JP2002190384A - Electroluminescent element - Google Patents

Electroluminescent element

Info

Publication number
JP2002190384A
JP2002190384A JP2000386071A JP2000386071A JP2002190384A JP 2002190384 A JP2002190384 A JP 2002190384A JP 2000386071 A JP2000386071 A JP 2000386071A JP 2000386071 A JP2000386071 A JP 2000386071A JP 2002190384 A JP2002190384 A JP 2002190384A
Authority
JP
Japan
Prior art keywords
electroluminescent device
substrate
light emitting
film
atm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000386071A
Other languages
Japanese (ja)
Inventor
Fuminao Matsumoto
文直 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000386071A priority Critical patent/JP2002190384A/en
Publication of JP2002190384A publication Critical patent/JP2002190384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide improved durability of a carrier-injection electroluminescent element, using a substrate made of polymer material with prolonged life time of the electroluminescent element. SOLUTION: The electroluminescent element has an organic luminescent material between electrodes opposing each other, with the oxygen permeability of the substrate made of the polymer material being 1 (ml/m2.24 H.atm) or less, the polymer material formed by laminating the electrodes and thin films of the organic luminescent material (light-emitting part).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電界発光素子(エ
レクトロルミネッセンス発光素子)に関するものであ
り、特に有機発光材料を使用した電界発光素子に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroluminescent device (electroluminescent light emitting device), and more particularly to an electroluminescent device using an organic luminescent material.

【0002】[0002]

【従来技術】電界発光素子ではその発光励起機構の違い
から、発光層内での電子や正孔の局所的な移動により発
光体を励起し、交流電界でのみ発光する真性電界発光素
子と、電極からの電子と正孔の注入とその発光素子層内
での再結合により発光体を励起し、直流電界で作動する
キャリア注入型電界発光素子の2つに分類される。真性
電界発光型の発光素子は、一般にZnS、CaS、Sr
SにMnやCeなどの希土類金属を添加した無機化合物
を発光体とするものであるが、駆動に200V程度の高
い交流電界を必要とすること、周辺回路の製造コストが
高いこと、輝度や耐久性も不充分であることなどの問題
がある。
2. Description of the Related Art In an electroluminescent device, due to a difference in emission excitation mechanism, an intrinsic electroluminescent device which excites a luminous body by local movement of electrons and holes in a luminescent layer and emits light only in an alternating electric field, and an electrode. Injection of electrons and holes from the semiconductor and recombination thereof in the light emitting element layer excites the light emitting body, and is classified into two types of carrier injection type electroluminescent elements which operate by a DC electric field. Intrinsic electroluminescence type light emitting elements are generally ZnS, CaS, Sr
An inorganic compound in which a rare earth metal such as Mn or Ce is added to S is used as the light-emitting body. However, a high AC electric field of about 200 V is required for driving, the manufacturing cost of peripheral circuits is high, and the brightness and durability are high. There is a problem that the properties are insufficient.

【0003】一方、キャリア注入型電界発光素子は、発
光層として薄膜状有機化合物を用いるようになってから
高輝度のものが得られるようになった。Applied
Physics Letters、51(12)巻、
913頁(1987年刊)には陽極、有機正孔注入移動
体、有機電子注入性発光体及び陰極からなる電界発光素
子が開示されており、有機正孔注入移動体材料として芳
香族第三アミンを、有機電子注入性発光体材料としてア
ルミニウムキノレート錯体を使用した電界発光素子につ
いて報告されている。
On the other hand, carrier-injection type electroluminescent devices have been able to obtain high brightness since a thin film organic compound is used as a light emitting layer. Applied
Physics Letters, Vol. 51 (12),
P. 913 (1987) discloses an electroluminescent device comprising an anode, an organic hole injecting and moving body, an organic electron injecting light emitting body and a cathode. An aromatic tertiary amine is used as the organic hole injecting and moving body material. An electroluminescent device using an aluminum quinolate complex as an organic electron injecting luminescent material has been reported.

【0004】最近では発光材料、正孔輸送材料、電子輸
送材料、電極材料として様々な提案がなされており、発
光効率、発光強度、発光色、発光素子寿命のいずれにお
いても目覚しい特性改善がみられる。また、ポリフェニ
レンビニレン(PPV)などの有機高分子材料を発光材
料として使用した発光素子の開発も盛んである。携帯電
話やノート型パーソナルコンピューターのように携帯性
が重要である用途においては、より軽く、より薄型の表
示装置が必要とされている。このため、従来のガラス基
板ではなくポリマー材料からなる基板を利用したキャリ
ア注入型電界発光素子が提案されている。
[0004] Recently, various proposals have been made for a light emitting material, a hole transporting material, an electron transporting material, and an electrode material, and remarkable improvements in all of luminous efficiency, luminous intensity, luminous color and luminous element life are seen. . In addition, light-emitting elements using an organic polymer material such as polyphenylenevinylene (PPV) as a light-emitting material have been actively developed. In applications where portability is important, such as mobile phones and notebook personal computers, lighter and thinner display devices are required. For this reason, a carrier injection type electroluminescent device using a substrate made of a polymer material instead of a conventional glass substrate has been proposed.

【0005】例えば特開平10−144469号では表
面が平滑な光硬化性樹脂基板を使用した電界発光素子が
開示されている。また、特許第2931211号におい
てはレンズ加工したプラスチックシートを基板に使用し
ている。しなしながら、ポリマー材料はガラスと比較し
て酸素や水蒸気が透過し易い。キャリア注入型電界発光
素子に使用される有機材料や電極材料は水や酸素と反応
し易いものが多く、水や酸素の存在下では発光特性の劣
化が著しいことが報告されている。このため、ポリマー
材料からなる基板を使用したキャリア注入型電界発光素
子はいまだ実用化に至っていない。
For example, Japanese Patent Application Laid-Open No. 10-144469 discloses an electroluminescent device using a photocurable resin substrate having a smooth surface. In Japanese Patent No. 293111, a plastic sheet subjected to lens processing is used for a substrate. However, polymer materials are more permeable to oxygen and water vapor than glass. Many organic materials and electrode materials used for the carrier injection type electroluminescent device are liable to react with water or oxygen, and it is reported that the luminescent characteristics are significantly deteriorated in the presence of water or oxygen. Therefore, a carrier-injection type electroluminescent device using a substrate made of a polymer material has not yet been put to practical use.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、ポリ
マー材料からなる基板を使用したキャリア注入型電界発
光素子において、素子の耐久性を向上させ長寿命化を図
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the durability of a carrier-injection type electroluminescent device using a substrate made of a polymer material and extend the life of the device.

