WO2008018561A1 - Procédé de production de granulé sphérique contenant une substance légèrement hydrosoluble - Google Patents

Procédé de production de granulé sphérique contenant une substance légèrement hydrosoluble Download PDF

Info

Publication number
WO2008018561A1
WO2008018561A1 PCT/JP2007/065654 JP2007065654W WO2008018561A1 WO 2008018561 A1 WO2008018561 A1 WO 2008018561A1 JP 2007065654 W JP2007065654 W JP 2007065654W WO 2008018561 A1 WO2008018561 A1 WO 2008018561A1
Authority
WO
WIPO (PCT)
Prior art keywords
poorly water
soluble drug
drug
layering solution
layering
Prior art date
Application number
PCT/JP2007/065654
Other languages
English (en)
French (fr)
Inventor
Yoshihito Yaginuma
Rika Matsumoto
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to US12/310,067 priority Critical patent/US9095512B2/en
Priority to CN2007800293602A priority patent/CN101500541B/zh
Priority to JP2008528886A priority patent/JP5171626B2/ja
Priority to EP07792304.3A priority patent/EP2050439B1/en
Publication of WO2008018561A1 publication Critical patent/WO2008018561A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • A61K9/1676Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/166Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the carbon of a carboxamide group directly attached to the aromatic ring, e.g. procainamide, procarbazine, metoclopramide, labetalol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles

Definitions

  • the present invention relates to a method for producing spherical elementary granules containing a poorly water-soluble drug.
  • Solid pharmaceutical preparations are film coatings such as sustained release, enteric properties, bitterness masks, etc. for the purpose of reducing side effects, reducing the number of doses, improving the effect of drugs, suppressing bitterness, stabilizing drugs, etc. Ting may be given.
  • film coatings such as sustained release, enteric properties, bitterness masks, etc.
  • Such spherical granules containing a drug which is a dosage form suitable for film coating are called spherical granules!
  • the layering method is a method of producing granules by coating spherical core particles with a coating layer by spraying a layering solution containing a drug, a binder, or the like onto the spherical core particles.
  • a method of supplying and coating a drug powder and an aqueous binder solution simultaneously there are a method of supplying and coating a suspension of drug particles, and a method of supplying and coating a drug aqueous solution.
  • the layering method spherical particles having a high sphericity and a narrow particle size distribution can be obtained by using spherical core particles having a high sphericity and a narrow particle size distribution. Therefore, the layering method is suitable as a method for producing spherical elementary granules for film coating.
  • the drug contained in the layering solution is a low water-soluble drug or a drug (poorly water-soluble drug)
  • the foam was vigorously foamed and it was necessary to remove the foam.
  • drug particles precipitate over time.
  • the layering solution must always be stirred and mixed to keep the suspension homogeneous. Still, settling during movement from layering fluid tank to spray nozzle There remains a risk of agglomeration and blockage of the tube and spray nozzle.
  • the drug particles are large, the risk increases and the adhesion to the spherical core particles decreases, leading to a decrease in the recovery rate and an increase in the aggregation rate due to rolling inhibition. If the drug particles are made smaller, the suspension stability and recovery rate of the layering solution can be improved, and a powder particle (or grinding) treatment process is required.
  • Patent Document 2 It is known that various additives are added to the layering solution for the purpose of preventing peeling of the coated drug, adjusting the dissolution rate of the drug, or stabilizing (for example, Patent Document 2, 3 and 4).
  • Patent Documents 2 to 4 do not describe the use of microcrystalline cellulose and an emulsifier in combination.
  • Patent Document 5 discloses a technique for coating spherical core particles with a poorly water-soluble drug, an emulsifier, and the like by a layering method.
  • the technique specifically disclosed supplies a drug powder and an aqueous binder solution simultaneously.
  • Patent Document 5 there is no description regarding improvement in suspendability when a poorly water-soluble drug is added to the layering solution.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-301816
  • Patent Document 2 JP-A-9 165329
  • Patent Document 3 Japanese Patent Laid-Open No. 9 67247
  • Patent Document 4 Japanese Translation of Special Publication 2005—536527
  • Patent Document 5 International Publication 2005/044240 Pamphlet
  • the present invention provides a method for producing poorly water-soluble drug-containing spheroid granules having improved production efficiency by using a poorly water-soluble drug-containing layering solution having good suspension stability and suppressed foaming.
  • the purpose is to do.
  • the present inventors have blended finely divided crystalline cellulose and an emulsifier into a layering solution, so that the layer can be formed without any special pulverization treatment of the drug.
  • the suspension stability of the ring solution is improved and foaming is also suppressed.
  • the present invention has been found and the present invention has been made. That is, the present invention is as follows.
  • a method of producing spherical elementary granules in which a layering solution is sprayed onto pharmaceutically inert spherical core particles and coated with a drug-containing layer,
  • a process for producing a poorly water-soluble drug-containing spherical elementary granule comprising:
  • the spherical core particles used in the present invention are pharmaceutically inert. That is, it does not contain drugs.
  • the “drug” means a device that is used for treatment, prevention, or diagnosis of a human or animal disease and is not a device “machine”.
  • the spherical core particles can contain one or more pharmaceutical additives.
  • pharmaceutical additives include, for example, excipients such as lactose, sucrose, D-mannitol, corn starch, powdered cellulose, calcium hydrogen phosphate, calcium carbonate; low-substituted hydroxypropyl cellulose, carmellose calcium , Partially alpha-ized Disintegrants such as starch, croscarmellose sodium, crospovidone, carboxymethyl starch; binders such as hydroxypropylcellulose, povidone (polybutyrrolidone), xanthan gum; hypromellose (hydroxypropylmethylcellulose), methacrylic acid Copolymer LD, coating solution of ethyl cellulose dispersion, emulsifier such as sucrose fatty acid ester, glycerin fatty acid ester, sodium lauryl sulfate, polysorbate 60; talc , Magnesium stearate,
  • Preferable formulation examples include sucrose alone, sucrose 70% by mass and corn starch 30% by mass, crystalline cellulose 30% by mass or more and other pharmaceutical additives, crystalline cellulose only, mannitol only, and the like.
  • Spherical nuclei containing 30% by mass or more of crystalline cellulose are preferable because they have high strength and water retention. More preferred are those containing 70% by mass or more of crystalline cellulose, and even more preferred are spherical core particles consisting only of crystalline cellulose. Most preferably, the spherical core particles are composed only of microcrystalline cellulose.
  • the sphericity is preferably 0.9 or more.
  • spherical core particles having an average particle size of about 50 to about 1000 m can be used. A sharper particle size distribution is preferred.
  • the bulk density is preferably about 0.5 to 2. Og / cm 3 . In the case of spherical core particles composed only of crystalline cellulose, it is usually about 0.5 to 1. Og / cm 3 . Higher mechanical strength is preferred.
  • poorly water-soluble drug particles blended in the layering solution of the present invention will be described.
  • “poorly water-soluble” means that it is hardly soluble in water, and its solubility in lcm 3 of water at 20 ° C. is not more than 0.0OOlg.
  • Examples of poorly water-soluble drugs include amsinonide, ibuprofen, indomethacin, ethenzamide, erythromycin, cefotiam hexetyl hydrochloride, dicardipine hydrochloride, omeprazole, prednisolone valerate acetate, diflucortron valerate, dexamethasone valerate, betamethasone valerate , Clarithromycin, griseofulvin, chromazepam, chloramphenicol, synthetic peptide compounds, cortisone acetate, diflorazone acetate, dexamethasone acetate, triamcinolone acetate, parameterzone acetate, hydrocortisone acetate, flurocortisone acetate, methylprednisolone acetate, dizepam, digitoxin, digoxin , Diflu prednate, beclomethasone dipropionate, betamethasone di
  • the smaller water-soluble drug particles preferably have smaller maximum lengths of 30% or less of the average minor axis of the spherical core particles, and the maximum minor axes of 12% or less of the average minor axis of the spherical core particles.
  • each value is larger than the specified value, the drug particles are likely to peel off and the recovery rate of the spherical granules decreases.
  • exfoliated drug particles inhibit the rolling of spherical core particles, and as a result, aggregation of spherical elementary granules increases.
  • the maximum major axis is 20% or less of the average minor axis of the spherical core particles, and the maximum minor axis is 10% or less.
  • the poorly water-soluble drug particles are mixed in the layering solution in an amount of 0.0; If it is less than 0.01 mass%, it will be necessary to carry out layering for a long time in order to carry the required amount of drug. If it exceeds 50% by mass, the viscosity of the layering solution is too high, which hinders spraying. Preferably it is 1-30 mass%, More preferably, it is 5-20 mass%.
  • the refined crystal cellulose blended in the layering solution of the present invention has an average particle diameter measured in water. It means crystalline cellulose of 12 m or less. More preferably, it is 9 ⁇ m or less.
  • crystalline cellulose means “crystalline cellulose” of the 14th revision Japanese Pharmacopoeia, 7th edition food additive official document “microcrystalline cellulose”, “2003 It means what meets any standard of “carmellose sodium”.
  • the refined crystalline cellulose includes those obtained by dry or wet pulverization of ordinary crystalline cellulose, and those obtained by dispersing crystalline cellulose.carmellose sodium in water. Crystalline cellulose 'Carmellose sodium is preferable because it is easy to prepare a layering solution to which it is added, has high strength, and has high suspension stability. .
  • the refined crystalline cellulose is blended in the layering solution in an amount of 0.; If it is less than 0.1% by mass, sufficient suspension stabilizing effect cannot be obtained. If it exceeds 2 mass%, the viscosity of the layering solution will be too high, which will hinder spraying.
  • Preferably 0.5 2 ;! wt%, good Ri preferably 0.3 to 0.8 mass 0/0.
  • the suspension stability of the poorly water-soluble drug particles in the layering solution is improved, and the blockage of the spray nozzle as well as the tube is eliminated. Furthermore, since the adhesion of poorly water-soluble drug particles to spherical core particles is improved, the effect of increasing the recovery rate and reducing the aggregation rate can also be obtained.
  • the emulsifier blended in the layering solution means a substance having a milking function for pharmaceutical preparations.
  • the emulsifier examples include sucrose fatty acid ester, glycerin fatty acid ester, sodium lauryl sulfate, polysorbate, polyoxyethylene hydrogenated castor oil, carmellose sodium, xanthan gum and the like.
  • the emulsifier must be selected appropriately according to the physical properties of the drug particles! /.
  • the polyoxyethylene hydrogenated castor oil 60 is more preferable because the effect of suppressing foaming is higher!
