to seal the organic EL element under reduced pressure (for example, lOkPa) (the organic layer portion is sealed), for example, in the state of FIG. 1 (f), two substrates and a sealing material are used. The sealed space P blocked by the pressure S has the same degree of vacuum as that of the vacuum chamber S. By returning it to the atmosphere, when sealing under reduced pressure, the gas in the sealed space of the organic layer (for example, When the pressure is returned to atmospheric pressure due to the remaining air), the internal volume changes by being pushed to atmospheric pressure, so the internal pressure changes and generally the atmospheric pressure increases slightly (for example, ~ 50kPa), but the organic layer is included. The pressure difference between the internal pressure of the sealed space and the external pressure (atmospheric pressure) is in the range of -50 lOOkPa. Basically, the first and second substrates are uniformly pressed by this differential pressure from the atmospheric pressure. Therefore, it is possible to obtain a preferable adhesion state for carrier movement between organic layers.
[0082] 図 1 (h)は取り出した有機 EL素子の断面図及びこれを上面から見た図を示す。有 機層周囲に配置された封止材 (接着剤或いは接着シート)により基板同士が接着さ れ有機層同士が貼合されて有機 EL素子が封止、形成されている。  FIG. 1 (h) shows a cross-sectional view of the extracted organic EL device and a view of the organic EL device viewed from above. The substrates are bonded to each other by a sealing material (adhesive or adhesive sheet) disposed around the organic layer, and the organic layers are bonded to form an organic EL element.
[0083] また、上記製造において、真空中における、熱硬化性接着シートによる接着、封止 においては、一度に周囲を接着するよりも、基板上に配置された熱硬化性シートの予 め対向する一対の辺を熱により圧着して接着した後、残り一対の辺を接合、閉塞して 封止することが、均一な圧着を行う上で好ましい。  [0083] Further, in the above production, in the bonding and sealing with a thermosetting adhesive sheet in a vacuum, the thermosetting sheets arranged on the substrate are opposed to each other rather than bonding the periphery at once. It is preferable that the pair of sides are bonded by heat and bonded, and then the remaining pair of sides are bonded, closed, and sealed for uniform bonding.
[0084] この為には、ヒータは、少なくとも一対の辺毎に個別のシリンダで駆動できるように することが好ましい。  [0084] For this purpose, it is preferable that the heater can be driven by an individual cylinder at least for each pair of sides.
[0085] これらの貼合封止プロセスにおいて、第一基板及び、第二基板は共にガラス製基 板でもよいが、少なくとも一方はフレキシブルな基板であることが好ましぐ上記にお V、て、第一基板をガラス製基板とし第二基板をフレキシブルなフィルムとすることで、 非接触で、より均一に貼合すべき有機層間に、圧を加えることができ、均一な密着、 貼合、封止を行うことができる。  [0085] In these bonding and sealing processes, both the first substrate and the second substrate may be glass substrates, but it is preferable that at least one of them is a flexible substrate. By making the first substrate a glass substrate and the second substrate a flexible film, pressure can be applied between the organic layers to be bonded more uniformly without contact, and even adhesion, bonding, sealing Can be stopped.
[0086] また、前記の真空貼合装置は、第一基板、第二基板の少なくとも一方、例えば、図 1の場合においては、第二基板をフレキシブル基板(例えばプラスチックフィルムから なる基材)とすれば、第二基板を、帯状に連続供給して(図 1の平面に向かって例え ば左から、右に)、個別に形成された第一基板上に電極、有機層を形成した有機 EL 部材 Aと、順次貼合、封止を行って、有機 EL素子を形成することが出来る。 [0086] Further, in the vacuum bonding apparatus, at least one of the first substrate and the second substrate, for example, in the case of FIG. 1, the second substrate is used as a flexible substrate (for example, a base material made of a plastic film). For example, the second substrate is continuously supplied in a strip shape (for example, toward the plane of FIG. (From left to right), an organic EL element can be formed by sequentially bonding and sealing the organic EL member A with an electrode and organic layer formed on a separately formed first substrate. .
[0087] このように、第一基板、第二基板の少なくとも一方を帯状フレキシブル基板とするこ とで、これを連続供給して有機 EL素子の生産性を向上させることが出来る。  As described above, by using at least one of the first substrate and the second substrate as a strip-shaped flexible substrate, this can be continuously supplied to improve the productivity of the organic EL element.
[0088] 本発明においては、第一基板又は第二基板の少なくとも一方に防湿層を有するこ と力 封止の効果を持続させる上で好ましい。  [0088] In the present invention, it is preferable to have a moisture-proof layer on at least one of the first substrate and the second substrate in order to maintain the force sealing effect.
[0089] 防湿層としては、水蒸気、酸素等、ガスバリア性を有する材料で構成される層であ れば、限定されないが、例えば、酸化ケィ素、酸化アルミニウム等のセラミック蒸着層 、また、これらのセラミック層と衝撃緩和ポリマー層を交互に積層した構成を有する防 湿層、また、金属箔、例えば銅(Cu)箔、アルミニウム (A1)箔、等のラミネート層(6〜 50 111厚)等があげられ、これらの防湿層を第一電極或いは第二電極層の有機層と 反対側(外側)に有することが好ましレ、。  [0089] The moisture-proof layer is not limited as long as it is a layer composed of a material having gas barrier properties such as water vapor, oxygen, etc. For example, a ceramic vapor-deposited layer such as silicon oxide and aluminum oxide, and these Moisture-proof layers with a structure in which ceramic layers and impact-relieving polymer layers are laminated alternately, and metal foils such as laminate layers (6 to 50 111 thickness) of copper (Cu) foil, aluminum (A1) foil, etc. It is preferable to have such a moisture-proof layer on the opposite side (outside) of the organic layer of the first electrode or the second electrode layer.
[0090] それには、これらの防湿層を有するフィルムを基板として用いればよぐこれら防湿 層を有するフィルムとして、代表的には、例えば、 PETフィルム等の樹脂フィルム基材 (10〜200 111)上に上記セラミック層を蒸着形成したもの、また、金属箔等に、例え ばポリエチレン系樹脂フィルムをラミネートしたもの等があげられる。  [0090] For this purpose, a film having these moisture-proof layers may be used as a substrate. Typically, as a film having these moisture-proof layers, for example, on a resin film substrate (10 to 200 111) such as a PET film. In addition, the above ceramic layer is formed by vapor deposition, or a metal foil or the like is laminated with a polyethylene resin film.
[0091] 蒸着層を有するフィルムとしては、酸化ケィ素、酸化アルミニウム等を蒸着した樹脂 フィルムが上巿されており、例えば凸版印刷製 GXフィルム等を入手することができる 。また、金属箔の片面をポリマー膜でコーティングした金属ラミネートフィルムは、包装 材用に市販されている。例えば、接着剤層/アルミフィルム 9 m/ポリエチレンテレ フタレート(PET) 38 11 mの構成のドライラミネートフィルム(接着剤層としては 2液反 応型のウレタン系接着剤、厚みは 1 · 5 m)がある。  [0091] As the film having the vapor deposition layer, a resin film on which vapor deposition of silicon oxide, aluminum oxide or the like is deposited is available. For example, a letterpress printing GX film can be obtained. In addition, a metal laminate film in which one side of a metal foil is coated with a polymer film is commercially available for packaging materials. For example, a dry laminate film (adhesive layer / aluminum film 9 m / polyethylene terephthalate (PET) 38 11 m) (a two-component urethane adhesive with an adhesive layer thickness of 1.5 m) is used. is there.
[0092] 従って、これらを、基板、基材のいずれ力、として用いることで、防湿層を組み込むこ とが出来、封止による防湿効果を向上させることが出来る。  [0092] Therefore, by using these as any force of the substrate and the base material, a moisture-proof layer can be incorporated, and the moisture-proof effect by sealing can be improved.
[0093] 本発明の貼合による有機 EL素子のもう一つの製造例を図 2に基づいて示す。  [0093] Another production example of an organic EL device by bonding according to the present invention is shown based on FIG.
[0094] 図 2 (a)は、前記同様に第一電極 11、有機層 12を有する第一基板(有機 EL部材 A )及び第二電極 21、有機層 22を有する第二基板(有機 EL部材 B)をそれぞれ示して いる。図 2 (b)は、有機 EL部材 Aの有機層の周囲に、封止材 Sとして熱硬化性接着シ ートを配置して、有機 EL部材 A及び有機 EL部材 Bを、互いにそれぞれの有機層同 士を対向させ積層し、更に、有機 EL部材 Bの第二基板の、有機層の反対側(外側) 力 封止部材 3を積層し、仮貼合したところを示す。 FIG. 2 (a) shows a first substrate (organic EL member A) having the first electrode 11 and the organic layer 12 and a second substrate (organic EL member having the second electrode 21 and the organic layer 22 in the same manner as described above. B) is shown respectively. Figure 2 (b) shows a thermosetting adhesive sheet as the sealing material S around the organic layer of the organic EL member A. The organic EL member A and the organic EL member B are laminated with the respective organic layers facing each other, and the second substrate of the organic EL member B is opposite to the organic layer (outside). ) Force The sealing member 3 is laminated and temporarily bonded.
[0095] 封止用部材 3は、水蒸気また酸素等ガスバリア性の高いフレキシブルなプラスチッ クシート乃至フィルムである。前記の防湿層を有する樹脂フィルムが好ましい。例えば 、凸版印刷製の GXフィルム等の PETを基材とした蒸着フィルム等が挙げられる。  [0095] The sealing member 3 is a flexible plastic sheet or film having a high gas barrier property such as water vapor or oxygen. A resin film having the moisture-proof layer is preferred. For example, a vapor deposition film using PET as a base material, such as a GX film manufactured by Toppan Printing, can be mentioned.