【0007】[0007]

【課題を解決するための手段】本発明の上記課題は、次
の1)〜11)によって解決される。 1) 対向する電極間に有機発光材料を有する電界発光
素子において、該電極及び有機発光材料薄膜(発光部)
が積層されるポリマー材料からなる基板は、その酸素透
過率が1(ml/m・24H・atm)以下となるよ
うに処理されたものであることを特徴とする電界発光素
子。 2) 基板が、酸素透過率の低い樹脂材料層又は金属酸
化物層が積層されたものであることを特徴とする1)記
載の電界発光素子。 3) 基板がフィルムもしくはシート状であることを特
徴とする1)〜2)のいずれかに記載の電界発光素子。 4) 発光部が形成されている部分が酸素透過率1(m
l/m・24H・atm)以下のポリマー材料を基材
とする被覆材で被覆されていることを特徴とする1)〜
3)のいずれかに記載の電界発光素子。 5) 被覆材がフィルムもしくはシート状であることを
特徴とする4)に記載の電界発光素子。 6) 発光部が形成されている基板と、前記被覆材と
が、可撓性を有するエポキシ系接着剤で接着されている
ことを特徴とする4)又は5)記載の電界発光素子。 7) 発光部が形成されている基板と、前記被覆材とで
形成される空間が、不活性ガスで充填されていることを
特徴とする4)〜6)のいずれかに記載の電界発光素
子。 8) 不活性ガスの圧力が1atm以上であることを特
徴とする7)記載の電界発光素子。 9) 発光部が形成されている基板と、前記被覆材との
間に、乾燥剤(吸湿剤)及び/又は酸素吸収剤を配置す
ることを特徴とする4)〜8)のいずれかに記載の電界
発光素子。 10) 発光部と乾燥剤(吸湿剤)及び/又は酸素吸収
剤とが、ポリマー材料を基材とするフィルムもしくはシ
ート状の隔離材で隔てられていることを特徴とする9)
記載の電界発光素子。 11) 隔離材の酸素透過率が、1(ml/m・24
H・atm)以上であることを特徴とする10)記載の
電界発光素子。
The above object of the present invention is attained by the following items 1) to 11). 1) In an electroluminescent device having an organic light emitting material between opposing electrodes, the electrode and the organic light emitting material thin film (light emitting portion)
There substrate made of polymeric material to be laminated, electroluminescent device, characterized in that the oxygen permeability is one that is treated to be 1 (ml / m 2 · 24H · atm) or less. 2) The electroluminescent device according to 1), wherein the substrate is formed by laminating a resin material layer or a metal oxide layer having low oxygen permeability. 3) The electroluminescent device according to any one of 1) to 2), wherein the substrate is a film or a sheet. 4) The portion where the light emitting portion is formed has an oxygen permeability of 1 (m
characterized in that the l / m 2 · 24H · atm ) or less of the polymeric material is coated with a coating material to the substrate 1) -
The electroluminescent device according to any one of 3). 5) The electroluminescent device according to 4), wherein the coating material is in the form of a film or a sheet. 6) The electroluminescent device according to 4) or 5), wherein the substrate on which the light emitting portion is formed and the covering material are adhered with a flexible epoxy adhesive. 7) The electroluminescent device according to any one of 4) to 6), wherein a space formed by the substrate on which the light emitting portion is formed and the coating material is filled with an inert gas. . 8) The electroluminescent device according to 7), wherein the pressure of the inert gas is 1 atm or more. 9) A drying agent (hygroscopic agent) and / or an oxygen absorbing agent is arranged between the substrate on which the light emitting portion is formed and the coating material. Electroluminescent element. 10) The light-emitting portion is separated from the desiccant (hygroscopic agent) and / or oxygen absorber by a film- or sheet-like separator made of a polymer material as a base material 9).
An electroluminescent device according to claim 1. 11) The oxygen permeability of the isolation material, 1 (ml / m 2 · 24
H · atm) or more.

【0008】ポリマー材料からなる基板(以下、ポリマ
ー基板という。)の酸素透過率及び水蒸気透過率はポリ
マーの種類によって大きく異なる。しかしながら、比較
的ガスバリア性に優れていると言われるポリエチレンテ
レフタレート(PET)でも酸素透過率は4(ml/m
・24H・atm)程度もあり、単一のポリマー材料
からなる基板で酸素透過率及び水蒸気透過率がもっと小
さくて電界発光素子の経時劣化に対する影響の小さいも
のを得ることは難しい。ポリマー基板の酸素透過率及び
水蒸気透過率を低減する方法としては、ポリ塩化ビニリ
デン等の樹脂材料を基材であるポリマー基板に塗布する
方法や金属酸化物を蒸着、スパッタ等によってポリマー
基板に積層する方法、熱分解し易い有機金属材料をポリ
マー基板に塗布した後加熱することによって金属酸化物
をポリマー基板に積層する方法などがある。
The oxygen permeability and the water vapor permeability of a substrate made of a polymer material (hereinafter, referred to as a polymer substrate) vary greatly depending on the type of polymer. However, even with polyethylene terephthalate (PET), which is said to have relatively excellent gas barrier properties, the oxygen permeability is 4 (ml / m2).
( 2.24 H.atm), and it is difficult to obtain a substrate made of a single polymer material having a smaller oxygen transmission rate and a smaller water vapor transmission rate and having little influence on the deterioration over time of the electroluminescent element. As a method for reducing the oxygen transmission rate and the water vapor transmission rate of the polymer substrate, a method of applying a resin material such as polyvinylidene chloride to the polymer substrate as a base material, or a method of depositing a metal oxide on the polymer substrate by vapor deposition, sputtering, etc. And a method in which an organic metal material which is easily thermally decomposed is applied to a polymer substrate and then heated to laminate a metal oxide on the polymer substrate.

