JP2002252080A - Electric field light-emitting element - Google Patents

Electric field light-emitting element

Info

Publication number
JP2002252080A
JP2002252080A JP2001047322A JP2001047322A JP2002252080A JP 2002252080 A JP2002252080 A JP 2002252080A JP 2001047322 A JP2001047322 A JP 2001047322A JP 2001047322 A JP2001047322 A JP 2001047322A JP 2002252080 A JP2002252080 A JP 2002252080A
Authority
JP
Japan
Prior art keywords
film
thin film
inorganic material
substrate
electroluminescent device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001047322A
Other languages
Japanese (ja)
Inventor
Fuminao Matsumoto
文直 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001047322A priority Critical patent/JP2002252080A/en
Publication of JP2002252080A publication Critical patent/JP2002252080A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a stable light-emitting action in a carrier injection type electric field light-emitting element using a polymer material as a substrate. SOLUTION: An ITO transparent electrode film 3, an organic thin film 5 made of an organic light-emitting material, and a negative electrode film 6 are laminated on the substrate 1 made by a polymer film. The polymer material layer 7 and an inorganic material layer 8 are laminated on each of these electrode films 3, 6 and the organic thin film 5, protect the invasion of water and oxygen into the electrode films 3, 6 and the organic thin film 5, and prevent them from the deterioration. The inorganic material thin film 8 has a high barrier performance against water vapor and oxygen, and is superior in a sealing performance, but in case a direct film formation of the inorganic material thin film 8 is made on the negative electrode film 6 without installing the polymer material layer 7, a film peeling-off and a crack of the inorganic material thin film 8 itself and the deterioration of the substrate 1 easily occur. The electric field light-emitting element in which a characteristic of the substrate is maintained and which has a highly reliable sealing characteristic is obtained by installing the polymer material layer 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電界発光素子、よ
り具体的にはエレクトロルミネッセンス発光素子に関す
るものであり、特に有機発光材料を使用した発光素子の
作動安定化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroluminescent device, and more particularly, to an electroluminescent light emitting device, and more particularly, to stabilizing the operation of a light emitting device using an organic light emitting material.

【0002】[0002]

【従来の技術】電界発光素子は、その発光励起機構の違
いから、発光層内での電子や正孔の局所的な移動により
発光体を励起し、交流電界でのみ発光する真性電界発光
素子と、電極からの電子と正孔の注入とその発光素子層
内での再結合により発光体を励起し、直流電界で作動す
るキャリア注入型電界発光素子との2つに分類される。
2. Description of the Related Art An electroluminescent device is different from an intrinsic electroluminescent device that excites a luminous body by local movement of electrons and holes in a luminescent layer and emits light only in an alternating electric field due to a difference in a luminescence excitation mechanism. And a carrier-injection type electroluminescent device that operates by a DC electric field by exciting a luminescent material by injecting electrons and holes from electrodes and recombining them in a light emitting device layer.

【0003】真性電界発光型の発光素子は、一般にZn
S、CaS、SrSにMnやCeなどの希土類金属を添
加した無機化合物を発光体とするものであるが、駆動に
200V程度の高い交流電界を必要とすること、周辺回
路の製造コストが高いこと、輝度や耐久性も不充分であ
るなどの問題点がある。
[0003] Intrinsic electroluminescent type light emitting devices are generally Zn
S, CaS, and SrS are used as the luminous body with an inorganic compound obtained by adding a rare earth metal such as Mn or Ce. However, a high AC electric field of about 200 V is required for driving, and the manufacturing cost of peripheral circuits is high. In addition, there are problems such as insufficient brightness and durability.

【0004】一方、キャリア注入型電界発光素子は、発
光層として薄膜状有機化合物を用いるようになってから
高輝度のものが得られるようになった。Applied Physic
s Letters、.51(12)巻、913頁(1987年刊)には、陽極、
有機正孔注入移動体、有機電子注入性発光体及び陰極か
らなる電界発光素子が開示されており、有機正孔注入移
動材料として芳香族第アミンを使用し、また有機電子注
入性発光体材料としてアルミニュウムキノレート錯体を
使用した電界発光素子について報告されている。
On the other hand, a carrier-injection type electroluminescence device has been able to obtain a high-luminance device since a thin-film organic compound has been used as a light-emitting layer. Applied Physic
s Letters, .51 (12), p. 913 (1987)
An electroluminescent element comprising an organic hole injection moving body, an organic electron injecting light emitting body and a cathode is disclosed, using an aromatic tertiary amine as the organic hole injecting moving material, and as an organic electron injecting light emitting material. An electroluminescent device using an aluminum quinolate complex has been reported.

【0005】最近では発光材料、正孔輸送材料、電子輸
送材料、電極材料として様々な提案がなされており、発
光効率、発光強度、発光色、発光素子寿命のいずれにお
いても目覚しい特性改善が進んでいる。また、ポリフェ
ニレンビニレン(PPV)などの有機高分子材料を発光
材料として使用した発光素子の開発もさかんである。
Recently, various proposals have been made as a light emitting material, a hole transport material, an electron transport material, and an electrode material, and remarkable improvements have been made in all of luminous efficiency, luminous intensity, luminous color, and light emitting element life. I have. Further, development of a light emitting element using an organic polymer material such as polyphenylene vinylene (PPV) as a light emitting material is also active.

【0006】[0006]

【発明が解決しようとする課題】キャリア注入型電界発
光素子に使用される有機材料や電極材料は水や酸素によ
って反応しやすいものが多く、水や酸素の存在下におい
ては発光特性の劣化が著しいことが報告されている。こ
のため、水や酸素を透過しないガラス基板が主として用
いられている。また、ガラス基板上に発光素子を形成し
たのち、例えば特開平9−148066号公報に開示さ
れているような気密性容器を用いて発光素子が外気に接
することがないようにしている。
The organic materials and electrode materials used in the carrier-injection type electroluminescent device are often susceptible to reaction with water or oxygen, and in the presence of water or oxygen, the emission characteristics are significantly deteriorated. It has been reported. For this reason, a glass substrate that does not transmit water or oxygen is mainly used. Further, after the light emitting element is formed on the glass substrate, the light emitting element is prevented from coming into contact with the outside air by using, for example, an airtight container as disclosed in Japanese Patent Application Laid-Open No. 9-148066.

【0007】一方、携帯電話やノート型パーソナルコン
ピュータのように携帯性が重要である用途においては、
より軽く、より薄型の表示装置が必要とされている。こ
のため、従来のガラス基板ではなくポリマー材料を基板
として利用したキャリア注入型電界発光素子が提案され
ている。例えば特開平10−144469号公報には、
表面が平滑な光硬化性樹脂基板を使用した電界発光素子
について記載されている。また、日本国特許第2931
211号では、レンズ加工したプラスチックシートを基
板に使用している。しなしながら、従来の方法では基板
上に形成した発光素子をガラス薄板や金属キャップで被
覆する必要があり、基板をポリマー化した意味が半減し
てしまう。このため、ポリマー材料を基板として使用し
たキャリア注入型電界発光素子はいまだ実用化に至って
いない。
On the other hand, in applications where portability is important, such as mobile phones and notebook personal computers,
There is a need for a lighter and thinner display device. For this reason, a carrier injection type electroluminescent device using a polymer material as a substrate instead of a conventional glass substrate has been proposed. For example, in Japanese Patent Application Laid-Open No. 10-144469,
An electroluminescent device using a photocurable resin substrate having a smooth surface is described. Also, Japanese Patent No. 2931
No. 211 uses a lens-processed plastic sheet for the substrate. However, in the conventional method, it is necessary to cover the light emitting element formed on the substrate with a thin glass plate or a metal cap, and the meaning of polymerizing the substrate is reduced by half. For this reason, a carrier injection type electroluminescent device using a polymer material as a substrate has not yet been put to practical use.

【0008】本発明は、上述のごとき実情に鑑みてなさ
れたものであり、基板としてポリマー材料を使用したキ
ャリア注入型電界発光素子において、安定した発光動作
を実現することを目的とするものである。
The present invention has been made in view of the above situation, and has as its object to realize a stable light emitting operation in a carrier injection type electroluminescent device using a polymer material as a substrate. .

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、基板
上に積層された電極膜と有機発光材料による有機薄膜と
により、対向する該電極膜間に前記有機薄膜が配された
構成を有する電界発光素子において、前記基板は、ポリ
マー材料を基材としたフィルムもしくはシートであり、
かつ前記電極膜及び前記有機薄膜は、ポリマー材料層と
無機材料薄膜からなる積層膜によって被覆されているこ
とを特徴としたものである。
According to a first aspect of the present invention, there is provided a structure in which an organic thin film made of an organic light emitting material and an organic thin film made of an organic light emitting material are provided between the opposed electrode films. In the electroluminescent device having, the substrate is a film or sheet based on a polymer material,
Further, the electrode film and the organic thin film are covered with a laminated film composed of a polymer material layer and an inorganic material thin film.

【0010】請求項2の発明は、請求項1の発明におい
て、前記電極膜及び前記有機薄膜を被覆する無機材料薄
膜の膜厚は、100〜500nmの範囲にあることを特
徴としたものである。
A second aspect of the present invention is characterized in that, in the first aspect of the present invention, the thickness of the inorganic material thin film covering the electrode film and the organic thin film is in a range of 100 to 500 nm. .

【0011】請求項3の発明は、請求項1または2の発
明において、前記電極膜及び前記有機薄膜を被覆する前
記積層膜は、複数の前記ポリマー材料層及び複数の前記
無機材料薄膜からなることを特徴としたものである。
According to a third aspect of the present invention, in the first or second aspect, the laminated film covering the electrode film and the organic thin film comprises a plurality of the polymer material layers and a plurality of the inorganic material thin films. It is characterized by.

【0012】請求項4の発明は、請求項1ないし3のい
ずれか1の発明において、前記無機材料薄膜は、スパッ
タリング法によって製膜された膜であることを特徴とし
たものである。
According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the inorganic material thin film is a film formed by a sputtering method.

【0013】請求項5の発明は、請求項1ないし4のい
ずれか1の発明において、前記無機材料薄膜は、金属酸
化膜であることを特徴としたものである。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the invention, the inorganic material thin film is a metal oxide film.

【0014】請求項6の発明は、請求項1ないし4のい
ずれか1の発明において、前記無機材料薄膜は、金属窒
化膜であることを特徴としたものである。
According to a sixth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the inorganic material thin film is a metal nitride film.

【0015】請求項7の発明は、請求項1ないし4のい
ずれか1の発明において、前記無機材料薄膜は、金属膜
であることを特徴としたものである。
A seventh aspect of the present invention is the invention according to any one of the first to fourth aspects, wherein the inorganic material thin film is a metal film.

【0016】[0016]

【発明の実施の形態】本発明は、水蒸気透過率及び酸素
透過率を低減したポリマーの基板を使用するとともに、
該基板上に形成した電極膜と有機薄膜による発光素子を
ポリマー材料層と無機材料薄膜から成る積層体によって
被覆することによって、ポリマー基板の軽量、薄型とい
う特性をそのままに、外部から発光素子への水や酸素の
進入を防ぎ、発光素子の劣化を防止することができるも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a polymer substrate having reduced water vapor transmission rate and oxygen transmission rate,
By covering the light emitting element formed of the electrode film and the organic thin film on the substrate with a laminate composed of the polymer material layer and the inorganic material thin film, the light emitting element can be externally applied to the light emitting element while maintaining the lightweight and thin characteristics of the polymer substrate. Water and oxygen can be prevented from entering, and deterioration of the light-emitting element can be prevented.