  • polyoxyethylene hydrogenated castor oil 60 is a nonionic surfactant obtained by addition polymerization of ethylene oxide to hydrogenated castor oil, which is obtained by adding hydrogen to castor oil.
  • the average number of moles added is about 60! /, And its CAS number is 61788-85-0.
  • the average added mole number of ethylene oxide in the polyoxyethylene hydrogenated castor oil 60 is preferably 52 to 68, and more preferably 55 to 65.
  • the emulsifier is blended in the layering solution in an amount of 0 ⁇ 0; If it is less than 01% by mass, the affinity of drug particles with water will not be improved sufficiently. There is no upper limit. However, the effect is not improved as expected. More preferably, it is 0.05-0.8 mass%.
  • binder examples include hydroxypropylcellulose, povidone, hypromellose (hydroxypropylmethylcellulose) and the like.
  • a fluidized bed coating apparatus can be used to coat the spherical core particles with a poorly water-soluble drug-containing layer.
  • the fluidized bed coating apparatus includes a spouted bed type having a guide tube (Worster one-force ram) inside, a rolling fluidized bed type having a rotating mechanism at the bottom.
  • the layering solution can be supplied by selecting a method suitable for each apparatus such as top spray, bottom spray, side spray, tangential spray, etc. Are intermittently sprayed onto the spherical core particles. After spraying, the spherical granules are dried. At this time, the spherical elementary granules can be dried as they are without taking out the sample or by appropriately adjusting the air volume and temperature.
  • the coating amount of the drug layer is determined by the formulation design capability such as a single dose and the size of the formulation. For example, it is about 0.5 to 200% by mass with respect to the spherical core particles.
  • microcrystalline cellulose is dispersed in water and subjected to a micronization treatment using a Menton's goolin type homogenizer. Although it is processed as many times as necessary at high pressure, for example, 5 passes are processed at 50 MPa.
  • Fine crystalline cellulose for example, “Ceras” Cream FP-03, manufactured by Asahi Kasei Chemicals Corporation, solid content 10% by mass, average particle size of about 4 111
  • crystalline cellulose “carmellose sodium for example,“ Ceras ”
  • a rotary type disperser in order to make the micronized crystalline cellulose sufficiently small and blend with other components.
  • the disperser include “Kai. ⁇ . Homomixer 1” manufactured by Tokushu Kika Kogyo Co., Ltd. and “Ultra Turrax” manufactured by IK A.
  • a stirrer having a weak stirring force such as a propeller stirrer is not so preferable.
  • the co-synthesis may be sequentially dispersed.
  • Spherical granules obtained according to the present invention are sized according to need, coated with a film such as sustained release, enteric, bitterness mask, etc., and used as granules, capsules, tablets, etc. Can be used.
  • Samples of the shape digital microscope (VH- 7000, (Ltd.) manufactured by Keyence) taken with (using 50-fold or 100 fold the lens), an image analyzer (Im a geHyp er, (Ltd.) inter- Quest) Measure the short diameter (D) and long diameter (L) of 50 particles.
  • the minor axis and the major axis are defined as the short side of the circumscribed rectangle having the smallest area circumscribed on the boundary pixel of the particle and the long side as the major axis.
  • the sphericity is the ratio of minor axis to major axis (the average value of D / U. ⁇ Average minor axis of spherical core particles [m]>
  • the average minor axis is the value at 50% of the cumulative minor axis (D) obtained in the same way as the sphericity measurement method.
  • Tapping apparent density [g / cm 3 ] 30 [g] / Tapping volume [cm 3 ]
  • a layering solution is dropped on a slide glass, and a cover glass is placed thereon to prepare a sample.
  • the sample is photographed with an optical microscope (using a 40 ⁇ lens), and the major axis and minor axis of 50 drug particles are measured from the photograph to determine the maximum major axis m] and the maximum minor axis m].
  • the microcrystalline cellulose is dispersed in pure water, and a laser diffraction / scattering type particle size distribution analyzer (LA-910, manufactured by Horiba, Ltd.) is used. Set the relative refractive index 1.20 to obtain the median diameter m]. This operation is repeated twice and the average value is adopted.
  • LA-910 laser diffraction / scattering type particle size distribution analyzer
  • Recovery [mass%] ⁇ recovered amount [g] / total amount of raw material [g] ⁇ X 100
  • Spherical granules are dispersed on paper, and the number of particles (a [pieces]) and the number of single particles (b [pieces]) constituting the agglomerated granules are visually counted, and the following formula is calculated.
  • This layering solution had significantly higher suspension stability compared to Comparative Example 1 described later, in which the drug was not separated or foamed after dispersion.
  • Worster type coating equipment (“Multiplex” MP-01 type, Wurster power ram Spherical core particles made of 100% crystalline cellulose ("Selfia” CP-203, manufactured by Asahi Kasei Chemicals Co., Ltd., sphericity 0.9, tapping bulk density 0.98 g / cm @ 3, an average 0. 3 kg were charged minor 165), a spray air pressure of 0. 16 MPa, sPRAY air flow rate 40L / min, inlet air temperature 65 to 70 ° C, exhaust temperature 40 ° C, air volume 40 m 3 / h, in terms of layering liquid spray rate of 3 g / min, and layering until 12. 8 mass% relative to the spherical core particles (5 as drug 0 mass 0/0).
  • the layering solution was always propeller-stirred at 150 rpm. After stopping the spraying of the layering liquid, dry under the same conditions until the exhaust temperature rises to 42 ° C, and then turn off the heater of the supply air to bring the supply air temperature to 40 ° C. Cool until
  • Example 1 Using the layering solution prepared in Example 1, 0.6 kg of the same spherical core particles as in Example 1 were charged into a tumbling fluidized coating apparatus (“Multiplex” MP-01 type, manufactured by Baurec Co., Ltd.) using tangential bottom spray, spray air pressure 0. 16 MPa, spray Reea flow 40L / min, inlet air temperature 75 ° C, exhaust temperature 41 ° C, air volume 35m 3 / h, the rotary plate rotation speed 400 rpm, layering liquid under the conditions of spray rate 5. Og / min, and layering until against the spherical core particles 12.8 mass 0/0 (5 ⁇ 0 weight 0/0 as a drug). The layering solution was always stirred with a propeller at 150 rpm.
  • a tumbling fluidized coating apparatus (“Multiplex” MP-01 type, manufactured by Baurec Co., Ltd.) using tangential bottom spray, spray air pressure 0. 16 MPa, spray Reea flow 40L / min, inlet air temperature 75
  • the rotating plate rotation speed is set to 200 rpm, drying is performed until the exhaust temperature rises to 42 ° C, then the heater for supplying air is turned off, and the supply air temperature is reduced. Cooled to 40 ° C.
  • the powdered drug not adhering to the spherical core particles had a low recovery rate of 94.6% and an aggregation rate of 1.2%, both of which were good results.
  • the results are shown in Table 1.
  • Example 2 Layering was performed in the same manner as in Example 1 except that the supply air temperature was 70 to 78 ° C and the propeller stirring of the layering solution was 300 rpm.
  • the drug did not adhere to the spherical core particles, and the powdered drug adhered to the bag filter at the top of the device, resulting in a decrease in the recovery rate. Furthermore, the obtained spherical elementary granules contained many agglomerated particles. The results are shown in Table 1.
  • Example 1 which used a layering solution containing #tatacrystalline cellulose and an emulsifier, the wisteria granules had less wrinkles and a higher recovery rate.
  • Comparative Example 1 using a layering solution that does not contain Gyodai ⁇ crystalline cellulose and 3 ⁇ 4ft ⁇ J, the spherical opening granule is aggregated due to foaming of the layering solution.
  • the resulting layering solution was a uniform, thick and cloudy suspension with no foaming or drug particle settling.
  • Figure 1 shows the appearance.
  • Table 2 shows the appearance observation results.
  • Figure 2 shows the appearance.
  • Table 2 shows the appearance observation results.
  • a layering solution was prepared in the same manner as in Reference Comparative Example 1 except that the amount of povidone added was 15 g, and the state of separation was observed. The amount of drug present in the lower layer from Reference Comparative Example 1 increased. The foamed drug layer in the upper part of 1S was almost unchanged.
  • Figure 3 shows the appearance.
  • Table 2 shows the appearance observation results.
  • the resulting layering solution was separated into three layers, with bubbles in the upper 23% and a precipitated drug layer in the lower 23%.
  • Figure 4 shows the appearance.
  • Table 2 shows the appearance observation results.
  • a layering solution was prepared in the same manner as in Reference Comparative Example 3, except that 0.3 g of polyoxyethylene hydrogenated castor oil was added to 89.7 g of water.
  • the lower drug sedimentation layer was 11%, which was slightly improved from Reference Comparative Example 3, but the three-layer separation was not improved. Table 2 shows the appearance observation results.
  • a layering solution was prepared in the same manner as in Reference Comparative Example 5, except that 2.2 g of the same crystalline cellulose 'carmellose sodium as in Example 1 was added to 87.8 g of water.
  • the layering solution in the reference example using a combination of crystallite cellulose and emulsifier is a uniform paint.
  • the layering solution containing neither totalized crystalline cellulose nor 3 ⁇ 4 ⁇ ⁇ was separated into ii (Reference Comparative Examples 1 and 2). Further, the layering solution containing only milk t3 ⁇ 4 was severely foamed and separated into three layers (Reference Comparative Examples 3 and 4). On the other hand, the layering solution containing only W ⁇ crystalline cellulose has a reduced foaming force S, and the separation is also eliminated.
  • the production method of the present invention can be suitably used in the field of production of pharmaceutical granules coated with a film.
  • FIG. 5 Appearance of the layering solution prepared in Reference Comparative Example 6.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