【0009】本発明者は、様々な酸素透過率及び水蒸気
透過率を有するポリマー基板を用いてキャリア注入型電
界発光素子を試作し、電極及び有機発光材料薄膜(以
下、これらの層を併せて発光部という)が積層される基
板の酸素透過率を1(ml/m ・24H・atm)以
下にすることによって電界発光素子の耐久性を向上させ
長寿命化を図ることができることを見出した。ポリマー
基板を用いると軽くて薄い発光素子を得ることができる
という利点もある。本発明の電界発光素子に用いること
ができる有機発光材料としては、アルミニウムキノリノ
ール錯体、ベリリウムキノリン錯体、ヒドロキシフェニ
ルオキサゾール、ヒドロキシフェニルチアゾールなどの
低分子材料の他、ポリフェニレンビニレン、ポリビニル
カルバゾールなどの高分子材料が挙げられる。
The present inventors have developed various oxygen transmission rates and water vapors.
Carrier-injection-type electrode using a polymer substrate with transmittance
A field emission device was prototyped, and electrodes and an organic luminescent material thin film
Below, these layers are collectively referred to as a light-emitting part).
The oxygen permeability of the plate is 1 (ml / m 2・ 24H ・ atm)
By lowering the durability of the electroluminescent device.
It has been found that the service life can be extended. polymer
Light and thin light-emitting elements can be obtained by using a substrate
There is also an advantage. Use in the electroluminescent device of the present invention
The organic luminescent material that can be used is aluminum quinolino
Complex, beryllium quinoline complex, hydroxyphenyl
Luoxazole, hydroxyphenylthiazole, etc.
In addition to low molecular weight materials, polyphenylene vinylene, polyvinyl
Polymer materials such as carbazole can be used.

【0010】ポリマー基板の水蒸気透過率については、
出来るだけ小さい方が好ましい。また、発光部が形成さ
れている部分を酸素透過率が1(ml/m・24H・
atm)以下である被覆材で被覆することによってさら
に発光素子の耐久性が向上し長寿命化できることが分か
った。基板や被覆材に好ましく用いられるポリマー材料
としては、ポリエチレンテレフタレート、ポリカーボネ
イト、ポリエーテルサルフォン、ポリアリレートなどが
挙げられる。また、基板や被覆材の形状は、電界発光素
子に適合するものである限り特に制限はないが、軽量化
や薄膜化の点からフィルムもしくはシート状とすること
が好ましい。フィルムもしくはシートの厚みは50〜5
00μmである。
Regarding the water vapor transmission rate of the polymer substrate,
It is preferable to be as small as possible. In addition, the portion where the light emitting portion is formed has an oxygen permeability of 1 (ml / m 2 · 24H ·
It has been found that by coating with a coating material of atm) or less, the durability of the light emitting element can be further improved and the life can be prolonged. Polymer materials preferably used for the substrate and the coating material include polyethylene terephthalate, polycarbonate, polyether sulfone, polyarylate, and the like. The shape of the substrate or the covering material is not particularly limited as long as it is suitable for the electroluminescent element, but is preferably a film or a sheet from the viewpoint of weight reduction and thinning. Film or sheet thickness is 50-5
00 μm.

【0011】酸素透過率を1(ml/m・24H・a
tm)以下にする目的でポリマー基板に塗布される樹脂
材料としては、ポリビニルアルコール、サランなどが挙
げられる。同様の目的で蒸着、スパッタ等によってポリ
マー基板に積層される金属酸化物としては、二酸化珪
素、窒化アルミニウム、窒化珪素意、酸化アルミニウム
などが挙げられる。同様の目的で加熱により金属酸化物
としてポリマー基板に積層される熱分解し易い有機金属
材料としては、金属アルコラートが挙げられる。
[0011] Oxygen transmission rate 1 (ml / m 2 · 24H · a
tm) Examples of the resin material applied to the polymer substrate for the purpose of reducing the content to below are polyvinyl alcohol and Saran. Examples of the metal oxide to be laminated on the polymer substrate by vapor deposition, sputtering, or the like for the same purpose include silicon dioxide, aluminum nitride, silicon nitride, and aluminum oxide. As the easily decomposable organometallic material which is laminated on a polymer substrate as a metal oxide by heating for the same purpose, a metal alcoholate may be mentioned.

【0012】発光部が形成された基板と発光素子の被覆
材とを接着するための接着剤としては、アクリル系接着
剤、エポキシ系接着剤などが挙げられるが、可撓性を有
するエポキシ系接着剤を用いると、基板の温度伸縮によ
っても接着面が破断しない強い接着強度を得ることがで
きるので特に好ましい。発光部が形成された基板と、発
光素子の被覆材とで形成される空間に充填される不活性
ガスとしては、窒素、アルゴンなどが挙げられる。ま
た、不活性ガスの圧力は1atm以上、即ち通常の大気
圧以上とすることが好ましく、さらに大気圧よりも0.
1Kg/cm程度高くすることがより好ましい。これ
は発光素子の内圧を外圧よりも高く保つことにより発光
素子内への外気の流入を防止し、発光素子の経時劣化を
低減するためである。
[0012] Examples of the adhesive for bonding the substrate on which the light emitting portion is formed and the covering material of the light emitting element include an acrylic adhesive and an epoxy adhesive. The use of an agent is particularly preferable because a strong adhesive strength can be obtained in which the adhesive surface is not broken even by the thermal expansion and contraction of the substrate. Examples of the inert gas filled in the space formed by the substrate on which the light emitting portion is formed and the covering material of the light emitting element include nitrogen, argon, and the like. Further, the pressure of the inert gas is preferably at least 1 atm, that is, at least normal atmospheric pressure, and more than 0.1 atm.
It is more preferable to increase the pressure by about 1 kg / cm 2 . This is because by keeping the internal pressure of the light emitting element higher than the external pressure, the inflow of outside air into the light emitting element is prevented, and the deterioration of the light emitting element with time is reduced.

【0013】また、発光部が形成された基板と、発光素
子の被覆材とで形成される空間に乾燥剤(吸湿剤)及び
/又は酸素吸収剤を配置することにより、発光素子の一
層の長寿命化を図ることができる。乾燥剤(吸湿剤)と
しては、塩化カルシウム、シリカゲル、酸化カルシウム
などがあり、酸素吸収剤としては鉄粉を樹脂に分散させ
たものがよく使用される。さらに、発光部と乾燥剤(吸
湿剤)及び/又は酸素吸収剤とを、ポリマー材料を基材
とするフィルムもしくはシート状の隔離材で隔てること
により、発光素子の製造工程を簡略化することができ
る。隔離材に使用できるポリマー材料としては、ポリエ
チレンテレフタレート、ポリカーボネイト、ポリエーテ
ルサルフォン、ポリアリレートなどが挙げられる。但
し、隔離材の酸素透過率を1(ml/m・24H・a
tm)以上にしないとガス透過性不足のため乾燥剤(吸
湿剤)及び/又は酸素吸収剤の効果が発揮されない。
Further, by disposing a desiccant (hygroscopic agent) and / or an oxygen absorbent in a space formed by the substrate on which the light emitting section is formed and the covering material of the light emitting element, the length of one layer of the light emitting element can be increased. Life can be extended. Examples of the desiccant (hygroscopic agent) include calcium chloride, silica gel, and calcium oxide. As the oxygen absorbent, iron powder dispersed in a resin is often used. Furthermore, by separating the light-emitting portion from the desiccant (hygroscopic agent) and / or oxygen absorber with a film- or sheet-like separator made of a polymer material as a base material, the manufacturing process of the light-emitting element can be simplified. it can. Examples of the polymer material that can be used for the separator include polyethylene terephthalate, polycarbonate, polyethersulfone, and polyarylate. However, the oxygen permeability of the isolation member 1 (ml / m 2 · 24H · a
Unless it exceeds tm), the effect of the desiccant (hygroscopic agent) and / or the oxygen absorbent is not exhibited due to insufficient gas permeability.

【0014】[0014]

【実施例】以下、実施例及び比較例を挙げて本発明を具
体的に説明するが、本発明はこれらの実施例により何ら
限定されるものではない。
The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0015】実施例1 厚さ100μmの一軸延伸ポリエチレンテレフタレート
(PET)フィルムを水系洗浄剤及びイソプロピルアル
コール中で超音波洗浄後、100℃で乾燥した。この基
板の片面に、スパッタ法により、SiOx膜(x:1.
5〜2.5)を30nm〜1μmの膜厚で製膜した。続
いて、基板の同じ面側にスパッタ法によりITO透明導
電膜120nmを製膜した。ITO製膜時の基板温度は
PETの耐熱性を考慮して100℃とした。次に正孔注
入層としてN,N′−ビス(3−メチルフェニル)−
N,N′−ジフェニル−[1,1′−ビフェニル]−
4,4′ジアミン(TPD)を30nm、発光層として
トリス(8−キノリノラート)アルミニウム(Al
)を真空蒸着で500nm製膜した。引き続きマグ
ネシウムと銀をその組成比が10:1となるように厚さ
が100nm共蒸着して発光素子の上電極を形成した。
最後に表面保護膜として厚さ0.05mmのカバーグラ
スをスリーボンド社製の光硬化性樹脂3052を用いて
接着した。
Example 1 A uniaxially stretched polyethylene terephthalate (PET) film having a thickness of 100 μm was ultrasonically washed in an aqueous detergent and isopropyl alcohol, and then dried at 100 ° C. On one surface of this substrate, a SiOx film (x: 1.
5 to 2.5) with a thickness of 30 nm to 1 μm. Subsequently, an ITO transparent conductive film having a thickness of 120 nm was formed on the same surface side of the substrate by a sputtering method. The substrate temperature during ITO film formation was set to 100 ° C. in consideration of the heat resistance of PET. Next, N, N'-bis (3-methylphenyl)-was used as a hole injection layer.
N, N'-diphenyl- [1,1'-biphenyl]-
4,4 ′ diamine (TPD) is 30 nm, and tris (8-quinolinolate) aluminum (Al
q 3) was 500nm film formation by vacuum deposition. Subsequently, magnesium and silver were co-evaporated to a thickness of 100 nm so that the composition ratio became 10: 1 to form an upper electrode of the light-emitting element.
Finally, a cover glass having a thickness of 0.05 mm was adhered as a surface protective film using a photocurable resin 3052 manufactured by Three Bond.

【0016】実施例2 厚さ100μmのポリカーボネート(PC)フィルムを
水系洗浄剤及びイソプロピルアルコール中で超音波洗浄
後、100℃で乾燥した。この基板にスパッタ法によ
り、SiOx膜(x:1.5〜2.5)200nmを製
膜した。続いて、スパッタ法によりITO透明導電膜1
20nmを製膜した。次に、正孔注入層として実施例1
と同じTPDを30nm、発光層として実施例1と同じ
Alqを真空蒸着で500nm製膜した。引き続きマ
グネシウムと銀をその組成比が10:1となるように1
00nm共蒸着して発光素子の上電極を形成した。最後
に表面保護膜として片面にSiOx膜(x:1.5〜
2.5)200nmをスパッタ法で製膜した厚さ100
μmのポリカーボネート(PC)フィルムをスリーボン
ド社製の光硬化性樹脂3052を用いて接着した。
Example 2 A 100 μm-thick polycarbonate (PC) film was subjected to ultrasonic cleaning in an aqueous detergent and isopropyl alcohol, and then dried at 100 ° C. An SiOx film (x: 1.5 to 2.5) 200 nm was formed on this substrate by a sputtering method. Subsequently, the ITO transparent conductive film 1 is formed by sputtering.
20 nm was formed into a film. Next, Example 1 was used as a hole injection layer.
The same TPD as in Example 1 was formed into a film having a thickness of 30 nm, and the same light emitting layer as in Example 1 was formed using Alq 3 in a thickness of 500 nm by vacuum evaporation. Subsequently, magnesium and silver were added in such a manner that the composition ratio became 10: 1.
The upper electrode of the light emitting element was formed by co-evaporation of 00 nm. Finally, a SiOx film (x: 1.5 to
2.5) Thickness 100 formed by sputtering 200 nm
A μm polycarbonate (PC) film was bonded using a photocurable resin 3052 manufactured by Three Bond.

【0017】実施例3 厚さ100μmのポリエーテルスルフォンフィルムを水
系洗浄剤及びイソプロピルアルコール中で超音波洗浄
後、100℃で乾燥した。この基板の両面にスパッタ法
により、SiOx膜(x:1.5〜2.5)200nm
を製膜した。続いて片方の面だけに同じくスパッタ法で
ITO透明導電膜120nmを製膜した。次に、正孔注
入層として実施例1と同じTPDを30nm、発光層と
して実施例1と同じAlqを真空蒸着で500nm製
膜した。引き続きマグネシウムと銀をその組成比が1
0:1となるように100nm共蒸着して発光素子の上
電極を形成した。さらに、図1に示すように発光部(有
機発光材料薄膜)2の周辺を囲むような形状に可撓性を
有する熱硬化型エポキシ接着剤3(住友ベークライト社
製ERS)を塗布し、基板と同様に両面に100nmの
SiOx膜を有する厚さ100μmのポリエーテルスル
フォンフィルムと貼り合わせ、袋状の構造を形成した。
このとき、発光層を形成した面が袋の内側になるように
した。次いで、この袋状にした素子部材を密閉容器内に
置き、密閉容器内の圧力を0.1Paまで低下させた。
0.1Paで10分間放置した後、密閉容器内に窒素ガ
スを導入して大気圧(約1atm)まで容器内の圧力を
上昇させ、容器内において、熱硬化型エポキシ接着剤に
より開口部4を封止した。
Example 3 A polyethersulfone film having a thickness of 100 μm was ultrasonically washed in an aqueous detergent and isopropyl alcohol, and then dried at 100 ° C. An SiOx film (x: 1.5 to 2.5) 200 nm on both surfaces of this substrate by sputtering.
Was formed. Subsequently, an ITO transparent conductive film having a thickness of 120 nm was formed on only one surface by the same sputtering method. Next, the same TPD as in Example 1 was formed to have a thickness of 30 nm as a hole injection layer, and the same Alq 3 as in Example 1 was formed to have a thickness of 500 nm as a light emitting layer by vacuum evaporation. Subsequently, magnesium and silver were mixed at a composition ratio of 1
The upper electrode of the light-emitting element was formed by co-evaporation at a ratio of 0: 1 to 100 nm. Further, as shown in FIG. 1, a flexible thermosetting epoxy adhesive 3 (ERS manufactured by Sumitomo Bakelite Co., Ltd.) is applied in a shape surrounding the light emitting portion (organic light emitting material thin film) 2 so as to surround the substrate. Similarly, it was bonded to a 100 μm-thick polyethersulfone film having a 100 nm SiOx film on both sides to form a bag-like structure.
At this time, the surface on which the light emitting layer was formed was located inside the bag. Next, the bag-shaped element member was placed in a closed container, and the pressure in the closed container was reduced to 0.1 Pa.
After standing at 0.1 Pa for 10 minutes, nitrogen gas was introduced into the closed container to increase the pressure in the container to atmospheric pressure (about 1 atm), and the opening 4 was opened in the container with a thermosetting epoxy adhesive. Sealed.

【0018】実施例4 実施例3と同様にして図1に示すような袋状の構造を形
成した。次いで、この袋状にした素子部材を密閉容器内
に置き、密閉容器内の圧力を0.1Paまで低下させ
た。0.1Paで10分間放置した後、密閉容器内に窒
素ガスを導入して容器内の圧力が大気圧より0.1kg
/cm大きくなるまで圧力を上昇させ、容器内の圧力
を保持した状態で、熱硬化型エポキシ接着剤により開口
部を封止した。
Example 4 A bag-like structure as shown in FIG. 1 was formed in the same manner as in Example 3. Next, the bag-shaped element member was placed in a closed container, and the pressure in the closed container was reduced to 0.1 Pa. After leaving at 0.1 Pa for 10 minutes, nitrogen gas is introduced into the closed container, and the pressure in the container becomes 0.1 kg below atmospheric pressure.
/ Cm 2, and the opening was sealed with a thermosetting epoxy adhesive while maintaining the pressure in the container.

【0019】実施例5 発光素子の上電極を形成する工程までは実施例3と同様
に行った。次いで、発光部の周辺を囲むような形状に可
撓性を有する熱硬化型エポキシ接着剤(住友ベークライ
ト社製ERS)を塗布し、基板と同様に両面に100n
mのSiOx膜を有する厚さ100μmのポリエーテル
スルフォンフィルムと貼り合わせ、袋状の構造を形成し
た。このとき、発光層を形成した面が袋の内側になるよ
うにすると共に、乾燥剤(吸湿剤)として粒径50μm
のシリカゲル、酸素吸収剤として粒径25μmの酸化第
一鉄を低密度ポリエチレンに分散したものを厚さ25μ
mのポリエチレンフィルムに塗布した後、低密度ポリエ
チレン塗布面が発光層と反対の側となるように袋状の構
造内に挿入した。その実施形態を図2に示す。次いで、
この袋状にした素子部材を密閉容器内に置き、密閉容器
内の圧力を0.1Paまで低下させた。0.1Paで1
0分間放置した後、密閉容器内に窒素ガスを導入して容
器内の圧力が大気圧より0.1kg/cm大きくなる
まで圧力を上昇させた。容器内の圧力を保持した状態
で、熱硬化型エポキシ接着剤により開口部を封止した。
Example 5 The same procedure as in Example 3 was performed up to the step of forming the upper electrode of the light emitting element. Next, a flexible thermosetting epoxy adhesive (ERS, manufactured by Sumitomo Bakelite Co., Ltd.) is applied in a shape surrounding the periphery of the light emitting portion, and 100 n on both sides like the substrate.
A 100 μm-thick polyethersulfone film having an m.sup.x SiOx film was bonded to form a bag-like structure. At this time, the surface on which the light emitting layer was formed was located inside the bag, and the particle size was 50 μm as a desiccant (hygroscopic agent).
Of silica gel, ferrous oxide having a particle size of 25 μm as an oxygen absorbent dispersed in low-density polyethylene, and having a thickness of 25 μm.
m, and then inserted into a bag-shaped structure such that the low-density polyethylene-coated surface was on the side opposite to the light-emitting layer. The embodiment is shown in FIG. Then
The bag-shaped element member was placed in a closed container, and the pressure in the closed container was reduced to 0.1 Pa. 1 at 0.1 Pa
After standing for 0 minutes, nitrogen gas was introduced into the closed container, and the pressure was increased until the pressure in the container became 0.1 kg / cm 2 higher than the atmospheric pressure. While maintaining the pressure in the container, the opening was sealed with a thermosetting epoxy adhesive.

【0020】比較例1 酸素透過率を低下させるための層であるSiOx膜の製
膜を行なっていない基板を用いた点を除き、実施例1と
同様にしてキャリア注入型電界発光素子を作製した。
Comparative Example 1 A carrier-injection type electroluminescent device was manufactured in the same manner as in Example 1, except that a substrate on which an SiOx film as a layer for lowering the oxygen permeability was not formed was used. .

【0021】比較例2 酸素透過率を低下させるための層であるSiOx膜の製
膜を行なっていない表面保護層を用いた点を除き、実施
例2と同様にしてキャリア注入型電界発光素子を作製し
た。
Comparative Example 2 A carrier injection type electroluminescent device was prepared in the same manner as in Example 2 except that a surface protective layer in which a SiOx film as a layer for lowering oxygen permeability was not formed was used. Produced.

【0022】比較例3 発光部の周辺を囲むような形状に塗布する接着剤を、可
撓性を有する熱硬化型エポキシ接着剤から可撓性を有し
ない光硬化型アクリル接着剤(スリーボンド社製30Y
−296G)に変えた点を除き、実施例3と同様にして
キャリア注入型電界発光素子を作製した。
Comparative Example 3 The adhesive applied in a shape surrounding the periphery of the light emitting portion was changed from a flexible thermosetting epoxy adhesive to a non-flexible light-curing acrylic adhesive (manufactured by Three Bond Co., Ltd.). 30Y
-296G), except that the carrier injection type electroluminescent device was manufactured in the same manner as in Example 3.

【0023】参考例 発光素子の上電極を形成する工程までは実施例5と同様
に(即ち実施例3と同様に)行った。次いで、発光部の
周辺を囲むような形状に可撓性を有する熱硬化型エポキ
シ接着剤(住友ベークライト社製ERS)を塗布し、基
板と同様に両面に50nmのSiOx膜を有する厚さ1
00μmのポリエーテルスルフォンフィルムと貼り合わ
せ、袋状の構造を形成した。このとき、発光層を形成し
た面が袋の内側になるようにすると共に、乾燥剤(吸湿
剤)として粒径50μmのシリカゲル、酸素吸収剤とし
て粒径25μmの酸化第一鉄を低密度ポリエチレンに分
散したものを厚さ100μmのポリカーボネートフィル
ムに塗布して、低密度ポリエチレン塗布面が発光層と反
対の側となるように袋状の構造内に挿入した。なお、ポ
リカーボネートフィルムにはあらかじめスパッタ法によ
ってSiOx膜200nmを製膜した。次いで、この袋
状にした素子部材を密閉容器内に置き、密閉容器内の圧
力を0.1Paまで低下させた。0.1Paで10分間
放置した後、密閉容器内に窒素ガスを導入して容器内の
圧力が大気圧より0.1kg/cm大きくなるまで圧
力を上昇させた。容器内の圧力を保持した状態におい
て、熱硬化型エポキシ接着剤で開口部を封止した。
Reference Example The steps up to the step of forming the upper electrode of the light emitting element were performed in the same manner as in Example 5 (that is, in the same manner as Example 3). Next, a flexible thermosetting epoxy adhesive (ERS, manufactured by Sumitomo Bakelite Co., Ltd.) is applied in a shape surrounding the periphery of the light-emitting portion, and a thickness of 1 having a 50 nm SiOx film on both surfaces in the same manner as the substrate
It was bonded to a 00 μm polyethersulfone film to form a bag-like structure. At this time, the surface on which the light-emitting layer was formed was placed inside the bag, and silica gel having a particle size of 50 μm was used as a desiccant (hygroscopic agent), and ferrous oxide having a particle size of 25 μm was used as an oxygen absorbent. The dispersion was applied to a 100 μm-thick polycarbonate film, and inserted into a bag-like structure such that the low-density polyethylene application surface was on the side opposite to the light-emitting layer. Note that a 200 nm SiOx film was formed on the polycarbonate film in advance by a sputtering method. Next, the bag-shaped element member was placed in a closed container, and the pressure in the closed container was reduced to 0.1 Pa. After standing at 0.1 Pa for 10 minutes, nitrogen gas was introduced into the sealed container to increase the pressure until the pressure in the container became 0.1 kg / cm 2 higher than the atmospheric pressure. While maintaining the pressure in the container, the opening was sealed with a thermosetting epoxy adhesive.

【0024】以上のようにして作製した実施例1〜5及
び比較例1〜4の電界発光素子を70℃の恒温層内で電
流密度が10mA/cmとなる条件で駆動したときの
発光強度の変化を調べた。実施例1については、発光素
子を作製した基板の膜厚、酸素透過率、発光強度が初期
の半分になるまでの時間(H)を表1にまとめた。表か
ら明らかなように基板の酸素透過率が1(ml/m
24H・atm)以下において素子の劣化を防止する効
果が顕著である。
The emission intensity when the electroluminescent devices of Examples 1 to 5 and Comparative Examples 1 to 4 manufactured as described above were driven in a constant temperature layer at 70 ° C. under the condition that the current density was 10 mA / cm 2. Was examined for changes. For Example 1, Table 1 summarizes the film thickness of the substrate on which the light-emitting element was manufactured, the oxygen transmittance, and the time (H) until the emission intensity became half of the initial value. As is clear from the table, the oxygen transmission rate of the substrate was 1 (ml / m 2.
At 24 H.atm or less, the effect of preventing the deterioration of the element is remarkable.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例2〜5、比較例1〜3および参考例
については、発光強度が初期の半分になるまでの時間を
表2にまとめた。実施例3では、袋状の構造を形成し、
かつ、窒素ガスを充填したことにより、実施例2の単に
表面保護層を設けた場合よりも素子寿命が大幅に伸びて
いる。実施例4では、窒素ガスの圧力を大気圧よりも高
くしたので、実施例3の大気圧の場合よりも素子寿命が
さらに伸びている。実施例5では、乾燥剤(吸湿剤)及
び酸素吸収剤を配置したことにより、実施例4に比べて
素子寿命がさらに顕著に伸びている。
For Examples 2 to 5, Comparative Examples 1 to 3, and Reference Examples, Table 2 summarizes the time required for the emission intensity to be reduced to half of the initial value. In Example 3, a bag-like structure is formed,
Further, by filling with nitrogen gas, the element life is greatly extended as compared with the case where only the surface protective layer of Example 2 is provided. In the fourth embodiment, since the pressure of the nitrogen gas is higher than the atmospheric pressure, the element life is further extended as compared with the case of the atmospheric pressure in the third embodiment. In the fifth embodiment, the device life is further remarkably extended as compared with the fourth embodiment by arranging the desiccant (hygroscopic agent) and the oxygen absorbent.

【0027】なお、比較例3では、寿命試験初期に保護
層のフィルムの接着層がダメージを受け、フィルムが剥
離してしまった。また、参考例は、請求項10に関連す
るもので、ガス透過性の悪い隔離材を用いると実施例5
に見られるような乾燥剤(吸湿剤)及び酸素吸収剤の効
果が発揮されず、その素子寿命は、乾燥剤(吸湿剤)及
び酸素吸収剤を配置していない実施例4と同等にしかな
らないことを示している。
In Comparative Example 3, the adhesive layer of the protective layer film was damaged in the early stage of the life test, and the film was peeled off. Further, the reference example is related to claim 10, and when a separator having poor gas permeability is used, the fifth embodiment can be used.
The effect of the desiccant (hygroscopic agent) and the oxygen absorbent as shown in (1) is not exhibited, and the element life is only equivalent to that of Example 4 in which the desiccant (hygroscopic agent) and the oxygen absorbent are not provided. It is shown that.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】酸素透過率が1(ml/m・24H・
atm)以下であるポリマー基板を用いることにより、
電界発光素子の長寿命化を実現することができる。ま
た、発光部が形成されている部分を酸素透過率が1(m
l/m・24H・atm)以下のポリマー材料を基材
とする被覆材で被覆すること、基板と被覆材とで形成さ
れる空間に不活性ガスを充填すること、不活性ガスの圧
力を1atm以上とすること、基板と被覆材との間に乾
燥剤(吸湿剤)及び/又は酸素吸収剤を配置することな
どにより一層の長寿命化を図ることができる。また、基
板及び被覆材をフィルムもしくはシート状とすることに
よって、発光寿命はそのままに、軽くて薄い電界発光素
子を得ることができる。また、発光部と乾燥剤(吸湿
剤)及び/又は酸素吸収剤とをポリマー材料を基材とし
たフィルムもしくはシートで隔てることによって、製造
工程を簡略にすることができる。また、基板と被覆材と
を、可撓性を有するエポキシ系接着剤で接着することに
よって、基板の温度伸縮によっても接着面が破断しない
強い接着強度を得ることができる。
Oxygen permeability according to the present invention is 1 (ml / m 2 · 24H ·
atm) By using a polymer substrate that is:
The life of the electroluminescent element can be extended. The portion where the light emitting portion is formed has an oxygen transmittance of 1 (m
coating the l / m 2 · 24H · atm ) or less of the polymeric material with a coating material to the substrate, filling an inert gas into the space formed by the substrate and the coating material, the pressure of the inert gas The life can be further prolonged by setting it to 1 atm or more and arranging a desiccant (hygroscopic agent) and / or an oxygen absorbent between the substrate and the covering material. In addition, by forming the substrate and the covering material in a film or sheet shape, a light and thin electroluminescent element can be obtained while maintaining the light emission life. Further, the manufacturing process can be simplified by separating the light-emitting portion from the desiccant (hygroscopic agent) and / or the oxygen absorbent with a film or sheet having a polymer material as a base material. Further, by bonding the substrate and the covering material with a flexible epoxy-based adhesive, it is possible to obtain a strong bonding strength such that the bonding surface does not break even when the substrate expands and contracts due to temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例3に示した電界発光素子の構成図であ
る。
FIG. 1 is a configuration diagram of an electroluminescent device shown in Example 3.

【図2】実施例5に示した電界発光素子の断面図であ
る。
FIG. 2 is a sectional view of the electroluminescent device shown in Example 5.

【符号の説明】[Explanation of symbols]

1 ポリマーフィルム基板 2 発光部 3 接着剤 4 開口部 5 保護層 6 乾燥剤(吸湿剤)、酸素吸収剤隔離フィルム 7 乾燥剤(吸湿剤)、酸素吸収剤層 DESCRIPTION OF SYMBOLS 1 Polymer film substrate 2 Light emitting part 3 Adhesive 4 Opening 5 Protective layer 6 Desiccant (hygroscopic), oxygen absorbent isolating film 7 Desiccant (hygroscopic), oxygen absorbent layer

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 対向する電極間に有機発光材料を有する
電界発光素子において、該電極及び有機発光材料薄膜
(発光部)が積層されるポリマー材料からなる基板は、
その酸素透過率が1(ml/m・24H・atm)以
下となるように処理されたものであることを特徴とする
電界発光素子。
1. An electroluminescent device having an organic light emitting material between opposing electrodes, wherein the substrate made of a polymer material on which the electrode and the organic light emitting material thin film (light emitting portion) are laminated is:
Electroluminescent device, characterized in that the oxygen permeability is one that is treated to be 1 (ml / m 2 · 24H · atm) or less.
【請求項2】 基板が、酸素透過率の低い樹脂材料層又
は金属酸化物層が積層されたものであることを特徴とす
る請求項1記載の電界発光素子。
2. The electroluminescent device according to claim 1, wherein the substrate is formed by laminating a resin material layer or a metal oxide layer having low oxygen permeability.
【請求項3】 基板が、フィルムもしくはシート状であ
ることを特徴とする請求項1〜2のいずれかに記載の電
界発光素子。
3. The electroluminescent device according to claim 1, wherein the substrate is in the form of a film or a sheet.
【請求項4】 発光部が形成されている部分が酸素透過
率1(ml/m・24H・atm)以下のポリマー材
料を基材とする被覆材で袋状に被覆されていることを特
徴とする請求項1〜3のいずれかに記載の電界発光素
子。
4. characterized in that the portion where the light emitting portion is formed is covered with the bag shape oxygen permeability 1 (ml / m 2 · 24H · atm) or less of the polymeric material with a coating material to the substrate The electroluminescent device according to claim 1.
【請求項5】 前記被覆材が、フィルムもしくはシート
状であることを特徴とする請求項4に記載の電界発光素
子。
5. The electroluminescent device according to claim 4, wherein the covering material is in the form of a film or a sheet.
【請求項6】 発光部が形成されている基板と、前記被
覆材とが、可撓性を有するエポキシ系接着剤で接着され
ていることを特徴とする請求項4又は5記載の電界発光
素子。
6. The electroluminescent device according to claim 4, wherein the substrate on which the light emitting portion is formed and the covering material are bonded with a flexible epoxy adhesive. .
【請求項7】 発光部が形成されている基板と、前記被
覆材とで形成される空間が、不活性ガスで充填されてい
ることを特徴とする請求項4〜6のいずれかに記載の電
界発光素子。
7. The space according to claim 4, wherein a space formed by the substrate on which the light emitting section is formed and the covering material is filled with an inert gas. Electroluminescent device.
【請求項8】 不活性ガスの圧力が1atm以上である
ことを特徴とする請求項7に記載の電界発光素子。
8. The electroluminescent device according to claim 7, wherein the pressure of the inert gas is 1 atm or more.
【請求項9】 発光部が形成されている基板と、前記被
覆材との間に、乾燥剤(吸湿剤)及び/又は酸素吸収剤
を配置することを特徴とする請求項4〜8のいずれかに
記載の電界発光素子。
9. The method according to claim 4, wherein a desiccant (hygroscopic agent) and / or an oxygen absorbent is disposed between the substrate on which the light emitting portion is formed and the covering material. An electroluminescent device according to any one of the above.
【請求項10】 発光部と乾燥剤(吸湿剤)及び/又は
酸素吸収剤とが、ポリマー材料を基材とするフィルムも
しくはシート状の隔離材で隔てられていることを特徴と
する請求項9記載の電界発光素子。
10. A light-emitting portion and a desiccant (hygroscopic agent) and / or an oxygen absorbent are separated by a film or sheet-like separator made of a polymer material as a base material. An electroluminescent device according to claim 1.
【請求項11】 隔離材の酸素透過率が、1(ml/m
・24H・atm)以上であることを特徴とする請求
項10記載の電界発光素子。
11. The oxygen permeability of the separator is 1 (ml / m2).
Electroluminescent device of claim 10, wherein a is 2 · 24H · atm) or more.
JP2000386071A 2000-12-19 2000-12-19 Electroluminescent element Pending JP2002190384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000386071A JP2002190384A (en) 2000-12-19 2000-12-19 Electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000386071A JP2002190384A (en) 2000-12-19 2000-12-19 Electroluminescent element

Publications (1)

Publication Number Publication Date
JP2002190384A true JP2002190384A (en) 2002-07-05

Family

ID=18853227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386071A Pending JP2002190384A (en) 2000-12-19 2000-12-19 Electroluminescent element

Country Status (1)

Country Link
JP (1) JP2002190384A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127639A (en) * 2002-10-01 2004-04-22 Dainippon Printing Co Ltd Organic electroluminescent image display device
JP2004207078A (en) * 2002-12-25 2004-07-22 Seiko Epson Corp Display panel and method for manufacturing display panel
WO2004017434A3 (en) * 2002-08-06 2005-04-21 Du Pont Laminated polymer with integrated lighting, sensors and electronics
WO2006088179A1 (en) * 2005-02-21 2006-08-24 Kyodo Printing Co., Ltd. Adsorption film and organic el device
JP2007012875A (en) * 2005-06-30 2007-01-18 Fujikura Ltd Printed circuit board
JP2007214017A (en) * 2006-02-10 2007-08-23 Kokusai Kiban Zairyo Kenkyusho:Kk Capture agent sheet for organic electronic device, and organic electronic device
JP2015230869A (en) * 2014-06-06 2015-12-21 コニカミノルタ株式会社 Electronic device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017434A3 (en) * 2002-08-06 2005-04-21 Du Pont Laminated polymer with integrated lighting, sensors and electronics
JP2004127639A (en) * 2002-10-01 2004-04-22 Dainippon Printing Co Ltd Organic electroluminescent image display device
JP4527935B2 (en) * 2002-10-01 2010-08-18 大日本印刷株式会社 Organic electroluminescent image display device
JP2004207078A (en) * 2002-12-25 2004-07-22 Seiko Epson Corp Display panel and method for manufacturing display panel
WO2006088179A1 (en) * 2005-02-21 2006-08-24 Kyodo Printing Co., Ltd. Adsorption film and organic el device
JP5209300B2 (en) * 2005-02-21 2013-06-12 共同印刷株式会社 Adsorption film and organic EL device
JP2007012875A (en) * 2005-06-30 2007-01-18 Fujikura Ltd Printed circuit board
JP2007214017A (en) * 2006-02-10 2007-08-23 Kokusai Kiban Zairyo Kenkyusho:Kk Capture agent sheet for organic electronic device, and organic electronic device
KR101312415B1 (en) * 2006-02-10 2013-09-27 제이에스알 가부시끼가이샤 Scavenger sheet for organic electron device and organic electron device
JP2015230869A (en) * 2014-06-06 2015-12-21 コニカミノルタ株式会社 Electronic device

Similar Documents

Publication Publication Date Title
JP6577069B2 (en) Manufacture of flexible organic electronic devices
JP5190525B2 (en) Environmental barrier material for organic light emitting device and method of manufacturing the same
JP3942017B2 (en) Light emitting element
JP5161470B2 (en) GAS BARRIER LAMINATED FILM, PROCESS FOR PRODUCING THE SAME, AND IMAGE DISPLAY ELEMENT
JP2003508891A (en) Encapsulation of organic electronic devices
TW594619B (en) Organic electroluminescent display panel
JP2010272516A (en) Organic light-emitting element and manufacturing method of organic light-emitting element
JP2007118564A (en) Gas barrier material, its production process, and method for mounting gas barrier layer
JP2004079301A (en) Light emitting device and manufacturing method therefor
JPH10214683A (en) Organic electroluminescent element
US20070210321A1 (en) Edge light-emitting device and manufacturing method thereof
JPWO2008023626A1 (en) Organic electroluminescence device and method for producing the same
JP2005521209A (en) Organic thin film element and method for manufacturing the same
JP2002190384A (en) Electroluminescent element
JP2000123971A (en) Manufacture of organic el
JP2002252080A (en) Electric field light-emitting element
JP2000100561A (en) Organic electroluminescent element
JP2008235193A (en) Organic electroluminescent device
JP2004079300A (en) Light emitting element and its manufacturing method
JP2003347060A (en) Organic electroluminescent element
KR102715247B1 (en) Stretchable Optical Device and Method for Manufacturing thereof
US20100044738A1 (en) Preparation of organic light emitting diodes by a vapour deposition method combined with vacuum lamination
JP2000058257A (en) Light-emitting device
JP2007103094A (en) Organic electroluminescent element
JP2003109753A (en) Manufacturing method of electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002