JP4736602B2 - Organic EL element sealing method and sealing device - Google Patents

Organic EL element sealing method and sealing device Download PDF

Info

Publication number
JP4736602B2
JP4736602B2 JP2005219356A JP2005219356A JP4736602B2 JP 4736602 B2 JP4736602 B2 JP 4736602B2 JP 2005219356 A JP2005219356 A JP 2005219356A JP 2005219356 A JP2005219356 A JP 2005219356A JP 4736602 B2 JP4736602 B2 JP 4736602B2
Authority
JP
Japan
Prior art keywords
organic
sealing
holding
adhesive layer
element forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005219356A
Other languages
Japanese (ja)
Other versions
JP2007035514A (en
Inventor
田中琢之
矢口孝
鈴木直彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005219356A priority Critical patent/JP4736602B2/en
Publication of JP2007035514A publication Critical patent/JP2007035514A/en
Application granted granted Critical
Publication of JP4736602B2 publication Critical patent/JP4736602B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、板状の第1の基材の一面側に有機EL素子を形成した有機EL素子形成部材の、有機EL素子形成面側に、一面全面もしくは有機EL素子形成領域周辺に配したシール材としての接着部を介して、板状の第2の基材を接着配設し、有機EL素子を大気から隔離する封止方法と封止装置に関する。   The present invention relates to an organic EL element forming member in which an organic EL element is formed on one surface side of a plate-like first base material, on the entire surface of the organic EL element forming surface or around the organic EL element forming region. The present invention relates to a sealing method and a sealing device in which a plate-like second base material is bonded and disposed through an adhesive portion as a material to isolate an organic EL element from the atmosphere.

近年、平面表示装置( 以下、フラットディスプレイとも言う) が多くの分野、場所で使われており、情報化が進む中で、ますます、その重要性が高まっている。
現在、フラットディスプレイの代表と言えば液晶ディスプレイ(以下、LCDとも言う)であるが、LCDとは異なる表示原理に基づくフラットディスプレイとして、有機EL、無機EL、プラズマディスプレイパネル(以下、PDPとも言う)、ライトエミッティングダイオード表示装置(以下、LEDとも言う)、蛍光表示管表示装置(以下、VFDとも言う)、フィールドェミッションディスプレイ(以下、FEDとも言う)などの開発も活発に行われている。
これらの新しいフラットディスプレイはいずれも自発光型と呼ばれるもので、LCDとは次の点で大きく異なり、LCDには無い優れた特徴を有している。
LCDは、受光型と呼ばれ、液晶は自身では発光することはなく、外光を透過、遮断する、いわゆるシャッターとして動作し、表示装置を構成する。
このため光源を必要とし、ー般に、バックライトが必要である。
これに対して自発光型は、装置自身が発光するため別光源が不要である。
LCDのような受光型では表示情報の様態に拘わらず常にバックライトが点灯し、全表示状態とほぼ変わらない電力を消費することになる。
これに対して自発光型は、表示情報に応じて点灯する必要のある箇所だけが電力を消費するだけなので、受光型表示装置に比較して電力消費が少ないという利点が原理的にある。
LCDでは、バックライト光源の光を遮光して暗状態を得るため、少量であっても光漏れを完全に無くすことは困難であるのに対して、自発光型では発光しない状態がまさに暗状態であるので理想的な暗状態を容易に得ることができコントラストにおいても自発光型が圧倒的に優位である。
また、LCDは液晶の複屈折による偏光制御を利用しているため、観察する方向によって大きく表示状態が変わるいわゆる視野角依存性が強いが、自発光型ではこの問題がほとんど無い。
さらに、LCDは有機弾性物質である液晶の誘電異方性に由来する配向変化を利用するため、原理的に電気信号に対する応答時間が1msec以上である。
これに対して、開発が進められている上記の技術では電子、正孔といったいわゆるキャリア遷移、電子放出、プラズマ放電などを利用しているため、応答時間はnsec桁であり、液晶とは比較にならないほど高速であり、LCDの応答の遅さに由来する動画残像の問題が無い。
In recent years, flat display devices (hereinafter also referred to as flat displays) have been used in many fields and places, and their importance has been increasing as information technology advances.
Currently, a typical flat display is a liquid crystal display (hereinafter also referred to as LCD), but organic EL, inorganic EL, and plasma display panels (hereinafter also referred to as PDP) are flat displays based on a display principle different from LCD. A light emitting diode display device (hereinafter also referred to as LED), a fluorescent display tube display device (hereinafter also referred to as VFD), a field emission display (hereinafter also referred to as FED), and the like are being actively developed.
Each of these new flat displays is called a self-luminous type, and differs greatly from the LCD in the following points, and has an excellent feature that the LCD does not have.
The LCD is called a light-receiving type, and the liquid crystal does not emit light by itself, but operates as a so-called shutter that transmits and blocks external light, and constitutes a display device.
For this reason, a light source is required, and generally a backlight is required.
In contrast, the self-luminous type does not require a separate light source because the device itself emits light.
In a light receiving type such as an LCD, the backlight is always lit regardless of the state of display information, and power that is almost the same as that in the full display state is consumed.
On the other hand, the self-luminous type has an advantage that the power consumption is lower than that of the light receiving type display device because only the portion that needs to be lit according to the display information consumes power.
In LCD, the light from the backlight source is shielded to obtain a dark state, so even if it is a small amount, it is difficult to completely eliminate light leakage. Therefore, an ideal dark state can be easily obtained, and the self-luminous type is overwhelmingly superior in contrast.
Further, since the LCD uses polarization control based on the birefringence of the liquid crystal, the so-called viewing angle dependency that the display state largely changes depending on the viewing direction is strong, but the self-luminous type has almost no problem.
Furthermore, since the LCD uses an orientation change derived from the dielectric anisotropy of liquid crystal, which is an organic elastic material, in principle, the response time to an electric signal is 1 msec or more.
On the other hand, the above-described technology, which is under development, uses so-called carrier transitions such as electrons and holes, electron emission, plasma discharge, etc., so the response time is on the order of nsec. It is so fast that there is no problem of afterimages due to the slow response of the LCD.

これらの中でも、特に、有機ELの研究が活発である。
有機ELはOEL(Organic EL)または有機ライトエミッティングダイオード(OLED;Organic Light Emitting Diode)とも呼ばれている。
OEL素子、OELD素子は、陽極と陰極の一対の電極間に有機化合物を含む(EL層)を挟持した構造となっており、Tang等の「アノード電極/ 正孔注入層/ 発光層/ カソード電極」の積層構造が基本になっている。(特許1526026号公報)
また、Tang等が低分子材料を用いているの対して、中野らは、高分子材料を用いている。(特開平3−273087号公報)
また、正孔注入層や電子注入層を用いて効率を向上させたり、発光層に蛍光色素等をドーブして発光色を制御することも行われている。
尚、ここでは、画素電極と対向電極が陽極、陰極のいずれかに相当し、ー対の電極を構成する。
そして、ー対の電極間に設けられる全ての層を、総称して、EL層と呼び、上記の正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層がこれに含まれる。
特許1526026号公報 特開平3−273087号公報
Among these, research on organic EL is particularly active.
The organic EL is also referred to as OEL (Organic EL) or organic light emitting diode (OLED).
The OEL element and the OELD element have a structure in which an organic compound (EL layer) is sandwiched between a pair of electrodes of an anode and a cathode, such as Tang et al., “Anode electrode / hole injection layer / light emitting layer / cathode electrode”. "Is a basic structure. (Patent No. 1526026)
In addition, Tang et al. Uses a low molecular weight material, whereas Nakano et al. Uses a high molecular weight material. (Japanese Patent Laid-Open No. 3-273087)
In addition, the efficiency is improved by using a hole injection layer or an electron injection layer, or the emission color is controlled by doping a light emitting layer with a fluorescent dye or the like.
Here, the pixel electrode and the counter electrode correspond to either an anode or a cathode, and constitute a pair of electrodes.
All layers provided between the pair of electrodes are collectively called an EL layer, and include the hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer described above. It is.
Japanese Patent No. 1526026 JP-A-3-230787