[0096] 第一基板をガラス等のガスノ リア性基材で構成すれば、このような封止用部材 3を 用いることで、有機 EL素子を外気から効率よく封止して水蒸気や酸素等の劣化性ガ スの影響を抑えることが出来る。  [0096] If the first substrate is made of a gas-noble base material such as glass, by using such a sealing member 3, the organic EL element can be efficiently sealed from the outside air, such as water vapor and oxygen. The influence of degradable gas can be suppressed.
[0097] 次いで、熱硬化性接着シートを配置した、第一電極 11、有機層 12を有する第一基 板 1、及び同じく第二電極 21、有機層 22を有する第二基板 2、そして封止用部材 3を 積層、仮貼合したものを、図 1 (c)で示したものと同じ真空貼合装置の真空チャンバ 一 101中に載置する(図 2 (c) )。  [0097] Next, a first electrode 11, a first substrate 1 having an organic layer 12, and a second electrode 21, a second substrate 2 having an organic layer 22, and a sealing, on which a thermosetting adhesive sheet is disposed The material 3 laminated and temporarily bonded is placed in the vacuum chamber 101 of the same vacuum bonding apparatus as shown in FIG. 1 (c) (FIG. 2 (c)).
[0098] 真空貼合装置は、貼合しようとする有機 EL部材 A及び有機 EL部材 Bの積層体を 載置する真空チャンバ一(架台含む) 101及び押圧用の弾性部材 102、これを駆動 するシリンダ 103を備えている。弾性部材はシリコンゴム、シリコンスポンジの様な弹 性のある材料で表面が構成された押圧板であり、シリンダ 103は、該シリンダにより弹 性部材 102を昇降させ、これにより積層体を裏面から圧着、積層体間の気体を押し 逃がし、また、積層体を架台との間に密着固定することができる。  [0098] The vacuum bonding apparatus drives a vacuum chamber 101 (including a frame) on which a laminate of the organic EL member A and the organic EL member B to be bonded is placed and an elastic member 102 for pressing. A cylinder 103 is provided. The elastic member is a pressing plate whose surface is made of a material having elasticity such as silicon rubber or silicon sponge. The cylinder 103 is moved up and down by the cylinder, thereby pressing the laminated body from the back surface. In addition, the gas between the stacked bodies can be released and the stacked body can be tightly fixed between the stacks.
[0099] また、封止材 S (熱硬化性接着剤シート)と略同一の形状に、有機層の周囲を取り囲 むように配置されたヒータ 104が備えられている。ヒータ 104もまた、シリンダ 105を備 え、該シリンダによりヒータを昇降させ、封止用部材裏面にヒータを圧着して、加熱で きる機能を備えている。また、真空チャンバ一 101は、密閉した後、図示されていない 減圧装置によって排気が可能であり、真空チャンバ一を外気から遮断して減圧に出 来る構造となっている。  [0099] In addition, a heater 104 is provided in substantially the same shape as the sealing material S (thermosetting adhesive sheet) so as to surround the periphery of the organic layer. The heater 104 also includes a cylinder 105, and has a function of heating by moving the heater up and down by the cylinder and pressing the heater against the back surface of the sealing member. Further, the vacuum chamber 101 can be evacuated by a decompression device (not shown) after being sealed, and has a structure in which the vacuum chamber 1 is shut off from the outside air to come to decompression.
[0100] 封止用部材 3と積層されて有機 EL部材 A及び有機 EL部材 Bは、真空チャンバ一 1 01中に載置されると(図 2 (c) )、次に、シリンダ 103の駆動により弾性部材 102が降 下して、所定の圧力で第二基板の背面に積層された封止用部材 3の背面に押し当 てられ、第一基板上の有機層 12と第二基板上の有機層 22が密着されたまま固定さ れる(図 2 (d) )。 [0100] When the organic EL member A and the organic EL member B laminated with the sealing member 3 are placed in the vacuum chamber 1101 (FIG. 2 (c)), the cylinder 103 is then driven. As a result, the elastic member 102 is lowered and pressed against the back surface of the sealing member 3 laminated on the back surface of the second substrate with a predetermined pressure. Thus, the organic layer 12 on the first substrate and the organic layer 22 on the second substrate are fixed in contact with each other (FIG. 2 (d)).
[0101] 次に、真空チャンバ一 101は閉じられて、外気から遮断され、 0〜50kPaの圧力ま で排気される(図 2 (e) )。この段階で、有機層近傍、有機層界面内は真空チャンバ一 内と同じ圧力となっている。  [0101] Next, the vacuum chamber 101 is closed, shut off from the outside air, and evacuated to a pressure of 0 to 50 kPa (FIG. 2 (e)). At this stage, the pressure in the vicinity of the organic layer and in the organic layer interface is the same as that in the vacuum chamber.
[0102] この外気から遮断され、真空度が 0〜50kPaに維持された状態で、次に、シリンダ 1 05を駆動して、ヒータ 104を降下させて、封止用部材 3の背面から封止材 S (熱硬化 性接着シート)を加熱、圧着して硬化接着に必要なエネルギーを付与する(図 2 (f) ) 。熱硬化性接着シートを用いる場合、温度は 50〜100°Cの範囲、また圧力としては 0 . 05-0. 20Pa、又時間は 1〜; 10秒程度でよい。この工程により、有機 EL部材 A及 び有機 EL部材 Bの有機層同士が密着した状態で、封止用部材 3と第一基板が熱硬 化性接着シートにより接着される。  [0102] With this air shut off and the degree of vacuum maintained at 0 to 50 kPa, the cylinder 105 is then driven to lower the heater 104 and seal from the back of the sealing member 3 Material S (thermosetting adhesive sheet) is heated and pressed to give the energy required for curing (Fig. 2 (f)). When a thermosetting adhesive sheet is used, the temperature may be in the range of 50 to 100 ° C., the pressure may be 0.05 to 0.20 Pa, and the time may be 1 to 10 seconds. By this step, the sealing member 3 and the first substrate are bonded by the thermosetting adhesive sheet in a state where the organic layers of the organic EL member A and the organic EL member B are in close contact with each other.
[0103] 封止材による接合、接着は、基板周囲の予め対向する一対の辺を接合してから、 減圧下で残り一対の辺を接合、閉塞することが有機層間の密着を向上させる観点で 好ましぐヒータブロックをこのように別に駆動できるようにしておき、 2段階で接着する ことは好ましい。  [0103] From the viewpoint of improving the adhesion between the organic layers, bonding with a sealing material is performed by bonding a pair of opposite sides around the substrate in advance and then bonding and closing the remaining pair of sides under reduced pressure. It is preferable to bond the heater block in two stages so that the preferred heater block can be driven separately in this way.
[0104] いずれにしても、ヒータ 104の圧着、加熱により封止用部材 3と第一基板との接着で 封止が行われ、同時に有機 EL部材 A及び有機 EL部材 Bの有機層同士が密着、貼 合された有機 EL素子が形成される。  In any case, sealing is performed by bonding the sealing member 3 and the first substrate by pressure bonding and heating of the heater 104, and the organic layers of the organic EL member A and the organic EL member B are in close contact with each other at the same time. A bonded organic EL element is formed.
[0105] 次いでシリンダ 103、 105を駆動して、弾性部材 102、ヒータ 104を上昇させ、それ ぞれ元の位置にまで戻したのち、更に減圧を解除して(図 2 (g) )、有機 EL素子の封 止、貼合は完了する。 [0105] Next, the cylinders 103 and 105 are driven to raise the elastic member 102 and the heater 104. After returning to their original positions, the decompression is released (Fig. 2 (g)), and The EL element is sealed and bonded.
[0106] 図 2 (h)は取り出した有機 EL素子の断面図及びこれを上面から見た図を示す。有 機層周囲に配置された接着剤により基板同士が接着され有機層同士が貼合されて 有機 EL素子が封止、形成されている。  [0106] Fig. 2 (h) shows a cross-sectional view of the extracted organic EL device and a view of the organic EL device viewed from above. The organic EL elements are sealed and formed by bonding the substrates together and bonding the organic layers together with an adhesive placed around the organic layer.
[0107] 封止用部材としては、例えば金属蒸着フィルムのようなフレキシブルなガスバリア性 樹脂フィルムを用いることができ、第一基板が、例え、ガラス等の剛直な基板であって も均一な圧が有機層間に適用されるため、より有機層間の密着がよぐ貼合した層間 でのキャリア移動にムラが少なぐ均一な素子が得られる。また、封止用部材は連続 供給することが出来るために、素子の連続生産性にも優れる。 [0107] As the sealing member, for example, a flexible gas barrier resin film such as a metal vapor-deposited film can be used. Even when the first substrate is a rigid substrate such as glass, a uniform pressure is applied. Because it is applied between organic layers, the layers between the layers that have better adhesion between the organic layers As a result, a uniform element with less unevenness in the movement of the carrier can be obtained. In addition, since the sealing member can be continuously supplied, the continuous productivity of the element is also excellent.
[0108] 第一の基板上に形成した第 1の有機層と第二の基板上に形成した第 2の有機層と をより、均一に貼り合わせるために弾性部材により圧着した状態で加熱処理を行うこ とも好ましい。加熱方法としては、弾性部材に加温機能を付与、また、真空チャンバ 一に備えられた架台にヒータを付与 (ホットプレート)してもよい。  [0108] In order to more uniformly bond the first organic layer formed on the first substrate and the second organic layer formed on the second substrate, heat treatment is performed in a state where the elastic member is pressed. This is also preferable. As a heating method, a heating function may be imparted to the elastic member, or a heater may be imparted (hot plate) to a gantry provided in the vacuum chamber.
[0109] 加熱温度は、用いるどの有機層の融点よりも低ぐ一般に 80〜; 160°C程度である有 機層を構成する有機材料の軟化温度なレ、しガラス転移温度のうち最も低!、温度より も低い温度であり、 0°C以上 80°C以下、更に言えば 40°C以上 80°C以下が好ましい。 温度の制御性からは 40°C以上であることが好ましい。  [0109] The heating temperature is lower than the melting point of any organic layer used, generally 80 to 80 ° C; the softening temperature of the organic material constituting the organic layer that is about 160 ° C, and the lowest glass transition temperature! The temperature is lower than the temperature, and is preferably 0 ° C or higher and 80 ° C or lower, and more preferably 40 ° C or higher and 80 ° C or lower. In view of temperature controllability, it is preferably 40 ° C or higher.
[0110] また、第一基板、また第二基板上に有機層をそれぞれ形成したのち、各有機層の 表面は、プリベータ処理をすると好ましい。プリベータ処理により有機層中に含まれる 溶媒をある程度飛ばすことができる。貼合時の加熱よりも低レ、温度で短!/、時間加熱 乾燥する。貼り合わせ前にプリベータ処理によって予めある程度の溶媒を飛ばしてお くことは、特に広面積素子において効果的である。プリベータ処理の加熱温度は、貼 合時の加熱処理と同様の理由により、用いるどの有機層の融点よりも低ぐ軟化温度 なレ、しガラス転移温度のうち最も低!/、温度よりも低レ、温度であることが好まし!/、。プリ ベータ処理は、両方の有機層表面に対して行うが、場合によっては片面であってもよ い。加熱方法としては、オーブン乾燥、ホットプレート乾燥、真空乾燥等が使用できる  [0110] Further, after the organic layers are formed on the first substrate and the second substrate, the surface of each organic layer is preferably subjected to a pre-beta treatment. Pre-beta treatment can remove some of the solvent contained in the organic layer. Lower than the heating at the time of pasting, short at the temperature! It is particularly effective for a large area element to remove a certain amount of solvent beforehand by pre-beta treatment before bonding. For the same reason as the heat treatment at the time of pasting, the heating temperature of the pre-beta treatment is a softening temperature lower than the melting point of any organic layer used, and the lowest glass transition temperature! /, A temperature lower than the temperature. , Temperature is preferred! The pre-beta treatment is performed on the surface of both organic layers, but in some cases it may be single-sided. As the heating method, oven drying, hot plate drying, vacuum drying, etc. can be used.
[0111] また、両基板の表示部周囲に適用して、基板同士を接着する封止材は、防湿性で あることが好ましい。 [0111] Further, it is preferable that the sealing material applied to the periphery of the display portion of both the substrates to adhere the substrates to each other is moisture-proof.
[0112] 前記封止材としては、接着剤、例えば、ガラス、また、プラスチック基板等に対して 一般に使用されている接着剤を制限なしに用いることができる。  [0112] As the sealing material, an adhesive, for example, an adhesive generally used for glass, plastic substrates and the like can be used without limitation.
[0113] 特に好ましい接着剤としては、アクリル系接着剤、エポキシ系接着剤等を挙げること が出来る。中でも硬化時の収縮が小さいエポキシ系接着剤は好ましい。  [0113] Particularly preferred adhesives include acrylic adhesives and epoxy adhesives. Among them, an epoxy adhesive having a small shrinkage upon curing is preferable.
[0114] エポキシ系接着剤は、主剤としてのエポキシ樹脂と、硬化剤からなり、エポキシ基を 含有する化合物(主剤)と、アミン類ゃ酸無水物を含有する硬化剤とを混ぜ合わせ、 硬化反応によって接着する接着剤をいう。 [0114] The epoxy adhesive is composed of an epoxy resin as a main agent and a curing agent, and a compound (main agent) containing an epoxy group and a curing agent containing an amine oxalic anhydride are mixed together. An adhesive that adheres by a curing reaction.
[0115] エポキシ基を含有する化合物には、上記のように、ビスフエノール A型などがあり、 また、硬化剤としては、アミン類がよく用いられる。 [0115] Examples of the compound containing an epoxy group include bisphenol A type as described above, and amines are often used as curing agents.
[0116] これらの接着剤は、ポッティング、塗布、噴射、印刷等、特に制限なく基板上に設け ること力 Sでき、紫外線、電子線等のエネルギー線、また熱の照射により重合硬化させ ること力 Sでさる。 [0116] These adhesives can be applied on the substrate without any particular restrictions such as potting, coating, spraying, printing, etc., and can be polymerized and cured by irradiation with energy rays such as ultraviolet rays and electron beams, and heat. Touch with force S.
[0117] また、加熱を受けると三次元網状化するビスフエノール系グリシジル型エポキシ樹 脂及び熱硬化型接着成分からなる熱活性型エポキシ樹脂硬化剤も好ましい。  [0117] A thermoactive epoxy resin curing agent comprising a bisphenol-based glycidyl epoxy resin and a thermosetting adhesive component that forms a three-dimensional network when heated is also preferable.
[0118] 封止材として用いる接着剤は、紫外線硬化型の接着剤であってもよい。熱硬化型 の接着剤において硬化温度が素子の特性に影響を与える場合、紫外線、電子線等 のエネルギー線により重合硬化する活性光線硬化型の接着剤が好ましレ、。この場合[0118] The adhesive used as the sealing material may be an ultraviolet curable adhesive. In the case of a thermosetting adhesive, when the curing temperature affects the characteristics of the device, an actinic ray curable adhesive that is polymerized and cured by energy rays such as ultraviolet rays and electron beams is preferred. in this case
、アクリル系接着剤等を用いることができ、具体例としては、株式会社スリーボンド社 製、 3003、 3027B、 3033B、 3042B等、また、セメダイン株式会社製、セメダイン Y 600、 Y600H等が挙げられる。 Acrylic adhesives can be used, and specific examples include Three Bond Co., Ltd., 3003, 3027B, 3033B, 3042B, etc., and Cemedine Co., Ltd., Cemedine Y600, Y600H.
[0119] 紫外線硬化型接着剤の場合、真空貼合装置に、第一基板或いは第二基板又は封 止用部材等の背面から紫外線を照射できるような光源を具備させる。接着は、例えば 、 10〜; 100mW/cm2程度の光量で基板越しに;!〜 30秒間の範囲で照射しして硬 化させればよい。 [0119] In the case of an ultraviolet curable adhesive, the vacuum bonding apparatus is provided with a light source capable of irradiating ultraviolet rays from the back surface of the first substrate, the second substrate or the sealing member. For example, the adhesion may be cured by irradiating the substrate with a light amount of about 10 to 100 mW / cm 2 over a range of! To 30 seconds.
[0120] なお、本願明細書における「紫外領域(の光)」とは、 250nm〜400nmの範囲に波 長を有する光をレ、い、高圧水銀灯やハロゲンランプにより得られる。  [0120] The "ultraviolet region (light)" in the specification of the present application refers to light having a wavelength in the range of 250 nm to 400 nm, and can be obtained by a high pressure mercury lamp or a halogen lamp.
[0121] これらの接着剤は、塗布或いは印刷等のプロセスによって、基板上に適用されるが 、また、封止材として、予め形成された熱硬化性接着シートやホットメルト型接着剤等 を用いること力できる。例えば、住友スリーェム製 TBFシリーズ、そのうちでも TBF56 0等の低温接着タイプの熱硬化性接着シートが挙げられ、これらのシートを所望の形 状に断裁して基板上に配置する方法で封止材を基板上に適用することが出来るの で好ましい。  [0121] These adhesives are applied onto the substrate by a process such as coating or printing, and a pre-formed thermosetting adhesive sheet or hot-melt adhesive is used as the sealing material. I can do it. For example, TBF series manufactured by Sumitomo 3EM, among them low-temperature adhesive type thermosetting adhesive sheets such as TBF560, etc., and these sheets are cut into a desired shape and placed on a substrate by sealing material. This is preferable because it can be applied on a substrate.
[0122] また、本発明の貼合による有機 EL素子の製造においては、吸湿部材を基板上に 設け、これを封止領域内に存在させることで、素子空間内の水分を吸着させ素子劣 化を抑制することができる。例えば、酸化カルシウムゃゼオライト等の粉末状の吸湿 部材を例えば表示部周辺の基材上に貼り付ける等の方法がとられている。吸湿部材 は、どちらの基材上に設けてもよい。封止材の配置時に、吸湿部材も例えば、有機層 周囲の領域に配置すればよい。図 3に、吸湿部材 Dを封止空間内部有機層周囲(有 機層周囲)に配置した有機 EL素子例を示す。 [0122] In addition, in the manufacture of an organic EL element by bonding according to the present invention, a moisture absorbing member is provided on a substrate and is present in the sealing region, thereby adsorbing moisture in the element space and degrading the element. Can be suppressed. For example, a method of adhering a powdery moisture absorbing member such as calcium oxide or zeolite onto a base material around the display unit is employed. The moisture absorbing member may be provided on any base material. When the sealing material is disposed, the moisture absorbing member may be disposed, for example, in a region around the organic layer. Figure 3 shows an example of an organic EL device in which the moisture absorbing member D is placed around the organic layer inside the sealed space (around the organic layer).
[0123] 有機 EL素子は、電極間に単数又は複数の有機層を積層した構造であり、例えば、 陽極/正孔注入 ·輸送層/発光層/電子注入 ·輸送層/陰極等、最も単純には、 陽極/発光層/陰極からなる構造であり、これら有機 EL素子における各有機層、各 薄膜の膜厚は、 lnm〜数 inの範囲に亘る力 これらの有機層が第一基板そして第 二基板上にそれぞれ分けて形成され、これを貼合することで、本発明の有機 EL素子 は形成される。 [0123] An organic EL element has a structure in which one or more organic layers are laminated between electrodes. For example, anode / hole injection, transport layer / light emitting layer / electron injection, transport layer / cathode, etc. are the simplest. Is a structure composed of an anode / light-emitting layer / cathode. The thickness of each organic layer and each thin film in these organic EL devices is a force ranging from 1 nm to several in. These organic layers are the first substrate and the second substrate. The organic EL element of the present invention is formed by separately forming on a substrate and bonding them.
[0124] 次!/、で本発明にお!/、て基板上に形成される有機 EL素子を構成する各有機層につ いて説明する。  Next, in the present invention, each organic layer constituting the organic EL element formed on the substrate will be described.
[0125] 有機 EL素子は、電極間に単数又は複数の有機層を積層した構造であり、例えば、 陽極/正孔注入 ·輸送層/発光層/電子注入 ·輸送層/陰極等、最も単純には、 陽極/発光層/陰極からなる構造を有し、これ以外にも電子阻止層、また正孔阻止 層、またバッファ一層等適宜必要な層が所定の層順で積層され、両極から注入され た正孔及び電子等のキャリア移動がスムーズに行われるよう構成されている。  [0125] An organic EL element has a structure in which one or more organic layers are laminated between electrodes. For example, anode / hole injection, transport layer / light emitting layer / electron injection, transport layer / cathode, etc. are the simplest. Has a structure consisting of an anode / light-emitting layer / cathode, and other layers such as an electron blocking layer, a hole blocking layer, and a buffer layer are laminated in a predetermined layer order and injected from both electrodes. It is configured so that carriers such as holes and electrons can move smoothly.
[0126] 有機 EL素子を構成するこれら各有機層において、発光層中に含有される有機発 光材料としては、カノレバゾール、カルボリン、ジァザカノレバゾール等の芳香族複素環 化合物、トリアリールァミン誘導体、スチルベン誘導体、ポリアリーレン、芳香族縮合 多環化合物、芳香族複素縮合環化合物、金属錯体化合物等及びこれらの単独オリ ゴ体あるいは複合オリゴ体等があげられる力 これに限られるものではな!/、。  [0126] In each of these organic layers constituting the organic EL element, the organic light-emitting material contained in the light-emitting layer includes aromatic heterocyclic compounds such as canolevazole, carboline, diazacanolevazole, and triarylamine. Mining derivatives, stilbene derivatives, polyarylenes, aromatic condensed polycyclic compounds, aromatic heterocondensed ring compounds, metal complex compounds, and the like, and powers such as single oligo or composite oligos are not limited thereto. ! /
[0127] また層中(成膜材料)には、好ましくは 0. ;!〜 20質量%程度のドーパントが発光材 料中に含まれる。ドーパントとしては、ペリレン誘導体、ピレン誘導体等公知の蛍光色 素等、また、リン光発光タイプの発光層の場合、例えば、トリス(2—フエ二ルビリジン) イリジウム、ビス(2—フエニルピリジン)(ァセチルァセトナート)イリジウム、ビス(2, 4 —ジフルオロフヱュルピリジン)(ピコリナート)イリジウム、などに代表されるオルトメタ ル化イリジウム錯体等の錯体化合物が同様に 0. ;!〜 20質量%程度含まれる。 [0127] Further, the layer (film forming material) preferably contains about 0.;! To about 20% by mass of a dopant in the light emitting material. Examples of the dopant include known fluorescent pigments such as perylene derivatives and pyrene derivatives, and in the case of phosphorescent light emitting layers, for example, tris (2-phenylpyridine) iridium, bis (2-phenylpyridine) ( Orthometasylated by acetylylacetonate) iridium, bis (2,4-difluorofurpyridine) (picolinato) iridium, etc. Similarly, a complex compound such as an iridium bromide complex is contained in an amount of about 0 .;
[0128] リン光発光方式は、発光層内部に発光領域を持っためか、比較的発光ムラが起こ りづらぐ貼合法の最大の難点である接合界面でのムラや、キャリア移動が遅くなると V、う現象を起こしにくいため、本発明の貼合法との相性がょレ、。 [0128] The phosphorescence emission method has a light-emitting region inside the light-emitting layer. Because it is difficult to cause the phenomenon, it is compatible with the bonding method of the present invention.
[0129] 正孔注入'輸送層としては、フタロシアニン誘導体、ヘテロ環ァゾール類、芳香族三 級ァミン類、ポリビュルカルバゾール、ポリエチレンジォキシチォフェン/ポリスチレン スルホン酸 (PEDOT : PSS)などに代表される導電性高分子等の高分子材料、また 、発光層に用いられる、例えば、 4, 4' ージカルバゾリルビフエニル、 1 , 3—ジカル バゾリルベンゼン等の力ルバゾール系発光材料、(ジ)ァザカルバゾール類、 1 , 3, 5 トリピレニルベンゼンなどのピレン系発光材料に代表される低分子発光材料、ポリ フエ二レンビニレン類、ポリフルオレン類、ポリビュル力ルバゾール類などに代表され る高分子発光材料などが挙げられる。 [0129] The hole-injection transport layer is typified by phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polybutylcarbazole, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), etc. A high-molecular material such as a conductive polymer, and a power rubazole-based light-emitting material such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbenzene, etc. Polymers typified by low molecular luminescent materials such as azacarbazoles, pyrene-based luminescent materials such as 1,3,5 tripyrenylbenzene, polyphenylenevinylenes, polyfluorenes, polybulur rubazoles, etc. Examples include luminescent materials.
[0130] 電子注入'輸送層材料としては、 8 ヒドロキシキノリナ一トリチウム、ビス(8 ヒドロ キシキノリナート)亜鉛等の金属錯体化合物もしくは以下に挙げられる含窒素五員環 誘導体がある。即ち、ォキサゾール、チアゾール、ォキサジァゾール、チアジアゾー ルもしくはトリァゾール誘導体が好ましい。具体的には、 2, 5 ビス(1—フエ二ル)一 1 , 3, 4—ォキサゾール、 2, 5—ビス(1—フエ二ル)一 1 , 3, 4—チアゾール、 2, 5— ビス(1 フエニル) 1 , 3, 4 ォキサジァゾール、 2—(4' —tert ブチルフエ二 ノレ)ー5—(4" ービフエニル) 1 , 3, 4—ォキサジァゾール、 2, 5—ビス(1 ナフチノレ )ー1 , 3, 4 ォキサジァゾール、 1 , 4 ビス [2—(5 フエニルォキサジァゾリル)] ベンゼン、 1 , 4 ビス [2— (5—フエニルォキサジァゾリル) 4— tert ブチルベン ゼン]、 2 - (4' —tert ブチルフエ二ル)一 5— (4" —ビフエ二ル)一 1 , 3, 4 チ アジアゾール、 2, 5 ビス(1 ナフチル) 1 , 3, 4 チアジアゾール、 1 , 4 ビス [ 2—(5 フエ二ルチアジァゾリル)]ベンゼン、 2—(4' —tert ブチルフエニル) 5 — (4" —ビフエ二ノレ)一 1 , 3, 4 トリァゾーノレ、 2, 5 ビス(1—ナフチノレ)一 1 , 3, 4 トリァゾール、 1 , 4 ビス [2— (5—フエニルトリァゾリル)]ベンゼン等が挙げられる[0130] Examples of the electron injection / transport layer material include metal complex compounds such as 8-hydroxyquinolinatotritium and bis (8-hydroxyquinolinato) zinc, and the following nitrogen-containing five-membered ring derivatives. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred. Specifically, 2, 5 bis (1-phenyl) -1,3,4-oxazole, 2,5-bis (1-phenyl) 1,3,4, thiazole, 2,5— Bis (1 phenyl) 1, 3, 4 oxaziazole, 2- (4'-tert-butylphenyl) -5- (4 "-biphenyl) 1, 3, 4-oxoxadiazole, 2, 5-bis (1 naphthinole) -1 , 3, 4 oxadiazole, 1, 4 bis [2— (5 phenyloxadiazolyl)] benzene, 1, 4 bis [2— (5-phenyl oxaziazolyl) 4— tert butylben Zen], 2-(4 '-tert butylphenyl) 1-5- (4 "-biphenyl) 1 1, 3, 4 thiadiazole, 2,5 bis (1 naphthyl) 1, 3, 4 thiadiazole, 1, 4 bis [2- (5 phenylthiadiazolyl)] benzene, 2— (4 '—tert butylphenyl) 5 — (4 ”—biphenyl) 1 1, 3, 4 triazolene, 2, 5 bis (1— Na Chinore) one 1, 3, 4 Toriazoru, 1, 4-bis [2- (5-phenylpropyl tri § benzisoxazolyl)] benzene, and the like
Yes
[0131] 有機 EL素子、各有機層の膜厚は、 0. 05-0. 3 μ m程度必要であり、好ましくは 0 • 1—0. 2〃m程度である。 [0131] The thickness of the organic EL element and each organic layer needs to be about 0.05 to 0.3 μm, preferably 0 • 1—about 0.2 mm.
[0132] 本発明の有機層の形成方法としては塗布及び印刷等が好ましい。  [0132] As the method for forming the organic layer of the present invention, coating and printing are preferred.
塗布は、スピン塗布、転写塗布、イクストリユージョン塗布等が使用できる。材料使用 効率を考慮すると、転写塗布、イクストリユージョン塗布のようなパターン塗布できる方 法が好ましぐ特に転写塗布が好ましい。  As the coating, spin coating, transfer coating, extension coating, or the like can be used. Considering the efficiency of material use, transfer coating and transfer coating are preferred, and pattern coating such as transfer coating is preferred. Transfer coating is particularly preferable.
[0133] また、印刷は、スクリーン印刷、オフセット印刷、インクジェット印刷等が使用できる。  [0133] For printing, screen printing, offset printing, inkjet printing, or the like can be used.
表示素子としては膜が薄ぐ素子サイズが微小で、 RGBのパターンの重ね等を考慮 すると、オフセット印刷、インクジェット印刷のような高精度高精細印刷が好ましい。  As the display element, the element is thin and the element size is minute, and high precision and high definition printing such as offset printing and ink jet printing is preferable in consideration of overlapping of RGB patterns.
[0134] 各有機材料には溶解特性 (溶解パラメータやイオン化ポテンシャル、極性)がそれ ぞれにあり、溶解できる溶媒には限定がある。またその際には溶解度もそれぞれ違う ため、一概に濃度も決めることができないが、本発明において用いられる溶媒の種類 は、成膜しょうとする有機 EL材料に応じて、前記の条件に適ったものを、公知の溶媒 から選択すればよぐ例えば、ジクロロメタン、ジクロロェタン、クロ口ホルム、四塩化炭 素、テトラクロロェタン、トリクロロェタン、クロ口ベンゼン、ジクロロベンゼン、クロロトノレ ェン等のハロゲン系炭化水素系溶媒や、ジブチルエーテル、テトラヒドロフラン、ジォ キサン、ァニソールなどのエーテル系溶媒、メタノールや、エタノール、イソプロパノー ノレ、ブタノーノレ、シクロへキサノーノレ、 2—メトキシエタノーノレ、エチレングリコーノレ、グ リセリン等のアルコール系溶媒、ベンゼン、トルエン、キシレン、ェチルベンゼン等の 芳香族炭化水素系溶媒、へキサン、オクタン、デカン、テトラリン等のパラフィン系溶 媒、酢酸ェチル、酢酸ブチル、酢酸ァミルなどのエステル系溶媒、 N, N—ジメチノレ ホルムアミド、 N, N—ジメチルァセトアミド、 N—メチルピロリドン等のアミド系溶媒、ァ セトン、メチルェチルケトン、シクロへキサノン、イソホロン等のケトン系溶媒、ピリジン、 キノリン、ァニリン等のアミン系溶媒、ァセトニトリル、バレロ二トリル等の二トリル系溶媒 、チォフェン、二硫化炭素などの硫黄系溶媒が挙げられる。  [0134] Each organic material has solubility characteristics (solubility parameters, ionization potential, polarity), and there are limitations on the solvents that can be dissolved. In this case, since the solubility is different, the concentration cannot be generally determined, but the type of the solvent used in the present invention is suitable for the above conditions depending on the organic EL material to be formed. Can be selected from known solvents, for example, halogenated carbonization such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrachloroethane, trichloroethane, chlorobenzene, dichlorobenzene, chlorotolenene, etc. Hydrogen solvents, ether solvents such as dibutyl ether, tetrahydrofuran, dioxane, and anisole, alcohols such as methanol, ethanol, isopropanol, butanol, cyclohexanol, 2-methoxyethanol, ethylene glycol and glycerin Solvents, benzene, toluene, xylene , Aromatic hydrocarbon solvents such as ethenylbenzene, paraffin solvents such as hexane, octane, decane, and tetralin, ester solvents such as ethyl acetate, butyl acetate, and amyl acetate, N, N-dimethinoformamide, N, N —Amid solvents such as dimethylacetamide and N-methylpyrrolidone; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone and isophorone; amine solvents such as pyridine, quinoline and aniline; Examples include nitrile solvents such as tolyl and sulfur solvents such as thiophene and carbon disulfide.
[0135] 尚、使用可能な溶媒は、これらに限るものではなぐこれらを二種以上混合して溶 媒として用いてもよい。  [0135] The usable solvent is not limited to these, and two or more of these may be mixed and used as the solvent.
[0136] これらのうち好まし!/、例としては、有機 EL材料にお!/、て、各機能層材料によっても 異なるものの、大凡について、良溶媒としては、例えば芳香族系溶媒、ハロゲン系溶 媒、エーテル系溶媒などであり、好ましくは、芳香族系溶媒、エーテル系溶媒である 。また、貧溶媒として葉、アルコール系溶媒、ケトン系溶媒、パラフィン系溶媒などが 挙げられ、なかでもアルコール系溶媒、ノ ラフィン系溶媒である。 [0136] Among these, preferred! /, For example, an organic EL material! /, Depending on each functional layer material, generally, good solvents include, for example, aromatic solvents and halogen-based solvents. Melting Medium, ether solvents, and the like, preferably aromatic solvents and ether solvents. In addition, examples of the poor solvent include leaves, alcohol solvents, ketone solvents, paraffin solvents, and the like. Among them, alcohol solvents and norafin solvents.
[0137] 電極材料としては、本発明においては予め、第一基板上に第一電極、また第二基 板上に第二電極を形成しておくことが出来、これらを蒸着等最適のプロセスにより形 成できる。 [0137] As the electrode material, in the present invention, the first electrode can be formed on the first substrate and the second electrode can be formed on the second substrate in advance. Can be formed.
[0138] 二つの電極のうち、正孔の注入を行う陽極に使用される導電性材料としては、 4eV より大きな仕事関数をもつものが適しており、銀、金、白金、パラジウム等及びそれら の合金、酸化スズ、酸化インジウム、 ITO等の酸化金属、さらにはポリチォフェンゃポ リピロール等の有機導電性樹脂が用いられる。透光性であることが好ましぐ透明電 極としては ITOが好ましい。 ITO透明電極の形成方法としては、マスク蒸着またはフ オトリソパターユング等が使用できる力 これに限られるものではない。  [0138] Of the two electrodes, as the conductive material used for the anode for injecting holes, those having a work function larger than 4 eV are suitable. Silver, gold, platinum, palladium, etc. Metal oxides such as alloys, tin oxide, indium oxide and ITO, and organic conductive resins such as polythiophene polypyrrole are used. ITO is preferred as a transparent electrode that is preferably translucent. The method for forming the ITO transparent electrode is not limited to the force capable of using mask vapor deposition or photolithography patterning.
[0139] また、陰極として使用される導電性物質としては、 4eVより小さな仕事関数をもつも のが適しており、マグネシウム、アルミニウム等。合金としては、マグネシウム/銀、リ チウム/アルミニウム等が代表例として挙げられる。また、その形成方法は、マスク蒸 着、フォトリソパターユング、メツキ、印刷等が使用できるが、これに限られるものでは ない。  [0139] As the conductive material used as the cathode, a material having a work function smaller than 4 eV is suitable, such as magnesium and aluminum. Typical examples of alloys include magnesium / silver and lithium / aluminum. The formation method can be mask vapor deposition, photolitho patterning, plating, printing, etc., but is not limited thereto.
[0140] また、本発明において、基板としては、ガラス基板及び透明性樹脂フィルムが用い られる。透明性樹脂フィルムとしては、ポリエチレン、エチレン 酢酸ビュル共重合体 、エチレン一ビュルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメ タアタリレート、ポリ塩化ビュル、ポリビュルアルコール、ポリビュルブチラール、ナイ口 ン、ポリエーテノレエーテノレケトン、ポリサノレホン、ポリエーテノレサノレフォン、テトラフノレ ォロエチレン パーフルォロアルキルビュルエーテル共重合体、ポリビュルフルオラ イド、テトラフルォロエチレン エチレン共重合体、テトラフルォロエチレン一へキサフ ルォロプロピレン共重合体、ポリクロ口トリフルォロエチレン、ポリビニリデンフルオラィ ド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイ ミド、ポリプロピレン等が挙げられる。  [0140] In the present invention, a glass substrate and a transparent resin film are used as the substrate. Examples of transparent resin films include polyethylene, ethylene acetate butyl copolymer, ethylene monobutyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polychlorinated butyl, polybutyl alcohol, polybutyl butyral, naychitone, and polyethylenol. Ethenoleketones, polysanolethone, polyethenoresanorephones, tetrafluoroethylene perfluoroalkyl butyl ether copolymers, polybulufluoride, tetrafluoroethylene ethylene copolymers, tetrafluoroethylene monohexaph Fluoropropylene copolymer, polychloroethylene, polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene Ren, and the like.
[0141] また本発明の有機 EL素子は、有機層のうち発光層を RGBのそれぞれ 3色ごとにパ ターユングして構成し、駆動回路を組み込むことでフルカラー表示体とすることも出 来る。 [0141] Furthermore, the organic EL device of the present invention has a light-emitting layer of the organic layer that is filtered for each of three colors of RGB. It is possible to make it a full-color display by configuring it with a turn and incorporating a drive circuit.
実施例  Example
[0142] 以下真空貼合装置を用いた有機 EL素子の製造について、具体的に説明するが、 本発明はこれにより限定されるものではない。  [0142] Hereinafter, the production of an organic EL element using a vacuum bonding apparatus will be specifically described, but the present invention is not limited thereto.
[0143] 《陽極側部材の作製》 [0143] <Production of anode side member>
lOOmmX lOOmm X l . 1mmのガラス基板上に、陽極として ITO (インジウムチン ォキシド)を lOOnmの膜厚で成膜した透明支持基板を準備した。これをイソプロピル アルコールで超音波洗浄し、乾燥窒素ガスで乾燥し, UVオゾン洗浄を更に五分間 行った。  A transparent support substrate was prepared by depositing ITO (indium oxide) with a film thickness of lOOnm as an anode on a lOOmmX lOOmm X l. 1 mm glass substrate. This was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for another 5 minutes.
[0144] この透明支持基板上に、ポリ(3, 4 エチレンジォキシチォフェン) ポリスチレンス ルホン酸(PEDOT/PSS Bayer社製、 Baytron P A1 4083)を純水で 70%に 希釈した溶液を 3000rpm、 30秒でスピンコート法により成膜した後、 200°Cで 1時間 乾燥し、膜厚 30nmの正孔注入層を設けた。  [0144] On this transparent support substrate, a solution of poly (3,4 ethylenedioxythiophene) polystyrene sulfonic acid (PEDOT / PSS Bayer, Baytron P A1 4083) diluted to 70% with pure water was prepared. A film was formed by spin coating at 3000 rpm for 30 seconds and then dried at 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 30 nm.
[0145] 次に、この正孔注入層上に、 PVK (ポリビュル力ルバゾール)60mgと Ir (ppy) の 1 [0145] Next, on this hole injection layer, 60 mg of PVK (polybulur rubazole) and 1 of Ir (ppy)
. 5mgをジクロルベンゼンに溶解した溶液を同様にスピンコートで塗布、成膜後、 60 °Cで 1時間真空乾燥し、乾燥膜厚 30nmの発光層を形成した。 A solution in which 5 mg was dissolved in dichlorobenzene was similarly applied by spin coating, and after film formation, vacuum dried at 60 ° C. for 1 hour to form a light emitting layer having a dry film thickness of 30 nm.
[0146] [化 1] ir(ppy)3
Figure imgf000026_0001
[0146] [Chemical 1] ir (ppy) 3
Figure imgf000026_0001
[0147] 陰極側部材の作製 [0147] Production of cathode side member
次いで、 80mm X 80mm X O. 3mm厚のポリエー 陰極としてアルミニウム 120nmを蒸着、続いて陰極バッファ一層としてフッ化リチウム lnmを蒸着形成した。これを真空槽から窒素雰囲気下に移送し、スピンコーターにて BCP (20mg)をトルエン 10mlに溶解した溶液を用い、 lOOOrpm, 30secの条件下 、スピンコート (膜厚約 10nm)、 60°Cで 1時間真空乾燥し、電子輸送層を成膜した。 Next, 80mm X 80mm X O. 3mm thick Aluminum 120 nm was vapor-deposited as a cathode, and then lithium fluoride lnm was vapor-deposited as a cathode buffer layer. This was transferred from a vacuum chamber to a nitrogen atmosphere, and a solution of BCP (20 mg) dissolved in 10 ml of toluene using a spin coater was used. Spin coating (film thickness of about 10 nm) at 60 ° C under the conditions of lOOOrpm and 30 sec. Vacuum-dried for 1 hour to form an electron transport layer.
[0148] 次に、この電子輸送層上に、 PVK (60mg)と 1. 5mgの Ir (ppy) をジクロ口べンゼ [0148] Next, on this electron transport layer, PVK (60mg) and 1.5mg Ir (ppy)
3  Three
ン 6mlに溶解した溶液を同様にスピンコートで塗布、成膜後、 60°Cで 1時間真空乾 燥し、乾燥膜厚 30mの発光層を形成した。  The solution dissolved in 6 ml of the solution was similarly applied by spin coating, and after film formation, vacuum-dried at 60 ° C. for 1 hour to form a light-emitting layer having a dry film thickness of 30 m.
[0149] [化 2] [0149] [Chemical 2]
Figure imgf000027_0001
Figure imgf000027_0001
[0150] 以上で形成した、 [0150] Formed above,
有機 EL部材 A (陽極部材);  Organic EL member A (anode member);
ガラス基板// ITO (陽極: lOOnm) //PEDOT/PSS (正孔注入層:膜厚 30nm ) //PVK + Ir (ppy) (発光層:膜厚 30nm)、  Glass substrate // ITO (anode: lOOnm) // PEDOT / PSS (hole injection layer: film thickness 30nm) // PVK + Ir (ppy) (light emitting layer: film thickness 30nm),
有機 EL部材 B (陰極部材);  Organic EL member B (cathode member);
ポリエーテルスルホン(PES)フィルム//アルミニウム(120nm)陰極/フッ化リチウ ム(lnm)陰極バッファ一層// BCP (膜厚約 10nm)電子輸送層// PVK (60mg )と 1 · 5mgの Ir (ppy) (膜厚 30nm)発光層、  Polyethersulfone (PES) film // aluminum (120 nm) cathode / lithium fluoride (lnm) cathode buffer layer // BCP (film thickness about 10 nm) electron transport layer // PVK (60 mg) and 1.5 mg Ir ( ppy) (film thickness 30nm) light emitting layer,
を真空貼合装置を用いて図 2に示す様に貼合した。  Was bonded using a vacuum bonding apparatus as shown in FIG.
[0151] 先ず、上記で作製した有機 EL部材 Aのガラス基板上の有機層周囲に熱硬化接着 シートを配置し、更に、有機 EL部材 Bを有機 EL部材 Aとそれぞれの発光層が対向 するように重ねて、更に封止用部材として防湿フィルムを陰極部材裏面側に積層し 仮貼合した。図 2 (b)がこれを示す。 Sはガラス基板上の有機層周囲を囲むように接 着シートを断裁して配置したところ示す。尚、熱硬化接着シートは住友スリーェム社 製熱硬化接着シート TBF560 (エチレン—酢酸ビュル共重合体)を用いた。また、封 止用部材である防湿フィルムとしては、セラミック蒸着フィルムである凸版印刷製、 GX フィルムを用いた。封止用部材は、有機エレクト口ルミネッセンス部材 A (陽極部材)の ガラス基板と略同じサイズ(100mm X 100mm)とした。図 2 (b)にこの状態を示す。 [0151] First, a thermosetting adhesive sheet is disposed around the organic layer on the glass substrate of the organic EL member A produced as described above, and further, the organic EL member B is opposed to the organic EL member A and the respective light emitting layers. Further, a moisture-proof film as a sealing member was further laminated on the back side of the cathode member and temporarily bonded. Figure 2 (b) shows this. S shows the adhesive sheet cut and placed around the organic layer on the glass substrate. As the thermosetting adhesive sheet, a thermosetting adhesive sheet TBF560 (ethylene-butyl acetate copolymer) manufactured by Sumitomo 3EM was used. Also sealed As the moisture-proof film as a stopper, a GX film made by Toppan Printing, which is a ceramic vapor-deposited film, was used. The sealing member was approximately the same size (100 mm × 100 mm) as the glass substrate of the organic-elect mouth luminescence member A (anode member). Figure 2 (b) shows this state.
[0152] 次に、上記の積層体を真空貼合装置の真空チャンバ一 101内の架台上に有機ェ レクト口ルミネッセンス部材 A (陽極部材)のガラス基板側を下にして載置、シリンダを 駆動して弾性部材 102を降下させ封止用部材 3の背面側から押し当て有機層同士 を密着させ積層体を固定した(図 2 (d) )。同時に、真空チャンバ一を外気から遮断し 真空ポンプ(図示せず)にて排気して約 lkPaの圧力まで真空度を上げた(図 2 (e) )。  [0152] Next, the above laminate is placed on a frame in the vacuum chamber 101 of the vacuum laminating apparatus with the organic substrate luminescence member A (anode member) facing down on the glass substrate, and the cylinder is driven. Then, the elastic member 102 was lowered and pressed from the back side of the sealing member 3 to bring the organic layers into close contact with each other, thereby fixing the laminate (FIG. 2 (d)). At the same time, the vacuum chamber was shut off from the outside air and evacuated with a vacuum pump (not shown) to raise the vacuum to a pressure of about lkPa (Fig. 2 (e)).
[0153] 真空度を上記の範囲に調整、維持し、今度はヒータの駆動用シリンダ 105を駆動し てヒータ 104を降下させ、ガラス基板上の有機層周囲に配置された封止材 S (熱硬化 接着シート)に封止用部材を圧着、加熱した(温度 80°C、圧力 0. 15MPa、 5秒間)。 これにより、封止用部材とガラス基板が接着された。これを図 2 (f)に示す。  [0153] The degree of vacuum is adjusted and maintained within the above range. This time, the heater driving cylinder 105 is driven to lower the heater 104, and the sealing material S (thermal The sealing member was pressed onto the cured adhesive sheet) and heated (temperature 80 ° C, pressure 0.15 MPa, 5 seconds). Thereby, the sealing member and the glass substrate were bonded. This is shown in Figure 2 (f).
[0154] ヒータ 104、及び弾性部材 102を再びシリンダ駆動により上昇させると、封止用部材 とガラス基板が、有機層周囲で接着し、封止構造をもつ有機 EL素子の貼合体が得ら れ 。  [0154] When the heater 104 and the elastic member 102 are raised again by driving the cylinder, the sealing member and the glass substrate are bonded around the organic layer, and a bonded body of an organic EL element having a sealing structure is obtained. .
[0155] 接着部を冷却した後、貼合装置の真空チャンバ一を開放し、大気圧に戻し、貼合さ れた有機 EL素子を取り出した。  [0155] After the bonded portion was cooled, the vacuum chamber of the bonding apparatus was opened, the pressure was returned to atmospheric pressure, and the bonded organic EL element was taken out.
[0156] 大気圧中に戻すことで、封止空間と大気圧の差分だけ両基板側から圧力を受ける ことになるので最終的に封止空間内部の圧力はやや戻り lOkPa程度の圧となったが[0156] By returning to atmospheric pressure, pressure is received from both substrates by the difference between the sealed space and atmospheric pressure, so the pressure inside the sealed space finally returned to a pressure of about lOkPa. But
、大気圧(101. 3kPa)との差圧により発光層同士が均一かつ緊密に密着、貼合され た有機 EL素子が得られた。 Thus, an organic EL device was obtained in which the light emitting layers were uniformly and closely adhered and bonded together by the differential pressure from atmospheric pressure (101.3 kPa).
[0157] 比較例 [0157] Comparative Example
実施例で用いた有機エレクト口ルミネッセンス部材 A (陽極部材)、有機エレクトロル ミネッセンス部材 B (陰極部材)、及び封止用部材 (GXフィルム)の積層体を仮貼合し たもの(図 2 (b) )を用いて、ロール貼合装置により有機 EL素子を作製した。  A temporary laminate of a laminate of the organic electoluminescence member A (anode member), organic electroluminescence member B (cathode member), and sealing member (GX film) used in the examples (Fig. 2 ( b) Using), an organic EL element was produced by a roll laminating apparatus.
[0158] ロール貼合装置(図 4)として、株式会社ェム.シ一.ケー MRK— 650Yを用いて、 ロール間ギャップを調整して、面圧 0. 5MPa、速度 10mm/sec、温度 80°Cで加熱 ゴムロールを通すことで熱硬化接着シート (封止材)を熱硬化させ封止用部材とガラ ス基板を接着、封止すると共に陽極部材、陰極部材を貼合して有機 EL素子を作製 した。 [0158] Using MMC-650Y as a roll laminating device (Fig. 4), adjusting the gap between rolls, surface pressure 0.5MPa, speed 10mm / sec, temperature 80 Heating at ° C By passing a rubber roll, the thermosetting adhesive sheet (encapsulant) is thermoset to seal the sealing member and glass. The organic EL element was fabricated by adhering and sealing the substrate and bonding the anode and cathode members together.
以上の素子に通電して(2. 5mA/cm2)、連続発光させたところ、本発明の方法に より貼合し得られた有機 EL素子は、 目視による発光ムラ、発光輝度の全てにおいて 比較のロール貼合装置を用いて貼合、作製した有機 EL素子に比べ優れた素子であ つた。 When the above elements were energized ( 2.5 mA / cm 2 ) and allowed to emit light continuously, the organic EL elements bonded by the method of the present invention were compared in terms of all of the light emission unevenness and light emission luminance. It was an element superior to the organic EL element bonded and fabricated using the roll bonding device.

Claims

請求の範囲 The scope of the claims
[1] 第一電極と第二電極の間に、少なくとも一層以上の有機層を有する有機エレクトロル ミネッセンス素子において、前記有機エレクト口ルミネッセンス素子は、  [1] In an organic electroluminescence element having at least one organic layer between a first electrode and a second electrode, the organic electoluminescence element comprises:
第一基板上に、第一電極、少なくとも一層以上の有機層を有する有機エレクト口ルミ ネッセンス部材 Aと、  On the first substrate, a first electrode, an organic electoluminescence member A having at least one organic layer, and
第二基板上に、第二電極、少なくとも一層以上の有機層を有する有機エレクト口ルミ ネッセンス部材 Bとが、  On the second substrate, a second electrode, an organic electoluminescence member B having at least one organic layer, and
それぞれ有機層が向かいあうように貼合されたものであり、  Each of them is bonded so that the organic layers face each other,
かつ、前記有機エレクト口ルミネッセンス部材 Aの有機層と、前記有機エレクトロルミネ ッセンス部材 Bの有機層は、外気から遮断されるように基板の周囲が封止されること で貼合されており、  And the organic layer of the organic electoluminescence member A and the organic layer of the organic electroluminescence member B are bonded together by sealing the periphery of the substrate so as to be shielded from the outside air,
前記有機層が含まれる封止された部分の内圧と、外圧(大気圧)との圧力差が 50 lOOkPaであることを特徴とする有機エレクト口ルミネッセンス素子。  An organic electoluminescence device, wherein a pressure difference between an internal pressure of a sealed portion including the organic layer and an external pressure (atmospheric pressure) is 50 lOOkPa.
[2] 第一電極と第二電極の間に、少なくとも一層以上の有機層を有する有機エレクトロル ミネッセンス素子の製造方法において、第一基板上に、第一電極、少なくとも一層以 上の有機層を有する有機エレクト口ルミネッセンス部材 Aと、第二基板上に、第二電 極、少なくとも一層以上の有機層を有する有機エレクト口ルミネッセンス部材 Bとを、 外気から遮断した 0 50kPaの圧力下で、それぞれ有機層を向かいあうように密着し 、基板周囲を接着、封止して、有機エレクト口ルミネッセンス部材 A及び有機エレクト 口ルミネッセンス部材 Bを貼合することを特徴とする有機エレクト口ルミネッセンス素子 の製造方法。 [2] In the method for manufacturing an organic electroluminescent element having at least one or more organic layers between the first electrode and the second electrode, the first electrode and at least one or more organic layers are formed on the first substrate. The organic electroluminescent port luminescence member A and the second electrode, the organic electroluminescent port luminescent member B having at least one organic layer on the second substrate, were shielded from the outside air at a pressure of 50 kPa, respectively. A method for producing an organic electoluminescence device, comprising adhering layers so as to face each other, adhering and sealing the periphery of the substrate, and laminating the organic electroluminescence device A and the organic electroluminescence device B.
[3] 第一電極と第二電極の間に、少なくとも一層以上の有機層を有する有機エレクトロル ミネッセンス素子の製造方法において、第一基板上に、第一電極、少なくとも一層以 上の有機層を有する有機エレクト口ルミネッセンス部材 Aと、第二基板上に、第二電 極、少なくとも一層以上の有機層を有する有機エレクト口ルミネッセンス部材 Bとを、そ れぞれの有機層を向かいあうように密着させ、  [3] In the method of manufacturing an organic electroluminescent element having at least one or more organic layers between the first electrode and the second electrode, the first electrode and at least one or more organic layers are formed on the first substrate. The organic electroluminescent port luminescence member A having the second electrode and the organic electroluminescent port luminescent material B having at least one or more organic layers are brought into close contact with each other so that the respective organic layers face each other. ,
さらに、第二基板上に封止部材を積層し、  Furthermore, a sealing member is laminated on the second substrate,
外気から遮断した 0 50kPaの圧力下で、 第一の基板と封止部材の周囲を接着し、封止して、有機エレクト口ルミネッセンス部 材 A及び有機エレクト口ルミネッセンス部材 Bを貼合することを特徴とする有機エレクト 口ルミネッセンス素子の製造方法。 0 0 kPa shut off from outside air A method for producing an organic electoluminescence device comprising adhering and sealing the periphery of a first substrate and a sealing member, and bonding the organic electroluminescence device A and the organic electroluminescence device B .
[4] 前記封止が、光硬化性接着剤により行われることを特徴とする請求の範囲第 2項また は第 3項に記載の有機エレクト口ルミネッセンス素子の製造方法。 [4] The method for producing an organic electoluminescence device according to claim 2 or 3, wherein the sealing is performed with a photocurable adhesive.
[5] 予め前記第一基板または前記第二基板の少なくとも一方の有機層の周囲に光硬化 性接着剤が設置されており、 [5] A photocurable adhesive is previously installed around at least one organic layer of the first substrate or the second substrate,
外気から遮断した 0〜50kPaの圧力下で、前記有機エレクト口ルミネッセンス部材 A の有機層と前記有機エレクト口ルミネッセンス部材 Bの有機層をそれぞれ向かいあうよ うに密着させ、  Under a pressure of 0 to 50 kPa cut off from the outside air, the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other,
第一の基板と第二の基板の少なくとも一方力も光を照射することで、前記光硬化性 接着剤を硬化させ接着、封止することを特徴とする請求の範囲第 2項に記載の有機 エレクト口ルミネッセンス素子の製造方法。  3. The organic elect according to claim 2, wherein at least one of the first substrate and the second substrate is irradiated with light to cure, bond and seal the photocurable adhesive. A method for manufacturing an oral luminescence element.
[6] 予め前記第一基板または前記封止部材の少なくとも一方の有機層の周囲に光硬化 性接着剤が設置されており、  [6] A photocurable adhesive is previously installed around at least one organic layer of the first substrate or the sealing member,
外気から遮断した 0〜50kPaの圧力下で、前記有機エレクト口ルミネッセンス部材 A の有機層と前記有機エレクト口ルミネッセンス部材 Bの有機層をそれぞれ向かいあうよ うに密着させ、  Under a pressure of 0 to 50 kPa cut off from the outside air, the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other,
第一の基板と封止部材の少なくとも一方力 光を照射することで、前記光硬化性接 着剤を硬化させ接着、封止することを特徴とする請求の範囲第 3項に記載の有機ェ レクト口ルミネッセンス素子の製造方法。  4. The organic layer according to claim 3, wherein the photocurable adhesive is cured, adhered, and sealed by irradiating at least one of the first substrate and the sealing member. A method for producing a recto-luminescence device.
[7] 前記封止が、熱融着性接着剤により行われることを特徴とする請求の範囲第 2項また は第 3項に記載の有機エレクト口ルミネッセンス素子の製造方法。  [7] The method for producing an organic electoluminescence device according to [2] or [3], wherein the sealing is performed with a heat-fusible adhesive.
[8] 予め前記第一基板または前記第二基板の少なくとも一方の有機層の周囲に熱融着 性接着剤が設置されており、  [8] A heat-fusible adhesive is previously installed around at least one organic layer of the first substrate or the second substrate,
外気から遮断した 0〜50kPaの圧力下で、前記有機エレクト口ルミネッセンス部材 A の有機層と前記有機エレクト口ルミネッセンス部材 Bの有機層をそれぞれ向かいあうよ うに密着させ、 第一の基板と第二の基板の少なくとも周囲を加熱することで、前記熱融着性接着剤 を熱溶融させ接着、封止することを特徴とする請求の範囲第 2項に記載の有機エレク トロルミネッセンス素子の製造方法。 Under a pressure of 0 to 50 kPa cut off from the outside air, the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other, 3. The organic electric device according to claim 2, wherein at least the periphery of the first substrate and the second substrate is heated to thermally melt and bond and seal the heat-fusible adhesive. A method for producing a troluminescence element.
[9] 予め前記第一基板または前記封止部材の少なくとも一方の有機層の周囲に熱融着 性接着剤が設置されており、  [9] A heat-fusible adhesive is previously installed around at least one organic layer of the first substrate or the sealing member,
外気から遮断した 0〜50kPaの圧力下で、前記有機エレクト口ルミネッセンス部材 A の有機層と前記有機エレクト口ルミネッセンス部材 Bの有機層をそれぞれ向かいあうよ うに密着させ、  Under a pressure of 0 to 50 kPa cut off from the outside air, the organic layer of the organic electoluminous luminescence member A and the organic layer of the organic electroluminescent luminescence member B are brought into close contact with each other,
第一の基板と封止部材の少なくとも周囲を加熱することで、前記熱融着性接着剤を 熱溶融させ接着、封止することを特徴とする請求の範囲第 3項に記載の有機エレクト 口ルミネッセンス素子の製造方法。  4. The organic elect mouth according to claim 3, wherein at least the periphery of the first substrate and the sealing member is heated to thermally melt and bond and seal the heat-fusible adhesive. Manufacturing method of luminescence element.
[10] 前記第一の基板及び第二の基板の少なくとも一方に防湿層を有することを特徴とす る請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 10. The organic electroluminescent mouth luminescence device according to claim 1, wherein a moisture-proof layer is provided on at least one of the first substrate and the second substrate.
[11] 前記第一の基板及び第二の基板の少なくとも一方が防湿層を有することを特徴とす る請求の範囲第 2項〜第 9項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子の製造方法。 [11] The organic electroluminescent device according to any one of claims 2 to 9, wherein at least one of the first substrate and the second substrate has a moisture-proof layer. Manufacturing method.
[12] 前記第一の基板及び第二の基板の少なくとも一方に吸湿部材を付与したことを特徴 とする請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。  12. The organic electroluminescent mouth luminescence element according to claim 1, wherein a hygroscopic member is provided on at least one of the first substrate and the second substrate.
[13] 前記第一の基板及び第二の基板の少なくとも一方に吸湿部材を付与することを特徴 とする請求の範囲第 2項〜第 9項のいずれ力、 1項に記載の有機エレクト口ルミネッセ ンス素子の製造方法。  [13] The organic electoluminescence according to any one of [2] to [9], wherein a moisture absorbing member is applied to at least one of the first substrate and the second substrate. A manufacturing method of a capacitance element.
PCT/JP2007/065950 2006-08-25 2007-08-16 Organic electroluminescent device and method for manufacturing the same WO2008023626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008530879A JPWO2008023626A1 (en) 2006-08-25 2007-08-16 Organic electroluminescence device and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006228834 2006-08-25
JP2006-228834 2006-08-25

Publications (1)

Publication Number Publication Date
WO2008023626A1 true WO2008023626A1 (en) 2008-02-28

Family

ID=39106711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065950 WO2008023626A1 (en) 2006-08-25 2007-08-16 Organic electroluminescent device and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JPWO2008023626A1 (en)
WO (1) WO2008023626A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033794A (en) * 2008-07-28 2010-02-12 Tokai Rubber Ind Ltd Method of manufacturing organic electroluminescent element
JP2010250943A (en) * 2009-04-10 2010-11-04 Rohm Co Ltd Organic el device
JP2011082167A (en) * 2009-10-08 2011-04-21 Samsung Mobile Display Co Ltd Substrate bonding apparatus and substrate bonding method
WO2011096308A1 (en) * 2010-02-04 2011-08-11 コニカミノルタホールディングス株式会社 Method for producing organic electroluminescence panel
JP2014011605A (en) * 2012-06-29 2014-01-20 Murata Mfg Co Ltd Transmission line
WO2021024337A1 (en) * 2019-08-05 2021-02-11 シャープ株式会社 Display device and method for producing display device
CN114335132A (en) * 2015-07-22 2022-04-12 三星显示有限公司 Organic light emitting display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220870A (en) * 2003-01-10 2004-08-05 Semiconductor Energy Lab Co Ltd Method of manufacturing light emitting device
JP2004247161A (en) * 2003-02-13 2004-09-02 Morio Taniguchi Manufacturing method of organic electroluminescent element
JP2004303631A (en) * 2003-03-31 2004-10-28 Optrex Corp Organic el display, and manufacturing method and equipment thereof
JP2005078941A (en) * 2003-08-29 2005-03-24 Fuji Photo Film Co Ltd Manufacturing method of organic electroluminescent element and organic electroluminescent element
JP2007018900A (en) * 2005-07-08 2007-01-25 Dainippon Kaken:Kk Sealing device and sealing method
JP2007220402A (en) * 2006-02-15 2007-08-30 Konica Minolta Holdings Inc Method of encapsulating organic electroluminescent element and organic electroluminescent element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349169A (en) * 2003-05-23 2004-12-09 Fuji Photo Film Co Ltd Organic electroluminescent element and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220870A (en) * 2003-01-10 2004-08-05 Semiconductor Energy Lab Co Ltd Method of manufacturing light emitting device
JP2004247161A (en) * 2003-02-13 2004-09-02 Morio Taniguchi Manufacturing method of organic electroluminescent element
JP2004303631A (en) * 2003-03-31 2004-10-28 Optrex Corp Organic el display, and manufacturing method and equipment thereof
JP2005078941A (en) * 2003-08-29 2005-03-24 Fuji Photo Film Co Ltd Manufacturing method of organic electroluminescent element and organic electroluminescent element
JP2007018900A (en) * 2005-07-08 2007-01-25 Dainippon Kaken:Kk Sealing device and sealing method
JP2007220402A (en) * 2006-02-15 2007-08-30 Konica Minolta Holdings Inc Method of encapsulating organic electroluminescent element and organic electroluminescent element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033794A (en) * 2008-07-28 2010-02-12 Tokai Rubber Ind Ltd Method of manufacturing organic electroluminescent element
JP2010250943A (en) * 2009-04-10 2010-11-04 Rohm Co Ltd Organic el device
JP2011082167A (en) * 2009-10-08 2011-04-21 Samsung Mobile Display Co Ltd Substrate bonding apparatus and substrate bonding method
WO2011096308A1 (en) * 2010-02-04 2011-08-11 コニカミノルタホールディングス株式会社 Method for producing organic electroluminescence panel
JP2014011605A (en) * 2012-06-29 2014-01-20 Murata Mfg Co Ltd Transmission line
CN114335132A (en) * 2015-07-22 2022-04-12 三星显示有限公司 Organic light emitting display device
WO2021024337A1 (en) * 2019-08-05 2021-02-11 シャープ株式会社 Display device and method for producing display device

Also Published As

Publication number Publication date
JPWO2008023626A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP6577069B2 (en) Manufacture of flexible organic electronic devices
JP5943057B2 (en) Organic electronics panel and manufacturing method thereof
TWI423723B (en) Method of manufacturing self-light-emitting panel
JP3824644B2 (en) Manufacture of organic light emitting devices
JP6343026B2 (en) LAMINATED FOR SEALING, ORGANIC LIGHT EMITTING DEVICE AND METHOD FOR PRODUCING THEM
WO2008023626A1 (en) Organic electroluminescent device and method for manufacturing the same
WO2011070951A1 (en) Organic electronics panel and method of manufacturing same
WO2010001831A1 (en) Organic el panel and process for producing organic el panel
JP2009123690A (en) Organic electronics element winding to past drying agent film after forming coated layer or after forming coupled electrode layer and its manufacturing method
JPWO2008149768A1 (en) Organic electroluminescence light emitting device and manufacturing method
JP2005521209A (en) Organic thin film element and method for manufacturing the same
JP4736602B2 (en) Organic EL element sealing method and sealing device
JP2003297561A (en) Manufacturing method of organic film element and organic film element
JP5772819B2 (en) Manufacturing method of organic electroluminescence panel and organic electroluminescence panel manufactured by the manufacturing method
JP5532887B2 (en) Organic electronics panel
JP4609135B2 (en) Method for manufacturing organic electroluminescence element
JP2004342407A (en) Organic electroluminescent element and its manufacturing method
JP2009129603A (en) Method and device for manufacturing organic electroluminescent element
JP2008204890A (en) Organic electroluminescent panel, its manufacturing method, and illumination or display device using the organic electroluminescent panel
JP2004079300A (en) Light emitting element and its manufacturing method
JP2004193018A (en) Manufacturing method of organic electroluminescent element and organic electroluminescent element
JP2002190384A (en) Electroluminescent element
JP2010080421A (en) Organic el element and method for manufacturing the same
JP2003229252A (en) Manufacturing method of organic led element using transfer film
JP4270361B2 (en) Transfer material and organic thin film element manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07805933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530879

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07805933

Country of ref document: EP

Kind code of ref document: A1