明 細 書
水難溶性薬物含有球形素顆粒の製造方法
技術分野
[0001] 本発明は、水難溶性薬物を含有する球形素顆粒の製造方法に関する。
背景技術
[0002] 医薬品固形製剤は副作用の低減、服用回数の低減、薬物の効果向上、苦味の抑 制、薬物の安定化、等を目的として、徐放性、腸溶性、苦味マスク、等のフィルムコー ティングを施される場合がある。このような、フィルムコーティングに供されるのに適し た剤形である薬物を含有する球形の顆粒を、球形素顆粒と!/、う。
[0003] 球形素顆粒の製造方法としては、薬物と賦形剤を原料として押出造粒した後、球形 化する方法(押出 マルメ法)や、球状核粒子の表面を薬物で被覆する方法(レイヤ リング法)(例えば、特許文献 1参照)などが知られている。
[0004] レイヤリング法は、球状核粒子に対して薬物や結合剤等を含有するレイヤリング液 を噴霧するなどして、球状核粒子を被覆層で被覆して顆粒を製造する方法である。 具体的には、薬物粉末と結合剤水溶液を同時に供給して被覆する方法、薬物粒子 の懸濁液を供給して被覆する方法、薬物水溶液を供給して被覆する方法、などがあ
[0005] レイヤリング法は、真球度が高ぐ粒度分布の狭い球状核粒子を使用することによ つて、真球度が高ぐ粒度分布の狭い球形素顆粒を得ることができる。そのため、レイ ヤリング法はフィルムコーティングを施すための球形素顆粒を製造する方法として好 適である。
[0006] しかしながら、レイヤリング液に含まれる薬物が水溶性の低!/、薬物(水難溶性薬物) の場合は、均一な懸濁液とするために剪断力の強い装置で分散する必要があり、そ のためレイヤリング液を調製する際に激しく泡立ち、泡切り処理が必要となることがあ つた。また、実用的な薬物濃度のレイヤリング液では、経時的に薬物粒子が沈降する 。そのため、レイヤリング液は常に撹拌 ·混合し、懸濁液を均一な状態に保たなけれ ばならない。それでも、レイヤリング液タンクからスプレーノズルまでの移動中に沈降 · 凝集を生じ、チューブやスプレーノズルが閉塞する危険性は残る。薬物粒子が大き い場合は特に、その危険性が増大し、かつ、球状核粒子への付着性が低減し、回収 率の低下や転動阻害による凝集率の増加につながる。薬物粒子を小さくすれば、レ イヤリング液の懸濁安定性と回収率は改善する力 S、薬物粒子の粉碎 (あるいは摩砕) 処理工程が必要となる。
[0007] レイヤリング液に、被覆薬物の剥離防止や、薬物の溶出速度調節や、あるいは安 定化を目的に、種々の添加剤を配合することが知られている(例えば、特許文献 2、 3 、 4参照)。しかしながら、これらの従来技術では、水難溶性薬物の懸濁性改善は達 成されておらず、特許文献 2〜4には微細結晶セルロースと乳化剤を併用するという ことに関する記載はない。
また、特許文献 5には、レイヤリング法によって水難溶性薬物と乳化剤等を球状核 粒子に被覆する技術の開示がある力 具体的に開示されている技術は薬物粉末と結 合剤水溶液を同時に供給して被覆するレイヤリング法であり、特許文献 5には水難溶 性薬物をレイヤリング液に添加する際の懸濁性改善に関する記載はない。
[0008] 特許文献 1:特開昭 63— 301816号公報
特許文献 2:特開平 9 165329号公報
特許文献 3:特開平 9 67247号公報
特許文献 4:特表 2005— 536527号公報
特許文献 5:国際公開 2005/044240号パンフレット
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、懸濁安定性が良好で、泡立ちの抑制された水難溶性薬物含有レイヤリ ング液を用いることにより、製造効率の改善された水難溶性薬物含有球形素顆粒の 製造方法を提供することを目的とする。
課題を解決するための手段
[0010] 本発明者等は、前記課題を解決するため鋭意検討した結果、レイヤリング液に微 細化した結晶セルロースと乳化剤を配合することによって、薬物の特別な粉砕処理を 行うことなく、レイヤリング液の懸濁安定性が改善すると共に、泡立ちも抑制されること を見出し、本発明をなすに至った。すなわち、本発明は以下のとおりである。
薬学的に不活性な球状核粒子にレイヤリング液を噴霧して薬物含有層で被覆する 球形素顆粒の製造方法であって、
該レイヤリング液が、
(1)最大長径および最大短径が、それぞれ、球状核粒子の平均短径の 30%以下お よび 12 %以下である水難溶性薬物粒子を 0. 01〜 50質量%、
(2)微細化結晶セルロースを 0. ;!〜 2質量0 /0
(3)乳化剤を 0. 01〜;!質量%
を含むことを特徴とする水難溶性薬物含有球形素顆粒の製造方法。
発明の効果
[0011] 本発明の製造方法によれば、高生産性で、しかも、安定的に水難溶性薬物含有球 形素顆粒を製造することができる。
発明を実施するための最良の形態
[0012] 本発明について、以下具体的に説明する。
本発明で使用される球状核粒子は、薬学的に不活性である。すなわち、薬物を含 まない。
ここで、「薬物」とは、人または動物の疾病の治療、予防、診断に使用されるもので あって、器具 '機械ではないものをいう。
[0013] 球状核粒子は、一種類あるいは複数の医薬品添加物を含有することができる。この ような医薬品添加物の例としては、例えば、乳糖、白糖、 D—マンニトール、トウモロコ シデンプン、粉末セルロース、リン酸水素カルシウム、炭酸カルシウムなどの賦形剤; 低置換度ヒドロキシプロピルセルロース、カルメロースカルシウム、部分アルファ一化 デンプン、クロスカルメロースナトリウム、クロスポビドン、カルボキシメチルスターチな どの崩壊剤;ヒドロキシプロピルセルロース、ポビドン (ポリビュルピロリドン)、キサンタ ンガムなどの結合剤;ヒプロメロース(ヒドロキシプロピルメチルセルロース)、メタクリル 酸コポリマー LD、ェチルセルロース水分散液、などのコーティング剤;ショ糖脂肪酸 エステル、グリセリン脂肪酸エステル、ラウリル硫酸ナトリウム、ポリソルベート 60などの 乳化剤;タルク、ステアリン酸マグネシウム、メタケイ酸アルミン酸マグネシウム、酸化 チタン、軽質無水ケィ酸、結晶セルロース 'カルメロースナトリウムなどのその他の添 加物等を挙げることができる。
[0014] 好適な処方例は、白糖のみ、白糖 70質量%とトウモロコシデンプン 30質量%、結 晶セルロース 30質量%以上とその他の医薬品添加物、結晶セルロースのみ、マンニ トールのみ等を挙げることができる。結晶セルロースを 30質量%以上含む球状核粒 子は強度が高ぐし力、も、保水性を有するので好ましい。より好ましくは結晶セルロー スを 70質量%以上含むものであり、さらに好ましくは結晶セルロースのみからなる球 状核粒子である。また、最も好ましくは微結晶セルロースのみからなる球状核粒子で ある。
[0015] 球状核粒子の「球状」とは、真球度(=短径/長径)が 0. 7以上であることを意味す る。球状でなければ、フィルムコーティングの均一性が悪化するので好ましくない。好 ましくは、真球度が 0. 9以上である。
また、球状核粒子の粒径は、平均 50〜; 1000 m程度のものを使用することができ る。粒度分布はシャープな方が好ましい。嵩密度はおおよそ 0. 5〜2. Og/cm3であ ることが好ましい。結晶セルロースのみからなる球状核粒子の場合は、通常、 0. 5〜 1. Og/cm3程度である。機械的強度は高い方が好ましい。
[0016] 次に、本発明のレイヤリング液について説明する。
まず、本発明のレイヤリング液に配合される水難溶性薬物粒子について説明する。 ここで、「水難溶性」とは、水に溶けにくいことを意味し、 20°Cにおける水 lcm3に対 する溶解度が、 0. OOlg以下であることをいう。
水難溶性薬物の例としては、アムシノニド、イブプロフェン、インドメタシン、ェテンザ ミド、エリスロマイシン、塩酸セフォチアムへキセチル、塩酸二カルジピン、オメプラゾ ール、吉草酸酢酸プレドニゾロン、吉草酸ジフルコルトロン、吉草酸デキサメタゾン、 吉草酸ベタメゾン、クラリスロマイシン、グリセオフルビン、クロマゼパム、クロラムフエ二 コール、合成ペプチド化合物類、酢酸コルチゾン、酢酸ジフロラゾン、酢酸デキサメタ ゾン、酢酸トリアムシノロン、酢酸パラメタゾン、酢酸ヒドロコルチゾン、酢酸フルドロコ ルチゾン、酢酸メチルプレドニゾロン、ジァゼパム、ジギトキシン、ジゴキシン、ジフル プレドナート、ジプロピオン酸べクロメタゾン、ジプロピオン酸ベタメタゾン、スルピリド、 スルファチアゾール、セフロキシアキセチル、デキサメタゾン、トリアムシノロン、トリアム シノロンァセトニド、二カルジピン、二フエジピン、二ルパジピン、ノス力ピン、ノ、ルシノ ニド、ヒドロコルチゾン、ピバル酸フルメタゾン、フエナセチン、フエニトイン、ブデソニド 、プラゼパム、フルオシノニド、フルオシノロンァセトニド、フルォロメトロン、フルドロキ シコルチド、プレドニゾロン、プロピオン酸アルクロメロドン、プロピオン酸クロべタゾー ル、プロピオン酸デキサメタゾン、プロピオン酸デプロドン、ベタメタゾン、ミグレニン、 メチルプレドニゾロン、ュビデカレノン、酪酸クロベタゾン、酪酸ヒドロコルチゾン、酪酸 プロピオン酸ヒドロコルチゾン、酪酸リボフラビン、ランソプラゾール、リボフラビン等が 挙げられる。
[0017] 水難溶性薬物粒子は小さい方が好ましぐ最大長径が球状核粒子の平均短径の 3 0%以下であり、最大短径が球状核粒子の平均短径の 12%以下である。それぞれの 値が規定の数値よりも大きい場合は、薬物粒子が球形素顆粒力 剥離しやすくなり、 球形素顆粒の回収率が低下する。また、剥離した薬物粒子が球状核粒子の転動を 阻害し、その結果、球形素顆粒の凝集が増加する。
より好まし!/、薬物粒子の大きさは、最大長径が球状核粒子の平均短径の 20%以下 であり、最大短径は 10%以下である。
[0018] 水難溶性薬物粒子は、レイヤリング液に 0. 0;!〜 50質量%配合される。 0. 01質量 %未満だと、必要量の薬物を担持するために、長時間のレイヤリングを行う必要が生 じる。 50質量%を越えると、レイヤリング液の粘度が高すぎて、噴霧に支障をきたす。 好ましくは 1〜30質量%であり、より好ましくは 5〜20質量%である。
[0019] 次に、本発明のレイヤリング液に配合される微細化結晶セルロースについて説明す 本発明において、レイヤリング液に配合される微細化結晶セルロースとは、水中で 測定される平均粒子径が 12 m以下の結晶セルロースを意味する。より好ましくは 9 μ m以 である。
ここで、「結晶セルロース」とは、第十四改正日本薬局方の「結晶セルロース」、第 7 版食品添加物公定書「微結晶セルロース」、医薬品添加物規格 2003の「結晶セル口 一ス'カルメロースナトリウム」のいずれかの規格に適合するものを意味する。 [0020] 微細化結晶セルロースには、通常の結晶セルロースを乾式あるいは湿式粉砕した もの、および、結晶セルロース.カルメロースナトリウムを水中で分散したものを含む。 結晶セルロース 'カルメロースナトリウムは、これを添加したレイヤリング液の調製が容 易で、し力、も懸濁安定性が高ぐこれを用いて得られる球形素顆粒の強度が高いの で、好ましい。
[0021] この微細化結晶セルロースは、レイヤリング液に 0. ;!〜 2質量%配合される。 0. 1 質量%未満だと、充分な懸濁安定効果が得られない。 2質量%を越えると、レイヤリ ング液の粘度が高すぎて、噴霧に支障をきたす。好ましくは 0. 2〜;!質量%であり、よ り好ましくは 0. 3〜0. 8質量0 /0である。
[0022] レイヤリング液に微細化結晶セルロースを添加することにより、レイヤリング液中の 水難溶性薬物粒子の懸濁安定性が向上し、チューブ内はもちろん、スプレーノズル の閉塞も解消される。さらに、水難溶性薬物粒子の球状核粒子への付着力が向上す るため、回収率増加、凝集率低減の効果も得られる。
[0023] 次に、本発明のレイヤリング液に配合される乳化剤について説明する。
本発明において、レイヤリング液に配合される乳化剤とは、医薬品製剤用として乳 化機能を有する物質を意味する。
乳化剤の例としては、例えば、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、ラ ゥリル硫酸ナトリウム、ポリソルベート、ポリオキシエチレン硬化ヒマシ油、カルメロース ナトリウム、キサンタンガムなどを挙げることができる。乳化剤は薬物粒子の物性に応 じて適宜選択しなければならな!/、。発泡抑制効果がより高レ、と!/、う点からポリオキシェ チレン硬化ヒマシ油が好ましぐポリオキシエチレン硬化ヒマシ油 60がより好ましい。こ こで、ポリオキシエチレン硬化ヒマシ油 60とは、ヒマシ油に水素を添加して得た硬化 油に、酸化エチレンを付加重合させて得た非イオン性界面活性剤であって、酸化工 チレンの平均付加モル数が約 60であるものを!/、い、その CAS番号は 61788 - 85 - 0である。ポリオキシエチレン硬化ヒマシ油 60における酸化エチレンの平均付加モル 数は、 52〜68であることカ好ましく、より好ましくは 55〜65である。
[0024] 乳化剤は、レイヤリング液に 0· 0;!〜 1質量%配合される。 0. 01質量%未満だと、 薬物粒子の水との親和性が充分に向上しない。上限はないが、 1質量%以上配合し ても期待するほど効果は上がらない。より好ましくは 0. 05-0. 8質量%である。
[0025] レイヤリング液に乳化剤を添加することにより、薬物粒子の水との親和性が増すた めに、発泡が抑制される。また、乳化剤と微細化結晶セルロースとの相乗作用により 、安定的に懸濁する。そのため、レイヤリング液の懸濁性を維持するための撹拌はき わめてわずかで充分であり、場合によっては撹拌の必要がなくなる。
従来、懸濁シロップ剤やドライシロップ剤等、ショ糖を 20質量%程度又は 5質量% 程度以上の高濃度で配合する懸濁液において、懸濁安定性向上を目的として、結 晶セルロース 'カルメロースナトリウムとポリソルベートなどの乳化剤を併用して処方す ること力 Sある。しかし、このような処方においてはショ糖を高濃度で配合するため、もと もと発泡が問題となることはなかった。そのため、ショ糖を高濃度で配合しないレイヤ リング液において、乳化剤と微細化結晶セルロースとを併用することにより、懸濁安定 化のみならず優れた発泡抑制効果が奏されることは、当業者にとっても予想外のこと である。
[0026] レイヤリング液には、必要に応じて、その他の医薬品添加物を配合しても良い。特 に、結合剤の配合は、薬物層の強度向上をもたらすので特に好ましい。結合剤の例 としては、例えば、ヒドロキシプロピルセルロース、ポビドン、ヒプロメロース(ヒドロキシ プロピルメチルセルロース)等を挙げることができる。
[0027] 次に、球状核粒子をレイヤリングにより水難溶性薬物含有層で被覆する工程につ いて説明する。
球状核粒子を水難溶性薬物含有層で被覆するために、流動層コーティング装置が 使用できる。流動層コーティング装置には、通常の流動層型のほかに、内部に案内 管(ワースタ一力ラム)を有する噴流層型や、底部に回転機構を備えた転動流動層型 などが含まれる。
このような装置の例としては、フロイント産業社製「フローコーター」「スパイラフロー」 、 Glatt社製「WST/WSGシリーズ」「GPCGシリーズ」、不二パゥダル社製「ニュー マルメライザ一」、パゥレック社製「マルチプレックス」などを挙げることができる。
[0028] レイヤリング液の供給は、トップスプレー、ボトムスプレー、サイドスプレー、タンジェ ンシャルスプレー等の各装置に適した方法を選択することができ、連続的に、あるい は間欠的に、球状核粒子に噴霧される。噴霧終了後、球形素顆粒を乾燥する。この とき、サンプルを取り出すことなぐそのまま、あるいは風量および温度を適宜調節し て、球形素顆粒を乾燥することもできる。
[0029] 薬物層の被覆量は、一回の服用量や製剤の大きさなどの製剤設計力 決まるもの である。あえて例を示せば、球状核粒子に対して 0. 5〜200質量%程度である。
[0030] 球形素顆粒の製造工程の一例を説明する。
(a)微細化結晶セルロースの調製;まず、結晶セルロースを水に分散し、マントン'ゴ 一リン型ホモジナイザーで微細化処理を行う。高圧で、必要回数処理するが、一例を 挙げれば、 50MPaで 5パス処理する。微細な結晶セルロース(例えば、「セォラス」ク リーム FP— 03、旭化成ケミカルズ (株)製、固形分 10質量%、平均粒径約 4 111)や 、結晶セルロース 'カルメロースナトリウム(例えば、「セォラス」 RC—A591NF、旭化 成ケミカルズ (株)製)を使用する場合は、この工程は必要ない。
(b)レイヤリング液の調製;水難溶性薬物と、微細化結晶セルロースと、乳化剤と、必 要な医薬品添加物を水に添加し、充分に撹拌溶解/懸濁する。この時、微細化結晶 セルロースを充分に小さくし、他の成分となじませるために、回転型の分散機を使うこ とが好ましい。分散機の例としては、特殊機化工業 (株)製「Τ. Κ.ホモミクサ一」、 IK A社製「ウルトラタラックス」などを挙げることができる。プロペラ攪拌機のような、攪拌 力が弱い攪拌機はあまり好ましくない。溶解あるいは分散を確認するために、配合成 分を逐次、分散してもよい。
(c)球状核粒子および流動層コーティング装置の加温;次いで、流動層コーティング 装置に球状核粒子を仕込み、排風温度が所定の温度に達するまで、温風を装置下 部から供給し、核粒子を流動させる(流動層コーティング装置が転動流動層型である 場合、同時に回転部を回転する)。
(d)薬物層の被覆;次に、レイヤリング液を所定の速度で連続的に、あるいは間欠的 に、あるいは段階的に速度を上げて噴霧し、所定の被覆量に達したらレイヤリング液 の供給を停止する。
(e)球形素顆粒の乾燥;必要に応じて、温風の量および温度(転動流動層型の場合 は回転部の回転速度)を調節し、乾燥する。 (f)球形素顆粒の取り出し;最後に、球形素顆粒を取り出す。
[0031] 本発明により得られた球形素顆粒は、必要に応じて整粒され、徐放性、腸溶性、苦 味マスクなどのフィルムコーティングを施され、顆粒剤、カプセル剤、錠剤等として使 用できる。
実施例 1
[0032] 本発明を実施例に基づいて説明する。まず、物性の測定方法を以下にまとめて記 す。
<球状核粒子の真球度 [一]〉
サンプルの形状を、デジタルマイクロスコープ(VH— 7000、(株)キーエンス製)で 撮影し(50倍または 100倍レンズを使用)、画像解析装置 (ImageHyper、(株)イン タークエスト製)を用いて 50個の粒子の短径 (D)、長径 (L)を測定する。ここで、短径 と長径は、粒子の境界画素上に外接する面積が最小となる外接長方形の短辺を短 径とし、長辺を長径とする。真球度は、短径と長径の比(D/Uの平均値とする。 <球状核粒子の平均短径 [ m]〉
平均短径は、真球度の測定方法と同様にして求めた短径 (D)の積算 50%におけ る値とする。
<球状核粒子のタッピング嵩密度 [g/cm3] >
サンプル 30gを 100cm3メスシリンダーに充填し、 30回程度タッピングし、タッピング 体積 [cm3]を求め、下式により算出する。この操作を 3回繰り返し、その平均値を採 用する。
タッピング見掛密度 [g/cm3] = 30 [g] /タッピング体積 [cm3]
<レイヤリング液の分離状態 [一] >
レイヤリング液 30cm3を直径 40mm、高さ 50mmのサンプル瓶に入れ、 5分後の状 態を観察する。
<薬物粒子の最大長径および短径 [ m] >
レイヤリング液をスライドガラス上に滴下し、カバーガラスを乗せて試料を作成する。 該試料を光学顕微鏡 (40倍レンズ使用)で写真撮影し、写真から薬物粒子 50個の 長径と短径を計測し、最大長径 m]、最大短径 m]を求める。 <微細化結晶セルロースの粒径 [ m] >
レイヤリング液の調製と同様にして、純水中に微細化結晶セルロースを分散し、レ 一ザ一回折/散乱式粒度分布測定装置 (LA— 910型、(株)堀場製作所製)を用い て、比屈折率 1. 20に設定して、メジアン径 m]を求める。この操作を 2回繰り返し 、その平均値を採用する。
<球形素顆粒の回収率 [質量%] >
レイヤリング後の球形素顆粒の回収量 [g]、用いた原料の総量 [g]から、下式により 算出する。
回収率 [質量%] = {回収量 [g]/原料の総量 [g] } X 100
<球形素顆粒の凝集率[%] >
球形素顆粒を紙上に分散させ、 目視で凝集顆粒を構成している粒子数 (a [個] )と 、単一粒子数 (b [個] )を数え、下式により算出する。観察する粒子数は 1000個(=a + b)とする。
凝集率 [ % ] = { a/ (a + b) } X 100
[実施例 1]
(レイヤリング液の調製)
水 74· 4gを回転型分散機(T. Κ·ホモミクサ一 Mark II f model、特殊機化工 業 (株)製) 5000rpmで攪拌しながら、ポビドン (K— 30、 ISP Tec. Inc.製) 15gを 添加し、さらに完全に溶解するまで撹拌した。その後、乳化剤としてポリオキシェチレ ン硬化ヒマシ油(HCO— 60日光ケミカルズ (株)製) 0. lgを溶解するまで分散し、水 難溶性薬物としてェテンザミド(タイプ A、(株)エーピーアイコーポレーション製) 10g を投入し、さらに微細化結晶セルロースとして結晶セルロース 'カルメロースナトリウム (「セォラス」 RC—A591NF、旭化成ケミカルズ (株)製、平均粒子径 8· 6 ^ 111) 0. 5g を投入して 30分間分散し、レイヤリング液を調製した。
このレイヤリング液は、分散終了後の薬物の分離や泡立ちがなぐ後述の比較例 1 と比較して、著しく液の懸濁安定性が高力 た。
(レイヤリング)
ワースタ一型コーティング装置(「マルチプレックス」 MP— 01型、ワースタ一力ラム を装着して使用、(株)バウレック製)に結晶セルロース 100%からなる球状核粒子(「 セルフィァ」 CP— 203、旭化成ケミカノレズ (株)製、真球度 0. 9、タッピング嵩密度 0. 98g/cm3、平均短径 165 )を 0. 3kg仕込み、スプレーエアー圧 0. 16MPa、ス プレーエアー流量 40L/min、給気温度 65〜70°C、排気温度 40°C、風量 40m3/ h、レイヤリング液噴霧速度 3g/minの条件で、球状核粒子に対して 12. 8質量% ( 薬物として 5. 0質量0 /0)になるまでレイヤリングした。なお、レイヤリング液は、常時、 1 50rpmでプロペラ攪拌した。レイヤリング液の噴霧を停止した後は、そのままの条件 で、排気温度が 42°Cに上昇するまで乾燥し、次いで、給気の加熱ヒーターをオフに して、給気温度が 40°Cになるまで冷却した。
球状核粒子に付着していない粉化した薬物は少なぐほぼ全量が回収された。また 、凝集もきわめて少な力、つた。結果を表 1に示す。
[0034] [実施例 2]
(レイヤリング)
実施例 1で調製したレイヤリング液を用いて、転動流動コーティング装置(「マルチ プレックス」 MP— 01型、(株)バウレック製)に実施例 1と同じ球状核粒子を 0. 6kg仕 込み、タンジェンシャルボトムスプレーを使用し、スプレーエアー圧 0. 16MPa、スプ レーエアー流量 40L/min、給気温度 75°C、排気温度 41°C、風量 35m3/h、回転 板回転数 400rpm、レイヤリング液噴霧速度 5. Og/minの条件で、球状核粒子に 対して 12· 8質量0 /0 (薬物として 5· 0質量0 /0)になるまでレイヤリングした。なお、レイ ヤリング液は、常時、 150rpmでプロペラ攪拌した。レイヤリング液の噴霧を停止した 後は、回転板回転数を 200rpmとし、排気温度が 42°Cに上昇するまで乾燥し、次い で、給気の加熱ヒーターをオフにして、給気温度が 40°Cになるまで冷却した。
球状核粒子に付着していない粉化した薬物は少なぐ回収率は 94. 6%、凝集率 は 1. 2%であり、ともに良好な結果であった。結果を表 1に示す。
[0035] [比較例 1]
(レイヤリング液の調製)
水 75. Ogを回転型分散機(Τ· Κ·ホモミクサ一 Mark II f model、特殊機化工 業 (株)製) 5000rpmで攪拌しながら、ポビドン 15gを添加し、さらに完全に溶解する まで撹拌した。その後、ェテンザミド 10gを投入し、 30分間分散し、レイヤリング液を 調製した。
このレイヤリング液は、泡立ちがひどぐ時間がたってもなくならな力 た。また、調 製終了後 5分後には薬物の沈降が生じ、懸濁安定性は非常に悪力、つた。
(レイヤリング)
給気温度 70〜78°Cとし、かつ、レイヤリング液のプロペラ撹拌を 300rpmとした以 外は、実施例 1と同様の操作でレイヤリングを行った。
薬物は球状核粒子に付着せず、粉化した薬物が装置上部のバグフィルターに付着 し、回収率が低下した。さらに、得られた球形素顆粒は凝集した粒子を多数含んでい た。結果を表 1に示す。
[表 1]
液方 [レヤイリヤリレイ%ンン 剤ポビドン
Figure imgf000014_0001
#田化結晶セルロースと乳化剤を含むレイヤリング液を用いた 例 1、 2では、 球藤顆粒の謹が少なく、 回収率も高かった。
これに対し、猶田ィ匕結晶セルロースと ¾ft^Jを含まないレイヤリング液を用いた比 較例 1では、 レイヤリング液の泡立ちに起因する球开臻顆粒の?纏が生じ、また、球
卺替え用紙 («!i2S 形素顆粒の回収率も低かった。
[0038] [参考例]
水 89. 4gを回転型分散機 5000rpmで攪拌しながら、ポリオキシエチレン硬化ヒマ シ油 0. lgを投入し、さらに完全に溶解するまで撹拌した。ェテンザミド 10gを投入し 、さらに実施例 1と同じ結晶セルロース 'カノレメロースナトリウム 0. 5gを投入して 30分 間分散し、レイヤリング液を調製した。
得られたレイヤリング液は、泡立ちも、薬物粒子の沈降もない、均一で濃く白濁した 懸濁液であった。外観を図 1に示す。また、外観観察結果を表 2に示す。
[0039] [参考比較例 1]
水 88. Ogを回転型分散機 5000rpmで攪拌しながら、ポビドン 2gを投入し、さらに 完全に溶解するまで撹拌した。さらにェテンザミド 10gを投入し、 30分間分散し、レイ ヤリング液を調製した。得られたレイヤリング液は、上部 53%に泡状薬物が分離した 不均一な状態を呈した。
外観を図 2に示す。また、外観観察結果を表 2に示す。
[0040] [参考比較例 2]
ポビドンの添加量を 15gとする以外は、参考比較例 1と同様にしてレイヤリング液を 調製し、分離の状態を観察した。参考比較例 1より下層に存在する薬物量は増えた 1S 上部の泡状薬物層はほとんど変わらずに存在した。
外観を図 3に示す。また、外観観察結果を表 2に示す。
[0041] [参考比較例 3]
水 89. 5gを回転型分散機 5000rpmで攪拌しながら、ポリオキシエチレン硬化ヒマ シ油 0. lgを投入し、さらに完全に溶解するまで撹拌した。さらにェテンザミド 10gを 投入し、 30分間分散し、レイヤリング液を調製した。
得られたレイヤリング液は、三層に分離し、上部 23%に泡があり、下部 23%には沈 降した薬物の層が存在した。外観を図 4に示す。また、外観観察結果を表 2に示す。
[0042] [参考比較例 4]
水 89. 7gにポリオキシエチレン硬化ヒマシ油 0. 3gを添加した以外は、参考比較例 3と同様にしてレイヤリング液を調製した。 得られたレイヤリング液は、下部の薬物沈降層が 11 %となり、参考比較例 3よりやや 改善されたが、三層分離は改善されなかった。外観観察結果を表 2に示す。
[0043] [参考比較例 5]
水 89. 4gを回転型分散機 5000rpmで攪拌しながら、結晶セルロース.カルメロ一 スナトリウム 0. 5gを投入し、 30分間分散した。さらにェテンザミド 10gを投入して 30 分間分散し、レイヤリング液を調製した。
得られたレイヤリング液は、参考比較例 1と同様に、上部 52%に泡状薬物層が存在 する不均一な状態を呈した。外観観察結果を表 2に示す。
[0044] [参考比較例 6]
水 87. 8gに実施例 1と同じ結晶セルロース 'カルメロースナトリウム 2. 2gを添加した 以外は、参考比較例 5と同様にしてレイヤリング液を調製した。
得られたレイヤリング液は分離のな!/、均一な状態を呈したが、多量に結晶セルロー ス.カノレメロースナトリウムを配合したためにゲル状になった。このゲル状物はチュー ブポンプによる液輸送が困難なほど粘稠だった。外観を図 5に示す。また、外観観察 結果を表 2に示す。
[0045] [表 2]
Figure imgf000017_0001
猶田ィ 晶セルロースと乳化剤を併用した参考例のレイヤリング液は、均一な画夜 であつ
これに対し、 総田化結晶セルロース、 ¾ί匕剤を共に含まないレイヤリング液は iiに 分離した (参考比較例 1、 2)。 また、 乳ィ t¾のみ むレイヤリング液は、 泡立ちが ひどく、 三層に分離した (参考比較例 3、 4)。 一方、 猶 W匕結晶セルロースのみを含 むレイヤリング液は、泡立ち力 S解消され、分離も" ^蠏消されるものの (参考比棚 5
狻替え招紙 m )、分離を完全に解消するためには、ゲル化し、レイヤリング液として不適なものにな るほど微細化結晶セルロース添加量を増やす必要があった (参考比較例 6)。
これらの結果から、微細化結晶セルロースと乳化剤の併用により、水難溶性薬物含 有レイヤリング液の懸濁安定性が改善されることが確認できた。
産業上の利用可能性
[0047] 本発明の製造方法は、フィルムコーティングを施した医薬品顆粒製造の分野で好 適に利用できる。
図面の簡単な説明
[0048] [図 1]参考例で調製したレイヤリング液の外観。
[図 2]参考比較例 1で調製したレイヤリング液の外観。
[図 3]参考比較例 2で調製したレイヤリング液の外観。
[図 4]参考比較例 3で調製したレイヤリング液の外観。
[図 5]参考比較例 6で調製したレイヤリング液の外観。

Claims

請求の範囲 [1] 薬学的に不活性な球状核粒子にレイヤリング液を噴霧して薬物含有層で被覆する 球形素顆粒の製造方法であって、 該レイヤリング液が、
(1)最大長径および最大短径が、それぞれ、球状核粒子の平均短径の 30%以下お よび 12 %以下である水難溶性薬物粒子を 0. 01 50質量%、
(2)微細化結晶セルロースを 0. ;! 2質量0 /0
(3)乳化剤を 0. 01〜;!質量%
を含むことを特徴とする難溶性薬物含有球形素顆粒の製造方法。
[2] 前記水難溶性薬物粒子の最大長径および最大短径が、それぞれ、球状核粒子の 平均短径の 20%以下および 10%以下であることを特徴とする請求項 1に記載の水 難溶性薬物含有球形素顆粒の製造方法。
[3] 前記レイヤリング液中の前記水難溶性薬物粒子の含有量が、;!〜 30質量%である ことを特徴とする請求項 1または 2記載の水難溶性薬物含有球形素顆粒の製造方法
[4] 前記レイヤリング液中の前記水難溶性薬物粒子の含有量が、 5 20質量%である ことを特徴とする請求項 1または 2記載の水難溶性薬物含有球形素顆粒の製造方法
[5] 前記レイヤリング液中の前記微細化結晶セルロースの含有量力 0. 2〜;!質量% であることを特徴とする請求項 1 4いずれ力、 1項記載の水難溶性薬物含有球形素 顆粒の製造方法。
[6] 前記レイヤリング液中の前記微細化結晶セルロースの含有量力 0. 3 0. 8質量 %であることを特徴とする請求項 1 5いずれ力、 1項記載の水難溶性薬物含有球形 素顆粒の製造方法。
[7] 前記レイヤリング液中の前記乳化剤の含有量が、 0. 05-0. 8質量%であることを 特徴とする請求項 1 6いずれ力、 1項記載の水難溶性薬物含有球形素顆粒の製造 方法。
[8] 前記乳化剤が、ポリオキシエチレン硬化ヒマシ油 60であることを特徴とする請求項 1 〜7いずれか 1項記載の水難溶性薬物含有球形素顆粒の製造方法。
[9] 前記微細化結晶セルロースの平均粒径が 9 m以下であることを特徴とする請求 項;!〜 8いずれか 1項記載の水難溶性薬物含有球形素顆粒の製造方法。
[10] 前記球状核粒子が、結晶セルロースを 70質量%以上含有するものであることを特 徴とする請求項;!〜 9いずれか 1項記載の水難溶性薬物含有球形素顆粒の製造方 法。
[11] 前記球状核粒子の嵩密度が、 0. 5〜; 1. Og/cm3であることを特徴とする請求項 1 〜; 10いずれ力、 1項記載の水難溶性薬物含有球形素顆粒の製造方法。
PCT/JP2007/065654 2006-08-11 2007-08-09 Procédé de production de granulé sphérique contenant une substance légèrement hydrosoluble WO2008018561A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/310,067 US9095512B2 (en) 2006-08-11 2007-08-09 Method for producing spherical base granules comprising hardly water-soluble drug
CN2007800293602A CN101500541B (zh) 2006-08-11 2007-08-09 含有水难溶性药物的球状素颗粒的制造方法
JP2008528886A JP5171626B2 (ja) 2006-08-11 2007-08-09 水難溶性薬物含有球形素顆粒の製造方法
EP07792304.3A EP2050439B1 (en) 2006-08-11 2007-08-09 Process for production of spherical granule containing slightly water-soluble substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006220247 2006-08-11
JP2006-220247 2006-08-11

Publications (1)

Publication Number Publication Date
WO2008018561A1 true WO2008018561A1 (fr) 2008-02-14

Family

ID=39033090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065654 WO2008018561A1 (fr) 2006-08-11 2007-08-09 Procédé de production de granulé sphérique contenant une substance légèrement hydrosoluble

Country Status (5)

Country Link
US (1) US9095512B2 (ja)
EP (1) EP2050439B1 (ja)
JP (1) JP5171626B2 (ja)
CN (1) CN101500541B (ja)
WO (1) WO2008018561A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3157516A4 (en) 2014-06-22 2017-12-13 Dexcel Pharma Technologies Ltd. Pharmaceutical compositions comprising ferric citrate and methods for the production thereof
CN105496970A (zh) * 2015-12-18 2016-04-20 北京华禧联合科技发展有限公司 含有利格列汀的组合物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301816A (ja) 1987-01-29 1988-12-08 Takeda Chem Ind Ltd 有核顆粒およびその製造法
JPH0967247A (ja) 1995-08-31 1997-03-11 Taisho Pharmaceut Co Ltd 均一な微粒子製剤の製造方法
JPH09165329A (ja) 1995-10-12 1997-06-24 Asahi Chem Ind Co Ltd フィルムコーティング顆粒およびその製造方法
JP2005044240A (ja) 2003-07-24 2005-02-17 Nec Engineering Ltd パソコンのユーザサポートシステム
JP2005536527A (ja) 2002-08-02 2005-12-02 ラティオファルム ゲー・エム・ベー・ハー 微結晶セルロースと混合したベンズイミダゾール化合物を含有する医薬製剤およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902792A (en) * 1985-04-19 1990-02-20 Kanebo Ltd. Fine cellulose particles and process for production thereof
US5026560A (en) * 1987-01-29 1991-06-25 Takeda Chemical Industries, Ltd. Spherical granules having core and their production
NZ230763A (en) * 1988-09-27 1991-10-25 Takeda Chemical Industries Ltd Production of granules having a core by spraying the cores with a dispersion of hydroxypropylcellulose, optionally incorporating an active ingredient
JPH0725765A (ja) * 1993-07-07 1995-01-27 Mitsubishi Chem Corp 眼疾患用薬剤
US6379688B2 (en) * 1997-02-28 2002-04-30 Senju Pharmaceutical Co., Ltd. Preservative for emulsion and emulsion containing same
US6156771A (en) * 1997-08-28 2000-12-05 Rubin; Walter Method for alleviation of lower gastrointestinal disorders in a human patient
JPH11171769A (ja) * 1997-12-05 1999-06-29 Nichiko Pharmaceutical Co Ltd 3−イソブチリル−2−イソプロピルピラゾロ〔1,5−a〕ピリジンの徐放性製剤及びその製法
US6228400B1 (en) * 1999-09-28 2001-05-08 Carlsbad Technology, Inc. Orally administered pharmaceutical formulations of benzimidazole derivatives and the method of preparing the same
CA2359812C (en) * 2000-11-20 2004-02-10 The Procter & Gamble Company Pharmaceutical dosage form with multiple coatings for reduced impact of coating fractures
US7737133B2 (en) * 2003-09-03 2010-06-15 Agi Therapeutics Ltd. Formulations and methods of treating inflammatory bowel disease
AU2004287373A1 (en) 2003-10-31 2005-05-19 Dexcel Ltd. Stable lansoprazole formulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301816A (ja) 1987-01-29 1988-12-08 Takeda Chem Ind Ltd 有核顆粒およびその製造法
JPH0967247A (ja) 1995-08-31 1997-03-11 Taisho Pharmaceut Co Ltd 均一な微粒子製剤の製造方法
JPH09165329A (ja) 1995-10-12 1997-06-24 Asahi Chem Ind Co Ltd フィルムコーティング顆粒およびその製造方法
JP2005536527A (ja) 2002-08-02 2005-12-02 ラティオファルム ゲー・エム・ベー・ハー 微結晶セルロースと混合したベンズイミダゾール化合物を含有する医薬製剤およびその製造方法
JP2005044240A (ja) 2003-07-24 2005-02-17 Nec Engineering Ltd パソコンのユーザサポートシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2050439A4 *

Also Published As

Publication number Publication date
CN101500541A (zh) 2009-08-05
US9095512B2 (en) 2015-08-04
EP2050439A4 (en) 2011-09-07
JPWO2008018561A1 (ja) 2010-01-07
EP2050439B1 (en) 2016-11-23
EP2050439A1 (en) 2009-04-22
CN101500541B (zh) 2011-06-15
US20090324802A1 (en) 2009-12-31
JP5171626B2 (ja) 2013-03-27

Similar Documents

Publication Publication Date Title
JP6460562B2 (ja) 医薬コアシェル複合粉末、及びそれを作成するための方法
Ali et al. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling
TWI405590B (zh) 微粉碎化有機化合物粒子之製法
US10500282B2 (en) Supersaturated stabilized nanoparticles for poorly soluble drugs
Malamatari et al. Nanoparticle agglomerates of indomethacin: the role of poloxamers and matrix former on their dissolution and aerosolisation efficiency
Gaspar et al. Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release
JP6166859B2 (ja) 味マスクされた活性医薬粉末組成物およびその製造方法
TW200927124A (en) Revaprazan-containing solid dispersion and process for the preparation thereof
BR112013020404B1 (pt) Formulação de multiparticulado de lmentol, seu método de produção, ecomposição de multiparticulado
JP5160423B2 (ja) 水易溶性薬物含有球状素顆粒の製造方法
JP2006527223A (ja) マイクロペレット、その製造方法並びにその使用
JP6915258B2 (ja) 医薬組成物粒子とそれを含む口腔内崩壊製剤、医薬組成物粒子の製造方法
JP5171626B2 (ja) 水難溶性薬物含有球形素顆粒の製造方法
WO2001028517A1 (fr) Compositions therapeutiques aqueuses
TWI332403B (ja)
JP2008050284A (ja) 球状核粒子および球形素顆粒の製造方法
JP6853828B2 (ja) メマンチンまたはその薬学上許容される塩を含有する医薬組成物
WO2020025579A1 (en) Solid dosage form of quetiapine fumarate
BR112014032513B1 (pt) forma de dosagem compreendendo fenofibrato
WO2022072099A9 (en) Immediate release dosage forms, methods of making and using
WO2014003706A1 (en) Fenofibrate formulation
WO2002030416A1 (fr) Suspensions medicamenteuses contenant des acides amines ramifies
JP2018044017A (ja) 粒子製剤
HU227115B1 (en) Pellets containing pyridazinone derivative

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029360.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792304

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008528886

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 488/KOLNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12310067

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007792304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007792304

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU