WO2010001831A1 - Organic el panel and process for producing organic el panel - Google Patents

Organic el panel and process for producing organic el panel Download PDF

Info

Publication number
WO2010001831A1
WO2010001831A1 PCT/JP2009/061734 JP2009061734W WO2010001831A1 WO 2010001831 A1 WO2010001831 A1 WO 2010001831A1 JP 2009061734 W JP2009061734 W JP 2009061734W WO 2010001831 A1 WO2010001831 A1 WO 2010001831A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
substrate
sealing material
organic
sec
Prior art date
Application number
PCT/JP2009/061734
Other languages
French (fr)
Japanese (ja)
Inventor
真昭 村山
和男 源田
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010519047A priority Critical patent/JPWO2010001831A1/en
Publication of WO2010001831A1 publication Critical patent/WO2010001831A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8721Metallic sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling

Definitions

  • the present invention relates to an organic EL panel, in which a substrate on which an organic EL element is formed is bonded to a sealing substrate through a sealing material and bonded to a surface to form a close-sealing structure. It relates to the stopping method.
  • the present invention relates to a solid sealing method capable of stably sealing without defects such as void mixing and spreading of the sealing material.
  • a casing-type method in which a glass cap or a SUS can is bonded using an adhesive to create a secret space, and a desiccant is placed in the space to seal it.
  • an adhesion type sealing method (solid sealing) has been disclosed in which an organic light emitting element on a substrate (entire surface) is sealed by liquid sealing with a liquid sealing material, and is thin and lightweight with excellent moisture resistance. It has been proposed as an organic EL element (for example, Patent Document 1).
  • an organic EL element for example, Patent Document 1.
  • solid sealing method there are problems such as void mixing in the sealing material layer and wetting and spreading of the sealing material, and various studies have been made.
  • the substrate and the sealing substrate are bonded via a liquid sealing material
  • the sealing material when the sealing material is applied, if the substrate spreads wet, the external electrodes arranged outside the light emitting region may be contaminated. . When contamination occurs, it is difficult to ensure electrical continuity from the outside, which may lead to a serious defect that the organic EL element cannot be driven.
  • Patent Document 2 in order to prevent the spread, a protective wall is provided so as to surround at least a single area around the external electrode region.
  • a protective wall is provided so as to surround at least a single area around the external electrode region.
  • Patent Document 3 an attempt is made to stabilize the bonding condition by the film thickness gradient of screen printing, but it has not yet reached a fundamental measure for preventing wetting and spreading.
  • Patent Document 4 two kinds of peripheral sealing material and filling sealing material are used to prevent wetting and spreading.
  • two kinds of sealing agents are required, the cost increases and the process becomes complicated.
  • multi-cavity multi-cavity
  • the sealing material arranged between the adjacent elements is pressure-bonded at the time of bonding, and the gap between the substrate and the sealing member diffuses randomly due to capillary action, so there is a possibility of contamination to the external electrode. To be high.
  • the object of the present invention is to spread the organic EL element substrate and the sealing substrate through the sealing material, and when applying the liquid sealing material, this spreads and contaminates the external electrode disposed outside the light emitting region. Therefore, it is intended to provide a close-contact type sealing method (solid sealing) by surface bonding of a sealing material that does not cause a serious defect that the organic EL element cannot be driven.
  • An object of the present invention is to provide a solid sealing method that can cope with chamfering (multiple chamfering).
  • a liquid sealing material is disposed on at least one of the substrate and the sealing substrate, and only the sealing material on the outer peripheral portion of the substrate and the sealing substrate is temporarily cured so as to have a viscosity of 50 Pa ⁇ sec to 5000 Pa ⁇ sec.
  • a method for producing an organic EL panel comprising: bonding a substrate and a sealing substrate; and further curing the sealing material over the entire sealing surface to form an adhesion sealing structure.
  • the bonding of the substrate and the sealing substrate is performed in a vacuum / depressurized environment, and the sealing material is cured on the entire sealing surface in an atmospheric pressure or a pressure environment higher than atmospheric pressure.
  • the substrate and the sealing substrate are solid-sealed, there is no contamination of the external electrode due to voids or wetting and spreading of the liquid sealing material. Stop) can be provided.
  • a substrate on which an organic electroluminescence (EL) element including at least a first electrode layer, an organic compound layer including a light emitting layer, and a second electrode layer is formed is bonded to a sealing substrate via a liquid sealing material.
  • the present invention relates to a method for manufacturing an organic EL panel in which a close-sealed structure is formed by adhering to each other.
  • the manufacturing method of the present invention is a method for solid-sealing an organic EL panel, in which a liquid sealing material (adhesive) is disposed on at least one of a substrate on which each layer of an organic EL element is formed or a sealing substrate, Alternatively, the sealing material at the outer periphery of the sealing substrate is temporarily cured, and the sealing material at the outer periphery acts as a protective wall that prevents the sealing material at the center of the sealing surface from spreading out. It suppresses wetting and spreading.
  • a liquid sealing material adheresive
  • the outer peripheral part refers to the entire area of the peripheral part on the top, bottom, left, and right of the panel sealing surface with the sealing material.
  • the width of the outer peripheral portion of the sealing surface is in the range of 0.1 mm to 10 mm, preferably 0.5 mm to 2 mm.
  • the sealing material is, for example, an ultraviolet curable resin
  • the pre-curing is performed so that the liquid sealing material has a viscosity of 50 Pa ⁇ sec to 5000 Pa ⁇ sec (25 ° C.), preferably 100 Pa ⁇ sec to 5000 Pa ⁇ sec (25 ° C.) by UV irradiation or the like. Is.
  • the sealing material does not lose its adhesiveness, and has a strength (resistance) that can resist a certain amount of stress (deformation) from the outside so as to become a protective wall.
  • the viscosity of the sealing material is difficult to measure in a state where a layer or film is formed, the viscosity increasing property of the sealing material is measured in advance, and the temporary curing conditions are determined.
  • the apparatus uses a viscosity / viscoelasticity measuring device (Rheostress RS600) manufactured by HAAKE, Germany, and in the case of an ultraviolet curable sealing material, the relationship between the ultraviolet irradiation amount (integrated light amount) and the viscosity increase is measured in advance.
  • the relationship between the temperature and time and the increase in viscosity was measured in advance, and the viscosity was determined from the temperature and time, respectively.
  • the method of the present invention is based on the fact that the sealing material at the outer periphery of the sealing surface is a protective wall at the boundary that prevents the (liquid) sealing material at the center of the sealing surface from spreading from the periphery of the sealing surface. Yes.
  • the sealing material for example, the entire surface is cured by UV irradiation to form a close-sealing structure.
  • a liquid sealing material is disposed on the sealing surface of either the substrate on which the organic EL element is formed or the sealing substrate.
  • the liquid sealing material may be disposed by any method such as coating or printing (screen printing / inkjet). Any means that can be applied uniformly is not limited.
  • the screen printing method is a printing method in which holes are made directly or indirectly in a screen woven from silk, nylon, tetron, stainless steel, etc., and a sealing material is attached only to the hole portions. Liquid sealing material due to features such as printing on the body, printing on curved surfaces because the screen is flexible, and relatively thick adhesive layer printed. It is particularly suitable for coating.
  • the sealing material After applying the sealing material to the sealing surface, in the present invention, only the periphery of the sealing surface of the sealing material is preliminarily cured.
  • the temporary curing is performed at a viscosity of 50 Pa ⁇ sec to 5000 Pa ⁇ sec (25 ° C.), preferably 100 Pa ⁇ sec to 5000 Pa ⁇ sec (25 ° C.).
  • a thermosetting resin When a thermosetting resin is used, it is applied by adjusting the amount of irradiation and the amount of heat by heating.
  • Sealing material (cured) as a protective wall against wet spread of the liquid sealing material in the internal area while maintaining the adhesiveness when bonding the sealing material whose viscosity has increased by temporary curing of the outer peripheral part (peripheral part) of the sealing surface Spreading of the conductive resin) to the electrode region can be prevented.
  • the liquid sealing material is preferably a fluid, heat- or photo-curing resin composition having a viscosity of 0.05 Pa ⁇ sec to 50 Pa ⁇ sec (25 ° C.), but protection against spreading of the liquid sealing material by temporary curing.
  • the viscosity is preferably increased in the range of 10 to 10,000 times by the temporary curing treatment.
  • Bonding is performed by pressing the substrates together with a predetermined pressure, for example, in the range of 0.5 kPa to 1 MPa, with the outer peripheral portion (peripheral portion) of the sealing material preliminarily cured. ), The surface adhesive adhesion sealing by pasting the substrates through the sealing material without spreading beyond the sealing material of the outer peripheral portion where the sealing material is temporarily cured, and spreading around the sealing surface (light emitting region) A structure can be formed.
  • a predetermined pressure for example, in the range of 0.5 kPa to 1 MPa
  • the process of bonding substrates together is performed under a reduced pressure atmosphere. Thereby, bubbles can be prevented from remaining between the substrates when the element substrate and the sealing substrate are bonded to each other.
  • the bonding step preferably includes a step of holding each substrate in a vacuum / depressurized environment in a depressurization apparatus so as to release the volatile components contained in the adhesive.
  • the vacuum / depressurized environment is an environment in the range of 0.003 Pa to 1000 Pa.
  • the step of maintaining the vacuum / depressurized environment may further include a step of depressurizing the interior of the decompressor to a vacuum / depressurized environment and a step of leaving in a vacuum / depressurized environment for a predetermined time.
  • the volatile component contained in the sealing material is released as bubbles and is prevented from remaining between the substrates when the substrates are bonded together by leaving them for a predetermined time.
  • the pressure is increased slightly to suppress the generation of bubbles, and then bonding is performed. Thereby, generation
  • the entire surface of the sealing surface is cured by irradiation with ultraviolet rays or the like, after the substrate and the sealing substrate are bonded in the above-described vacuum / depressurized environment, the pressure is higher than atmospheric pressure or atmospheric pressure. It is preferable to dispose under pressure and to cure the entire sealing surface by irradiating it with ultraviolet rays. As a result, the tight sealing can be performed efficiently with minimal generation of bubbles and minute spaces.
  • the element substrate on which the organic EL element is formed may include a protective film formed on the organic EL element.
  • the protective film may be composed of only an inorganic layer formed of an inorganic material or a composite layer including the inorganic layer and an organic layer formed of an organic material.
  • the thickness of the protective film is preferably in the range of several nanometers to several hundred nanometers, and by providing a protective film containing an inorganic material with excellent moisture resistance and low moisture permeability, it is possible to minimize the adverse effect of moisture on the EL element. it can.
  • the sealing material can be prevented from directly touching the EL element and affecting the characteristics.
  • a ceramic film such as silicon oxide or silicon oxynitride thin film formed by sputtering, plasma CVD, or the like is preferable because of its low moisture permeability.
  • a step of performing ozone treatment or plasma treatment on the surface of the substrate on which the organic EL element is formed, and in particular, the sealing substrate may be included.
  • the wettability of the substrate surface is improved and the contact angle of the sealing agent is lowered, so that the adhesive extends evenly on the substrate surface and the surface of the adhesive layer becomes smooth.
  • a minute space is hardly generated between the substrates.
  • a first sealing material is arranged in advance around the periphery of the sealing surface of the substrate on which the organic EL element is formed or the sealing substrate, and after this is temporarily cured, A two-stage method in which the second sealing material is disposed in the region may be employed.
  • a dispenser can be used, and a sealing material (second sealing material) in the inner region can be arranged using a jet dispenser. At that time, the order of the first and second sealing material arrangements may be reversed or simultaneous.
  • the substrate may be either rigid or flexible, and may be glass, plastic (resin) substrate or film.
  • the sealing substrate may be a single wafer, a continuous sheet (roll-to-roll) or the like.
  • FIG. 1 shows one embodiment of the present invention.
  • FIG. 1A shows, for example, a glass substrate (thickness: 500 ⁇ m) on which a plurality of organic EL elements are formed.
  • a plurality of substantially square elements are arranged in parallel on a glass substrate.
  • a first electrode layer (anode), an organic layer including a light emitting layer, or a second electrode layer (cathode) are sequentially laminated on the substrate 1 to form organic EL elements, respectively.
  • External electrode terminals are taken out to the electrode region 4.
  • the external electrodes 4 are arranged on the two sides of the substantially square light emitting region 10 so as to protrude from the light emitting region toward the outer peripheral side.
  • a protective film made of a silicon oxide thin film may be formed on the entire surface of the second electrode layer.
  • the sealing material layer 2 is formed so as to cover the entire surface of the light emitting region by, for example, a screen printing method using, for example, an ultraviolet curable acrylic resin (Three Bond 3042B) as the sealing material.
  • FIG. 1A, 2a and 2b show the peripheral part and internal region of the sealing material layer 2.
  • the peripheral portion 2a of the formed sealing material is first temporarily cured.
  • the liquid sealing material is cured in the above-described viscosity range, for example, to have a viscosity of 500 Pa ⁇ sec (25 ° C.).
  • the sealing material is the photo-curing adhesive
  • curing is advanced by irradiating UV light to the peripheral portion using, for example, a mask M.
  • the three-bond 3042B had a viscosity before curing of approximately 40 Pa ⁇ sec (25 ° C.), and was irradiated with ultraviolet light so that a 20-fold increase in viscosity was caused by temporary curing.
  • the viscosity of the sealing material layer increases due to cross-linking at the outer peripheral portion, and this becomes a wall material. Therefore, the wall itself flows out to the surroundings at the time of bonding, and the liquid sealing material 2b in the internal region diffuses beyond the walls to the surroundings. Can be prevented.
  • FIG. 1B is a cross-sectional view showing a state in which the outer peripheral portion 2a of the sealing material layer is irradiated with light through the exposure mask M.
  • the irradiation time or intensity is adjusted so that the above viscosity region is obtained.
  • thermosetting resin composition When used as a sealing material, heat treatment is performed only on the outer peripheral sealing material.
  • a heat block or a thermal head can be used.
  • the second sealing material may be disposed in the inner region after the sealing material is disposed only on the outer peripheral portion and heat-treated. In this case as well, the heating time and temperature are adjusted so that the viscosity region is necessary for temporary curing.
  • this is similarly bonded using a glass substrate having a thickness of 200 ⁇ m as a sealing substrate.
  • FIG. 1 (c) shows a cross-sectional view of a process in which the sealing substrate 3 is laminated and bonded onto the element substrate 1 on which the sealing material layer 2 is formed.
  • Bonding can be performed by overlapping the substrates with a uniform pressure of at least 0.01 MPa to 1 MPa.
  • the seal material in the inner area is the wall material of the temporarily hardened seal material, and it does not diffuse beyond this.
  • UV light is irradiated from a transparent substrate, for example, the sealing substrate 3 side, and the entire surface is cured by light irradiation (FIG. 1D).
  • the organic EL element forms an adhesive sealing structure in which the entire surface of the sealing surface is bonded to the substrate, the sealing substrate, and the cured sealing material.
  • the light irradiation may give sufficient irradiation energy for the sealing material layer to be crosslinked and cured over the entire bonding surface.
  • the bonding of the substrate and the sealing substrate is preferably performed in a vacuum / depressurized environment.
  • pasting is performed in a vacuum / depressurized environment, and after placing it in an atmospheric pressure or a pressure environment higher than atmospheric pressure, the sealing material is applied to the entire sealing surface by light irradiation, for example. It is preferable to cure.
  • the vacuum / depressurized environment is in the range of 0.003 Pa to 1000 Pa, and preferably in the range of 1 Pa to 100 Pa.
  • the bonding process of FIG. 1 (c) is performed in a vacuum / depressurized environment, and the sealing process by the entire surface curing of FIG. 1 (d) is under atmospheric pressure or higher pressure (0.1 MPa to 1 MPa). It is preferable to carry out with.
  • the substrates are also in close contact with each other even in the outer peripheral portion of the sealing material layer 2. For example, by placing under atmospheric pressure (approximately 0.1 MPa), atmospheric pressure is applied, so that the pressure is tightly bonded. Since this state is maintained and cured by performing light irradiation over the entire surface in this state, a highly close sealing structure can be formed.
  • atmospheric pressure approximately 0.1 MPa
  • FIG. 2 shows another example of a preferred embodiment of the present invention.
  • FIG. 2A shows a plastic substrate on which a plurality of organic EL elements are formed as described above.
  • a PEN (polyethylene naphthalate) film (thickness 200 ⁇ m) with a silicon oxide layer (thickness 100 nm) was used as the plastic substrate.
  • the gas barrier layer is omitted in the figure.
  • a plurality of substantially square elements are arranged in parallel on a resin substrate. The element is formed on the silicon oxide layer of the substrate 1.
  • a first electrode layer (anode), an organic layer including a light emitting layer, or a second electrode layer (cathode) are sequentially laminated on the substrate 1 to form organic EL elements, respectively.
  • External electrode terminals are taken out to the electrode region 4.
  • the electrode region 4 is disposed on the two sides of the substantially square light emitting region 10 so as to protrude from the light emitting region toward the outer peripheral side.
  • a protective film made of a silicon oxide thin film or the like may be formed on the entire surface of the second electrode layer.
  • the sealing material layer 21 is formed on the outer periphery of the light emitting region 10 on the substrate, and the temporary curing process of the sealing material is first performed.
  • a dispenser can be used to dispose the sealing material (first sealing material, the above-mentioned ThreeBond 3042B) around the light emitting region (outer periphery).
  • the sealing material first sealing material, the above-mentioned ThreeBond 3042B
  • the outer periphery of the sealing surface is defined by the sealing material. Therefore, the shape of the end of the sealing surface is square here, and the light emitting area is accurately defined by a dispenser or the like so as to cover the light emitting surface. It arrange
  • the sealing material layer 21 is disposed on the outer peripheral portion of the sealing surface, it is temporarily cured by irradiation with (UV). That is, it is cured so as to have a viscosity of 50 Pa ⁇ sec (25 ° C.) or more, preferably 100 Pa ⁇ sec (25 ° C.) or more and 5000 Pa ⁇ sec or less. Since the sealing material layer is disposed only in the peripheral portion, the light irradiation can use uniform UV exposure.
  • the first sealing material 21 semi-cured on the outer peripheral portion of the sealing surface (light emitting region) was thereby arranged to act as a wall material for the liquid sealing material arranged in the inner region.
  • the second sealing material 22 is disposed in the inner region.
  • the second sealing material does not necessarily need to be the same as the first sealing material, but using the same sealing material is economical and advantageous in terms of labor, and the same one is used.
  • the temporarily cured sealing material was disposed so as to surround the periphery of the uncured liquid sealing material in the inner region (FIGS. 2A and 2C).
  • the amount of sealing material disposed in the inner region may be simply applied to the region, and it is extended by bonding. Therefore, a predetermined amount may be disposed by a jet dispenser or the like.
  • the element substrate on which the sealing materials 21 and 22 are arranged is then bonded to the sealing substrate 3 under vacuum.
  • an aluminum foil manufactured by Toyo Aluminum Co., Ltd.
  • PET polyethylene terephthalate
  • PET-laminated aluminum foil was used (adhesive layer thickness 1.5 ⁇ m).
  • FIG.2 (c) has shown the process to bond by sectional drawing.
  • the bonding step it is preferable to first include a step of placing each substrate in a vacuum / depressurized environment in a decompression device in order to release the volatile components contained in the adhesive. Further, the method may further include a step of leaving in the decompression device for a predetermined time.
  • the substrates are brought into close contact with each other in the decompression device by lightly pressing them.
  • the substrate 1 and the sealing substrate 3 are brought into close contact with the temporarily cured sealing material on the outer peripheral portion of the sealing surface (FIG. 2D).
  • Bonding is performed by pressing lightly (substantially 0.01 MPa) under a vacuum apparatus, for example, under a reduced pressure condition of 10 Pa.
  • the depressurization in the depressurization apparatus is released and this is returned to the atmospheric pressure environment.
  • the pressure may be returned to a high pressure environment from atmospheric pressure to 0.1 MPa to 0.5 MPa.
  • the inside When returned to the atmospheric pressure environment, the inside is kept airtight by the temporarily hardened sealing material layer 21 disposed in the peripheral portion, so that the sealing material disposed inside is pressed by the atmospheric pressure and becomes the wall material. It is extended to the surrounding sealing material, and the inside is completely filled with the sealing material.
  • the solid sealing is described in the order of the arrangement of the sealing material on the outer peripheral portion, the temporary curing of the sealing material on the outer peripheral portion, and the arrangement (dropping) of the sealing material on the inner region.
  • the substrate is a plastic film or the like, since it is flexible, it is particularly effective compared to a rigid substrate to form a wall material by temporary curing around the substrate and suppress the wet spread of the liquid sealing material during handling. .
  • FIG. 3 similarly, in an element formed on a PEN (polyethylene naphthalate) film (thickness 200 ⁇ m) with a silicon oxide layer (thickness 100 nm), the arrangement of the sealing material in the inner region and the outer periphery of the sealing surface
  • positioning of the sealing material simultaneously is shown. In this case, only the outer peripheral sealant is cured using means such as an exposure mask.
  • 3A is a cross-sectional view showing a state in which the sealing material 2 is arranged in the inner region and in the outer peripheral portion on the substrate 1 on which the organic EL element layer 101 is formed with a dispenser.
  • a sealing material 21 is shown at the outer periphery, and a sealing material 22 is shown at the inner region.
  • FIG. 3B only the sealing material 21 at the outer peripheral portion is cured by UV irradiation.
  • the sealing substrate 3 (the PET laminate aluminum foil) and the substrate 1 on which the sealing material is disposed are disposed in the vacuum device 102 (FIG. 3C).
  • bonding is performed under vacuum and reduced pressure (FIG. 3 (d)), and the entire sealing surface is irradiated with UV light under atmospheric pressure to sufficiently cure the sealing material.
  • each element is cut from the panel with a cutter or the like, and individual elements are taken out.
  • An organic EL panel can be obtained by mounting a drive circuit on each organic EL element electrode region.
  • the element substrate may be an active matrix substrate or a passive matrix substrate.
  • the substrate on which the element is formed includes a glass substrate and a transparent resin substrate (film).
  • Transparent resin substrates (films) include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, poly Ether ether ketone, polysulfone, polyether sulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotri Fluoroethylene, polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene And the like.
  • the present invention that preliminarily cures the sealing material on the outer peripheral portion of the sealing surface and suppresses the spread of the sealing material is preferable when applied to a resin substrate such as polyethylene terephthalate and polyethylene naphthalate.
  • a barrier film having a high gas barrier property can be used in the resin film.
  • a film having a gas barrier film having a sealing function of a thickness of 50 nm to 50 ⁇ m such as a metal oxide film, for example, an oxynitride film, a nitride film, or a metal thin film.
  • a metal oxide film for example, an oxynitride film, a nitride film, or a metal thin film.
  • an alumina vapor deposition film or the like is preferable.
  • the sealing substrate 30 is preferably made of a material having high transmittance in the visible light region and high moisture resistance.
  • a material having high transmittance in the visible light region and high moisture resistance for example, glass, glass with a color filter, glass with CCM (color conversion function), etc.
  • the transparent resin substrate (film) for example, a resin substrate such as polyethylene terephthalate or polyethylene naphthalate, a resin film, particularly a gas barrier film having a low moisture permeability, such as a water vapor such as silicon oxide or silicon nitride.
  • a resin film or the like on which a gas barrier film having a low transmittance is formed is preferable.
  • a metal foil or the like that does not transmit light can be used as the sealing substrate.
  • the metal foil used as the sealing substrate is not particularly limited in the type of metal.
  • a particularly preferred metal foil is an Al foil.
  • An aluminum foil having a thickness of about 30 to 50 ⁇ m is particularly preferable.
  • These metal foils may be laminated with a polymer film such as PET.
  • sealing material used in the present invention an example using a UV curable resin (photo-curing adhesive) is shown above.
  • a visible light curing type a thermosetting type
  • a composite curing by ultraviolet rays and heat a mold or a post-curing resin using ultraviolet rays can be used.
  • the sealing material is a thermosetting resin such as a urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, unsaturated polyester resin, polyurethane resin or acrylic resin.
  • a photo-curing adhesive or the like is used.
  • sealing materials preferably have a viscosity of 0.05 Pa ⁇ sec to 50 Pa ⁇ sec.
  • the adhesive spreads uniformly on the substrate surface, and the number of minute spaces generated between the substrates when the substrates are bonded can be reduced. Thereby, since the adhesive can be uniformly applied in a short time, a dropping method or the like is generally used.
  • the sealing material is a sealing substrate or (a protective film is used). Since it is applied to the surface of the element substrate (provided), it may be applied directly by screen printing.
  • a sealing material may be applied to the display area by screen printing, and a sealing material is preferably applied to the outer peripheral portion by a dispenser.
  • a filler may be added to the sealing material.
  • the filler for example, an inorganic material such as SiOx, SiON, or SiN, or a metal material such as Ag, Ni, or Al may be used, but the present invention is not limited thereto. Is not to be done.
  • the curing method may be UV curing type, visible light curing type, UV + thermosetting type, thermosetting type, post-curing type UV adhesive, or the like.
  • An organic EL element has a structure in which one or a plurality of organic layers are laminated between electrodes.
  • An organic material having a structure composed of an anode / a light emitting layer / a cathode and constituting each organic functional layer will be described.
  • Organic materials used for the hole injection / transport layer are typified by phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polyvinyl carbazole, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), and the like.
  • a material such as a conductive polymer is used.
  • carbazole-based luminescent materials such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbenzene, (di) azacarbazoles, 1,3,5-
  • carbazole-based luminescent materials such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbenzene, (di) azacarbazoles, 1,3,5-
  • low-molecular light-emitting materials typified by pyrene-based light-emitting materials such as tripyrenylbenzene, polymer light-emitting materials typified by polyphenylene vinylenes, polyfluorenes, polyvinyl carbazoles, and the like.
  • a low molecular weight light emitting material having a molecular weight of 10,000 or less is preferably used as the light emitting material, and can be used as the film forming material of the present invention.
  • the light emitting material may preferably contain about 0.1 to 20% by mass of a dopant.
  • the dopant include known fluorescent dyes such as perylene derivatives and pyrene derivatives, phosphorescent dyes, For example, orthometalated iridium complexes represented by tris (2-phenylpyridine) iridium, bis (2-phenylpyridine) (acetylacetonato) iridium, bis (2,4-difluorophenylpyridine) (picolinato) iridium, etc. And complex compounds.
  • Examples of the electron injection / transport layer material include metal complex compounds such as 8-hydroxyquinolinate lithium and bis (8-hydroxyquinolinate) zinc, and the following nitrogen-containing five-membered ring derivatives. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred.
  • organic layers are not limited, and it is possible to form a film using a method such as vapor deposition or coating using a dissolving solvent.
  • conductive material used for the anode those having a work function larger than 4 eV are suitable, and silver, gold, platinum, palladium and the like and alloys thereof, tin oxide, indium oxide, ITO and other metal oxides.
  • organic conductive resins such as polythiophene and polypyrrole are used.
  • the conductive material used for the cathode those having a work function smaller than 4 eV are suitable, such as magnesium and aluminum.
  • the alloy include magnesium / silver and lithium / aluminum.
  • Electrode formation can be performed by sputtering, vapor deposition, or a wet process such as coating depending on the material.
  • film sealing is performed on the organic EL element.
  • a barrier film such as a silicon oxide film is formed on the second electrode. You may seal by applying a sealing material on the top.
  • the substrate on which the element is formed or the sealing substrate includes the glass substrate and the transparent resin substrate (film) described above.

Abstract

Disclosed is a solid sealing method that, in lamination through a sealing material, does not lead to such a defect that the sealing material is extended to contaminate an external electrode.  Also disclosed is a solid sealing method that can cope with multiple face (multiple pieces) obtainment in the production of organic EL.  The sealing method is used in a process for producing an organic EL panel, comprising laminating a sealing substrate through a sealing material onto a substrate, on which an organic EL element comprising at least a first electrode layer, an organic compound layer including a luminescent layer, and a second electrode layer has been formed, by face bonding to form an airtight sealing structure.  The sealing method is characterized by comprising placing a liquid sealing material on at least one of the substrate and the sealing substrate, temporarily curing only the sealing material of the outer peripheral part of the substrate and the sealing substrate to a viscosity of 50 Pa∙sec to 5000 Pa∙sec, stacking the substrate onto the sealing substrate, and further curing the whole sealing face of the sealing material to form an airtight sealing structure.

Description

有機ELパネルおよび有機ELパネルの製造方法Organic EL panel and method for manufacturing organic EL panel
 本発明は、有機ELパネルに関し、有機EL素子を形成した基板を、シール材を介して封止基板と貼合し面接着させて密着封止構造を形成する、所謂、有機ELパネルの固体封止方法に関する。特に、ボイド混入、封止材の塗れ広がり等の不具合なく安定に封止可能な固体封止方法に関する。 The present invention relates to an organic EL panel, in which a substrate on which an organic EL element is formed is bonded to a sealing substrate through a sealing material and bonded to a surface to form a close-sealing structure. It relates to the stopping method. In particular, the present invention relates to a solid sealing method capable of stably sealing without defects such as void mixing and spreading of the sealing material.
 有機ELパネルにおいては、発光層を構成する材料及び発光素子は、吸湿すると、その発光輝度は著しく損なわれる。そのため、有機EL素子内部の湿度を下げる必要があり、さらに外気から素子を遮断保護するため、幾つかの手段が設けられている。例えば、ガラスキャップやSUS缶を、接着剤を使用して貼り合わせることで、機密空間を作り、その中に乾燥剤を入れて封止するケーシングタイプの方法が開示されている。 In the organic EL panel, when the material and the light emitting element constituting the light emitting layer absorb moisture, the light emission luminance is significantly impaired. For this reason, it is necessary to reduce the humidity inside the organic EL element, and several means are provided to shield and protect the element from the outside air. For example, a casing-type method is disclosed in which a glass cap or a SUS can is bonded using an adhesive to create a secret space, and a desiccant is placed in the space to seal it.
 近年、基板上の有機発光素子の上(全面)に液状のシール材で面接着して封止する密着タイプの封止方法(固体封止)が開示され、耐湿性に優れた薄型・軽量な有機EL素子として提案されている(例えば特許文献1)。しかし、密着タイプの封止方法(固体封止方法)においては、シール材層のボイド混入、シール材の濡れ広がり等の課題があり各種検討がなされている。 In recent years, an adhesion type sealing method (solid sealing) has been disclosed in which an organic light emitting element on a substrate (entire surface) is sealed by liquid sealing with a liquid sealing material, and is thin and lightweight with excellent moisture resistance. It has been proposed as an organic EL element (for example, Patent Document 1). However, in the close contact type sealing method (solid sealing method), there are problems such as void mixing in the sealing material layer and wetting and spreading of the sealing material, and various studies have been made.
 例えば、基板と封止基板とを液状のシール材を介して貼合する際、シール材が塗られるとき、これが濡れ広がると、発光領域以外に配置された外部電極を汚染してしまう恐れがある。汚染が生じると、外部からの電気的導通を確保することが困難となり、有機EL素子を駆動できないといった重大な欠陥を招いてしまう場合がある。 For example, when the substrate and the sealing substrate are bonded via a liquid sealing material, when the sealing material is applied, if the substrate spreads wet, the external electrodes arranged outside the light emitting region may be contaminated. . When contamination occurs, it is difficult to ensure electrical continuity from the outside, which may lead to a serious defect that the organic EL element cannot be driven.
 このため、特許文献2においては、広がりを防止するために、外部電極領域の周りを少なくとも一重に囲うような防護壁を設けている。しかしながら、新たに部材を配置する必要があり、コストまた工程が複雑化する等の面において問題がある。 For this reason, in Patent Document 2, in order to prevent the spread, a protective wall is provided so as to surround at least a single area around the external electrode region. However, it is necessary to newly arrange members, and there is a problem in terms of cost and process complexity.
 また、特許文献3においては、スクリーン印刷の膜厚傾斜により貼合条件を安定化することを試みているが、濡れ広がり防止の根本対策までには至っていない。 Further, in Patent Document 3, an attempt is made to stabilize the bonding condition by the film thickness gradient of screen printing, but it has not yet reached a fundamental measure for preventing wetting and spreading.
 特許文献4においては、外周シール材と充填シール材の2種類を使用して濡れ広がりを防止しているが、2種類のシール剤が必要なためコストアップし、また工程が複雑化してしまう。 In Patent Document 4, two kinds of peripheral sealing material and filling sealing material are used to prevent wetting and spreading. However, since two kinds of sealing agents are required, the cost increases and the process becomes complicated.
 また、有機ELの製造工程においては、生産性を向上させるため、一枚の大きな基板から、複数の素子を得る、すなはち、多面取り(多数個取り)を行うことが多い。この場合にも、隣り合う素子同士に配置したシール材は、貼合時に圧着され、基板と封止部材のギャップ間を毛細管現象により無秩序に拡散するため、外部電極への汚染の可能性が非常に高くなる。 Also, in the manufacturing process of organic EL, in order to improve productivity, a plurality of elements are obtained from one large substrate, that is, multi-cavity (multi-cavity) is often performed. Also in this case, the sealing material arranged between the adjacent elements is pressure-bonded at the time of bonding, and the gap between the substrate and the sealing member diffuses randomly due to capillary action, so there is a possibility of contamination to the external electrode. To be high.
特開2002-216950号公報JP 2002-216950 A 特開2004-311226号公報JP 2004-31226 A 特開2005-11648号公報JP 2005-11648 A 特許第3650101号明細書Japanese Patent No. 3650101
 従って本発明の目的は、有機EL素子基板と封止基板を、シール材を介して貼合する際、液状のシール材を塗るときに、これが濡れ広がり発光領域外に配置される外部電極を汚染してしまい、有機EL素子を駆動できないといった重大な欠陥を招くことがない、シール材の面接着による密着タイプの封止方法(固体封止)を提供することにあり、有機ELの製造における多面取り(多数個取り)の場合にも対応できる固体封止方法を提供することにある。 Therefore, the object of the present invention is to spread the organic EL element substrate and the sealing substrate through the sealing material, and when applying the liquid sealing material, this spreads and contaminates the external electrode disposed outside the light emitting region. Therefore, it is intended to provide a close-contact type sealing method (solid sealing) by surface bonding of a sealing material that does not cause a serious defect that the organic EL element cannot be driven. An object of the present invention is to provide a solid sealing method that can cope with chamfering (multiple chamfering).
 本発明の上記課題は以下の手段によって達成される。 The above object of the present invention is achieved by the following means.
 1.少なくとも第一電極層、発光層を含む有機化合物層、第二電極層からなる有機EL素子を形成した基板に、シール材を介して封止基板を貼合し面接着させて密着封止構造を形成する有機ELパネルの製造方法において、
 前記基板および封止基板の少なくとも一方に液状のシール材を配置し、前記基板および封止基板の外周部のシール材のみを50Pa・sec~5000Pa・secの粘度になるよう仮硬化したのち、前記基板と封止基板を貼合して、前記シール材を封止面全面についてさらに硬化させ密着封止構造を形成することを特徴とする有機ELパネルの製造方法。
1. At least a first electrode layer, an organic compound layer including a light emitting layer, and a substrate on which an organic EL element composed of a second electrode layer is formed. In the manufacturing method of the organic EL panel to be formed,
A liquid sealing material is disposed on at least one of the substrate and the sealing substrate, and only the sealing material on the outer peripheral portion of the substrate and the sealing substrate is temporarily cured so as to have a viscosity of 50 Pa · sec to 5000 Pa · sec. A method for producing an organic EL panel, comprising: bonding a substrate and a sealing substrate; and further curing the sealing material over the entire sealing surface to form an adhesion sealing structure.
 2.前記基板および封止基板の少なくとも一方に液状の第1のシール材を配置する工程、前記第1のシール材と同様の液状の第2のシール材をその外周部に配置する工程、前記外周部に配置された第2のシール材のみを50Pa・sec~5000Pa・secの粘度になるよう硬化する仮硬化工程を含み、該仮硬化工程後に前記基板と封止基板を貼合し、封止面全面についてシール材を硬化させる本硬化工程を有することを特徴とする前記1に記載の有機ELパネルの製造方法。 2. A step of disposing a liquid first sealing material on at least one of the substrate and the sealing substrate, a step of disposing a liquid second sealing material similar to the first sealing material on an outer peripheral portion thereof, and the outer peripheral portion Including a temporary curing step in which only the second sealing material disposed on the substrate is cured to have a viscosity of 50 Pa · sec to 5000 Pa · sec. After the temporary curing step, the substrate and the sealing substrate are bonded together, 2. The method for producing an organic EL panel according to 1 above, further comprising a main curing step of curing the sealing material over the entire surface.
 3.前記基板と封止基板の貼合は真空・減圧環境下で行い、大気圧または大気圧より高い圧力環境下にてシール材を封止面全面について硬化させることを特徴とする前記1または2に記載の有機ELパネルの製造方法。 3. In the above 1 or 2, the bonding of the substrate and the sealing substrate is performed in a vacuum / depressurized environment, and the sealing material is cured on the entire sealing surface in an atmospheric pressure or a pressure environment higher than atmospheric pressure. The manufacturing method of the organic electroluminescent panel of description.
 4.硬化前の前記シール材の粘度が、0.05Pa・sec~50Pa・secであることを特徴とする前記1~3のいずれか1項に記載の有機ELパネルの製造方法。 4. 4. The method for producing an organic EL panel according to any one of 1 to 3, wherein the viscosity of the sealing material before curing is 0.05 Pa · sec to 50 Pa · sec.
 5.仮硬化したときのシール材粘度は、硬化前の粘度に比べ、10~10000倍であることを特徴とする前記1~4のいずれか1項に記載の有機ELパネルの製造方法。 5. 5. The method for producing an organic EL panel according to any one of 1 to 4, wherein the viscosity of the sealing material when temporarily cured is 10 to 10,000 times that before the curing.
 6.前記シール材が、熱硬化樹脂またはUV(紫外線)硬化樹脂であることを特徴とする前記1~5のいずれか1項に記載の有機ELパネルの製造方法。 6. 6. The method for producing an organic EL panel according to any one of 1 to 5, wherein the sealing material is a thermosetting resin or a UV (ultraviolet) curable resin.
 7.前記1~6のいずれか1項に記載の有機ELパネルの製造方法を用いて作製されたことを特徴とする有機ELパネル。 7. 7. An organic EL panel produced by using the method for producing an organic EL panel according to any one of 1 to 6 above.
 本発明により、基板と封止基板を固体封止するときに、ボイドや、液状のシール材の濡れ広がりによる外部電極の汚染がない、シール材の面接着による密着タイプの封止方法(固体封止)を提供することができる。 According to the present invention, when the substrate and the sealing substrate are solid-sealed, there is no contamination of the external electrode due to voids or wetting and spreading of the liquid sealing material. Stop) can be provided.
本発明の実施形態の一つを示す図である。It is a figure showing one of the embodiments of the present invention. 本発明の実施形態の別の一例を示す図である。It is a figure which shows another example of embodiment of this invention. 内部領域と外周部へのシール材配置を同時に行う実施形態を示す図である。It is a figure which shows embodiment which performs the sealing material arrangement | positioning to an internal region and an outer peripheral part simultaneously.
 本発明は、少なくとも第一電極層、発光層を含む有機化合物層、第二電極層からなる有機エレクトロルミネッセンス(EL)素子を形成した基板を、液状のシール材を介して封止基板と貼合し面接着させて密着封止構造を形成する有機ELパネルの製造方法に関する。 In the present invention, a substrate on which an organic electroluminescence (EL) element including at least a first electrode layer, an organic compound layer including a light emitting layer, and a second electrode layer is formed is bonded to a sealing substrate via a liquid sealing material. The present invention relates to a method for manufacturing an organic EL panel in which a close-sealed structure is formed by adhering to each other.
 本発明の製造方法は、有機ELパネルの固体封止方法であって、有機EL素子各層が形成された基板、または封止基板の少なくとも一方に液状のシール材(接着剤)を配置し、基板または封止基板の外周部のシール材を、仮硬化させて、外周部のシール材を、封止面中央部のシール材が濡れ拡がらないような防護壁として作用させることで、シール材の濡れ拡がりを抑えるものである。 The manufacturing method of the present invention is a method for solid-sealing an organic EL panel, in which a liquid sealing material (adhesive) is disposed on at least one of a substrate on which each layer of an organic EL element is formed or a sealing substrate, Alternatively, the sealing material at the outer periphery of the sealing substrate is temporarily cured, and the sealing material at the outer periphery acts as a protective wall that prevents the sealing material at the center of the sealing surface from spreading out. It suppresses wetting and spreading.
 外周部とはシール材によるパネル封止面の上下左右の周辺部の全域を指す。封止面の外周部の幅、即ち仮硬化する幅は、0.1mm~10mm、好ましくは0.5mm~2mmの範囲である。これによりシール材の濡れ広がりやボイドの発生を確実に抑えることができる。 The outer peripheral part refers to the entire area of the peripheral part on the top, bottom, left, and right of the panel sealing surface with the sealing material. The width of the outer peripheral portion of the sealing surface, that is, the temporary curing width is in the range of 0.1 mm to 10 mm, preferably 0.5 mm to 2 mm. As a result, it is possible to reliably suppress the wetting and spreading of the sealing material and the generation of voids.
 外周部のシール材に、その接着性を失わず、即ち柔らかさを保ち、かつ防護壁となるよう外部からの応力(変形)に対しある程度対抗しうる強度(耐性)をもたせるため、外周部のシール材は、例えば紫外線硬化樹脂である場合には、UV照射によってある程度架橋を進行させ、周囲への濡れ広がりが抑えられる粘度にまで硬化させる(仮硬化)ことが必要である。 In order to give the outer peripheral sealing material strength (resistance) that does not lose its adhesiveness, that is, keeps its softness and can resist a certain amount of external stress (deformation) to become a protective wall. When the sealing material is, for example, an ultraviolet curable resin, it is necessary to cause crosslinking to some extent by UV irradiation and to cure to a viscosity at which wetting and spreading to the surroundings can be suppressed (temporary curing).
 仮硬化は、従って、液状のシール材を、UV照射等によって、粘度で、50Pa・sec~5000Pa・sec(25℃)、好ましくは100Pa・sec~5000Pa・sec(25℃)、の範囲とするものである。これにより、シール材は、接着性を失わず、かつ防護壁となるよう外部からの応力(変形)に対しある程度対抗しうる強度(耐性)をもつようになる。 Therefore, the pre-curing is performed so that the liquid sealing material has a viscosity of 50 Pa · sec to 5000 Pa · sec (25 ° C.), preferably 100 Pa · sec to 5000 Pa · sec (25 ° C.) by UV irradiation or the like. Is. As a result, the sealing material does not lose its adhesiveness, and has a strength (resistance) that can resist a certain amount of stress (deformation) from the outside so as to become a protective wall.
 なお、シール材の粘度は層乃至膜を形成した状態では測定は困難であるため、事前にシール材の粘度上昇特性を測定しておき、仮硬化条件を決定する。 Note that since the viscosity of the sealing material is difficult to measure in a state where a layer or film is formed, the viscosity increasing property of the sealing material is measured in advance, and the temporary curing conditions are determined.
 即ち、装置は、ドイツHAAKE社製の粘度・粘弾性測定装置(レオストレス RS600)を用いて、紫外線硬化シール材の場合は、紫外線照射量(積算光量)と粘度上昇の関係を予め測定しておき、その積算光量から、また、熱硬化シール材の場合は、温度及び時間と粘度上昇の関係を予め測定しておき温度と時間からそれぞれ粘度を求めるようにした。 That is, the apparatus uses a viscosity / viscoelasticity measuring device (Rheostress RS600) manufactured by HAAKE, Germany, and in the case of an ultraviolet curable sealing material, the relationship between the ultraviolet irradiation amount (integrated light amount) and the viscosity increase is measured in advance. In addition, from the accumulated light amount, and in the case of a thermosetting sealing material, the relationship between the temperature and time and the increase in viscosity was measured in advance, and the viscosity was determined from the temperature and time, respectively.
 本発明の方法は、封止面外周部のシール材を、封止面中央部の(液状の)シール材が封止面の周縁から濡れ広がることを抑える境界の防護壁とすることに基づいている。 The method of the present invention is based on the fact that the sealing material at the outer periphery of the sealing surface is a protective wall at the boundary that prevents the (liquid) sealing material at the center of the sealing surface from spreading from the periphery of the sealing surface. Yes.
 本発明においては、封止面(発光領域)に配置された液状のシール材の外周部をのみを仮硬化させた後に、基板同士を貼合し、次いで例えば封止基板側から、光硬化性シール材の場合、例えばUV照射により全面硬化させ密着封止構造を形成する。 In the present invention, only the outer peripheral portion of the liquid sealing material disposed on the sealing surface (light emitting region) is temporarily cured, and then the substrates are bonded together, and then, for example, from the sealing substrate side, photocurable In the case of the sealing material, for example, the entire surface is cured by UV irradiation to form a close-sealing structure.
 本発明の一態様においては、有機EL素子を形成した基板または封止基板のいずれか一方に、その封止面に対して液状シール材を配置する。液状のシール材の配置は、塗布あるいは印刷方式(スクリーン印刷/インクジェット)等により行えばよくその配置方法は問わない。均一に適用できる手段なら限定されない。 In one embodiment of the present invention, a liquid sealing material is disposed on the sealing surface of either the substrate on which the organic EL element is formed or the sealing substrate. The liquid sealing material may be disposed by any method such as coating or printing (screen printing / inkjet). Any means that can be applied uniformly is not limited.
 スクリーン印刷法は、絹やナイロン、テトロン、ステンレス等で織られたスクリーンに直接または間接的に穴をあけて、その穴の部分のみにシール材を付着させる印刷方式であり、様々な材質の印刷体への印刷が可能であること、スクリーンが柔軟であるから曲面などへの印刷が可能であること、印刷された接着剤層の厚みが比較的厚いこと、などの特徴から、液状のシール材を塗布するのに特に好適である。 The screen printing method is a printing method in which holes are made directly or indirectly in a screen woven from silk, nylon, tetron, stainless steel, etc., and a sealing material is attached only to the hole portions. Liquid sealing material due to features such as printing on the body, printing on curved surfaces because the screen is flexible, and relatively thick adhesive layer printed. It is particularly suitable for coating.
 封止面にシール材を適用したのち、本発明においてはシール材の封止面周囲部のみを予め仮硬化させる。仮硬化は、前記50Pa・sec~5000Pa・sec(25℃)、好ましくは100Pa・sec~5000Pa・sec(25℃)、の粘度となるよう、例えば紫外線硬化樹脂を用いる場合には紫外線照射により、また熱硬化樹脂を用いる場合には加熱によって、それぞれ照射量、また熱量を調整して適用する。封止面外周部(周囲部)の仮硬化によって、粘度が上昇したシール材は貼合時、接着性は保ちつつも、内部領域の液状シール材の濡れ広がりに対する防護壁として、シール材(硬化性樹脂)の電極領域への濡れ広がりを防止することができる。 After applying the sealing material to the sealing surface, in the present invention, only the periphery of the sealing surface of the sealing material is preliminarily cured. The temporary curing is performed at a viscosity of 50 Pa · sec to 5000 Pa · sec (25 ° C.), preferably 100 Pa · sec to 5000 Pa · sec (25 ° C.). When a thermosetting resin is used, it is applied by adjusting the amount of irradiation and the amount of heat by heating. Sealing material (cured) as a protective wall against wet spread of the liquid sealing material in the internal area while maintaining the adhesiveness when bonding the sealing material whose viscosity has increased by temporary curing of the outer peripheral part (peripheral part) of the sealing surface Spreading of the conductive resin) to the electrode region can be prevented.
 液状シール材は、0.05Pa・secから50Pa・sec(25℃)の粘度をもつ流動性の、熱あるいは光硬化性樹脂組成物が好ましいが、仮硬化によって、液状シール材の濡れ拡がり対する防護壁となるには、前記粘度が、仮硬化処理によって10~10000倍の範囲で上昇することが好ましい。 The liquid sealing material is preferably a fluid, heat- or photo-curing resin composition having a viscosity of 0.05 Pa · sec to 50 Pa · sec (25 ° C.), but protection against spreading of the liquid sealing material by temporary curing. In order to form a wall, the viscosity is preferably increased in the range of 10 to 10,000 times by the temporary curing treatment.
 シール材外周部(周囲部)が仮硬化した状態で基板同士を所定の圧、例えば0.5kPa~1MPaの範囲で押圧することで貼合して、さらにUV光等を照射し全面硬化(架橋)させることで、シール材が仮硬化した外周部のシール材を超えて封止面(発光領域)の周囲へ拡がることなしに、シール材を介した基板同士の貼合による面接着密着封止構造を形成することができる。 Bonding is performed by pressing the substrates together with a predetermined pressure, for example, in the range of 0.5 kPa to 1 MPa, with the outer peripheral portion (peripheral portion) of the sealing material preliminarily cured. ), The surface adhesive adhesion sealing by pasting the substrates through the sealing material without spreading beyond the sealing material of the outer peripheral portion where the sealing material is temporarily cured, and spreading around the sealing surface (light emitting region) A structure can be formed.
 また、上記において、基板同士を貼合する工程は、減圧雰囲気下にて実施されることが好ましい。これにより、素子基板と封止基板とを貼り合わせるときに、基板間に気泡が残留することを防ぐことができる。 Moreover, in the above, it is preferable that the process of bonding substrates together is performed under a reduced pressure atmosphere. Thereby, bubbles can be prevented from remaining between the substrates when the element substrate and the sealing substrate are bonded to each other.
 貼合工程は、それぞれの基板を、前記接着剤中に含まれる揮発成分を放出させるべく、減圧装置内において、真空・減圧環境下に保持する工程を含むことが好ましい。真空・減圧環境下とは0.003Pa~1000Paの範囲の環境下である。また、前記真空・減圧環境下に保持する工程は、前記減圧装置内を、真空・減圧環境下まで減圧する工程と、真空・減圧環境下に、所定時間放置する工程をさらに含んでもよい。 The bonding step preferably includes a step of holding each substrate in a vacuum / depressurized environment in a depressurization apparatus so as to release the volatile components contained in the adhesive. The vacuum / depressurized environment is an environment in the range of 0.003 Pa to 1000 Pa. In addition, the step of maintaining the vacuum / depressurized environment may further include a step of depressurizing the interior of the decompressor to a vacuum / depressurized environment and a step of leaving in a vacuum / depressurized environment for a predetermined time.
 所定時間放置することによって、シール材中に含まれる揮発成分が気泡となって放出され基板を貼り合わせたときに、基板間に気泡が残留するのを防ぐことができ好ましい。 It is preferable that the volatile component contained in the sealing material is released as bubbles and is prevented from remaining between the substrates when the substrates are bonded together by leaving them for a predetermined time.
 また、真空・減圧環境下に所定時間設置した後、圧力を少し高くして気泡の発生を抑えてから貼り合わせることも好ましい。これにより、気泡や微小空間の発生を最小限に抑えることができる。 In addition, it is also preferable that after being placed in a vacuum / depressurized environment for a predetermined time, the pressure is increased slightly to suppress the generation of bubbles, and then bonding is performed. Thereby, generation | occurrence | production of a bubble and micro space can be suppressed to the minimum.
 従って、紫外線等の照射による、封止面の全面硬化は、このように基板と封止基板の貼合を前記の真空・減圧環境下で行ったのち、これを、大気圧または大気圧より高い加圧環境下に配置し、封止面全面について紫外線を照射して、これを硬化させることが好ましい。これにより密着封止を気泡や微小空間の発生を最小限に抑え効率よく行うことができる。 Accordingly, the entire surface of the sealing surface is cured by irradiation with ultraviolet rays or the like, after the substrate and the sealing substrate are bonded in the above-described vacuum / depressurized environment, the pressure is higher than atmospheric pressure or atmospheric pressure. It is preferable to dispose under pressure and to cure the entire sealing surface by irradiating it with ultraviolet rays. As a result, the tight sealing can be performed efficiently with minimal generation of bubbles and minute spaces.
 本発明の封止方法において、有機EL素子が形成された素子基板は、前記有機EL素子上に形成された保護膜を含んでもよい。前記保護膜は、無機材料から形成された無機層のみ、または前記無機層と有機材料により構成された有機層とを含む複合層からなるものであってもよい。保護膜の厚みは数nm~数百nmの範囲が好ましく、耐湿性に優れた透湿性の低い無機材料を含む保護膜を設けることにより、水分によるEL素子への悪影響を最小限に抑えることができる。また、保護膜を設けることにより、シール材がEL素子に直接触れて、特性に影響を与えることを防ぐことができる。例えば、スパッタ、また、プラズマCVD等により形成される酸化ケイ素、酸化窒化ケイ素薄膜等のセラミック膜が、透湿性が低く好ましい。 In the sealing method of the present invention, the element substrate on which the organic EL element is formed may include a protective film formed on the organic EL element. The protective film may be composed of only an inorganic layer formed of an inorganic material or a composite layer including the inorganic layer and an organic layer formed of an organic material. The thickness of the protective film is preferably in the range of several nanometers to several hundred nanometers, and by providing a protective film containing an inorganic material with excellent moisture resistance and low moisture permeability, it is possible to minimize the adverse effect of moisture on the EL element. it can. Further, by providing the protective film, the sealing material can be prevented from directly touching the EL element and affecting the characteristics. For example, a ceramic film such as silicon oxide or silicon oxynitride thin film formed by sputtering, plasma CVD, or the like is preferable because of its low moisture permeability.
 また、シール材を塗布する工程に先立って、有機EL素子が形成された基板、また特に、封止基板の表面に、オゾン処理またはプラズマ処理を施す工程を含んでもよい。オゾン処理またはプラズマ処理を行うことにより、基板表面の濡れ性が向上し、シール剤の接触角が低くなるので、接着剤が基板表面に万遍なく伸びて、接着剤層の表面が滑らかになり、基板を貼り合わせたときに基板間に微小空間が生じにくい。 In addition, prior to the step of applying the sealing material, a step of performing ozone treatment or plasma treatment on the surface of the substrate on which the organic EL element is formed, and in particular, the sealing substrate may be included. By performing ozone treatment or plasma treatment, the wettability of the substrate surface is improved and the contact angle of the sealing agent is lowered, so that the adhesive extends evenly on the substrate surface and the surface of the adhesive layer becomes smooth. When the substrates are bonded together, a minute space is hardly generated between the substrates.
 また、本発明の、別の一態様として、有機EL素子を形成した基板または封止基板の封止面の周囲部に第一のシール材を予め配置し、これを仮硬化させた後、内部領域に第二のシール材を配置する2段階の方式をとってもよい。 Moreover, as another aspect of the present invention, a first sealing material is arranged in advance around the periphery of the sealing surface of the substrate on which the organic EL element is formed or the sealing substrate, and after this is temporarily cured, A two-stage method in which the second sealing material is disposed in the region may be employed.
 シール材を封止面の周囲部に配置する方法としては、ディスペンサを用いることができ、また内部領域のシール材(第二シール材)はジェットディスペンサを用いて配置することができる。そのとき、第一、第二のシール材配置は、その順番が逆でもよいし、また同時でもよい。 As a method of arranging the sealing material around the sealing surface, a dispenser can be used, and a sealing material (second sealing material) in the inner region can be arranged using a jet dispenser. At that time, the order of the first and second sealing material arrangements may be reversed or simultaneous.
 本発明において、基板(封止基板)は剛性あるいは可撓性のいずれでもよく、ガラス、またプラスチック(樹脂)基板あるいはフィルムのいずれでもよい。封止基板も同様であり、また、基板は、枚葉、連続シート(ロールツウロール)等も問わない。 In the present invention, the substrate (sealing substrate) may be either rigid or flexible, and may be glass, plastic (resin) substrate or film. The same applies to the sealing substrate, and the substrate may be a single wafer, a continuous sheet (roll-to-roll) or the like.
 次に本発明の実施形態について図を用いて説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.
 (発明の実施の形態)
 図1に本発明の実施形態の一つを示した。
(Embodiment of the Invention)
FIG. 1 shows one embodiment of the present invention.
 図1(a)に、複数の有機EL素子が形成された例えばガラスの基板(厚み500μm)を示す。例えば略方形の素子が、ガラス基板上に複数個並列に並んだものを表している。 FIG. 1A shows, for example, a glass substrate (thickness: 500 μm) on which a plurality of organic EL elements are formed. For example, a plurality of substantially square elements are arranged in parallel on a glass substrate.
 基板1上には第一電極層(陽極)、発光層を含む有機層又第二電極層(陰極)が順次積層されて有機EL素子をそれぞれ形成しており、それぞれの素子において各電極からは外部電極端子が電極領域4に取り出されている。この外部電極4は略方形状の発光領域10の二辺において、それぞれ発光領域から外周側に向けて突出するように配置されている。 A first electrode layer (anode), an organic layer including a light emitting layer, or a second electrode layer (cathode) are sequentially laminated on the substrate 1 to form organic EL elements, respectively. External electrode terminals are taken out to the electrode region 4. The external electrodes 4 are arranged on the two sides of the substantially square light emitting region 10 so as to protrude from the light emitting region toward the outer peripheral side.
 第二電極層上には全面に、酸化ケイ素薄膜からなる保護膜が形成されていてもよい。 A protective film made of a silicon oxide thin film may be formed on the entire surface of the second electrode layer.
 この上に本発明においては、シール材として例えば紫外線硬化型アクリル系樹脂(スリーボンド製3042B)を用いてシール材層2を、例えばスクリーン印刷法により、発光領域全面を覆って形成する。図1(a)において2aおよび2bは、シール材層2の周囲部および内部領域を示す。 Further, in the present invention, the sealing material layer 2 is formed so as to cover the entire surface of the light emitting region by, for example, a screen printing method using, for example, an ultraviolet curable acrylic resin (Three Bond 3042B) as the sealing material. In FIG. 1A, 2a and 2b show the peripheral part and internal region of the sealing material layer 2. FIG.
 本発明の一態様においては、形成されたシール材の周囲部2aについて先ずこれを仮硬化させる。仮硬化は、液状シール材を前記の粘度範囲に、例えば、500Pa・sec(25℃)の粘度となるようこれを硬化させる。 In one aspect of the present invention, the peripheral portion 2a of the formed sealing material is first temporarily cured. In the temporary curing, the liquid sealing material is cured in the above-described viscosity range, for example, to have a viscosity of 500 Pa · sec (25 ° C.).
 シール材が前記光硬化型接着剤の場合、例えばマスクMを用いて周囲部にUV光を照射することによって硬化を進行させる。 When the sealing material is the photo-curing adhesive, curing is advanced by irradiating UV light to the peripheral portion using, for example, a mask M.
 前記スリーボンド製3042Bは硬化前の粘度が略40Pa・sec(25℃)であり、仮硬化によって20倍の粘度上昇が起こるよう紫外光の照射を行った。 The three-bond 3042B had a viscosity before curing of approximately 40 Pa · sec (25 ° C.), and was irradiated with ultraviolet light so that a 20-fold increase in viscosity was caused by temporary curing.
 これによりシール材層は外周部において架橋によって粘度が上昇しこれが壁材となるため、貼合時に壁自体が周囲に流れ出したり、また、内部領域の液状シール材2bが壁を越えて周囲に拡散したりするのを防ぐことができる。 As a result, the viscosity of the sealing material layer increases due to cross-linking at the outer peripheral portion, and this becomes a wall material. Therefore, the wall itself flows out to the surroundings at the time of bonding, and the liquid sealing material 2b in the internal region diffuses beyond the walls to the surroundings. Can be prevented.
 図1(b)は断面図により、シール材層の外周部2aに露光マスクMを介して光照射する様子を示した。前記の粘度領域となるよう照射時間乃至強度を調整する。 FIG. 1B is a cross-sectional view showing a state in which the outer peripheral portion 2a of the sealing material layer is irradiated with light through the exposure mask M. The irradiation time or intensity is adjusted so that the above viscosity region is obtained.
 熱硬化性樹脂組成物をシール材として用いた場合には、外周部のシール材のみに熱処理を行う。ヒートブロックまたサーマルヘッド等を用いることが出来る。または、外周部のみにシール材を配置して熱処理したのち、第二シール材を内部領域に配置する方法でもよい。この場合も仮硬化に必要な粘度領域とするよう加熱時間また温度を調整する。 When the thermosetting resin composition is used as a sealing material, heat treatment is performed only on the outer peripheral sealing material. A heat block or a thermal head can be used. Alternatively, the second sealing material may be disposed in the inner region after the sealing material is disposed only on the outer peripheral portion and heat-treated. In this case as well, the heating time and temperature are adjusted so that the viscosity region is necessary for temporary curing.
 次いでこれを同じく厚み200μmのガラス製の基板を封止基板として貼合する。 Next, this is similarly bonded using a glass substrate having a thickness of 200 μm as a sealing substrate.
 図1(c)には、封止基板3を、シール材層2を形成した素子基板1上に重ね貼合する工程を断面図で示す。 FIG. 1 (c) shows a cross-sectional view of a process in which the sealing substrate 3 is laminated and bonded onto the element substrate 1 on which the sealing material layer 2 is formed.
 貼合は、均一な圧力少なくとも0.01MPa~1MPaで基板同士を重ね合わせることで行うことができる。 Bonding can be performed by overlapping the substrates with a uniform pressure of at least 0.01 MPa to 1 MPa.
 密着時、内部領域のシール材は、外周部の仮硬化したシール材が壁材となり、これを越えて周囲に拡散することがない。 At the time of close contact, the seal material in the inner area is the wall material of the temporarily hardened seal material, and it does not diffuse beyond this.
 前記所定の圧力にて、貼合の後(また圧力をかけつつ)、透明な基板、例えば封止基板3側からUV光を照射して、光照射により全面を硬化する(図1(d))。これにより、基板および封止基板また硬化したシール材中に有機EL素子は封止面全面において面接着された密着封止構造を形成する。 After bonding (while applying pressure) at the predetermined pressure, UV light is irradiated from a transparent substrate, for example, the sealing substrate 3 side, and the entire surface is cured by light irradiation (FIG. 1D). ). As a result, the organic EL element forms an adhesive sealing structure in which the entire surface of the sealing surface is bonded to the substrate, the sealing substrate, and the cured sealing material.
 光照射は、貼合面全面においてシール材層が架橋硬化するに充分な照射エネルギーを与えてよい。 The light irradiation may give sufficient irradiation energy for the sealing material layer to be crosslinked and cured over the entire bonding surface.
 本発明においては、貼合工程の実施形態として、前記基板と封止基板の貼合は、真空・減圧環境下で行われることが好ましい。外周部のシール材を仮硬化した後、真空・減圧環境下で貼合を行い、これを大気圧または大気圧より高い圧力環境下においた後、封止面全面についてシール材を例えば光照射により硬化させることが好ましい。 In the present invention, as an embodiment of the bonding step, the bonding of the substrate and the sealing substrate is preferably performed in a vacuum / depressurized environment. After preliminarily curing the outer peripheral sealing material, pasting is performed in a vacuum / depressurized environment, and after placing it in an atmospheric pressure or a pressure environment higher than atmospheric pressure, the sealing material is applied to the entire sealing surface by light irradiation, for example. It is preferable to cure.
 真空・減圧環境下とは0.003Pa~1000Paの範囲であり、好ましいのは1Pa~100Paの範囲である。 The vacuum / depressurized environment is in the range of 0.003 Pa to 1000 Pa, and preferably in the range of 1 Pa to 100 Pa.
 即ち、図1(c)の貼合工程は真空・減圧環境下にて行い、図1(d)の全面硬化による封止工程については大気圧あるいはこれより高い加圧下(0.1MPa~1MPa)で行うことが好ましい。 That is, the bonding process of FIG. 1 (c) is performed in a vacuum / depressurized environment, and the sealing process by the entire surface curing of FIG. 1 (d) is under atmospheric pressure or higher pressure (0.1 MPa to 1 MPa). It is preferable to carry out with.
 本発明に係る、周囲部の仮硬化したシール材料は完全に硬化していないため、基板同士はシール材層2の外周部においても完全に密着するので、減圧下で密着させた後、これを、例えば大気圧下(略0.1MPa)におくことで、大気圧がかかるので、緊密に圧着される。この状態で光照射を全面に行うことでこの状態が維持され硬化されるため高度の密着封止構造を形成することができる。 Since the sealing material which is temporarily cured in the peripheral portion according to the present invention is not completely cured, the substrates are also in close contact with each other even in the outer peripheral portion of the sealing material layer 2. For example, by placing under atmospheric pressure (approximately 0.1 MPa), atmospheric pressure is applied, so that the pressure is tightly bonded. Since this state is maintained and cured by performing light irradiation over the entire surface in this state, a highly close sealing structure can be formed.
 図2に本発明の好ましい実施形態の別の一例を示す。 FIG. 2 shows another example of a preferred embodiment of the present invention.
 図2(a)は、前記同様に複数の有機EL素子が形成されたプラスチック基板を示す。プラスチック基板としては、ここでは、酸化珪素層(厚み100nm)付きPEN(ポリエチレンナフタレート)フィルム(厚み200μm)を用いた。ガスバリア層は図では省略されている。図は、略方形の素子が、樹脂基板上に複数個並列に並んだものを表している。なお、素子は基板1の酸化珪素層上に形成されている。 FIG. 2A shows a plastic substrate on which a plurality of organic EL elements are formed as described above. Here, a PEN (polyethylene naphthalate) film (thickness 200 μm) with a silicon oxide layer (thickness 100 nm) was used as the plastic substrate. The gas barrier layer is omitted in the figure. In the figure, a plurality of substantially square elements are arranged in parallel on a resin substrate. The element is formed on the silicon oxide layer of the substrate 1.
 基板1上には第一電極層(陽極)、発光層を含む有機層又第二電極層(陰極)が順次積層されて有機EL素子をそれぞれ形成しており、それぞれの素子において各電極からは外部電極端子が電極領域4に取り出されている。この電極領域4は略方形状の発光領域10の二辺において、それぞれ発光領域から外周側に向けて突出するように配置されている。 A first electrode layer (anode), an organic layer including a light emitting layer, or a second electrode layer (cathode) are sequentially laminated on the substrate 1 to form organic EL elements, respectively. External electrode terminals are taken out to the electrode region 4. The electrode region 4 is disposed on the two sides of the substantially square light emitting region 10 so as to protrude from the light emitting region toward the outer peripheral side.
 ここにおいても第二電極層上に、全面に、酸化ケイ素薄膜等からなる保護膜が形成されていてもよい。 Also in this case, a protective film made of a silicon oxide thin film or the like may be formed on the entire surface of the second electrode layer.
 この実施形態においては、基板上の発光領域10の外周部にシール材層21を形成し、シール材の仮硬化工程を先ず行う。 In this embodiment, the sealing material layer 21 is formed on the outer periphery of the light emitting region 10 on the substrate, and the temporary curing process of the sealing material is first performed.
 シール材(第一のシール材、前記スリーボンド製3042B)を発光領域の周囲部(外周部)に配置するには、ディスペンサを用いることができる。シール材の外周部への配置は、シール材により封止面の外周が規定されるので、封止面端部形状はここでは方形であって発光面を覆うようディスペンサ等によって正確に発光領域の周囲部(或いは外周部)に配置する。 A dispenser can be used to dispose the sealing material (first sealing material, the above-mentioned ThreeBond 3042B) around the light emitting region (outer periphery). As for the arrangement of the sealing material on the outer periphery, the outer periphery of the sealing surface is defined by the sealing material. Therefore, the shape of the end of the sealing surface is square here, and the light emitting area is accurately defined by a dispenser or the like so as to cover the light emitting surface. It arrange | positions in a circumference part (or outer peripheral part).
 シール材層21を封止面の外周部に配置した後、(UV)照射して仮硬化させる。即ち、50Pa・sec(25℃)以上、好ましくは100Pa・sec(25℃)以上、5000Pa・sec以下の粘度となるようこれを硬化させる。光照射は、シール材層が周囲部のみに配置されているので、均一なUV露光を用いることができる。 After the sealing material layer 21 is disposed on the outer peripheral portion of the sealing surface, it is temporarily cured by irradiation with (UV). That is, it is cured so as to have a viscosity of 50 Pa · sec (25 ° C.) or more, preferably 100 Pa · sec (25 ° C.) or more and 5000 Pa · sec or less. Since the sealing material layer is disposed only in the peripheral portion, the light irradiation can use uniform UV exposure.
 この状態を図2(b)に断面図で示した。 This state is shown in a cross-sectional view in FIG.
 これにより封止面(発光領域)の外周部に半ば硬化した第一のシール材21が、内部領域に配置される液状のシール材の壁材として作用するよう配置された。 The first sealing material 21 semi-cured on the outer peripheral portion of the sealing surface (light emitting region) was thereby arranged to act as a wall material for the liquid sealing material arranged in the inner region.
 次いで、内部領域に第二のシール材22を配置する。第二のシール材は必ずしも第一のシール材と同じものを使う必要はないが、同じものを使用する方が経済的に、また手間の面からも有利であり、同じものを用いる。仮硬化したシール材が内部領域の硬化していない液状のシール材の周囲を囲む形で配置された(図2(a)また(c))。 Next, the second sealing material 22 is disposed in the inner region. The second sealing material does not necessarily need to be the same as the first sealing material, but using the same sealing material is economical and advantageous in terms of labor, and the same one is used. The temporarily cured sealing material was disposed so as to surround the periphery of the uncured liquid sealing material in the inner region (FIGS. 2A and 2C).
 内部領域に配置されたシール材は封止に必要な量を単にその領域に適用すればよく、貼合によって延展されるので、ジェットディスペンサ等により所定の量、滴下配置してやればよい。 The amount of sealing material disposed in the inner region may be simply applied to the region, and it is extended by bonding. Therefore, a predetermined amount may be disposed by a jet dispenser or the like.
 この実施形態においては、次いで、シール材21,22を配置した素子基板について、真空下でこれを封止基板3と貼合する。封止基板3として、具体的には、厚み30μmのアルミ箔(東洋アルミニウム株式会社製)を用いこのマット面に厚さ25μmのポリエチレンテレフタレート(PET)フィルムをドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)PETラミネートアルミ箔を用いた。 In this embodiment, the element substrate on which the sealing materials 21 and 22 are arranged is then bonded to the sealing substrate 3 under vacuum. Specifically, as the sealing substrate 3, an aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) having a thickness of 30 μm is used, and a polyethylene terephthalate (PET) film having a thickness of 25 μm is applied to the mat surface with an adhesive for dry lamination (two-component reaction). PET-laminated aluminum foil was used (adhesive layer thickness 1.5 μm).
 封止基板3のつや面を、シール材21,22の層を形成した基板1上に重ね貼合する。図2(c)は、貼合する工程を断面図で示している。 The glossy surface of the sealing substrate 3 is laminated and bonded onto the substrate 1 on which the layers of the sealing materials 21 and 22 are formed. FIG.2 (c) has shown the process to bond by sectional drawing.
 貼合する工程においては、それぞれの基板を、前記接着剤中に含まれる揮発成分を放出させるべく、まず、減圧装置内に真空・減圧環境下において設置する工程を含むことが好ましい。また、減圧装置内に所定時間放置する工程をさらに含んでもよい。 In the bonding step, it is preferable to first include a step of placing each substrate in a vacuum / depressurized environment in a decompression device in order to release the volatile components contained in the adhesive. Further, the method may further include a step of leaving in the decompression device for a predetermined time.
 いずれにしても減圧装置内において、基板同士を、軽く押圧をかけることで密着させる。これにより封止面外周部の仮硬化したシール材により基板1と封止基板3は密着する(図2(d))。 In any case, the substrates are brought into close contact with each other in the decompression device by lightly pressing them. As a result, the substrate 1 and the sealing substrate 3 are brought into close contact with the temporarily cured sealing material on the outer peripheral portion of the sealing surface (FIG. 2D).
 貼合は、真空装置下、ここでは、例えば10Paの減圧条件下、軽く押圧(略0.01MPa)をかけ基板同士を重ね合わせる。 Bonding is performed by pressing lightly (substantially 0.01 MPa) under a vacuum apparatus, for example, under a reduced pressure condition of 10 Pa.
 基板と封止基板の密着・貼合を真空・減圧環境下で行ったのち、減圧装置内の減圧を解除して、これを、大気圧環境下に戻す。また大気圧以上0.1MPa~0.5MPaの高い加圧環境下に戻してもよい。 After the adhesion and bonding of the substrate and the sealing substrate are performed in a vacuum / depressurized environment, the depressurization in the depressurization apparatus is released and this is returned to the atmospheric pressure environment. Alternatively, the pressure may be returned to a high pressure environment from atmospheric pressure to 0.1 MPa to 0.5 MPa.
 大気圧環境下に戻すと、周囲部に配置された仮硬化したシール材層21により内部は気密に保たれているので、大気圧で押圧され、内部に配置されたシール材が壁材となる周囲部のシール材まで延展され内部は完全にシール材で均一に満たされる。 When returned to the atmospheric pressure environment, the inside is kept airtight by the temporarily hardened sealing material layer 21 disposed in the peripheral portion, so that the sealing material disposed inside is pressed by the atmospheric pressure and becomes the wall material. It is extended to the surrounding sealing material, and the inside is completely filled with the sealing material.
 UV硬化樹脂のとき、封止面全面あるいは基板全面に紫外線を照射することで、外周部のシール材の硬化も更に進行し、シール材全体が光硬化して基板同士が完全に面接着して密着封止構造を構成する(図2(e))。 In the case of UV curable resin, by irradiating the entire sealing surface or the entire surface of the substrate with ultraviolet light, the curing of the sealing material on the outer peripheral portion further progresses, and the entire sealing material is photocured and the substrates are completely surface-bonded. An adhesion sealing structure is formed (FIG. 2E).
 なお、上記の実施形態においては、外周部へのシール材の配置、外周部のシール材の仮硬化、内部領域へのシール材の配置(滴下)の順で固体封止の説明を行っているが、封止面外周部へのシール材の配置とこの仮硬化、および内部領域へのシール材の配置とは、前記の順序で行う必要はない。 In the above embodiment, the solid sealing is described in the order of the arrangement of the sealing material on the outer peripheral portion, the temporary curing of the sealing material on the outer peripheral portion, and the arrangement (dropping) of the sealing material on the inner region. However, it is not necessary to perform the arrangement of the sealing material on the outer peripheral portion of the sealing surface, the temporary curing, and the arrangement of the sealing material in the inner region in the order described above.
 基板がプラスチックフィルム等の場合、可撓性であるため、ハンドリングの際に、周囲に仮硬化により壁材を形成し、液状のシール材の濡れ広がりを押さえることは剛性基板に比べ特に有効である。 When the substrate is a plastic film or the like, since it is flexible, it is particularly effective compared to a rigid substrate to form a wall material by temporary curing around the substrate and suppress the wet spread of the liquid sealing material during handling. .
 図3においては、同じく、酸化珪素層(厚み100nm)付きPEN(ポリエチレンナフタレート)フィルム(厚み200μm)上に形成された素子において、内部領域へのシール材の配置と封止面外周部へのシール材の配置を同時に行っている実施形態を示す。この場合、外周部のシール材のみ、露光マスク等の手段を用いて硬化させる。 In FIG. 3, similarly, in an element formed on a PEN (polyethylene naphthalate) film (thickness 200 μm) with a silicon oxide layer (thickness 100 nm), the arrangement of the sealing material in the inner region and the outer periphery of the sealing surface The embodiment which has performed arrangement | positioning of the sealing material simultaneously is shown. In this case, only the outer peripheral sealant is cured using means such as an exposure mask.
 図3(a)において、ディスペンサで有機EL素子層101が形成された基板上1にシール材2を内部領域にまた外周部に配置したところを断面図で示す。外周部のシール材を21、内部領域のシール材を22で示す。図3(b)では外周部のシール材21のみをUV照射で硬化する。 3A is a cross-sectional view showing a state in which the sealing material 2 is arranged in the inner region and in the outer peripheral portion on the substrate 1 on which the organic EL element layer 101 is formed with a dispenser. A sealing material 21 is shown at the outer periphery, and a sealing material 22 is shown at the inner region. In FIG. 3B, only the sealing material 21 at the outer peripheral portion is cured by UV irradiation.
 次いで、前記同様に、封止基板3(前記PETラミネートアルミ箔)、またシール材を配置した基板1を真空装置102中に配置する(図3(c))。 Next, similarly to the above, the sealing substrate 3 (the PET laminate aluminum foil) and the substrate 1 on which the sealing material is disposed are disposed in the vacuum device 102 (FIG. 3C).
 更に真空・減圧下において貼合(図3(d))、大気圧下においてUV光を封止面全面に照射してシール材を充分に硬化させる。 Further, bonding is performed under vacuum and reduced pressure (FIG. 3 (d)), and the entire sealing surface is irradiated with UV light under atmospheric pressure to sufficiently cure the sealing material.
 複数の有機EL素子が形成された基板の場合には、素子を封止して有機ELパネルを製造後、パネルからそれぞれの素子を、カッター等によって、断裁、個々の素子を取り出せばよい。 In the case of a substrate on which a plurality of organic EL elements are formed, after the elements are sealed to produce an organic EL panel, each element is cut from the panel with a cutter or the like, and individual elements are taken out.
 個々の有機EL素子電極領域に駆動回路を実装することで有機ELパネルが得られる。 An organic EL panel can be obtained by mounting a drive circuit on each organic EL element electrode region.
 素子基板は、アクティブマトリクス基板であってもよいし、パッシブマトリクス基板であってもよい。 The element substrate may be an active matrix substrate or a passive matrix substrate.
 素子が形成される基板としては、ガラス基板および透明性樹脂基板(フィルム)がある。透明性樹脂基板(フィルム)としては、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。 The substrate on which the element is formed includes a glass substrate and a transparent resin substrate (film). Transparent resin substrates (films) include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, poly Ether ether ketone, polysulfone, polyether sulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotri Fluoroethylene, polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene And the like.
 中でも、封止面外周部のシール材を仮硬化させシール材の広がりを抑える本発明は特に、ポリエチレンテレフタレート、ポリエチレンナフタレート等の樹脂基板に適用したとき好ましい。 In particular, the present invention that preliminarily cures the sealing material on the outer peripheral portion of the sealing surface and suppresses the spread of the sealing material is preferable when applied to a resin substrate such as polyethylene terephthalate and polyethylene naphthalate.
 また、特に樹脂フィルム中、ガスバリア性が高いバリアフィルムを用いることもできる。バリアフィルムとしては、金属の酸化膜、例えば、酸化窒化膜、窒化膜、金属薄膜等、厚み50nm以上50μm以下の封止機能を有するガスバリア膜を有するフィルム。具体的にはアルミナ蒸着フィルム等が好ましい。 Also, a barrier film having a high gas barrier property can be used in the resin film. As the barrier film, a film having a gas barrier film having a sealing function of a thickness of 50 nm to 50 μm, such as a metal oxide film, for example, an oxynitride film, a nitride film, or a metal thin film. Specifically, an alumina vapor deposition film or the like is preferable.
 封止基板30としては、可視光領域の透過率が高く、かつ、耐透湿性の高い材質により構成されるのが好ましく、例えば、ガラス、カラーフィルター付きガラス、CCM(色変換機能)付きガラスなど、また、上記透明性樹脂基板(フィルム)、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等の樹脂基板、樹脂フィルム、中でも素子基板同様に、透湿性が低いガスバリアフィルム、例えば酸化ケイ素、窒化ケイ素等の水蒸気透過率の低いガスバリア膜を形成した樹脂フィルム等が好ましい。また、封止基板としては光透過性のない金属箔等を用いることが出来る。 The sealing substrate 30 is preferably made of a material having high transmittance in the visible light region and high moisture resistance. For example, glass, glass with a color filter, glass with CCM (color conversion function), etc. In addition, the transparent resin substrate (film), for example, a resin substrate such as polyethylene terephthalate or polyethylene naphthalate, a resin film, particularly a gas barrier film having a low moisture permeability, such as a water vapor such as silicon oxide or silicon nitride. A resin film or the like on which a gas barrier film having a low transmittance is formed is preferable. As the sealing substrate, a metal foil or the like that does not transmit light can be used.
 封止基板として用いられる金属箔としては、金属の種類に特に限定はなく、厚みが9~500μmの、例えば銅(Cu)箔、アルミニウム(Al)箔、金(Au)箔、黄銅箔、ニッケル(Ni)箔、チタン(Ti)箔、銅合金箔、ステンレス箔、スズ(Sn)箔、高ニッケル合金箔等が挙げられる。これらの各種の金属箔の中で特に好ましい金属箔としてはAl箔が挙げられる。厚み30~50μm程度のアルミ箔が特に好ましい。また、これらの金属箔はPET等のポリマーフィルムでラミネートし用いてもよい。 The metal foil used as the sealing substrate is not particularly limited in the type of metal. For example, copper (Cu) foil, aluminum (Al) foil, gold (Au) foil, brass foil, nickel having a thickness of 9 to 500 μm. (Ni) foil, titanium (Ti) foil, copper alloy foil, stainless steel foil, tin (Sn) foil, high nickel alloy foil, and the like. Among these various metal foils, a particularly preferred metal foil is an Al foil. An aluminum foil having a thickness of about 30 to 50 μm is particularly preferable. These metal foils may be laminated with a polymer film such as PET.
 本発明に用いるシール材としては、上記においてUV硬化性樹脂(光硬化型接着剤)による例を示したが、紫外線硬化型のほか、可視光硬化型、熱硬化型、紫外線および熱による複合硬化型、または紫外線を用いる後硬化型の樹脂等を用いることができる。 As the sealing material used in the present invention, an example using a UV curable resin (photo-curing adhesive) is shown above. However, in addition to an ultraviolet curing type, a visible light curing type, a thermosetting type, and a composite curing by ultraviolet rays and heat. A mold or a post-curing resin using ultraviolet rays can be used.
 具体的には、シール材には、ユレア樹脂系、メラミン樹脂系、フェノール樹脂系、レゾルシノール樹脂系、エポキシ樹脂系、不飽和ポリエステル樹脂系、ポリウレタン樹脂系またはアクリル樹脂系等の熱硬化性樹脂系の樹脂、エステルアクリレート、ウレタンアクリレート、エポキシアクリレート、メラミンアクリレート、アクリル樹脂アクリレート等の各種アクリレートまたはウレタンポリエステル等の樹脂を用いたラジカル系光硬化型接着剤、エポキシ、ビニルエーテル等の樹脂を用いたカチオン系光硬化型接着剤等が用いられる。 Specifically, the sealing material is a thermosetting resin such as a urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, unsaturated polyester resin, polyurethane resin or acrylic resin. Resins, ester acrylates, urethane acrylates, epoxy acrylates, melamine acrylates, acrylates such as acrylic resin acrylates, radical photocuring adhesives using resins such as urethane polyesters, and cationic systems using resins such as epoxies and vinyl ethers A photo-curing adhesive or the like is used.
 これらのシール材は、粘度が、0.05Pa・sec~50Pa・secであるものが好ましい。接着剤が基板表面に万遍なく広がり、基板を貼り合わせるときに基板間に発生する微小空間の数を低減することができる。これにより、接着剤を短時間で均一に塗布することができるので、一般に滴下法などが用いられるが、本実施の形態の有機ELパネルの場合、シール材は、封止基板または(保護膜が設けられた)素子基板の表面に塗布されるので、スクリーン印刷により直接塗布してもよい。 These sealing materials preferably have a viscosity of 0.05 Pa · sec to 50 Pa · sec. The adhesive spreads uniformly on the substrate surface, and the number of minute spaces generated between the substrates when the substrates are bonded can be reduced. Thereby, since the adhesive can be uniformly applied in a short time, a dropping method or the like is generally used. However, in the case of the organic EL panel of the present embodiment, the sealing material is a sealing substrate or (a protective film is used). Since it is applied to the surface of the element substrate (provided), it may be applied directly by screen printing.
 例えば、表示領域には、スクリーン印刷によりシール材を塗布してもよく、外周部には、ディスペンサによりシール材を塗布することが好ましい。 For example, a sealing material may be applied to the display area by screen printing, and a sealing material is preferably applied to the outer peripheral portion by a dispenser.
 また、シール材には、フィラーを添加してもよく、フィラーとして、例えば、SiOx、SiON、SiNなどの無機材料や、Ag、Ni、Alなどの金属材料を用いてもよいが、これに限定されるものではない。硬化方法としては、UV硬化型、可視光硬化型、UV+熱硬化型、熱硬化型、後硬化型UV接着剤などであってもよい。 In addition, a filler may be added to the sealing material. As the filler, for example, an inorganic material such as SiOx, SiON, or SiN, or a metal material such as Ag, Ni, or Al may be used, but the present invention is not limited thereto. Is not to be done. The curing method may be UV curing type, visible light curing type, UV + thermosetting type, thermosetting type, post-curing type UV adhesive, or the like.
 次に有機EL素子について説明する。 Next, the organic EL element will be described.
 有機EL素子は、電極間に単数または複数の有機層を積層した構造であり、例えば、陽極/正孔注入・輸送層/発光層/電子注入・輸送層/陰極等、最も単純な例としては、陽極/発光層/陰極からなる構造であり、各有機機能層を構成する有機材料について、説明する。 An organic EL element has a structure in which one or a plurality of organic layers are laminated between electrodes. For example, the simplest example of anode / hole injection / transport layer / light emitting layer / electron injection / transport layer / cathode, etc. An organic material having a structure composed of an anode / a light emitting layer / a cathode and constituting each organic functional layer will be described.
 正孔注入・輸送層に用いられる有機材料としては、フタロシアニン誘導体、ヘテロ環アゾール類、芳香族三級アミン類、ポリビニルカルバゾール、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT:PSS)などに代表される導電性高分子等の材料が用いられる。 Organic materials used for the hole injection / transport layer are typified by phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polyvinyl carbazole, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), and the like. A material such as a conductive polymer is used.
 また、発光層に用いられる、例えば、4,4’-ジカルバゾリルビフェニル、1,3-ジカルバゾリルベンゼン等のカルバゾール系発光材料、(ジ)アザカルバゾール類、1,3,5-トリピレニルベンゼンなどのピレン系発光材料に代表される低分子発光材料、ポリフェニレンビニレン類、ポリフルオレン類、ポリビニルカルバゾール類などに代表される高分子発光材料などが挙げられる。これらのうちで、発光材料として好ましいものは分子量10000以下の低分子系発光材料が用いられ本発明の成膜材料として用いることができる。 Further, for example, carbazole-based luminescent materials such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbenzene, (di) azacarbazoles, 1,3,5- Examples thereof include low-molecular light-emitting materials typified by pyrene-based light-emitting materials such as tripyrenylbenzene, polymer light-emitting materials typified by polyphenylene vinylenes, polyfluorenes, polyvinyl carbazoles, and the like. Among these, a low molecular weight light emitting material having a molecular weight of 10,000 or less is preferably used as the light emitting material, and can be used as the film forming material of the present invention.
 また発光層中、発光材料には、好ましくは0.1~20質量%程度のドーパントが含まれてもよく、ドーパントとしては、ペリレン誘導体、ピレン誘導体等公知の蛍光色素、また、りん光色素、例えば、トリス(2-フェニルピリジン)イリジウム、ビス(2-フェニルピリジン)(アセチルアセトナート)イリジウム、ビス(2,4-ジフルオロフェニルピリジン)(ピコリナート)イリジウム、などに代表されるオルトメタル化イリジウム錯体等の錯体化合物がある。 In the light emitting layer, the light emitting material may preferably contain about 0.1 to 20% by mass of a dopant. Examples of the dopant include known fluorescent dyes such as perylene derivatives and pyrene derivatives, phosphorescent dyes, For example, orthometalated iridium complexes represented by tris (2-phenylpyridine) iridium, bis (2-phenylpyridine) (acetylacetonato) iridium, bis (2,4-difluorophenylpyridine) (picolinato) iridium, etc. And complex compounds.
 電子注入・輸送層材料としては、8-ヒドロキシキノリナートリチウム、ビス(8-ヒドロキシキノリナート)亜鉛等の金属錯体化合物もしくは以下に挙げられる含窒素五員環誘導体がある。即ち、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5-ビス(1-フェニル)-1,3,4-オキサゾール、2,5-ビス(1-フェニル)-1,3,4-チアゾール、2,5-ビス(1-フェニル)-1,3,4-オキサジアゾール、2-(4’-tert-ブチルフェニル)-5-(4”-ビフェニル)1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、1,4-ビス[2-(5-フェニルオキサジアゾリル)]ベンゼン、1,4-ビス[2-(5-フェニルオキサジアゾリル)-4-tert-ブチルベンゼン]、2-(4’-tert-ブチルフェニル)-5-(4”-ビフェニル)-1,3,4-チアジアゾール、2,5-ビス(1-ナフチル)-1,3,4-チアジアゾール、1,4-ビス[2-(5-フェニルチアジアゾリル)]ベンゼン、2-(4’-tert-ブチルフェニル)-5-(4”-ビフェニル)-1,3,4-トリアゾール、2,5-ビス(1-ナフチル)-1,3,4-トリアゾール、1,4-ビス[2-(5-フェニルトリアゾリル)]ベンゼン等が挙げられる。 Examples of the electron injection / transport layer material include metal complex compounds such as 8-hydroxyquinolinate lithium and bis (8-hydroxyquinolinate) zinc, and the following nitrogen-containing five-membered ring derivatives. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred. Specifically, 2,5-bis (1-phenyl) -1,3,4-oxazole, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5-bis (1 -Phenyl) -1,3,4-oxadiazole, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) 1,3,4-oxadiazole, 2,5-bis ( 1-naphthyl) -1,3,4-oxadiazole, 1,4-bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyloxadiazolyl) -4-tert-butylbenzene], 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-thiadiazole, 2,5-bis (1-naphthyl) -1 , 3,4-thiadiazole, 1,4-bis [2- (5-phenyl) Asiazolyl)] benzene, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-triazole, 2,5-bis (1-naphthyl) -1,3,4 -Triazole, 1,4-bis [2- (5-phenyltriazolyl)] benzene and the like.
 これらの有機層の形成は限定されず、蒸着、また溶解する溶媒を用い塗布等の方法を用いて成膜することが可能である。 The formation of these organic layers is not limited, and it is possible to form a film using a method such as vapor deposition or coating using a dissolving solvent.
 また、陽極に使用される導電性材料としては、4eVより大きな仕事関数をもつものが適しており、銀、金、白金、パラジウム等及びそれらの合金、酸化スズ、酸化インジウム、ITO等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。 In addition, as the conductive material used for the anode, those having a work function larger than 4 eV are suitable, and silver, gold, platinum, palladium and the like and alloys thereof, tin oxide, indium oxide, ITO and other metal oxides. Furthermore, organic conductive resins such as polythiophene and polypyrrole are used.
 また、陰極に使用される導電性物質としては、4eVより小さな仕事関数を持つものが適しており、マグネシウム、アルミニウム等。合金としては、マグネシウム/銀、リチウム/アルミニウム等が代表例として挙げられる。 Also, as the conductive material used for the cathode, those having a work function smaller than 4 eV are suitable, such as magnesium and aluminum. Typical examples of the alloy include magnesium / silver and lithium / aluminum.
 電極形成はスパッタ、蒸着等により、また材料によっては塗布等のウェットプロセスを用いることができる。 Electrode formation can be performed by sputtering, vapor deposition, or a wet process such as coating depending on the material.
 また、本発明の固体封止方法においては、有機EL素子上に膜封止(バリア薄膜)がされていることも好ましく、例えば第二電極上に酸化ケイ素膜等のバリア膜を形成し、この上にシール材を適用して封止を行ってもよい。 In the solid sealing method of the present invention, it is also preferable that film sealing (barrier thin film) is performed on the organic EL element. For example, a barrier film such as a silicon oxide film is formed on the second electrode. You may seal by applying a sealing material on the top.
 素子が形成される基板また封止基板については、前記に説明をした、ガラス基板および透明性樹脂基板(フィルム)がある。 The substrate on which the element is formed or the sealing substrate includes the glass substrate and the transparent resin substrate (film) described above.
 以上、本発明を、幾つかの実施形態をもとに説明した。これらの実施形態は例示であり、それらの各構成要素や各工程、また、その組合せには、いろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on several embodiments. Those embodiments are exemplifications, and it will be understood by those skilled in the art that various modifications can be made to each of the components, steps, and combinations thereof, and such modifications are within the scope of the present invention. It is understood.
 1 基板
 2 シール材
 3 封止基板
 4 電極領域
 10 表示領域
1 Substrate 2 Sealing material 3 Sealing substrate 4 Electrode area 10 Display area

Claims (7)

  1. 少なくとも第一電極層、発光層を含む有機化合物層、第二電極層からなる有機EL素子を形成した基板に、シール材を介して封止基板を貼合し面接着させて密着封止構造を形成する有機ELパネルの製造方法において、
    前記基板および封止基板の少なくとも一方に液状のシール材を配置し、前記基板および封止基板の外周部のシール材のみを50Pa・sec~5000Pa・secの粘度になるよう仮硬化したのち、前記基板と封止基板を貼合して、前記シール材を封止面全面についてさらに硬化させ密着封止構造を形成することを特徴とする有機ELパネルの製造方法。
    At least a first electrode layer, an organic compound layer including a light emitting layer, and a substrate on which an organic EL element composed of a second electrode layer is formed. In the manufacturing method of the organic EL panel to be formed,
    A liquid sealing material is disposed on at least one of the substrate and the sealing substrate, and only the sealing material on the outer peripheral portion of the substrate and the sealing substrate is temporarily cured so as to have a viscosity of 50 Pa · sec to 5000 Pa · sec. A method for producing an organic EL panel, comprising: bonding a substrate and a sealing substrate; and further curing the sealing material over the entire sealing surface to form an adhesion sealing structure.
  2. 前記基板および封止基板の少なくとも一方に液状の第1のシール材を配置する工程、前記第1のシール材と同様の液状の第2のシール材をその外周部に配置する工程、前記外周部に配置された第2のシール材のみを50Pa・sec~5000Pa・secの粘度になるよう硬化する仮硬化工程を含み、該仮硬化工程後に前記基板と封止基板を貼合し、封止面全面についてシール材を硬化させる本硬化工程を有することを特徴とする請求項1に記載の有機ELパネルの製造方法。 A step of disposing a liquid first sealing material on at least one of the substrate and the sealing substrate; a step of disposing a liquid second sealing material similar to the first sealing material on the outer periphery; Including a temporary curing step in which only the second sealing material disposed on the substrate is cured to a viscosity of 50 Pa · sec to 5000 Pa · sec, and the substrate and the sealing substrate are bonded after the temporary curing step, The method for producing an organic EL panel according to claim 1, further comprising a main curing step of curing the sealing material over the entire surface.
  3. 前記基板と封止基板の貼合は真空・減圧環境下で行い、大気圧または大気圧より高い圧力環境下にてシール材を封止面全面について硬化させることを特徴とする請求項1または2に記載の有機ELパネルの製造方法。 3. The bonding of the substrate and the sealing substrate is performed in a vacuum / depressurized environment, and the sealing material is cured on the entire sealing surface under an atmospheric pressure or a pressure environment higher than atmospheric pressure. The manufacturing method of the organic electroluminescent panel of description.
  4. 硬化前の前記シール材の粘度が、0.05Pa・sec~50Pa・secであることを特徴とする請求項1~3のいずれか1項に記載の有機ELパネルの製造方法。 4. The method for producing an organic EL panel according to claim 1, wherein the viscosity of the sealing material before curing is 0.05 Pa · sec to 50 Pa · sec.
  5. 仮硬化したときのシール材粘度は、硬化前の粘度に比べ、10~10000倍であることを特徴とする請求項1~4のいずれか1項に記載の有機ELパネルの製造方法。 The method for producing an organic EL panel according to any one of claims 1 to 4, wherein the viscosity of the sealing material when temporarily cured is 10 to 10,000 times that before curing.
  6. 前記シール材が、熱硬化樹脂またはUV(紫外線)硬化樹脂であることを特徴とする請求項1~5のいずれか1項に記載の有機ELパネルの製造方法。 6. The method for producing an organic EL panel according to claim 1, wherein the sealing material is a thermosetting resin or a UV (ultraviolet) curable resin.
  7. 請求項1~6のいずれか1項に記載の有機ELパネルの製造方法を用いて作製されたことを特徴とする有機ELパネル。 An organic EL panel produced by using the method for producing an organic EL panel according to any one of claims 1 to 6.
PCT/JP2009/061734 2008-07-04 2009-06-26 Organic el panel and process for producing organic el panel WO2010001831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010519047A JPWO2010001831A1 (en) 2008-07-04 2009-06-26 Organic EL panel and method for manufacturing organic EL panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008175478 2008-07-04
JP2008-175478 2008-07-04

Publications (1)

Publication Number Publication Date
WO2010001831A1 true WO2010001831A1 (en) 2010-01-07

Family

ID=41465928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061734 WO2010001831A1 (en) 2008-07-04 2009-06-26 Organic el panel and process for producing organic el panel

Country Status (2)

Country Link
JP (1) JPWO2010001831A1 (en)
WO (1) WO2010001831A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145534A (en) * 2010-01-15 2011-07-28 Hitachi Displays Ltd Display device with front window and method for manufacturing the same
JP2011158851A (en) * 2010-02-04 2011-08-18 Hitachi Displays Ltd Display device and manufacturing method thereof
JP2011249021A (en) * 2010-05-24 2011-12-08 Lumiotec Inc Organic el lighting panel and method of manufacturing organic el lighting panel
JP2012073534A (en) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp Sticking device and sticking method
JP2012073533A (en) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp Sticking device and sticking method
JP2012120960A (en) * 2010-12-07 2012-06-28 Shibaura Mechatronics Corp Adhesive supply device and method therefor
WO2013073067A1 (en) * 2011-11-17 2013-05-23 三菱重工業株式会社 Method for producing organic el panel and device for sealing organic el panel
JP2015032552A (en) * 2013-08-06 2015-02-16 常陽工学株式会社 Sealing device, sealing method and functional material device
JP2015045883A (en) * 2014-11-26 2015-03-12 芝浦メカトロニクス株式会社 Device for manufacturing laminated workpiece and method for manufacturing laminated workpiece
JP2015507546A (en) * 2011-11-22 2015-03-12 トライメック テクノロジー ピーティーイー.リミテッド Laminated product, apparatus and method for forming laminated product
JP2015193004A (en) * 2015-05-19 2015-11-05 芝浦メカトロニクス株式会社 Manufacturing apparatus and manufacturing method of component constituting display device
JP2016153910A (en) * 2016-04-05 2016-08-25 芝浦メカトロニクス株式会社 Manufacturing apparatus of laminated work-piece, and manufacturing method of laminated work-piece
US9966557B2 (en) 2012-11-16 2018-05-08 Konica Minolta, Inc. Translucent electrode, and electronic device
JPWO2021044722A1 (en) * 2019-09-04 2021-03-11
JP2021119576A (en) * 2020-06-29 2021-08-12 株式会社半導体エネルギー研究所 Manufacturing method for light-emitting device including curved light-emitting surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209631A (en) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd Light emitting device, electronic apparatus, and method for manufacturing light emitting device
JP2007035322A (en) * 2005-07-22 2007-02-08 Optrex Corp Manufacturing method of organic led display and organic led display
JP2008059867A (en) * 2006-08-30 2008-03-13 Seiko Epson Corp Organic electroluminescent device, its manufacturing method, and electronic apparatus
JP2008066216A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Organic electroluminescence device, its manufacturing method and electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644050B2 (en) * 2005-02-04 2011-03-02 積水化学工業株式会社 Optical device manufacturing method and optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209631A (en) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd Light emitting device, electronic apparatus, and method for manufacturing light emitting device
JP2007035322A (en) * 2005-07-22 2007-02-08 Optrex Corp Manufacturing method of organic led display and organic led display
JP2008059867A (en) * 2006-08-30 2008-03-13 Seiko Epson Corp Organic electroluminescent device, its manufacturing method, and electronic apparatus
JP2008066216A (en) * 2006-09-11 2008-03-21 Seiko Epson Corp Organic electroluminescence device, its manufacturing method and electronic apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145534A (en) * 2010-01-15 2011-07-28 Hitachi Displays Ltd Display device with front window and method for manufacturing the same
JP2011158851A (en) * 2010-02-04 2011-08-18 Hitachi Displays Ltd Display device and manufacturing method thereof
JP2011249021A (en) * 2010-05-24 2011-12-08 Lumiotec Inc Organic el lighting panel and method of manufacturing organic el lighting panel
JP2012073534A (en) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp Sticking device and sticking method
JP2012073533A (en) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp Sticking device and sticking method
JP2012120960A (en) * 2010-12-07 2012-06-28 Shibaura Mechatronics Corp Adhesive supply device and method therefor
US9661718B2 (en) 2011-11-17 2017-05-23 Mitsubishi Heavy Industries, Ltd. Method for producing organic EL panel and device for sealing organic EL panel
WO2013073067A1 (en) * 2011-11-17 2013-05-23 三菱重工業株式会社 Method for producing organic el panel and device for sealing organic el panel
US20140311668A1 (en) * 2011-11-17 2014-10-23 Yuji Yanagi Method for producing organic el panel and device for sealing organic el panel
CN103947292A (en) * 2011-11-17 2014-07-23 三菱重工业株式会社 Method for producing organic EL panel and device for sealing organic EL panel
TWI500197B (en) * 2011-11-17 2015-09-11 Mitsubishi Heavy Ind Ltd Organic EL panel manufacturing method and organic EL panel sealing device
JP2015507546A (en) * 2011-11-22 2015-03-12 トライメック テクノロジー ピーティーイー.リミテッド Laminated product, apparatus and method for forming laminated product
US9966557B2 (en) 2012-11-16 2018-05-08 Konica Minolta, Inc. Translucent electrode, and electronic device
JP2015032552A (en) * 2013-08-06 2015-02-16 常陽工学株式会社 Sealing device, sealing method and functional material device
JP2015045883A (en) * 2014-11-26 2015-03-12 芝浦メカトロニクス株式会社 Device for manufacturing laminated workpiece and method for manufacturing laminated workpiece
JP2015193004A (en) * 2015-05-19 2015-11-05 芝浦メカトロニクス株式会社 Manufacturing apparatus and manufacturing method of component constituting display device
JP2016153910A (en) * 2016-04-05 2016-08-25 芝浦メカトロニクス株式会社 Manufacturing apparatus of laminated work-piece, and manufacturing method of laminated work-piece
JPWO2021044722A1 (en) * 2019-09-04 2021-03-11
WO2021044722A1 (en) * 2019-09-04 2021-03-11 Nok株式会社 Gasket production method
JP7254192B2 (en) 2019-09-04 2023-04-07 Nok株式会社 Gasket manufacturing method
JP2021119576A (en) * 2020-06-29 2021-08-12 株式会社半導体エネルギー研究所 Manufacturing method for light-emitting device including curved light-emitting surface
JP7018533B2 (en) 2020-06-29 2022-02-10 株式会社半導体エネルギー研究所 Method for manufacturing a light emitting device having a curved light emitting surface

Also Published As

Publication number Publication date
JPWO2010001831A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
WO2010001831A1 (en) Organic el panel and process for producing organic el panel
JP6577069B2 (en) Manufacture of flexible organic electronic devices
JP4699676B2 (en) Encapsulated organic electronic device and manufacturing method thereof
TWI408755B (en) Method for encapsulating environmentally sensitive devices
US6717052B2 (en) Housing structure with multiple sealing layers
TWI423723B (en) Method of manufacturing self-light-emitting panel
JP5837191B2 (en) Encapsulation structure for optoelectronic devices and method for encapsulating optoelectronic devices
JP2010027599A (en) Organic light-emitting display device and method of manufacturing the same
JP2007066775A (en) Manufacturing method of organic el element and organic el element
KR101658822B1 (en) Encapsulation structure for an optoelectronic component and method for encapsulating an optoelectronic component
WO2011114882A1 (en) Organic electroluminescent panel and production method for organic electroluminescent panel
JP2010027596A (en) Organic light-emitting display device and method of manufacturing the same
JP6160107B2 (en) Organic electroluminescence light emitting device, organic EL display device, and organic EL lighting
JP4745181B2 (en) ORGANIC EL LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING ORGANIC EL LIGHT EMITTING DEVICE
WO2006046679A1 (en) Organic electroluminescence display device and method for manufacturing the same
JP5772819B2 (en) Manufacturing method of organic electroluminescence panel and organic electroluminescence panel manufactured by the manufacturing method
JP4736602B2 (en) Organic EL element sealing method and sealing device
JPWO2008023626A1 (en) Organic electroluminescence device and method for producing the same
JP2015135781A (en) Method of manufacturing organic electroluminescent element
JP2010067355A (en) Organic el element panel and method of manufacturing the same
JP2007287613A (en) Organic electroluminescence element and its manufacturing method
KR20140048441A (en) Organic light emitting display device with enhanced light efficiency and manufacturing method thereof
KR101649757B1 (en) Organic electroluminescent device and fabricating method of the same
US20050062414A1 (en) Organic electroluminescence display package and method for packaging the same
JP2008130312A (en) Manufacturing method and encapsulated base board for electroluminescence element panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519047

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773409

Country of ref document: EP

Kind code of ref document: A1