図4に有機EL素子の断面構造を示す。
有機ELは、電極間に電場を印加し、EL層に電流を通じることで、発光するが、従来はー重頃励起状態から基底状態に戻る際の蛍光発光のみを利用していたが、最近の研究により、三重項励起状態から基底状態に戻る際の燐光発光を有効に利用することができるようになり、効率が向上している。
通常、ガラス基板やプラスチック基板といった透光性の支持基板(基板2)にー方の電極3を形成してから、発光層(有機EL層とも言う)4、対向電極5の順に形成して製造される。
一般には陽極がITOなどの透光性電極、陰極が金属で構成され非透光性電極であることが多い。
なお、図4では図示しないが、有機EL素子は水分や酸素による特性劣化が著しいため、ー般には、素子が水分や酸素に触れない様に不活性ガスを充満した上で、別基板を用いたり、薄膜蒸着によりいわゆる封止を行ない信頼性を確保している。
FIG. 4 shows a cross-sectional structure of the organic EL element.
Organic EL emits light by applying an electric field between the electrodes and passing an electric current through the EL layer. Conventionally, it used only fluorescence emission when returning from the excited state to the ground state. As a result, the phosphorescence emission upon returning from the triplet excited state to the ground state can be used effectively, and the efficiency is improved.
Usually, after forming the opposite electrode 3 on a translucent support substrate (substrate 2) such as a glass substrate or a plastic substrate, a light emitting layer (also referred to as an organic EL layer) 4 and a counter electrode 5 are formed in this order. Is done.
In general, the anode is often a translucent electrode such as ITO, and the cathode is often made of a metal and is a non-translucent electrode.
Although not shown in FIG. 4, the organic EL element is significantly deteriorated in characteristics due to moisture and oxygen. Therefore, in general, after filling the substrate with an inert gas so that the element does not touch moisture or oxygen, a separate substrate is formed. Used or sealed by thin film deposition to ensure reliability.

EL層の形成方法としては、低分子材料ではー般に真空蒸着法が用いられ、高分子材料では溶液化して、スピンコートや印刷法、転写法が用いられる。
表示装置として微細画素を形成する場合には、低分子材料ではマスク蒸着法が用いられ、高分子材料ではインクジェット法や印刷法、転写法などが用いられる。
近年では塗付可能な低分子材料も報告されている。
As a method for forming the EL layer, a vacuum deposition method is generally used for a low molecular material, and a solution is used for a polymer material, and a spin coating, a printing method, or a transfer method is used.
When forming a fine pixel as a display device, a mask vapor deposition method is used for a low molecular material, and an inkjet method, a printing method, a transfer method, or the like is used for a high molecular material.
In recent years, low molecular weight materials that can be applied have also been reported.

このような有機EL素子は、その寿命問題を克服する為に、できるだけ酸素や水分が少ない環境にて封止され、その後の大気環境下においても、外気との遮断を封止機能にて継続できることが必要である。
従来、封止方法として、不活性ガス充満環境下において、有機EL素子を配置した基板と背面基板との外周を封止用の接着剤にて接着する方法が採られている。
しかし、この封止方法は、不活性ガス充満環境下で行うが、微量の酸素や水分の混入は避けられないという欠点があり、また、封止用の接着の際、シーリング部に不活性ガスを噛み込んだ部位は後に外気と導通となる可能性が残り、大気中で充分な封止効果があげられない問題があった。
Such an organic EL device is sealed in an environment with as little oxygen and moisture as possible in order to overcome its lifetime problem, and can continue to be shut off from the outside air by a sealing function even in the subsequent atmospheric environment. is required.
Conventionally, as a sealing method, a method of adhering the outer periphery of a substrate on which an organic EL element is arranged and a back substrate with an adhesive for sealing in an inert gas-filled environment has been adopted.
However, this sealing method is performed in an inert gas-filled environment, but there is a disadvantage that a minute amount of oxygen or moisture is unavoidable, and an inert gas is present in the sealing portion during sealing adhesion. There is a possibility that the portion where the air is bitten is connected to the outside air, and there is a problem that a sufficient sealing effect cannot be achieved in the atmosphere.

上記のように、近年、フラットディスプレイとして自発光型の有機EL素子が注目され、開発されているが、従来の、不活性ガス充満環境下において、有機EL素子を配置した基板と背面基板との外周を封止用の接着剤にて接着する封止方法では、有機EL素子への微量の酸素や水分の混入は避けられないという欠点があり、また、封止用の接着の際、シーリング部に不活性ガスを噛み込んだ部位は後に外気と導通となる可能性が残り、大気中で充分な封止効果があげられない問題があった。
本発明はこれらに対応するもので、従来の封止方法における有機EL素子への微量の酸素や水分の混入の問題や、封止用の接着の際、シーリング部に不活性ガスを噛み込んだ部位は後に外気と導通となる可能性が残り、大気中で充分な封止効果があげられない問題を解決できる、有機EL素子の封止方法と有機EL素子の封止装置を提供しようとするものである。
As described above, in recent years, a self-luminous organic EL element has attracted attention and has been developed as a flat display. However, in a conventional inert gas-filled environment, the substrate and the back substrate on which the organic EL element is arranged are arranged. In the sealing method in which the outer periphery is bonded with an adhesive for sealing, there is a disadvantage that a minute amount of oxygen or moisture is unavoidably mixed into the organic EL element. There is a possibility that the portion where the inert gas is bitten is connected to the outside air, and a sufficient sealing effect cannot be achieved in the atmosphere.
The present invention corresponds to these, and there is a problem of mixing a small amount of oxygen and moisture into the organic EL element in the conventional sealing method, and an inert gas is caught in the sealing part at the time of bonding for sealing. An attempt to provide an organic EL element sealing method and an organic EL element sealing device that can solve the problem that the part may later become a continuity with the outside air and cannot provide a sufficient sealing effect in the atmosphere. Is.

本発明の有機EL素子の封止方法は、板状の第1の基材の一面側に有機EL素子を形成した有機EL素子形成部材の、有機EL素子形成面側に、一面全面もしくは有機EL素子形成領域周辺に配したシール材としての接着部を介して、板状の第2の基材を接着配設し、有機EL素子を大気から隔離する封止方法であって、前記有機EL素子形成部材と、シール材用としての封止用接着剤層を第2の基板の一面の全面もしくは有機EL素子形成領域周辺に対応する領域に配した接着剤層配設部材とを、不活性ガスが充満した不活性ガス室内に配されたチャンバー中において、離れた状態で配し、前記不活性ガス雰囲気の圧を減圧した状態で、有機EL素子側、封止用接着剤側を互いに向かい合わせ、前記有機EL素子形成部材と接着剤層配設部材とを平行にして重ね合わせ、更に両部材を積層加圧し、且つ、加熱して、封止することを特徴とするものである。
そしてまた、上記いずれか1項に記載の有機EL素子の封止方法であって、前記有機EL素子形成部材と接着剤層配設部材との両方を、10Pa〜10、000Paにて積層加圧することを特徴とするものである。
また、上記いずれかの有機EL素子の封止方法であって、前記有機EL素子形成部材と接着剤層配設部材の少なくとも一方の保持を、静電保持方式にて行うことを特徴とするものである。
また、上記いずれかの有機EL素子の封止方法であって、前記封止用接着剤層は、熱硬化性の接着剤からなり、前記加熱により硬化させることを特徴とするものであり、前記有機EL素子形成部材と接着剤層配設部材の少なくとも一方の保持を、静電方式にて行うもので、50℃〜100℃にて前記加熱を行うことを特徴とするものである。
また、上記いずれかの有機EL素子の封止方法であって、第1の基材、第2の基材が、ガラス基板あるいは樹脂フィルムであることを特徴とするものである。
In the organic EL element sealing method of the present invention, an organic EL element forming member in which an organic EL element is formed on one surface of a plate-like first base material is formed on the entire surface of the organic EL element forming surface or on the organic EL element. A sealing method for adhering and arranging a plate-like second base material via an adhesive portion as a sealing material disposed around an element formation region, and isolating the organic EL element from the atmosphere, the organic EL element and forming member, and an adhesive layer mounting member to the sealing adhesive layer arranged in a region corresponding to the entire surface or organic EL element forming region near a surface of the second substrate as a sealing material, an inert gas In the chamber placed in the inert gas chamber filled with , the organic EL element side and the sealing adhesive side face each other in a state where they are separated and the pressure of the inert gas atmosphere is reduced The organic EL element forming member and the adhesive layer arrangement portion DOO superimposed and parallel, and further stacking pressed both members, and, heated, and is characterized in that the sealing.
And it is the sealing method of the organic EL element of any one of said 1st, Comprising: Both the said organic EL element formation member and an adhesive bond arrangement | positioning member are laminated-pressurized at 10 Pa-10,000 Pa. It is characterized by this.
Also, any one of the above-described organic EL element sealing methods, wherein at least one of the organic EL element forming member and the adhesive layer disposing member is held by an electrostatic holding method. It is.
Further, in any one of the above-described organic EL element sealing methods, the sealing adhesive layer is made of a thermosetting adhesive, and is cured by the heating. At least one of the organic EL element forming member and the adhesive layer arranging member is held by an electrostatic method, and the heating is performed at 50 ° C. to 100 ° C.
Also, in any one of the above-described organic EL element sealing methods, the first base material and the second base material are a glass substrate or a resin film.

尚、ここで、板状の第1の基材の一面側に有機EL素子を形成した有機EL素子形成部材を、有機EL形成基板とも言い、また、第1の基板側から発光を放出する場合、有機EL素子を大気から隔離するための封止体としての第2の基板を、背面基板とも言う。
また、ここで、有機EL素子形成部材、接着剤層配設部材の天地の配置は問わない。
また、チャンバーの減圧、開放のタイミングは、両部材の積層加圧以降であれば、様々な場合がある。
また、ここでは、不活性ガスとは、有機EL素子の機能を悪化させる要因とならないガス種で、安全性が高く、作業性の良く、安価で汎用的なものが好ましく、一般的には、N2 ガスがこれに相当する。
Here, an organic EL element forming member in which an organic EL element is formed on one surface side of a plate-like first base material is also referred to as an organic EL forming substrate, and light emission is emitted from the first substrate side. The second substrate as a sealing body for isolating the organic EL element from the atmosphere is also referred to as a back substrate.
Here, the arrangement of the organic EL element forming member and the adhesive layer arranging member is not limited.
Further, the timing of depressurization and opening of the chamber may be various as long as it is after the lamination pressurization of both members.
In addition, here, the inert gas is a gas type that does not cause deterioration of the function of the organic EL element, preferably high safety, good workability, inexpensive and general purpose, N 2 gas corresponds to this.

本発明の有機EL素子の封止装置は、板状の第1の基材の一面側に有機EL素子を形成した有機EL素子形成部材の、有機EL素子形成面側に、一面全面もしくは有機EL素子形成領域周辺に配したシール材としての接着部を介して、板状の第2の基材を接着配設し、有機EL素子を大気から隔離する封止方法で、前記有機EL素子形成部材と、シール材用としての封止用接着剤層を第2の基板の一面の全面もしくは有機EL素子形成領域周辺に対応する領域に配した接着剤層配設部材とを、不活性ガス雰囲気の環境下に、離れた状態で配し、前記不活性ガス雰囲気の圧を減圧した状態で、有機EL素子側、封止用接着剤側を互いに向かい合わせ、前記有機EL素子形成部材と接着剤層配設部材とを平行にして重ね合わせ、更に両部材を積層加圧し、且つ、加熱して、封止する有機EL素子の封止方法を、行うための封止装置であって、不活性ガスが充満された不活性ガス室と、該不活性ガス室内に配置され、減圧機構を備えたチャンバーと、該チャンバー内において、前記有機EL素子形成部材と接着剤層配設部材とを、1対の板状の保持部にて、それぞれを、平行に保持し、平行に重ね合わせでき、且つ、保持部により保持された両部材を両部材を積層加圧する際の圧を調整できる保持加圧調整部と、前記加熱を行うための加熱部とを、備えていることを特徴とするものである。
そして、上記の有機EL素子の封止装置であって、前記保持加圧調整部は、地側に第1の保持部と、天側に第2の保持部とを備え、各保持部は、それぞれに、前記有機EL素子形成部材と接着剤層配設部材とを、それぞれ、保持し、両部材の間隔を狭め、該両部材を挟み、該両部材を積層した状態で調整した圧で積層加圧するものであることを特徴とするものであり、天側に第2の保持部は、静電保持方式により保持するものであることを特徴とするものである。
また、上記いずれかの有機EL素子の封止方法であって、少なくとも一方の保持部は、加熱部を兼ねるヒートプレートであることを特徴とするものである。
The organic EL element sealing device according to the present invention includes an organic EL element forming member in which an organic EL element is formed on one surface side of a plate-like first substrate, the entire surface of the organic EL element forming surface side, or an organic EL element. The organic EL element forming member is a sealing method in which a plate-like second base material is bonded and disposed through an adhesive portion as a sealing material disposed around the element forming region, and the organic EL element is isolated from the atmosphere. And an adhesive layer arrangement member in which an adhesive layer for sealing as a sealing material is disposed on the entire surface of one surface of the second substrate or a region corresponding to the periphery of the organic EL element formation region, in an inert gas atmosphere. The organic EL element forming member and the adhesive layer are arranged in an environment apart from each other, with the pressure of the inert gas atmosphere reduced, and the organic EL element side and the sealing adhesive side facing each other. Laminate with the arrangement member parallel to each other, and further laminate both members A sealing device for performing a method of sealing an organic EL element to be pressed and heated to seal, and an inert gas chamber filled with an inert gas, and the inert gas chamber disposed in the sealing device A chamber having a decompression mechanism, and in the chamber, the organic EL element forming member and the adhesive layer disposing member are respectively held in parallel by a pair of plate-shaped holding portions, A holding pressure adjusting unit capable of adjusting the pressure at the time of laminating and pressing the two members held by the holding unit, and a heating unit for performing the heating; It is characterized by this.
And it is said organic EL element sealing apparatus, Comprising: The said holding | maintenance pressurization adjustment part is equipped with the 1st holding | maintenance part in the ground side, and the 2nd holding | maintenance part in the top | side, The organic EL element forming member and the adhesive layer disposing member are respectively held, the gap between the two members is narrowed, the two members are sandwiched, and the two members are laminated with a pressure adjusted in a laminated state. The second holding unit on the top side is held by an electrostatic holding method.
Also, in any one of the above-described organic EL element sealing methods, at least one of the holding portions is a heat plate that also serves as a heating portion.

(作用)
本発明の有機EL素子の封止方法は、このような構成にすることにより、従来の封止方法における有機EL素子への微量の酸素や水分の混入の問題や、封止用の接着の際、シーリング部に不活性ガスを噛み込んだ部位は後に外気と導通となる可能性が残り、大気中で充分な封止効果があげられない問題を解決できる、有機EL素子の封止方法の提供を可能としている。
詳しくは、不活性ガス充満の環境下において、更に減圧した上で、有機EL素子を配設した有機EL素子形成部材と、接着剤層配設部材とを、接着することにより、封止後の初期状態での酸素や水分の混入を極めて少なく抑え、且つ、従来の封止方法におけるシーリング部の不活性ガス噛み込みも無くすことができ、結果、良好な封止効果を得ることを可能としている。
具体的には、有機EL素子形成部材と、シール材用としての封止用接着剤層を第2の基板の一面の全面もしくは有機EL素子形成領域周辺に対応する領域に配した接着剤層配設部材とを、不活性ガスが充満した密閉室内に配されたチャンバー中において、離れた状態で配し、前記不活性ガス雰囲気の圧を減圧した状態で、有機EL素子側、封止用接着剤側を互いに向かい合わせ、前記有機EL素子形成部材と接着剤層配設部材とを平行にして重ね合わせ、更に両部材を積層加圧し、且つ、加熱して、封止することにより、これを達成している
た、有機EL素子形成部材と接着剤層配設部材との両方を、10Pa〜10、000Paにて積層加圧する請求項2の発明の形態とすることにより、確実に、有機EL素子にダメージを与えずに、封止を行うことができ、これにより、酸素や水分の混入を少なく抑えることを可能としている。
特に、有機EL素子形成部材と接着剤層配設部材の少なくとも一方の保持を、静電保持方式にて行う請求項3の発明の形態とすることにより、減圧環境下において、有機EL素子形成部材と接着剤層配設部材の少なくとも一方の保持を可能としている。
尚、減圧環境下では、例えば、有機EL素子形成部材と接着剤層配設部材を地側に向けて、これらの第1の基材側あるいは第2の基材側から真空吸着にて保持しようとする場合、自重に抗して保持することはできず、また、冶具による保持では、各部材に疵等つくことがあり、各基材がフィルムの場合には、平坦状に保つことも保持することも難しい。
また、封止用接着剤層としては、熱硬化性の接着剤からなり、前記加熱により硬化させる形態が挙げられ、この場合で、且つ、前記有機EL素子形成部材と接着剤層配設部材の少なくとも一方の保持を、静電保持方式にて行う場合は、通常の市販の静電接着チャックは100℃以上は無理で、硬化処理の面からは50℃以上であり、結局、50℃〜100℃にて前記加熱を行うことが必要となる。
また、第1の基材、第2の基材としては、ガラス基板あるいは樹脂フィルムが挙げられる。