【0017】ポリマー材料の酸素透過率及び水蒸気透過
率はポリマーの種類によって大きく異なる。比較的ガス
バリア性に優れているといわれるポリエチレンテレフタ
レート(PET)における酸素透過率は4(ml・mm
/m2・24H・atm)程度であり、単一のポリマー
材料で素子を被覆し、外部から水や酸素の進入を防ぐこ
とは難しい。
The oxygen permeability and water vapor permeability of the polymer material vary greatly depending on the type of polymer. The oxygen permeability of polyethylene terephthalate (PET), which is said to be relatively excellent in gas barrier properties, is 4 (ml · mm
/ M 2 · 24H · atm), and it is difficult to cover the element with a single polymer material and prevent water or oxygen from entering from the outside.

【0018】これに対して、金属酸化膜、金属窒化膜、
金属膜等の無機材料は薄膜状態においても水蒸気や酸素
の透過を防ぐことが可能である。無機材料薄膜の製膜方
法には蒸着法、スパッタリング法及び熱分解しやすい有
機金属材料を塗布したのち加熱することによって金属酸
化物を製膜する方法などがあるが、スパッタリングによ
って形成した無機薄膜は緻密な膜構造とすることが可能
であり、封止性能に優れている。
On the other hand, a metal oxide film, a metal nitride film,
An inorganic material such as a metal film can prevent permeation of water vapor and oxygen even in a thin film state. Inorganic material thin film forming methods include a vapor deposition method, a sputtering method, a method of forming a metal oxide by applying a heat-decomposable organometallic material, and then heating. It is possible to have a dense film structure, and it is excellent in sealing performance.

【0019】スパッタリングとは、加速したイオン粒子
をターゲット材料に衝突させ、その衝突のエネルギーに
よってターゲット材料を物理的に飛散させて薄膜を製膜
する方法である。しかしながら、有機発光材料から成る
発光素子は加速したイオンのようなエネルギー粒子によ
って著しく劣化するため、基板上に形成した発光素子を
スパッタリング環境に直接さらすことはできない。ま
た、上記金属酸化膜、金属窒化膜、金属膜等の無機材料
薄膜は、その膜厚が増加するに従って膜内の応力や外部
からの外力によって膜剥離や亀裂を生じてしまう。
Sputtering is a method in which accelerated ion particles collide with a target material and the target material is physically scattered by the energy of the collision to form a thin film. However, a light-emitting element formed of an organic light-emitting material is significantly deteriorated by energetic particles such as accelerated ions, so that a light-emitting element formed on a substrate cannot be directly exposed to a sputtering environment. In addition, as the thickness of the inorganic material thin film such as the metal oxide film, the metal nitride film, and the metal film increases, the film peels or cracks due to stress in the film or external force from outside as the film thickness increases.

【0020】そこで、ポリマー基板上に形成した発光素
子をアクリル、エポキシ、ポリイミド等のポリマー樹脂
で被覆したのち、金属酸化膜、金属窒化膜、金属膜等の
無機薄膜を積層することによって、発光素子を劣化させ
ることなく高い封止能力をもった被覆膜を得ることがで
きた。以下実施例にて詳細に説明する。
Therefore, the light emitting device formed on the polymer substrate is coated with a polymer resin such as acrylic, epoxy, polyimide or the like, and then an inorganic thin film such as a metal oxide film, a metal nitride film, or a metal film is laminated thereon. A coating film having high sealing ability could be obtained without deteriorating. Hereinafter, the embodiment will be described in detail.

【0021】(実施例1)図1は、本発明の電界発光素
子の第1ないし第4の実施例における積層構造を説明す
るための概略構成図で、図中、1はポリマーフィルムに
よる基板、2はSiOx膜、3はITO透明電極膜、4
は正孔注入層、5は有機発光材料による有機薄膜、6は
陰極膜、7はポリマー材料層、8は無機材料薄膜であ
る。
(Embodiment 1) FIG. 1 is a schematic structural view for explaining a laminated structure of an electroluminescent device according to the first to fourth embodiments of the present invention, wherein 1 is a substrate made of a polymer film, 2 is a SiOx film, 3 is an ITO transparent electrode film, 4
Is a hole injection layer, 5 is an organic thin film made of an organic light emitting material, 6 is a cathode film, 7 is a polymer material layer, and 8 is an inorganic material thin film.

【0022】厚さ100μmのポリカーボネイト(P
C)フィルムを水系洗浄剤及びイソプロピルアルコール
中で超音波洗浄後、100℃で乾燥した。このフィルム
を基板1として、該基板1の片面に、スパッタリング法
によりSiOx膜(x:1.5〜2.5)2を300nm
の膜厚で製膜した。続いて、基板の同じ面側にスパッタ
法によりITO透明導電膜3を120nmの厚さで製膜
した。ITO透明電極膜2の製膜時の基板温度はPCの
耐熱性を考慮して100℃とした。
Polycarbonate having a thickness of 100 μm (P
C) The film was subjected to ultrasonic cleaning in an aqueous cleaning agent and isopropyl alcohol, and then dried at 100 ° C. Using this film as a substrate 1, a SiOx film (x: 1.5 to 2.5) 2 was formed on one surface of the substrate 1 by a sputtering method to a thickness of 300 nm.
The film was formed with the following film thickness. Subsequently, an ITO transparent conductive film 3 having a thickness of 120 nm was formed on the same surface side of the substrate by sputtering. The substrate temperature at the time of forming the ITO transparent electrode film 2 was set to 100 ° C. in consideration of the heat resistance of PC.

【0023】次に正孔注入層4として、N,N'−bi
s(3−methylphenyl)−N,N'−di
phenyl−[1,1'−biphenyl]−4,
4'diamine(TPD)を30nmで成膜し、さ
らに有機発光材料による有機薄膜5としてtris(8
−quinolinolato)aluminum(A
lq3)を真空蒸着で50nm製膜した。
Next, as the hole injection layer 4, N, N'-bi
s (3-methylphenyl) -N, N'-di
phenyl- [1,1′-biphenyl] -4,
4′diamine (TPD) is formed to a thickness of 30 nm, and tris (8) is formed as an organic thin film 5 made of an organic light emitting material.
-Quinolinolato) aluminum (A
lq3) was formed into a 50 nm film by vacuum evaporation.

【0024】ひき続きマグネシュウムと銀をその組成比
が10:1となるように厚さが100nm共蒸着して発
光素子の上電極(陰極膜6)を形成した。続いてポリマ
ー材料層7としてスリーボンド社製の光硬化性樹脂30
52を塗布したのち、紫外線を照射して樹脂を硬化させ
た。
Subsequently, magnesium and silver were co-deposited with a thickness of 100 nm so that the composition ratio was 10: 1 to form an upper electrode (cathode film 6) of the light emitting element. Subsequently, as a polymer material layer 7, a photo-curable resin 30 manufactured by Three Bond Co., Ltd.
After application of No. 52, the resin was cured by irradiating ultraviolet rays.

【0025】次に、スパッタリング法によって酸化シリ
コン膜SiOx(x:1.5〜2.5)による無機材料薄
膜8を30から1000nmの範囲の厚さで製膜した。
このときのスパッタガスはアルゴンと酸素の混合ガスで
ある。
Next, an inorganic material thin film 8 of a silicon oxide film SiOx (x: 1.5 to 2.5) was formed in a thickness of 30 to 1000 nm by a sputtering method.
The sputtering gas at this time is a mixed gas of argon and oxygen.

【0026】(実施例2)厚さ100μmのポリカーボ
ネイト(PC)フィルムを水系洗浄剤及びイソプロピル
アルコール中で超音波洗浄後、100℃で乾燥した。こ
のフィルムを基板1として、該基板1にスパッタリング
法により、SiOx膜(x:1.5〜2.5)2を20
0nmの厚さで製膜した。
(Example 2) A polycarbonate (PC) film having a thickness of 100 µm was ultrasonically washed in an aqueous detergent and isopropyl alcohol, and then dried at 100 ° C. Using this film as a substrate 1, an SiOx film (x: 1.5 to 2.5) 2 is formed on the substrate 1 by sputtering.
A film was formed with a thickness of 0 nm.

【0027】続いて、スパッタリング法によりITO透
明導電膜3を120nmの厚さで製膜した。次に正孔注
入層4として、N,N'−bis(3−methylp
henyl)−N,N'−diphenyl−[1,1'
−biphenyl]−4,4'diamine(TP
D)を30nmで成膜し、さらに有機発光材料による有
機薄膜5としてtris(8−quinolinola
to)aluminum(Alq3)を真空蒸着で50
nmの厚さで製膜した。
Subsequently, an ITO transparent conductive film 3 was formed to a thickness of 120 nm by a sputtering method. Next, as the hole injection layer 4, N, N′-bis (3-methylp
henyl) -N, N'-diphenyl- [1,1 '
-Biphenyl] -4,4'diamine (TP
D) is formed to a thickness of 30 nm, and tris (8-quinolinola) is formed as an organic thin film 5 of an organic light emitting material.
to) aluminum (Alq3) by vacuum evaporation to 50
The film was formed with a thickness of nm.

【0028】ひき続きマグネシュウムと銀をその組成比
が10:1となるように100nm共蒸着して発光素子
の上電極(陰極6)を形成した。続いてポリマー材料層
7としてスリーボンド社製の光硬化性樹脂3052を塗
布したのち、紫外線を照射して樹脂を硬化させた。次
に、スパッタリング法によって膜厚100nmの酸化ア
ルミニュウム膜AlOx(x:1.5〜2.5)による
無機材料薄膜8を製膜した。このときのスパッタガスは
アルゴンと酸素の混合ガスである。
Subsequently, magnesium and silver were co-deposited at a composition ratio of 10: 1 to 100 nm to form an upper electrode (cathode 6) of the light emitting device. Subsequently, a photocurable resin 3052 manufactured by Three Bond Co. was applied as the polymer material layer 7, and then the resin was cured by irradiating ultraviolet rays. Next, an inorganic material thin film 8 was formed from a 100 nm-thick aluminum oxide film AlOx (x: 1.5 to 2.5) by a sputtering method. The sputtering gas at this time is a mixed gas of argon and oxygen.

【0029】(実施例3)厚さ100μmのポリエーテ
ルサルフォンフィルムを水系洗浄剤及びイソプロピルア
ルコール中で超音波洗浄後、100℃で乾燥した。この
フィルムを基板1として、該基板1の両面にスパッタリ
ング法により、SiOx膜(x:1.5〜2.5)2を2
00nmの厚さで製膜した。続いて片方の面だけに同じ
くスパッタ法でITO透明導電膜3を120nmの厚さ
で製膜した。
Example 3 A 100 μm-thick polyethersulfone film was subjected to ultrasonic cleaning in an aqueous detergent and isopropyl alcohol, and then dried at 100 ° C. Using this film as a substrate 1, two SiOx films (x: 1.5 to 2.5) 2 were formed on both surfaces of the substrate 1 by sputtering.
A film was formed with a thickness of 00 nm. Subsequently, an ITO transparent conductive film 3 was formed in a thickness of 120 nm on only one surface by the same sputtering method.

【0030】次に正孔注入層4としてN,N'−bis
(3−methylphenyl)−N,N'−dip
henyl−[1,1'−biphenyl]−4,4'
diamine(TPD)を30nmで製膜し、さらに
有機発光材料による有機薄膜5としてtris(8−q
uinolinolato)aluminum(Alq
3)を真空蒸着で50nmの厚さで製膜した。
Next, as the hole injection layer 4, N, N'-bis
(3-methylphenyl) -N, N'-dip
henyl- [1,1'-biphenyl] -4,4 '
diamine (TPD) is formed to a thickness of 30 nm, and tris (8-q
uinolinolato) aluminum (Alq
3) was formed into a film with a thickness of 50 nm by vacuum evaporation.

【0031】ひき続きマグネシュウムと銀をその組成比
が10:1となるように100nm共蒸着して発光素子
の上電極(陰極膜6)を形成した。続いてポリマー材料
層7としてスリーボンド社製の光硬化性樹脂3052を
塗布したのち、紫外線を照射して樹脂を硬化させた。次
に、スパッタリング法によって膜厚100nmの窒化ア
ルミニュウム膜AlNx(x:0.5〜1.0)による無
機材料薄膜8を製膜した。このときのスパッタガスはア
ルゴンと窒素の混合ガスである。
Subsequently, 100 nm of magnesium and silver were co-deposited so that the composition ratio became 10: 1 to form an upper electrode (cathode film 6) of the light emitting element. Subsequently, a photocurable resin 3052 manufactured by Three Bond Co. was applied as the polymer material layer 7, and then the resin was cured by irradiating ultraviolet rays. Next, an inorganic material thin film 8 was formed from a 100 nm-thick aluminum nitride film AlNx (x: 0.5 to 1.0) by a sputtering method. The sputtering gas at this time is a mixed gas of argon and nitrogen.

【0032】(実施例4)実施例3と同様に厚さ100
μmのポリエーテルサルフォンフィルムを水系洗浄剤及
びイソプロピルアルコール中で超音波洗浄後、100℃
で乾燥した。このフィルムを基板1として、該基板1の
両面にスパッタ法により、SiOx膜(x:1.5〜2.
5)2と200nmの厚さで製膜した。続いて片方の面
だけに同じくスパッタ法でITO透明導電膜3を120
nmの厚さで製膜した。次に正孔注入層4としてN,
N'−bis(3−methylphenyl)−N,
N'−diphenyl−[1,1'−bipheny
l]−4,4'diamine(TPD)を30nm、
有機発光材料による有機薄膜5としてtris(8−q
uinolinolato)aluminum(Alq
3)を真空蒸着で50nm製膜した。
(Embodiment 4) Thickness 100 in the same manner as in Embodiment 3.
μm polyethersulfone film was ultrasonically washed in an aqueous detergent and isopropyl alcohol, and then heated to 100 ° C.
And dried. Using this film as the substrate 1, an SiOx film (x: 1.5 to 2.5.
5) Films were formed at thicknesses of 2 and 200 nm. Subsequently, the ITO transparent conductive film 3 was also applied to only one side by the same sputtering method.
The film was formed with a thickness of nm. Next, as the hole injection layer 4, N,
N'-bis (3-methylphenyl) -N,
N'-diphenyl- [1,1'-biphenyl
l] -4,4'diamine (TPD) is 30 nm,
The tris (8-q
uinolinolato) aluminum (Alq
3) was formed into a 50 nm film by vacuum evaporation.

【0033】ひき続きマグネシュウムと銀をその組成比
が10:1となるように100nm共蒸着して発光素子
の上電極(陰極6)を形成した。続いてポリマー材料層
7としてスリーボンド社製の光硬化性樹脂3052を塗
布したのち、紫外線を照射して樹脂を硬化させた。次
に、スパッタリング法によって膜厚100nmの金属ア
ルミニュウム膜による無機材料膜8を製膜した。このと
きのスパッタガスはアルゴンガスである。
Subsequently, magnesium and silver were co-deposited with a thickness of 100 nm so that the composition ratio became 10: 1 to form an upper electrode (cathode 6) of the light emitting element. Subsequently, a photocurable resin 3052 manufactured by Three Bond Co. was applied as the polymer material layer 7, and then the resin was cured by irradiating ultraviolet rays. Next, an inorganic material film 8 of a 100-nm-thick metal aluminum film was formed by a sputtering method. The sputtering gas at this time is an argon gas.

【0034】(実施例5)図2は、本発明の電界発光素
子の第5の実施例における積層構造を説明するための概
略構成図で、図中、7a,7bはそれぞれ第1及び第2
のポリマー材料層、8a,8bはそれぞれ第1及び第2
の無機材料薄膜で、その他図1と同様の機能を有する部
分には、図1と同じ符号が付してある。
(Embodiment 5) FIG. 2 is a schematic structural view for explaining a laminated structure of an electroluminescent device according to a fifth embodiment of the present invention. In the drawing, reference numerals 7a and 7b denote first and second layers, respectively.
The polymer material layers 8a and 8b are first and second layers, respectively.
Other portions having the same functions as those in FIG. 1 are denoted by the same reference numerals as those in FIG.

【0035】実施例3と同様に厚さ100μmのポリエ
ーテルサルフォンフィルムを水系洗浄剤及びイソプロピ
ルアルコール中で超音波洗浄後、100℃で乾燥した。
このフィルムを基板1として、該基板1の両面にスパッ
タリング法により、SiOx膜(x:1.5〜2.5)2
を200nmの厚さで製膜した。続いて片方の面だけに
同じくスパッタ法でITO透明導電膜3を120nmの
厚さで製膜した。
In the same manner as in Example 3, a 100 μm-thick polyethersulfone film was subjected to ultrasonic cleaning in an aqueous detergent and isopropyl alcohol, and then dried at 100 ° C.
Using this film as a substrate 1, an SiOx film (x: 1.5 to 2.5) 2 is formed on both surfaces of the substrate 1 by sputtering.
Was formed into a film having a thickness of 200 nm. Subsequently, an ITO transparent conductive film 3 was formed in a thickness of 120 nm on only one surface by the same sputtering method.

【0036】次に正孔注入層4としてN,N'−bis
(3−methylphenyl)−N,N'−dip
henyl−[1,1'−biphenyl]−4,4'
diamine(TPD)を30nmの厚さで製膜し、
さらに有機発光材料による有機薄膜5としてtris
(8−quinolinolato)aluminum
(Alq3)を真空蒸着で50nmの厚さで製膜した。
Next, as the hole injection layer 4, N, N'-bis
(3-methylphenyl) -N, N'-dip
henyl- [1,1'-biphenyl] -4,4 '
diamine (TPD) with a thickness of 30 nm,
Further, tris is formed as an organic thin film 5 made of an organic light emitting material.
(8-quinolinolato) aluminum
(Alq3) was formed to a thickness of 50 nm by vacuum evaporation.

【0037】ひき続きマグネシュウムと銀をその組成比
が10:1となるように100nm共蒸着して発光素子
の上電極(陰極膜6)を形成した。続いてポリマー材料
層7aとしてスリーボンド社製の光硬化性樹脂3052
を塗布したのち、紫外線を照射して樹脂を硬化させた。
次に、スパッタリング法によって膜厚80nmの酸化シ
リコン膜SiOx(x:1.5〜2.5)を製膜した。続
いてスリーボンド社製の光硬化性樹脂3052を再度塗
布したのち、紫外線を照射して樹脂を硬化させた(ポリ
マー材料層7b)。次にスパッタリング法によって膜厚
80nmの酸化シリコン膜SiOx(x:1.5〜2.
5)を積層した(無機材料薄膜8b)。
Subsequently, magnesium and silver were co-deposited at a composition ratio of 10: 1 to 100 nm to form an upper electrode (cathode film 6) of the light emitting element. Subsequently, a photo-curable resin 3052 manufactured by Three Bond Co., Ltd. is used as the polymer material layer 7a.
Was applied, and the resin was cured by irradiating ultraviolet rays.
Next, a silicon oxide film SiOx (x: 1.5 to 2.5) having a thickness of 80 nm was formed by a sputtering method. Subsequently, a photocurable resin 3052 manufactured by Three Bond Co. was applied again, and the resin was cured by irradiating ultraviolet rays (polymer material layer 7b). Next, a silicon oxide film SiOx (x: 1.5 to 2.5.
5) were laminated (inorganic material thin film 8b).

【0038】(比較例1)実施例1と同様に厚さ100
μmのポリカーボネイト(PC)フィルム上にTPDと
Alq3から成る発光素子を形成したのち、光硬化性樹
脂によるポリマー材料層7を塗布せず、発光素子上に直
接SiOx膜(x:1.5〜2.5)による無機材料薄膜
8を膜厚が30から1000nmの範囲で製膜した。
(Comparative Example 1) Thickness 100 in the same manner as in Example 1.
After forming a light emitting device composed of TPD and Alq3 on a polycarbonate (PC) film having a thickness of μm, the SiOx film (x: 1.5 to 2) was directly formed on the light emitting device without applying the polymer material layer 7 made of a photocurable resin. .5) to form a thin film of inorganic material 8 having a thickness in the range of 30 to 1000 nm.

【0039】実施例1および比較例1で示した電界発光
素子を70℃の恒温層内で電流密度が10mA/cm
となる条件で駆動したときの発光強度変化を調べた。発
光素子を作成した基板の酸素透過率と発光強度が初期の
半分になるまでの時間を表1および表2にまとめる。実
施例1で示した電界発光素子の結果が表1であり、比較
例1で示した電界発光素子の結果が表2である。
The current density of the electroluminescent device shown in Example 1 and Comparative Example 1 was 10 mA / cm 2 in a constant temperature layer at 70 ° C.
The change in emission intensity when driven under the following conditions was examined. Tables 1 and 2 summarize the time required for the oxygen transmittance and the luminous intensity of the substrate on which the light-emitting element is formed to become half of the initial value. Table 1 shows the results of the electroluminescent device shown in Example 1, and Table 2 shows the results of the electroluminescent device shown in Comparative Example 1.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】表1において、酸化シリコンの膜厚を10
0nm以上にすることによって発光強度が初期の半分に
なるまでの時間を大幅に長くすることができた。しかし
ながら、酸化シリコンの膜厚が1000nmになると膜
にクラックが生じ、封止効果は認められなかった。比較
例(表2)に示した電界発光素子は全く発光せず、酸化
シリコン膜を形成する際に劣化したことがわかる。ま
た、実施例1に示した電界発光素子に較べ、酸化シリコ
ンの膜厚が薄い場合においても、膜はがれやクラックが
認められ、発光素子上に形成したポリマー材料層7(7
a,7b)が無機材料薄膜8(8a,8b)を割れにく
いものとしていることがわかる。
In Table 1, the thickness of the silicon oxide was 10
By setting the thickness to 0 nm or more, the time required for the emission intensity to be reduced to half of the initial value could be greatly increased. However, when the thickness of the silicon oxide became 1000 nm, cracks occurred in the film, and no sealing effect was observed. It can be seen that the electroluminescent device shown in the comparative example (Table 2) did not emit light at all and deteriorated when the silicon oxide film was formed. Further, even when the thickness of the silicon oxide film is thinner than that of the electroluminescent device shown in Example 1, the film was peeled or cracked, and the polymer material layer 7 (7
a, 7b) make the inorganic material thin film 8 (8a, 8b) difficult to break.

【0043】実施例2〜5に示した電界発光素子を70
℃の恒温層内で電流密度が10mA/cmとなる条件
で駆動したときの発光強度変化を調べた。発光強度が初
期の半分になるまでの時間を表3にまとめる。
The electroluminescent device shown in Examples 2 to 5
The change in light emission intensity when driven under the condition that the current density was 10 mA / cm 2 in a constant temperature layer at a temperature of ° C. was examined. Table 3 summarizes the time required for the emission intensity to become half of the initial value.

【0044】[0044]

【表3】 [Table 3]

【0045】無機材料薄膜8(8a,8b)として金属
窒化膜、金属膜も金属酸化膜と同様の効果がある。ま
た、実施例5に示したようにポリマー材料層7(7a,
7b)と無機材料薄膜8(8a,8b)とを何層にも積
層することによって、薄い膜厚の無機材料薄膜において
も封止効果を得ることができる。
The metal nitride film and the metal film as the inorganic material thin film 8 (8a, 8b) have the same effect as the metal oxide film. Further, as shown in Example 5, the polymer material layer 7 (7a,
By laminating the inorganic material thin film 7b) and the inorganic material thin film 8 (8a, 8b) in any number of layers, a sealing effect can be obtained even with a thin inorganic material thin film.

【0046】[0046]

【発明の効果】請求項1の発明によれば、対向する電極
間に有機発光材料による有機薄膜が配された構成を有す
る電界発光素子において、電極膜及び有機薄膜が積層さ
れる基板がポリマー材料を基材としたフィルムもしくは
シートであり、有機薄膜及び電極膜をポリマー材料と無
機材料薄膜から成る積層体によって被覆することによ
り、薄くて軽いといったポリマー材料を基材としたフィ
ルムもしくはシートの特性を損なうことなく、発光素子
を高寿命化することができる。
According to the first aspect of the present invention, in an electroluminescent device having a structure in which an organic thin film made of an organic light emitting material is disposed between opposing electrodes, a substrate on which the electrode film and the organic thin film are laminated is made of a polymer material. A film or sheet based on a polymer material.The organic thin film and the electrode film are coated with a laminate composed of a polymer material and an inorganic material thin film, so that the characteristics of the film or sheet based on the polymer material such as thin and light can be improved. The life of the light emitting element can be extended without any loss.

【0047】請求項2の発明によれば、請求項1の発明
による電界発光素子において、素子を被覆する無機材料
薄膜の膜厚を100〜500nmとすることによって薄
い、軽いといったポリマー材料を基材としたフィルムも
しくはシートの特性を損なうことなく、発光素子を高寿
命化することができる。
According to the second aspect of the present invention, in the electroluminescent device according to the first aspect of the present invention, a thin or light polymer material is formed by setting the thickness of the inorganic material thin film covering the device to 100 to 500 nm. It is possible to extend the life of the light emitting element without impairing the characteristics of the film or sheet.

【0048】請求項3の発明によれば、請求項1または
2の発明による発光素子において、ポリマー材料層と無
機材料薄膜から成る積層膜を複数のポリマー材料層及び
複数の無機材料薄膜層から形成することによって、より
薄い膜厚の無機材料薄膜を使用して発光素子を高寿命化
することができる。
According to a third aspect of the present invention, in the light emitting device according to the first or second aspect, a laminated film comprising a polymer material layer and an inorganic material thin film is formed from a plurality of polymer material layers and a plurality of inorganic material thin film layers. Accordingly, the life of the light-emitting element can be prolonged by using a thinner inorganic material thin film.

【0049】請求項4の発明によれば、請求項1ないし
3のいずれか1の発明による電界発光素子において、無
機材料薄膜をスパッタリング法によって製膜することに
より、発光素子を高寿命化することができる。
According to a fourth aspect of the present invention, in the electroluminescent device according to any one of the first to third aspects of the present invention, the life of the light emitting element is extended by forming the inorganic material thin film by a sputtering method. Can be.

【0050】請求項5の発明によれば、請求項1ないし
4のいずれか1の発明による電界発光素子において、無
機材料薄膜を金属酸化膜とすることよって発光素子を高
寿命化することができる。
According to the fifth aspect of the present invention, in the electroluminescent device according to any one of the first to fourth aspects of the present invention, the life of the light emitting device can be extended by using a metal oxide film as the inorganic material thin film. .

【0051】請求項6の発明によれば、請求項1ないし
4のいずれか1の発明による電界発光素子において、無
機材料薄膜を金属窒化膜とすることよって発光素子を高
寿命化することができる。
According to the invention of claim 6, in the electroluminescent device according to any one of claims 1 to 4, the life of the light emitting device can be extended by using a metal nitride film as the inorganic material thin film. .

【0052】請求項7の発明によれば、請求項1ないし
4のいずれか1の発明による電界発光素子において、無
機材料薄膜を金属膜とすることよって発光素子を高寿命
化することができる。
According to the invention of claim 7, in the electroluminescent device according to any one of claims 1 to 4, the life of the light emitting device can be extended by using a metal film as the inorganic material thin film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の電界発光素子の第1ないし第4の実
施例における積層構造を説明するための概略構成図であ
る。
FIG. 1 is a schematic configuration diagram for explaining a laminated structure in first to fourth embodiments of an electroluminescent device of the present invention.

【図2】 本発明の電界発光素子の第5の実施例におけ
る積層構造を説明するための概略構成図である。
FIG. 2 is a schematic configuration diagram for explaining a laminated structure in a fifth embodiment of the electroluminescent device of the present invention.

【符号の説明】[Explanation of symbols]

1…ポリマーフィルムによる基板、2…SiOx膜、3
…ITO透明電極膜、4…正孔注入層、5…有機発光材
料による有機薄膜、6…陰極膜、7…ポリマー材料層、
7a…第1のポリマー材料層、7b…第2のポリマー材
料層、8…無機材料薄膜、8a…第1の無機材料薄膜、
8b…第2の無機材料薄膜。
1 ... substrate made of polymer film, 2 ... SiOx film, 3
... an ITO transparent electrode film, 4 ... a hole injection layer, 5 ... an organic thin film made of an organic light emitting material, 6 ... a cathode film, 7 ... a polymer material layer,
7a: first polymer material layer, 7b: second polymer material layer, 8: inorganic material thin film, 8a: first inorganic material thin film,
8b: Second inorganic material thin film.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に積層された電極膜と有機発光材
料による有機薄膜とにより、対向する該電極膜間に前記
有機薄膜が配された構成を有する電界発光素子におい
て、前記基板は、ポリマー材料を基材としたフィルムも
しくはシートであり、かつ前記電極膜及び前記有機薄膜
は、ポリマー材料層と無機材料薄膜からなる積層膜によ
って被覆されていることを特徴とする電界発光素子。
1. An electroluminescent device having a structure in which an organic thin film made of an organic light emitting material and an electrode film laminated on a substrate have the organic thin film disposed between the electrode films facing each other. An electroluminescent device, which is a film or sheet made of a material as a base material, wherein the electrode film and the organic thin film are covered with a laminated film composed of a polymer material layer and an inorganic material thin film.
【請求項2】 請求項1に記載の電界発光素子におい
て、前記電極膜及び前記有機薄膜を被覆する無機材料薄
膜の膜厚は、100〜500nmの範囲にあることを特
徴とする電界発光素子。
2. The electroluminescent device according to claim 1, wherein the thickness of the inorganic material thin film covering the electrode film and the organic thin film is in a range of 100 to 500 nm.
【請求項3】 請求項1または2に記載の電界発光素子
において、前記電極膜及び前記有機薄膜を被覆する前記
積層膜は、複数の前記ポリマー材料層及び複数の前記無
機材料薄膜からなることを特徴とする電界発光素子。
3. The electroluminescent device according to claim 1, wherein the laminated film covering the electrode film and the organic thin film includes a plurality of the polymer material layers and a plurality of the inorganic material thin films. An electroluminescent element characterized by the following.
【請求項4】 請求項1ないし3のいずれか1に記載の
電界発光素子において、前記無機材料薄膜は、スパッタ
リング法によって製膜された膜であることを特徴とする
電界発光素子。
4. The electroluminescent device according to claim 1, wherein the inorganic material thin film is a film formed by a sputtering method.
【請求項5】 請求項1ないし4のいずれか1に記載の
電界発光素子において、前記無機材料薄膜は、金属酸化
膜であることを特徴とする電界発光素子。
5. The electroluminescent device according to claim 1, wherein the inorganic material thin film is a metal oxide film.
【請求項6】 請求項1ないし4のいずれか1に記載の
電界発光素子において、前記無機材料薄膜は、金属窒化
膜であることを特徴とする電界発光素子。
6. The electroluminescent device according to claim 1, wherein the inorganic material thin film is a metal nitride film.
【請求項7】 請求項1ないし4のいずれか1に記載の
電界発光素子において、前記無機材料薄膜は、金属膜で
あることを特徴とする電界発光素子。
7. The electroluminescent device according to claim 1, wherein the inorganic material thin film is a metal film.
JP2001047322A 2001-02-22 2001-02-22 Electric field light-emitting element Withdrawn JP2002252080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001047322A JP2002252080A (en) 2001-02-22 2001-02-22 Electric field light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001047322A JP2002252080A (en) 2001-02-22 2001-02-22 Electric field light-emitting element

Publications (1)

Publication Number Publication Date
JP2002252080A true JP2002252080A (en) 2002-09-06

Family

ID=18908776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001047322A Withdrawn JP2002252080A (en) 2001-02-22 2001-02-22 Electric field light-emitting element

Country Status (1)

Country Link
JP (1) JP2002252080A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028215A1 (en) * 2002-09-20 2004-04-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
JP2004103442A (en) * 2002-09-11 2004-04-02 Ulvac Japan Ltd Organic electroluminescent element and method for manufacturing the same
WO2005002286A1 (en) * 2003-06-25 2005-01-06 Tokai Rubber Industries, Ltd. Organic electroluminescence element, process for fabricating the same and electrode film
JP2008218423A (en) * 2003-03-27 2008-09-18 Seiko Epson Corp Electro-optical device, and electronic apparatus
JP2013077585A (en) * 2013-02-01 2013-04-25 Konica Minolta Holdings Inc Organic electroluminescent element and luminaire
KR20150036525A (en) 2012-09-04 2015-04-07 샤프 가부시키가이샤 Organic electroluminescent display, and production method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103442A (en) * 2002-09-11 2004-04-02 Ulvac Japan Ltd Organic electroluminescent element and method for manufacturing the same
WO2004028215A1 (en) * 2002-09-20 2004-04-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
JP2008218423A (en) * 2003-03-27 2008-09-18 Seiko Epson Corp Electro-optical device, and electronic apparatus
WO2005002286A1 (en) * 2003-06-25 2005-01-06 Tokai Rubber Industries, Ltd. Organic electroluminescence element, process for fabricating the same and electrode film
JP2005038816A (en) * 2003-06-25 2005-02-10 Morio Taniguchi Organic electroluminescent element, its manufacturing method, and electrode film
US7967654B2 (en) 2003-06-25 2011-06-28 Yoshio Taniguchi Organic electroluminescence element, process for preparation of the same, and electrode film
KR20150036525A (en) 2012-09-04 2015-04-07 샤프 가부시키가이샤 Organic electroluminescent display, and production method therefor
US9530984B2 (en) 2012-09-04 2016-12-27 Sharp Kabushiki Kaisha Organic electroluminescence display and method of manufacturing the same
JP2013077585A (en) * 2013-02-01 2013-04-25 Konica Minolta Holdings Inc Organic electroluminescent element and luminaire

Similar Documents

Publication Publication Date Title
TWI374562B (en) Organic electroluminescent device
JP4040850B2 (en) Light emitting element
JP4981242B2 (en) Organic EL device
JP2003297572A (en) Light emitting element, manufacturing method of the same, and display device using the same
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
US20070137781A1 (en) Package method of organic electroluminescent device
JP3691192B2 (en) Organic electroluminescence device
JP4797285B2 (en) Organic electroluminescence device and method for producing the same
JP2004047381A (en) Flexible organic electroluminescent element, manufacturing method of same, information display device, and lighting device
WO2013146350A1 (en) Light emitting apparatus and method for manufacturing light emitting apparatus
JP3885440B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2000268954A (en) Electroluminescent element
JP2002252080A (en) Electric field light-emitting element
JP4609135B2 (en) Method for manufacturing organic electroluminescence element
JP4736348B2 (en) Manufacturing method of organic EL element
JP2016091793A (en) Organic electroluminescent device and method for manufacturing the same
JP2001313164A (en) Organic electroluminescent element, display device and portable terminal using the same
JP4830222B2 (en) Electroluminescence element
JP2002190384A (en) Electroluminescent element
JP2000100561A (en) Organic electroluminescent element
JP2008235193A (en) Organic electroluminescent device
JP2003347051A (en) Organic electroluminescent element
JP2003347060A (en) Organic electroluminescent element
JP4867317B2 (en) Manufacturing method of conductive substrate for organic EL device
JP2003109753A (en) Manufacturing method of electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070731