(Function)
The organic EL device sealing method of the present invention is configured as described above, so that there is a problem of mixing a small amount of oxygen or moisture into the organic EL device in the conventional sealing method, or when bonding for sealing. Providing a method for sealing an organic EL element that can solve the problem that a portion where an inert gas is entrained in the sealing portion may later become conductive with the outside air and a sufficient sealing effect cannot be achieved in the atmosphere. Is possible.
Specifically, after further reducing the pressure in an inert gas-filled environment, the organic EL element forming member provided with the organic EL element and the adhesive layer providing member are bonded to each other after sealing. The mixing of oxygen and moisture in the initial state is suppressed to a very low level, and the inert gas biting of the sealing part in the conventional sealing method can be eliminated, and as a result, a good sealing effect can be obtained. .
Specifically, the organic EL element forming member and the adhesive layer arrangement in which the sealing adhesive layer for the sealing material is arranged on the entire surface of the second substrate or the area corresponding to the periphery of the organic EL element forming area. In the chamber disposed in the sealed chamber filled with the inert gas , the installation member is disposed in a separated state, and the pressure of the inert gas atmosphere is reduced, and the organic EL element side is bonded to the sealing The agent sides face each other, the organic EL element forming member and the adhesive layer disposing member are overlapped in parallel, and further, both members are stacked and pressurized, and heated to be sealed. Have achieved .
Also, both the organic EL element forming member and the adhesive layer mounting member, by the form of the invention of claim 2 which applies stack pressure at 10Pa~10,000Pa, reliably, damage to the organic EL device Thus, sealing can be performed without giving any oxygen, thereby making it possible to suppress the mixing of oxygen and moisture.
In particular, at least one holding the organic EL element forming member adhesive layer mounting member, by the form of the invention of claim 3 carried out in an electrostatic holding system, in a reduced pressure environment, the organic EL element forming member And at least one of the adhesive layer arrangement members can be held.
In a reduced pressure environment, for example, the organic EL element forming member and the adhesive layer disposing member are directed to the ground side and held by vacuum suction from the first base material side or the second base material side. If it is, it cannot be held against its own weight, and when held by a jig, each member may become wrinkled, and when each substrate is a film, it can also be kept flat. It is also difficult to do.
In addition, the sealing adhesive layer is made of a thermosetting adhesive and is cured by the heating. In this case, the organic EL element forming member and the adhesive layer arranging member In the case where at least one holding is performed by an electrostatic holding method, a normal commercially available electrostatic adhesive chuck cannot be 100 ° C. or higher, and is 50 ° C. or higher from the viewpoint of the curing treatment. It is necessary to perform the heating at 0 ° C.
Moreover, a glass substrate or a resin film is mentioned as a 1st base material and a 2nd base material.

本発明の有機EL素子の封止装置は、このような構成にすることにより、従来の封止方法における有機EL素子への微量の酸素や水分の混入の問題や、封止用の接着の際、シーリング部に不活性ガスを噛み込んだ部位は後に外気と導通となる可能性が残り、大気中で充分な封止効果があげられない問題を解決できる、有機EL素子の封止装置の提供を可能としている。   The organic EL element sealing device of the present invention has such a configuration, so that a problem of mixing of a small amount of oxygen and moisture into the organic EL element in the conventional sealing method, and sealing adhesion can be achieved. Providing a sealing device for organic EL elements that can solve the problem that the portion where the inert gas is entrained in the sealing portion may later become a continuity with the outside air and the sufficient sealing effect cannot be achieved in the atmosphere. Is possible.

本発明は、上記のように、従来の封止方法における有機EL素子への微量の酸素や水分の混入の問題や、封止用の接着の際、シーリング部に不活性ガスを噛み込んだ部位は後に外気と導通となる可能性が残り、大気中で充分な封止効果があげられない問題を解決できる、有機EL素子の封止方法と、有機EL素子の封止装置の提供を可能とした。   As described above, the present invention has a problem of mixing a small amount of oxygen and moisture into the organic EL element in the conventional sealing method, and a portion where an inert gas is bitten into the sealing portion at the time of bonding for sealing. Is capable of providing a method for sealing an organic EL element and a sealing device for an organic EL element, which can solve the problem that a sufficient sealing effect cannot be achieved in the atmosphere. did.

本発明の実施の形態を図に基づいて説明する。
図1は本発明の有機EL素子の封止方法を実施するための装置の1例を示した概略断面図で、図2は本発明の有機EL素子の封止方法の実施の形態の1例の処理フローの1例を示したフロー図で、図3は本発明の有機EL素子の封止方法により封止された有機EL素子形成基板の1例を示した断面図である。
尚、図2におけるS1〜S8は処理ステップを示す。
図1〜図3中、10は不活性ガス室、11は壁部、12は保持加圧調整部、12aは載置用保持部(第1の保持部とも言う)、12bは静電式保持部(第2の保持部とも言う)、12cは加圧調整部、13はチャンバー、14は減圧部、15は減圧開放部(バルブとも言う)、16は加熱部、20は有機EL素子形成部材、21は第1の基材(ここではガラス基板)、22は有機EL素子部、22aは第1の電極配線、22bは有機EL部、22cは第2の電極配線、30は接着剤層配設部材、31は第2の基材(ここではフィルム基材)、32は封止用接着剤層、32Aは硬化した封止用接着剤層(接着部とも言う)、40は(封止された)表示部材である。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for carrying out an organic EL element sealing method of the present invention, and FIG. 2 is an example of an embodiment of an organic EL element sealing method of the present invention. FIG. 3 is a cross-sectional view showing an example of an organic EL element forming substrate sealed by the organic EL element sealing method of the present invention.
In addition, S1-S8 in FIG. 2 shows a processing step.
1-3, 10 is an inert gas chamber, 11 is a wall, 12 is a holding pressure adjusting unit, 12a is a holding unit (also referred to as a first holding unit), and 12b is an electrostatic holding unit. Part (also referred to as second holding part), 12c is a pressure adjusting part, 13 is a chamber, 14 is a pressure reducing part, 15 is a pressure reducing opening part (also called a valve), 16 is a heating part, and 20 is an organic EL element forming member. , 21 is a first substrate (here, a glass substrate), 22 is an organic EL element portion, 22a is a first electrode wiring, 22b is an organic EL portion, 22c is a second electrode wiring, and 30 is an adhesive layer arrangement. The installation member, 31 is a second substrate (here, a film substrate), 32 is a sealing adhesive layer, 32A is a cured sealing adhesive layer (also referred to as an adhesive portion), and 40 is (sealed). E) Display member.

本発明の有機EL素子の封止方法の実施の形態の1例を、図に基づいて説明する。
本例は、有機EL素子を用いた表示部材を作製するための封止方法で、図3に示すように、ガラス基板からなる板状の第1の基材21の一面側に有機EL素子22を形成した有機EL素子形成部材20の、有機EL素子形成22面側に、全面に配したシール材としての接着部32Aを介して、樹脂フィルムからなる板状の第2の基材31を接着配設して、有機EL素子を大気から隔離する構造の表示部を、作製する際の、封止の仕方の1例である。
簡単には、ガラス基板からなる板状の第1の基材21の一面側に有機EL素子22を形成した有機EL素子形成部材20と、シール材用としての熱硬化性の封止用接着剤層32を第2の基板31の一面の全面に配した接着剤層配設部材30とを、不活性ガス雰囲気の環境下に、離れた状態で配し、前記不活性ガス雰囲気の圧を減圧した状態で、有機EL素子22側、封止用接着剤32側を互いに向かい合わせ、前記有機EL素子形成部材20と接着剤層配設部材30とを平行にして重ね合わせ、更に両部材を積層加圧し、且つ、加熱して、封止し、更に減圧を開放して、前述の表示部を得るものである。
One example of an embodiment of a method for sealing an organic EL element of the present invention will be described with reference to the drawings.
This example is a sealing method for producing a display member using an organic EL element. As shown in FIG. 3, the organic EL element 22 is provided on one surface side of a plate-like first base material 21 made of a glass substrate. A plate-like second base material 31 made of a resin film is bonded to the organic EL element forming member 20 formed with a resin film on the surface side of the organic EL element forming 22 via an adhesive portion 32A serving as a sealing material. This is an example of a sealing method when a display unit having a structure in which the organic EL element is disposed and isolated from the atmosphere is manufactured.
Briefly, an organic EL element forming member 20 in which an organic EL element 22 is formed on one surface side of a plate-like first base material 21 made of a glass substrate, and a thermosetting sealing adhesive for a sealing material The adhesive layer disposing member 30 having the layer 32 disposed on the entire surface of the second substrate 31 is disposed in a separated state in an inert gas atmosphere, and the pressure of the inert gas atmosphere is reduced. In this state, the organic EL element 22 side and the sealing adhesive 32 side face each other, the organic EL element forming member 20 and the adhesive layer disposing member 30 are overlapped in parallel, and both the members are stacked. Pressurization and heating are performed, sealing is performed, and the reduced pressure is released to obtain the above-described display unit.

はじめに、本例の有機EL素子の封止方法を実施するための装置の1例を図1に基づいて、簡単に説明しておく。
尚、これを以って、本発明の有機EL素子の封止装置の実施の形態例の説明に代える。 図1に示す有機EL素子の封止装置は、不活性ガスであるN2 ガスが充満された不活性ガス室10と、該不活性ガス室内10に配置され、不活性ガスに充満されたチャンバー13内の圧を減圧する減圧部14と、減圧開放部15とを備えている。
そしてまた、チャンバー13内において、前記有機EL素子形成部材20と接着剤層配設部材30とを、1対の板状の保持部、載置用保持部(第1保持部)12aと静電式保持部(第2の保持部)12bにて、それぞれを、平行に保持し、平行に重ね合わせでき、且つ、両保持部により保持された両部材20、30を積層加圧する際の圧を調整できる保持加圧調整部12と、前記加熱を行うための加熱部16とを、備えている。
First, an example of an apparatus for carrying out the organic EL element sealing method of this example will be briefly described with reference to FIG.
In addition, it replaces with description of the embodiment of the sealing apparatus of the organic EL element of this invention by this. The organic EL element sealing device shown in FIG. 1 includes an inert gas chamber 10 filled with an inert gas N 2 gas and a chamber filled with the inert gas disposed in the inert gas chamber 10. 13 is provided with a decompression section 14 for decompressing the pressure in 13 and a decompression release section 15.
Further, in the chamber 13, the organic EL element forming member 20 and the adhesive layer disposing member 30 are electrostatically connected to a pair of plate-like holding portions, a mounting holding portion (first holding portion) 12 a. In the expression holding part (second holding part) 12b, each pressure is held in parallel and can be overlapped in parallel, and the pressure when the members 20 and 30 held by both holding parts are stacked and pressurized is applied. A holding pressure adjusting unit 12 that can be adjusted, and a heating unit 16 for performing the heating are provided.

第1の保持部12aとしては、熱伝導性等からアルミニウム(以下Al)を用いているが、熱伝導性が良く、加工性の良く、平坦性良く有機EL素子形成部材20を保持できるものであれば、これに限定はされない。
第2の保持部12bとしては、天地方向移動可能なもので、保持を静電方式とするため、保持する側の表面の材質は限定される。
尚、静電方式は、第2の保持部内に電極部を内装した状態で、制御して電荷を発生させて、接着剤層配設部材30を保持するもので、現在は、静電チャック等の名で市販されている。
ここでは、第1の保持部12aと第2の保持部12bの、保持する面は互いに平行である。
後に述べるが、本例の場合、加圧調整部12cによる正圧加圧によりシリンダーを地方向に動かし、また、加圧調整部12cによる負圧加圧によりシリンダー(図示していない)を天方向に動かし、シリンダーにつながった第2の保持部12bを移動する。 ここでは、第2の保持部12bの基材としては、アルミニウムを用いているが、これに限定はされない。
As the first holding portion 12a, aluminum (hereinafter referred to as Al) is used from the viewpoint of thermal conductivity, etc., but it has good thermal conductivity, good workability, and can hold the organic EL element forming member 20 with good flatness. If there is, it is not limited to this.
Since the second holding portion 12b is movable in the vertical direction and is held by an electrostatic method, the material of the surface on the holding side is limited.
In the electrostatic system, the electrode part is housed in the second holding part, and the electric charge is generated by control to hold the adhesive layer arrangement member 30. At present, the electrostatic chuck or the like is used. It is marketed under the name of.
Here, the holding surfaces of the first holding unit 12a and the second holding unit 12b are parallel to each other.
As will be described later, in the case of this example, the cylinder is moved in the ground direction by the positive pressure pressurization by the pressurization adjustment unit 12c, and the cylinder (not shown) is moved upward by the negative pressure pressurization by the pressurization adjustment unit 12c. To move the second holding portion 12b connected to the cylinder. Here, aluminum is used as the base material of the second holding portion 12b, but this is not a limitation.

保持加圧調整部12は、地側に有機EL素子形成部材20をその第1の基材21面全体で載置する第1の保持部12aと、天側に接着剤層配設部材30を第2の基材31全面で均一に静電式にて保持する第2の保持部12bとを備え、各保持部12a、12bは、それぞれ、両部材20、30を保持し、両部材20、30の間隔を狭め、該両部材20、30を挟み、該両部材を積層した状態で、加圧調整部12cで調整した圧で積層加圧するものである。
加圧調整部12cとしては、例えば、正加圧用のエアーと負加圧用のエアーにより、加圧する圧力を制御するエアシリンダ構成のものが挙げられる。
加圧は、封止用接着剤層32の厚さやその材質等にもよるが、有機EL素子にダメージを与えない10、000Pa程度以下で、封止の効果を得る、特に、側面部における封止用接着剤層32の好適な広がりを期待できる10Pa以上で制御する。
好ましくは、3000Pa〜6000Paである。
本例の場合は、第2の保持部12bがアルミニウム板を使用しており、第2の保持部12bの自重による圧が大きいため、自重の圧を減らすように加圧調整部12cで負圧をかけて積層加圧の圧を調整する。
尚、本例では、保持加圧調整部12の加圧調整部12cが第2の保持部12bを第1の保持部12a側に移動するための駆動源となっており、加圧調整部12cにて所定の正圧力としてシリンダーを動かして、地方向に移動させ、また、加圧調整部12cにて所定の負圧力としてシリンダーを動かして、天方向に移動させる。
The holding pressure adjusting unit 12 includes a first holding unit 12a for placing the organic EL element forming member 20 on the entire surface of the first base material 21 on the ground side, and an adhesive layer arranging member 30 on the top side. A second holding portion 12b that uniformly and electrostatically holds the entire surface of the second base material 31, and each holding portion 12a, 12b holds both members 20, 30, respectively, In the state where the interval 30 is narrowed, the both members 20 and 30 are sandwiched and the both members are laminated, the lamination pressure is applied with the pressure adjusted by the pressure adjusting unit 12c.
Examples of the pressure adjusting unit 12c include those having an air cylinder configuration that controls the pressure to be pressurized by air for positive pressure and air for negative pressure.
The pressurization depends on the thickness of the sealing adhesive layer 32 and the material thereof, but the sealing effect is obtained at about 10,000 Pa or less that does not damage the organic EL element. Control is performed at 10 Pa or more at which a suitable spread of the stopping adhesive layer 32 can be expected.
Preferably, it is 3000 Pa to 6000 Pa.
In the case of this example, the second holding part 12b uses an aluminum plate, and since the pressure due to the weight of the second holding part 12b is large, a negative pressure is applied by the pressure adjusting part 12c so as to reduce the pressure of the own weight. To adjust the lamination pressure.
In this example, the pressure adjusting unit 12c of the holding pressure adjusting unit 12 is a driving source for moving the second holding unit 12b to the first holding unit 12a side, and the pressure adjusting unit 12c The cylinder is moved as a predetermined positive pressure and moved in the ground direction, and the pressure adjusting unit 12c is moved as a predetermined negative pressure and moved in the upward direction.

また、本例においては、第1の保持部12a内に、有機EL素子形成部材20、もしくは両部材20、30を全面に均一に加熱できる過熱部16を備えており、第1の保持部12aはヒートプレートでもある。
加熱は、接着材層32が熱硬化性の場合は、硬化する温度以上にできることが要求されるが、静電式の第2の保持部を用いているため、一般には、100℃以下としないと、保持機能が損なわれてしまうため、通常は、50℃〜100℃の範囲で加熱する。
Further, in this example, the first holding portion 12a includes the overheating portion 16 capable of uniformly heating the entire surface of the organic EL element forming member 20 or both the members 20 and 30, and the first holding portion 12a. Is also a heat plate.
When the adhesive layer 32 is thermosetting, the heating is required to be higher than the curing temperature. However, since the electrostatic second holding portion is used, the heating is generally not 100 ° C. or lower. And since a holding | maintenance function will be impaired, normally, it heats in the range of 50 to 100 degreeC.

チャンバーとしては、減圧、減圧の開放に耐え、且つ、各部の動作を問題なくできるものが要求される。
減圧部14は、真空引きを行うもので、VACポンプ等である。
減圧開放部15は、真空開放を行うもので、ここでは、開閉バルブである。
通常、減圧は、圧が低いほど酸素の含有量の面からは好ましいが、30、000Pa以下であれば、封止効果の面からは十分である。
30、000Pa〜5、000Pa、好ましくは、30、000Pa〜20、000Paとするため、チャンバー13の壁部の材質としてはアクリル等の樹脂でも良いが、これに限定はされない。
The chamber is required to be capable of withstanding decompression and decompression and capable of operating each part without problems.
The decompression unit 14 performs evacuation and is a VAC pump or the like.
The decompression release unit 15 performs vacuum release, and here is an open / close valve.
Usually, the lower the pressure, the better the oxygen content from the viewpoint of the oxygen content, but 30,000 Pa or less is sufficient from the aspect of the sealing effect.
Since it is 30,000 Pa to 5,000 Pa, preferably 30,000 Pa to 20,000 Pa, the wall portion of the chamber 13 may be made of resin such as acrylic, but is not limited thereto.

次いで、図1に示す封止装置を用いた場合の、本例の有機EL素子の封止方法の処理の1例を図2の基づいて、説明する。
先ず、予め、ガラス基板からなる第1の基材31の一面上に有機EL素子を形成した有機EL素子形成部材20と、シール材用としての封止用接着剤層32を第2の基板31の一面全面に配した接着剤層配設部材30とを、用意しておき、両部材20、30をそれぞれ、N2 からなる不活性ガス雰囲気が充満した不活性ガス室10に入れる。(S1)
尚、通常、N2 からなる不活性ガス雰囲気が充満した不活性ガス室10では、酸素含有量を1ppm以下とできる。
次いで、チャンバー13を開放して不活性ガス雰囲気が充満した状態で、有機EL素子形成部材20を、チャンバー内の第1の保持部12a上に、その有機EL層部22側を天側にして載置き、また、接着剤層配設部材30を、チャンバー内の第2の保持部12bにて、その第2の基材31を静電式にて保持する。(S2)
次いで、チャンバーを閉じた状態にして、両部材20、30を離れた状態で、所定の圧力範囲に減圧部14にて減圧する。(S3)
通常、減圧は、圧が低いほど酸素の含有量の面からは好ましいが、ここでは、30、0〜5、000Pa、好ましくは、30、000Pa〜20、000Pの範囲に減圧する。 次いで、加圧調整部12cにて所定の正圧力としてシリンダーを動かして、第1の保持部12aと第2の保持部12b間の間隔を狭めることにより、有機EL素子形成部材20と接着剤層配設部材30との間隔を狭め、両保持部12a、12bにより両部材20、30を積層した状態で挟む。(S4)
尚、本例では、保持加圧調整部12の加圧調整部12cが第2の保持部12bを第1の保持部12a側に移動するための駆動源となっており、加圧調整部12cにて所定の正圧力としてシリンダーを動かして、地方向に移動させ、また、加圧調整部12cにて所定の負圧力としてシリンダーを天方向に移動させる。
次いで、挟んだ後、加圧調整部12cの圧を所定の圧に調整して両部材20、30を積層加圧し、同時に所定の温度に加熱し(S5)、封止用接着剤層32を硬化させる。(S6) 加圧は、封止用接着剤層32の厚さやその材質等にもよるが、10Pa〜10、000Paの範囲、好ましくは、3000Pa〜6000Paで行う。
加熱は、通常は、50℃〜100℃の範囲で行う。
次いで、減圧を開放した(S7)後、チャンバー13から、更に、不活性ガス質10から封止された表示部(図3参照)を取り出す。(S8)
このようにして、封止を行う。
Next, an example of processing of the organic EL element sealing method of this example when the sealing device shown in FIG. 1 is used will be described based on FIG.
First, an organic EL element forming member 20 in which an organic EL element is formed on one surface of a first base 31 made of a glass substrate in advance, and a sealing adhesive layer 32 for a sealing material are provided on the second substrate 31. The adhesive layer disposing member 30 disposed on the entire surface of the surface is prepared, and both the members 20 and 30 are put into the inert gas chamber 10 filled with an inert gas atmosphere made of N 2 . (S1)
Normally, in the inert gas chamber 10 filled with an inert gas atmosphere made of N 2 , the oxygen content can be 1 ppm or less.
Next, in a state where the chamber 13 is opened and the inert gas atmosphere is filled, the organic EL element forming member 20 is placed on the first holding portion 12a in the chamber with the organic EL layer portion 22 side on the top side. In addition, the second base material 31 is electrostatically held by the second holding portion 12b in the chamber with the adhesive layer arranging member 30. (S2)
Next, the chamber is closed, and the members 20 and 30 are separated from each other. (S3)
Generally, the lower the pressure is, the lower the pressure is, from the viewpoint of the oxygen content. Here, the pressure is reduced to a range of 30, 0 to 5,000 Pa, preferably 30,000 Pa to 20,000 P. Next, the cylinder is moved as a predetermined positive pressure by the pressurizing adjustment unit 12c, and the distance between the first holding unit 12a and the second holding unit 12b is narrowed, whereby the organic EL element forming member 20 and the adhesive layer The space between the mounting member 30 is narrowed, and the both members 20 and 30 are sandwiched between the holding portions 12a and 12b. (S4)
In this example, the pressure adjusting unit 12c of the holding pressure adjusting unit 12 is a driving source for moving the second holding unit 12b to the first holding unit 12a side, and the pressure adjusting unit 12c The cylinder is moved as a predetermined positive pressure and moved in the ground direction, and the cylinder is moved as the predetermined negative pressure in the upward direction by the pressurizing adjustment unit 12c.
Next, after sandwiching, the pressure of the pressure adjusting unit 12c is adjusted to a predetermined pressure, the members 20 and 30 are stacked and pressurized, and simultaneously heated to a predetermined temperature (S5), and the sealing adhesive layer 32 is formed. Harden. (S6) The pressurization is performed in a range of 10 Pa to 10,000 Pa, preferably 3000 Pa to 6000 Pa, although it depends on the thickness of the sealing adhesive layer 32 and its material.
Heating is usually performed in the range of 50 ° C to 100 ° C.
Next, after the decompression is released (S7), the display unit (see FIG. 3) sealed from the inert gas 10 is further taken out from the chamber 13. (S8)
In this way, sealing is performed.

尚、本例は1例で、本発明は、これに限定されない。
本例では、第2の基材の一面全面にシール材用の封止用接着剤層を配して、封止を行っているが、第2の基材の一面の有機EL素子形成領域周辺にのみシール材用の封止用接着剤層を配して、封止を行う形態も挙げられる。
また、本例では、封止用接着剤層32として、熱硬化性の接着剤層を用いているが、これに限定はされない。
例えば、UV硬化型の接着剤層で封止効果の良いものを用いても良い。
尚、熱硬化性の接着剤層としては、エポキシ系等が一般的に用いられている。
In addition, this example is one example and this invention is not limited to this.
In this example, a sealing adhesive layer for sealing material is disposed on the entire surface of the second substrate, and sealing is performed, but the periphery of the organic EL element forming region on the surface of the second substrate is used. There is also a mode in which sealing is performed by providing a sealing adhesive layer for sealing material only on the top.
In this example, a thermosetting adhesive layer is used as the sealing adhesive layer 32, but the present invention is not limited to this.
For example, a UV curable adhesive layer having a good sealing effect may be used.
In addition, as the thermosetting adhesive layer, an epoxy type or the like is generally used.

本発明の有機EL素子の封止方法を実施するための装置の1例を示した概略断面図である。It is the schematic sectional drawing which showed one example of the apparatus for enforcing the sealing method of the organic EL element of this invention. 本発明の有機EL素子の封止方法の実施の形態の1例の処理フローの1例を示したフロー図である。It is the flowchart which showed one example of the processing flow of one example of embodiment of the sealing method of the organic EL element of this invention. 本発明の有機EL素子の封止方法により封止された有機EL素子形成基板の1例を示した断面図である。It is sectional drawing which showed one example of the organic EL element formation board | substrate sealed with the sealing method of the organic EL element of this invention. 有機EL素子の断面構造の1例を示した断面図である。It is sectional drawing which showed one example of the cross-sectional structure of an organic EL element.

符号の説明Explanation of symbols

1 発光
2 基板
3 透明電極
4 発光層
5 多雨項電極
10 不活性ガス室
11 壁部
12 保持加圧調整部
12a 載置用保持部(第1の保持部とも言う)
12b 静電式保持部(第2の保持部とも言う)
12c 加圧調整部
13 チャンバー
14 減圧部
15 減圧開放部(バルブとも言う)
16 加熱部
20 有機EL素子形成部材
21 第1の基材(ここではガラス基板)
22 有機EL素子部
22a 第1の電極配線
22b 有機EL部
22c 第2の電極配線
30 接着剤層配設部材
31 第2の基材(ここではフィルム基材)
32 封止用接着剤層
32A 硬化した封止用接着剤層(接着部とも言う)
40 (封止された)表示部材


DESCRIPTION OF SYMBOLS 1 Light emission 2 Board | substrate 3 Transparent electrode 4 Light emitting layer 5 Heavy rain electrode 10 Inert gas chamber 11 Wall part 12 Holding | maintenance pressurization adjustment part 12a Mounting holding part (it is also called 1st holding part)
12b Electrostatic holding part (also referred to as second holding part)
12c Pressurization adjustment unit 13 Chamber 14 Decompression unit 15 Depressurization release unit (also referred to as valve)
16 heating part 20 organic EL element formation member 21 1st base material (here glass substrate)
22 organic EL element part 22a 1st electrode wiring 22b organic EL part 22c 2nd electrode wiring 30 Adhesive layer arrangement | positioning member 31 2nd base material (here film base material)
32 Sealing adhesive layer 32A Hardened sealing adhesive layer (also referred to as adhesive)
40 (sealed) display member


Claims (10)

板状の第1の基材の一面側に有機EL素子を形成した有機EL素子形成部材の、有機EL素子形成面側に、一面全面もしくは有機EL素子形成領域周辺に配したシール材としての接着部を介して、板状の第2の基材を接着配設し、有機EL素子を大気から隔離する封止方法であって、前記有機EL素子形成部材と、シール材用としての封止用接着剤層を第2の基板の一面の全面もしくは有機EL素子形成領域周辺に対応する領域に配した接着剤層配設部材とを、不活性ガスが充満した不活性ガス室内に配されたチャンバー中において、離れた状態で配し、前記不活性ガス雰囲気の圧を減圧した状態で、有機EL素子側、封止用接着剤側を互いに向かい合わせ、前記有機EL素子形成部材と接着剤層配設部材とを平行にして重ね合わせ、更に両部材を積層加圧し、且つ、加熱して、封止することを特徴とする有機EL素子の封止方法。 Adhesion as an organic EL element forming member having an organic EL element formed on one surface side of a plate-like first base material as a sealing material disposed on the entire surface of the organic EL element forming surface or around the organic EL element forming region A sealing method for adhering and arranging a plate-like second base material through a section and isolating the organic EL element from the atmosphere, wherein the organic EL element forming member is used for sealing as a sealing material A chamber in which an adhesive layer disposing member in which an adhesive layer is disposed on the entire surface of one surface of the second substrate or an area corresponding to the periphery of the organic EL element forming region is disposed in an inert gas chamber filled with an inert gas. The organic EL element side and the sealing adhesive side face each other with the pressure of the inert gas atmosphere reduced, and the organic EL element forming member and the adhesive layer arrangement Laminate them in parallel with each other, and further Wood laminated pressurized, and heated to, sealing method of an organic EL element characterized in that sealing. 請求項1に記載の有機EL素子の封止方法であって、前記有機EL素子形成部材と接着剤層配設部材との両方を、10Pa〜10、000Paにて積層加圧することを特徴とする有機EL素子の封止方法。 It is the sealing method of the organic EL element of Claim 1 , Comprising: Both the said organic EL element formation member and an adhesive bond arrangement | positioning member are laminated-pressurized at 10 Pa-10,000 Pa, It is characterized by the above-mentioned. Organic EL element sealing method. 請求項1ないしのいずれか1項に記載の有機EL素子の封止方法であって、前記有機EL素子形成部材と接着剤層配設部材の少なくとも一方の保持を、静電保持方式にて行うことを特徴とする有機EL素子の封止方法。 3. The organic EL element sealing method according to claim 1, wherein at least one of the organic EL element forming member and the adhesive layer disposing member is held by an electrostatic holding method. A method for sealing an organic EL element, which is performed. 請求項1ないしのいずれか1項に記載の有機EL素子の封止方法であって、前記封止用接着剤層は、熱硬化性の接着剤からなり、前記加熱により硬化させることを特徴とする有機EL素子の封止方法。 It is a sealing method of the organic EL element of any one of Claim 1 thru | or 3 , Comprising: The said adhesive layer for sealing consists of a thermosetting adhesive agent, and is hardened | cured by the said heating. An organic EL element sealing method. 請求項4に記載の有機EL素子の封止方法であって、前記有機EL素子形成部材と接着剤層配設部材の少なくとも一方の保持を、静電方式にて行うもので、50℃〜100℃にて前記加熱を行うことを特徴とする有機EL素子の封止方法。 It is a sealing method of the organic EL element of Claim 4 , Comprising: At least one holding | maintenance of the said organic EL element formation member and an adhesive bond layer arrangement | positioning member is performed by an electrostatic system, 50 to 100 degreeC. A method for sealing an organic EL element, wherein the heating is performed at a temperature of ° C. 請求項1ないしのいずれか1項に記載の有機EL素子の封止方法であって、第1の基材、第2の基材が、ガラス基板あるいは樹脂フィルムであることを特徴とする有機EL素子の封止方法。 A method of sealing an organic EL device according to any one of claims 1 to 5, the first substrate, organic second substrate, which is a glass substrate or a resin film EL element sealing method. 板状の第1の基材の一面側に有機EL素子を形成した有機EL素子形成部材の、有機EL素子形成面側に、一面全面もしくは有機EL素子形成領域周辺に配したシール材としての接着部を介して、板状の第2の基材を接着配設し、有機EL素子を大気から隔離する封止方法で、前記有機EL素子形成部材と、シール材用としての封止用接着剤層を第2の基板の一面の全面もしくは有機EL素子形成領域周辺に対応する領域に配した接着剤層配設部材とを、不活性ガス雰囲気の環境下に、離れた状態で配し、前記不活性ガス雰囲気の圧を減圧した状態で、有機EL素子側、封止用接着剤側を互いに向かい合わせ、前記有機EL素子形成部材と接着剤層配設部材とを平行にして重ね合わせ、更に両部材を積層加圧し、且つ、加熱して、封止する有機EL素子の封止方法を、行うための封止装置であって、不活性ガスが充満された不活性ガス室と、該不活性ガス室内に配置され、減圧機構を備えたチャンバーと、該チャンバー内において、前記有機EL素子形成部材と接着剤層配設部材とを、1対の板状の保持部にて、それぞれを、平行に保持し、平行に重ね合わせでき、且つ、保持部により保持された両部材を両部材を積層加圧する際の圧を調整できる保持加圧調整部と、前記加熱を行うための加熱部とを、備えていることを特徴とする有機EL素子の封止装置。 Adhesion as an organic EL element forming member having an organic EL element formed on one surface side of a plate-like first base material as a sealing material disposed on the entire surface of the organic EL element forming surface or around the organic EL element forming region The organic EL element forming member and the sealing adhesive as a sealing material are sealed in a manner of adhering and arranging the plate-like second base material through the section and isolating the organic EL element from the atmosphere. An adhesive layer disposing member in which a layer is disposed on the entire surface of one surface of the second substrate or an area corresponding to the periphery of the organic EL element forming region, and disposed in a remote state in an inert gas atmosphere environment, In a state where the pressure of the inert gas atmosphere is reduced, the organic EL element side and the sealing adhesive side face each other, the organic EL element forming member and the adhesive layer disposing member are overlapped in parallel, Both members are laminated and pressurized, heated and sealed A sealing device for performing a sealing method of an EL element, which is an inert gas chamber filled with an inert gas, a chamber disposed in the inert gas chamber and provided with a decompression mechanism, and the chamber Inside, the organic EL element forming member and the adhesive layer disposing member are held in parallel by a pair of plate-like holding portions, and can be superposed in parallel and held by the holding portion. An organic EL element sealing device comprising: a holding pressure adjusting unit capable of adjusting a pressure at the time of laminating and pressurizing both members, and a heating unit for performing the heating. . 請求項7に記載の有機EL素子の封止装置であって、前記保持加圧調整部は、地側に第1の保持部と、天側に第2の保持部とを備え、各保持部は、それぞれに、前記有機EL素子形成部材と接着剤層配設部材とを、それぞれ、保持し、両部材の間隔を狭め、該両部材を挟み、該両部材を積層した状態で調整した圧で積層加圧するものであることを特徴とする有機EL素子の封止装置。 8. The organic EL element sealing device according to claim 7 , wherein the holding pressure adjusting unit includes a first holding unit on the ground side and a second holding unit on the top side, and each holding unit. Respectively, hold the organic EL element forming member and the adhesive layer disposing member, reduce the distance between the two members, sandwich the two members, and adjust the pressure in a state where the two members are stacked. A device for sealing an organic EL element, wherein the organic EL element is laminated and pressurized. 請求項8に記載の有機EL素子の封止装置であって、天側に第2の保持部は、静電保持方式により保持するものであることを特徴とする有機EL素子の封止装置。 9. The organic EL element sealing device according to claim 8 , wherein the second holding portion is held on the top side by an electrostatic holding method. 請求項7ないし9のいずれか1項に記載の有機EL素子の封止方法であって、少なくとも一方の保持部は、加熱部を兼ねるヒートプレートであることを特徴とする有機EL素子の封止装置。
10. The method for sealing an organic EL element according to claim 7 , wherein at least one holding part is a heat plate that also serves as a heating part. apparatus.
JP2005219356A 2005-07-28 2005-07-28 Organic EL element sealing method and sealing device Expired - Fee Related JP4736602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219356A JP4736602B2 (en) 2005-07-28 2005-07-28 Organic EL element sealing method and sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005219356A JP4736602B2 (en) 2005-07-28 2005-07-28 Organic EL element sealing method and sealing device

Publications (2)

Publication Number Publication Date
JP2007035514A JP2007035514A (en) 2007-02-08
JP4736602B2 true JP4736602B2 (en) 2011-07-27

Family

ID=37794504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219356A Expired - Fee Related JP4736602B2 (en) 2005-07-28 2005-07-28 Organic EL element sealing method and sealing device

Country Status (1)

Country Link
JP (1) JP4736602B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061959A (en) * 2008-09-03 2010-03-18 Toppan Forms Co Ltd Organic electro-luminescence (el) component
JP2010061958A (en) * 2008-09-03 2010-03-18 Toppan Forms Co Ltd Organic electro-luminescence (el) component
KR100982498B1 (en) 2008-12-29 2010-09-16 윤근천 The encapsulation instrument for an organic light-emitting diode manufacturing instrument
CN103187542B (en) * 2011-12-29 2016-09-07 丽佳达普株式会社 Organic illuminating element packaging system and organic illuminating element method for packing
JP6267920B2 (en) * 2013-10-15 2018-01-24 常陽工学株式会社 SEALING DEVICE AND SEALING METHOD
CN104051669B (en) * 2014-05-28 2016-02-03 京东方科技集团股份有限公司 Base plate for packaging, method for packing, display floater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176571A (en) * 1997-12-12 1999-07-02 Tdk Corp Manufacture of organic el element
JP2003282243A (en) * 2002-03-25 2003-10-03 Fuji Photo Film Co Ltd Light emitting element
JP2005149890A (en) * 2003-11-14 2005-06-09 Seiko Epson Corp Sealing apparatus and sealing method, display device and electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011648A (en) * 2003-06-18 2005-01-13 Sanyo Electric Co Ltd Electroluminescent panel and manufacturing method of electroluminescent panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176571A (en) * 1997-12-12 1999-07-02 Tdk Corp Manufacture of organic el element
JP2003282243A (en) * 2002-03-25 2003-10-03 Fuji Photo Film Co Ltd Light emitting element
JP2005149890A (en) * 2003-11-14 2005-06-09 Seiko Epson Corp Sealing apparatus and sealing method, display device and electronic apparatus

Also Published As

Publication number Publication date
JP2007035514A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
US8912018B2 (en) Manufacturing flexible organic electronic devices
JP4227134B2 (en) Flat panel display manufacturing method, flat panel display, and flat panel display panel
TWI423723B (en) Method of manufacturing self-light-emitting panel
US20070057295A1 (en) Substrate bonding method and apparatus
JP4736602B2 (en) Organic EL element sealing method and sealing device
KR100689199B1 (en) Encapsulation method of organic light emitting diodes and apparatus of the same
JP2007066775A (en) Manufacturing method of organic el element and organic el element
KR20050010333A (en) Organic electro luminescence display device
JP2010027599A (en) Organic light-emitting display device and method of manufacturing the same
JP2002208478A (en) Electroluminescent element
JP2003163078A (en) Display device
JP2004227792A (en) Organic electroluminescent display device
JP2006253097A (en) Spontaneous light-emitting panel and its manufacturing method
JPWO2008023626A1 (en) Organic electroluminescence device and method for producing the same
KR20100118870A (en) Oled used flexible display substrate
JP2010192261A (en) Method of manufacturing solid-sealing organic el device, its manufacturing device, and solid-sealing organic el device
JP2010020973A (en) Manufacturing method of organic el display device
JP2010067355A (en) Organic el element panel and method of manufacturing the same
WO2020199268A1 (en) Oled packaging structure and oled packaging method
JP2008108545A (en) Sealing substrate, its manufacturing method and manufacturing method for electroluminescent element panel
US20050062414A1 (en) Organic electroluminescence display package and method for packaging the same
JP2007080711A (en) Sealing method of organic el element
KR101658438B1 (en) Substrate Bonding Apparatus for Organic Electro Luminescent device
JP2008130312A (en) Manufacturing method and encapsulated base board for electroluminescence element panel
US8963136B2 (en) OLED liquid crystal display and method for laminating alignment film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees